Research Roundup

Overviews of the climate change work happening at Forest Service research stations.
Sort by date posted to CCRC | Sort by project title

Baltimore Ecosystem Study
Northern Research Station

Studies on carbon dioxide concentration, CO2 and H2O flux, and the effects of multiple air pollutants on urban forests are being conducted in Baltimore. Urban conditions may represent possible future scenarios: elevated carbon dioxide, ozone, nitrogen deposition and elevated temperatures. A 40 m Forest Service lookout tower near Baltimore is used to conduct air quality and meteorological flux research. This is the first permanent tower to estimate carbon flux and carbon sequestration in an urban/suburban forest ecosystem. Metropolitan areas have an average tree cover of 33.4% (urban counties) and support 25% of the USA's total tree canopy cover, and their inclusion in climate models is essential for accuracy.

Contact: John Hom
Acid Rain and Calcium Depletion
Northern Research Station

Acid rain and other anthropogenic factors can leach calcium (Ca) from forest ecosystems and mobilize potentially toxic aluminum (Al) in soils. Considering the unique role Ca plays in the physiological response of cells to environmental stress, we propose that depletion of biological Ca would impair basic stress recognition and response systems, and predispose trees to exaggerated injury following exposure to other environmental stresses.

Contact: Paul Schaberg
Chequamegon Ecosystem-Atmosphere Study (CHEAS)
Northern Research Station

As part of the cooperative Chequamegon Ecosystem Atmosphere Study (ChEAS), NRS scientists have been studying the energy, water vapor and CO2 exchange between forest ecosystems and the atmosphere to understand the dynamics of forest productivity.

Contact: Randy Kolka
Red Leaf Color as an Indicator of Environmental Stress
Northern Research Station

Vistas of colorful fall foliage hold tremendous public and media interest, and associated tourism to the Northern Forest is estimated to add billions of dollars to the regional economy each year. This natural spectacle of diverse leaf coloration is based on the physiology of leaf pigments. In addition to its aesthetic value, the biology of one pigment (anthocyanin) may provide insights to how some trees survive environmental stress.

Contact: Paul Schaberg
Tropical Forest Mycology
Northern Research Station

The Center for Forest Mycology Research (CFMR), part of the Northern Research Station, leads critical research on the biology of tropical fungi native to Hawaii, US territories in the Caribbean and to other countries in the Caribbean Basin. The primary goals of this research are to: (1) recognize emerging tropical forest diseases, especially those with the potential to spread to the continental US and (2) identify the effects of environmental change on the distributions of beneficial and harmful forest fungi.

Contact: D. Jean Lodge
Effects of Global Atmospheric Change on Forest Insects
Northern Research Station

This study concerns seasonal and annual changes in forest insect populations at the Aspen FACE experiment site in northern Wisconsin where trees are growing under both elevated CO2 (+200 ppm above ambient) and ozone (+50% above ambient).

Mid-Atlantic Forests and the Chesapeake Bay Watershed
Northern Research Station

Forest landscapes are changing as a consequence of climate and environmental change. These changes affect people and the forest ecosystems they depend on for clean water, clean air, forest products, and recreation. How can we best manage our forest resources to sustain this array of ecosystem services under increasing environmental stress and a changing climate? This research is leading to the development of effective strategies to adapt to these long-term changes.

Contact: Yude Pan
Eastern Area Modelling Consortium
Northern Research Station

The EAMC is a multi-agency coalition of researchers and managers at the Federal, State, and local levels that is focused on fire weather, fire behavior, and smoke transport issues in the north central and northeastern U.S. The EAMC carries out core fire science research and product development related to physical fire processes (including small-scale fire-fuel-atmosphere interactions and smoke plume behavior), fire characteristics at multiple scales, and fire danger assessment (including atmospheric processes associated with fire-weather development and evolution).

Contact: Warren Heilman
Tracing the movement of an invasive insect using stable isotopes
Northern Research Station

To better understand the response of insect populations to increasing environmental pollution, we are using stable isotope analysis to trace the movement of an invasive insect in mixed tree communities grown under different air quality conditions.

Contact: Paula Marquardt
Monitoring and Understanding Forest/Atmosphere Carbon Dioxide Exchange: the NRS Flux Tower Network
Northern Research Station

Data from flux sites help test physiological models of carbon exchange and are critical to relating fluxes and remote sensing data. Companion physiological and ecological measurements enable partitioning carbon fluxes into plant and soil components and reveal mechanisms responsible for these fluxes. Data from the flux sites have been applied in ecology, weather forecasting, and climate studies, especially for sites with several years of data to quantify inter-annual flux variations.

Contact: David Hollinger

Was this page helpful?

Please help us improve the CCRC by giving us feedback.