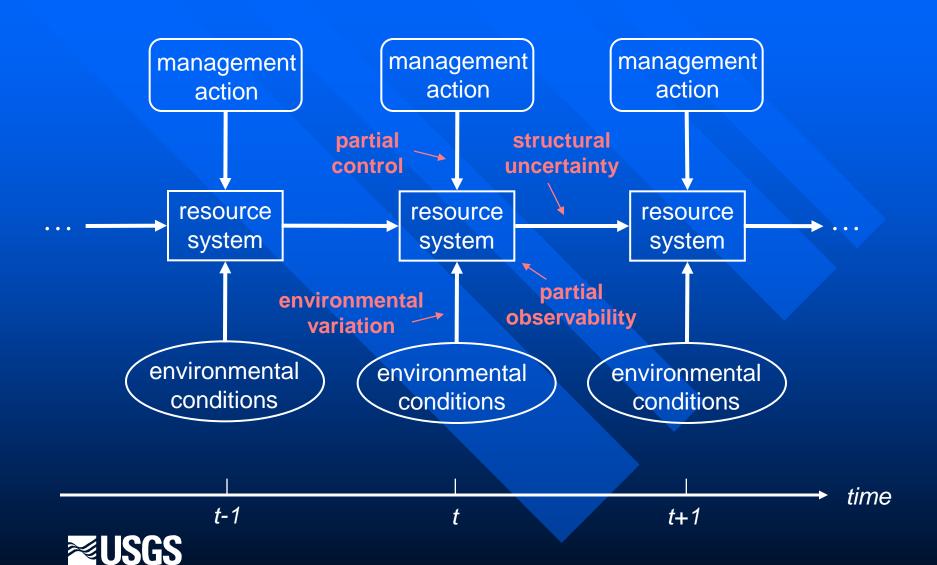
USDA Forest Service

Science Forum for the Land Management Planning Rule


Byron K. Williams
USGS Cooperative Research Units
March 29, 2010

Management Situation

- Complex forest systems operating at multiple scales
- Forest resources influenced by both environmental conditions and management actions
- Decision making required in the near term
- Uncertainty about long term consequences
- Lots of stakeholders with different viewpoints, values, potentially conflicting objectives

Resource Framework

DOI Approach to Decision Making in the Face of Uncertainty: AM

Learning through management, and adjusting management strategy based on what is learned

- focus on reducing uncertainty about the influence of management actions, and
- improving management as a result of improved understanding

Common Features of AM Problems

- A management framework
- Uncertainty about management consequences
- Iterative decision making
- The potential for learning through the process of management itself
- Potential improvement of management based on learning



AM Implementation

- Iterative process of decision making
- Followed by monitoring
- Followed by analysis and assessment
- Followed by learning
- With what's learned incorporated into future decision making

Adaptive Decision Making

- Decisions are guided by management objectives at each time
- Monitoring is used to track system responses to management
- New information from monitoring is combined with previously collected information to produce improved understanding
- Decisions are adjusted in the next time period based on that improved understanding

Two Key Outcomes

Improved understanding over time

Improved management over time based on that improved understanding

Management and Learning

nstitutional Learning

Deliberative phase

Stakeholder involvement

Objective(s)

Potential management alternatives

Predictive models

Monitoring protocols and plans

Iterative phase (technical learning)

decision making
monitoring
assessment

Science and AM

Science

- Scientific hypotheses
- Experimental treatments
- Data collection
- Analysis (confrontation of data against hypotheses)
- Learning

<u>AM</u>

- Management hypotheses
- Management interventions
- Monitoring
- Data assessment (confrontation of data against hypotheses)
- Learning
- Feedback into future management

Forest Planning and AM

- Forests are dynamic systems that are influenced over time by environmental conditions and management strategies
- Planning for the National Forests is mandated to be sciencebased and stakeholder driven
- Forest planning acknowledges the importance of transparency in framing management objectives, alternatives, and projected consequences
- It acknowledges uncertainty as a key element constraining smart management
- It recognizes the value of management adaptations as conditions change and understanding improves over time
- It should build on experience, data, and understanding as they are expressed through monitoring and assessment over time

Why Use AM for Forest Planning?

- Because AM is fundamentally science based
- Because every one of the planning attributes just mentioned is a hallmark of adaptive decision making
- Because your planning framework is <u>pre-adapted</u>
 by its structure to an adaptive approach

Elements of an Approach

- Characterize system uncertainty to guide both research and management priorities
- Develop scenarios for different resource futures and strategies
- Search for robust near-term actions
- Propagate uncertainties through time
- Periodically adjust strategy based on new information (i.e., use adaptive decision making)

Institutional and Professional Requirements

- A commitment to learn as you go
- Management flexibility to adapt as you learn
- Expansion of management boundaries and scales as appropriate and needed
- More and better collaboration than in the past
- Recognition of what is feasible and what is not

