Research Roundup

Overviews of the climate change work happening at Forest Service research stations.
Sort by date posted to CCRC | Sort by project title

Climate change and peak flows: Knowledge-to-action to help managers address impacts on streamflow dynamics and aquatic habitat
Pacific Northwest Research Station
Project website: http://www.fsl.orst.edu/wpg

What will the rivers of the Pacific Northwest look like in the future? Will they be stable or unstable? Will they have salmon or other species? Will the waters be cold and clear or warm and muddy? These questions motivate our study of the effects of climate warming on streams draining the Cascade Mountains.

Previous studies have shown that snowpacks throughout the Cascades are highly vulnerable to warming temperatures, readily changing from snow to rain, and melting earlier. Less certain is how these changes are likely to affect streamflows, particularly in streams that derive much of their flow from deep groundwater and springs. These groundwater streams, which are currently characterized by very stable bed, banks, and vegetation, are particularly sensitive to increasing peak flows in the winter. We want to know how changing snowpacks and increased peak flows are likely to affect these channels, potentially changing their suitability as habitat for threatened species such as bull trout and spring Chinook. Results from our work, which include field and modeling components, will be used to guide management decisions affecting these streams: how dams are operated, whether water suppliers need to worry about turbidity, and how we should manage riparian vegetation.

Contact: Gordon Grant
Use of Natural Areas for Monitoring Long-term Effects of Climate Change
Pacific Northwest Research Station
Project website: http://www.fsl.orst.edu/rna/

Natural areas are special areas set aside for research, conservation, and education. There are over 580 natural areas in Oregon and Washington totaling >1.4 million acres and managed by 20 agencies and organizations. These include Forest Service Research Natural Areas (RNAs) as well as BLM RNAs and Areas of Critical Ecological Concern. Natural areas may one of the best network of sites for studying long-term effects of climate change and this project focuses on three areas of study. The first is to determine if natural areas adequately represent the depth and breadth of the natural ecosystems found in both states. The second is to prioritize sites that may be most vulnerable to climate change effects in the next several decades. Initial findings suggest natural areas are representative across several ecological gradients important for understanding effects of long-term climate and ecological change. In addition, several lists are being developed to help prioritize monitoring based on predictions from a broad range of existing climate change models. The third area of focus is to develop a standardized set of monitoring protocols for long-term monitoring of change using existing and new protocols. New methods being tested include use of terrestrial LIDAR plots to monitor changes in forest structure over time.

Contact: Todd M. Wilson
Forestry, Bioenergy, Greenhouse Gas and Land Use Economic and Biophysical Model Development and Analysis
Pacific Northwest Research Station

The Environmental Protection Agency’s (EPA) Climate Economics Branch (CEB) analyzes cost-effective strategies to reduce greenhouse gas (GHG) emissions, both in the U.S. and internationally. EPA relies on the Forest and Agricultural Sector Optimization Model with Greenhouse Gas (FASOM-GHG) model for analysis of GHG mitigation from the U.S. forest, agriculture and bioenergy sectors. This project will involve model development, results interpretation, testing, analyses, and documentation associated with the forestry and bioenergy sectors and related land use in the FASOM-GHG. The overarching objectives of the project are to make the forest sector portion more flexible, able to simulate a broader range of alternative bioenergy and CO2 sequestration policies, and to simplify the basic model code to reduce compilation and run time.

Contact: David Seesholtz
Climate change and management interactions for forests in the central Oregon Cascades
Pacific Northwest Research Station

Computer simulation models are often used to project vegetation responses to changing CO2 (carbon dioxide) and climate. We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure.

Contact: Miles Hemstrom
Jessica Halofsky
Climate change and forest management interactions in southwestern Oregon
Pacific Northwest Research Station

This project will connect state and transition models developed as a part of the Integrated Landscape Assessment Project with Dynamic Global Vegetation Model outputs for Southwestern Oregon. The objective is to develop a set of vegetation modeling tools that can be used by local land managers and collaborative groups to examine potential forest management scenarios and interactions with possible climate change impacts.

Contact: Emilie Henderson
Climate change and Greater Sage-grouse habitat interactions in southeastern Oregon
Pacific Northwest Research Station

This project will connect state and transition models developed as a part of the Integrated Landscape Assessment Project with Dynamic Global Vegetation Model outputs for Southeastern Oregon. The objective is to develop a set of vegetation modeling tools that can be used by local land managers and collaborative groups to examine potential rangeland management scenarios and interactions with possible climate change impacts.

Contact: Megan Creutzberg
Climate change and forest management effects in the Lower Joseph project area, northeastern Oregon
Pacific Northwest Research Station

This project will use climate-connected state and transition models developed as a part of the Integrated Landscape Assessment Project to assist with cumulative effects analysis of alternative management scenarios for the Lower Joseph project area in the Blue Mountains of Northeast Oregon. The objective is to use the climate-connected state and transition models to evaluate alternative scenarios proposed by local land managers and collaborative groups given possible climate change impacts.

Contact: Miles Hemstrom
Climate change interactions with landscape vegetation and disturbance trends on the Apache-Sitgreaves National Forest, Arizona
Pacific Northwest Research Station

This project was a pilot effort to construct climate-connected state and transition models for a large landscape in eastern central Arizona. The objective was to use state and transition models developed as a part of the Integrated Landscape Assessment Project and Dynamic Global Vegetation Model outputs from the model MC1 to construct and test the modeling approach.

Contact: Miles Hemstrom
Climate change and future stream temperatures in the interior Columbia River Basin
Pacific Northwest Research Station

Restoring riparian forests on streams where historic land uses have created open meadows could reduce maximum stream temperatures by as much as 7o C relative to current conditions, even under a future climate when air temperatures are 4o C warmer than today.

Contact: Steve Wondzell
Evaluating land use planning effects on carbon storage to address climate change
Pacific Northwest Research Station

Research and policy discussions highlight the role of forests in reducing greenhouse gases by storing carbon. An important factor regarding forests and carbon is simply maintaining the amount of land that is retained in forest cover. Since 1973, Oregon’s statewide land-use planning program has sought to maintain forest and agricultural lands in the face of increasing development by maintaining forest and agricultural zones and to limit growth to within urban growth boundaries. We combine projections of forest and agricultural land development with estimates of average carbon stocks for different land uses to examine what effect land-use planning has had in maintaining forest carbon in western Oregon. In addition to other benefits arising from the conservation of forestland, results indicate that Oregon’s land-use planning system in western Oregon yields significant gains in carbon storage equivalent to a reduction of 1.7 million metric tons of carbon dioxide (CO2) emissions per year.

Contact: Jeffrey Kline

Was this page helpful?

Please help us improve the CCRC by giving us feedback.