Southwestern Region (R3)

Sea Level Rise and Lake Level Viewers

Overview & Applicability

Rising sea levels are being caused by a change in the volume of the world's oceans due to temperature increase, deglaciation (uncovering of glaciated land because of melting of the glacier), and ice melt. This data viewer can provide a preliminary look at sea level rise and how it might affect coastal resources across the United States (with the exception of Alaska and Louisiana). Data and maps can be used at several scales to help gauge trends and prioritize actions for different scenarios.

Summary: 

This data viewer can provide a preliminary look at sea level rise and how it might affect coastal resources across the United States (with the exception of Alaska and Louisiana). Data and maps can be used at several scales to help gauge trends and prioritize actions for different scenarios.

Restoring composition and structure in frequent-fire forests: a science-based framework for improving ecosystem resiliency

Rocky Mountain Research Station
Research Partners: 
University Northern Arizona, USFS Southwestern Region
Principal Investigator(s): 
Richard T. Reynolds
Summary: 

Many forests in the southwestern U.S. are adapted to frequent, low-intensity fires. These forests are currently experiencing uncharacteristicly severe wildfire, insect, and disease episodes resulting in altered plant and animal demographics, reduced productivity and biodiversity, and impaired ecosystem functions. These disturbances are predicted to increase as future climates in the Southwest become warmer and dryer. This research aimed to develop a restoration framework for frequent-fire forests based on restoring the historical composition, structure, and spatial patterns of vegetation. Implementing the restoration framework is expected to improve the resiliency of frequent-fire forests by allowing natural ecosystem processes such as low-intenisty fire to resume. Restoring key elements may position frequent-fire forests throughout the western U.S. to better resist, respond, and adapt to future climates and disturbances.

Project Abstract: 

Ponderosa pine and dry mixed-conifer forests in the Southwest United States are experiencing, or have become increasingly susceptible to large-scale severe wildfire, insect, and disease episodes resulting in altered plant and animal demographics, reduced productivity and biodiversity, and impaired ecosystem processes and functions. We present a management framework based on a synthesis of science on forest ecology and management, reference conditions, and lessons learned during implementations of our restoration framework. The framework focuses on the restoration of key elements similar to the historical composition and structure of vegetation in these forests: (1) species composition; (2) groups of trees; (3) scattered individual trees; (4) grass-forb-shrub interspaces; (5) snags, logs, and woody debris; and (6) variation in the arrangements of these elements in space and time. Our framework informs management strategies that can improve the resiliency of frequent-fire forests and facilitate the resumption of characteristic ecosystem processes and functions by restoring the composition, structure, and spatial patterns of vegetation. Restoration of key compositional and structural elements on a per-site basis will restore resiliency of frequent-fire forests in the Southwest, thereby position them to better adapt to future disturbances and climates.

Project Status: 
Complete
Research Results: 

Numerous implementations of the framework have been completed in the past 20 years in New Mexico and Arizona. Currently, the framework's key elements are being evaluated via LiDAR regarding their effects on biodiversity, food webs, and the long-term demographic performance of an apex predator (northern goshawk) on the Kaibab Plateau.

One implementation, Eager South on the Apache-Sitgreaves National Forest, was hit by the 2011 Wallow Fire. The Eagar South WUI Fuel Reduction Project environmental assessment was finalized in 2006. The project area was chosen to be used as a demonstration to provide the framework for understanding historical conditions, ecological processes, and the natural range of forest conditions. These concepts form the basis for ecological strategies in restoring the integrity of ponderosa pine ecosystems within and outside the wildland-urban interface. A collaborative approach was used to develop thinning prescriptions that had no diameter cap and created leave tree groups (RMRS-GTR-217, RMRS-GTR-310). Tree groups were based on current conditions and not on a forestry standard spacing between individual trees, but between the collective group of trees. This approach created or maintained uneven-aged forest conditions (groups of trees each composed of different ages), valuable wildlife habitat, and met fuel reduction objectives.

The Eagar south landscape is variable with the elevation on the south end at 8,600’ dropping to the north to 7,100’. The vegetation is primarily ponderosa pine with mixed conifer on the north aspects and drainages and piñon/juniper woodland at the lower elevations.

On June 7th the 2011 Wallow Fire made a push from the southwest into the Eagar South WUI first burning an untreated mixed conifer slope. The running crown fire hit the treatment full force, the blast of hot air caused mortality at the edge and into the treated area for a distance of up to 300’. However, the crown fire did not penetrate the treatment area. The subsequent ground fire that followed in the treatment area had variable flame lengths with moderate intensity. The fire spread was greatly reduced by the treatment area and the fire was stalled for several hours as it slowly progressed down slope (before and after treatment aerial photos, and before and after Wallow Fire photos are available).

Watering the Forests for the Trees: an emerging priority for managing water in forest landscapes

Pacific Northwest Research Station
Research Partners: 
UC Santa Barbara, US Geological Survey
Principal Investigator(s): 
Gordon Grant, Naomi Tague, Craig Allen
Summary: 

Water stress represents a common mechanism for many of the primary disturbances affecting forests, and forest management needs to explicitly address the very large physiological demands that vegetation has for water. This study demonstrates how state-of-science ecohydrologic models can be used to explore how different management strategies might improve forest health.

Project Abstract: 

Widespread threats to forests due to drought stress prompt re-thinking of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the face of environmental change may require focusing on the forests themselves and strategies to reduce their vulnerability to increasing water stress in the context of a changing climate. Management strategies would need to be tailored to specific landscapes but could include: a) thinning; 2) encouraging drought-tolerant species; 3) irrigation; and 4) strategies that make more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forest lands would represent a fundamental change in perspective and potentially involve tradeoffs with other downstream uses of water.

Project Status: 
Complete
Research Results: 

Watering the Forests for the Trees: an emerging priority for managing water in forest landscapes - http://www.fsl.orst.edu/wpg/pubs/13_Granteal_WFFT.pdf

Record Entry Date: 
Tue, 09/23/2014

Climate change interactions with landscape vegetation and disturbance trends on the Apache-Sitgreaves National Forest, Arizona

Pacific Northwest Research Station
Research Partners: 
Apache-Sitgreaves National Forest
Principal Investigator(s): 
Miles Hemstrom
Summary: 

This project was a pilot effort to construct climate-connected state and transition models for a large landscape in eastern central Arizona. The objective was to use state and transition models developed as a part of the Integrated Landscape Assessment Project and Dynamic Global Vegetation Model outputs from the model MC1 to construct and test the modeling approach.

Project Status: 
Complete
Record Entry Date: 
Tue, 09/16/2014

Forestry, Bioenergy, Greenhouse Gas and Land Use Economic and Biophysical Model Development and Analysis

Pacific Northwest Research Station
Research Partners: 
Environmental Protection Agency, Oregon State University
Principal Investigator(s): 
Greg Latta
Summary: 

The Environmental Protection Agency’s (EPA) Climate Economics Branch (CEB) analyzes cost-effective strategies to reduce greenhouse gas (GHG) emissions, both in the U.S. and internationally. EPA relies on the Forest and Agricultural Sector Optimization Model with Greenhouse Gas (FASOM-GHG) model for analysis of GHG mitigation from the U.S. forest, agriculture and bioenergy sectors. This project will involve model development, results interpretation, testing, analyses, and documentation associated with the forestry and bioenergy sectors and related land use in the FASOM-GHG. The overarching objectives of the project are to make the forest sector portion more flexible, able to simulate a broader range of alternative bioenergy and CO2 sequestration policies, and to simplify the basic model code to reduce compilation and run time.

Project Abstract: 

The Environmental Protection Agency’s (EPA) Climate Economics Branch (CEB) analyzes cost-effective strategies to reduce greenhouse gas (GHG) emissions, both in the U.S. and internationally. EPA relies on the Forest and Agricultural Sector Optimization Model with Greenhouse Gas (FASOM-GHG) model for analysis of GHG mitigation from the U.S. forest, agriculture and bioenergy sectors. The model is developed and maintained by the FASOM-GHG team, with expert members at Texas A&M University, Oregon State University, the Nicholas Institute at Duke University, Research Triangle Institute, Electric Power Research Institute, Environmental Protection Agency, USDA and the U.S. Forest Service.

Project Status: 
Action
Record Entry Date: 
Tue, 09/16/2014

CUFR Tree Carbon Calculator (CTCC)

Overview & Applicability

The CUFR Tree Carbon Calculator (CTCC) provides quantitative data on carbon dioxide sequestration and building heating/cooling energy effects provided by individual trees. CTCC outputs can be used to estimate GHG (greenhouse gas) benefits for existing trees or to forecast future benefits. The CTCC is programmed in an Excel spreadsheet and provides carbon-related information for trees located in one of sixteen United States climate zones.

Summary: 

This Carbon Calculator provides quantitative data on carbon dioxide sequestration and building heating/cooling energy effects provided by individual trees.

National Climate Change Viewer

Overview & Applicability

The National Climate Change Viewer allows users to visualize projected changes in climate (maximum and minimum air temperature and precipitation) and the water balance (snow water equivalent, runoff, soil water storage and evaporative deficit) for any state, county and USGS Hydrologic Units (HUC) in the continental United States. USGS HUCs are hierarchical units associated with watersheds and analogous to states and counties that span multistate areas. HUC levels 2, 4 and 8 are used in the viewer.

Summary: 

This viewer allows users to visualize past and projected changes in climate and the water balance for any state, county and USGS Hydrologic Unit.

Our Forests, Our Solutions: How Climate Change Affects Forests

Storyboard from the video

Climate change means changes for the nation's forests. This introductory video describes some of the changes that are occurring and that are expected as the planet warms.

Presenter: 
The Climate Change Resource Center
Publication date: 
07/25/2014

Watershed Erosion Prediction Project (WEPP)

Overview & Applicability

The Water Erosion Prediction Project (WEPP), is a physically-based soil erosion prediction technology. WEPP has a number of customized interfaces developed for common applications such as roads, managed forests, forests following wildfire, and rangelands. It also has a large database of cropland soils and vegetation scenarios. The WEPP model is a distributed parameter, continuous simulation model, and is able to describe a given erosion concern in great detail for an experienced user.

Summary: 

The WEPP model consists of multiple applications that can estimate erosion and sediment processes on hillslopes and small watersheds, taking into account climate, land use, site disturbances, vegetation, and soil properties.

National Climate Assessment 2014

This peer-reviewed report is a thorough and comprehensive overview of how climate change is expected to affect the United States. It includes analyses of impacts on seven sectors – human health, water, energy, transportation, agriculture, forests, and ecosystems. The report also assesses U.S. regional impacts and outlines some climate adaptation efforts.

Syndicate content

Was this page helpful?

Please help us improve the CCRC by giving us feedback.