Insect Disturbance

Overview

Forest insect populations are influenced by temperature and other environmental conditions, and so future changes in climate can be expected to affect forest insect outbreaks. In some cases, larger and more frequent insect outbreaks may occur, but in other cases recurring outbreaks may be disrupted.

Read more about the complex relationship between climate, forest insects and their hosts, and the implications for forest managers.

Insect Disturbance and Climate Change

insect disturbance topic banner 705x80insect disturbance topic banner 705x80

Synthesis

Synthesis: 

Preparers

Andrew Liebhold, Northern Research Station, US Forest Service, Morgantown, WV and Barbara Bentz, Rocky Mountain Research Station, US Forest Service, Logan, UT.

 Since forest insect populations are influenced by environmental conditions, future changes in climate can be expected to significantly alter the outbreak dynamics of certain forest insect species. In some cases, larger and more frequent insect outbreaks may occur, but in other cases recurring outbreaks may be disrupted or diminished. Shifts in temperatures that directly influence insects, as well as reduced host tree resistance caused by changes in precipitation can contribute to forest insect population growth. Alternatively, disruption of local adaptation to climate could result in localized population extirpation. Much is known about the influence of biotic and abiotic factors on some forest insect population eruptions. From this research it is clear that the effects of climate change on outbreaks will vary regionally as well as among different insect/host associations. Due to the complexity of the food webs and host tree dynamics that most forest insects are part of, in addition to the uncertainty of climate forecasts, predicting the effects of future climate change on insect-caused forest impacts will be challenging. Current research is aimed at increasing our understanding of the complexity of forest insect dynamics and enhancement of models for predicting forest impacts associated with future changes in climate. Options for applied forest management to mitigate the associated impacts can then be addressed.

Issues

Insects are ubiquitous disturbance agents that play important roles in the long-term dynamics of forest ecosystems. While most forest insect species remain at low densities and are rarely noticed, a few species exhibit eruptive population dynamics and episodically reach outbreak levels, causing massive defoliation, dieback or mortality in host trees.

The processes responsible for triggering insect outbreaks remain poorly understood. Most forest insect species are embedded in complex food webs. Interactions with higher (i.e., predators, pathogens and parasitoids) and lower (i.e. trees) trophic levels play key roles in shaping the dynamics of their populations. In addition, weather can directly or indirectly affect forest insect population dynamics. Temperature directly affects insect population dynamics through modification of developmental rates, reproduction and mortality. Weather can also affect insect populations indirectly via alteration of the abundance, distribution and physiology of host trees. Indirect effects also occur at higher levels of the food chain, such as effects of temperature on the abundance and developmental timing of predators, pathogens and associated microorganisms.

Issues critical to more fully understanding and predicting effects of climate change on forest insect impacts include:

  • What are the species-specific, direct effects of climatic variability on forest insect population dynamics?
  • How does weather indirectly affect forest insects via their host plants and what are the consequences?
  • What are the indirect effects of weather on insect population dynamics acting via predators, parasitoids, pathogens and associated microorganisms?
  • What is the adaptive capacity of forest insect species to rapidly changing environmental conditions?

 

Mountain pine beetle caused mortality in ponderosa and lodgepole pine on the Helena National Forest, Montana. Credit: Barbara Bentz.

Mature pitch pines killed by the Southern pine beetle during the unprecedented 2011 outbreak in New Jersey. Increasing winter temperatures may be contributing to a northward shift in the insects' outbreak range. Credit: Matthew Ayres.

Increased winter minimum temperatures are expected to promote hemlock wooly adelgid (Adelges tsugae) expansion northward into the hemlock forests of Canada. Credit: John A. Weidhass, Virginia Tech

Likely Changes

Due to differences in critical feedbacks driving insect population dynamics, effects of climate change on outbreak dynamics will vary among regions and among insect-host species associations. For example, decreased precipitation and consequential reduction of host tree resistance is believed to have played a primary role in triggering outbreaks of piñon ips (Ips confusus) and Arizona fivespined ips (Ips lecontei) across the American southwest, which resulted in widespread mortality of piñon (Pinus edulis) and ponderosa pine (P. ponderosa) (1). The outbreaks ended as the supply of drought-stressed trees was exhausted. In contrast, although drought stress facilitated progression from an incipient to epidemic mountain pine beetle population (Dendroctonus ponderosa) in British Columbia, a significant correlation with precipitation was no longer found after the beetle population became self-amplifying (2). These examples illustrate how species responses to weather differ dramatically depending on the feedback mechanisms that have evolved within the insect-host species complex. Because insect species typically have adapted to local climates and host trees that differ across their range, we can anticipate significant within-species regional variability in temperature response and expect this to result in regional variability in response to a changing climate (3).
As climate continues to change, we can expect more situations, particularly at the margins of tree ranges, where sub-optimal conditions for tree growth and reduced tree vigor can lead to outbreaks of forest insects. These conditions must coincide, however, with appropriate conditions for insect populations. This is potentially the case with recent mountain pine beetle outbreaks in high elevation, five-needle white pine forests. Evidence suggests that elevated temperatures at high elevations across western North America have allowed mountain pine beetle populations to develop in a single year in areas where two or more years were previously required (4). This shift triggered greater population growth rates and resulted in increased high-elevation pine mortality in areas where outbreak populations were previously recorded only infrequently. Although we have limited data on the physiological response of high elevation, five-needle white pines to current precipitation and temperature regimes, reduced host tree vigor could also be playing a role in mountain pine beetle success in these forests.

Higher temperatures can also play a role in insect population success and potential range expansion. For example, increased winter minimum temperatures are expected to promote hemlock wooly adelgid (Adelges tsugae) expansion northward into the hemlock forests of Canada (5), and the expansion of mountain pine beetle northward in British Columbia and into eastern Alberta (6).
There are other examples of such temperature-induced shifts in insect ranges. Because insects have evolved life-history strategies allowing for adaptation to local climate, the likelihood of continuing range shifts will depend on the capacity of insect species to adapt to the rapidly changing environmental conditions, and/or a thermal regime that maintains an appropriate seasonality. In some cases, seasonality may be disrupted, potentially resulting in population extirpation. Additionally, the resistance potential of both alien and native host tree species in a changing climate will be critical knowledge for predicting insect population success.

Because the population dynamics of forest insects are affected by complex interactions with predators, parasitoids, microorganisms (including symbiotic relationships), host trees and pathogens, there are numerous opportunities for indirect effects of climate variability. Increases in forest insect outbreak area and frequency, therefore, are not the only consequence of climate change. Elevated temperatures in the European Alps, for example, are believed to have caused the cessation of recurrent outbreaks of the larch budmoth (Zieraphera dineana) in forests that have been periodically defoliated over the last 1200 years (7). When interactions between forest herbivores and their natural enemies are altered under changing climates, the density-dependent processes that govern population cycles of forest herbivore species can be disrupted and thereby lead to reduction or total cessation of outbreak episodes. Unfortunately, these interactions are complex and difficult to predict.

Options for Management

Stand susceptibility to forest insect outbreaks can be strongly influenced by the landscape pattern of host tree composition, stand structure and density. These can be manipulated through management actions including silviculture and prescribed fire (8). For a few forest insect species, temperature-driven models are available that can be used to forecast population success in a changing climate (9). By combining knowledge of stand and host conditions favorable to insect outbreaks with temperature-driven insect population models, it may be possible to forecast catastrophic outbreaks resulting from direct and indirect effects of climatic variability on insect population dynamics. Recognizing the uncertainty in forecasting future temperature and precipitation patterns, appropriate management practices for reducing future landscape susceptibility may then be applied. For example, in locations where climatic conditions favorable to bark beetle outbreak development are anticipated, silvicultural options for increasing landscape heterogeneity (i.e., altering tree species and age diversity) and reducing tree density can be used to alter stand susceptibility (8).

Not all forest insect species are strongly affected by tree vigor, and improving tree growing conditions cannot be expected to always increase stand resistance to insects. However, even for insects with dynamics that are not strongly tied to tree conditions (e.g., foliage-feeding insects), stand management might be applied to increase tree tolerance to insect feeding (e.g., defoliation). There is also some evidence that tree diversity increases landscape resistance to forest insects, many of which are monophagous on a particular genus or species, and avoiding reliance on a single tree species may be beneficial. Insecticides are a proven option for protecting individual trees from forest insect-caused mortality, although this tactic is not efficacious over large forested areas. Considerable uncertainty exists in predicting not only changes in climate (i.e., temperature and precipitation), but also the response of forest insects and their host trees and community associates to these changes. Current research is aimed at increasing our understanding of these processes which ultimately can be of use in planning and managing future forests.

References: 
  1. Shaw, J.D.; Steed, B.E.; DeBlander, L.T. 2005. Forest inventory and analysis (FIA) annual inventory answers the question: what is happening to piñon-juniper woodlands? Journal of Forestry. 103:280-285.
  2. Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: Dynamics of biome-wide bark beetle eruptions. BioScience. 58: 501-518.
  3. Bentz, B.J.; Bracewell, R.B.; Mock, K.E.; Pfrender, M.E. 2011. Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae. Evolutionary Ecology. 25(6):1269-1288.
  4. Bentz, B.; Schen-Langenheim, G. 2007. The mountain pine beetle and whitebark pine waltz: has the music changed? Proceedings of the Conference Whitebark Pine: A Pacific Coast Perspective.
  5. Dukes, J.S.; Pontius, J.; Orwig, D.; Garnas, J.R.; Rodgers, V.L.; Brazee, N.; Cooke, B.; Theoharides, K.A.; Stange, E.E.; Harrington, R.; Ehrenfeld, J.; Gurevitch, J.; Lerdau, M.; Stinson, K.; Wick, R.; Ayres, M. 2009. Response of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Canadian Journal of Forest Research. 39:231-248.
  6. Safranyik, L.; Carroll, A.L.; Regniere, J.; Langor, D.W.; Riel, W.G.; Shore, T.L.; Peter, B.; Cooke, B.J.; Nealis, V.G.; Taylor, S.W. 2010. Potential for range expansion of mountain pine beetle into the boreal forest of North America. Canadian Entomologist 142:415-442.
  7. Johnson, D.M.; Büntgen, U.; Frank, D.C.; Kausrud, K.; Haynes, K.J.; Liebhold, A.M.; Esper, J.; Stenseth, N.C. 2010. Climatic warming disrupts recurrent Alpine insect outbreaks. Proceedings of the National Academy of Sciences. 107: 20576-2058.
  8. Fettig, C.J.; Klepzig, K.D.; Billings, R.F.; Munson, A.S.; Nebeker, T.E.; Negron, J.F.; Nowak, J.T. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecology and Management. 238: 24-53.
  9. Bentz, B.J.; Regniere, J.; Fettig, C.J.; Hansen, E.M.; Hicke, J.; Hayes, J.L.; Kelsey, R.; Negron, J.; Seybold, S. 2010. Climate change and bark beetles of the western US and Canada: Direct and indirect effects. BioScience. 60(8):602-613.
How to cite: 

Liebhold, A., Bentz, B. 2011. Insect Disturbance and Climate Change. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/insect-disturbance/insect-disturbance

Reading

Recommended Reading: 

Ayres, M.P.; Lombardero, M.J. 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment. 262: 263-86.

Bentz, B.J.; Regniere, J.; Fettig, C.J.; Hansen, E.M.; Hicke, J.; Hayes, J.L.; Kelsey, R.; Negron, J.; Seybold, S. 2010. Climate change and bark beetles of the western US and Canada: Direct and indirect effects. BioScience. 60(8):602-613.

Logan, J.A.; Regniere, J.; Powell, J.A. 2003. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment. 1:130-37.

Volney, W.J.A.; Fleming, R.A. 2000. Climate change and impacts of boreal forest insects. Agriculture Ecosystems and Environment. 82:283-294.

Research

Research: 

Climate Change Influences on Mountain Pine Beetle and Spruce Beetle Phenology and Associated Impacts in Western North American Forests
RMRS scientists have established the relationship between climate and insects such as mountain pine beetle and the spruce beetle. Scientists continue to monitor mountain pine beetle phenology and temperatures in high elevation forests in western US. In conjunction with current, historic and predicted temperatures, they are using this data and their phenology model to evaluate how current trends might relate to historic patterns of mountain pine beetle caused mortality in these forests, as well as, predicting trends for the future. Working with Canadian collaborators, they have developed a cold tolerance model for mountain pine beetle using data from the recent mountain pine beetle infestations in Alberta. In conjunction with their phenology model, they aim to evaluate the relative effects of temperature on cold-induced mortality and seasonality of mountain pine beetle population success and range expansion. They also are investigating spruce beetle physiological response to temperature, including diapause, to improve and further refine a phenology model for this insect.
Contact: Barbara Bentz

Effects of Global Atmospheric Change on Forest Insects
We are studying seasonal and annual changes in forest insect populations at the Aspen FACE experiment site in northern Wisconsin where trees are growing under both elevated CO2 (+200 ppm above ambient) and ozone (+50% above ambient).

Tracing the movement of an invasive insect using stable isotopes
To better understand the response of insect populations in northern hardwoods forest communities to increasing environmental pollution, we are using stable isotope analysis to trace the movement of an invasive insect in mixed tree communities grown under different air quality conditions.
Contact: Paula Marquardt

Economic impacts of insect outbreaks triggered by climate change.
When climate change triggers forest insect outbreaks, these episodes may affect a variety of non-market forest resources, such as recreational values, real estate values and scenic values. A multi-disciplinary team is currently investigating how climate change-induced changes in damage caused by mountain pine beetle, hemlock wooly adelgid and southern pine beetle affect non-market forest resources.
Contact: Thomas Holmes

Links

Bark Beetles and Climate Change in the United States

Pine beetle damage banner 705x80Pine beetle damage banner 705x80

Photo: R.F. Billings

Overview

Overview: 

Millions of forested acres in the United States have been affected by bark beetles. By killing trees, bark beetle outbreaks can significantly influence forest carbon storage and cycling. At the same time, current research shows that warming summer and winter temperatures are driving beetle population outbreaks in susceptible forests, and allowing these insects to persist in habitats previously constrained by cold temperatures. These pages discuss how bark beetles and climate change interact to affect forested ecosystems.

Follow the tabs above to learn more about this topic.

Synthesis

Synthesis: 

Preparers

Barbara Bentz, Rocky Mountain Research Station, Kier Klepzig, Southern Research Station

 An archived version of this topic paper is available

Issues

Bark beetles that infest and reproduce in live trees are capable of causing landscape-wide tree mortality. In the United States (US), species in the genera Dendroctonus and Ips are the primary culprits. Between 1997 and 2010 more than 5 million hectares were affected by bark beetles in the western US, most notably mountain pine beetle (D. ponderosae), spruce beetle (D. rufipennis), and piñon ips (I. confusus)(1), and the amount of carbon (C) in trees killed by these insects exceeds that of C in trees killed by fire (2). In the southeast and northeast US, southern pine beetle (D. frontalis) has affected more than 14,000 hectares since 2008, particularly in New Jersey and Mississippi. Prior to the activity during the late 2000s, expanding infestations of southern pine beetle had not been detected in the southeast or northeast since 2002 (3). It is clear that bark beetle outbreaks significantly influence forest ecosystem dynamics and carbon cycles, and research suggests warming summer and winter temperatures are major drivers of beetle population outbreaks across the US, and apparent range expansion in some species (4, 5, 6). Mountain pine beetle, spruce beetle and southern pine beetle are examples of bark beetles with the capacity for irruptive population growth. Populations exist at low levels for many years until triggered by factors such as drought (7, 8, 9), windfall (10), and pathogens that stress trees (11). Other species of bark beetles such as piñon ips can be triggered by similar conditions, although their population dynamics are more directly tied to the condition of the host tree (12). Once a trigger occurs, population growth depends on the scale of the trigger, continued favorable conditions including suitable host trees throughout the landscape (13), and temperatures that favor winter beetle survival (14, 15) and successful tree attacks in the summer (16).

Temperature drives bark beetle physiological processes such as larval development and cold hardening, thereby directly tying temperature to population growth. In general, warmer temperatures result in higher survival and faster development, although there are temperatures above which survival and development go down (17). Bark beetles kill their host trees through mass attacks, a process that requires synchronized adult emergence. Emergence synchrony occurs via temperature-driven thresholds in development (17) and diapause (18), a dormant state of reduced respiration. The strong role of temperature in population growth, and the role that reduced precipitation can play in host tree stress, suggest that climate change-associated shifts in temperature and precipitation will influence bark beetle populations in future forests. This could lead to increases in bark beetle populations, or in some cases decreases, depending on the species and geographic location (4, 16).

Mountain pine beetle female chewing through the phloem of a host tree to deposit eggs.Mountain pine beetle female chewing through the phloem of a host tree to deposit eggs.

Likely Changes

To be successful across expansive geographic distributions, adaptations to local environmental conditions have occurred within bark beetle species (19) and among species. Species that infest and reproduce in trees in warm habitats (e.g., some southern pine beetle populations and piñon ips) have evolved physiological mechanisms that allow for multiple generations in a single year. Species with host trees in colder climates (e.g., mountain pine beetle and spruce beetle) have evolved to survive during cold winters and emerge as adults to attack trees during warm summer months. The effect of warming temperatures will therefore differ depending on the species and the seasonality of warming. For example, the southern pine beetle can have up to 7 generations per year in the warmest part of its range (3). However, even with warming temperatures, the mountain pine beetle throughout its current distribution may not be able to produce multiple generations in one year since it is constrained by evolved adaptations16. Apart from differential effects of warming on developmental timing, warming during winter will have a positive effect on population growth of the majority of bark beetle species through a reduction in cold-induced mortality (5, 14, 15, 20).

Species that do not currently occupy the full extent of their host tree range are considered to be at least in part limited by climate. Other factors such as competition may play a role, but temperature can be particularly limiting. Recent temperature increases have had the greatest influence on bark beetle populations in marginally cool habitats, allowing population levels to increase. For example, outbreak populations of southern pine beetle are now persistent in New Jersey (21), and mountain pine beetle outbreaks in high elevation forests are continuing at paces not seen over the past century (22). Increasing minimum temperatures is one factor attributed to northward range expansion of the mountain pine beetle in Canada. Trees are being attacked further north than historical records from the past 100 or so years suggested was possible (23). Increased population success and range expansion due to release from climatic constraints has been recently observed and most studied in northern latitudes. There is also potential for species currently limited to southern latitudes within the US to expand their ranges northward with projected increases in temperature, although detailed information regarding thermal influences on fitness is lacking for the majority of bark beetle species. Moreover, there are numerous species of conifer-infesting bark beetles in Mexico that could expand their range into the southwestern US (4).

Changes in temperature and precipitation patterns will also indirectly affect bark beetles through effects on community associates (24, 25, 26) and host trees (27, 28). Although there is more uncertainty in predicting precipitation patterns than temperature, drought and high temperatures can both play roles in outbreak initiation (7,8, 9). Stressed host trees coupled with warm summers and winters can result in outbreak progression across a landscape of suitable host trees. Community associates that are both beneficial and harmful to bark beetles will also be influenced by changing temperature (29) and precipitation patterns, although less is known about these interactions.

Options for Management

Forest ecosystems have evolved with native bark beetle outbreaks. The economic and social costs of outbreaks, however, can be significant. Some practices can increase landscape resiliency to bark beetle outbreaks. Long-term strategies such as thinning and prescribed burning can optimize stand development trajectories, alter microclimates within stands, affect dispersal and host finding by beetles, and promote tree vigor and a diversity of species and age classes (13, 30). It is clear, however, that these types of management strategies are only efficacious prior to the onset of an outbreak. Short-term tactics can be used to reduce ongoing infestations by directly manipulating beetle populations, although due to cost these are limited to use in high value areas such as campgrounds and the wildland urban interface. Semiochemicals, communication compounds released by beetles and trees, can be used to attract and repel beetles of some species (31, 32, 33). Other tactics include a combination of insecticides sprayed directly on tree boles and sanitation harvests whereby infested trees are removed (13). These types of control can have a significant influence on non-target species such as other invertebrates, fish and birds however, which must be considered.

Bark beetles and fire are two important disturbance agents in forest ecosystems that can have reciprocal interactions. Bark beetle-caused tree mortality can influence subsequent fire behavior, although the spatial and temporal dynamics are complex (34). Removal of beetle-killed trees in the wildland urban interface and near recreation areas is a viable option that could reduce the risk of fire in these priority areas. Following wild and prescribed fire, bark beetles can preferentially attack fire-injured trees and contribute significantly to mortality of trees that would otherwise survive their injuries. Descriptive models have been developed to aid managers in choosing trees for removal following fire to reduce additional tree mortality (35). Large scale beetle population outbreaks have not been observed following wild or prescribed fires, however, most likely because fire-injured trees provide beetles with a single episode, or ‘pulse’ of stressed resources, that are localized and temporary and therefore not sufficient for landscape-scale population growth (36, 37).

With continued changes in climate, many tree species will be exposed to conditions that are potentially less suitable for optimal growth, thereby making them more susceptible to bark beetle attacks. To predict the role of bark beetles in future tree mortality, information that is based on a mechanistic understanding of processes is needed. For example, we know that bark beetles may respond to drought-stressed trees (8, 27), but specific precipitation thresholds and the role of moisture deficit in the bark beetle/tree relationship remains unclear. Similarly, we know that temperature is a strong driver of bark beetle populations, but for most species, the specific mechanisms that may be influenced in a changing climate are unknown.

Publication date: 
Sat, 02/15/2014
References: 
  1. Meddens, A. J. H.; Hicke, J. A.; Ferguson, C. A. 2012. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecological Applications 22:1876-1891.
  2. Hicke, J. A.;Meddens, A. J. H.; Allen, C. D.; Kolden, C. A. 2013. Carbon stocks of trees killed by bark beetles and wildfire in the western United States. Environmental Research Letters 8:1-8.
  3. Coulson, R. N; Klepzig, K. 2011. Southern pine beetle II. Gen. Tech. Rep.– SRS-140. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 512 pp.
  4. Bentz, B.J.; Régnière, J.; Fettig, C. J.; Hansen, E. M.; Hicke, J.; Hayes, J. L.; Kelsey, R.; Negrón, J.; Seybold, S. 2010. Climate change and bark beetles of the western US and Canada: Direct and indirect effects. BioScience 60(8):602-613.
  5. Sambaraju, K.R.; Carroll, A. L.; Zhu, J.; Stahl, K.; Moore, R. D.; Aukema, B. H. 2012. Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada. Ecography 35:211-223.
  6. Ungerer, M. J.; Ayres, M. P.; Lombardero, M. P. 1999. Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Journal of Biogeography 26:1133-1145.
  7. Chapman, T. B.; Veblen, T. T.; Schoennagel, T. 2012. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology 93:2175-2185.
  8. Gaylord, M. L.; Kolb, T. E.; Pockman, W. T.; Plaut, J. A.; Yepez, E. A.; Macalady, A. K.; Pangle, R. E.; McDowell, N. G. 2013. Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytologist 198:567-578.
  9. Hart, S. J.; Veblen, T. T.; Eisenhart, K. S.; Jarvis, D.; Kulakowski, D. 2013. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology http://dx.doi.org/10.1890/13-0230.1
  10. Schmid, J.M.; Frye, R. H. 1977. Spruce beetle in the Rockies. [pdf] Gen. Tech. Rep. RM-49. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 38 pp.
  11. Aukema, B. H.; Zhu, J.; Moller, J.; Rasmussen, J. G.; Raffa, K. F. 2010. Predisposition to bark attack by root herbivores and associated pathogens: roles in forest decline, gap formation, and persistence of endemic bark beetle populations. Forest Ecology and Management 259:374-382.
  12. Raffa, K.F; Aukema, B. H.; Bentz, B. J.; Carroll, A. L.; Hicke, J.A.; Turner, M. G.; Romme, W. H. 2008. Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: Dynamics of Biome-wide Bark Beetle Eruptions. BioScience 58(6):501-518.
  13. Fettig, C. J.; Klepzig, K. D.; Billings, R. F.; Munson, A. S.; Nebeker, T. E.; Negron, J. F.; Nowak, J. T. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecology and Management 238:24-53.
  14. Regniere, J.; Bentz, B. J. 2007. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Journal of Insect Physiology 53:559-572.
  15. Tran, J. K.; Ylioja, T.; Billings, R. F.; Regniere, J.; Ayres, M. P. 2007. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications 17:882-899.
  16. Bentz, B.J.;Vandygriff, J. C.; Jensen, C.; Coleman, T.; Maloney, P.; Smith, S.; Grady, A.; Schen-Langenheim, G. 2013. Mountain pine beetle voltinism and life history characteristics across latitudinal and elevational gradients in the western United States. [pdf] Forest Science 60(2).
  17. Bentz, B. J.; Logan, J. A.; Amman. G. D. 1991. Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Canadian Entomologist 123:1083-1094.
  18. Hansen, E. M.; Bentz, B. J.; Powell, J. A.; Gray, D. R.; Vandygriff, J. C. 2011. Prepupal diapause and instar IV development rates of spruce beetle, Dendroctonus ruifpennis (Coleoptera: Curculionidae, Scolytinae). Journal of Insect Physiology 57:1347-1357.
  19. Bentz B.J.; Bracewell, R. B.; Mock, K. E.; Pfrender, M. E. 2011. Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae. Evolutionary Ecology 25(6):1269-1288.
  20. Preisler, H. K.; Hicke, J. A.; Ager, A. A.; Hayes, J. L. 2012. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Ecology 93:2421-2434.
  21. Weed A.S.; Ayres, M . P.; Hicke, J. 2013. Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs 83:441–470.
  22. Macfarlane, W. W.; Logan, J. A.; Kern, W. R. 2013. An innovative aerial assessment of Greater Yellowstone Ecosystem mountain pine beetle-caused whitebark pine mortality. Ecological Applications 23:421-427.
  23. Cullingham, C. I.; Cooke, J. E. K.; Dang, S.; Davis, C. S.; Cooke, B. J.; Coltman, D. W. 2011. Mountain pine beetle host-range expansion threatens the boreal forest. Molecular Ecology 20:2157-2171.
  24. Boone, C. K.; Keefover-Ring, K.; Mapes, A. C.; Adams, A. S.; Bohlmann, J.; Raffa, K. F. 2013. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. Journal of Chemical Ecology 39:1003-1006.
  25. Six, D. S.; Wingfield, M. J. 2011. The role of phytopathogenicity in bark beetle-fungal symbioses: a challenge to the classic paradigm. Annual Review of Entomology 56:255-272.
  26. Vasanthakumar, A.; Delalibera, I.; Handelsman, J.; Klepzig, K. D.; Schlooss, P. D.; Raffa, K. F. 2006. Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environmental Entomology 35:1710-1717.
  27. McDowell, N.; Pockman, W. T.; Allen, C. D.; Breshears, D. D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D. G.; Yepez, E. A. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178:719-739.
  28. Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; Anderson, J.J.; Myers, O.B.; Meyer, C.W.; 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America 102: 15144-15148.
  29. Addison, A.L.; Powell, J. A.; Six, D. L.; Moore, M.; Bentz, B. J. 2013. The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism. J. Theoretical Biology 335:40-50.
  30. Nowak, J.; Asaro, C.;Klepzig, K.; Billings. R. 2008. The southern pine beetle prevention initiative: working for healthier forests. Journal of Forestry: 261-267.
  31. Gitau, C. W.; Bashford, R.; Carnegie, A. J.; Gurr, G. M. 2013. A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: A focus on beetle interactions with other pests and their associates. Forest Ecology and Management 297:1-14.
  32. Pureswaran, D. S.; Sullivan, B. T. 2012. Semiochemical emission from individual galleries of the southern pine beetle (Coleoptera: Curculionidae: Scolytinae) attacking standing trees. Journal Economic Entomology 105:140-148.
  33. Progar, R.A.; Gillette, N.; Fettig, C. J.; Hrinkevich, K. 2013. Applied chemical ecology of the mountain pine beetle. Forest Science 60(2).
  34. Jenkins, M.J.; Runyon, J. B.; Fettig, C. J.; Page, W. G.; Bentz, B. J. 2013. Interactions among the mountain pine beetle, fires, and fuels. Forest Science 60(2).
  35. Hood, S.; Bentz, B. J. 2007. Predicting post-fire Douglas-fir beetle attacks and tree mortality in the northern Rocky Mountains. Canadian Journal of Forest Research 37:1058-1069.
  36. Davis, R.S.; Hood, S.; Bentz, B. J. 2012. Fire-injured ponderosa pine provide a pulsed resource for bark beetles. Canadian Journal of Forest Research 42:2022-2036.
  37. Powell, E. N.;Townsend, P. A.; Raffa, K. F. 2012. Wildfire provides refuge from local extinction but is an unlikely driver of outbreaks by mountain pine beetle. Ecological Monographs 82:69-84.
How to cite: 

Bentz, B.; Klepzig, K. (January 2014). Bark Beetles and Climate Change in the United States. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/insect-disturbance/bark-beetles

Reading

Recommended Reading: 

Allen, C. D.; Macalady, A. K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D. D.; Hogg, E. H.; Gonzalez, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J. H.; Allard, G.; Running, S. W.; Semerci, A.; Cobb, N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660-684.

Bentz, B.; Nordhaus, H.; Allen C.D.; Ayres M.; Berg E.; Carroll A.; Hansen M.; Hicke J.; Joyce L.; Logan J.; MacFarlane W.; MacMahon J.; Munson S.; Negrόn J.; Paine T.; Powell J.; Raffa K.; Régnière J.; Reid M.; Romme W.; Seybold S.; Six D.; Tomback D.; Vandygriff J.; Veblen T.; White M.; Witcosky J.; Wood D. 2009. Bark Beetle Outbreaks in Western North America: Causes and Consequences. University of Utah Press, ISBN 978-0-87480965-7, 42 p.

Costanza, J.K.l.; Hulcr, J.; Koch, F. H.; Earnhardt, T.; McKerrow, A. J.; Dunn, R. R.; Collazo, J. A. 2012. Simulating effects of the southern pine beetle on regional dynamics 60 years into the future. Ecological Modelling 244:93-103.

DeRose, R.J.;Bentz, B. J.; Long, J. N.; Shaw, J. D. 2013. Effect of increasing temperatures on the distribution of spruce beetle in Englemann spruce forests of the Interior West, USA. Forest Ecology and Management 308:198-206.

Fettig, C. J.; Gibson, K. E.; Munson, A. S.; Negron, J. F. 2013. Cultural practices for prevention and mitigation of mountain pine beetle infestations. Forest Science 60(2).

Fettig, C.J.; Reid, M. L.; Bentz, B. J.; Sevanto, S.; Spittlehouse, D. L.; Wang, T. 2013. Changing climates, changing forests: A western North American perspective. Journal of Forestry 111:214─228.

Hansen, E. M. 2013. Forest development and carbon dynamics after mountain pine beetle outbreaks. Forest Science 60(2).

Jolly, W.M.; Parsons, R. A.; Hadlow, A. M.; Cohn, G. M/; McAllister, S. S.; Popp, J. B.; Hubbard, R. M.; Negron, J. F. 2012. Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack. Forest Ecology and Management 269:52-59.

Saab, V. A.; Latif, Q. S.; Rowland, M. M.; Johnson, T. N.; Chalfoun, A. D.; Buskirk, S. W.; Heyward, J. E.; Dresser, M. A. 2013. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests. Forest Science 60(2).

Research

Research: 

Impacts of bark beetles on ecosystem values in western forests: A synthesis
Although basic outbreak dynamics and impacts of some bark beetle species have been described, characterizing and quantifying these impacts on ecosystem functions and services remains a significant challenge. The range of ecosystem services and resources impacted by bark beetles is wide and diverse, but most pest impact assessments and valuations are still based on timber production. New information addresses the wider range of impacts on non-timber services and resources but much of it remains scattered in the literature and databases pertaining to individual insect species. We will review and synthesize the literature involving currently used pest assessment methods, including monitoring and survey methods, summary analyses, valuation procedures, reporting metrics and standards and error and accuracy estimation.
Contact: John Lundquist

Assessing genetic variation of forest tree species at risk
To conserve the genetic foundation tree species need to survive and adapt in the face of insect and disease infestation and climate change, forest management decisions must consider how genetic diversity is distributed across species’ ranges. Researchers are analyzing two range-wide genetic variation studies of species with large distributions: eastern hemlock, which is being decimated by an exotic insect, and ponderosa pine, a species with isolated populations of special concern given their susceptibility to climate change, development, and bark beetles.
Contact: Kevin Potter

Economic impacts of insect outbreaks triggered by climate change.
When climate change triggers forest insect outbreaks, these episodes may affect a variety of non-market forest resources, such as recreational values, real estate values and scenic values. A multi-disciplinary team is currently investigating how climate change-induced changes in damage caused by mountain pine beetle, hemlock wooly adelgid and southern pine beetle affect non-market forest resources.
Contact: Thomas Holmes

Climate Change Influences on Mountain Pine Beetle and Spruce Beetle Phenology and Associated Impacts in Western North American Forests
RMRS scientists have established the relationship between climate and insects such as mountain pine beetle and the spruce beetle. Scientists continue to monitor mountain pine beetle phenology and temperatures in high elevation forests in western US. In conjunction with current, historic and predicted temperatures, they are using this data and their phenology model to evaluate how current trends might relate to historic patterns of mountain pine beetle caused mortality in these forests, as well as, predicting trends for the future. Working with Canadian collaborators, they have developed a cold tolerance model for mountain pine beetle using data from the recent mountain pine beetle infestations in Alberta. In conjunction with their phenology model, they aim to evaluate the relative effects of temperature on cold-induced mortality and seasonality of mountain pine beetle population success and range expansion. They also are investigating spruce beetle physiological response to temperature, including diapause, to improve and further refine a phenology model for this insect.
Contact: Barbara Bentz

Regional Dynamic Vegetation Model for the Southern Colorado Plateau: A Species-Specific Approach
Rocky Mountain Research Station scientists and cooperators are working on a project that will modify the SIMPPLLE landscape model to address the impact that climate change and disturbances such as bark beetles, wildlife and exotics species will have on the distribution and abundance of vegetation species.
Contact: Jimmie Chew

Was this page helpful?

Please help us improve the CCRC by giving us feedback.