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Abstract

Raymond, Crystal L.; Peterson, David L.; Rochefort, Regina M., eds. 2014.
Climate change vulnerability and adaptation in the North Cascades region,
Washington. Gen. Tech. Rep. PNW-GTR-892. Portland, OR: U.S. Department

of Agriculture, Forest Service, Pacific Northwest Research Station. 279 p.

The North Cascadia Adaptation Partnership (NCAP) is a science-management
partnership consisting of the U.S. Department of Agriculture Forest Service Mount
Baker-Snoqualmie and Okanogan-Wenatchee National Forests and Pacific North-
west Research Station; North Cascades National Park Complex; Mount Rainier
National Park; and University of Washington Climate Impacts Group. These
organizations worked with numerous stakeholders over 2 years to identify climate
change issues relevant to resource management in the North Cascades and to find
solutions that will facilitate the transition of the diverse ecosystems of this region
into a warmer climate. The NCAP provided education, conducted a climate change
vulnerability assessment, and developed adaptation options for federal agencies that
manage 2.4 million hectares in north-central Washington.

In the Pacific Northwest, the current warming trend is expected to continue,
with average warming of 2.1 °C by the 2040s and 3.8 °C by the 2080s; precipitation
may vary slightly, but the magnitude and direction are uncertain. This warming
will have far-reaching effects on aquatic and terrestrial ecosystems. Hydrologic sys-
tems will be especially vulnerable as North Cascades watersheds become increas-
ingly rain dominated, rather than snow dominated, resulting in more autumn/winter
flooding, higher peak flows, and lower summer flows. This will greatly affect the
extensive road network in the North Cascades (longer than 16 000 km), making it
difficult to maintain access for recreational users and resource managers. It will
also greatly reduce suitable fish habitat, especially as stream temperatures increase
above critical thresholds. In forest ecosystems, higher temperatures will increase
stress and lower the growth and productivity of lower elevation tree species on
both the western and eastern sides of the Cascade crest, although growth of high-
elevation tree species is expected to increase. Distribution and abundance of plant
species may change over the long term, and increased disturbance (wildfire, insects,
and invasive species) will cause rapid changes in ecosystem structure and function
across broad landscapes, especially on the east side. This in turn will alter habitat
for a wide range of animal species by potentially reducing connectivity and late-
successional forest structure.

Coping with and adapting to the effects of an altered climate will become
increasingly difficult after the mid-21°" century, although adaptation strategies



and tactics are available to ease the transition to a warmer climate. For roads and
infrastructure, tactics for increasing resistance and resilience to higher peak flows
include installing hardened stream crossings, stabilizing streambanks, design-

ing culverts for projected peak flows, and upgrading bridges and increasing their
height. For fisheries, tactics for increasing resilience of salmon to altered hydrology
and higher stream temperature include restoring stream and floodplain complex-
ity, reducing road density near streams, increasing forest cover to retain snow

and decrease snow melt, and identifying and protecting cold-water refugia. For
vegetation, tactics for increasing resilience to higher temperature and increased
disturbance include accelerating development of late-successional forest conditions
by reducing density and diversifying forest structure, managing for future range of
variability in structure and species, including invasive species prevention strategies
in all projects, and monitoring changes in tree distribution and establishment at tree
line. For wildlife, tactics for increasing resilience to altered habitat include increas-
ing diversity of age classes and restoring a patch mosaic, increasing fuel reduction
treatments in dry forests, using conservation easements to maintain habitat connec-
tivity, and removing exotic fish species to protect amphibian populations.

The NCAP facilitated the largest climate change adaptation effort on federal
lands to date by including many participants from other organizations to promote
an all-lands approach to addressing climate change. It achieved specific elements
of national climate change strategies for the U.S. Forest Service and National Park
Service, providing a scientific foundation for resource management and planning
in the North Cascades region. Rapid implementation of adaptation in sustainable
resource management will enhance the potential for North Cascades ecosystems to
maintain long-term functionality in future decades.

Keywords: Access, adaptation, climate change, fire, forest ecosystems, fisher-
ies, hydrology, North Cascade Range, North Cascadia Adaptation Partnership,
roads, science-management partnership, vegetation, wildlife.
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Climate Change Vulnerability and Adaptation in the North Cascades Region, Washington

Chapter 1: Introduction
Crystal L. Raymond, David L. Peterson, and Regina M. Rochefort*

The U.S. Department of Agriculture Forest Service (USDA FS) Pacific Northwest
Research Station and the U.S. Department of the Interior National Park Service
(NPS) initiated the North Cascadia Adaptation Partnership (NCAP) in 2010. The
NCAP is a science-management collaboration with the goals of increasing climate
change awareness, assessing vulnerability, and developing science-based adapta-
tion strategies to reduce adverse effects of climate change and ease the transition to
new climate states and conditions. Developed in response to the proactive climate
change strategies of the Forest Service (USDA FS 2008) and NPS (USDI NPS
2010), the partnership brings together USDA FS scientists, University of Washing-
ton scientists, and both USDA FS and NPS resource managers.

Adaptation is defined by the Intergovernmental Panel on Climate Change
(IPCC) as “initiatives and measures to reduce the vulnerability of natural and
human systems against actual or expected climate change effects.” Mitigation is
defined as “implementing policies to reduce greenhouse gas emissions and enhance
sinks” (IPCC 2007). Mitigation is critical to reducing atmospheric levels of carbon
dioxide (CO,) and thus changes in the climate system. However, adaptation will
still be necessary despite the extent and success of mitigation because of the slow
response of the climate system to greenhouse gases that have already been emitted.
Even if humans stop emitting greenhouse gases today, global temperature would
continue to rise because of the response time required for the Earth to equilibrate to
new levels of greenhouse gases in the atmosphere (Solomon et al. 2007).

Climate Change Responses of the Forest Service and
National Park Service

Both the USDA FS and NPS have highlighted climate change as an agency priority
and issued direction to administrative units for responding to climate change
(USDA FS 2008, USDI NPS 2010). In 2010, the USDA FS provided specific
direction to the National Forest System in the form of the National Roadmap for

! Crystal L. Raymond is a climate change strategic advisor, City of Seattle, Seattle City
Light, 700 5™ Avenue, Seattle, WA 98124 (formerly biological scientist, U.S. Department
of Agriculture, Forest Service, Pacific Northwest Research Station, Pacific Wildland Fire
Sciences Laboratory, Seattle, WA); David L. Peterson is a research biological scientist,
U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station,
Pacific Wildland Fire Sciences Laboratory, 400 N 34" Street, Suite 201, Seattle, WA 98103;
and Regina M. Rochefort is a science advisor, U.S. Department of the Interior, National
Park Service, North Cascades National Park Complex, 2105 State Route 20, Sedro-Woolley,
WA 98284,
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Responding to Climate Change (USDA FS 2010a) and the Performance Scorecard
for Implementing the Forest Service Climate Change Strategy (USDA FS 2010b).
The goal of the USDA FS climate change strategy is to “ensure our national forests
and private working lands are conserved and made more resilient to climate change,
while enhancing our water resources” (USDA FS 2010b). The performance score-
card outlines four elements for achieving this goal: (1) increasing organizational
capacity; (2) partnerships, engagement, and education; (3) adaptation; and (4)
mitigation and sustainable consumption. Progress toward accomplishing elements
of the scorecard must be reported annually by each national forest and grassland,
and all units are expected to accomplish these elements by 2015. National forests in
the USDA FS Pacific Northwest Region must also complete climate change action
plans that indicate how they will comply with the scorecard elements by 2015.

Similarly, the NPS released the Climate Change Response Strategy in 2010 to
provide direction for addressing climate change (USDI NPS 2010). This strategy
describes goals and objections associated with four components of an integrated
approach: science, mitigation, adaptation, and communication. For the science com-
ponent, the agency is directed to conduct scientific research, in coordination with
partners, that will assess climate change trends and vulnerability and provide the
scientific basis for adaptation, mitigation, and communication. Mitigation efforts
focus on reducing the NPS carbon emissions and enhancing carbon sequestration.
Adaptation includes developing capacity within the agency to assess climate change
scenarios and risks and implementing actions to better manage natural and cultural
resources and infrastructure in a changing climate. The strategy also requires the
NPS to take advantage of the agency’s history and capacity for interpretation by
communicating climate change effects among park staff and to the public. The
similarity in scope and direction of the two climate change response strategies
facilitates coordination between the NPS and USDA FS.

The NCAP built on several existing efforts to address climate change and put
these efforts into a broader regional context by connecting resource managers from
different agencies who are working to address climate change. The NPS launched
the Climate Friendly Parks (CFP) program in 2002, which is part of the Green
Parks Plan (NPS 2012). This plan sets goals for reducing greenhouse gas emis-
sions through sustainable operations and is an integral part of the NPS Climate
Change Response Strategy. In 2009, North Cascades National Park Complex and
Mount Rainier National Park held workshops and became members of the CFP
program. Following the workshops, each park conducted a baseline analysis of
greenhouse gas emissions and adopted a climate action plan. The climate action



Climate Change Vulnerability and Adaptation in the North Cascades Region, Washington

plans outline targets and actions for reducing greenhouse gas emissions, efforts to
increase education about climate change among staff and visitors, and priorities for
developing adaptation strategies that increase the resilience of natural and cultural
resources. The NCAP expands on these efforts by increasing education of park staff
and expanding adaptation strategies. Although park managers began the process of
adaptation planning through the CFP program, CFP efforts focused primarily on
mitigation, whereas NCAP focused on adaptation, making the efforts complemen-
tary parts of a larger strategy for addressing climate change at the parks.

The Okanogan-Wenatchee National Forest (OWNF), in collaboration with
Colville National Forest, initiated a focus group to increase climate change aware-
ness among forest staff and develop strategies to adapt resources and management
practices to climate change. Scientists and managers presented current climate
science and engaged in facilitated discussions of resource vulnerabilities and oppor-
tunities to enable natural resources to adapt to climate change (Gaines et al. 2012).
The focus group identified several adaptation strategies for increasing the resilience
of natural, social, and economic systems to climate change. Based on the results of
this workshop, resource managers considered climate change in the development of
the OWNF Forest Restoration Strategy (USDA FS 2012b) and the 2011 Land and
Resource Management Plan (USDA FS 2011) revision process. The focus group
emphasized that to make adaptation successful, the OWNF needed to increase
climate change awareness among employees, collaborate between scientists and
resource managers, and plan across jurisdictional boundaries. The NCAP is the
next step in expanding employee education, extending the scope of the adaptation
planning effort, and increasing partnerships with scientists and other resource
management agencies.

Science-Management Partnerships

Previous case studies have demonstrated the success of science-management
partnerships for increasing climate change awareness among resource managers
and adaptation planning on federal lands. The Olympic and Tahoe National Forests
initiated the first science-management partnerships for developing adaptation
options for individual national forests (Littell et al. 2012). The WestWide Climate
Initiative (USDA FS 2007) expanded these initial efforts to develop science man-
agement partnerships by establishing three case studies in the Western United
States, two of which included national parks adjacent to national forests. The
Olympic climate change case study assessed resource vulnerabilities and devel-
oped adaptation options for Olympic National Park and Olympic National Forest
on the Olympic Peninsula in Washington state (Halofsky et al. 2011). Three land
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management units in California—Tahoe National Forest, Inyo National Forest, and
Devils Postpile National Monument—held climate change education workshops and
developed the Climate Project Screening Tool to incorporate adaptation into project
planning (Morelli et al. 2012). The Shoshone National Forest in northern Wyoming
synthesized past climate, future climate projections, and potential effects of climate
change on the multiple ecosystems within the forest (Rice et al. 2012). In the largest
effort to date in the Eastern United States, the Chequamegon-Nicolet National
Forest in northern Wisconsin conducted a vulnerability assessment for natural
resources (Swanston et al. 2011) and developed adaptation options in collaboration
with stakeholders (Swanston and Janowiak 2012).

Peterson et al. (2011) synthesized the processes, products, and techniques used
for these case studies and other climate change efforts on national forests in a
guidebook for developing adaptation options for national forests. The guidebook
outlines four key steps to facilitate adaption in national forests, and these steps are
equally relevant for national parks: (1) become aware of basic climate change sci-
ence and integrate that understanding with knowledge of local conditions and issues
(review), (2) evaluate sensitivity of natural resources to climate change (rank), (3)
develop and implement options for adapting resources to climate change (resolve),
and (4) monitor the effectiveness of on-the-ground management (observe) and
adjust as needed. The NCAP is an example of the principles and practices outlined
in the guidebook and implemented as a place-based demonstration.

Mount Rainier
National Park -
iy 3 North Cascades £
el 4 National Park Complex i
s ! .r;‘ (A
A Mount Baker-Snoqualmie 5 '¢"ﬁ|
National Forest - | it
—_. --_
CS Okanogan-Wenatchee 3 Ve
National |I=orest ", F" /,4:...

Figure 1.1—Project area for the North Cascadia Adaptation Partnership. The Partnership includes
two national forests and two national parks for a total land area of 2.4 million ha.
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The North Cascadia Adaptation Partnership Process

The NCAP expands the methods of the previous case studies to a larger, more
ecologically and geographically complex area and extends the approach of
science-management partnerships to a broader range of stakeholders. It focuses on
vulnerability assessment and adaptation planning for Mount Baker-Snoqualmie
National Forest, Okanogan-Wenatchee National Forest, North Cascades National
Park Complex, and Mount Rainier National Park, a total land area of 2.4 million ha
in Washington (fig 1.1). Although these four administrative units form the core of
NCAP, the partnership includes other local, state, and federal resource management
agencies, and nongovernmental organizations in the region (fig. 1.2). The NCAP
focuses on assessing vulnerability and developing adaptation options to reduce
vulnerability. The NCAP process was conducted in four steps: (1) increase climate
change awareness among NPS and USDA FS staff and partners; (2) assess vulner-
ability of natural and cultural resources and infrastructure; (3) develop adaptation
options that the parks, forests, and their partners could potentially implement; and
(4) build a continuing partnership of scientists and resource managers engaged in
climate change issues in the region.

Educational workshops on climate change, one for each national forest and
national park, initiated the NCAP process. Scientists from resource agencies and
academic institutions presented the latest scientific information on projected
changes in climate and the effects of these changes on natural resources. Work-
shops were attended by USDA FS and NPS employees from all sectors of the
workforce, providing an opportunity for resource managers to engage in a dialogue
with climate change scientists, voice current and future management challenges,
and develop a common understanding of how climate change may affect natural
resources.

Building on the educational component, the NCAP assessed the vulnerability
of natural and cultural resources and infrastructure and developed options for
adapting resources and management to a changing climate. This was accomplished
through a series of four 2-day workshops focused on specific resource sectors:
hydrology and access, vegetation and ecological disturbance, wildlife, and fisheries.
These resource sectors were selected based on their importance in the region and
current management concerns and challenges. These resources are similar to the
resources that were the focus of the Olympic climate change case study (Halofsky
et al. 2011), but differed in two ways, reflecting differences in the disturbance ecol-
ogy and predominant uses of public lands in the NCAP region. The national forests
and national parks in the NCAP emphasized concerns about changes in ecological
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Figure 1.2—The national forests and national parks that comprise the core of the North Cascadia Adaptation Partnership (NCAP)
area are surrounded by several other municipal, state, federal, private, and tribal ownerships. The partnership includes many of
these land and resource management agencies in an effort to use an “all lands” approach in discussions and plans for climate change
adaptation.

disturbances, primarily fire and insects, and challenges associated with maintain-
ing access for recreation users. For each resource sector workshop, scientists and
resource specialists presented information on climate change effects and current
management practices. Presentations were followed by facilitated dialogue to
identify key sensitivities and adaptation options.

To assess vulnerability, we consulted with experts and reviewed scientific
literature on exposure to and potential effects of climate change on the four
resource sectors. Vulnerability assessments typically involve exposure, sensitivity,
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and adaptive capacity (Parry et al. 2007), where exposure is the degree to which
the system is exposed to changes in climate, sensitivity is an inherent quality of the
system that indicates the degree to which it could be affected by climate change,
and adaptive capacity is the ability of a system to respond and adjust to the exog-
enous influence of climate. Vulnerability assessments can be both qualitative and
quantitative and focus on whole systems or individual species or resources (Glick
et al. 2011). Several tools and databases are available for systematically assessing
sensitivity (e.g., Lawler and Case 2010) and vulnerability of species (e.g., Potter and
Crane 2010). For the NCAP, we used expert knowledge and best available science
to assess vulnerability, with the exception of evaluating the sensitivity of several
wildlife species of concern. To the greatest extent possible, we focused on effects
and projections specific to the NCAP region and used the finest scale projections
that are scientifically valid (Littell et al. 2011). Adaptive capacity can include the
ability of species and ecosystems to respond to climate change, but also the extent
to which organizations can accommodate changes in management practices neces-

Vulnerability
assessments can be
both qualitative and
quantitative and focus
on whole systems or
individual species or
resources.

sary to adapt to climate change. To assess adaptive capacity, we reviewed current
USDA FS and NPS management objectives and practices for each sector to deter-
mine opportunities and barriers for adapting to climate change.

After identifying key vulnerabilities for each sector, we used facilitated discus-
sions among scientists and resource managers during the workshop to identify
potential adaptation options. Abundant literature is available on general principles
for adapting resource management practices (Baron et al. 2009, Joyce et al. 2009,
Millar et al. 2007), but literature on adaptation is mostly conceptual (Heller and
Zavaleta 2009). This is partially because it is difficult to scientifically test the
efficacy of management actions for adapting to climate change, but also because
few efforts have connected the adaptation concepts with specific resources, places,
and people. By working collaboratively with scientists and resource managers
and focusing on a specific region, the goal of NCAP was to go beyond general
concepts to identify specific actions that could be implemented into projects and
plans (Peterson et al. 2011, Swanston and Janowiak 2012). For each resource sector
workshop, participants identified strategies (general approaches) and tactics (on-
the-ground actions) for adapting resources and management practices to climate
change. Participants also identified barriers and opportunities for implementing
these strategies and tactics into current projects, management plans, partnerships,
regulations, or policies. Participants generally focused on adaptation options that
could be implemented given current scientific understanding of climate change
effects, but they also identified research and monitoring that would benefit future
efforts to assess vulnerability and adapt management practices. Facilitators
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captured information generated during the workshops with a set of spreadsheets
adapted from Swanston and Janowiak (2012). Initial results from the workshops
were augmented with a review of the literature and continued dialogue with NPS
and USDA FS resource specialists. The following report contains one chapter for
each of the four resource sectors with a review of climate change effects, sensitivi-
ties, and current management practices (collectively the vulnerability assessment)
and results of the adaptation planning discussions.

Resource managers can use this report in several ways. First, the synthesis of
projected changes in climate and hydrology in the North Cascades and potential
effects on access, infrastructure, vegetation, wildlife, and fish is a state-of-science
reference for addressing climate change in planning documents and projects. The
report is not a comprehensive synthesis of all literature on climate change effects
in the region, but it emphasizes the biggest challenges for these resource sectors.
The four resource sectors on which this report focuses were chosen based on their
importance in the region and at the request of forest and park managers. Second,
resource managers can draw from the adaptation options presented in this report as
they begin to implement actions in response to changes in climate and hydrology.
We expect that over time, and as needs and funding align, that appropriate adapta-
tion options will be incorporated into plans and programs of the parks, forests, and
possibly other agencies. Adaptation planning is a gradual and iterative process.
Implementation may happen at critical times in the planning process, such as when
managers revise USDA FS land and resource management plans or NPS general
management plans, or after the occurrence of extreme events (e.g., floods) or
ecological disturbances. We focus on adaptation options for the USDA FS and NPS
units that are the core of the partnership, but this report provides information that
can be used by other resource management agencies in the partnership. Further-
more, the NCAP process can be emulated by national forests, national parks, and
other organizations in the Pacific Northwest and beyond.

All-Lands Approach to Climate Change Adaptation

The USDA FS and NPS climate change strategies identify the need to build part-
nerships and work across jurisdictional boundaries when planning for adaptation.
This concept of responding to the challenge of climate change with an “all-lands”
approach is frequently mentioned, but a process for doing so is rarely defined.
Unique in its effort to implement an all-lands approach to adaptation for a specific
region, the NCAP is an inclusive partnership of multiple agencies and organizations
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with an interest in managing natural resources in a changing climate. In addition to
representatives from the four NCAP forests and parks, several other agencies and
organizations participated in the resource sector workshops and are identified in
each chapter. This type of partnership enables a coordinated and complementary
approach to adaptation that crosses jurisdictional boundaries. NCAP also provides
a venue for agencies to learn from the practices of others so that the most effective
adaptation strategies can be identified.

The U.S. Department of the Interior Fish and Wildlife Service (USFWS) and
the Washington Department of Ecology, both NCAP collaborators, have similar
climate change response strategies to those of the USDA FS and NPS. Adaptation
strategies, such as promoting resilience and resistance, mitigation options like
carbon neutrality, and climate change engagement are the core goals of the USFWS
Strategic Plan for Responding to Accelerating Climate Change (USFWS 2010). The
Washington Department of Ecology Integrated Climate Response Strategy (Adels-
man and Ekrem 2012), which applies to state agencies including the Department
of Natural Resources and the Department of Fish and Wildlife, addresses effects,
vulnerabilities, and adaptation strategies for different sectors (e.g., human health,
water resources, and species habitats). The main goals are to improve scientific
knowledge, engage in partnerships and collaborations, expand sustainability and
resiliency efforts, and use integrated approaches to climate change management.

These climate change strategies differ among agencies but have many similari-
ties. Risks and vulnerabilities resulting from climate change and gaps in scientific
knowledge and policy need to be assessed. Adaptation is a focus of each of the
strategic plans, with most centering attention on creating resilience in human and
natural systems. Communicating climate change information and engaging employ-
ees, partners, and the general public in productive discussions is also an integral
part of successfully responding to climate change. The need for partnerships and
collaborations on climate change issues is also identified in all the plans. Sharing
climate change information, vulnerability assessments, and adaptation strategies
across administrative boundaries will contribute to the success of climate change
responses in the North Cascades.
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Chapter 2: Ecological, Biogeographical, and Historical
Context of the North Cascade Range

Kailey Marcinkowski, Crystal L. Raymond, and Lee K. Cerveny1

The North Cascadia Adaptation Partnership (NCAP) includes Mount Baker-Sno-
gualmie National Forest (MBSNF), Okanogan-Wenatchee National Forest (OWNF),
North Cascades National Park Complex (NOCA), and Mount Rainier National Park
(MORA), which occupy 2.4 million ha in the North Cascade Range in Washington
state (referred to hereafter as the North Cascades). The area is climatologically and
ecologically diverse, and each administrative unit has a different cultural history,
policy history, legislative mandate, and management objectives. Because the NCAP
assessed vulnerability to climate change and developed adaptation options for the
North Cascades region as a whole, participants recognized differences in ecology
and management objectives, leading to different priorities and adaptation strategies.
Despite differences among the four units, the North Cascades region is united
by similarities in climate, ecology, resource use, and management objectives. The
abundant snowfall, glaciated volcanoes, and high elevation of the region create a
common ecological setting in which glaciers, alpine, and subalpine zones strongly
influence ecological processes. Abundant large, glacial-fed rivers throughout the
region provide critical habitat for cold-water fish and also serve as an important
resource for hydropower and water for nearby urban communities. The proximity of
the four units to the Seattle-Tacoma metropolitan area creates a common emphasis
on managing for high public visitation and recreation, yet the steep terrain and
rugged topography of the region limit access. Protection and conservation of late-
successional forest habitat for wildlife species is a common objective for all national
forests and national parks. Furthermore, Congressional wilderness designations
for large portions of the national forests have increased the similarity between U.S.
Department of Agriculture, Forest Service (USDA FS) and National Park Service
(NPS) management. Current management objectives are built on a long tradition
of dependence on the abundant natural resources of the region that extends back
centuries, including the resource dependence of local Native American tribes.

! Kailey Marcinkowski is a research scientist, Michigan Technological University, School
of Forest Resources and Environmental Science, 1400 Townsend Drive, Houghton, M|
49931; Crystal L. Raymond is a climate change strategic advisor, City of Seattle, Seattle
City Light, 700 5™ Avenue, Seattle, WA 98124 (formerly a research biologist, U.S. Depart-
ment of Agriculture, Forest Service, Pacific Northwest Research Station, Pacific Wildland
Fire Sciences Laboratory, Seattle, WA 98103); and Lee K. Cerveny is a research social
scientist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research
Station, Pacific Wildland Fire Sciences Laboratory, 400 N 34" Street, Suite 201, Seattle,
WA 98103.
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This common ecological, social, and historical context formed the basis of joint
discussions on vulnerability to climate change and enabled the NCAP to identify
common adaptation strategies that are relevant to the region as whole. It will con-
tinue to be important to recognize differences in agency mandates and management
objectives, but developing regional adaptation strategies, as was undertaken by the
NCAP, is the first step toward implementing an “all lands” approach to adaptation.

Ecological Setting

Elevations in the North Cascades extend from 185 m to 4392 m (the peak of Mount
Rainier). Diverse geomorphic processes shaped the landscape, resulting in rugged
topography and steep elevation gradients with corresponding gradients in tempera-
ture and precipitation (Franklin et al. 1988). The North Cascades has two distinct
climatic divisions. On the west side of the Cascade Range, a temperate, maritime
climate dominates, and annual precipitation ranges from 100 cm to more than 250
cm. On the east side of the Cascade Range, the climate is more continental, and
annual precipitation is as high as 130 cm near the Cascade crest and as low as 25
cm near the eastern edge of OWNF. Mean annual temperature is similar for both
sides of the Cascade Range, but temperature on the east side is more seasonally
variable, with larger differences between annual and seasonal highs and lows. Snow
accumulates as early as October and can reach depths greater than 7 m above 1500
m elevation, often persisting into late summer. Mount Baker, located in MBSNF,
holds the U.S. seasonal snowfall record of nearly 29 m of snow measured during the
1998-99 season. Mount Rainier was the previous record holder for 28.5 m of snow
during the winter of 1971-72 (National Climate Extremes Committee 2012).

In the North Cascades, elevation and climatic gradients create different com-
binations of temperature, moisture, and disturbance regimes, giving rise to many
different ecosystems (Franklin et al. 1988). Vegetation associations include dry
coniferous forests, temperate coniferous rain forests, subalpine forests and mead-
ows, riparian forests, and treeless alpine. Western hemlock (Tsuga heterophylla
[Raf.] Sarg.), Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco), and western red-
cedar (Thuja plicata Donn ex D. Don), dominate low-elevation, west-side forests.
Douglas-fir, ponderosa pine (Pinus ponderosa var. ponderosa Douglas ex P.
Lawson & C. Lawson), grand fir (Abies grandis [Douglas ex D. Don] Lindl.), and
western larch (Larix occidentalis Nutt.) dominate low-elevation east-side forests,
and lodgepole pine (P. contorta var. latifolia Engelm. ex S. Watson) is common
throughout mid-elevation east-side forests. Vegetation transitions from dry conifer
forest to shrub-steppe and grassland toward the eastern edge of OWNF. Hardwood
species such as red alder (Alnus rubra Bong.), bigleaf maple (Acer macrophyllum
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Pursh), and vine maple (A. circinatum Pursh) are common in riparian forests on the
west side, and quaking aspen (Populus tremuloides Michx.) is found in riparian and
high-elevation forests on the east side. Subalpine forests are dominated by mountain
hemlock (Tsuga mertensiana [Bong.] Carriére), Pacific silver fir (Abies amabilis
Douglas ex J. Forbes), and subalpine fir (A. lasiocarpa [Hook.] Nutt.) on the west
side and by subalpine fir, Engelmann spruce (Picea engelmannii Parry ex Engelm.),
and subalpine larch (L. lyallii Parl.) on the east side. The North Cascades supports a
high diversity of native plant species; NOCA alone contains 1,630 vascular species,
the most of any park in the NPS.

Cultural History of the North Cascades

Interactions between native peoples and their environments are an important

part of the cultural history of the North Cascades, which supported many Native
American tribes: the Skagit, Nooksack, Sauk-Suiattle, Okanogan, Methow, Chelan,
Wenatchee, Salish, Nisqually, Puyallup, Muckleshoot, Squaxin Island, Yakama,
Cowlitz, and Colville. Many of these tribes have relationships with the parks and
forests that are part of the NCAP, and they work collaboratively to protect and
manage the natural resources and cultural heritage of the area. Tribal partners were
actively involved in the NCAP resource-sector workshops and provided expertise,
local knowledge, and input to the adaptation planning process.

Traditional uses of the land include hunting for mountain goat (Oreamnos
americanus [de Blainville]), elk (Cervus elaphus L.), black-tailed deer (Odocoileus
hemionus columbianus [Rafinesque]), mule deer (O. hemionus [Rafinesque]) hoary
marmot (Marmota caligata [Eschscholtz]), black bear (Ursus americanus Pallas)
(and formerly grizzly bear [U. arctos L.]), and many bird species, and foraging
for a wide range of berries, roots, and mushrooms. Western redcedar and Alaska
cedar (Callitropsis nootkatensis [D. Don] D.P. Little) trees were stripped of bark for
clothing, baskets, mats, and containers (Burtchard 2003). Salmon was a main food
staple for many tribes, so waterways were an important aspect of native life and
provided access to trade routes. Trade paths were also established over land, and
water and land routes opened up trade between inland and coastal tribes (Mount
Baker Foothills Economic Development Association 2004).

The tribes of the North Cascades had various lifestyles. Some, like the Nook-
sack and Skagit, settled in permanent villages along rivers, but others lived in
camps that moved depending on the season. Dart and arrow points, lithic debris,
and other evidence of hunting and residential sites have been found throughout
the region (Mierendorf 2004). Hundreds of archaeological sites, including rock
shelters between 300 and 1,000 years old, indicate a long history of land use by
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native peoples in the North Cascades (Burtchard 2003). Pictographs on the cliffs
surrounding Lake Chelan were drawn by the Chelan tribe, and their creation is part
of a tribal legend. Legends also surround the formations of Mount Rainier, Mount
Baker, and several large rivers.

Following European discovery of Puget Sound and the North Cascades, set-
tlers explored the foothills and rivers, especially trappers engaged in the fur trade.
Mining ventures were established throughout the area, and many small settlements
became mining boom towns with a large influx of prospectors. The 1858 Fraser
River gold rush brought nearly 10,000 of these prospectors into the foothills sur-
rounding Mount Baker, and claims to ore deposits still exist today (Thompson
1970). The large trees and extensive forest area of the region became an economic
draw for logging operations in the 1870s, mostly in the lowlands along rivers.
Railroads reached the Pacific Northwest in the 1890s, and settlements in the area
began to expand. Toward the end of the 19" century, the area was first used for
recreational purposes, such as mountaineering, and people began to take a greater
interest in preserving the natural resources of the North Cascades.

Geography, History, and Management
Mount Baker-Snoqualmie National Forest

Mount Baker-Snogualmie National Forest occupies 698 000 ha, extending 225 km
on the western side of the Cascade Range from the Canadian border to Snoqualmie
Pass and south of MORA.. Nine wilderness areas, four of which are shared with
the OWNF, comprise 48 percent of the MBSNF area. Among active volcanoes in
the contiguous United States, Mount Baker (3286 m) is the fourth highest and most
northern. There are 13 glaciers on its slopes. Several large rivers run through the
MBSNF, including the Sauk, Suiattle, and Cascade Rivers, which are part of the
Skagit River system.

The lands that make up MBSNF have a long history of preservation. Some of
the forest area was reserved as part of Pacific Forest Reserve lands in 1893, and
in 1908 it was converted to Snoqualmie National Forest (south), and Washington
National Forest (north), the latter being renamed Mount Baker National Forest
in 1924, After the dissolution of Mount Rainier National Forest, the Snoqualmie
National Forest expanded, incorporating four ranger districts into its boundaries.
When NOCA was formed, it was excised from Mount Baker National Forest. Mount
Baker and Snoqualmie National Forests merged in 1973.

Many areas have been established as wilderness since establishment of current
MBSNF boundaries (Washington State Wilderness Act of 1984). Wilderness desig-
nations influence management for timber and wildlife habitat. More than 200 km
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of river and shoreline have been designated as the Skagit Wild and Scenic River
System to protect the flow, water quality, and recreation values of the river (Wild
and Scenic Rivers Act 1968). The Skagit Wild and Scenic River System is taken
into account when managing for recreation, hydroelectric power, flood control,
species populations, and restoration along shorelines.

The MBSNF manages for a broad range of recreational activities. Viewing
natural features and wildlife, hiking, viewing wildlife, relaxing, and driving for
pleasure are the top five recreational activities in MBSNF, and nearly 60 percent of
visitors to the forest hike on established trails. Recreational use has increased from
1,372,000 in 2005 to 1,995,000 in 2010, making MBSNF one of the most visited
national forests in the United States. Beyond recreation, MBSNF also manages tim-
ber, fire, and sensitive species. These activities are designed to protect, maintain,
and enhance the natural resources of the forest. The Wilderness Act (1964), Wild
and Scenic Rivers Act (1968), National Environmental Policy Act (1969), Clean
Air Act (1970, 1977), and Endangered Species Act (1973), all regulate management
activities at MBSNF.

Okanogan-Wenatchee National Forest

The Okanogan-Wenatchee National Forest comprises more than 1.6 million ha

on the eastern side of the Cascades from the Canadian border to south of Mount
Rainier. The crest of the Cascade Range is the western border of OWNF, and

the Okanogan Highlands are the eastern border. Eight wilderness areas, some of
which are shared with MBSNF, cover about 40 percent of the land. Waterways are
an important part of OWNF, which borders the Columbia River and the Yakima
River valley. Cle Elum Lake, Kachess Lake, Keechelus Lake, Rimrock Lake, Lake
Wenatchee, and Lake Chelan are all large lakes inside OWNF borders, and the
Methow, Twisp, and Entiat Rivers flow through the forest.

The eastern slopes of the Cascade Range and the area surrounding Lake Chelan
have been a popular recreation destination since the early 1900s. The need to set
aside lands for preservation was recognized early, and the Wenatchee and Chelan
National Forests were established separately in 1908. The Okanogan National Forest
was established in 1911 and was incorporated into Chelan National Forest several
years later. Chelan National Forest boundaries were kept the same, but the area
was renamed Okanogan in 1955. Several wilderness areas were established in these
national forests over the years, reserving land inside forest boundaries and adding
land to expand the boundaries. The forests were combined in 2000 and the name
was subsequently changed to Okanogan-Wenatchee National Forest. Management
of the OWNF follows similar legislation as MBSNF, with additional emphasis on
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fire and timber. Recreational usage of OWNF has decreased from 1,752,000 visitors
in 2005 to 1,368,000 in 2010. Recreation activities include hiking, scenic driving,
skiing, hunting, fishing, gathering forest products, and camping.

Mount Rainier National Park

Mount Rainier National Park is located on the west side of the Cascade Range,
about 100 km southeast of the Seattle-Tacoma area. The park is 96 000 ha, of which
97 percent is designated as wilderness. Several historical areas within the park
(about 1 percent) are designated as a National Historic Landmark District. The main
attraction of the park is Mount Rainier, the largest peak in Washington state. Mount
Rainier is an active volcano with the largest single-peak glacier system in the
Pacific Northwest. An abundance of archaeological sites in the park are evidence

of a long history of human use in this area.

Lands set aside for the Pacific Forest Reserve in 1893 were combined with land
reclaimed from railroads to create the park in 1899, making it the fifth national park
in the United States. The first national park to be patrolled solely by rangers (Cat-
ton 1996), it was the site of mining operations and fire suppression during its first
decade of existence. When the NPS was established in 1916 (NPS 1916), MORA
expanded operations, adding engineers, landscape architects, naturalists, and an
educated ranger force. As the automobile became more popular and better roads
and trails were built into the park, the number of visitors increased, especially for
single day trips. The influx of visitors to the park resulted in MORA becoming the
first national park, in 1928, to develop a master plan for development of roads and
visitor and administration services (Catton 1996). Recreational activities in MORA
include climbing, hiking, backpacking, camping, scenic drives, and wildlife and
wildflower viewing, and visitation is gradually declining. There were 1,301,103
visitors in 2001, decreasing to 1,038,229 in 2011. During that time, backcountry
campers decreased from 64,362 to 39,907.

North Cascades National Park Complex

North Cascades National Park Complex spans 279 000 ha from the Canadian border
to south of Lake Chelan and includes North Cascades National Park and Ross Lake
and Lake Chelan national recreation areas. The Stephen Mather Wilderness covers
93 percent of the park, and there are five research natural areas within the borders.
Rugged topography and nearly 3000 m of vertical relief result in diverse biophysi-
cal environments and ecosystems. Lake Chelan, the focus of Lake Chelan National
Recreation Area, is the third deepest natural lake in the United States. Home to 300
glaciers, NOCA contains over half of all glacial ice mass in the contiguous United
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States. The park also has several large rivers including the Skagit, Nooksack, and
Stehekin. Many archaeological sites are found near these rivers and more sites have
recently been identified at higher elevations (Mierendorf 2004).

Although NOCA is now recognized for recreational opportunities and preserva-
tion of natural resources, the land was originally used for resource extraction. Log-
ging operations and mining began in the 1870s. Sheep herding and grazing was also
attempted in the northern Cascade Range but was abandoned in the 1940s because
of the difficulty of herding sheep in high meadows. The potential for hydroelectric
power was also recognized early when Seattle City Light built dams and railroads
in the North Cascades in the 1920s and 1930s. Diablo Dam was completed in 1929
and Ross Dam in 1949, and Gorge Dam was built in 1919 and rebuilt in 1950 and
1961 (Thompson 1970). Collectively known as the Skagit River Hydroelectric
Project, the facilities associated with these dams generate 711 megawatts of power,
about 25 percent of the electrical usage for the Seattle region.

The idea for a national park in the North Cascades was proposed about 75 years
before it became official in 1969 (Louter 1998, North Cascades Study Team 1965)
because of competition with timber and mining interests in the surrounding region,
but the area was still enjoyed for many forms of recreation. The public desire to pre-
serve the North Cascades persisted, and the park was created to preserve the natural
features and majestic mountain scenery of the region, provide public recreation and
enjoyment, and conserve scenic, scientific, and historic values of the land.

Early conflict over management and use at NOCA focused on proposals for
road construction, with some people in favor of new roads to provide recreational
access, and others in favor or maintaining a remote environment. The North
Cascades Highway, which opened in 1972, bisects the park from west to east and is
the primary access route for most visitors. The Cascade River Road and Stehekin
Valley Road, both unpaved, are the only other major roads in the park. After
the North Cascades Highway opened, park visitation increased from 250,000 to
750,000 people, prompting an expansion in campsites and revegetation of subalpine
meadows that were being degraded by visitors (Louter 1998). Visitors to NOCA
pursue recreation activities including scenic driving on the North Cascades High-
way, backpacking, camping, and hiking. Recreational visits to NOCA declined from
27,739 in 2001 to 19,208 in 2011, but backcountry camping remained fairly steady
during that time. Recreational visits at Ross Lake National Recreation Area have
increased from 331,343 in 2001 to 728,353 in 2011, and recreational visits at Lake
Chelan National Recreation Area increased from 25,000 to 43,827 during that time.
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National Park Service management policies (USDI NPS 2006) establish the
framework and direction for management decisions in national parks. Park-specific
foundation statements and general management plans of NOCA and MORA sum-
marize the established purpose for each park, the significance of the resources for
which it was established, and provide a shared vision for resource conditions and
visitor experiences that fulfill the purpose of each park. General management plans
define strategic goals for park management over the next 15 to 20 years, and imple-
mentation plans identify short-term (5 years) goals and objectives. The broad goals
of the NPS are to understand and protect the inherent integrity of natural resources,
processes, systems, and values, while providing meaningful and appropriate oppor-
tunities for the public to enjoy the parks (USDI NPS 2006). Management activities
at NOCA and MORA are also regulated by the Wilderness Act (1964), Wild and
Scenic Rivers Act (1968), National Environmental Policy Act (1969), Clean Air Act
(1970), Endangered Species Act (1973), and Clean Water Act (1977).
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Chapter 3: Climate and Climate Change in the
North Cascade Range

Jeremy S. Littell and Crystal L. Raymond1

Weather is the condition of the atmosphere at a specific place in the short term
(minutes to weeks). Climate is the mean weather conditions over a longer period of
time (months, seasons, years, or thousands of years) and includes variables such as
precipitation and temperature (Intergovernmental Panel for Climate Change [IPCC]
2007). In addition to the mean, extremes and variability are also key features of cli-
mate and these statistics of climate are typically described for a 30-year period. In
the Pacific Northwest (PNW), annual and decadal variability are important aspects
of regional climate that are driven by semipredictable, natural interactions between
the ocean and atmosphere. In contrast, climate change, or trends in climate over
several decades, is driven by large-scale physical factors that influence regional or
global climate (i.e., climate forcings). Climate forcings can be natural (e.g., changes
in the Earth’s orbit) or caused by humans (e.g., changes in atmospheric concentra-
tions of greenhouse gasses that affect the heat balance of the Earth).

In the following sections, we describe spatial and temporal means, variability,
and trends in historical and future climate in the PNW. Climatic variability and
trends shape ecological and hydrologic processes with implications for ecosystem
services and management of natural resources. These climate data and projections
informed the North Cascadia Adaptation Partnership (NCAP) vulnerability assess-
ment and adaptation planning process.

Climate of the Pacific Northwest

Climate in the North Cascade Range (defined here as Mount Rainier north to

the Canadian border) is driven by the regional climate of the PNW and mediated
by local effects of mountainous topography and proximity to the Pacific Ocean.
Regionally, most precipitation falls in the winter half of the year (about 70 percent
or more of the annual total) and relatively little falls in the summer half of the year
(about 30 percent or less). The western slopes of the Cascade Range have a mari-
time climate that is greatly influenced by the Pacific Ocean and Puget Sound,

! Jeremy S. Littell is a research scientist, U.S. Department of the Interior, Alaska Climate
Center, 4210 University Drive, Anchorage, AK 99508 (formerly research scientist, Uni-
versity of Washington, College of the Environment, Climate Impacts Group, Seattle, WA);
and Crystal L. Raymond is a climate change strategic advisor, City of Seattle, Seattle City
Light, 700 5™ Avenue, Seattle, WA 98124 (formerly research biologist, U.S. Department

of Agriculture, Forest Service, Pacific Northwest Research Station, Pacific Wildland Fire
Sciences Laboratory, Seattle, WA).
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whereas the eastern slopes of the Cascade Range have a continental climate
dominated by the orographic effect of the Cascade Range. The maritime climate
of the western Cascades has relatively warm winters and cool summers compared
to the eastern Cascades. Diurnal and seasonal temperature ranges (differences
between lows and highs) are narrower in the western Cascades than the eastern
Cascades. More precipitation falls on the west and southwest (windward) sides of
the Cascades, particularly from November to March, than on the eastern slopes of
the Cascades (leeward). In the Cascade Range, precipitation and temperature also
vary with elevation. Higher elevations receive more precipitation and have lower
temperatures, resulting in higher winter snowfall and spring snowpack.

Regional climate varies significantly through time. The proximity of the PNW
to the Pacific Ocean means that trends in large-scale interactions between the ocean
and atmosphere affect climate of the region. The El Nifio-Southern Oscillation
(ENSO) originates in the tropical Pacific but influences the winter temperature and
precipitation in the PNW. The ENSO cycles between EI Nifio and La Nifia events
every few years, with abnormally warm, dry winters more likely during El Nifio
events and abnormally wet winters more likely during La Nifia events. The Pacific
Decadal Oscillation (PDO) affects PNW winter climate similarly to ENSO, but it
is a longer term (decadal) pattern of variation in the extra-tropical Pacific. Cool
phases of the PDO have a similar influence on PNW climate as La Nifia events.
These features of Pacific Ocean circulation patterns are responsible for much of the
temporal variability in the region’s climate over the historical record, which shows
warm, dry winters in the early 20" century, followed by cool wet winters in the
middle 20" century, and a return to warmer, drier conditions in the 1970s to 1990s.

Historical Climate Observations and Trends in the
Pacific Northwest

In the PNW, several networks of weather stations monitor and record weather.
Most analyses of climate (long-term trends in weather) require many decades of
complete daily observations to adequately describe the means, variability, and
trends in climate at a location. Daily observations of temperature and precipitation
are recorded at locations around the United States as part of the National Weather
Service Cooperative Observer Network (COOP), and records for the PNW can be
found at the Western Regional Climate Center. Hundreds of COOP stations in the
PNW, and approximately 25 in the north and central Cascades, record weather data
relevant to management units in the NCAP. High-quality data from COOP stations
for most of the 20™ century (usually starting between 1895 and 1920) are archived
as part of the U.S. Historical Climatology Network (HCN), but only the Longmire
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(Mount Rainier National Park [MORA]) and Stehekin (North Cascades National
Park Complex [NOCA]) records are of sufficient length and quality to be HCN
stations.

Based on historical records, mean annual temperature increased 0.8 °C in the
PNW between 1920 and 2000 (Mote 2003). The first decade of the 21% century
(2001-2010) was tied with the previous decade (1991-2000) for the warmest in the
PNW since comprehensive observations began around 1920. An analysis of HCN
stations from the PNW and Columbia Basin region shows similar trends for the
period of 1950 to 2006, with increases in minimum and maximum temperatures of
0.18 °C per decade for a total of 1.0 °C for the time period (Littell et al. 2011). Dur-
ing this time, 84 percent of HCN stations in the PNW showed an increase in annual

Mean annual
temperature increased
0.8 °C in the Pacific
Northwest between
1920 and 2000.

minimum temperature of 0.5 °C or more, whereas only 1 percent of stations showed
a decrease of more than 0.5 °C (Littell et al. 2011). Most stations showed significant
increases in minimum (80 percent of stations) and maximum temperature (71 per-
cent of stations), whereas decreases were not statistically significant.

The national forests and national parks in the NCAP are at relatively high
elevations in the PNW, and few stations in these units have long-term observations.
Thus data are limited, making it difficult to determine whether the climate at higher
elevations in the north and central Cascades is responding similarly to the rest of
the PNW. The two longest and highest quality temperature records are from Long-
mire and Stehekin and both stations show increasing temperature trends (fig. 3.1).

In the PNW, annual precipitation increased slightly over the 1920-2000 period
(Mote 2003), but precipitation is more variable relative to the mean than is tempera-
ture, so trends in precipitation are small compared to interannual variability. Simi-
larly, analysis of precipitation trends from all HCN stations in the Columbia Basin
for the period of 1950 to 2006 showed high spatial variability. Twenty-one percent
of HCN stations showed declines in precipitation greater than 1 cm over the period,
whereas 4 percent of stations showed increases in annual precipitation greater than
1 cm (Littell et al. 2011). Most stations that recorded an increase in precipitation
were west of the Cascade crest, whereas most stations that recorded a decrease
were east of the crest. Few stations in the North Cascades have long-term records of
precipitation, but the precipitation record from Stehekin agrees well with the PNW
regional trend in terms of interannual variability, although mean precipitation at
Stehekin is higher than the regionally averaged mean precipitation (fig. 3.2).

Trends in temperature recorded by the COOP stations in the two national parks
in the NCAP give an indication of climate trends at high elevation. The COOP
stations recorded temperature in NOCA from 1950 to the present and in MORA
from 1970 to the present. Records from most COOP stations show at least modest
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Figure 3.1—Annual average temperatures for Longmire, Washington (Mount Rainier National Park

[MORA], 1914-2011), and Stehekin, Washington (North Cascades National Park Complex [NOCA],

1917-2011). The trend for Longmire is about 0.1 °C increase per decade, and the trend for Stehekin is
about 0.2 °C increase per decade. High-quality National Weather Station Cooperative Observer Net-

work data for most of the 20™ century (usually starting between 1895 and 1920 in the Northwest) are
archived as part the U.S. Historical Climatology Network (HCN). For the North Cascadia Adaptation
Partnership region, only the Longmire and Stehekin records are of sufficient length and quality to be
HCN stations. (Data: National Climatic Data Center; Menne et al. 2009.)
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Figure 3.2—Observed annual precipitation (Washington, Oregon, ldaho—gray line) and precipita-
tion recorded at the Stehekin, Washington, station (red line) during the 20" century. The blue line
shows the longer term (about 20 years) average precipitation and illustrates the decadal variability
characteristic of the Pacific Northwest. The horizontal line represents average conditions during
the period of record. (Data: National Climatic Data Center (NCDC). Stehekin data from NCDC and
Menne et al. 2009,
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increases in mean temperature across the period of observation, but not all records
show increases in maximum temperature. Agreement among stations in NOCA

is stronger than agreement among stations in MORA, perhaps because there are
more stations to compare in NOCA. However, COOP station records, unlike HCN
station records, do not have estimations for missing values, time of observation, or
station location biases correction, and therefore are more likely than HCN stations
to contain spurious trends.

Snowpack (along with temperature and precipitation) is measured as both
snow depth and snow water equivalent (SWE, the amount of water entrained in the
snowpack) at automated SNOTEL stations monitored by the U.S. Natural Resources
Conservation Service. Snowpack records extend back to the 1930s to 1950s at some
sites, but most SNOTEL stations were established between the 1970s and 2000s, so
the temporal length of the snowpack record varies greatly within the region.

In the Cascades in Washington, April 1 SWE has declined 15 to 35 percent
from the middle of the 20" century to 2006 (Mote et al. 2008). This range is the
best estimate based on a combined analysis of historical observations and hydro-
logic modeling. This range also reflects different starting times for the analysis
(1930 to 1970), which are corrected for the number of observation stations and the
elevations of these stations. Cycles of ENSO and PDO contribute to the variability
in the observed record of April 1 SWE during the 20" century, but these cycles do
not explain the negative trend over the time period. The long-term decline in April
1 SWE is dominated by the increasing trend in temperature over the same period
(Mote et al. 2008). The strong influence of warming on the negative trend in SWE
is supported by observations of larger declines in SWE at low-elevation stations and
smaller declines or increases in SWE at high-elevation stations (Mote et al. 2005),
where warming is not sufficient to convert precipitation from snow to rain. Obser-
vations of precipitation show an increasing trend for the 20" century (Mote 2003),
but variability is high. This variation in precipitation contributes to variability and
short-term trends SWE, but the long-term trend is dominated by temperature (Mote
et al. 2008).

Stations in the national parks in the NCAP provide an indication of trends in
precipitation and snowpack at high elevations. Most stations in MORA and NOCA
show no trend in precipitation for 1970 to the present. The NOCA stations show
prominent declines in snow depth. The three stations in MORA show a decling, an
increase, and a flat trend in snow depth, but the increasing trend in MORA (Long-
mire COOP station) is for a shorter time period that begins in 1975, near a lower
point in the longer regional snowpack record. Trends in SWE recorded at SNOTEL
and snow course stations in MORA and NOCA show high variation; nine stations
show a decrease and four stations show a flat trend.
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Future Climate in the Pacific Northwest
Models, Methods, and Data Used for Climate Projections

Future climate in the North Cascades is best described as the expected regional
changes in temperature and precipitation and their effects on subregional hydrology.
Changes in regional (PNW) climate can be projected using global climate models
(GCMs) that combine natural and anthropogenic climate forcings with gridded
atmosphere-ocean models that have the capability to resolve climate dynamics
affecting large regions (about 100 to 1000 km). The Intergovernmental Panel on
Climate Change Fourth Assessment (IPCC AR4) report relied on model results
from 15 to 20 GCMs to project a range of potential changes in global climate
(model projections are archived and distributed as World Climate Research Pro-
gramme Coupled Model Intercomparison Project phase 3 [CMIP3] multimodel
dataset) (Meehl et al. 2007). Changes in climate at finer resolution can be estimated
by “downscaling” projected regional changes in future climate to local conditions
based on historical relationships between coarse- and fine-scale climate.

Scientists from the University of Washington, Climate Impacts Group, and
partners developed datasets of downscaled climate and hydrologic projections to
support the development of vulnerability assessments and adaptation plans by land
and water resource managers in the PNW (box 3.1). Methods and results, as well
as archives of the data in grid and summarized forms, are available at http://cses.
washington.edu. See box 3.1 for a summary of available datasets and Web links to
access the datasets. For this vulnerability assessment, we used two sources of cli-
mate data. For projections of most climatic variables, we used the analysis by Littell
et al. (2011), which summarizes climate and hydrologic variables for the Western
United States. For projections of streamflow, including peak flows and low flows,
we used data and information from the Columbia Basin Climate Change Scenarios
Project (Hamlet et al. 2010). Hamlet et al. (2010) developed a comprehensive data-
base of historical and future hydrologic projections for 297 streamflow locations
in the Columbia River basin to support long-range planning for water resources.
These two sources of data provide similar projections of future climate and related
hydrologic variables for the PNW but differ slightly in the GCMs included in the
ensemble means and the statistical methods used to downscale coarse projections
from GCMs for regional analyses at finer spatial (about 6 km) and temporal scales.

For scenarios of future climate for the North Cascades, we reviewed down-
scaled GCM projections of temperature and precipitation for the PNW/Columbia
Basin as developed and analyzed by Littell et al. (2011). Projecting regional climate
does not require using all 19 GCMs, and careful selection of GCMs can limit the
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Box 3.1—Climate and hydrologic datasets to support
vulnerability assessments and adaptation planning for
natural resource management

Columbia Basin Climate Change Scenarios project—

Hamlet et al. (2010) developed a comprehensive database of simulated hydrologic
data incorporating climate change information from the Intergovernmental Panel

on Climate Change Fourth Assessment Report to support long-term water resources
planning in the Pacific Northwest/Columbia River basin. These projections can be
used for vulnerability assessments and adaptation planning for terrestrial, fluvial, and
coastal marine ecosystems. The final products include a set of hydrologic databases
for 297 streamflow locations in the Columbia River basin and geographic information
system layers for hydrologic and meteorological variables. All datasets, available at
http://www.hydro.washington.edu/2860, are designed to serve a diverse community
of resource managers.

Regional climate and hydrologic change in the northern U.S. Rockies and
Pacific Northwest: internally consistent projections of future climate for
resource management—

Littell et al. (2011) developed consistent historical and future downscaled climate and
hydrologic data for four river basins in the Western United States (Columbia River
basin, upper Missouri River basin, upper Colorado River basin, and Great Basin).
Historical and future hydrologic model output for several variables is available at
about 6-km resolution for the extent of the four river basins. The variables were se-
lected based on their relevance for vulnerability assessments and adaptation plan-
ning for resource management agencies. Variables summarized include temperature,
precipitation, snow water equivalent, snow statistics, evapotranspiration, soil mois-
ture, and several other hydrologic variables. Data are summarized for Bailey ecosec-
tions, Omernik level 11 ecoregions, and hydrologic unit code levels 4 and 5 basins.
Gridded data and summarized data are available at Climate Impacts Group (n.d.[b])
and USDA FS (n.d.). This project builds on the research efforts of the Columbia Basin
Climate Change Scenarios project (Hamlet et al. 2010) and Washington Climate
Change Impacts Assessment (Elsner et al. 2009).

Historical and future projected changes in snow water equivalent for Oregon
and Washington—

Mauger et al. (2011) used downscaled climate projections to generate high-resolution
(800 m) simulations of snow water equivalent (SWE) for Oregon and Washington.
The SWE was simulated using a version of the variable infiltration capacity (VIC)
macroscale hydrologic model (Elsner et al. 2010, after Liang et al. 1996), modified to
include terrain slope and aspect. The VIC simulations were implemented using up to
five subgrid elevation bands within each grid cell, along with interpolated parameter
files derived from Hamlet et al. (2010). Fine-scale simulations of SWE were generated
for a historical period (1915-2006) and three scenarios for the 2040s using the A1B
emissions scenario—an ensemble of the 10 best performing GCMs and two brack-
eting models (Littell et al. 2011). Data and methods are available from the Climate

Impacts Group (n.d.[a]).
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effect of poorly performing models on projections for a particular region (Littell et
al. 2011, Mote and Salathé 2010). Littell et al. (2011) evaluated the performance of
the 19 IPCC AR4 GCMs based on fidelity to observed seasonal and annual climate
trends and selected a subset of 10 models (an ensemble) that perform well against
several metrics focused on the northern and central Rockies. The development

of this ensemble is based on rigorously evaluated climate models. The approach
rejects models that do not accurately simulate the historical climate (temperature
trend, precipitation seasonality, etc.), and the remaining models are assumed to have
reasonable regional capability. However, any single model that captures the histori-
cal climate is not guaranteed to project future climate accurately. There are likely to
be interactions in future climate and decadal variability that limit the performance
of a single model. Similarly, models that perform poorly against historical data may,
for reasons currently unknown, actually capture future dynamics well.

The mean of the 10-model ensemble averages differences associated with
individual GCMs, and this mean reduces the chance that any single model’s unique
approach to projecting future climate would lead to a severe bias in downscaled
climate for the region. Although most GCMs project similar global trends, their
internal dynamics and resolution can lead to substantially different local projec-
tions. The ensemble mean can be considered a “robust” estimate of future climate,
but it is not necessarily a more likely future than any single model.

Scenarios of greenhouse gas (GHG) emissions over time are required to drive
GCM projections of future climate. These emissions scenarios are “story lines”
that incorporate scenarios of economic development, population growth, mitigation
efforts, and changes in technology to determine potential future emissions of GHGs
(Nakicenovic et al. 2000). Commonly used emissions scenarios are B1, A1B, and
A2. The scenarios are similar in the mid-21* century, but the A2 scenario produces
the most warming by the end of the 21* century.

The A1B scenario has been used in regional analyses for the PNW (Elsner et
al. 2009), and we primarily use A1B for this vulnerability assessment for several
reasons. The AL1B scenario is a medium-high emissions scenario reflecting rapid
increases in GHGs in the early 21* century followed by substantial reductions in
the second half of the 21°" century, which slows the rate of warming. Thus A1B
results in more warming than the A2 or B1 scenarios until the 2040s or 2050s, the
timeframe relevant to many vulnerability assessments. The A1B scenario, however,
should not be considered a “worst case” scenario because the full sensitivity of the
climate system could be higher than the temperatures expected under A1B and
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because individual climate models project more warming than the ensemble mean
(Roe and Baker 2007). The A1B scenario is also most consistent with current GHG
emissions (Raupach et al. 2007).

Air temperature is
projected to increase
2.1 °C by the 2040s and

Projections of Temperature and Precipitation for the Pacific 3.8 °C by the 2080s.
Northwest

For the PNW, the average response of the 10-model ensemble for the A1B emissions
scenario is for temperature to continue to increase, with warming on average of

2.1 °C by the 2040s (average of years in the 30-year window from 2030 to 2059),
and 3.8 °C by the 2080s (2070-2099) (Littell et al. 2011). This projected increase

in temperature would put 2040s average temperatures at the upper end of the
historical range and 2080s average temperatures mostly outside of the historical
range. Increasing trends in temperature have been attributed, at least partially, to
human emissions of GHGs (such as carbon dioxide) (Stott 2003), and as emissions
increase, temperature is expected to increase, although interannual variability will
be observable.

The seasonality of changes in temperature affects hydrology, snowpack, and
ecological processes. Temperature is projected to increase in all seasons, but the
biggest increases are projected for summer (June, July, and August) (fig. 3.3). This
seasonal difference in future projections differs from the seasonal differences
observed in the 20" century warming trend, which indicate greater warming in
winter in the PNW (Mote 2003). There are potential feedbacks associated with
warming that are seasonally dependent (e.g., reduced snowpack may accelerate
warming in winter and lower soil moisture may accelerate warning in summer), but
the effect of these feedbacks is uncertain. Furthermore, both historical observations
and future projections of temperature by season are highly variable, so differences
between seasons are less certain than annual trends.

The range of GCM projections of future precipitation in the PNW is large, and
results vary among models with some projecting higher annual precipitation and
others projecting lower (Littell et al. 2011). For the A1B scenario, the 10-model
ensemble mean is no change in annual precipitation for the 2040s and a 2-percent
increase in precipitation for the 2080s (Littell et al. 2011) (table 3.1). The PNW will
continue to experience high interannual variability in precipitation, and trends
associated with climate change may be difficult to detect against this background of
annual and decadal variability. However, seasonal changes in precipitation may be
more perceptible and important for understanding effects of changes in precipita-
tion on hydrologic process such as streamflow and snowpack. Slight increases in
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Figure 3.3—Range of projected changes in temperature (relative to 1970-1999) for the Columbia
River basin/Pacific Northwest for the 2040s (top) and 2080s (bottom) for each season (letters indicate
first letter of the month). In each box-and-whisker trio, the leftmost is for emissions scenario B1,
center for A1B, and right for A2; circles are individual model values. Box-and-whisker plots indicate
10" and 90" percentiles (whiskers), 750 percentiles (box ends), and median (solid middle bar) for
each season and scenario. White bars indicate mean of deltas for global climate models. (Data
source: Littell et al. 2011.)
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Table 3.1—Projected changes in seasonal and annual temperature and precipitation for
the Columbia River basin/Pacific Northwest for the A1B emissions scenario and three
GCMs (a 10-model ensemble and two bracketing models, PCM1 and MIROC 3.2)

Temperature change Precipitation change
10-model 10-model
PCM1 ensemble MIROC3.2 PCM1 ensemble  MIROC 3.2
(least mean (most (least mean (most
warming (moderate  warming, warming, (moderate  warming,
Years Months® and drier) warming) wetter) and drier) warming wetter)
———————————— C-mmmmmccmnes ----------Percentage----------
2040s DJF 2.0 1.8 2.7 -8 4
MAM 13 1.7 3.0 10 4
JJIA 1.9 2.7 2.8 -3 -10 -8
SON 2.0 2.2 2.4 -6 3 17
Annual 1.8 2.1 2.7 -2 0 4
2080s DJF 3.2 34 4.6 9 9 9
MAM 2.0 3.2 4.8 5 5 9
JJIA 3.3 4.9 4.9 -19 -15 -30
SON 2.4 3.9 4.3 -13 9 14
Annual 2.7 3.8 4.6 -5 2 0

& Letters indicate the first letter of each month. GCM = global climate model.

precipitation are projected for all seasons except summer, which is projected to have
a 10-percent decrease in precipitation by the 2040s (fig. 3.4).

Variation in future climate projected by different GCMs can be used to rep-
resent scenarios of future climate. Littell et al. (2011) selected two GCMs (PCM1
and MIROC 3.2) that “bracket” the range of future temperature and precipitation
projected by the 10-model ensemble. The two bracketing models were selected
based on changes in summer temperature and precipitation. The bracketing models
were originally chosen for the upper Missouri River basin and do not span the
range for all variables in the PNW, particularly with respect to effects on snowpack.
Nevertheless, the bracketing models provide a range of possible future climatic
outcomes, so we use them in this assessment as well.

In comparison with the ensemble mean, the PCM1 model simulates relatively
small increases in annual temperature and slightly drier annual conditions in the
PNW (table 3.1). This scenario is labeled “least warming and drier” for subsequent
chapters of this report. The MIROC 3.2 model simulates relatively large annual
increase in temperature and wetter annual conditions for the 2040s (table 3.1)
(Littell et al. 2011). This scenario is labeled “most warming and wetter.” The
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Figure 3.4—Range of projected changes in precipitation (relative to 1970-1999) for the Columbia
River basin/Pacific Northwest for the 2040s (top) and 2080s (bottom) for each season (letters
indicate first letter of the month). In each box-and-whisker trio, the leftmost is for emissions scenario
B1, center for A1B, and right for A2; circles are individual model values. Box-and-whisker plots
indicate 10" and 90" percentiles (whiskers), 750 percentiles (box ends), and median (solid middle
bar) for each season and scenario. White bars indicate mean of deltas for global climate models.

(Data source: Littell et al. 2011.)
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ensemble mean for annual temperature and precipitation falls within the range of
bracketing models (table 3.1) and is labeled “moderate warming.” These scenario
labels are based on annual means for the 2040s; some seasonal means of precipita-
tion (e.g., winter temperature) do not follow this pattern (table 3.1). For example,
despite being a drier annual scenario, PCML1 projects a larger increase in spring
(March, April, May) precipitation relative to the ensemble mean or MIROC 3.2.
Furthermore, relative differences between the two bracketing models and the
ensemble mean differ for projections for the 2080s.

These three scenarios (PCM 1, MIROC 3.2, and the ensemble mean) of changes
in temperature and precipitation were downscaled (Littell et al. 2011) and used for
hydrologic modeling (Elsner et al. 2010) of additional climatic variables. Regional
projections were downscaled to 6-km resolution using a modified delta method,
which applies regional changes in temperature and precipitation to historical
temperature and precipitation records. This method captures changes in the season-
ality and spatial variability in temperature and precipitation, but fine-scale temporal
variability is limited to only the variability captured in the historical record. Even
at the downscaled resolution of 6 km, individual valleys and mountains within the
Cascades cannot be distinguished and thus the influence of microtopography on
climate is not represented.

Downscaled climate projections indicate that summer (June-July-August)
temperatures are projected to increase throughout the North Cascades with slightly
larger increases projected for the eastern Cascades (fig. 3.5). Winter precipitation
(October through March) is projected to increase throughout much of the North
Cascades with the magnitude of increases varying by GCM (fig. 3.6); the largest
increases are projected for the northern and eastern portions of the region.

Elsner et al. (2010) used downscaled climate data as inputs to a macroscale
hydrologic model, the Variable Infiltration Capacity (VI1C) model, which simulates
several hydrologic variables that are relevant to ecological processes such as snow-
pack, soil moisture, and water balance deficit. Projections for these variables are
presented in subsequent chapters on hydrology (chapter 4) and vegetation (chapter
5) in which their relevance to adapting resource management to climate change
is discussed. We focus on projections of these variables for the 2040s because for
that timeframe, climate is markedly different in most projections from the current
climate, but it is not far enough into the future that uncertainty associated with
emissions scenarios is greater than uncertainty associated with changes in regional
climate.

We drew from the large database of hydrologic scenarios for the Columbia
River basin (Hamlet et al. 2010) for projected changes in streamflow used in the

Summer temperatures

and winter precipitation

are projected to

increase throughout the

North Cascades.
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Figure 3.5—Historical and future projections of summer temperature (June, July, and August) in the
North Cascades. Projections were made using the A1B emissions scenario and three model configu-
rations: an ensemble of 10 GCMs and two bracketing GCMs (one projecting less annual warming
and drier conditions [PCM1], and the other projecting more annual warming and wetter conditions

than the ensemble mean [MIROC 3.2]) for the 2040s.
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Figure 3.6—Historical and future projections of winter precipitation (October through March) in the
North Cascades. Projections were made using the A1B emissions scenario and three model configu-
rations: an ensemble of 10 GCMs and two bracketing GCMs (one projecting less annual warming
and drier conditions [PCM1], and the other projecting more annual warming and wetter conditions
than the ensemble mean [MIROC 3.2]) for the 2040s.

vulnerability assessment of hydrology and access (chapter 4) and fish (chapter 7).
The methods used to develop downscaled climate data and hydrologic model simu-
lations are similar to methods described above. However, these projections were
developed specifically for water resources planning in the Columbia River basin, so
we use them in this assessment for projected changes in flood magnitude and low
streamflow during the dry season. Hamlet et al. (2010) used a 10-model ensemble
mean but did not use bracketing models. We include projections of these hydrologic
variables for the 2080s, as well as the 2040s, because vulnerability assessments and
adaptation planning for roads and infrastructure may benefit from this longer term
perspective.
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Uncertainty in Future Climate Projections

The GCMs are a balance between the minimum complexity necessary to character-
ize variability in global and regional climate and sufficient complexity to represent
climate dynamics at fine spatial and temporal scales. Some aspects of climate and
its drivers are less well understood than others (e.g., the role of atmospheric aero-
sols), thus climate models are uncertain. Each GCM has its own particular param-
eters that control climate dynamics, which may be slightly or substantially different
than another model, although both may characterize historical climate well but for
different reasons.

Climate is dynamic and complex, so a certain forecast for a future 30-year
period cannot be achieved, particularly not at a fine spatial scale (smaller than
10 km). Dynamics, which the climate modeling community can forecast reason-
ably well, provide 6 to 12 months of predictive capability. Climate forcings (e.g.,
anthropogenic GHGSs), which the climate modeling community also forecasts well,
provide reasonable averages for 30-year periods. Between annual time scales and
30-year future averages, variability is caused by climate dynamics and forcings,
which interact in complex ways that are difficult to capture with climate modeling.
The uncertainty and limitations of GCMs are unlikely to be resolved soon, so it is
not feasible to wait for better models before moving ahead with adaptation. How-
ever, we currently have sufficient certainty, knowledge, and data for some aspects
of future climate to move ahead with adaptation.

Uncertainty does not apply equally to all variables, and a recognition of which
variables are more certain than others is useful for adaptation planning (Peterson
et al. 2011). Projections of temperature are more certain than other variables, and
projections of means are more certain than extremes. The relative rate and magni-
tude of changes in temperature are similar at local scales (e.g., a 6-km pixel within a
watershed); for example, a given temperature normal is unlikely to increase 2 °C at
Stehekin, Washington, but 10 °C at Leavenworth, Washington. However, the effects
of changes in temperature on processes involving thresholds, such as rain versus
snow for snowpack development, streamflow, or water balance deficit, require more
local information on climate, soils, and vegetation. The capability to understand
changes in these variables is better with downscaled climate projections than with
regional models alone, but even statistical downscaling does not resolve some
changes. For example, projections with regional climate models (dynamical weather
forecasting models driven by output from GCMs) show that some areas (mid eleva-
tions) are likely to warm faster than the regional average because of local feedbacks
(e.g., changes in snow albedo that increase the rate of spring warming).
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There are two additional sources of uncertainty external to climate modeling
and downscaling that are important considerations for vulnerability assessments
and adaptation planning: the sensitivity of the climate system to increases in GHGs
and the future trajectory of GHG emissions. Equilibrium climate sensitivity is the
amount of change in mean annual global surface air temperature that would result
from a doubling of preindustrial atmospheric carbon dioxide. The true sensitivity
is unknown, but Roe and Armour (2011) compared climate sensitivity estimated
by three separate approaches to the sensitivity in IPCC AR4/CMIP3 GCMs. Their
results suggest that the “worst case” (most warming) commonly available GCM
and emissions scenario combination is not actually the worst plausible, but the “best
case” (least warming) scenarios in the IPCC AR4/CMIP3 are close to the lowest
climate sensitivity supported by observations and modeling.

Future emissions could possibly be more or less than the range of emissions
scenarios used to force the IPCC AR4 climate models, although more is perhaps
more probable than less given recent research and documented emissions (Raupach
et al. 2007). Trends in GHG emissions since 2006 are near the high end of emis-
sions scenarios used to force climate models for the IPCC AR4, but not above all
scenarios (Le Quéré et al. 2009, Manning et al. 2010, Raupauch et al. 2007). Uncer-
tainties about climate sensitivity and future emissions suggest that planning for the
“worst case” in the IPCC AR4 range of modeled futures is not unreasonable and
may not even be sufficient to ensure resilience. Thus it is important to incorporate
flexibility in management plans to account for uncertainties in climate, even when
planning for the worst case future climate scenario.
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Chapter 4: Climate Change, Hydrology,
and Access in the North Cascade Range

Ronda L. Strauch, Crystal L. Raymond, and Alan F. Hamlet"

Introduction

Roads and trails built in the North Cascade Range of Washington over more than
a century provided access for mineral prospectors, loggers, hunters, and tourists,
bringing them closer to natural resources and recreational opportunities. The
national forests and national parks in the North Cascades were created for resource
development, protection, and enjoyment by the public. Providing access allowed
for these objectives to be met, and access largely determined where these activities
historically occurred. Today, reliable and strategic access is critical for people to
recreate, extract resources, monitor and manage resources, and respond to emer-
gencies. Access to public lands promotes use, stewardship, and appreciation of
their value as a vital resource contributing to quality of life (Louter 2006). Access
management balances these benefits with a wide range of other ecosystem services.
Climate change is expected to change access to public lands in forests and
parks in the North Cascadia Adaptation Partnership (NCAP), which includes North
Cascades National Park Complex [NOCA], Mount Rainier National Park [MORA],
Mount Baker-Snoqualmie National Forest [MBSNF], and Okanogan-Wenatchee
National Forest [OWNF]. Climate change has already affected ecosystems and the
built environment in the Pacific Northwest (PNW), and these effects are projected
to intensify in future decades. Impaired access to public lands reduces the ability of
land managers to preserve, protect, and restore resources and to provide for public
use of resources. An understanding of the current vulnerabilities and the pathways
through which climate change affects access will enable U.S. Department of the
Interior National Park Service (NPS) and U.S. Department of Agriculture Forest
Service (USDA FS) land managers to identify and implement adaptation strategies
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that will maintain functioning ecosystem processes and natural resources in a
changing environment, while providing continued and sustainable access for
human use.

The NCAP held a workshop on climate change, hydrology, and access that
convened more than 40 participants including resource managers, scientists,
engineers, and recreation managers. Participants were affiliated with multiple
agencies and organizations including NCAP national forests and national parks,
USDA FS Pacific Northwest Research Station, University of Washington, Federal
Highway Administration, Washington State Department of Transportation, city of
Seattle, U.S. Environmental Protection Agency, The Mountaineers, National Parks
and Conservation Association, and North Cascades Conservation Council. The
workshop had four objectives:

» Identify key sensitivities of roads, trails, and infrastructure to changes in
climate and hydrology.

* Review current access and travel management priorities and share manage-
ment approaches that already consider climate or climate change.

*  Use the latest scientific information on climate change and effects on
hydrologic regimes to identify adaptation strategies and tactics.

» Identify opportunities to collaborate with partners to develop adaptation
strategies and tactics that cross jurisdictional boundaries.

During the workshop, participants reviewed the latest science on the effects
of climate change on snowpack and hydrology in the North Cascades. Box 4.1
describes sources of climate data and vulnerability assessments relevant to hydrol-
ogy and access in the PNW, many of which were reviewed during the workshop.
Engineers, resource managers, and scientists from each national forest and national
park presented information on current practices for transportation and access man-
agement (roads, trails, and facilities) in their unit, as well as case studies of flooding
vulnerabilities and recent severe flood damage (particularly in MORA in 2006 and
MBSNF in 2003 and 2006). Workshop participants worked collaboratively to iden-
tify adaptation options to reduce vulnerability to climate change and facilitate the
transition to new states. The initial vulnerabilities and associated adaptation options
identified in the workshop were refined with further literature review, data, and
discussions with scientists and resource managers. The results of this vulnerability
assessment and adaptation planning process are described in the sections below.
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Box 4.1—Publications relevant to climate change effects and adaptation options
for hydrologic regimes and access in the Pacific Northwest

Over the past decade, several publications have discussed vulnerability and adaptation to climate change and
many are relevant to access in the Pacific Northwest (box-table 4.1): an assessment of projected changes in cli-
mate in Washington (Elsner et al. 2009), current and anticipated impacts on transportation (Halofsky et al. 2011,
MacArthur et al. 2012, WSDOT 2011), and adaptation planning guides (Peterson et al. 2011, Snover et al. 2007).
These resources discuss climate change impacts on hydrologic regimes, roads, and access in greater detail and
provide examples, approaches, and agency priorities.

Climate change vulnerability and adaptation reports with information relevant to hydrologic regimes
and access in the Pacific Northwest (PNW)

Title Citation Description
Washington climate change impacts Elsner et al. (2009) Assessment of climate change impacts to
assessment eight sectors in Washington state
Comprehensive hydrologic database Hamlet et al. (2013) Most current simulated hydrologic data
incorporating Intergovernmental Panel and report for PNW, incorporating
on Climate Change (IPCC) scenarios to IPCC’s fourth assessment report emis-
support long-range water planning in the sion scenarios
Columbia River basin
Preparing for climate change: a guidebook Snover et al. (2007) Guidebook for agencies to develop a
for local, regional, and state governments climate change preparedness plan
Responding to climate change in national Peterson et al. (2011) Guidebook for developing adaptation
forests: a guidebook for developing adapta- options for Forest Service lands
tion options
National roadmap for responding to climate  USDA FS (2011a) Plan describing Forest Service priorities
change for responding to changing climate
National Park Service (NPS) climate change USDI NPS (2010a) Provides strategic direction to the
response strategy agency for addressing impacts of cli-
mate change
Climate change, hydrology, and road man- Halofsky et al. (2011)  Case study on climate change impacts,
agement at Olympic National Forest and road management, and adaptation
Olympic National Park, chapter 4 strategies
Potential Impacts of Climate Change on U.S. Transportation Synthesis and discussion of consequenc-
Transportation Research Board (2008)  es of climate change for transportation
infrastructure and operations
Climate impacts vulnerability assessment Washington Depart- Test of Federal Highway Administra-
ment of Transportation  tion conceptual climate risk assessment
(2011) model to transportation in Washington
state
Climate change impact assessment for sur- MacArthur et al. Preliminary vulnerability assessment
face transportation in PNW and Alaska (2012) of surface transportation in PNW and
Alaska
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The Current Context for Access in the North Cascades
Current Development and Access Needs

The transportation network in national forests and national parks in the NCAP
includes roads, trails, docks, landing fields, and associated facilities. The two
national forests and two national parks combined contain about 28 900 km of roads
and trails, 98 percent of which are in national forests (table 4.1). The national forests
have more kilometers of roads than trails, whereas the national parks have more
kilometers of trails than roads. Of the existing roads, 850 km (5 percent) of roads
are paved and 17 800 km are gravel. Road density is higher at low elevations and
adjacent to major mountain passes, such as the west slopes of Interstate 90 near
Snoqualmie Pass and north of Leavenworth on the east side of the Cascade Range
(fig. 4.1). Roads and trails cross many streams and rivers because of the rugged
topography and wet maritime climate of the western Cascades. Most (96 percent)
known water crossings are culverts on the national forests (table 4.1), but many
crossings or drainages have not been inventoried. Although most roads are on
national forests, visitors often use these roads to access national parks, creating a
strong interdependence of the road system (fig. 4.1). Docks and seaplanes provide
access to lakes, and lakes and reservoirs are used to transport supplies to the com-
munities of Hozomeen and Stehekin. Landing fields and helispots are operated for
small planes and helicopters, which are used by visitors, as well as for fire manage-
ment and resource monitoring.

Table 4.1—Transportation infrastructure within the boundaries of management
units in the North Cascadia Adaptation Partnership (NCAP) region, including
roads and trails managed by other jurisdictions

Road Road
NCAP administrative unit Roads Trails  culverts®  bridges®
----------- Kilometers - - - - - ------
North Cascades National Park Complex 121 626 190 11
Mount Rainier National Park 170 453 739 30
Mount Baker-Snoqualmie National Forest 4373 2423 10,382 170
Okanogan-Wenatchee National Forest 13 995 6742 11,142 135

#0nly culverts and bridges managed by the specified units are included.
Data source: U.S. Forest Service, National Park Service, Washington

Department of Transportation, and U.S. Federal Highway Administration (2011).
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Figure 4.1— Distribution of roads and trails within the two national forests
and two national parks within the North Cascadia Adaptation Partnershig
region. The forests and parks cover a contiguous area of over 28 490 km
(more than 2.4 million ha) and contain approximately 28 900 km of roads
and trails. The density of roads is greater at low elevations and within
forests, but trails are more common at higher elevations and in parks. Data
were acquired from each federal jurisdiction’s geographic information
system and includes all categories of roads and trails, except for user-
created routes.

Historically, the primary purpose of the road system in national forests was
timber harvest. Reduced harvesting under the Northwest Forest Plan (NWFP) has
substantially decreased the need for roads as anticipated in the land and resource
management plans (i.e., forest plans) that were written before the NWFP (USDA
and USDI 1994a, 1994b). However, population growth has increased demand for
access for recreation. For example, recreation demand in the OWNF is now more
than double the demand predicted in the 1990 forest plan.? Hiking and camping

% Fee, L. 2007. Forest plan revision for the Colville and the Okanogan-Wenatchee national
forests. Draft. Available online at: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/
fsbdev3_053376.pdf. (11 November 2012).
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are the most popular activities, but visitors are staying for shorter duration than in
the past, often only 1 day. More than 60 percent of trips to national forests last 6
hours or less; short visits concentrate human impacts on areas that are easily acces-
sible (USDA FS 2010a). Demand is increasing for trail use by mountain bikes and
motorized vehicles and for routes designated for off-highway vehicles, as well as for
winter recreation (see footnote 2).

Visitation in all national parks has increased since their establishment and more
than 1.8 million visitors traveled to MORA and NOCA in 2011. Fourteen percent of
these visits were overnight stays, which is almost three times the national average
for all national parks (Cui et al. 2013). Short-duration trips increase demand for
easy access and parking, so although the duration of visits is decreasing at MORA
and NOCA, these two parks are less affected compared to the national trend. Road
building was minimized during park development, so higher visitation has led to
traffic congestion, especially at MORA between June and September when 75
percent of visitation occurs (USDI NPS 2001). High seasonal visitation stresses
transportation management at MORA. Although all four units maintain some year-
round access, many roads and facilities are closed in winter because of snow cover,
especially in the two parks because roads are generally at higher elevation.

Road and Trail Types and Conditions

Roads are classified by their designated use and material type. National parks
classify roads into six classes by function: principal park road, connector park road,
special purpose road, primitive park road, administrative access road, and restricted
road. National forests divide roads into six categories (table 4.2). The MBSNF has
4682 km of roads, with most (41 percent) suitable for passenger cars (table 4.2). The
OWNF has 13 133 km of roads (excluding decommissioned roads); the majority (68
percent) of roads are suitable for high-clearance cars and trucks or passenger cars.

The national forests and national parks in the NCAP have four major east-west
mountain passes: Washington Highway 20 crosses through NOCA, Washington
Highways 410 and 123 pass through MORA, Washington Highway 2 passes
through the MBSNF at Stevens Pass, and Interstate 90 passes through the MBSNF
at Snoqualmie Pass. The first two passes are closed in winter because of snow, and
the second two passes are open all year with regular snow and avalanche clearing,
providing access to winter ski resorts and corridors for transporting goods and
people between the east and west sides of the state.

Access and recreation have a considerable impact on the economy in local
communities. In 2011, the 1,038,229 visitors to MORA spent more than $33 million
within 100 km of the park (Cui et al. 2013). The 791,388 visitors to NOCA spent
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Table 4.2—Kilometers of road by maintenance level on national forests in the
North Cascadia Adaptation Partnership

Operational maintenance levels Mount Baker- Okanogan-
Snoqualmie National Wenatchee
Code Description Forest National Forest®
Kilometers
ML 0 Decommissioned 504 -
ML 1 Basic custodial care (closed) 835 4259
ML 2 High clearance cars/trucks 1434 6370
ML 3 Suitable for passenger cars 1706 2042
ML 4 Passenger car (moderate comfort) 129 378
ML 5 Passenger car (high comfort) 74 84
Total All roads 4682 13133

# Okanogan-Wenatchee National Forest missing information on decommissioned roads.

more than $26 million within 100 km of the park complex (Cui et al. 2013), but

this is likely an underestimate because many visitors drive through the park on the
North Cascade Highway and State Highway 20 without stopping, so they are not
counted (Stynes 2011). Access to national forests also provides significant economic
benefit to the region. In the past decade, half of visitors live within 80 km, and aver-
age visitor spending is $13 billion per year in and near national forests nationwide
(USDA FS 2010a).

Climate Change Effects Relevant to Access
Changing Climate in the Pacific Northwest

In the sections below, we focus on three pathways through which changes in climate
and hydrology directly influence access in mountain landscapes: (1) flooding and
extreme low flows, (2) changes in snowpack, and (3) elevated winter soil moisture
and landslide risk. Although climatic variability is partially predictable based

on weather statistics over many years, climate can shift from observed historical
patterns to different patterns encountered in only the distant past or potentially
entirely new climate regimes (Milly et al. 2008). Projected (i.e., estimated based
on models) shifts in temperature and precipitation for the 21" century based on
increases in anthropogenic greenhouse gases are presented in chapter 3. Climate
change is a global phenomenon, but regional expressions of climate change may
differ substantially from global trends because of local factors, particularly over
decades (IPCC 2007). Mountain ecosystems are particularly sensitive to climate
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Mountain watersheds
are sensitive to loss
of snowpack and
associated changes in
hydrologic response

and water temperature.
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change (IPCC 2007), and numerous studies have shown that the PNW is sensi-

tive to climate change, and particularly to effects related to loss of snowpack and
associated changes in hydrologic response and water temperature (e.g., Abbe et al.
2010, Elsner et al. 2010, Hamlet and Lettenmaier 1999, Mantua et al. 2010, Mote
and Salathé 2010. By extension, the mountainous national forests and national parks
in the PNW are expected to be sensitive to climate change.

Changes in hydrometeorological variables directly or indirectly affect access.
Direct effects are those that physically alter the operation or integrity of transporta-
tion facilities. These include effects related to floods, snow, avalanches, landslides,
extreme temperatures, and wind. Indirect effects include secondary influences of
climate shifts on access, such as reduced water supplies, threats to public safety,
and changes in visitor use patterns. For hydrologic extremes such as flooding, the
effect on access may appear to be related to weather (e.g., the effects of a single
storm) rather than climate, but it is the expansion of future extremes outside the
historical range of frequency or intensity that triggers the greatest impacts (e.g., by
exceeding current design standards for infrastructure).

Variation in temperature and precipitation ultimately determine the hydrologic
behavior of watersheds in the North Cascade Range. Global climate models (GCMs)
project future changes in temperature and precipitation (IPCC 2007). The model
projections described here use future temperature and precipitation scenarios based
on the mean values generated from an ensemble of 10 GCMs and two “bracketing”
GCMs based on the AIB greenhouse gas emissions scenario (Naki¢enovi¢ and
Swart 2000) (see chapter 3). The A1B scenario is a medium-high emissions scenario
reflecting rapid increases in greenhouse gasses in the early 21° century followed
by substantial reductions in emissions in the second half of the 21% century, which
slows the rate of warming. In comparison with the ensemble, one bracketing GCM,
PCML1, simulates relatively lower annual temperature increases and slightly drier
conditions in the PNW for the 2040s. The other bracketing GCM, MIROC 3.2,
simulates relatively higher annual temperature increases and wetter conditions
(Littell et al. 2011). Based on these projections, PCML1 is a less warm and drier
model on an annual basis and MIROC3.2 is a warmer and wetter model compared
to the 10-model ensemble over the PNW on an annual basis. Although PCM1 is a
cooler model than the ensemble, it projects warmer temperatures than historical
annual averages. However, during the cool season (October through March), PCM1
projects the same increase (1.8 °C) in temperature and only slightly drier conditions
than the ensemble. The MIROC 3.2 model projects a larger increase in temperature
and precipitation by the 2040s compared to the ensemble.
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Projections of temperature and precipitation from these GCMs were applied
as monthly changes to meteorological data input into the physically-based Vari-
able Infiltration Capacity (VIC) macro-scale hydrologic model (Elsner et al. 2010,
Liang et al. 1994). In general, the VIC model acts as a translator between changes
in climate and hydrologic effects on riverflows, snowpack, soil moisture, and other
ecosystem processes (Elsner et al. 2010, Hamlet et al. 2013, Littell et al 2011, Mote
and Salathé 2010). The implementation of the VIC model as used for this assess-
ment provides hydrologic information at 1/16" degree resolution (about 5 x 6 km
or 30 km? per grid cell). To provide information at the watershed scale, gridded
model output is aggregated up from the native resolution of the hydrologic model
to summarize effects for individual watersheds at the 12-digit (6th level) hydrologic
unit code (HUC) scale delineated by the U.S. Geological Survey. The snowpack
simulations were produced using a special high-resolution version of the VIC model
implemented at 800-m resolution.’

Climate Change Effects on Flooding and Extreme Low Flows

Climate change effects in watersheds of the PNW can be broadly characterized by
mid-winter temperatures and basin type (Hamlet and Lettenmaier 2007). Rain-
dominated basins are above freezing most of the time in winter, and snow accumu-
lation is minimal. Rain-dominated basins typically have one peak in streamflows
in mid-winter that coincides with peak precipitation. Mixed-rain-and-snow (also
sometimes called “transient” or “transitional’) basins are typically found at moder-
ate elevations and can collect substantial snowpack in winter (10 to 40 percent of
October through March precipitation), but are typically only a few degrees below
freezing on average in mid-winter. Mixed-rain-and-snow basins typically have two
seasonal streamflow peaks, one in autumn caused by rain, and another in spring
caused by snowmelt. Colder basins show a larger peak in spring, warmer basins
a larger peak in fall. Snowmelt-dominated basins are relatively cold in winter and
capture a relatively large portion (> 40 percent) of their October through March pre-
cipitation as snow. Snowmelt-dominated basins typically have relatively low flows
in winter and one streamflow peak in spring that coincides with spring snowmelt
(Elsner et al. 2010).

In response to warming, shifts from snowmelt-dominant to mixed-rain-and-
snow basins, and from mixed-rain-snow to rain-dominant basins are projected by
the 2040s in the PNW (Tohver et al. 2013) (fig. 4.2). However, the northern portion

3 Mauger, G. 2011. Meteorological dataset. Unpublished data. Available online
at: http://cses.washington.edu/picea/mauger/VIC_SNOW/pub/. (30 October 2012).
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Figure 4.2—Projected shift in watershed basin type in the Pacific Northwest by the 2040s (2030-2059). Basins represent the spatial
resolution of 10-digit hydrologic unit codes (HUCs), or the 5"-level watershed classification as delineated by the U.S. Geological Survey.
Basin types are defined by the ratio of April 1 snow water equivalent (SWE) to cool season (October through March) precipitation, which
represents most precipitation falling as snow or rain. Future projections were modeled using the A1B emission scenario and three model
configurations, an ensemble of 10 GCMs and two bracketing GCMs (one projecting less warming and drier conditions than the ensemble
mean [PCM1] and one projecting more warming and wetter conditions than the ensemble mean [MIROC 3.2]). Black box in first plot is
zoomed in on figure 4.3.

of the North Cascades will retain some snow-dominant basins that may create a
refuge of habitat and hydrologic processes in the PNW. In comparison, rain-dom-
inant basins at lower elevation are projected to have little change in the timing of
streamflow, and monthly hydrographs will likely remain similar to those simulated
for historical conditions (Elsner et al. 2010, MacArthur et al. 2012). Mixed-rain-and-
snow basins, by comparison, are expected to experience large shifts in the timing
of high flows from late spring or early summer snowmelt events to late autumn
and early winter peak flows (Elsner et al. 2010). The coldest snowmelt-dominated
basins (at the highest elevations in the North Cascades [fig. 4.3]) are expected to
continue to experience peak flows in spring, but with smaller and earlier peak flows
by the 2040s.

Flooding regimes in the PNW are sensitive to precipitation intensity, tempera-
ture effects on freezing elevation (which determines whether precipitation falls as
rain or snow), and the effects of temperature and precipitation change on seasonal
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Figure 4.3—Projected shift in watershed basin type in the North Cascades by the 2040s (2030—2059).

Description of classification and models same as stated in caption for figure 4.2. SWE = snow water
equivalent.

snow dynamics (Hamlet and Lettenmaier 2007, Tohver 2013). Floods in the PNW
typically occur during the autumn and winter because of heavy rainfall (sometimes
combined with melting snow) or in spring because of unusually heavy snowpack
and rapid snowmelt (Hamlet and Lettenmaier 2007, Sumioka et al. 1998). At small
spatial scales, summer thunderstorms can also cause local flooding, such as near
Stehekin (USDI NPS 2012a).

Climate models estimate little change in annual precipitation in the PNW when
averaged over multiple models, but the seasonality of precipitation is projected to
shift towards greater precipitation in autumn, winter, and spring, and less precipita-
tion in summer (MacArthur et al. 2012, Mote and Salathé 2010, Salathé et al. 2010).
Annual runoff throughout Washington is projected to increase by 2.5 percent by
the 2040s, and 6.2 percent by the 2080s compared to the period 1970 to 1999. Cool
season (October through March) runoff is projected to increase even more, up to
20 percent by the 2040s and 34 percent by the 2080s (Elsner et al. 2010). Over the
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Western United States, regional climate models simulate statistically significant
increases in the intensity of future extreme winter precipitation events (Dominguez
et al. 2012). Increased autumn and winter precipitation, coupled with warmer tem-
peratures that raise freezing elevations and effectively increase basin area during
storms, is projected to increase autumn and winter flood risk in the Cascade Range
(Hamlet and Lettenmaier 2007, Mantua et al. 2010, Tohver et al. 2013).

Extreme flooding, defined here as the 100-year flood (the annual peak flow
with a 1 percent probability of being exceeded, or Q100), is projected to increase
throughout much of the North Cascades. One exception is in the Pasayten Wilder-
ness where peak flows are projected to slightly decrease. The highest increases
in Q100 are projected for the leeward (sheltered) side of the mountains east of the
Cascade crest (fig. 4.4), where Q100 is projected to be more than double historical
levels in some watersheds. Higher runoff in the cool season will also likely cause
rivers to become more geomorphically dynamic by creating or enlarging channels,
eroding once stable banks, widening flood plains, and generating additional sedi-
ment and debris that can fill channels and cause water level to rise. Box 4.2

Extreme flooding is
projected to increase
throughout much of
the North Cascades.

Ratio =
Change in 100-year Flood Ratio B - B -
Future/Historical : z,sﬁ wrails

Figure 4.4—Changing trend in the 100-year flood statistic in watersheds of the North Cascades (at the 12-digit, 6th-level hydrologic unit
code watershed scale delineated by the U.S. Geological Survey). Flood level is designated as the annual peak flow with an estimated 100-
year return frequency (Q100). The flood statistic represents the ratio of Q100 in 2020s, 2040s, and 2080s to historical (1916—2006) Q100.
Ratios greater than 1 indicate increasing peak flows in the future. Ratios less than 1 indicate decreasing peak flows.
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Box 4.2—Summary of projected trends in flooding with
climate change

e The Pacific Northwest is projected to have an increase in flood frequency
throughout the region.

* Increased flood frequency will differ by season, but autumn is projected to
experience the largest increase in frequency.

*  The timing of peak flows is likely to shift earlier in the water year (October
through September), but these shifts will vary by basin type (e.g., earlier in
spring for snow-dominated, spring to autumn for mixed-rain-and-snow, little
change for rain-dominated).

»  Extreme precipitation events are expected to become more frequent, causing
localized extreme floods.

*  Warming may alter rain-on-snow contribution to flooding depending
on the basin and current location of rain-on-snow zone: reductions where
zones are already high in the basin and increases where zones are currently
lower in the basin, primarily from the expanded drainage area.

summarizes projected regional trends in flooding with climate change. These
effects may be exacerbated by projected increases in winter soil moisture, which
reduce infiltration capacity of the soil and increase runoff.

Flooding can be exacerbated by rain-on-snow (ROS) events, which are contin-
gent on the magnitude of precipitation, elevation of the freezing line, and existing
snowpack when storms happen (McCabe et al. 2007). Warming affects future flood
risk from ROS events differently depending on the importance of these events
as a driver of flooding in different basins under the current climate. On the west
slopes of the Cascades, for example, the elevation of the freezing line in winter is
a key factor. As temperatures warm, the ROS zone will likely move up in eleva-
tion. This upward shift in the ROS zone will tend to strongly increase flooding in
basins where the current ROS zone is low in the basin with a large snow collection
area above because of the effectively expanded drainage area. Increases in winter
precipitation exacerbate these effects.

In contrast, in basins in which the ROS zone is higher in the basin, the upward
shift in the ROS zone will only modestly increase the contributing basin area, and
flooding will increase less severely and primarily because of increases in winter
precipitation (Hamlet and Lettenmaier 2007, Tohver et al. 2013). Another important
factor is the area of the rain-on-snow zone. As the ROS zone moves to higher
elevation, the zone itself shrinks in size, reducing its potential contribution to runoff
production. Finally, the probability of ROS events occurring is expected to decrease
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with warmer temperatures because of decreases in snow occurrence and the length
of time that snow is on the ground (McCabe et al. 2007). In summary, the incidence
and importance of ROS events as a direct cause of flooding may decline in the
future (decreased area of ROS zone and less antecedent snow), but rising freezing
lines associated with the ROS zone moving up slope tends to increase flood risk by
increasing the contributing basin area during storms.

The trend in extreme low flows, defined here as the lowest annual 7-day aver-
age flow with a recurrence interval of 10 years (7Q10), is generally opposite of peak
flow projections because of reduced snowpack and warmer and drier summers. The
west slopes of the Cascade Range are projected to experience substantial declines in
low flows by the 2080s compared to historical levels (fig. 4.5). The 7Q10 values on
the east slopes of the Cascade Range do not decrease as much as on the west, and
a few watersheds in the northeast are projected to have increased low flows over
historical levels, presumably because of enhanced sensitivity to increased precipita-
tion. The generally reduced sensitivity of low flows on the east slopes is probably
because simulated soil moistures are already at very low levels in late summer for

Change in Low-flow Ratio
Future/Historical

(77 2020s

s

Figure 4.5—Changing trend in the low-flow statistic in watersheds of the North Cascades. Low flow is designated as the 7-day average
flow with a recurrence interval of 10 years (7Q10) expressed as a ratio of 7Q10 in 2020s, 2040s, and 2080s to historical (1916-2006)
7Q10. Ratios greater than 1 indicate increased low flows. Ratios less than 1 indicate decreased low flows (i.e., lower low flows). Roads
and trails are also shown. Future projections were modeled using the A1B emission scenario and downscaled climate data derived from
10 global climate models (Hamlet et al. 2013).
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the current climate, so further increases in drought have relatively little effect on
baseflows (Hamlet et al. 2013).

Climate Change Effects on Snow Cover

One common measure of snowpack is snow water equivalent (SWE), which
represents the liquid water content of the snowpack. For temporal and spatial
comparisons, SWE on April 1 is commonly used because it corresponds to the date
of peak SWE in many areas and is correlated with summer water supply in the
PNW. April 1 SWE has declined over the 20" century, although decadal climatic
variability also affects SWE on shorter time scales (Hamlet et al. 2005, Mote et

al. 2008). In near-coastal areas, SWE is more sensitive to warming in winter and

Projected reductions in
snow water equivalent
are largest west of the
Cascade crest and

spring, whereas SWE in inland areas is more sensitive to precipitation in winter atlow elevations in

and warming in spring (Hamlet et al. 2005). Snowpack in the North Cascades was
modeled at a resolution of 30 arc-seconds of latitude and longitude (about 800 m),
a finer resolution than other hydroclimatic variables discussed in this chapter (see
footnote 2). Finer resolution allows for more detailed projections of snow across a

eastern Washington.

topographically complex landscape that are useful for comparing spatial patterns of
snow with locations of roads and trails.

These fine-scale projections of April 1 SWE indicate substantial decreases by
the 2040s compared to historical levels (fig. 4.6). These projections are supported
by other studies that report average reductions in April 1 SWE of 46 percent by the
2040s in Washington (Elsner et al. 2010). Reductions in SWE are largest in warmer
areas west of the Cascade crest and at low elevations in eastern Washington. Higher
elevations will continue to retain snow cover in early summer. Approximately a
third of the NCAP area is projected to experience little (10 percent) change from
historical patterns and these areas have a mean elevation of 1740 m, but extend as
low as 671 m. The northeast corner of the area (Pasayten Wilderness) may experi-
ence slight increases in April 1 SWE because of persistent cold temperatures and
increasing precipitation. The date when 90 percent of winter snow melts is pro-
jected to be earlier than historical dates, particularly west of the Cascade crest and
at the lowest elevations (fig. 4.7). Differences between east and west slopes of the
Cascades reflect the influence of a warmer maritime climate to the west and a more
continental climate to the east.

Effects of Changing Soil Moisture and Landslides

Landslides, which are the movement of a mass of rock, earth, or debris down a
slope (Cruden 1991), are a product of their environment and they also influence
the environment (Crozier 1986). Antecedent rainfall or snowmelt (reflecting soil
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Figure 4.6—April 1 SWE in the North Cascades in the 2040s (2030-2059) shown as a percentage
change from historical levels (1916—2006), calculated as ([future - historical] / historical) x 100.
Percentage change indicates the difference between future projections and historical levels. Future
projections were modeled using the A1B emission scenario and three model configurations, an
ensemble of 10 GCMs and two bracketing GCMs (one projecting less warming and drier conditions
than the ensemble mean [PCM1] and one projecting more warming and wetter conditions than the
ensemble mean [MIROC 3.2]). Data are resolved at 30 arc-sec (about 800 m) resolution

(see footnote 3).
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Figure 4.7—Average change in date at which 90 percent of the snow water equivalent is melted for
the 2040s (2030—-2059) compared to historical dates (1916—2006). Change indicates the difference

in number of days between future projections and historical levels. Future projections were modeled
using the A1B emission scenario and three model configurations, an ensemble of 10 GCMs and two
bracketing GCMs (one projecting less warming and drier conditions than the ensemble mean [PCM1]
and one projecting more warming and wetter conditions than the ensemble mean [MIROC 3.2]). Data
are resolved at 30 arc-sec (about 800 m) resolution. (see footnote 3).

moisture), ground-water, and ground movement rates are controls of landslides.
Heavy winter rainfall and excess ground-water increase landslides (Brooks et al.
2004, Crozier 2010, Moore et al. 2010). Water in soil reduces soil shear strength,
and increases shear stress, leading to slippage if the shear stress in the soil exceeds
the shear strength. Most landslides, including debris flows and torrents, are initiated
during intense rain events or during less intense events preceded by persistent rain
over a prolonged period (high antecedent soil moisture), rapid snow or ice melt, or
low evaporation conditions that increases soil moisture (Baum et al. 1998, Brooks et
al. 2004, Crozier 1986).
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Most landslides in the PNW occur during the rainy season between October
and May (Baum et al. 2007), and hundreds of slides may occur in the region during
an intense storm (Chatwin et al. 1994). For example, the Washington Department of
Natural Resources (WDNR) documented more than 500 slides from a January 2009
storm event (WDNR 2012). In Washington, landslides are more common in areas
where average December precipitation is higher than 15 cm, which is primarily
west of the Cascade crest (MacArthur et al. 2012), although landslides are common
in the southeastern part of the NCAP area as well (fig. 4.8). The steep topography

< . . - A Known Landslides
¢ 3 B in the North Cascadia
e T Adaptation Partnership
i . Area (NCAP)
b Y
s oA ®&€ Landslides in NCAP
S sl

25 km

g 2 J

Figure 4.8—Inventoried historical landslides (i.e., mass wasting events) in the North Cascades,
1940-2005. Inventoried landslides include block fall or topple, debris flow, debris slide or avalanche,
deep-seated, hyperconcentrated flow, shallow undifferentiated, and unknown type. (Data from the
State of Washington, Department of Natural Resources; Mount Rainier National Park; and North
Cascades National Park Complex.)
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and intense precipitation, especially in winter, make the PNW particularly suscep-
tible to slope stability failures and landslides. Landslides also occur frequently after
rapid snowmelt, particularly ROS events in the transient snow zone (Harp et al.
1997, Wu and Merry 1990).

Landslides can increase the resistance of the slope to future slides in the imme-
diate area by removing material vulnerable to sliding (Glade and Crozier 2005,
Schuster and Highland 2003). However, many landslides occur in approximately the
same areas and with the same relative abundance as they did previously (Baum et
al. 1998, Crozier 2010). This suggests that mapping previous slide areas is a poten-
tially useful tool for predicting future risks. More than 6,500 historical landslides
within the NCAP region have been mapped (fig. 4.8).

Landslides have long been a phenomenon in western Washington, including
in recent years (Baum et al. 1998, Sarikhan et al. 2008), and projected changes in
soil moisture and precipitation form and intensity with climate change may expand
landslides in the PNW. Recent slides have closed roads and trails for months, years,
or indefinitely, costing millions of dollars for cleanup and repair. Climate projec-
tions indicate that the conditions that trigger landslides will increase because (1)
more precipitation will fall as rain rather than snow, and (2) more winter precipita-
tion will occur in intense storms. These effects will likely differ with elevation
because higher elevation areas typically have steeper slopes and more precipitation
during storms. Furthermore, reduced snowpack is expected to increase anteced-
ent soil moisture in winter (Hamlet et al. 2013). Increasing trends in April 1 soil
moisture have been observed in modeling studies as a result of warming, showing
that soil moisture recharge is occurring earlier in spring and is now higher on April
1 than it was prior to 1947 (Hamlet et al. 2007).

Elevated soil moisture (and rapid changes in soil moisture or both) can affect
the stability of a slope and are responsible for triggering more landslides than any
other factor (Crozier 1986). Antecedent moisture is a good predictor of landslides
(Kim et al. 1991), so areas with projected increases in antecedent soil moisture
(coupled with more intense winter storms) support the hypothesis of increasing
landslide risk. Thus, although VIC does not directly simulate slope stability failures
or landslides, projections of December 1 total column soil moisture from VIC
can be used as an indicator of landslide risk. Higher December 1 soil moisture is
projected for the 2040s throughout the North Cascades but particularly at higher
elevations and in the east central area (fig. 4.9), suggesting that these areas may
become more vulnerable to landslides in winter. The most intense storms west of
the Cascades in the PNW typically arrive in late November or early December.

Conditions that

trigger landslides will

increase because more

precipitation will fall as

rain rather than snow.
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Figure 4.9—Percentage of change in total soil moisture content on December 1 in the North Cas-
cades for the 2040s (2030—2059) compared to historical levels (1916-2006), calculated as ([future/
historical] / historical) x 100. Future projections were modeled using the A1B emission scenario and
three model configurations, an ensemble of 10 GCMs and two bracketing GCMs (one projecting less
warming and drier conditions than the ensemble mean [PCM1] and one projecting more warming
and wetter conditions than the ensemble mean [MIROC 3.2]).

Higher soil moisture on December 1 is driven by warmer temperatures in Novem-
ber, which increase the amount of precipitation that falls as rain rather than snow
causing soil moisture recharge for a longer period in late autumn before significant
snow accumulation.

Sensitive Traits of Roads and Trails in the
North Cascades

To assess vulnerability of access in the national forests and parks in the NCAP, we
began by identifying the changes in climate to which the system will be exposed
(see above). Next, we assessed the traits of the transportation system that may be
sensitive to projected climate changes (box 4.3). These traits include the location,
design, and current condition of road and trail infrastructure, as well as recreation
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Box 4.3—Summary of sensitivities of the U.S. Forest
Service and National Park Service transportation system
in the North Cascades

*  Aging and deteriorating infrastructure exacerbates sensitivity to climate
impacts, and outdated designs of existing infrastructure decrease resilience
to new threats.

* Inadequate maintenance and inspection (e.g., clearing of debris from cul-
verts) with limited funding increases the susceptibility to failures in struc-
ture and function.

*  Abundant roads and trails built on steep topography are more sensitive to
landslides and washouts.

* A substantial portion of the transportation system is at high elevation, which
increases exposure to weather extremes and increases the costs of repairs
and maintenance.

*  Many roads were built across or adjacent to waterways, creating sensitivity
to high streamflows, stream migration, and sediment movement.

e Limited road redundancy in primary travel corridors, especially in the
national parks, increases the likelihood of operational disruptions from
climate-related events.

*  Multiple management agencies retain jurisdiction over transportation routes,
and different management approaches and priorities may create conflicting
objectives.

»  Funding constraints, insufficient funds, or both limit the ability of agencies
to repair damaged infrastructure or take preemptive actions to create a more
robust system.

*  Design standards or operational objectives that are unsustainable in a new
climate regime may increase the frequency of infrastructure failure in the
future.

use and demand. This vulnerability assessment of access can inform transportation
management and long-range planning. The section below describes the sensitive
traits of the transportation system in the NCAP area.

Aging Infrastructure

Many roads and trails were built decades ago, creating sensitivities in the infra-
structure because of age. Many infrastructure components are near the end of their
design lifespan. For example, culverts typically have a design lifespan of 25 to 75
years, depending on design and material. Culverts remaining after this time have a
higher likelihood of structural failure and are less resilient to high streamflows and
bed load movement. Aging infrastructure that continues to deteriorate exacerbates
sensitivity. As roads and trails age, their surface and subsurface structure weakens.
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Consequently, a less-intense storm can cause more damage than a storm of high
intensity would have caused when the infrastructure was relatively new.

Design and Use Considerations

Advanced design of materials, alignment, drainage, and subgrade that are required
standards today were generally not available when much of the travel network was
built in the North Cascades. Consequently, new or replaced infrastructure is likely
to be less sensitive to climate change, especially if climate change is considered

in the design. New culverts and bridges are often wider than historical structures
to meet hydraulic regulations or current design standards. For example, recent
improvements to the ferry landing at Stehekin in the eastern portion of NOCA
allow access during rapid fluctuations in lake level caused by extreme rain and
snow events (USDI NPS 2010b) because the landing was designed to function
within a wider range of hydrologic conditions. Although climate change was not
the primary motivation for these design changes, the improvements will likely also
reduce climate change vulnerability.

Some travel ways, particularly roads on the national forests, were designed for
temporary use, which can make them more susceptible to deterioration or damage
with sustained use. Many roads and trails on the forests were originally built for
uses other than recreation, such as accessing facilities or natural resources, but
in recent decades, recreation has increased trail use. Because of these different
intended uses, roads and trails were originally constructed to different standards
and the effects of design and use on vegetation and aquatic habitat were considered
less than they are today.

A lack of redundancy in a transportation system can cause operational sensitiv-
ity when damage disconnects the system. The transportation system within the
NCAP area, particularly in national parks, lacks redundancy, increasing its sensi-
tivity to climate change. Wilderness designations, which exclude roads, preclude
some redundancy, as does the potential for unacceptable impacts to ecosystems.
Many roads and trails, especially at high elevation, provide sole access to recreation
areas, making the network sensitive to disrupted operation if damaged by storms or
landslides. The loss of a segment of trail or road can leave large areas inaccessible
for long periods depending on the extent of damage and availability of resources for
repair. Thus, tradeoffs exist between redundancy in the transportation system and
objectives to limit roads and associated impacts and maintenance costs.

Location and Land Use

The location of roads and trails can increase vulnerability to climate change. Many
roads and trails were built on steep slopes because of the rugged topography of the
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region, so cut slopes and side-cast material have created landslide hazards. Timber
harvesting and its associated road network on national forests have contributed to
the sensitivity of existing infrastructure by increasing storm runoff and peak flows
that can affect road crossing structures (Croke and Hairsine 2006, Schmidt et al.
2001, Swanston 1971). High-elevation terrain further challenges transportation
management because of snow, ice, and glacial outwash. The transportation system
in the North Cascades is affected by abundant streams and rivers, near and across
which roads and trails were often built, making these locations sensitive to changes
in streamflow and stream channels (e.g., channel migration in the floodplain). Most
stream crossings have culverts rather than bridges, and culverts are built to lower
standards than bridges, making the number of culverts a major factor in sensitivity
to increasing flood risk. Many roads and trails were constructed in gently sloped
areas next to streams, but this cost-saving design has created sensitivity to flood-
ing, channel migration, bank erosion, or shifts in alluvial fans and debris cones.
Some roads and trails were constructed in abandoned stream channels (e.g., part of
Carbon River Road at MORA and part of Colonial Campground Road at NOCA),
which have subsequently become reactivated during floods, causing major damage.

Maintenance and Management of Roads and Trails

Management of roads and trails (planning, funding, maintenance, response) differs
by agency and can affect the overall sensitivity of the transportation system. The
management priority of one road or trail segment can affect the function of the con-
nected segments, which can be challenging when the segments are under different
jurisdictions. Major highways within the North Cascades, built to higher design
standards and maintained more frequently, will likely be less sensitive to climate
change. For example, the major highways through the NCAP are managed by the
Washington Department of Transportation and are vital transportation corridors.
Consequently, these highways are built to sustain heavy traffic loads and extreme
mountainous climate and are inspected and maintained frequently (WSDOT 2011).
For similar reasons, most roads and bridges in the Washington highway system

are likely more resilient to climate change than their unpaved counterparts built to
lower design standards in the national forests and parks.

A lack of funding can limit options for repairing infrastructure, which can
affect the short- and long-term vulnerability of the transportation system. For
example, replacing a damaged culvert with an “in-kind” culvert that was undersized
for the current streamflow conditions leads to continued sensitivity to both the cur-
rent flow regime and projected higher flows. Limited funds because of diminishing
timber revenue on national forests in the past 20 years have decreased funding for
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adequate maintenance to sustain the full transportation network. Thus, the MBSNF
and OWNF have a backlog of maintenance and upgrades to meet current objectives.

Current and Short-Term Climate Exposures to Access
in the North Cascades

Assessing the vulnerability of the transportation network to changes in climate
requires evaluating projected changes in hydrologic processes and exposure of the
transportation system to these processes. The integrity and operation of the trans-
portation network in the North Cascades may be affected in several ways (fig. 4.10).

Figure 4.10—Climate-related exposures to access in the North Cascades. These exposures can affect both the operation and integrity of
the transportation system over short or long time periods.
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When integrating this assessment into agency planning, it may be useful to consider
the magnitude of projected changes in climate and system responses in three time-
frames: current to short term (less than 10 years), medium term (10 to 30 years), and
long term (30 to 100 years) (box 4.4).

Changes in climate have already altered hydrologic regimes in the PNW,
including decreased snowpack, higher winter streamflow, earlier spring snowmelt,
earlier peak spring streamflow, and lower low streamflow in summer (Hamlet et
al. 2007, 2010). Damage to infrastructure is likely to be related primarily to fac-
tors such as aging infrastructure and mismatches between existing infrastructure
designs and the current climate (which reflects cumulative 20th—century trends).
Ongoing changes in climate and hydrologic response in the short term are likely

Higher streamflow in
winter will increase the
risk of flooding and
impacts to structures,
roads, and trails.

to be a complex mix of natural variability combined with ongoing trends related

to climate change. High variability of short-term trends is an expected part of the
response of the evolving climate system. Natural climatic variability, in the short-
term, may exacerbate, compensate for, or even temporarily reverse expected trends
in some hydroclimatic variables. For example, in the last 5 years, a series of unusu-
ally cool and wet springs have resulted in high spring snowpack in the Cascades,
despite continued expectation of declining spring snowpack trends at longer time
scales.

Higher streamflow in winter (October through March), in comparison to
historical conditions, increase the risk of flooding and impacts to structures, roads,
and trails. Many transportation professionals consider flooding and inundation to
be the greatest threat to infrastructure and operations because of the damage that
standing and flowing water cause to transportation structures (MacArthur et al.
2012, Walker et al. 2011). Floods also transport logs and sediment that block cul-
verts or are deposited on bridge abutments. Isolated intense storms can overwhelm
the vegetation and soil water holding capacity and concentrate high-velocity flows
into channels that erode soils and remove vegetation. During floods, roads and
trails can become preferential paths for floodwaters, reducing operational func-
tion and potentially damaging infrastructure not designed to withstand inundation
(fig. 4.11). For example, intensified flooding and erosion within the lower Stehekin
Valley during the past 15 years has impeded travel by damaging roads and facilities
(USDI NPS 2012a).

Glacial recession attributed to warming (Granshaw and Fountain 2006, Pelto
and Riedel 2001) has already affected transportation systems in the Cascade Range
(Beason and Kennard 2007, Walder and Driedger 1994). Receding glaciers leave
behind unconsolidated material in steep terrain, which become mobile with precipi-
tation and melt water from glaciers (Huggel 2009). With heavy precipitation, this
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Box 4.4—Exposure of access to climate change in the
North Cascades

Current and short-term exposures (less than 10 years)—

Roads and trails are damaged by floods and inundation because of mis-
matches between existing designs and current flow regimes.

Landslides, debris torrents, and sediment and debris movement block access
routes and damage infrastructure.

Traffic is affected by temporary closures to clean and repair damaged roads
and trails.

Frequent repairs and maintenance from damages and disruption incur higher
costs and resource demands.

Medium-term exposures (intensifying or emerging in approximately
10 to 30 years)—

Flood and landslide damage will likely increase in late autumn and early
winter, especially east of the Cascade crest and in mixed-rain-and-snow
watersheds.

Current drainage capacities may become overwhelmed by additional water
and debris.

Increases in surface material erosion are expected.

Backlogged repairs and maintenance needs will grow with increasing
damages.

Demand for travel accommodations, such as easily accessible roads and
trails, is projected to increase, which could increase travel management costs.

Increased road damage will challenge emergency response units, making
emergency planning more difficult.

Long-term exposures (emerging in 30 to 100 years)—

Fall and winter storms are expected to intensify, greatly increasing flood
risk and infrastructure damage and creating a greater need for cool-season
repairs.

Higher streamflows will expand channel migration, potentially beyond recent
footprints, causing more bank erosion, debris flows, and wood and sediment
transport into streams.

Lower low streamflows associated with declining snowpack are projected.

Changes in hydrologic response may affect visitation patterns by shifting the
seasonality of use.

Shifts in the seasonality of visitation may cause additional challenges to visi-
tor safety, such as increased use in areas and during seasons prone to floods
and avalanches.

Travel management will be challenged to provide adequate flexibility to
respond to uncertainty in impacts to access.
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Mount Rainier Naﬁonal Park
Mount Rainier Nétional Park

Figure 4.11—Storm damage in Mount Rainier National Park, November 2006: (A) Highway 123, and (B) the Carbon
River Road. Damage to transportation infrastructure can also affect utilities located within the roadway prism.

material can transform into debris flows that pull in additional material. Deposi-
tion of sediment downstream leads to aggradation (rising of the riverbed level) and
avulsion (change in river course) of streams and rivers. These phenomena were
observed along the Nisqually River in the southwest part of MORA in the extreme
flood of November 2006, for example. In MORA, aggradation has caused sections
of rivers held back by levees to be a meter or more above adjacent roads, increas-
ing flood risk and damage to roads when levees fail (Abbe et al. 2010, Beason and
Kennard 2007).

Erosion, mudflows, and landslides caused by intense and persistent rainfall or
flooding have become an increasingly common cause of damage to roads and trails,
disrupting operations in the North Cascades (fig. 4.12) (MacArthur et al. 2012).
For example, a recent landslide at Ross Lake destroyed private and public facilities
and cut off sole access to the Ross Dam powerhouse and dam by covering the Ross
Dam haul road (USDI NPS 2012c). An intense storm in November 2006 triggered
numerous landslides in MORA and contributed, along with flood damage, to a
6-month closure of the park (fig. 4.12). Regional storms such as this can overwhelm
response personnel, prolonging delays in reestablishing access after landslides.
Landslide risk also increases with timber harvesting on steep terrain because tree
removal decreases root cohesion in the soil and increases soil moisture because of
more snow accumulation and less evapotranspiration (Istanbulluoglu et al. 2004,
Montgomery et al. 2000, Schmidt et al. 2001).
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Mount Rainier National Park

Mount Baker-Snoqualmie National Forest

e 4

Figure 4.12—(A) Storm-triggered landslide covering Stevens
Canyon road in Mount Rainier National Park, November
2006, and (B) slump along White Chuck trail in Mt. Baker-
Snoqualmie National Forest damaged during a storm,
October 2003. The trail switchbacks through the eroded area.

Emerging or Intensifying Exposure in the Short Term

Several exposures to climate change are emerging or may be increasingly expressed
in the short term (less than 10 years). Warmer temperatures and increasing precipi-
tation have increased flood risk in the Cascades in the last 40 years (Hamlet and
Lettenmaier 2007). In the short term, increased flooding of roads and trails will
likely continue and possibly even intensify, threatening the structural stability of
crossing structures and subgrade material. Observed increases in high flows and
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winter soil moisture may also increase the amount of large woody debris delivered
to streams, further increasing damage to culverts and bridges, and in some cases
making roads impassable or requiring road and facility closures. More intense
precipitation can also reduce visibility and increase hazardous conditions. Unpaved
roads with limited drainage facilities or minimal maintenance are likely to experi-

ence increased surface erosion, requiring additional repairs or grading. Areas with high road
Increasing incidence of more intense precipitation and higher soil moisture in and trail density may

autumn or early winter could increase the risk of landslides. Landslides can also be most vulnerable to

contribute to flooding by diverting water, blocking drainage, and filling chan- increased landslide

nels with debris (Chatwin et al. 1994, Crozier 1986, Schuster and Highland 2003). risks.
Culverts filled with landslide debris can cause flooding, damage, or complete
destruction of roads and trails (Halofsky et al. 2011). Landslides that connect with
waterways or converging drainages can transform into more destructive flows
(Baum et al. 2007). Roads themselves also increase landslide risk (Swanson and
Dyrness 1975, Swanston 1971). In the Western United States, the development of
roads increased the rate of debris avalanche erosion by 25 to 340 times the rate
found in forested areas without roads (Swanston 1976), and Chatwin et al. (1994)
and Montgomery (1994) showed that the number of landslides is directly correlated
with total kilometers of roads in an area. Consequently, areas with high road or trail
density and projected increases in soil moisture that already experience frequent
landslides may be most vulnerable to increased landslide risks (fig. 4.13).

Short-term exposures to changes in climate are likely to affect safe access in
the North Cascades. Damaged or closed roads reduce agency capacity to respond to
emergencies or provide detour routes during emergencies. Increased flood risk in
autumn could make conditions more hazardous for river recreation. More wildfires
(see chapter 5) could reduce safe operation of some roads and require additional
emergency response to protect recreationists and communities. For example, the
Domke Lake Fire of 2007 threatened to cut off the sole access road to Holden
Village in the OWNF. Furthermore, damaged and closed roads can reduce agency
capacity to respond to wildfires.

Emerging or Intensifying Exposure in the Medium and
Long Term

Many of the observed exposures to climate change in the short term are likely to
expand in the medium and long term. In the medium term, natural climatic vari-
ability may continue to substantially affect outcomes in any given decade, whereas
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Figure 4.13—An area on the eastern slope of the Cascade Range near Leavenworth, Washington, with more than a 10 percent
increase (shown in blue-green) in December 1 total soil moisture projected for the 2040s (2030—2059). This area is shown

with known historical landslides. Areas with increases in December 1 total soil moisture may have higher risk of landslides,
suggesting locations to prioritize for drainage improvements, rerouting, and road decommissioning. These are also areas where
wetter soils may require shifts in trail and road surface and subgrade design and maintenance.

in the long term, the cumulative impacts of climate change may become the domi-
nant factor, particularly for temperature-related effects. Although uncertainty and
decadal variability are important considerations, a long-term perspective can be
useful when planning for climate change, because even as regulation and technol-
ogy reduce emissions of greenhouse gases, warming will continue for decades
because of the long residence time of some greenhouse gases in the atmosphere and
positive climatic feedback mechanisms. Thus, conditions thought to be extreme
today may be averages in the future, particularly for temperature-related changes
(MacArthur et al. 2012).

Flooding in autumn and early winter is projected to continue to intensify in the
medium and long term, particularly in mixed-rain-and-snow basins, but direct ROS
events may diminish in importance as a cause of flooding (McCabe et al. 2007).

At mid to high elevations, more precipitation falling as rain rather than snow will
continue to increase winter streamflow. By the 2080s, peak flows are anticipated to
increase substantially in magnitude and frequency, especially east of the Cascade
crest (fig. 4.4). Throughout the NCAP area, mixed-rain-and-snow watersheds will
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increasingly behave as rain-dominated watersheds (Littell et al. 2011, Tohver et al.
2013). In the long term, higher and more frequent peak flows will likely continue to
increase sediment and debris transport within waterways, particularly downstream
of receding glaciers (see footnote 3). These elevated peak flows, along with land-
slide sediment contributions, will affect stream-crossing structures downstream as
well as adjacent structures inundated because of elevated stream channels. Even as
crossing structures are replaced with wider and taller structures, shifting channel
dynamics caused by changes in flow and sediment may affect lower elevation seg-
ments adjacent to crossings, such as bridge approaches.

The risk to roads and trails from projected increases in Q100 is apparent when
viewing a single watershed where Q100 is projected to more than double by the
2080s (fig. 4.14). In the Tillicum Creek watershed, many roads were built adjacent
to and across streams, contributing to their vulnerability. Areas with high road
density, such as near Leavenworth, Washington, and northeast of MORA, may be
particularly vulnerable to increasing flood risk and channel migration in the long
term.

Projected increases in flooding in autumn and early winter will challenge
maintenance and repair operations, and shifts in the timing of peak flows will
affect the timing of maintenance and repair of roads and trails. More repairs may be
necessary during the cool, wet, and dark time of year in response to damage from
autumn flooding and landslides, challenging crews to complete necessary repairs
before snowfall. If increased demand for repairs cannot be met, access may be
restricted until conditions are more suitable for construction and repairs.

Larger declines in low streamflow in summer in the long term, especially west
of the Cascade crest (fig. 4.5), may require increased use of more expensive culverts
and bridges designed to balance the management of peak flows with providing
low flow channels in fish-bearing streams. Design regulations for aquatic habitat
will become more difficult to meet as warming temperatures hinder recovery of
cold-water fish populations, although some streams may be buffered by inputs from
glacial melt or ground water in the medium term.”

Over the long term, increasing winter precipitation and higher winter soil
moisture are expected to increase the risk of landslides in early autumn and winter.
Landslide risk may increase more in areas with more tree mortality from fire and
insect outbreaks because tree mortality reduces soil root cohesion and decreases

*Reidel, J.L. 2011. Personal communication. Geologist, National Park Service, North
Cascades National Park Complex, 810 Star Route 20, Sedro-Woolley, WA 98284.

Projected increases in

flooding will challenge
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operations.

75



GENERAL TECHNICAL REPORT PNW-GTR-892

76

Legend

Watershed with ~\__. Roads
>2X increase in
100-year floods Streams

Stream
crossings

.

Figure 4.14—Roads and streams in the Tillicum Creek watershed in eastern Washington where the magnitude of the 100-year
flood (Q100) is expected to more than double by 2080s. In this 57-km? watershed there are 77 km of roads and trails and 320 km
of streams that intersect at 984 locations, likely requiring numerous stream crossing structures. Many roads are also adjacent to
the streams, which may create vulnerabilities to stream migration.

interception and evaporation, further increasing soil moisture (Martin 2006, Mont-
gomery et al. 2000, Neary et al. 2005, Schmidt et al. 2001). Thus, soils will likely
become more saturated and vulnerable to slippage on steep slopes during the wet
season. Although floods and landslides will continue to happen near known hazard
areas (e.g., because of high forest road density), they may also happen in new areas
(e.g., those areas which are currently covered by deep snowpack in mid-winter)
(MacArthur et al. 2012). Thus, more landslides at increasingly higher elevations
may be a long-term effect of climate change.

Coinciding exposures in space and time may be particularly detrimental to
access. Increases in peak flows and soil moisture in mixed-rain-and-snow basins
are likely to create dynamic stream channels and unstable soils that will challenge
efforts to maintain infrastructure and facilities in place. For example, a large por-
tion of the central region of the OWNF with many roads and trails in mixed-rain-
and-snow watersheds is projected to have more than 50 percent increase in peak
flows and greater than 10 percent increases in soil moisture by the 2040s (fig. 4.15).
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Figure 4.15—Coinciding exposures in mixed-rain-and-snow watersheds within the North
Cascadia Adaptation Partnership administrative units. Exposures include Q100 flows repre-
senting more than a 50 percent increase over historical levels and soil moisture increase of
more than 10 percent over historical levels by 2040s. Red locations indicate where both these
exposures coincide within mixed-rain-and-snow basins.

Changes in climate may reduce summer water supply because of reduced
snowpack and higher evapotranspiration in summer. In remote areas in the national
parks, water is often supplied from local sources rather than brought in from com-
mercial water suppliers. For example, the Sunrise visitor center and ranger station
in MORA are supplied by water from Frozen Lake, which is fed primarily by
melting snow and ice in late spring. Reduced snowpack and warmer temperatures
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will reduce summer water availability, although the effects of warming on glacial
melt are uncertain. Demand for these locally sourced water supplies may increase
as the snow-free season lengthens, enabling a longer season of visitor use. Changes
in the amount and timing of stream runoff could affect lake levels and reservoir
operations, affecting docks and ramps used by visitors and for delivery of supplies,
particularly in late summer.

Climate change effects on access may create public safety concerns for the
USDA FS and NPS. A longer snow-free season may extend visitor use in early
spring and late autumn at higher elevations (Rice et al. 2012). Lower snowpack may
lead to fewer snow-related road closures for a greater portion of the year, allowing
visitors to reach trails and camps earlier in the season. However, warmer tempera-
tures and earlier snowmelt may encourage use of trails and roads before they are
cleared. Trailheads, which start at lower elevations, may be snow-free earlier, but
hazards associated with melting snow bridges, avalanche chutes, or frozen snow-
fields in shaded areas may persist at higher elevations along trails. Relatively rapid
warming at the end of the 20" century coincided with greater variability in cool
season precipitation and increased flooding (Hamlet and Lettenmaier 2007). If this
pattern continues, early-season visitors may be exposed to more extreme weather
than they have encountered historically, creating potential risks to visitors. In sum-
mer, white water rafters may encounter unfavorable conditions from lower stream-
flows in late summer (Mickelson 2009) and hazards associated with deposited
sediment and woody debris from higher winter flows. Warmer winters may shift
river recreation to times of year when risks of extreme weather and flooding are
higher. These activities may also increase use of unpaved roads in the wet season,
which can increase damage and associated maintenance costs.

Despite the adverse effects of climate change, climate change may also
benefit access and transportation operations in the North Cascades over the long
term. Lower snow cover will reduce the need for and cost of snow removal. The
earlier snow-free date projected for the 2040s (fig. 4.7) suggests that low- and
mid-elevation areas will be accessible earlier, especially west of the Cascade crest.
Earlier access to roads and trails will create opportunities for earlier seasonal
maintenance and recreation (fig. 4.16). Temporary trail bridges installed across
rivers may be installed earlier in spring as spring flows decline. A longer snow-free
season and warmer temperatures may allow for a longer construction season at
higher elevations. Less snow may increase access for summer recreation, but it may
reduce opportunities for winter recreation particularly at low and moderate eleva-
tions (Joyce et al. 2001, Morris and Walls 2009). The northern portion of the North
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Figure 4.16—National forest areas where snow is projected to melt out at least 3 weeks earlier by the 2040s (red color). Some
roads and trails may be partially or completely snow-free weeks earlier than the historical mean (1916-2006), providing earlier

access for visitors and maintenance crews.

Cascades may retain relatively more snow and glaciers than other areas of the PNW,
which may create higher localized demand for winter recreation and river rafting in
summer over the next several decades (see footnote 3).

The exposures described above are associated with changes in the hydrologic
regimes. Additional changes in climate associated with extreme temperatures,
wind, and ecological disturbances are also likely to affect transportation and access
in the PNW (box 4.5).

Infrastructure and Travel Management in the North
Cascades

Road and Trail Operations and Maintenance

Many roads in the North Cascades were not built with the intention that they would
be permanent, so they were not constructed to design standards promoting longev-
ity. Many culverts were designed to withstand only a 25-year flood. Sections of
park roads were not built to original design plans (e.g., for drainage) because of
inadequate funding (Louter 2006). The condition of trails differs widely from excel-
lent to needing total reconstruction. Substantial repairs are still needed for MBSNF
trails damaged in the floods of 2003 and 2006. These events created an estimated
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Box 4.5—Nonhydrologic exposures to travel management
associated with climate change

Extreme temperatures—

»  Extreme high temperatures heat pavement exposed to direct sun, and
softened pavement leads to rutting and decreases the life expectancy and
integrity of roads (TRB 2008).

*  Extreme high temperatures dry the surface of dirt roads causing increased
dust, which reduces driver visibility.

»  Extreme cold temperatures lead to ice forming on roads and bridges, reduc-
ing safety for travelers, but this may be mitigated by increased temperatures.

Wind—

*  Wind storms can cause trees to fall across roads and trails, hampering travel,
especially when soils are saturated. Projected increases in winter soil mois-
ture may increase windthrow risks.

*  Wind generates dust and transports smoke, which can disrupt safe travel.

Disturbances—

*  Tree mortality caused by increasing fire and insect disturbances (see
chapter 5) can have subsequent effects by increasing erosion and landslides.

* Loss of forest cover increases streamflows through loss of
evapotranspiration.

» Large woody debris can be transported by wind and landslides into streams,
contributing to channel migration or direct damage to stream-crossing
structures.

*  Fire and smoke reduce the usability of roads and trails, sometimes forcing
closures.

»  Fires can directly consume infrastructure such as bridges, guardrails, and
signs.

$3.5 million maintenance backlog, which limits agency capacity to respond to
issues of safety and climate change (USDA FS 2011b). Recreational groups, with
whom the national forests and national parks have partnerships, provide volunteer
trail crews and advocate for political support and additional funding. Contributions
of funding and volunteer time from recreational user groups have offset shortfalls
in the agency capacity to maintain infrastructure for recreation.

Travel management on the national forests and national parks in the NCAP
is complicated by funding mechanisms, multiple jurisdictions, interdependence,
competing demands, steep terrain, abundant streams and lakes, and numerous
stakeholders. The Washington Department of Transportation (WSDOT) is respon-
sible for operations and maintenance of highways and interstate highways (560 km),
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but within the federal lands, the USDA FS and NPS are generally responsible for
signs, hazard tree removal outside the road prism, vista clearing, and litter removal.
Road maintenance in national forests is primarily the responsibility of the USDA
FS, but county road maintenance crews maintain some roads. The Federal Highway
Administration is also involved with the management, design, and funding of roads
within the USDA FS and NPS.

Each national forest develops a road maintenance plan for every fiscal year,
primarily based on priorities by operational maintenance level, then by category
and priority (USDA FS 2011c). Maintenance of forest roads subject to Highway
Safety Act standards receive priority for appropriated capital maintenance, road
maintenance, or improvement funds over roads maintained for high clearance
vehicles. Activities that are critical to health and safety receive priority in decisions
about which roads to repair and maintain, but are balanced with demands for access
and protection of aquatic habitat (USDA FS 2011c).

Both national forests lack the capacity to maintain the entire road system
because of substantial decrease in timber revenue in recent decades, which previ-
ously funded road maintenance (USDA FS 2011b). Maintenance cost varies from
$420 to $950 per km.® Given current and projected funding levels, the forests are
balancing benefits of access with costs of maintaining and operating a sustainable
transportation system that is safe, affordable, and responsive to public needs, and
which causes minimal environmental impact. Management actions being imple-
mented to meet these sometimes competing objectives include reducing road main-
tenance levels, storm-proofing roads, upgrading drainage structures and stream
crossings, reconstructing and upgrading roads, decommissioning roads, converting
roads to alternative modes of transportation, and developing more comprehensive
access and travel management plans (USDA FS 2011b).

Planning and Projects

Foundation statements and general management plans (GMP) of the national parks
identify laws relevant to travel, such as road building limits and special road or trail
designations (USDI NPS 1995, 2001, 2011, 2012b). Transportation is not a specific
mandate or goal of the parks, but travel management helps the parks to meet objec-
tives such as resource protection, recreation, education, and research. Park-specific
GMPs provide direction for long-term transportation planning. For example, one

> Nashida, F. 2011. Personal communication. Assistant forest engineer, U.S. Department of
Agriculture, Forest Service, Mount Baker-Snoqualmie National Forest, 2930 Wetmore Ave,
Suite 3A, Everett, WA 98201.

National forests lack

the road system
because of decreased
timber revenue.

the capacity to maintain
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goal of the GMP for MORA is to improve management of high-season visitation

to avoid adverse impacts on park resources and visitor experiences (USDI NPS
2001). Park-specific GMPs often recommend specific transportation objectives,
improvements to access and transportation facilities, and partnerships with regional
transportation planning efforts. These plans can also include decision triggers, such
as converting roads to trails if substantial flooding occurs and rebuilding is no
longer feasible. In addition to GMP, large transportation projects have detailed plan-
ning assessments, such as the Nisqually to Paradise road rehabilitation (USDI NPS
2012d), Stehekin River corridor study (USDI NPS 2012a), and Ross Powerhouse
slide repairs (USDI NPS 2012c¢).

The NPS is currently developing a 20-year National Long-Range Transporta-
tion Plan that is expected to be completed in 2014 and will be updated at least every
5 years. This plan will address sustainable development and operations with work-
ing teams on visitor experience, natural resource stewardship, cultural resource
stewardship, climate change, livability, law enforcement and safety, asset manage-
ment, and funding and financial sustainability. Long-range transportation planning
is legally mandated for all federal land management agencies, and climate change is
a required component of this planning process (SAFETEA-LU 2005)

Planning for transportation and access on national forests is included in
forest-specific land and resource management plans. The NWFP (USDA and
USDI 1994a, 1994b), which amended the forest plans (USDA FS 2012a) of the
MBSNF and OWNF, included standards and guidelines that apply to road design
and maintenance, with the objective of mitigating impacts to aquatic habitat and
federally listed species. For example, new stream crossing structures are required to
accommodate at least Q100, including associated bed load and debris (USDA and
USDI 1994b). The NWFP requires development and implementation of a transpor-
tation management plan for each forest, including provisions to mitigate impacts to
aquatic habitat.

The 2001 Road Management Rule (36 CFR 212, 261, and 295) requires national
forests to use science-based analysis to identify a minimum road system that is
ecologically and fiscally sustainable. Both the MBSNF and OWNF are currently
identifying a sustainable road network in accordance with the rule. The goals of
the minimum roads analysis are to assess the necessity of existing roads, remove
damaged or unnecessary roads, and maintain and improve necessary roads without
compromising environmental quality. The minimum roads analysis will have four
benefits: (1) increased ability to acquire funding for road improvement and decom-
missioning, (2) a framework to set annual maintenance costs, (3) improved ability to
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meet agreement terms with regulatory agencies, and (4) increased financial sustain-
ability and flexibility. The minimum roads analysis does not include trails or other
transportation facilities. Consideration of climate change is not currently a formal
part of the analysis.

Similar to national parks, major road projects on the national forests must have
assessments in compliance with the National Environmental Policy Act (NEPA) of
1969. Examples of projects on the MBSNF with specific plans include the Suiattle
Access and Travel Management Plan (USDA FS 2010b) and Granite Creek Road
Decommissioning and Road to Trail Project (USDA FS 2012b) environmental
assessments. Decommissioning roads is a process of restoring roads to a more natu-
ral state by reestablishing drainage patterns, stabilizing slopes, restoring vegetation,
blocking road entrances, installing water bars, removing culverts, removing unsta-
ble fills, pulling back road shoulders, scattering slash on roadbeds, and completely
eliminating roadbeds (36 CFR 212.5; Road System Management; 23 U.S.C. 101).
Major projects, such as revisions of roads and trails or decommissioning, require
public involvement and an environmental assessment under NEPA.

Adapting Access Management in a Changing Climate

During the NCAP workshop on climate change, hydrology, and access, scientists
and resource managers worked collaboratively to identify key vulnerabilities of
access management to climatic variability and change and adaptation strategies to
reduce adverse effects. The workshop included an overview of adaptation principles
and regional examples of agency efforts to adapt transportation planning and
management to climate change. Scientists and resource managers identified options
for adapting access management, as well as potential barriers, opportunities, and
research needs for implementing adaptation.

Workshop participants focused on four key sensitivities of roads, trails, and
infrastructure that will challenge management efforts to provide safe access and
use for recreation and operations: (1) increased damage associated with higher peak
flows and more frequent floods; (2) increased damage associated with landslides,
erosion, and saturated soils; (3) decreased water availability with lower summer
flows; and (4) changes in visitor use patterns that could lead to higher demand on
facilities and public safety concerns. In many cases, climate change exacerbates the
current sensitivities of access management in the North Cascades. The spatial vari-
ability of projected changes in flood risk, peak flows, soil moisture, and landslides
as described above can be used to identify locations with the greatest exposure to
these changes.
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Adaptation Options for Higher Peak Flows and
Flood Risk

Road and Culvert Design and Maintenance

Current road design and management are consistent with adapting to climate
change in some ways, but changes will likely be necessary (table 4.3). A “no
regrets” strategy for climate change adaptation is to continue to upgrade the aging
system of roads and stream crossings as required by the NWFP and the 2001 Road
Management Rule. These upgrades will increase resilience of roads and stream
crossings to higher peak flows and flood frequency (Littell et al. 2012). Engineers
at the MBSNF and OWNF are replacing failing culverts and bridges and discon-
necting roads from waterways to mitigate impacts on aquatic ecosystems. Current
efforts to inventory roads, culverts, and stream crossings for the minimum roads
analysis will provide critical information for identifying future repairs, replace-
ments, and upgrades. Having this information a priori will enable managers to
better respond to more frequent floods and higher peak flows.

Climate change provides a new context for evaluating current practices to
upgrade roads and culverts. Engineers may consider prioritizing upgrades of cul-
verts and roads in mixed-rain-and-snow basins (Littell et al. 2012) or using a new
method for calculating Q100 for sizing culverts that considers future peak flows
(Halofsky et al. 2011). Culverts on non-fish-bearing streams are sized for Q100 plus
a factor related to expected debris load during floods, but currently Q100 is calcu-
lated with equations based on historical flood statistics that do not consider pro-
jected changes in peak flows. Engineers may consider using model projections of
future Q100 (e.g., from the VIC hydrologic model) or maps of the spatial variability
in future flood risk (fig. 4.4) to identify priority areas for increasing culvert capac-
ity above historical values (Halofsky et al. 2011). Crossings for fish-bearing streams
on national forest lands use stream simulation design standards and requirements of
consultation documents for the U.S. Endangered Species Act, resulting in openings
that far exceed capacity for a Q100 flow. These culverts greatly increase capacity
and will be more robust to higher peak flows in a changing climate. Where these
larger structures are needed to restore aquatic habitat, this design choice is a “no
regrets” strategy for improving culvert longevity in a changing climate because the
performance is relatively insensitive to increasing high flows.

The MBSNF and OWNF have a large backlog of culverts and road segments
in need of repair, replacement, or upgrade even under current hydrologic regimes.
Limited funding and staff hinder current efforts to upgrade the system to current
standards and policies, so the additional cost of upgrades to accommaodate future
hydrological regimes is a barrier to adaptation. However, extreme floods that
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damage roads and culverts can be opportunities to replace existing structures with
ones that are more resilient to higher peak flows. These replacements, called “bet-
terments,” can be difficult to fund under current Emergency Relief for Federally
Owned Roads (ERFO) program eligibility requirements when used to fix damage
from extreme events because the current policy is to only replace in kind. In some
cases, matching funds can be raised or betterments can be funded with sufficient
justification and documentation of the environmental impacts. Justification for bet-
terments based on the latest climate change science would facilitate this approach.

Increasing resilience to higher peak flows will not be possible for all road
segments because of limited funding for maintenance and because resilience will
become less feasible over time as peak flows continue to increase. Adapting road
management to climate change in the long term may require further reductions in
the road system for road segments where increasing resilience is not feasible and
demand for access is not high. Engineers at the MBSNF and OWNF are reducing
the road system by closing, decommissioning, or converting roads to nonvehicular
modes of transportation. Road segments that are candidates for decommissioning
are typically those with low demand for access, high risks to aquatic habitat, a
history of frequent failures, or combinations of the three. Okanogan-Wenatchee
National Forest road managers also consider use of roads for fire management (fire
suppression, prescribed fire, and hazardous fuel treatments); further reductions in
the road system on OWNF may conflict with efforts to manage forest vegetation for
increased resilience to climate change (see chapter 5).

Climate change provides a new context for prioritizing roads for decommis-
sioning and closure. Engineers may consider emphasizing roads for decommission-
ing that are in basins with higher risk of increased flooding and peak flows (figs.
4.3 and 4.4), in flood plains of large rivers, or on adjacent low terraces. Information
on locations in the transportation system that currently experience frequent flood
damage (box 4.6) can be combined with spatially explicit data on projected changes
in flood risk and current infrastructure condition to provide indicators of where
damage is most likely to continue and escalate with changes in climate. Optimiza-
tion approaches (e.g., linear programming) can be used to balance these multiple,
competing objectives and constraints while minimizing the overall costs of the road
system.’

Most roads in MORA and NOCA have high demand for access because of the
small road network and lack of redundancy, but increasing flood risk may require

® Strauch, R.; Hamlet, A.F. [N.d.]. Use of linear programming and climate change threats
to access in a minimum forest roads analysis in the North Cascades region. On file with:
Strauch, R., University of Washington, Civil and Environmental Engineering, Seattle, WA
98195
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Box 4.6—Next steps: assessing access vulnerability in the
North Cascades

An integrated understanding of climate change exposure and current and expected
sensitivities can be used to develop a more quantitative and spatially explicit vulner-
ability analysis of the degree to which the transportation system may be affected.
One method is to begin by examining the effects observed with past climatic vari-
ability, such as locations of “repeat offenders,” segments of the transportation system
that have been repeatedly damaged by floods or landslides (see figure). Local land
managers have the unique expertise to identify locations of repeat offenders. This
information can be combined with the spatial variability of projected changes in cli-
mate, snowpack, and hydrologic regimes to develop a quantitative, spatially explicit
vulnerability assessment, which can be integrated into other management objectives
and used to inform adaptation strategies.

()

North Cascades
National Park

(‘

Repeat
Damage Park Park
Trails “ N\, 7 \_-
Roads 7~ \_, 7 \_- % 10 km
& J
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road closures or changes in use. For example, the Carbon River Road in MORA
(fig. 4.11), which is below the current elevation of the river, has been repeatedly
damaged by floods and was severely damaged in the flood of November 2006.
The road provides sole access to a campground, historic landmark district, and
trailhead, yet the high cost to repeatedly repair the road and mitigate impacts to
aquatic habitat make it too costly to maintain existing access. Managers worked
with recreation groups to develop a plan to convert the road from vehicle use to
bike and foot travel. This is an example of a “win-win” adaptation tactic; convert-
ing the mode of travel on roads from vehicles to bicycles or foot traffic. Adapting
access management to climate change may require more compromises such as this
between maintaining access versus high maintenance costs and risks to aquatic
habitat and human safety.

Reducing the road system in the national forests and national parks will present
both barriers and opportunities (table 4.3). Decommissioning roads or converting
roads to trails is expensive and must be done properly to reduce adverse effects on
water quality and aquatic habitat. In the case of the Carbon River Road, the road
is designated as a National Historic Landmark District, which created an obstacle
to changing its use. Furthermore, reductions to the road system are often met with
opposition from the public accustomed to using roads for recreational access, but
public involvement in road decisions can also be an opportunity to increase aware-
ness and develop more “win-win” adaptation options. Thus, one adaptation tactic is
to adjust visitation patterns and visitor expectations by actively involving the public
in road decisions related to climate change. This has the added benefit of raising
political support and funding from external sources to help maintain access. On the
other hand, the limited roads for vehicle access in the parks, especially at MORA,
may require managers to consider adding new roads and facilities in alternative
locations when current access is lost because of infrastructure damage or to accom-
modate increased use as population and demand increases. Adding roads or relocat-
ing existing roads may require adjustments to wilderness boundaries. Partnerships
with recreation groups will be increasingly important for raising public awareness
of climate change threats to access and for identifying successful adaptation
options.

Decommissioning
roads is expensive and
must be done properly
to reduce adverse
effects on water quality
and aquatic habitat.

Facilities, Structures, and Cultural Resources

As with roads, the increased risk of flooding with climate change in some basins
may require modification to current management of facilities and historical and
cultural resources (table 4.4). In addition to higher flood risk, floodplains may
expand because of channel aggradation, as has occurred in MORA where several
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Protecting
infrastructure in place
will be more difficult as
flood risk continues to

increase.
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facilities in Longmire, including the emergency operations center and helibase, are
threatened by expansion of the Nisqually River floodplain. In most cases, the high
cost of relocating buildings and inability to move historic sites from the floodplain
will require that adaptation options focus on resistance, preventing flood damage
despite increasing risk. Stabilizing banks reduces risk to infrastructure, and using
bioengineering rather than rip-rap or other inflexible materials may be a longer
term solution that has a lower environmental impact, is more politically acceptable,
and is less likely to shift flooding impacts downstream. For example, the NPS

is considering increasing the use of engineered logjams in waterways to redirect
water away from critical infrastructure. Another tactic for adapting to flood risk is
a storm patrol or watch system that identifies threats early, such that rapid response
can minimize impacts to life, infrastructure, and moveable property. These
approaches would not protect fixed structures, such as buildings, from flooding.

In the long term, protecting infrastructure in place will be more difficult as
flood risk continues to increase. Long-term adaptation strategies may require
removing (or not rebuilding) infrastructure in the floodplain to allow river chan-
nels to migrate and accommaodate the changing hydrologic regime within the flood
plain. The land and resource management plans of the USDA FS and the general
management plans of the NPS are opportunities to implement these long-term adap-
tation tactics for the management of facilities and infrastructure because of their
long-term planning horizons.

Trail Maintenance and Design

Managing trails in the context of climate change will require increased resilience

to higher peak flows and flood frequency (table 4.5). Managers at MBSNF and
MORA are currently repairing and replacing trail segments and bridges damaged
during the extreme floods of 2003 and 2006. In many cases, current repairs and
reroutes of trails and upgrades or elimination of trail bridges are robust actions that
will also increase resilience to future hydrologic regimes. For example, trail manag-
ers at the MBSNF frequently reroute trails further from streams and rivers and to
locations that do not require bridges. Bridges that are replaced are often constructed
from more durable and rot-resistant materials, elevated higher above the riverbed,
made wider to accommodate expanding flood plains, and located on sites with
stronger parent material to prevent future failures. Adapting to climate change may
require changes to these practices, such as building trail bridges higher or longer,

to accommodate projected future rather than historical peak flows. As with road
design, improved design for higher peak flows may require an alternative method
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for calculating Q100 plus debris, which is also used to determine trail bridge design.

The national forests lack funds necessary to fully meet trail management objec-
tives under current hydrologic regimes, so funding additional repairs, replacements,
and upgrades to increase resilience to climate change will be challenging. How-
ever, as with road maintenance and design, extreme floods that cause widespread
damage can provide opportunities to fund upgrades that will increase resilience
to current flooding regimes and climate change. Damage to high-profile trails,
such as the Pacific Crest Trail that runs north-south through the North Cascades,
has motivated public action and political pressure to repair the trail and maintain
access. Funding from ERFO, which was historically allocated to repair only roads,
was allocated to repair trail segments in the case of this high-profile trail. Upgrades
to the trail system to increase resilience will require additional funding, but also
creative solutions to funding challenges. Future damage to high-profile trails may
provide opportunities to request additional funds, and increase public awareness
of the rising cost of maintaining trail access in a changing climate. Many high-use
trails in the North Cascades cross national forest and national park boundaries, so
the NCAP provides an opportunity to increase coordination and combine resources
to reduce impacts to access. Managers may consider increasing efforts to build
partnerships with recreational user groups in response to increasing damage to the
trail system (table 4.5).

Increasing resilience of the trail system will probably continue to be an appro-
priate adaptation strategy for high-demand trails, but in some areas, feasibility of
this strategy will decrease with time as hydrologic regimes continue to change. As
with roads, managers may need to consider closing or stopping maintenance of low-
use, low-resilience trails. Trails and trail bridges repeatedly damaged by floods will
become likely candidates for closure. Trail closures that reduce access will often
face public and agency opposition, but the long-term planning frameworks of the
USDA FS and NPS create opportunities to revise objectives and incorporate these
longer term changes in recreation management. On the other hand, these long-term
plans can limit the ability to respond to short-term needs triggered by extreme
events, so incorporating decision triggers in the long-term planning process may
provide managers with the ability to respond to climate-related events with actions
already vetted by public review and input. Adaptive management such as this can
be used to assess and monitor the trail system as damage frequency increases and
allow decisions regarding restoration and closures to evolve as hydrologic regimes
evolve.
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Adaptation Options for Higher Soil Saturation and
Landslide Risk

Road and Facility Maintenance and Design

As with increasing flood risk, adapting road and facility management to increased
soil saturation in winter landslides risk and may require increasing resilience of the
road system (table 4.6). Short-term adaptation tactics may include improving drain-
age, stabilizing slopes, restoring vegetation cover, reducing weight on the road,
altering road surface type, or accepting higher maintenance costs. In the long term,
however, repeated landslides and slope failures may require that highly vulnerable
roads and infrastructure be closed and new construction limited in locations with
elevated landslide risk. Although we hypothesize that the combination of increasing
winter precipitation and soil moisture will increase winter landslide risks (as dis-
cussed above), more comprehensive and detailed scientific information is needed on
how changes in precipitation, snowpack, vegetation, and ground water will interact
to affect the risks of landslides and slope failure.

Trail Maintenance and Design

More precipitation falling as rain rather than snow at mid elevations and more
rapid spring snowmelt may increase soil saturation and create boggy areas around
trails, causing more damage to trails and surrounding sensitive vegetation (e.g.,
meadows). Recreation managers may consider increasing maintenance in locations
with projected increases in winter soil moisture (figs. 4.9, 4.12). Some trails may
require reroutes to avoid damage to vegetation when users stray off established
trails to avoid saturated soils or inundated sections. Climate change increases the
importance of considering hydrologic impacts in trail design, such as designs that
effectively drain storm runoff without sustaining damage (table 4.7). Monitoring
saturated soils around trails will be important for identifying damage and priori-
tizing locations for restoration and repair. Monitoring may be more effective and
efficient if it focuses on trails in areas with the greatest projected increases in soil
moisture (fig. 4.9) and mixed-rain-and-snow basins (fig. 4.3), which are expected to
experience the biggest shifts from snow to rain and substantial declines in snow-
pack that cause elevated soil moisture in late autumn and early winter.

More saturated soils are expected to increase landslides, erosion, and associ-
ated damage to trails. Recreation managers may consider increasing trail resilience
by designing and constructing trails with better erosion control using vegetation
or physical structures (table 4.7). Training of seasonal trail maintenance crews
and volunteers provides opportunities to emphasize the importance of drainage
improvement techniques. Trails that experience repeated failures from erosion and
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landslides are good candidates for rerouting or closure, but high-demand, high-use
trails that cannot be closed will require planning to accommodate higher mainte-
nance costs and more frequent or longer closures for repairs.

Adaptation Options for Visitor Use Patterns
and Public Safety

More frequent failures in the road and trail system may increase risks to public
safety. Limited resources and staff make it difficult for national forests and national
parks in the NCAP to quickly repair damage, yet the public expects continuous
access. In response to climate change, managers may consider implementing and

enforcing more restrictions on access to areas where trails and roads are damaged More frequent failures
and safe access is uncertain (table 4.8). Greater control of seasonal use, combined in the road and trail
with better information about current conditions, especially during the shoulder system may increase

season (i.e., early spring and late autumn) before and after active maintenance, may  risks to public safety.

help ensure better public safety. Partnerships with recreation groups may generate
opportunities to convey this message to a larger audience, thus enhancing public
awareness of hazards and the safety of recreation users.

Managers may consider adapting recreation management to changes in visitor
use patterns in early spring and late autumn in response to reduced snowpack and
warmer temperatures (table 4.8). An expanded visitor season would increase the
cost of operating facilities (e.g., visitor centers and campgrounds), but revenue from
user fees may also increase. Limitations on staff because of funding or other con-
straints may also present obstacles to an expanded visitor season. One adaptation
tactic to increase agency capacity to respond to higher visitation and a longer visitor
season may be to reduce restrictions on the length of seasonal employment, and
fund staff with user fees that respond directly to increased use, rather than fixed
budgets. Another adaptation tactic to reduce the impact of higher visitor use is to
provide alternative modes of transportation, which is already being implemented in
MORA and NOCA. Mount Rainier National Park uses a shuttle service during peak
visitation to decrease the demand on visitor facilities and impacts to ecosystems. In
the Upper Stehekin Valley, NOCA changed access from shuttle to stock or horse in
response to repeated flood damage. General management plans and the long-term
transportation planning framework provide opportunities to address anticipated
changes in the amount and timing of visitation. Adaptive management can be used
to monitor changes in the timing, location, and number of visitors, thus providing
data on where management can be modified in response to altered visitor patterns.
As discussed above, alternate methods of funding seasonal employees may need to
be considered.
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Adaptation Options for Dry-Season Water Availability
and Use

Lower soil moisture and low flows (7Q10) in late summer combined with increas-
ing demand for water will likely reduce water availability for aquatic resources,
recreation, and operations. Stream crossing structures can be adapted to lower
7Q10 flows by incorporating structures that better maintain low flow channels
and stream connectivity. National forests and national parks in the NCAP rely on
water for facility operations, visitors, and residences. Adapting to a lower water
supply may require tactics that evolve over time (table 4.9). A sufficient water
supply for critical operations and facilities can be augmented by constructing new
wells; increasing capacity to store water with cisterns, water towers, and reservoirs;
developing gray water recycling systems; or importing water from outside the
region. However, these are relatively high-cost solutions that may be feasible only
in the most high-use areas where maintaining current dry-season water supply is
a priority, or in areas where critical uses like fire protection must be supported to
protect buildings and other infrastructure.

In the long term, increasing water conservation and reducing user expectations
of water availability are relatively inexpensive and complementary adaptation
tactics for maintaining adequate water supply. Water conservation can be increased
with upgrades to facilities (administrative buildings, housing, visitor centers, and
campgrounds) that reduce water use, and through development of gray water recy-
cling systems. In areas with the greatest reductions in low summer flows (fig. 4.5),
it may no longer be possible to provide water at current levels, requiring that water
availability in campgrounds be reduced or that facilities be closed during the dry
season or years with low water availability. These tactics will require a shift in user
expectations that can be facilitated by increasing public outreach and education.
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Chapter 5: Climate Change and Vegetation in the North
Cascade Range

Jeremy S. Littell, Crystal L. Raymond, Regina M. Rochefort, and Stephen L. Klein®

Introduction

In the Pacific Northwest (PNW), decades of research on the effects of climatic
variability and change on vegetation dynamics provide a foundation for understand-
ing potential consequences of climate change and options for adapting vegetation
management. The effects of climate change on vegetation depend on the magnitude
of changes in climate (i.e., exposure), as well as the sensitivity of species and eco-
logical processes to these changes. Exposure and sensitivity combined determine
vulnerability (Parry et al. 2007) of vegetation to climate change, and this vulner-
ability can be reduced depending on the capacity of species to adapt to changes (i.e.,
adaptive capacity) (Parry et al. 2007). Resource management agencies can reduce
vulnerability depending on the extent to which they can adapt vegetation manage-
ment practices as climate changes.

The North Cascadia Adaptation Partnership (NCAP) held a 2-day workshop
to assess vulnerability of vegetation in the North Cascades to climate change and
develop adaptation options to reduce vulnerability. The goal of the workshop was
to convene scientists and land managers concerned about climate change effects on
vegetation in the NCAP region with a focus on national forests and national parks.
More than 35 people participated in the workshop, including resource managers and
scientists from the national parks and forests in the NCAP; University of Wash-
ington Climate Impacts Group; U.S. Department of Agriculture, Forest Service,
Pacific Northwest Research Station; Washington Department of Natural Resources
(WADNR); City of Seattle; U.S. Environmental Protection Agency; and U.S. Fish
and Wildlife Service (USFWS). The workshop had four objectives:

» Identify key sensitivities of vegetation and ecological disturbances to
projected changes in climate.

! Jeremy S. Littell is a research scientist, U.S. Department of the Interior, Alaska Climate
Center, 4210 University Drive, Anchorage, AK 99508 (formerly research scientist, Uni-
versity of Washington, College of the Environment, Climate Impacts Group, Seattle, WA);
Crystal L. Raymond is a climate change strategic advisor, City of Seattle, Seattle City
Light, 700 5™ Avenue, Seattle, WA 98124 (formerly research biologist, U.S. Department

of Agriculture, Forest Service, Pacific Northwest Research Station, Pacific Wildland Fire
Sciences Laboratory, Seattle, WA 98103); Regina M. Rochefort is a science advisor, North
Cascades National Park Complex, Sedro-Woolley, WA 98284; and Stephen L. Klein is a
research forester, U.S. Environmental Protection Agency, Western Ecology Division, 200
sw 35" Street, Corvallis, OR 97333.

113



GENERAL TECHNICAL REPORT PNW-GTR-892

114

* Review current vegetation management objectives and practices and share
management approaches that already consider climatic variability or
change.

»  Use the latest scientific information on climate change and its effects on
vegetation and ecological disturbances to identify adaptation options that
can be implemented in the region.

* Identify opportunities to work collaboratively to develop adaptation options
that cross jurisdictional boundaries in the North Cascades.

The workshop included an overview of the latest science on climate change
effects on vegetation, fire regimes, insects, pathogens, and invasive species.
Resource managers presented information on current management programs and
practices for silviculture, forest restoration, fire, invasive species, rare and sensitive
species, and inventory and monitoring.

During the workshop, scientists and resource managers worked collaboratively
to identify key sensitivities of vegetation and ecological disturbances that will
challenge management of vegetation as climate changes. Sensitivities of greatest
concern to the workshop participants were those associated with increasing rates of
fire, insect, and pathogen disturbances, as well as the potential for increased spread
of invasive species. Workshop participants also focused on subalpine and alpine
zones because the forests, wetlands, and meadows in these zones are likely to be
sensitive to reduced snowpack,2 warmer temperatures, and longer growing seasons.
The second day of the workshop focused on adaptation, with an overview of adap-
tation principles (Peterson et al. 2011b) and examples of adapting vegetation man-
agement at the Olympic National Forest and Olympic National Park (Halofsky et al.
2011). Scientists and resource managers identified options for adapting vegetation
management to reduce adverse effects of climate change. The initial vulnerability
assessment and adaptation planning in the workshop were refined with further
discussions with scientists and resource managers.

In this chapter, we describe current vegetation in the North Cascades, projected
changes in climate relevant to vegetation, and pathways through which climate will
affect vegetation and disturbances in the North Cascades. We summarize the cur-
rent framework for managing vegetation and disturbances in the national parks and

2 Snowpack is measured as snow depth or snow water equivalent (SWE), the water content
of the snowpack. For comparisons, SWE on April 1 is commonly used because it corre-
sponds to the date of peak SWE in many areas and is correlated with summer water supply
in the PNW. Timing of snowmelt in spring can also be an important indicator of wildlife
habitat and ecosystem processes (see chapter 4 of this report for a detailed discussion of
snowpack).
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forests in the NCAP. Lastly, we summarize the potential changes in these manage-
ment practices to facilitate adaptation options that were identified by workshop
participants.

Current Vegetation in the North Cascades

The current distribution of vegetation in the North Cascades is a function of the
biophysical environment, a mix of factors associated with climate, topography,
soils, and disturbances. Physiological tolerances of individual tree species to these
environmental factors (McKenzie et al. 2003), as well as competition and distur-
bances, control the distribution of tree species. Forests are predominantly conifer-
ous with deciduous species growing in riparian corridors and as secondary species
in the understory (fig. 5.1). Some deciduous species also grow as late-successional
species in avalanche paths at high elevations and in low-elevation areas that have
been harvested and lack a seed source for conifer species. Mild, maritime climate
and limited disturbance at low elevations west of the Cascade crest enable growth
of dense forests of long-lived, shade-tolerant coniferous species. At higher eleva-
tions, colder winters and more snowpack favor a different mix of coniferous
species, and these subalpine forests are generally less dense with smaller trees. At
the highest elevations near treeline, tree growth and forest distribution are limited
by cold winter temperatures, short growing seasons, and harsh physical conditions
(such as avalanches and wind).

Climate east of the Cascade crest transitions from maritime to continental
with drier, warmer summers with lower soil moisture and colder winters. At the
lowest elevations, fire is frequent and soil moisture in summer is low, so forests
are dominated by ponderosa pine (Pinus ponderosa var. ponderosa Douglas ex P.
Lawson & C. Lawson) and transition into sagebrush (Artemisia tridentata Nutt.)
steppe and grasslands to the east (fig. 5.1). At middle elevations and in the absence
of fire, ponderosa pine forests transition to denser, mixed-conifer forests. At higher
elevations and in the north-eastern Cascades, subalpine and montane mixed-conifer
forests dominate because winters are colder and snow depth and duration are
greater. The mix of conifer species growing in these subalpine and montane forests
differs from those in high-elevation forests of the western Cascades because sum-
mers are drier and fire is more frequent. Moisture availability, as well as persistent
snowpack and a short growing season, limit the distribution of some species.

Forest ecosystems dominate much of the North Cascades (fig 5.1), but several
nonforest ecosystems are ecologically important for critical habitat and contribute
to the character of wilderness and recreational opportunities in the national forests
and national parks, particularly in the alpine and subalpine zones. Together, these
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/_ Gap National Vegetation
Classification Marco Group

Great Basin and Intermountain tall
sagebrush shrubland and steppe

Northern Rocky Mountain
lower montane and foothill forest

Northern Rocky Mountain—
Vancouverian montane and
foothill grassland and shrubland

Rocky Mountain subalpine and
high montane conifer forest

Vancouverian alpine cliff,
scree and rock vegetation

Vancouverian alpine scrub,
forb meadow and grassland

Vancouverian cliff scree and
rock vegetation

Vancouverian flooded and
swamp forest

Vancouverian lowland and
montane rain forest

Vancouverian subalpine forest

Western North American lowland
freshwater wet meadow, march and
shrubland

Barren

223288 * 3 R 2 X B R R B R

Open water
! Recently distrubed or modified
k 25 km Other

Figure 5.1—Dominant (by land area) vegetation types in the Northern Cascade Range. Data: U.S.
Geological Survey National Gap Analysis Program.

zones comprise an ecotone spanning the area between closed-canopy forest (forest
line) and permanent snow and ice or rocky mountain tops. Snowpack, temperature,
and topography are the primary determinants of vegetation distribution, structure,
and composition in these systems (Douglas and Bliss 1977, Holtmeier and Broll
2005, Malanson et al. 2007). Snow cover both defines the length of the growing
season and provides most of the available moisture for plant growth during the dry
summers (Canaday and Fonda 1974, Douglas 1970, Henderson 1974). Despite harsh
environmental conditions, alpine and subalpine vegetation communities are spa-
tially heterogeneous as a result of the steep gradients in soil moisture, temperature,
and growing season length associated with topographic variation (Crawford et al.
2008).



Climate Change Vulnerability and Adaptation in the North Cascades Region, Washington

The subalpine parkland is a mosaic of tree islands, ericaceous dwarf-shrubs,
forbs, and grasses (Douglas 1970, Franklin and Dyrness 1988, Henderson, 1974).
Tree species within the zone are similar to the montane forest below. From west to
east across the Cascade crest, meadow species composition transitions from lush,
continuous cover of forbs and sedges to patchy bunchgrass (e.g., greenleaf fescue
[Festuca viridula Vasey]) and forb associations of the drier east slopes. Vegetation
in the alpine zone is generally sparsely distributed and includes patches of sedge-
turf communities, subshrubs (e.g., heather species), talus slopes, and fellfields
(Douglas and Bliss 1977, Edwards 1980). High-elevation wetlands range from
small, ephemeral ponds and wet meadows to open water lakes and provide impor-
tant habitats for wildlife and ecosystem services such as nutrient cycling, water
storage and filtration, and carbon sequestration (IPCC 2007).

Elevations of forest line and tree line vary with latitude and aspect, reflecting
differences in mean seasonal temperatures across the rugged topography of the
Cascade Range (Korner and Paulsen 2004). In the northern portion of the North
Cascades, continuous forest ends at 1280 m on northern slopes and 1580 m on
southern slopes (Douglas 1972, Douglas and Bliss 1977). At the southern end of the
region, forest line ranges from 1646 m on the southern slopes of Mount Rainier to
1951 m on the drier east side.

Vegetation will
experience the
integrated effects
of changes in
temperature,
precipitation, and
snowpack.

Projected Changes in Regional Climate Relevant to
Vegetation

Projected changes in regional temperature and precipitation (chapter 3) (Mote
and Salathé 2010) are related to the physical and hydrologic conditions that affect
vegetation function and life history (Littell et al. 2010). Changes in temperature
and precipitation will interact to affect local snowpack development and timing
of snowmelt, but snowpack is likely to decrease and melt earlier, particularly at
low elevations where most snow falls close to freezing temperatures (chapter 4).
Changes in climate are projected at regional to subregional (smaller than 100 km)
scales, but vegetation response at local scales (smaller than 10 km) will also be
affected by local factors (e.g., topography, competition, and physical effects of other
species). These local factors tend to mediate or exacerbate changes in regional or
subregional climate.

Vegetation will experience the integrated effects of changes in temperature,
precipitation, and snowpack. Thus when assessing the effects of climate change on
vegetation, it can be beneficial to consider climatic variables that integrate tempera-
ture, precipitation, and snowpack to provide a better indication of the changes in
moisture and energy availability that plants will experience.
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Soil moisture is one indication of the water available to vegetation. Based on
current projections of no increase in summer precipitation, warmer temperatures
(chapter 4), and declining snowpack, the North Cascades is expected to experience
longer periods of low soil moisture in the dry season. Soil moisture on July 1 is
projected to decline throughout most of the North Cascades, with declines of up
to 35 percent in much of the region by the 2040s (average of years in the 30-year
window from 2030 to 2059) (Elsner et al. 2010) (fig. 5.2).

Another measure that integrates temperature and precipitation to indicate
moisture stress experienced by vegetation is water balance deficit. Water balance
deficit is a measure of potential vs. actual evapotranspiration of plants. Potential
evapotranspiration (PET) is the amount of water that could be evaporated from land
and transpired from plants. Actual evapotranspiration (AET) is the amount of water

Historical

July 1
Total Column Soil Moisture
'\

-
Historical Change

Increase

+35%
-30 mm

Ensemble

Moderate warming

Least warming and drier Most warming and wetter

Figure 5.2—Historical (1916—2006) and future (2030—-2059 and 2070-2099) July 1 soil moisture
adapted from Elsner et al. (2010). Soil moisture on July 1 decreases over the NCAP domain toward
the end of the 21* century.
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(June-July-August)
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- 450 mm -

Most arming and wetter
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Figure 5.3—Historical (1916—-2006) and future (2030-2059, and 2070-2099) June-July-August water
balance deficit, adapted from Elsner et al. (2010).

that is evaporated and transpired and it is an index of simultaneous usable water
and energy for plants (Stephenson 1990). When AET exceeds PET, surplus water is
typically available for surface runoff or subsurface movement (Stephenson 1990).
In contrast, when PET exceeds AET (more water could be transpired than is being
transpired), a water balance deficit exists.

An increase in temperature also increases potential evapotranspiration (all other
things being equal), and thus water balance deficit. In the North Cascades, water
balance deficit in summer is projected to increase east of the Cascade crest, with an
average increase of 35 mm for the 2040s in Okanogan-Wenatchee National Forest
(OWNF). Increases and decreases in water balance deficit average out to small (-2
to -5 mm) decreases by the 2040s west of the Cascade crest (Elsner et al. 2010) (fig.
5.3). The decrease in water balance deficit (i.e., increase in water supply) is likely
a result of increased water availability at high elevations where AET is expected to
increase with earlier snowmelt in spring.
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Vegetation is affected by extremes in climate (e.g., windstorms, intense precipi-
tation, droughts, extreme fire weather), as well as averages, and current evidence
suggests extremes may become more frequent with climate change. Using two
regional climate models (essentially weather forecasting models driven by global
climate models [GCM]), Salathé et al. (2010) projected an increase of 7 to 20
three-day heat waves (a combined index of heat and humidity greater than 32 °C)
for the North Cascades by the 2040s. Extreme precipitation events are also expected
to increase, particularly on the western slopes of the Cascades (Salathé et al. 2010),
because of the influence of topography and the intensified water cycle expected
with climate change. Despite their ecological importance, changes in climatic
extremes are difficult to project with simulation models. There are currently no
projections of future regional drought (duration or magnitude) or wind for the PNW.

Physical Mechanisms for Climatic Effects on Forest Vegetation

The sensitivity of vegetation and the physical mechanisms through which changes
in climate will affect vegetation vary by location depending on the historical
climate and current climatic limitations on plant growth and species distributions.
Direct effects of climate change on vegetation will depend on how climate affects
limiting factors for vegetation establishment, growth, productivity, and life history.
Climate change will indirectly affect vegetation by also affecting ecological distur-
bances and biogeochemistry. Vegetation growth also may be affected by changes
in atmospheric concentrations of carbon dioxide (CO,), which can affect water

use efficiency and growth (Law et al. 2002, Oren et al. 2001). We do not focus on
this mechanism of change in this chapter because of the limited information on
this effect in the PNW and for natural systems in general, rather than controlled
experiments.

Plant growth can be seasonally or chronically limited by climate (Churkina and
Running 1998, Churkina et al. 1999, Nemani et al. 2003). When PET is higher than
AET (i.e., water deficit), vegetation productivity is limited by water availability.
Water balance deficit (e.g., Churkina et al. 1999, Stephenson 1990) is correlated
with the distribution of vegetation (Stephenson 1990). In the PNW, vegetation
experiences water limitation seasonally, even in the maritime western Cascades,
because the supply of water and energy are asynchronous. More than 75 percent
of precipitation falls outside of the growing season (Stephenson 1990, Waring and
Franklin 1979). When AET is higher than PET, water is not limiting and vegeta-
tion productivity is limited by thermal constraints, such as growing degree days or
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growing season length (Churkina et al. 1999, Littell et al. 2010). Thermal limita-
tions typically occur at locations and times that water availability is sufficient (e.g.,
maritime PNW forests or tundra), but seasonal water limitations can still limit
vegetation productivity in these locations.

It is likely that most low-elevation forests in the North Cascades that currently
experience chronic or seasonal water limitation will experience more severe or
longer duration water limitation in the future, given projected increases in July 1
soil moisture (fig. 5.2) and summer (June through August) water balance deficit
(fig. 5.3) (Littell et al. 2010). In contrast, current energy-limited forests will likely
become less energy limited, and the effects of climate change will depend on the
degree of seasonal water limitation. Short-term effects on water-limited forests will
likely include decreased seedling regeneration and tree growth, increased mortality
(especially for seedlings), vulnerability to insects (because of host tree stress), and
increased area burned by fire (Littell et al. 2010). Short-term effects on energy-
limited forests will likely include increased seedling establishment and tree growth,
but also increased area burned by fire and vulnerability to insects because insect
ranges are projected to expand into forests with historically unfavorable climate
(Littell et al. 2010).

Vegetation in the alpine treeline ecotone is expected to be sensitive to projected
changes in climate (Canonne et al. 2007, Holtmeier and Broll 2005, Loarie et al.
2009). Snowpack in the Cascade Range has already declined by 15 to 35 percent
since the 1930s (Mote et al. 2005, 2008), and warming temperatures will continue
to reduce the duration of snow cover and the April 1 snow water equivalent (SWE),
altering the length of the growing season and available soil moisture (Elsner et al.
2010). Increased growing season length, warmer air temperatures, and increased
soil moisture will lower environmental constraints on tree establishment in sub-
alpine meadows. Expansion of tree islands in the subalpine parkland and rising
treelines may be the most visible changes in high-elevation forests. Palaeoecologi-
cal studies provide evidence that altitudinal treeline locations have fluctuated
throughout the Holocene in response to climate, with advances during warm
periods and retreats during cooler climates (Kearney and Luckman 1983, LaMarche
1973, Markgraf and Scott 1981, Rochefort et al. 1994). More recent expansion of
tree islands in subalpine areas has also been observed (Bekker 2005, Harsch et al.
2009, Klasner and Fagre 2002, Stueve et al. 2009). Species interactions and micro-
topography interact with climate to influence spatial distribution and periodicity
of tree establishment (Alftine et al. 2003, Germino et al. 2002, Haugo and Halpern
2010, Malanson et al. 2007). Near the alpine treeline, local physical drivers such as
snowpack, wind, radiation, and seasonal desiccation severely limit establishment
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to the most favorable microsites until limiting factors are ameliorated (Smith et al.
2009). The area available for forest expansion upslope in the Cascades is limited
either by available land area at higher elevation or by lack of soil development in
deglaciating areas.

Shifts in distributions of herbaceous vegetation, shrubs, and sedges, may be less
visible than shifts in tree line, but observational studies and manipulative experi-
ments suggest significant future changes above tree line (Grabherr et al. 1994,
Theurillat and Guisan 2001, Walther et al. 2002). Experimental warming of tundra
plant communities in North America have documented increases in height and
cover of graminoids and deciduous shrubs and decreased growth of mosses, lichens,
and forbs (Arft et al. 1999, Chapin et al. 1995, Harte and Shaw 1995, Walker et al.
2006). Since the 1950s, broad landscape patterns of vegetation in portions of the
European Alps have changed similar to those indicated by the warming experi-
ments (Cannone et al. 2007). Although there are general trends in the response of
functional types across many studies, there are also differences between species,
elevations, and localities.

In Europe, vascular plant species richness on mountain summits has increased
over the last century as a result of upward plant migrations (Odland et al. 2010,
Pauli et al. 2007, Walther et al. 2005). As lower elevation species in the Cascades
move up in elevation, species richness in specific areas may increase, but spatial
heterogeneity and similarity among summits may decrease, resulting in homogene-
ity among peaks (Jurasinksi and Kreyling 2007, Odland et al. 2010). Increased spe-
cies diversity may also include nonnative, invasive species that have been limited
by abiotic conditions rather than dispersal or disturbance regimes (Pauchard et al.
2009). It is difficult to project the rate of these changes. Some warming studies
have documented changes in tundra growth following two seasons of temperature
increases of 1 to 3 °C (Walker et al. 2006), but others found that 4 years of warm-
ing had no effect on subalpine plant community richness or distribution (Price and
Walker 1998, 2000). The range in results from different experiments may typify
future changes in the alpine tree line ecotone, because vegetation response is
influenced by growth-limiting factors, which differ by species, elevation, slope, and
topography (Chapin and Shaver 1985, Klanderud 2008). These limiting factors may
also change over time as warmer temperatures increase nutrient availability and
alter community structure and dynamics (e.g., competition for light) (Chapin et al.
1995, Klanderud and Totland 2005).
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Climate Change Effects on Biodiversity and Vegetation
Distribution

Projected Changes in Vegetation Biomes

Dynamic vegetation models simulate the combined effects of climate, plant toler-
ances, disturbance, and ecosystem processes (such as hydrology, carbon, and
nutrient cycles) on vegetation distributions (e.g., Lenihan et al. 2008). These models
typically project changes in coarse vegetation classifications, rather than individual
species. Rogers et al. (2011) used the dynamic vegetation model, MCL1, to project
changes in the area of vegetation biomes (e.g., grasslands, shrublands, temperate
coniferous forests, subalpine forests, and alpine tundra) for the western two-thirds
of Washington and Oregon, including the North Cascades. The MC1 model projects
changes in biomes using future climate data from GCMs. Rogers et al. (2011) used
future climate data from three GCMs and the A1B emissions scenario. Projections
from MC1 indicate that the distribution of some vegetation biomes may change
significantly in the North Cascades over the next century (fig. 5.4). Alpine tundra
almost completely disappears, and the area of subalpine forest decreases signifi-
cantly across the region for all three climate scenarios (table 5.1). Large areas of
existing maritime conifer forest on the west slopes of the Cascades are projected to
shift to drier temperate conifer forest (fig. 5.4).

The three MCL1 projections agree on these regional trends, but they show
differences in what the historical vegetation shifts to. For example, the projections
show similar declines in subalpine forest area but differences in the vegetation that
replaces it. Differences in future projections are mostly caused by differences in
the seasonal climate and magnitude of changes in precipitation and temperature
among the three climate scenarios. Projections with climate data from the Hadley
CM3 GCM (warmest [+4.5 °C] and drier [-5 percent precipitation] in the 2080s) (see
chapter 3) show the largest decline in maritime evergreen needleleaf forest and the
largest increase in temperate evergreen needleleaf woodland, temperate evergreen
needleleaf forest, and temperate shrubland (table 5.1). Projections with climate data
from the CSIRO GCM (least warming [+3.5 °C] and wettest [+15 percent]) show
the least change, although substantial areas of maritime and subalpine forest are
replaced with temperate needleleaf forest (table 5.1). Projections with climate data
from the MIROC 3.2 GCM (warmest future [+5.0 °C] and little precipitation change
[-1 percent]) show the smallest increase in temperate needleleaf forest, and much of
the subalpine forest is replaced by maritime evergreen forest (table 5.1). The MC1
model assumes an increase in plant water use efficiency with increased atmospheric
CO, (Rogers et al. 2011), which ameliorates the effect of lower water availability
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Figure 5.4—Projected changes in vegetation biomes from the MC1 dynamic global vegetation model.
Changes are relative to historical conditions (Kiichler potential vegetation) for climate scenarios
from three GCMs (MIROC, Hadley CM3, and CSIRO) under a high (A2) greenhouse gas emissions
scenario and for the period 2070-2099 (2080s). The CSIRO model is a relatively cooler and wetter
scenario, Hadley CM3 is a hotter and drier scenario, and MIROC is a hotter and wetter scenario.
Data source: Rogers et al. (2011) and Databasin.
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on projected changes in vegetation distributions. The scientific literature disagrees
about the degree to which water use efficiency will increase and offset lower plant
productivity associated with lower water availability (Law et al. 2002, Oren et al.
2001).

Projected Changes in Climatic Suitability for Tree Species

Both quantitative (correlative) and qualitative (subjective vulnerability indices) have
been used to evaluate the potential effects of climate change on forest and nonfor-
est species distributions in the PNW. Projected effects of climate change on tree
species in the PNW suggest widespread changes in equilibrium vegetation. Vulner-
ability assessments using process models (e.g., Coops and Waring 2011) and current
factors indicating general biogeographic vulnerability of species (e.g., Aubry et

al. 2011) indicate substantial risk for many species. Statistical models of species-
climate relationships (e.g., McKenzie et al. 2003) show that tree species have unique
climatic tolerances and thus climate change will affect them differently depending
on their tolerances (McKenney et al. 2011; Rehfeldt et al. 2006, 2008).

Species-climate relationships have been used to project future favorable climate
for species in western North America (McKenney et al. 2007, 2011; Rehfeldt et
al. 2006, 2008) and in Washington (e.g., Littell et al. 2010). Climate is projected
to become unfavorable for Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) in
more than 32 percent of its current range in Washington (Littell et al. 2010) (Fig.
5.5). For pine species in Washington, 15 percent of the current range will remain
climatically suitable for all pine species, whereas 85 percent will be outside the cli-
matically suitable range for one or more current pine species (Littell et al. 2010) (fig.
5.5). Coops and Waring (2010), using a single GCM (CCSM2) and a process model
(3PG), also projected that the range of lodgepole pine (Pinus contorta var. latifolia
Engelm. ex S. Watson) will likely decrease in the PNW. Rehfeldt et al. (2006) found
comparable changes in future lodgepole pine distribution using multiple models
(fig. 5.6). McKenney et al. (2011) summarized species responses across western
North America and found that the change in total tree species in the PNW is often
near balance (-5 to +10 species) or a loss of 6 to 20 species, but some scenarios have
subregional losses of 21 to 38 species.

Modeling species-climate relationships is a useful approach to understand the
potential effects of climate change on biogeography, particularly because a focus
solely on vegetation biomes may mask important changes in species dominance.
The models are useful indicators of where or when climatic variables may begin to
exceed species tolerances. However, most statistical models of species-climate rela-
tionships assume climate is the primary determinant of species presence or absence
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Figure 5.5—Changes in climatic suitability for multiple pine species (left) and Douglas-fir (right), based on climate
correlations with current species distributions. Data: Rehfeldt et al. (2006), analysis after Littell et al. (2010).
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Figure 5.6—Historical (left) and 2060s (2050-2079) changes in climatic suitability for lodgepole pine, based on
climate correlations with current species distributions. Data: Rehfeldt et al. (2006), analysis after Littell et al. (2010).
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and do not incorporate ecological interactions (e.g., competition), disturbance,
and species traits (including autecological characteristics) that predispose species
vulnerability to climate (Aubry et al. 2011).

Changes in Distribution of Rare Plant Species

The North Cascades is home to several rare vascular and nonvascular plants, many
of which have common traits that make them vulnerable to climate change. They
typically grow under narrow environmental conditions and are often at the margins
of their distributions where expansions and contractions are most likely to occur.
Several rare plants are growing at the southern extent of their ranges and are more
common farther north in southeastern Alaska or Haida Gwaii. Others occupy cold
microclimates with wet soils or high-elevation meadows and wetlands, microhabi-
tats that could be more susceptible to warmer temperatures, drier summers, and
reduced snowpack.

Climate Change Effects on Ecological Disturbances
Insects

Most native forest insects cause patchy defoliation or tree mortality when conditions
promote insect survival and undermine natural defenses of trees. Recent warming
has affected population dynamics of the native mountain pine beetle (Dendrocto-
nus ponderosae Hopkins) in colder parts of its range in British Columbia and the
Rocky Mountains. Warming has reduced thermal migration barriers and fatally
low winter temperatures, and synchronized populations to one life cycle per year
in areas where the time required for each generation was longer historically (e.g.,
Logan and Powell 2001). Increased vulnerability of hosts caused by moisture stress
and tree age were also factors driving the widespread outbreaks observed in these
regions. The mountain pine beetle has significantly affected forests in the North
Cascades, although the outbreaks have not been as large or continuous as in other
parts of the Western United States and Canada. In the North Cascades, it is likely
that higher winter temperatures have also relaxed thermal limitations on population
size, but tree vulnerability resulting from moisture stress and high stand density
are also important controls of recent outbreaks. Based on aerial detection surveys
by the U.S. Department of Agriculture Forest Service (USDA FS) and Washing-
ton Department of Natural Resources, the 30-year trend in mountain pine beetle
mortality shows increases in both lodgepole pine and whitebark pine (P. albicaulis
Engelm.) forests (fig. 5.7), although surveys in 2010 and 2011 detected decreases
(WADNR 2012a). These recent decreases are likely caused by the combined effects
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Figure 5.7—Mountain pine beetle mortality recorded from aerial surveys in the North Cascades from

1980 to 2012. Data: courtesy of A. Dozic, annual aerial survey, Washington Department of Natural
Resources, Resource Protection Division, Forest Health; U.S. Forest Service, Forest Health Protec-
tion; and Oregon Department of Forestry, Forest Health Management. Map concept from A. Dozic.

of above-average precipitation, below-average temperatures in spring, and previous

mortality of the most vulnerable host trees in affected stands (WADNR 2012a).
Aerial detection surveys between 1980 and 2011 show large areas of mortal-

ity from other host-specific bark beetles and defoliators. The eastern slopes of

the Cascades are experiencing increases in the area and severity of defoliation by

western spruce budworm (Choristoneura occidentalis Freeman) (fig. 5.8), although

a 20-year outbreak in the southern Cascade Range of Washington has recently
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Figure 5.8—Western spruce budworm defoliation recorded from aerial surveys in the North
Cascades from 1980 to 2010. Data: courtesy of A. Dozic, annual aerial survey, Washington
Department of Natural Resources. U.S. Forest Service, Forest Health Protection; Protection
Division, Forest Health; and Oregon Department of Forestry, Forest Health Management. Map
concept from A. Dozic.

subsided (WADNR 2012a). Maritime forests of the western Cascades experienced
recent outbreaks of Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins), fir
engraver (Scolytus ventralis LeConte), and western balsam bark beetle (Dryocoetes
confusus Swaine), but outbreaks appear to be ending with the area affected declin-
ing in recent years (WADNR 2012a). The North Cascades are experiencing a new
outbreak of western hemlock looper (Lambdina fiscellaria lugubrosa Hulst) in

old western hemlock (Tsuga heterophylla [Raf.] Sarg.) forests (WADNR 2012a).
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Tree mortality caused by the balsam woolly adelgid (Adelges piceae Ratzeburg),
a nonnative insect that affects fir species, has also increased throughout the North
Cascades in the last 30 years (WADNR 2012a).

All of these insects have relationships with seasonal weather conditions, but
currently only the mountain pine beetle, western spruce budworm, and spruce
beetle (Dendroctonus rufipennis Kirby) have well-documented relationships with
climate (Bentz et al. 2010, Hicke et al. 2006, Littell et al. 2010). As temperatures
increase, habitat that was previously unsuitable for the mountain pine beetle will
likely become suitable (Hicke et al. 2006, Littell et al. 2010), exposing pine trees at
high elevations to new outbreaks. By the end of the 21% century, the total habitat for
the mountain pine beetle in Washington will decline under some scenarios (Hicke
et al. 2006), but not before it has had decades to expand its range (Bentz et al. 2010,
Littell et al. 2010) (fig. 5.9). The timing of bud break in Douglas-fir and grand fir
(Abies grandis [Douglas ex D. Don] Lindl.), which is linked to soil temperature, can
greatly affect the survival of western spruce budworm. If bud swelling occurs later
in the season and is not synchronized with insect emergence, budworm survival
will decline. In addition, survival can be reduced by warmer fall temperatures and
atypical fall or spring frosts outside the period of insect dormancy.

Fire Regimes

Area burned by wildfire in PNW forests is sensitive to climate (Littell et al. 2009,
2010; McKenzie et al. 2004), but the most important climatic mechanisms and

the sensitivity to climate differ by forest type (Littell et al. 2009, 2010). Before
Euro-American settlement and in the first half of the 20" century, the area burned
both east and west of the Cascade crest was probably much larger than what has
been observed in recent decades. Fires of many hundreds of thousands of hectares
burned in the western Cascades in the 1700s (Henderson et al. 1992). Generally,
warmer and drier summers precondition PNW forests by drying available fuels
over large areas (Littell et al. 2010). The occurrence of fire ignitions may be
equally related to low spring snowpack (Cansler 2011) in some forests in the North
Cascades.

Between 1980 and 2006, the area burned by fire varied by ecoregion (fig. 5.10),
and during this period, the relationship between area burned and climate was
stronger in the eastern Cascades, where fuels are more likely to dry sufficiently
to carry fire. In the western Cascades, the area burned was lower because a rare
combination of prolonged drought, high temperature, high wind, and low humidity
was required to dry fuels sufficiently to sustain the spread of a large fire.

As temperatures
increase, habitat
that was previously
unsuitable for the

will likely become

mountain pine beetle
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5.9—Historical (1971-2000) probability of climatically suitable habitat for the mountain pine beetle
in the North Cascades and changes for the 2030s (2001-2030) and 2080s (2071-2100) using SRES
A2 emissions and the CNCRM3 global climate model. For the historical period, probability values
reflect the product of the probability of adaptive seasonality and cold survival, with high values
(closer to 1) indicating climatically more suitable habitat and low values (closer to zero) indicat-

ing climatically less suitable habitat. For changes in the 21% century, positive values (red) indicate
increases in suitability compared to historical and negative values (green) indicate decreases. Data:
Bentz et al. (2010).
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Figure 5.10—Area burned in the western and eastern Cascades (Washington and Oregon), 1980—
2009. The data from 2010 were provisional at the time of analysis. Data: Littell and Gwozdz (2011).

. . . . ) Climate change will
Climate change will almost certainly increase area burned by fire (Littell et

al. 2010) and biomass consumed in PNW forests (Raymond and McKenzie 2012).
Based on statistical climate-fire modeling (average of two GCMs [CGCM3 and
ECHAMS5] for A1B emissions), area burned by wildfire in the PNW (Washing-
ton, Oregon, Idaho, and western Montana) is projected to be 0.3 million ha in the
2020s, 0.5 million ha in the 2040s, and 0.8 million ha in the 2080s (Littell et al.
2010). The probability of exceeding the 95" percentile area burned for the period
1916-2006 increases from 5 to 48 percent by the 2080s (Littell et al. 2010). The area
burned is expected to increase on average by a factor of 3.8 in forested ecosystems
(Western and Eastern Cascades, Okanogan Highlands, Blue Mountains) compared
to 1980-2006 (fig. 5.11). Using the MC1 dynamic vegetation model, Rogers et al.
(20112) projected increases in area burned of 76 to 310 percent (fig. 5.12), depend-
ing on alternative scenarios for climate and fire suppression. Climate scenarios
included data from three GCMs (CSIRO, MIROC 3.2, and Hadley CM3) and a high
(A2) emissions scenario.

In addition to annual area burned, the frequency, size, and severity of indi-
vidual fires in the North Cascades also could change in a warmer climate. Warmer
July temperatures are significantly correlated with increasing severity (Cansler
2011), and burn severity is projected to increase 29 to 41 percent by 2100, compared
to 1971-2000 (Rogers et al. 2011). However, relative to annual area burned, less
quantitative information is available on how fire severity will respond to changes in
climate.

almost certainly
increase area burned
by fire and biomass
consumed in Pacific
Northwest forests.
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Figure 5.11—Expected changes in area burned for scenarios of future climate and hydrology in

the western and eastern Cascades (Bailey ecosections). The B1 scenario represents less warming
with lower greenhouse gas emissions. The A1B scenario represents more warming with higher
greenhouse gas emissions, and is the highest average of the SRES scenarios until the 2040s. The area
burned in both ecosections increases substantially, but the rate of increase is higher in the western
Cascades than the eastern Cascades. Numbers beneath the box indicate the average annual area
burned for the historical period and three future periods (Littell et al. 2010).
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Figure 5.12—Changes in cell fraction area burned from the MC1 dynamic global vegetation model.
Data: Databasin (Rogers et al. 2011).
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The effects of climate change on forest vegetation will also depend on the
degree to which fire exclusion has affected forest density and fuels (Hessburg et al.
2005), particularly in forests that had low- to moderate-severity fires regimes before
Euro-American settlement. In these forests where tree density and ladder fuels have
increased because of fire exclusion, this forest structure will exacerbate climate-
driven increases in area burned and severity of burns. In forests where mixed- and
high-severity fires with longer fire return intervals (50 to 100 years) dominated the
landscape (e.g., lodgepole pine stands, subalpine forests, and west-side Douglas-fir),
increases in area burned may lead to larger, more homogeneous patches precondi-
tioned for future fires (Perry et al. 2011). Fire return intervals in maritime forests
of the western Cascades are long enough (more than 100 years) that fire suppres-
sion has not affected forest structure (Agee 1993) and changes in fire regimes will
primarily be driven by changes in climate.

Forest Pathogens

Climate influences pathogen range and survival, host vulnerability, and host-
pathogen interactions, but potential effects of climate change on pathogens are
uncertain. Root rot pathogens could increase because of stressed host trees (cli-
mate or other stressors) (Chmura et al. 2011), and Armillaria in Douglas-fir could
increase in a warmer climate (Klopfenstein et al. 2009). Foliage fungi, such as
Swiss needle cast (Phaeocryptopus gaeumannii [T. Rhode] Petr.) (Chmura et al.
2011) appear to be affected by spring and summer precipitation. However, making
generalizations about climate-pathogen relationships is difficult because those
relationships are likely to be species- and host-specific.

Kliejunas (2011) evaluated the relative risk of disease damage in forests of
the Western United States by combining the likelihood of increased damage and
the consequences of damage for several pathogen species. Risk potential depends
on the disease and climate scenario (warmer, wetter vs. warmer, drier). By 2100,
Cytospora canker of alder, dwarf mistletoes (Arceuthobium spp.), and Alaska
yellow-cedar decline would have high risk. In a warmer, drier climate, Armillaria
is expected to have very high risk. In a warmer, wetter climate, Armillaria and
dwarf mistletoe are expected to have high risk, and sudden oak death (Phytophthora
ramorum Werres et al.) would have very high risk (Kliejunas 2011). The conse-
guences of increased white pine blister rust (Cronartium ribicola J.C. Fisch.) would
be high (it has caused more damage and cost more to control than any other conifer
disease), although its risk potential with climate change is low because it is associ-
ated with a cool, moist climate. Therefore, warmer temperatures would not favor
blister rust, although more winter and spring precipitation could favor the pathogen
(Kliejunas 2011).
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Invasive Species

Several hundred nonnative species grow in the North Cascades, but many are not
currently invasive. Nonnative species, like native species, will respond individually
to changes in climate based on species-specific physiological tolerances. However,
many invasive species have common life history traits that distinguish them from
native species and may cause them to be favored by a warmer climate and more
disturbance of native vegetation. Many invasive species have broad climatic toler-
ances, large geographic ranges, and life history traits that facilitate rapid dispersal
and growth (e.g., long-distance dispersal, low seed mass, short juvenile periods, and
responsiveness to resource availability). Climate change may affect populations of
invasive species by altering mechanisms for transport and introduction, reducing
climatic constraints on existing populations, and increasing the impact on ecosys-
tems by changing competitive interactions with native species (Hellmann et al.
2008). Climate change may link geographic regions that were previously separated
by eliminating climatic barriers, thus facilitating the spread of invasive species
(Hellmann et al. 2008). Changes in climate could also reduce the range of some
currently invasive species, although this is less likely because most invasive species
grow over a wide range of environmental conditions, suggesting they will be able
to tolerate changes in climate better than native species. Experiments with single
species suggest that some invasive species may increase productivity in response
to higher atmospheric CO,, and nitrogen deposition, but results are less clear for
responses of invasive species growing in diverse plant communities in the natural
environment (Dukes and Mooney 1999). More fire and insect outbreaks are likely
to increase opportunities for invasive species to establish, because invasive species
are typically better adapted than native species to take advantage of rapid availabil-
ity of resources.

Cheatgrass (Bromus tectorum L.) is an exotic, invasive species of particular
concern for North Cascades National Park (NOCA) and OWNF on the east side
of the Cascades. Cheatgrass is an annual grass that is stimulated by fire and can
prevent native grasses from successfully reestablishing after fire. Cheatgrass can
permanently alter fire regimes if it persists because of its high flammability relative
to native grasses (Brooks et al. 2004, Keeley 2006). Analysis of the climatically
suitable habitat of cheatgrass throughout the Western United States indicates that
climate change may cause a northward shift in its range, making north-central
Washington more climatically suitable for cheatgrass (Bradley 2009). Elevated lev-
els of atmospheric CO, increase cheatgrass productivity and biomass (Ziska et al.
2005). Furthermore, more frequent fire could favor existing populations of cheat-
grass, creating a positive feedback that further alters fire regimes and decreases the
potential for native understory species to regenerate.
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Disturbance Interactions

The effects of climate change on the interaction of multiple disturbances (insects,
fire, pathogens, and invasive species), or at least their combined influence (fig.
5.13), will affect the region in novel ways in the future. For example, Hicke et al.
(2012) developed a conceptual model of how insect mortality may affect fire, and
concluded that the effects are time and system dependent. Insect mortality may
increase the potential for fire occurrence and severity shortly after an outbreak but
decrease severity in the long term. Box 5.1 describes another example of climate
and disturbance interactions in whitebark pine populations in the North Cascades.

@& ADS Insect and Disease: 19972008
O MTBS fire: 1984-2008
=

Figure 5.13—Fire perimeters (1984-2008) and aerial detection survey (ADS) insect and disease
detection (1997-2008) show the recent disturbance area in the North Cascade Range. The total area
affected is a high proportion of the landscape in the eastern Cascades. Data: Monitoring Trends in
Burn Severity (MTBS) database, http://www.mtbs.gov.
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Box 5.1—Climate and Disturbance Interactions:
Whitebark Pine in the North Cascades

The current status of whitebark pine in the Pacific Northwest (PNW) illustrates the
effects of interacting disturbances and climate change on an ecologically valuable
species. Whitebark pine grows at high elevations in the North Cascades and is typi-
cally found in small isolated populations on peaks and ridges. It is considered a key-
stone species because of its importance as a food source for several wildlife species.
It also contributes to the character of high-elevation wilderness in the national forests
and parks.

Whitebark pine populations are declining because of mortality associated with white
pine blister rust, mountain pine beetle, and perhaps lower fire frequency in the past
century (Ward et al. 2006). Whitebark pine forests are projected to become more
climatically suitable for mountain pine beetle (Hicke et al. 2006, Littell et al. 2010,
Logan and Powell 2001, Logan et al. 2010). White pine blister rust has low risk poten-
tial with climate change, although more precipitation in spring and winter could favor
the rust. Fire regimes and fire effects differ within the range of whitebark pine in the
PNW. Fire can increase regeneration in wetter, more productive sites where compe-
tition with late-seral species is high, but fire can decrease populations in drier sites
where regeneration after fire is slow (Ward et al. 2006). Thus, more area burned will
likely affect populations differently depending on local fire regimes. The response of
whitebark pine to direct effects of climate and indirect effects of climate on disturb-
ances will differ within its range. Loss of whitebark pine, which is an early-
successional species, may reduce resilience of these areas to climate change because
it facilitates establishment of other species (Resler and Tomback 2008).

McKenzie et al. (2004, 2009) developed conceptual scenarios of future change
in forested ecosystems and described plausible ecological mechanisms for the
interaction of climate effects on vegetation, insects, and fire regimes. Novel for-
est conditions can emerge from interactions that are rare in the historical record.
The rate of change in vegetation and species diversity is likely to be controlled by
climate-driven changes in disturbances and the climate present during postdis-
turbance vegetation response, both of which are critical for understanding future
vegetation trajectories (Littell et al. 2010, McKenzie et al. 2009).

Vegetation Management Objectives

Management objectives for vegetation in the national forests and parks in the NCAP
differ based on agency policies, mandates, and management legacies. However,
management by zone designation (e.g., reserves vs. nonreserves) and fire regimes
are similar across agencies in many ways. National Park Service (NPS) and USDA
FS objectives for managing vegetation in the Pacific Northwest became more simi-
lar with implementation of the Northwest Forest Plan (NWFP) (USDA and USDI
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1994), which shifted vegetation management on national forests from an emphasis
on sustained yield and multiple use to an emphasis on ecosystem management.
Management objectives also became more similar with an increase in the area of
Congressionally designated wilderness and wild and scenic rivers in the national
forests. Restrictions on management in reserves in national forests and undeveloped
areas in national parks limit options for managing vegetation to increase resilience
to climate change, but these large areas of wilderness have been relatively less
affected by past management and may have greater ecological capacity to adapt to
climate change if ecological processes such as fire are maintained.

The Northwest
Forest Plan changed
management focus
from sustained

Mount Baker-Snoqualmie and Okanogan-Wenatchee yield and multiple

National Forests uses to ecosystem
management and

wildlife habitat.

General objectives for managing vegetation on the national forests are outlined

in regional policies and land and resource management plans (i.e., forest plans) of
each forest, which have a 15- to 20-year planning timeframe. However, the NWFP
amended the forest plans of national forests within the range of the northern spot-
ted owl (Strix occidentalis caurina Merriam). The NWFP significantly changed
forest management objectives from a focus on sustained yield and multiple uses to
a focus on ecosystem management and wildlife habitat. The primary objective of
the NWFP is to provide for long-term sustainability of ecosystems and species that
inhabit them. Vegetation management under the NWFP focuses on maintaining and
protecting late-successional forests habitat for the northern spotted owl and marbled
murrelet (Brachyramphus marmoratus Gmelin). The NWFP established a system of
reserves that included Congressionally designated reserves (national parks, national
monuments, wildernesses, and wild and scenic rivers), late-successional reserves
(LSRs), riparian reserves, and administratively withdrawn areas (areas previously
reserved from timber harvest by existing plans). Nonreserve areas include managed
late-successional areas less than 80 years old, adaptive management areas (AMAS),
and matrix (land not otherwise designated). In reserves, commercial timber har-
vest is prohibited and only limited silvicultural activities are permitted, so most
silvicultural treatments occur in nonreserves. Despite the emphasis of the NWFP
on long-term sustainability, the plan did not consider the possible effects of climate
change on objectives or the designation of a static system of reserves.

The NWFP applies to the entire Mount Baker-Snoqualmie National Forest
(MBSNF), so objectives for forest management on the MBSNF are based on the
goals and guidelines of the NWFP. The NWFP shifted the focus of vegetation
management on MBSNF from commercial timber harvest to protection of late-
successional forest habitat, restoration of previously harvested stands, and surveys
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of key species. Silvicultural treatments are limited to primarily nonreserve areas,
which are only 5 percent of the forest area. In addition to silvicultural treatments
and forest restoration, vegetation management includes programs for managing and
monitoring rare plants, invasive species, fire, and hazard trees.

The primary objective of vegetation management in the OWNF is to restore fire
regimes and wildlife habitat by managing ecological processes, stand structure, and
species composition of fire-adapted forests that have been altered by past timber
harvest and fire exclusion. The NWFP applies to most of the OWNF, except the
area east and north of the Chewuch River. The area east and north of the Chewuch
River is managed under the East-Side Screens Regional Management Plan (USDA
FS 1998). Okanogan-Wenatchee National Forest is currently revising its forest plan,
with the final decision planned for spring 2015. The revised forest plan will provide
guidance for vegetation management that is consistent with the NWFP but specific
to management needs of fire-adapted forests. General guidance for vegetation man-
agement on the OWNF is also provided by the Forest Restoration Strategy (USDA
FS 2012a). In addition to forest restoration and silviculture, the OWNF manages
fire, rare species, invasive species, and hazard trees.

Originally the NWFP included provisions for more active management of LSRs
in fire-adapted forests east of the Cascade crest, and it was subsequently revised
(USFWS 2008) to reflect an even greater need to manage these fire-adapted forests
affected by fire exclusion (Spies et al. 2006). Revisions to the NWFP recognized
that the original plan did not adequately reflect the current and potentially increas-
ing threat to LSRs of severe wildfires and insect and pathogen outbreaks in the
absence of fire and fuels management. Relative to the MBSNF, a greater proportion
of the OWNF (60 percent) is not designated as wilderness or reserves under the
NWFP, thus active management is more prevalent on the OWNF. The objectives
of the East-Side Screens Regional Management Plan are also to protect and restore
late-successional wildlife habitat, but by managing for natural range of variation,
rather than a system of reserves, and limiting the size of trees that can be harvested.

North Cascades and Mount Rainier National Parks

National Park Service management policies (USDI NPS 2006) focus on the use of
natural processes to maintain native plant species, but managers may intervene to
(1) manage populations that have been threatened by human influences; (2) accom-
modate intensive development in areas designated for developed uses; (3) protect
rare, threatened, or endangered species; or (4) protect human safety and property.
Given the emphasis on “natural process” and “native” species, one of the biggest
challenges to vegetation management in the national parks will be to define what
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processes are natural and which species are native as species ranges shift and
disturbance rates increase with climate change. Attribution of climate change to
human causes may be necessary to justify some interventions under current NPS
policies. The NPS recognizes that natural processes and species are dynamic, and
successful protection of these processes often requires protection of larger areas
than are contained within park boundaries. Toward this end, the NPS collaborates
with other agencies to conserve populations and habitats of native species outside
of park boundaries and to monitor and collect data for use in plant management
programs. Thus interagency collaboration in a regional approach to climate change
adaptation is consistent with current NPS policies.

The primary objective of vegetation management in NOCA is to protect the
ecological and genetic integrity of plant communities by protecting natural pro-
cesses. The park was established to preserve mountain scenery including several
aspects of vegetation: (1) diverse and extensive tracts of habitat, (2) dynamic
ecosystem processes, (3) wetlands, and (4) diverse plant communities with rare
species. Mount Rainier National Park was established to “...provide for the preser-
vation from injury or spoliation of all timber, mineral deposits, natural curiosities,
or wonders within said park, and their retention in their natural condition.” Similar
to NOCA, the General Management Plan for Mount Rainier National Park (MORA)
directs managers to protect and maintain plant communities and ecological pro-
cesses and to restore plant communities when damaged (USDI NPS 2011a). Subal-
pine and alpine meadows are given special protection and are a focus of vegetation
management because these systems are critical to the history and character of the
park. Subalpine and alpine meadows are iconic ecosystems valued for wildlife
habitat, viewing wildflowers, and the general recreation experience of visitors.

Vegetation Management Practices
Silviculture and Forest Restoration

Most silvicultural treatments on the MBSNF are designed to restore and develop
late-successional forest habitat. Commercial harvest and noncommercial thin-

ning are used to restore late-successional habitat, with the secondary objectives of
producing timber and increasing tree vigor. However, the annual area treated on
the MBSNF is currently small. Commercial timber harvest in the MBSNF occurs
in several hundred hectares per year and noncommercial thinning in less than 300
ha per year in LSRs less than 80 years old, matrix lands, and AMAs. Common
silvicultural prescriptions include variable-density thinning, retention of minor tree
species to maintain diversity, and inclusion of some unharvested patches and large
openings to promote horizontally diverse stand structure. Current treatments do
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not reflect expected climate-driven changes in species distributions, tree vigor, or
disturbance rates.

Current objectives of silvicultural treatments and restoration on the OWNF are
to restore natural forest processes, patterns, and function in order to increase forest
resilience to changes in climate and disturbance regimes. The area is managed for
historical and future range of variability in species composition and stand struc-
ture (Gértner et al. 2008). Specific management goals are to reduce stand density,
shade-tolerant fir species, and elevated fuel loads that now cover a greater portion
of the forest because of past timber harvesting and fire exclusion. These changes in
forest structure and composition have led to an increase in severe wildfire, defoliat-
ing insects, dwarf mistletoe, bark beetles, and root diseases (Hessburg et al. 2000).
Managers on the OWNF use a landscape planning tool (Ecosystem Management
Decision Support framework; Reynolds and Hessburg 2005) to determine priority
areas for restoration treatments that will increase forest resilience. After selecting
priority areas, specific silvicultural prescriptions are determined and projects are
implemented based on site-specific conditions. Forest restoration activities on the
OWNF include commercial thinning, noncommercial thinning, and prescribed fire.
Approximately 120 000 m’ yr'1 are harvested, but timber harvest is limited by the
lack of mills in the region and the high cost of transporting logs to distant mills.

Fire and Hazardous Fuel Management

Historically, maritime coniferous forests and subalpine forests that dominate the
MBSNF burned infrequently, limiting the need for fuel treatments and prescribed
fire. Given the emphasis on historical fire regimes and the objectives of safety
and protecting resources, fire management currently focuses on fire suppression.
Forests in MORA have a similar historical fire regime, but the park developed a
fire management plan in 2005 (revised in 2011) (USDI NPS 2005) with the goals
of ensuring firefighter and public safety, protecting natural and cultural resources,
and restoring and maintaining natural fire regimes. Suppression is a priority near
park administrative facilities, access roads, and developed zones. Elsewhere in
the park, managers have the option of managing wildfires to encourage fire as a
natural process. The plan recognizes that fire severity and extent may change as
climate warms and that park management will need to adapt to these changes in
fire regimes. The plan also recognizes that fire is a large-scale process and needs to
be managed in collaboration with adjacent landowners.

The OWNF and NOCA actively manage fire and fuels in forests with low- and
mixed-severity fire regimes east of the Cascade crest. The OWNF Forest Restora-
tion Strategy and revised forest plan recognize fire as an essential process for
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maintaining resilient forest and nonforest ecosystems, and support active use of
fire. However, protection of human life is the highest priority of fire management,
and fire managers set priorities for protecting communities, property, and natural
and cultural resources based on the values to be protected, risks to human health
and safety, and costs of protection. Fire management activities include using
planned and unplanned ignitions for multiple resource objectives. However, air
quality associated with smoke emissions often limits the area that can be burned for
ecological objectives. Managers use natural and artificial regeneration (i.e., plant-
ing seedlings) after harvests and fire, but planting has declined recently because it
results in higher tree densities that require subsequent thinning.

The objectives of the NOCA fire management plan (USDI NPS 2007) are
to ensure the safety of firefighters and the general public, allow for natural fire
processes, use adaptive management to guide future fire management, and educate,
inform, consult, and collaborate with stakeholders and adjacent land managers. Fire
management activities include suppression, prescribed fire, and mechanical treat-
ment of hazardous fuels. Fires are suppressed to protect human life and property
and to prevent fires from burning into Canada or causing undesirable effects to
threatened and endangered species and their habitats. Prescribed fire and wildfires
are managed in both wilderness and developed zones. When conditions allow,
lightning-caused fires can be managed to meet multiple objectives in wilderness.
North Cascades National Park Complex monitors fire effects of prescribed burns
and wildfires. These data are used in an adaptive management process to determine
if wildfires and prescribed burns are achieving desired objectives and ecological
conditions.

Hazard Tree Management

Although hazard tree management occurs at small scales in local areas, it is an
important component of vegetation management because hazard trees present a risk
to human life and property. A hazard tree has a detectable defect that could cause

it to fall and strike a person or property in a developed area (e.g., campground,
building, or parking area). Managers monitor hazard trees when they pose a threat
to people or property, and mitigate potential damage through site closure, pruning,
reducing tree height, or complete removal of the tree.

Plant Ecology Programs

Plant ecology programs in MORA and NOCA include nonnative plant management,
long-term monitoring, rare plant protection, environmental compliance surveys, and
restoration. The condition of plant communities is monitored, and managers miti-
gate damage and restore natural vegetation when it is determined that human use
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has degraded an area. Restoration programs focus on areas damaged by recreational
use, road construction, or other administrative actions. The majority of restoration
projects in MORA are in subalpine forest, and projects in NOCA are concentrated
in lower elevation areas associated with exotic plants or erosion control. Restora-
tion in MORA has occurred mostly in subalpine meadows that have been damaged
by recreational activity, and in areas where construction has damaged vegetation.
Restoration in NOCA has occurred mostly in subalpine areas near Cascade Pass, as
well as areas near Ross Lake, Diablo Lake, and Lake Chelan.

Both parks maintain greenhouses and propagate the majority of plants used
in restoration programs. Seed or propagule collection is conducted adjacent to
restoration sites to protect genetic integrity of the plant communities. Roadside
revegetation projects often use seed programs conducted by the Natural Resources
Conservation Service or private contractors and use a larger seed collection area.
Both parks collaborate with the USDA FS to screen whitebark pine for genetic
resistance to white pine blister rust.

Federal law requires national forests and parks to protect threatened and endan-
gered plant species listed by the USFWS under the federal Endangered Species Act
(ESA) of 1973. The national parks also protect plants on the state of Washington,
Natural Heritage Program list of rare plants (WADNR 2012b). The national forests
also monitor and manage species on the USDA FS Pacific Northwest Region
sensitive species list, which includes federally listed species. Regardless of how
these sensitive species will be affected by changes in climate and disturbances, the
agencies are legally required to protect and maintain current populations of listed
species. Thus adaptation planning must consider this current management context.

The MBSNF has 34 species on the PNW sensitive list and also manages 54
species of lichens, bryophytes, fungi, and vascular plants known as “survey and
manage” species under the Survey and Manage Settlement Agreement (2011).

The OWNF manages 91 plant species on the PNW sensitive species list that grow
in a wide range of environments from alpine tundra to low-elevation forests, and
has two suspected and two known federally listed plant species, two of which are
local endemics. There is only one federal candidate species in NOCA, but the park
has 24 vascular plants that are listed by the state of Washington, Natural Heritage
Program. There is one species of federal concern, three state sensitive species, four
state watch species, and one priority macrofungus species in MORA.

Invasive Species Management

National forests and parks in the NCAP already coordinate management of invasive
species and collaborate with other agencies in the region. Exotic species are those
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that occupy or could occupy lands directly or indirectly as a result of deliberate

or accidental human activities. Invasive species are more specifically defined as
nonnative species that are aggressive and pose an ecological threat to the integrity
of native vegetation (USDI NPS 2006). Both agencies use an “early detection-rapid
response” approach to identify potentially problematic invasive species as early as
possible, develop a strategy for treatment, and implement timely treatment where
eradication or control are feasible.

Direction for management of invasive species on the national forests is given by
the Pacific Northwest Region, Invasive Plant Program, Preventing and Managing
Invasive Plants Record of Decision (USDA FS 2005), which standardizes invasive
plant management. Guided by the region’s environmental impact statement (EIS)
for invasive plants, the individual national forests operate under a site-specific EIS
or environmental assessment (EA). The forest-level EIS for the OWNF treat 2000
to 4000 ha per year in priority watersheds. The MBSNF is currently operating
under an EA, which targets management for 51 nonnative invasive plants, and is
developing an EIS to expand treatment procedures and manage invasive species in
wilderness areas.

The 2005 USDA FS regional invasive plant program expands invasive plant
prevention with more options for treatment and control, and increases emphasis
on early detection, monitoring, and restoration of native plant communities. The
MBSNF and OWNF both emphasize education for recognizing, reporting, and
preventing the spread of invasive species, especially in high-priority areas such as
portals to wilderness. The national forests also replant sites previously treated for
invasive species with native species to prevent reinvasion. Seed, mulch, and gravel/
fill materials are required to be “weed free.”

The MORA contains an estimated 152 nonnative invasive species, approxi-
mately 15 percent of the park flora. The NOCA contains 225 known nonnative
species, 40 of which are currently deemed invasive and targeted for control (USDI
NPS 2011b). The park recently completed an EA for management of invasive non-
native plants (USDI NPS 2011b). Both parks utilize an integrated pest management
program to eradicate or control invasive species, restore invaded areas, and detect
and prevent new invasions. Control methods for invasive species include manual,
mechanical, biological, or chemical treatments. Chemical treatments are generally
used in limited locations and for species for which this is the only effective control
method. Invasive species management also includes inventory and monitoring,
restoration of native plant communities, and outreach, education, and collaboration.

Federal agencies use

an “early detection-
rapid response”
approach to identify
problematic invasive
species, develop a
treatment strategy,

and implement timely

treatment.
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Changes in population dynamics of invasive species will challenge these cur-
rent management practices for invasive species. Climate change could challenge the
definition of invasive species because some currently invasive species may dimin-
ish, some nonnative species that are not currently invasive may become invasive,
and native species may experience range shifts and grow in places where they have
not historically. Current methods of chemical, biological, and mechanical control of
invasive species may become less effective in a changing climate (Hellmann et al.
2008).

Inventory and Monitoring

National forests and parks in the NCAP inventory and monitor vegetation, dis-
turbances, and priority ecological indicators. The USDA FS Forest Inventory and
Analysis (FIA) program monitors status and trends in forests on both USDA FS
and NPS lands (USDA FS 2012b). The FIA program periodically inventories forest
vegetation, fuels, and soils. The USDA FS Pacific Northwest Regional Ecology
Program also inventories plant communities and monitors tree growth. The USDA
FS Health and Monitoring Program is an interagency program that detects and
evaluates forest insects and pathogens on all lands through aerial and ground-based
surveys (USDA FS 2012c). In Washington, this program conducts annual aerial
surveys of forest insects and pathogens in coordination with WADNR. These
monitoring programs are not specifically designed to detect trends associated

with climate change, but the data collected can be used to assess recent effects of
changes in climate.

Long-term monitoring of forest, subalpine, and alpine ecosystems in MORA
and NOCA is implemented in partnership with the North Coast and Cascades
Network Inventory and Monitoring Program. Forest monitoring focuses on Doug-
las-fir/western hemlock forests (600 to 900 m) and cool, dry subalpine forests (1500
to 1800 m). Monitoring includes annual assessment of tree mortality and 5-year
reviews of growth and recruitment (Acker et al. 2010). Monitoring of alpine and
subalpine ecosystems includes health of whitebark pine stands, trends in composi-
tion and structure of subalpine and alpine vegetation, soil temperatures, and snow
cover (Rochefort et al. 2012).

Adapting Vegetation Management in a Changing
Climate

During the NCAP workshop, scientists and managers reviewed the vulnerability of
vegetation to changes in climate and disturbances and current vegetation manage-
ment practices. Based on this information, workshop participants identified options



Climate Change Vulnerability and Adaptation in the North Cascades Region, Washington

Box 5.2—Themes for Adapting Vegetation Management
in the North Cascades

Four themes for adapting vegetation management to climate change emerged from the
North Cascadia Adaptation Partnership (NCAP) workshop on vegetation and ecological
disturbances.

1. Ecosystem management is highly compatible with climate change adaptation.
Ecosystem management (Chistensen 1996, USDA and USDI 1994) as the guiding para-
digm for management on the Mount Baker-Snoqualmie and Okanogen-Wenatchee
National Forests is compatible with adapting vegetation management to climate change.
Ecosystem management requires managing for long-term ecological sustainability
(guided by historical variability and tempered by climate change) and is based on a sound
understanding of ecology, use of ecological models, and recognition that ecosystems are
dynamic, all critical components of adaptation planning. Several adaptation options iden-
tified in the workshop are consistent with current ecosystem management practices, such
as accelerating development of late-successional forests and restoring ecological processes
associated with disturbance regimes. However, climate change creates a new context with
which to evaluate specific objectives of ecosystem management.

2. Management objectives of the National Park Service for protecting biologically
diverse and functioning ecosystems and processes by mitigating adverse effects of
humans are highly compatible with climate change adaptation. Several adaptation
options identified in the NCAP workshop focused on reducing existing human-induced
threats to vulnerable species and ecosystems. Reducing current human-induced threats
can improve the potential for species and ecosystems to naturally adapt to changes in
climate. However, as climate continues to change, additional actions will be necessary to
maintain resilience of ecosystem function and process.

3. Adaptation options focused on “no regrets” strategies. “No regrets” strategies are
robust to uncertainty in future climate, and often include current management practices
aimed at restoring ecosystem processes. These strategies require placing greater impor-
tance on current management actions that facilitate resilient ecosystems regardless of the
exact effects of climate change. Many adaptation strategies identified in the workshop
included management practices that are already in place, but participants identified ways
that climate change may increase urgency, shift priorities, or require additional resources
and collaboration to ensure that current objectives can still be achieved in a changing
climate. Given inherent uncertainties in climate change and effects on vegetation, “no
regrets” strategies are a conservative way to move forward.

4. Adaptation strategies differed more by management zone and fire regime than by
agency. Some adaptation strategies differed based on differences in the agency mandates
of U.S. Department of Agriculture Forest Service and National Park Service, but adapta-
tion strategies differed more based on actions that could be implemented in developed and
intensively managed areas vs. reserves and wilderness. Adaptation for managing fire also
differed more based on historical fire regimes and past fire management than by agency,
with different options identified for fire-adapted forests than for forests with historically
infrequent fire. Although, some adaptation options were more applicable to reserves (i.e.,
late-successional reserves and wilderness) and others to nonreserves (i.e., damaged areas
and developed zones in parks; matrix, adaptive management areas, and national forest
lands outside of the Northwest Forest Plan area), the coordination between the agencies
shows promise for implementing an “all lands approach” to climate change adaptation.
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for adapting management to climate change with the goals of reducing vulnerability
and increasing resilience. Workshop participants identified adaptation strategies
associated with increasing resistance, resilience, and response (Millar et al. 2007).
To move beyond these general concepts, participants also identified specific on-the-
ground tactics and appropriate timeframes for implementation. Short-term tactics
are those that are already being implemented or could be implemented based on
current resources and scientific knowledge. Long-term tactics may be implemented
as uncertainty in climate change effects is reduced or as more resources become
available for adaptation. Participants also identified barriers, opportunities, and
research needs for implementing adaptation strategies and tactics. Four general
themes for adapting vegetation management to climate change emerged from the
workshop and subsequent discussions with scientists and managers (box 5.2).

Adaptation Options for Managing Ecological Disturbances

Managers may consider adapting vegetation management practices to increase
both stand and landscape resilience to disturbance as rates of insect, pathogen, and
fire disturbances increase (Dale et al. 2001, Littell et al. 2012, Millar et al. 2007).
Workshop participants identified several strategies and tactics for increasing stand
and landscape resilience to disturbances (table 5.2), starting with existing practices
that are already designed to increase resilience to disturbance. These practices will
continue to be useful as climate changes, but modifications or new approaches may
become increasingly necessary to increase resilience as climate-driven changes in
disturbance regimes are realized (Millar et al. 2007).

Current management in MBSNF to thin stands and accelerate development of
late-successional habitat can also increase resilience to disturbance by reducing
stand density and summer moisture stress, thus increasing tree vigor and reducing
susceptibility to insects and pathogens. Current silvicultural prescriptions could be
modified to increase resilience by further reducing tree density and creating gaps
to favor establishment of drought-tolerant species (Halofsky et al. 2011, Littell et
al. 2012). Currently, OWNF and MBSNF managers use artificial regeneration on
only a small area each year, but planting practices could be adapted for changes in
climate change. In dry fire-adapted forests, resilience to moisture stress could be
increased by planting at lower densities, planting more drought-tolerant species and
genotypes, or relying on natural regeneration when present. Natural regeneration
may result in sufficient densities and prevent future need to burn or thin stands to
reduce density. Where species-specific insects or pathogens are likely to increase,
stand-scale resilience could be increased by planting resistant species, genotypes, or
genetically improved stock to increase biodiversity and prevent the establishment of

Thinning and
accelerating
development of late-
successional habitat

can increase resilience

to disturbance.
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monocultures, which are more vulnerable to insect and pathogen outbreaks (Littell
et al. 2012).

Greater heterogeneity in patch size, stand age, and stand size over large spatial
scales can increase resilience by decreasing contagion of insect and pathogen out-
breaks and inhibiting the spread of wildfires (Littell et al. 2012, Millar et al. 2007).
For example, mountain pine beetle favors mature pine trees, and the homogeneity
of the landscape with respect to tree species and age can contribute to extensive
outbreaks. Forests in OWNF are more vulnerable to widespread insect outbreaks
because past harvesting, fire suppression, and fire exclusion have decreased the
area of open stands of large pine trees (Harrod et al. 1999). Management under the
NWFP has also decreased the area of structurally diverse early-successional stands
(Spies et al. 2006). Fire exclusion in forests with low- and mixed-severity fire
regimes has increased the area of forests that have high densities of shade-tolerant
species and vertical fuel continuity, which increase susceptibility to more severe
fire and insect outbreaks. Reducing the homogeneity of the landscape created
by past management can increase landscape resilience to future disturbance, but
increasing resilience will require that more area be treated than is currently being
treated.

In the short term, most forest management to increase stand and landscape
resilience will likely need to be implemented on nonreserve lands, because current
policies associated with the NWFP and Wilderness Act (Wilderness Act of 1964)
limit thinning in reserves and wilderness. Currently, thinning of forest stands
in MBSNF is done only in the matrix, AMAs, and LSRs under 80 years old. In
the long term, increasing resilience to climate change may require increasing
silvicultural treatments in these areas, but also considering more flexible policies
for managing reserves for resilience to disturbance. The OWNF actively manages
more land than MBSNF as part of the OWNF Forest Restoration Strategy, which
specifically identifies an approach to increasing resilience in fire-adapted forests by
focusing on the future, rather than historical, range of variability in stand age and
structural classes (Gartner 2008). Thus the OWNF currently has more opportuni-
ties and flexibility to incorporate adaptation into forest restoration, but changes in
policy would be required to actively manage additional areas for increased resil-
ience to disturbance and climate change.

Adaptation tactics for increasing stand and landscape resilience can be imple-
mented at the project level, and the National Environmental Policy Act (NEPA) of
1969 (NEPA 1969) planning process can be an opportunity to incorporate climate
change adaptation into projects. This process could be facilitated with research to
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identify species and genotypes that are resistant to insects, pathogens, and drought,
as well as research on the ecological effects of assisted migration. This information
can guide selection processes for artificial regeneration and support decisionmaking
under NEPA. The private sector and local and state agencies (e.g., WADNR) that
manage more land for timber production may have greater flexibility to experiment
with alternative silvicultural prescriptions and planting practices. The NCAP pro-
vides an opportunity for agencies to collaborate and share knowledge as practices
are modified and tested. Public education about the value of active forest manage-
ment in a changing climate would engender public support for adaptation actions.
In addition to increasing stand and landscape resilience, adapting vegetation
management in the North Cascades may require addressing increased extent and
severity of wildfire. Adaptation strategies for changing fire regimes differ by
management zone and will likely need to evolve over time as fire regimes change
(table 5.2). Considering climate change in fire management plans will help with
the preparation of postfire responses. Accelerating hazardous fuel treatments with
prescribed fire and mechanical treatments may be necessary to keep pace with
increased area burned and longer fire seasons (Dale et al. 2001, Littell et al. 2012,
Peterson et al. 2011b). Climate is an important control on area burned (Littell et
al. 2009) and severe fire seasons are more likely as climate changes (Littell et al.
2010). Thus the effectiveness of current fuel treatment prescriptions may decrease
as climate changes and additional firefighting capability may be needed to suppress
fires that threaten people, property, forest products, and other forest resources.
Planning for postfire recovery may benefit from considering how climate after
a fire differs from the climate under which a forest initiated and developed (Littell
et al. 2012, Peterson et al. 2011b). More postfire monitoring will be necessary to
detect and prevent the establishment of invasive species and to assess regenera-
tion success. Access to native seed sources will be increasingly important, as will
identifying priority locations for postfire planting to facilitate regeneration of native
plants that will be resilient to future climate. Monitoring of postdisturbance plant-
ing can ensure drought tolerance and the successful competition of native plants
with invasive species (Littell et al. 2012). Postfire rehabilitation and restoration
projects are opportunities to affect future forest succession and facilitate adaptation.
Increased wildfire may create more opportunities to manage wildfires burning
in wilderness for ecological benefits. Managing fire as a natural process in desig-
nated wilderness is consistent with current policies (USDI NPS 2006). Large areas
of continuous wilderness in the North Cascades are locations with the potential to
restore the natural function of fire (Miller et al. 2011). The NOCA fire management

153



GENERAL TECHNICAL REPORT PNW-GTR-892

154

Box 5.3—Climate Change and Ecosystem Services in the
North Cascades

Multiple services provided by ecosystems of the national forests and parks in the
North Cascadia Adaptation Partnership (NCAP) will be affected by changes in veg-
etation distributions and ecological disturbances. During the NCAP workshop on cli-
mate change, vegetation and ecological disturbances, participants identified several of
these ecosystem services. Ecosystem services are defined as the benefits that people
receive from natural systems (Smith et al. 2011) and they consist of supporting ser-
vices, regulating services, provisioning services, and cultural services (MEA 2005).
Supporting services are the functions of natural systems such as nutrient cycling.
Regulatory services provide benefits to humans associated with ecosystem processes
such as air quality, climate, and water regulation. Provisioning services provide direct
products to humans in the form of water, food, and fiber. Cultural services are the ex-
periences humans derive from ecosystems including recreation and aesthetic values.
Provisioning of fresh water (quality and quantity), cultural (recreational and aesthetic)
and biodiversity are three dominant ecosystem services that are vulnerable to climate
change in the NCAP region.

Ecosystem services are one way that national forests and parks can expand communi-
cation of the benefits and values the public receives from these lands, and how those
benefits and values may be affected by climate change. Management goals will need
to be modified and reevaluated as climate changes. As social and ecological systems
adapt to climate change, changes in these services will affect social perception and
support for climate change adaptation (\Vose et al. 2012).

Supporting and regulatory services will likely be altered by changes in ecological
disturbances and to a lesser degree by changes in vegetation distribution. Increased
fire and associated increases in fuel consumption, smoke emissions, and erosion could
affect air and water quality. The extensive and highly productive forests in the North
Cascades regulate climate and store carbon, and forests in the western Cascades have
high annual rates of carbon uptake and contain some of the highest carbon stocks

of any temperate forest region in the world (Smithwick et al. 2002). Increased fire,
insect, and pathogen disturbances are likely to reduce carbon stores (Kurz et al. 2008,
Raymond and McKenzie 2012). Carbon release through disturbance followed by car-
bon uptake through vegetation regrowth is a process that balances over long time pe-
riods and large spatial scales, creating a carbon-neutral landscape (Ryan et al. 2010).
However, altered extent and frequency of disturbances can shift the landscape to act
as a carbon sink or source (Raymond and McKenzie 2012). Increased fire and insect
disturbances will likely shift the North Cascades towards a carbon source, although
the magnitude of this source could be offset partially by forest regrowth following
timber harvesting of the 20" century and higher productivity in high-elevation for-
ests. An uncertainty in carbon regulation is the contribution of delays in regeneration
(Kashian et al. 2006) or conversions to other vegetation types (e.g., Savage and Mast
2005), both of which could further reduce carbon stores. If vegetation regenerates to
predisturbance densities, there is no net loss of carbon, but if vegetation is slow to re-
generate because of unfavorable climate or competition with invasive species, carbon

stores will decline. (continued on next page)
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Box 5.3—Climate Change and Ecosystem Services in the
North Cascades (continued)

The importance of timber as a provisioning service in north-central Washington

has declined in recent decades, but some timber and biomass are harvested on
Okanogan-Wenatchee National Forest (OWNF) and, to a lesser degree, on Mount
Baker-Snoqualmie National Forest (MBSNF). Douglas-fir and ponderosa pine forests
managed for timber on OWNF will likely experience decreased tree growth and
productivity because of moisture limitations with warmer summer temperatures and
no increase in summer precipitation. However, a greater effect will likely be the loss
of forest cover to disturbance. In the low-elevation Douglas-fir forests that are man-
aged for timber on MBSNF, changes in forest productivity will likely be minimal
and depend on seasonal changes in precipitation and the timing of spring snowmelt.
Projections of minimal change or small decreases in summer water balance deficit in
these forests suggest that forest productivity will not change substantially except in
the driest areas.

Cultural services provided by the national forests and national parks in the NCAP
are critical to the character of the parks and forests, as well as local and regional
economies. These public lands provide scenic vistas, aesthetic values, and spiritual
and recreational opportunities. The parks and wilderness in the national forests are
designated as class 1 areas under the 1977 Clean Air Act. More area burned and
more severe fire will challenge management to prevent deterioration of visibility and
scenic views, an important component of the recreation experience. National forests
and parks in the NCAP have high visitation because of their proximity to the Everett-
Seattle-Tacoma metropolitan area. More ecological disturbances will reduce access
and change the timing of some recreational activities. More tree mortality from in-
sects, pathogens, and fire will increase hazard trees in developed areas, creating risks
to people and property. More extensive insect outbreaks and fires will create large
areas of dead trees and early-successional forests, which could affect the aesthetics
and character of the landscape and the experience of visitors. Changes in disturbance
regimes may also directly affect access. More fires and associated smoke emissions
may cause more road, trail, and facility closures. Warmer, drier conditions, even in
the absence of fires, could increase fire precaution levels and thus restrict activities of
managers and visitors of the national parks and forests.

Adapting vegetation management for climate change will complement management of
some ecosystem services but introduce tradeoffs for others. Many adaptation strate-
gies for increasing vegetation resilience that were identified in the NCAP workshop
involve protecting and maintaining ecosystem processes, which will enhance regulat-
ing and supporting services including biological diversity and water quality. Other
adaptation strategies will create tradeoffs with some ecosystem services. Efforts to
protect rare and sensitive species and restore native plant communities may require
reducing access and visitation. Managing fire as a natural process with prescribed fire
and managed natural ignitions could negatively affect air quality, carbon storage, sce-
nic views, recreation, and aesthetic values. Mechanical removal of hazardous fuels to
increase forest resilience and resistance to fire and insects will decrease carbon stocks
and release carbon dioxide to the atmosphere in the short term, but they may reduce
carbon emissions and improve air quality in the long term by preventing more severe
or extensive disturbances. These treatments also protect timber supplies, enhance pro-
ductivity, and can provide a potentially valuable source of fiber.
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plan, which allows previously suppressed lightning-ignited fires to be ignited again,
provides an opportunity to implement this strategy. The OWNF fire management
does not have a similar provision, but wildfires burning in wilderness do not need
to be suppressed if they do not threaten lives and property and if fire suppression
efforts would present unnecessary risks to firefighters. Managing fire in this way
may facilitate the transition to the more frequent fire regimes expected with climate
change (Peterson et al. 2011b). Allowing for a gradual transition by managing
wildfires now may prevent more severe wildfires, abrupt transitions, or ecologi-
cal thresholds from being crossed that could lead to the conversion of forests to
grasslands or shrublands and cause significant loss of ecosystem services. However,
managing fire as a natural process will require accepting more short-term risks,
consequences, and tradeoffs for managing air quality, carbon, access, invasive spe-
cies, and habitat loss (Littell et al. 2012, Millar et al. 2007).

In the long term, additional adaptation strategies may be necessary to facili-
tate the response of forests and fire regimes to climate change and prevent the
loss of ecosystem services (Millar et al. 2007) (box 5.3). Adaptation may require
facilitating the transition to new fire regimes through planting fire-tolerant species
and using prescribed fire in forest types that have experienced less frequent fire
historically. The fire effects monitoring program at NOCA currently enables adap-
tive management by collecting data on fire effects, which can be used to identify
changes in the ecological effects of fire as climate changes. This program could be
used as a model to monitor additional areas that are not currently monitored for fire
effects and to detect changes in the ecological function of fire over time.

Adaptation Options for Managing Floods, Wind, and Hazard
Trees

Projected changes in the intensity and frequency of windstorms are not yet avail-
able, but as atmospheric circulation patterns change (Salathé et al. 2010), the
intensity and frequency of wind may increase, creating more windthrow. Woody
debris from Douglas-fir provide hosts for Douglas-fir beetles. In nonreserve areas,
managers could increase resilience to outbreaks of Douglas-fir beetle by remov-

ing wind-Killed trees and increasing the use of Douglas-fir beetle antiaggregation
pheromones to protect trees. These intensive measures may be most appropriate
where hazard trees threaten people or infrastructure, or for socially and ecologically
valuable trees. More monitoring could determine where management of Douglas-fir
beetle will be most necessary and effective. Projections of changes in wind pat-
terns or intensity will help identify areas that will be exposed to increased wind,
windthrow, and associated insects.
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Climate Change Vulnerability and Adaptation in the North Cascades Region, Washington

Adapting vegetation management to climate change will require considering

N . L . Restoring native
the effects of more floods on riparian vegetation (table 5.3). Committing restoration g

. . vegetation in the
resources to locations that are likely to flood more frequently could be counter-pro- g

ductive and priorities may need to shift to areas with lower flood risk (Littell et al.
2012). Restoring native vegetation in the floodplain is a complementary adaptation
strategy for mitigating flood impacts on roads and infrastructure (see chapter 4)
and reducing the effects of warmer stream temperatures on cold-water fish (see
chapter 7). More flooding may increase opportunities for invasive species to estab-
lish in the floodplain, which could require more aggressive control than is currently
used. The additional emergency resources that are available after severe floods may

floodplain is a
complementary
adaptation strategy
for mitigating flood
impacts on roads and

infrastructure.

provide resources to implement adaptation strategies for riparian vegetation, if the
strategies are identified in management plans developed before
the floods.

Increased rates of all forest disturbances may create more hazard trees in
developed areas, which can threaten lives and property. Managers may need to plan
for more hazard trees and consider increasing use of antiaggregation pheromones
to prevent the development of hazardous trees in developed areas after disturb-
ances and to protect high-value resources. More coordination with entomologists
can increase awareness of the risks associated with hazard trees. Managers may
consider revising plans for hazard tree mitigation to include triggers for action and
additional options for aggressive treatment of hazard trees.

Adaptation Options for Invasive Species Management

Preventing establishment of invasive species after disturbance could be more chal-
lenging in a changing climate. Thus increased inventory and monitoring of invasive
species and coordination among land management agencies may be necessary (table
5.4). Currently, resources are not sufficient to manage all invasive species, making
it necessary to prioritize. Prioritization will be even more important if new invasive
species emerge as climate changes, and current priorities may need to change.
Adaptation can be facilitated by planning for more severe and widespread outbreaks
of currently invasive species and maintaining permits for aggressive treatments
including herbicides and burning. The current invasive species management pro-
grams in the national forests and national parks provide opportunities to consider
climate change in management of invasive species, and the NCAP can facilitate
interagency collaboration.

Proactive management may be necessary to prevent the establishment of
invasive species that could contribute to vegetation type conversions (e.g., forest to
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shrub land or grassland), particularly after disturbance when invasive species often
have a competitive advantage over native species. Assisted migration and planting
genetically adapted tree species from appropriate seed zones could facilitate estab-
lishment of native plant species after disturbance (Littell et al. 2012). Currently,
these adaptation tactics are more appropriate for nonreserves areas and would
require that agencies address current institutional concerns regarding assisted
migration and active management in reserves. Additional research is needed to
reduce uncertainty associated with assisted migration and to identify and test the
viability of planting species better adapted to a warmer climate.

Adaptation Options for Managing Alpine and Subalpine
Ecosystems

Climate change may
Vegetation monitoring protocols implemented by the NPS will help detect changes make it difficult to

in the distribution, composition, and structure of alpine and subalpine plant com-
munities in MORA and NOCA (table 5.5). Current monitoring could be expanded
to include phenology of focal species, interannual patterns in species abundance,
demographics and productivity of high-elevation populations, tracking of species
at the extremes of their ranges, assessment of adaptive capacity of high-elevation
species (genetic and physiological), as well as greater attention to the causes of
shifts in species distributions. This information can be used to prioritize and adapt

protect and restore
populations of
whitebark pine.

high-elevation plant restoration projects to be effective in a changing climate and to
identify species that may become rare or sensitive and thus require additional pro-
tective measures. Additional resources could be allocated to expand the timeframe
of monitoring to better detect long-term trends.

Climate change may make it difficult to protect and restore populations of
whitebark pine. Current management to increase the resilience and resistance of
whitebark pine to mountain pine beetle and blister rust, such as planting blister rust
resistant seedlings and using antiaggregation pheromones, will be more important
for maintaining populations as climate change exacerbates current threats to the
species. Coordination among agencies in the NCAP can ensure that resources are
strategically used to protect species throughout the region, rather than only within
an individual ownership. Long-term permanent plots to monitor trends in whitebark
pine populations and rates of blister rust infection and mortality can be used to
detect climate-driven changes in the distribution and vigor of whitebark pine, blister
rust, and mountain pine beetle.

Warmer temperatures and reduced snowpack may require additional monitor-
ing of high-elevation wetlands that will likely experience changes in hydroperiod
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(i.e., integration of the factors that affect the water budget). Changes in hydroperi-
ods have consequences for productivity, phenology, and species composition. Cur-
rent efforts to define the extent and distribution of high-elevation wetlands will be
important for establishing a baseline and to quantify future changes. Management
to reduce current threats from human use could also increase resilience of wetlands
to climate change.

In the North Cascades, huckleberry (Vaccinium spp.) is an important food
source for wildlife and a traditional resource for Native Americans. More favorable
growing conditions for trees at higher elevations may increase tree encroachment
into huckleberry habitat. More active management may be required to maintain
huckleberry habitat in a changing climate, including tree removal and prescribed
fire. Coordination with tribes can increase understanding of historical and current
distributions of huckleberry habitat and use throughout the region.
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Chapter 6: Climate Change, Wildlife, and Wildlife
Habitat in the North Cascade Range

Joshua J. Lawler, Crystal L. Raymond, Maureen E. Ryan, Michael J. Case, and
Regina M. Rochefort

Introduction

The North Cascadia Adaptation Partnership (NCAP) held a 2-day workshop on
adapting wildlife and wildlife management to climate change in the North Cas-
cades. The objective of the workshop was to convene scientists and land managers
concerned about climate change effects on wildlife. Forty-five people participated,
including resource managers and scientists from the U.S. Department of Agricul-
ture Forest Service (USDA FS), U.S. Department of Interior National Park Service
(NPS) and Fish and Wildlife Service (USFWS) (including the Great Northern and
North Pacific Landscape Conservation Cooperatives), Washington State Depart-
ment of Fish and Wildlife (WDFW), University of Washington, Seattle Public
Utilities, Western Transportation Institute, Conservation Northwest, and National
Parks and Conservation Association. Workshop objectives were to (1) assess the
sensitivity and vulnerability of wildlife species and habitats to projected changes in
climate, (2) review current wildlife management priorities and share management
approaches that have already considered climatic variability and change, (3) use
the latest scientific information on climate change effects on wildlife and habitat to
identify adaptation options that can be implemented by the forests and parks, and
(4) identify opportunities to build partnerships and develop adaptation options that
cross jurisdictional boundaries.

The workshop included presentations on the latest science on climate change
effects on species distributions, demography, and phenology. Resource manag-
ers and scientists from each of the national forests and national parks in NCAP
presented current practices for managing and monitoring wildlife populations and
habitat. Representatives from the WDFW and the North Pacific and Great Northern

! Joshua J. Lawler is an associate professor of landscape ecology and conservation,
Maureen E. Ryan is a research associate, and Michael J. Case is a Ph.D. candidate,
University of Washington, School of Environmental and Forest Sciences, Box 352100,
Seattle, WA 98195; Crystal L. Raymond is a climate change strategic advisor, City of
Seattle, Seattle City Light, 700 5t Avenue, Seattle, WA 98124 (formerly research biologist,
U.S. Forest Service, Pacific Northwest Research Station, Pacific Wildland Fire Sciences
Lab, Seattle, WA); and Regina M. Rochefort is a science advisor, North Cascades National
Park Complex, 2105 State Route 20, Sedro-Woolley, WA 98284.
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Landscape Conservation Cooperatives presented current efforts within their
agencies to adapt management to a changing climate. Presentations on the second
day focused on current research in the region on wildlife habitats that are likely
to be affected by a changing climate including wetlands, fire-adapted forests, and
habitat connectivity (Washington Wildlife Habitat Connectivity Working Group
[WHCWG] 2011).

Vulnerability Assessment for Wildlife and Habitat

Vulnerability to climate change can be defined as the likelihood that a system or
species will experience a change of state as a result of projected changes in climate.
For an ecological system, such a change could be altered species composition,
ecosystem function, or a change in a disturbance regime. For a species, a change
of state could be a change in population growth rate, abundance, or distribution.
Vulnerability is a function of exposure, sensitivity, and adaptive capacity (Glick et
al. 2011) (see chapter 1). Exposure is a measure of the degree to which the climate
will change. Sensitivity is a measure of how much of a change in climate a species
or system can endure before changing state. Adaptive capacity is an estimate of the
ability of a species or system to change in such a way that allows it to persist as the
climate changes. Ultimately, information gathered through a vulnerability assess-
ment can be used to inform adaptation planning.

In its simplest form, exposure is a measure of how much climatic conditions
will likely change. Thus, projected changes in temperature and precipitation as
described in chapter 3 provide a basic indication of the likely exposure of species
and habitats in the NCAP region. However, for a given species or ecological system,
some climate-related factors will be more important for exposure than others. For
example, for the wolverine (Gulo gulo L.), a species for which snow is important,
snowpack is a critical component of exposure and thus projected changes in
snowpack are useful for assessing its vulnerability (e.g., McKelvey et al. 2011).2
For amphibian species, higher temperature and lower summer precipitation may
be less important than changes in wetland hydroperiod that they produce. Thus,
some aspects of exposure are more nuanced, and projecting them involves looking
beyond projected changes in temperature and precipitation. Chapter 4 describes

% Snowpack is measured as snow depth or snow water equivalent (SWE), the water content
of the snowpack. For comparisons, SWE on April 1 is commonly used because it corre-
sponds to the date of peak SWE in many areas and is correlated with summer water supply
in the PNW. Timing of snowmelt in spring can also be an important indicator of wildlife
habitat and ecosystem processes (see chapter 4 of this report for a detailed discussion of
snowpack).
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projected changes in snowpack and hydrology, some of which are relevant for
wildlife species and habitat.

Sensitivity is an inherent measure of how much climate change a species
or system can tolerate. For any species, sensitivity is a function of many factors
including physiology, life history traits, and trophic and competitive relationships.
For example, some species can function under a wide range of temperatures—these
species are likely to be less sensitive to climate change than are species that can
tolerate only a narrow range of temperatures. Species that have short generation
times, produce many offspring, and have low parental investment are thought to
recover quickly from large environmental changes. Thus, these species may be less
sensitive to climate change than species with long generation times, few offspring,
and high parental investment. In addition, species that are specialists with respect
to habitat or food requirements will likely be more sensitive to climate change than
species that are able to use a wider variety of environments and food resources. The
sections below describe general climate change effects on species and habitats in
the North Cascades, integrating components of sensitivity and exposure. Additional
information on the inherent sensitivity of species of concern in the region was
gathered during the workshop.

Adaptive capacity can be difficult to assess. The factors that define adaptive
capacity can be considered (1) inherent or (2) contextual or external. Inherent
adaptive capacity is determined by the inherent capacity of the species or habitat
to change in response to altered climatic conditions. This capacity is affected by
dispersal ability (the ability to move to track changing conditions), phenotypic
plasticity (the ability to change behavior or morphology in response to changing
conditions), and evolutionary capacity (the ability to evolve in the face of climate
change). Contextual or external aspects of adaptive capacity include landscape pat-
terns and conditions that facilitate or serve as barriers to movement, as well as the
capacity of managers to improve the ability of species or habitat to adapt to climate
change. For example, the influence of nonclimatic stressors is one component of
adaptive capacity—species or habitats with fewer nonclimatic stressors are likely
to have a greater capacity to adapt to changes in climate. An assessment of current
wildlife management objectives and practices describes another component of
adaptive capacity by indicating (1) how current management practices can improve
the ability of species or habitats to adapt, and (2) which objectives may be difficult
to achieve in a changing climate. We also discuss barriers and opportunities for
implementing adaptation strategies, which indicates another component of adap-
tive capacity, namely the institutional adaptive capacity of the national forests and
national parks in the NCAP.

For any species,

sensitivity is a function

of many factors

including physiology,

life history traits, and

trophic and competitive

relationships.
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Effects of Climate Change on Wildlife Species

Climate change is already affecting wildlife in multiple ways. Many species are
shifting their distributions in directions and at rates that are consistent with recent
changes in climate, and some species are experiencing shifts in the timing of
ecological events (e.g., migration, breeding, or hatching) (Parmesan 2006). Species
are likely to be physiologically affected by climate change in other ways as well,
including changes in metabolic and growth rates, altered reproductive output, and
changes in the frequency of heat stress or cold-related injuries or mortality (Schnei-
der et al. 2002).

As climate changes, species will also be more or less indirectly affected by cli-
mate change. Climate change will alter interspecific interactions, potentially chang-
ing predator-prey dynamics, competitive relationships, the effects of parasites and
diseases, and facilitative interactions (Kareiva et al. 1993, Schneider et al. 2002).
Climate change will also alter plant species distributions, plant communities, and
in turn habitat for many species. Climate-induced changes in fire and hydrologic
regimes will have additional effects on habitat, food resources, and hence reproduc-
tion and mortality rates of many species. In addition, many wildlife species will
likely be affected by other nonclimatic stressors that themselves will be affected by
climate change. For example, many invasive species are expected to benefit from
climate change, potentially resulting in increased effects on native species (Dukes
and Mooney 1999). There may also be more subtle effects of climate change on
wildlife including increases in human-wildlife interactions as people change their
behavior (e.g., more visits to higher elevation parks as summer temperatures rise).

Not all species will respond to climate change in the same way or even in
perceptible ways. Some species will be less vulnerable to climate change because
they are generalists, can more easily disperse to new locations, occupy habitats that
are likely to be more resilient to climate change, have the evolutionary potential or
the phenotypic plasticity to adapt to changes, or are less physiologically sensitive to
changes in temperature and moisture. On the other hand, species that are special-
ists, limited to narrow climatic niches or rare habitats, limited in their dispersal
abilities, lacking in phenotypic plasticity, tightly tied to a particular disturbance
regime (e.g., fire return interval), or heavily affected by other stressors are likely to
be more vulnerable to climate change.
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Physiological Effects

Many of the species in the North Cascades region are adapted to relatively cool,
moist environments and, in particular, cold wet winters and warm dry summers.
This basic climatic pattern will not change, and may be reinforced by projected
increases in winter precipitation and decreases in summer precipitation (see chapter
3), and the higher temperature projected for the North Cascades, coupled with drier
summers, will directly affect many species in the region.

Although relatively few species in the North Cascades exist at the warm or dry
extreme of their physiological limits, several species are physiologically limited
by warm temperatures and dry summer conditions. For example, the American
pika (Ochotona princeps Richardson) is sensitive to warm temperatures and has
recently disappeared from several lower elevation sites in parts of its range outside
of the North Cascades (Beever et al. 2003). Many amphibian species are likely to
be sensitive to increases in temperature and the drier conditions that are projected
for summer months (Blaustein et al. 2010). Amphibians, in general, are expected to
be some of the most sensitive species to climate change because of their permeable
skins and moisture requirements, as well as their biphasic life histories requiring
water for breeding and upland habitats for other activities. Several cases of changes
in climate affecting amphibians have been documented in other areas (e.g., warm-
ing and drying in tropical ecosystems), including suspected population and spe-
cies extinctions (Pounds and Crump 1994, Pounds et al. 1999). Lower spring and
summer precipitation, coupled with higher temperature, could shorten hydroperiods
for many smaller ponds and wetlands. Such changes will reduce the availability of
habitat for many amphibians, potentially fragmenting and isolating populations.

In general, higher temperature has the potential to increase metabolic rates,
alter reproductive output, and affect animal behavior. As temperatures rise, some
species, such as the pika, may be more restricted in the times that they can for-
age (Smith 1974). Decreased snowpack may also affect the pika by providing less
insulation while they are in their burrows in the winter (Smith 1978). Pika popula-
tions have been extirpated from some low-elevation habitats in the Great Basin
because of climatic stresses (Beever et al. 2003, 2010), but the effects of climate
change on other populations are likely to vary with elevation and latitude within
the geographic range of the species (Erb et al. 2011, Simpson 2009). Other species,
such as grizzly bears (Ursus arctos horribilis Ord), may have shortened hibernation
periods and thus spend more time out of the den and potentially in contact with
people (Haroldson et al. 2002).

Many amphibian
species are likely to

be sensitive to higher

temperature and drier

conditions in the

summer.

181



GENERAL TECHNICAL REPORT PNW-GTR-892

182

Phenological Effects

Many aspects of phenology (the timing of ecological events) are closely tied to
climate. For animals, the timing of migration, emergence from hibernation, and
breeding, nesting, and hatching (for insects) can all be tied to climatic triggers.
For plants, bud burst, fruiting, and the loss of leaves in the fall can all be linked to
climatic conditions.

Increasing temperatures over the last half century have led to a shift in sea-
sonality in some regions, including spring events occurring earlier in the year
(Schwartz et al. 2006). These events include amphibians breeding, birds returning
from migration, leaf out, and insects hatching (Parmesan and Yohe 2003, Root et
al. 2003). In general, these events are occurring approximately 1 day earlier per
decade in the Northern Hemisphere (Schwartz et al. 2006) and 1.5 days earlier per
decade in the Western United States. There is mounting evidence that these shifts in
phenology are not likely to be well synchronized, that is, not all events are shifting
in time at the same rates.

This lack of synchrony has the potential to decouple ecological relationships.
For example, if insect hatching advances at a faster rate than flowering or leaf out,
crashes in insect populations may occur. Likewise, if birds return from migration
before key insects hatch, bird reproduction or survival may decrease, and bird
population might decline (Visser et al. 2011). In Colorado, yellow-bellied marmots
(Marmota flaviventris Audubon & Bachman) emerged from hibernation 23 days
earlier in 1999 than they did in 1975; however, there was not a similar shift in plant
phenology because of high precipitation and snowpack during the same period
(Inouye et al. 2000). Mismatches in the timing of breeding and availability of food
resources may be more problematic for longer lived mammals because photope-
riodic cueing for the onset of seasonal breeding is more common in these species
than in shorter lived mammals (Bronson 2009). In the North Cascades, projected
increases in temperature and decreases in snowpack may prevent the type of
decoupling of food availability and emergence of hibernation that was seen in the
Rocky Mountains. However, it is likely that there will be other mismatches in the
timing of breeding, migration, hibernation, food resources, and other phenological
characteristics.

For species with complex life cycles, such as amphibians and invertebrates,
changes in the temperature and hydrology of wetlands may have substantial
effects on phenology, recruitment, and life history selection (Matthews et al. 2010,
McCaffery and Maxell 2010, Wellborn et al. 1996). Wetland habitats and species
are already experiencing threats from habitat loss and fragmentation, disease, and
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pollution (Stuart et al. 2004), all of which are likely to worsen with climate change
(Corn 2005). The combined effects of warmer summer temperatures, changes in
the seasonality of precipitation, and reduced snowpack may cause earlier drying

of ephemeral streams and ponds and recession of shorelines (Corn 2005). Lower
elevation populations may breed earlier in spring and experience increased variance
in wetland depth and water quality.

At higher elevations, reproduction depends on wetland hydroperiod and ice-free
access. Earlier snowmelt in subalpine and alpine wetlands may increase access, but
cool early-season temperatures may reduce the benefits of earlier access because
of temperature-dependent embryonic growth and lags in primary productivity
associated with temperature and day length that limit basal resources supporting
aquatic food webs. Warmer summer temperatures could speed up larval develop-
ment but could also increase embryonic and larval mortality if thermal tolerances
are exceeded (Duarte et al. 2012). Altered hydroperiods will act as strong life
history filters, particularly in higher elevation regions where many invertebrate
and salamander species require multiple years for larval development (Stebbins
2003, Wellborn et al. 1996). Fast-developing species such as western toads (Bufo
boreas Baird & Girard) and ranid frogs may also experience increased larval
mortality if ponds dry before tadpoles can metamorphose. Reduced exposure to
severe winter conditions may enhance juvenile and adult survival in some regions
(McCaffery and Maxell 2010). On the other hand, altered hydroperiod may increase
the frequency of winter mortality in ponds or eliminate critical seep and spring
overwintering habitats. Loss of insulating snowpack could also increase exposure
to extreme temperatures or raise energetic costs of interrupted hibernation, causing
negative effects on condition and survival (Hillman et al. 2009).

Distributional Shifts

Some animal species appear to be moving in response to recent changes in climate
(Parmesan 2006). In general, species are moving poleward in latitude and upward
in elevation, and these movements are typically occurring at rates that correspond
with changes in temperature. However, not all species are moving and not all are
moving in ways that align with recent changes in climate (e.g., Moritz et al. 2008).
Recent summaries of range shifts have found that these shifts have occurred
approximately two to three times faster than those reported in previous studies
(Chen et al. 2011), and that some plants and animals have moved upward in eleva-
tion at a rate of 11 m per decade and poleward in latitude at a rate of 16.9 km per
decade.
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Many studies have also projected shifts in species distributions in response to
projected changes in climate, and some species are projected to shift their distri-
butions hundreds of kilometers by the end of the 21% century. These projections
have been used to assess the potential degree of change in biotic communities. For

The North Cascades example, across European ecoregions, averages of 45 to 63 percent change in the
will likely serve as flora have been projected (Thuiller et al. 2005). Similarly, changes in fauna in the
a refuge for many Western Hemisphere have been projected to be between 25 and 38 percent in any
species attempting given location by the end of the 21" century (Lawler et al. 2009). These changes
to move to higher mean that in some places there will likely be different plant and animal communi-
elevations in search ties in the future, and some places may see new communities with no historical
of cooler climates. analogs (Stralberg et al. 2009).

These modeling efforts have their limitations. They may not account for lags
in animal species movements associated with physical barriers or lack of suitable
habitat. In some cases, plants will not move in response to climate change at the
same rate as animals. For many forest-dependent animal species moving upward
in elevation in the North Cascades, the ability to expand their distributions into
elevations currently occupied by subalpine and alpine vegetation will be limited by
the rate at which trees are able to move into these areas.

The North Cascades will likely serve as a refuge for many species attempting to
move to higher elevations in search of cooler climates. Removing barriers to move-
ment or otherwise fostering movement through the landscape to the more protected
USDA FS and NPS lands will likely be an important strategy for protecting wildlife
as temperatures rise.

Interspecific Interactions

Climate-induced changes in phenologies and shifts in distributions have the poten-
tial to result in altered interspecific interactions. Because species have different
temperature and moisture tolerances, different habitat needs, and different life
histories, they will respond individualistically to climate change. Thus, a change in
the distribution of a plant species will not necessarily be consistent with a similar
shift in the distribution of its pollinators. Some species will likely be released
from competitive relationships, whereas others will encounter new competitors.
Still other species will likely experience changes in predation pressure and prey
abundance.

Climate change is likely to affect many of the basic interactions that regulate
ecological systems. For example, increases in atmospheric carbon dioxide (COZ)
concentrations and rising temperatures may disrupt mutualisms involving plants
(e.g., pollination and seed dispersal), intensify pathogen infection rates, and
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enhance insect herbivory (Parmesan 2006, Traill et al. 2010, Tylianakis et al. 2008).
In particular, parasite and disease outbreaks will likely become more frequent in a
changing climate (Brooks and Hoberg 2007, Canto et al. 2009), partially because
the ability of parasites and disease vectors to overwinter requires a specific range
of climatic conditions (Garrett et al. 2006). As temperature increases, more of these
parasites and their vectors will be able to survive through winter and thus may
expand into areas in which they have previously been absent or at low densities.

In addition, higher temperature and precipitation often correspond with greater
diversity of diseases and higher disease transmission rates (Froeschke et al. 2010,
Lafferty 2009).

Amphibians are especially susceptible to disease outbreaks. Batrachochytrium
dendrobatidis (Bd, chytrid fungus) (Kilpatrick et al. 2010), a fungal pathogen that is
reducing amphibian populations globally (Stuart et al. 2004), is a particular concern
for some amphibian species in the Pacific Northwest (Pearl et al. 2007). Although
common in the Pacific Northwest, some amphibian populations survive despite
high prevalence of Bd (Pearl et al. 2009), and the fungal pathogen has, to date, had
limited impact in Washington state. Climatic associations with Bd pathogenicity
are not yet well understood, with inconsistent impacts among regions and spe-
cies (Blaustein et al. 2005, Ouellet et al. 2005). Susceptibility of aquatic larvae to
Saprolegnia, other common fungal and bacterial infections, and aquatic parasites
may increase at higher temperatures (Marcogliese 2001, Rohr et al. 2011).

Interactions With Other Stressors

As climate changes, many species will continue to face other stressors, some of
which will make species more or less susceptible to the effects of climate change.
Some of these stressors will themselves be affected by climate change and thus
may become more intense or, conversely, have less of an effect as a result of climate
change. These stressors include invasive species, land use change, disturbance,
contaminants, and human activity.

Invasive species are expected to have an increasing effect on native species
as climate changes (Dukes and Mooney 1999) because invasive species often
outcompete native species in a changing climate (Verlinden and Nijs 2010, Willis
et al. 2010). Many characteristics of invasive species that make them good invaders
will also allow them to readily (or more readily than many native species) adapt to
changing climates. For example, invasive species tend to be better able to change
their phenologies than do native species, allowing invasive species to persist in a
variety of climates (Willis et al. 2010). Good dispersal capability, high population
growth rates, short generation times, and ability to tolerate a wide range of climatic
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conditions will likely allow invasive species to track rapid changes in temperature
and other climatic features (Hellmann et al. 2008, Schweiger et al. 2010). However,
as with native plants, the distributions of some invasive species may also be limited
by climate change (e.g., Bradley 2009).

In the North Cascades, climate change is likely to exacerbate the effects of
invasive species in high-elevation wetlands.? Introduced fish exclude many amphib-
ians and invertebrates from lakes and ponds, shifting their distributions into shal-
lower habitats where risks associated with climate change are disproportionately
high (Bahls 1992, Hoffman et al. 2004, Knapp 1996, Knapp et al. 2001, Lacan et al.
2008). Changing thermal and hydrologic conditions may naturally eliminate some
populations of introduced fish; however, fish removals may be necessary in some
cases to maintain adequate climate-resistant habitat for native amphibian species
(Hoffman et al. 2004, Lacan et al. 2008).

Land use change may exacerbate the effects of climate change on wildlife. Land
use change can reduce habitat availability, fragment habitat, and reduce connectiv-
ity among wildlife populations. In the North Cascades, a legacy of past timber
harvest, road building, and development of human settlements and infrastructure
may reduce the ability of some species to move across the landscape to track chang-
ing climates. In addition, populations that are reduced because of habitat loss may
be more susceptible to climate change.

Climate-driven changes in disturbance regimes also have the potential to affect
wildlife. The potential for increased area burned by wildfire and increased wildfire
severity as temperatures continue to rise (Littell et al. 2009, Nitschke and Innes
2008) (see chapter 5) in the North Cascades would indirectly affect wildlife by
altering habitat and food resources. Increased area burned may catalyze projected
changes in vegetation, as well as increase the area of forest in early-successional
stages. This broad-scale modification of the landscape will increase habitat for
species associated with early-successional habitat and decrease habitat for species
associated with late-successional habitat.

Climate change has the potential to affect the delivery and availability of
contaminants in some systems, particularly nutrients. For example, rain and fluxes
of snowmelt transport nutrients from terrestrial landscapes into wetlands and other
water bodies, where they drive the growth of periphyton and phytoplankton on
which wetland food webs depend. In lakes and deeper wetlands, productivity may

3 Ryan, M.E.; Palen, W.J.; Adams, M.J. [N.d.]. Wetland ecosystems, climate change,
and climate adaptation in the Pacific Northwest. On file with: M. Ryan, Rocky Mountain
Research Station, 240 Prospect Road, Fort Collins, CO 80526.
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decline if thermal stratification weakens the water layer turnover that currently
brings nutrients to the surface. In contrast, increased temperature may trigger algal
blooms where nutrients are not limiting, with detrimental effects on oxygen avail-
ability for aquatic larvae or fish. Nutrient inputs and primary productivity affect
the spectral characteristics of wetlands and ultraviolet radiation (UV) exposure to
aquatic organisms (Calfee et al. 2006) although Pacific Northwest wetland species
are currently well buffered from negative impacts of UV (Palen and Schindler
2010). A greater risk is the mobilization and concentration of atmospherically
deposited and soil-bound contaminants as glaciers melt, patterns of precipitation
change, and summer water volume drops. High contaminant loads have been
observed in wetlands in other alpine regions, and studies in the Cascade Range
are underway (Hansen and Hoffman 2011).4 Because temperature and pH affect
the toxicity of contaminants and rates of biological uptake, interactions between
contamination and climate may affect wetland animals, and contaminant exposure
may also increase susceptibility to disease.

Climate change may indirectly affect wildlife by altering human activities in
national forests and national parks. For example, higher elevation systems with
cooler climates may experience higher visitation rates in the future and poten-
tially the need for additional infrastructure, resulting in more of human-animal
interactions.

Effects of Climate Change on Wildlife Habitats
Alpine and Subalpine Zones

Increasing temperatures will result in reduced snowpack and earlier snowmelt in
alpine and subalpine regions of the North Cascades. These changes have the poten-
tial to alter vegetation, with higher tree density in the subalpine zone and potential
movement of trees into the alpine zone in the long term. Projections of the MC1
dynamic global vegetation model indicate reductions in much of the alpine tundra
in NCAP national forests and national parks, except Mount Rainier National Park
(MORA), and reductions in the area of subalpine forest by 2100 (see chapter 5). If
future warming and lower snowpack lead to higher diversity of grasses and forbs,
lower abundance of mosses and lichens, more invasive species, and increased height
of trees, forage quantity and quality in the summer ranges for elk (Cervus elaphus
L.) may be altered.

4 Samora, B. 2011. Personal communication. Research coordinator, North Coast and
Cascades Science Learning Network, Mount Rainier National Park, 55210 238" Avenue
East, Ashford, WA 98304.
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Lower soil moisture caused by lower snowpack and summer precipitation may
also lead to reduced huckleberry (Vaccinium spp.) production and hence reduced
food resources for wildlife including grizzly bears and black bears (Ursus america-
nus Pallas). Tree encroachment may also contribute to reduced area of huckleberry
habitat. The rate of change in productivity, tree encroachment, and change in the
composition and structure of vegetation in general will likely be quite variable
given different species-specific growth-limiting factors, plant growth strategies,
and topographies (see chapter 5).

Meadows

Wet montane meadows in the North Cascades, maintained by snowpack in the
winter and short growing periods in the summers, will likely decrease in extent

as lower snowpack and a longer growing season encourage tree establishment on
meadow perimeters (see chapter 5). Although drier meadows in the North Cascades
may also experience tree encroachment, these meadows may be maintained by
higher fire occurrence. Loss of meadows would reduce habitat for American pikas,
hoary marmots (Marmota caligata Eschscholtz), Cascade red foxes (Vulpes vulpes
cascadensis Merriam), and other species associated with montane meadows.

Forests

Projected changes in climate are likely to lead to significant changes in forests of
the North Cascades. As mentioned above, closed-canopy forest may replace por-
tions of the subalpine and alpine zones (see chapter 5). In addition, model simula-
tions project a potential transition from wetter maritime forests to drier temperate
forests typical of the east slope of the Cascades. However, correlative models (see
chapter 5) indicate that changes in forest composition may not simply involve a
westward shifting of east-side species as drier conditions develop. These models
project a loss in the area of potentially suitable climates for lodgepole pine (Pinus
contorta var. latifolia Engelm. ex S. Watson) and potentially other pine species
across much of their current range in the North Cascades.

Model projections for the region also forecast an increase in wildfire area
burned and wildfire severity (see chapter 5), resulting in more dynamic forest
landscapes, fewer areas with older trees and mature forest structures, and more
open areas. Higher temperature has also been linked to higher frequency and
severity of outbreaks of some insects, such as mountain pine beetle (Dendroctonus
ponderosae Hopkins). Insect outbreaks may synergistically interact with wildfire
to produce even more dynamic landscapes and younger forests. These changes will
benefit species that are well adapted to fire-prone habitat, but will reduce habitat
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for species such as the northern spotted owl (Strix occidentalis caurina Merriam)
and marbled murrelet (Brachyramphus marmoratus Gmelin) that require late-
successional forests.

Wetlands

The North Cascades contains thousands of wetlands that differ in size (less than
10 m? to more than 10 000 mz) and structure (e.g., wet meadow, riparian, marsh,
bog, swamp, ephemeral and permanent ponds, lakes), from tiny ephemeral alpine
ponds to extensive valley complexes. Because wetland hydrology, structure, and
function respond to changes in temperature and precipitation, wetlands are con-
sidered among the most sensitive ecosystems to climate change (Carpenter et al.
1992, Parry et al. 2007). A diversity of animals such as pond-breeding amphibians,
invertebrates, predatory birds and waterfowl, mammals, reptiles, and fish rely on
these wetlands either directly or indirectly. The lack of empirical data and modeling
resources specific to wetland dynamics makes it difficult to project climate effects
on wetlands and their wildlife in the North Cascades. However, studies are cur-
rently underway to understand climate change effects on wetland dynamics through
enhanced monitoring and modeling.5

Climate and hydrologic models downscaled for the North Cascades region
agree on several key projected changes likely to affect wetlands and the wildlife
that rely on them (Elsner et al. 2010, Mote 2003, Mote and Salathé 2010).6 First,
temperature increases in all seasons will affect thermal conditions, evaporation
rates, and evapotranspiration rates that influence wetland depth and hydroperiod
(timing and duration of inundation). Second, projected changes in the timing and
form of precipitation (rain vs. snow) (see chapter 4) will alter wetland hydrology.
Hydrologic changes are complex: shifts in precipitation from snow to rain, in addi-
tion to higher precipitation in all seasons except summer, are expected to result in
earlier soil moisture recharge in winter, earlier filling of riparian overflow wet-
lands, and earlier high-water levels (see footnote 6). Extreme weather events and
loss of snowpack may also affect sediment deposition, with implications for wetland
structure, connectivity, and associated vegetation and substrate characteristics.

® Hamlet, A. 2011. Personal communication. Research associate professor, University of
Washington, Civil and Environmental Engineering, Box 352700, Seattle, WA 98195.

®Lee. S.-Y.; Hamlet, A.F; Ryan, M.E. [et al.]. [N.d.]. Modeling wetland response to
climate change in the Pacific Northwest. On file with: S.-Y. Lee, University of Washington,
Civil and Environmental Engineering, Box 352700, Seattle, WA 98195.
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Lower snowpack, lower precipitation in summer, earlier soil moisture recession,
and resulting increases in the frequency of summer drought are projected to cause
transitions in wetland composition (e.g., from permanent to ephemeral ponds);
shortened hydroperiods in ephemeral ponds, seeps, and springs; and the complete
loss of some shallow habitats such as lake edges, wet meadows, and ponds (Poff et
al. 2002). In contrast, recession of glaciers and snowfields is already creating new
wetlands at higher elevations. Changes in vegetation and altitudinal treeline are also
likely to influence wetland hydrology through effects on snow deposition, shading,
and rates of evapotranspiration. Models generally project higher wetland water
levels in winter and early spring from elevated soil moisture, more rapid recession
of water levels in spring, and reduced water levels in summer compared to current
conditions (see footnote 6).

Changes in wetland temperature and hydrology will directly affect wildlife
through habitat and food availability, population dynamics, and life history selec-
tion. Wetland inhabitants such as pond-breeding amphibians, freshwater inverte-
brates, waterfowl, semiaquatic mammals, and fish will be directly affected, with
cascading effects on the mammals, birds, and reptiles that feed on them. Pond-
breeding amphibians are of particular concern because of their reliance on wetlands
(Bates et al. 2008, Blaustein and Wake 1990, Lawler et al. 2010, Stuart et al. 2004).
Many studies have demonstrated a correlation between wetland abundance or size,
and species richness for a variety of taxa (Richter and Azous 2001a, 2001b, 2001c;
Tiner 2003; Williams 2006). Waterfowl and migratory songbirds use temporary and
permanent wetlands as food sources and nesting habitat. Semiaquatic or wetland-
associated rodents such as beaver (Castor canadensis Kuhl), mountain beaver
(Aplodontia rufa Rafinesque), muskrat (Ondatra zibethicus L.), northern bog-
lemmings (Synaptomys borealis Richardson), mesopredators (e.g., striped skunk
[Mephitis mephitis Schreber], American mink [Neovison vison Schreber], river otter
[Lontra canadensis Schreber]), and shrews (Sorex spp.) rely heavily on wetlands
for core habitat. Habitat generalists such as deer, elk, mountain goats (Oreamnos
americanus de Blainville), and large carnivores rely on wetlands for water sources.

Although many species will be affected by climate-induced wetland loss,
some mammals may also contribute to the maintenance of wetlands in a changing
climate. For example, beavers have been described as “mountain sponges” because
of their ecosystem engineering traits that create wetlands (Hansen and Hoffman
2011). Gray wolf (Canis lupus L.) recolonization may also promote maintenance
and recovery of riparian wetland habitats through their effects on the behavior of
herbivorous prey (Beschta and Ripple 2012, Naiman and Rogers 1997), with impli-
cations for a wide variety of amphibians, birds, invertebrates, and fishes. Changing
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hydrology and water quality will affect lake- and wetland-reliant native fish species
at lower elevations such as sockeye salmon (Oncorhynchus nerka Walbaum in
Avrtedi), as well as introduced fishes in formerly fishless high-elevation regions.

Across the North Cascades, the cumulative effects of altered wetland hydrology
on the availability, suitability, connectivity, and resource provisioning of different
types of wetlands are likely to affect wildlife population persistence and function of
coexistence mechanisms that influence regional patterns of diversity (Amarasek-
are 2003, Chesson 2000) (see footnote 5). The probability of drying will vary, as
does the distribution and composition of wetland habitats and the distribution of
nonclimatic stressors such as contaminants and introduced fish. Wetland species
differ considerably in their mobility, so effects of shifting wetland distributions and
connectivity on metapopulation dynamics will be species specific.

Riparian Systems

Riparian habitats provide critical resources for many species. Projected changes

in the timing and volume of streamflow (see chapter 4) have the potential to
profoundly affect salmon and fish habitat in general, as discussed in chapter 7. In
addition, increased high flows and flooding have the potential to make some ripar-
ian systems more dynamic. Shifting stream channels and the periodic removal of
riparian vegetation may reduce the suitability of riparian areas as habitat for some
species. For amphibians that breed in riparian wetlands or streams, higher peak
flows could produce scouring events that remove eggs and individuals as has been
observed when flow regimes are altered by dams (Kupferberg et al. 2012). Projected
lower low flows and more frequent periodic droughts in the dry season in Wash-
ington (Mantua et al. 2010) also have the potential to alter riparian vegetation and
affect riparian wetlands and breeding habitat for amphibians.

Sensitivity of Selected Wildlife Species to Climate
Change

Scientists and managers assessed the sensitivity of wildlife species of concern using
the Climate Change Sensitivity Database,” which summarizes different factors that
affect species sensitivity to climate change and assigns a relative sensitivity score of
0 through 100 and a value for the confidence in this score based on input data and
expert opinion. Workshop participants reviewed and discussed the rankings for

" Climate Change Sensitivity Database. 2013. A collaboration of the University of Wash-
ington, The Nature Conservancy, and state and federal resource agencies in the Pacific
Northwest. http://climatechangesensitivity.org. (8 November 2013).

191



GENERAL TECHNICAL REPORT PNW-GTR-892

192

several species of concern for which data had already been entered in the database.
Participants also used the database to enter information for an additional five
species of concern: American pika, hoary marmot, yellow-pine chipmunk (Tamias
amoenus J.A. Allen), Cascade red fox, and western toad.

Sensitivity differed among the 11 species reviewed (fig. 6.1). Below, we summa-
rize some components of the assessments that led to the rankings in fig. 6.1. Boxes
6.1 through 6.5 contain additional information on the sensitivity of the five species
that were assessed during the workshop. Although these are generally assessments
of sensitivity, we include an evaluation of dispersal ability and barriers to dispersal,
which could be considered to be components of adaptive capacity. The assessment
process in the workshop focused on the North Cascades, although in many cases,
the assessments likely apply to the species throughout their ranges. The assessments
are based on expert opinion provided in the NCAP workshop and from other expert
workshops. Additional references and information for the assessments of specific
species can be found in the Climate Change Sensitivity Database. The 11 species

Text continues on page 198
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Figure 6.1—The relative sensitivity to climate change of 11 wildlife species found in the North
Cascades. Sensitivity scores (black bars) were derived from an index that integrates information
about physiological tolerances, habitat use, interspecific interactions, dispersal abilities, nonclimatic
stressors, and other stressors. Information on these specific factors was provided by experts in

the North Cascadia Adaptation Partnership workshop and other expert workshops. The gray bars
represent confidence of the experts in their assessment of sensitivity. Higher bars represent higher
levels of confidence.
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Box 6.1—Sensitivity assessment for the American pika

For the American pika, the overall sensitivity score was 63 (scale of 1 through 100)
and confidence in this score by experts populating the Climate Change Sensitivity
Database* was 80 (scale of 1 through 100). Sensitivity and confidence by sensitivity
factor are shown in the following table.

Confidence
Sensitivity factor Sensitivity in sensitivity
Generalist/specialist 7 5
Physiology 7 5
Life history 3 5
Sensitive habitats 7 4
Dispersal distance 5 5
Dispersal barriers 4 5
Disturbance regimes 2 3
Ecology 3 4
Nonclimatic 3 3
Other 1 3
Overall 63 80

Below we describe the expert information that contributed to the score for each fac-
tor; additional information can be found in the database.

Generalist/specialist: Although some references indicate specific food requirements,
the pika is primarily a generalist in terms of forage requirements. However, it does
require high-elevation rock fields that are in proximity to meadows for foraging, mak-
ing it a habitat specialist.

Physiology: It needs a moderate amount of snow to provide insulation from cold tem-
peratures in the winter. Some colonies may be sensitive to thermal stress.

Life history: It can breed after one year and reproduce twice a year with litters of two
to six Kits.

Sensitive habitats: Generally it relies on subalpine and alpine habitats and montane
meadows. These habitats are likely to be highly sensitive to climate change. However,
some populations are found at lower elevations around lava tubes, freeway shoulders,
and lava beds.

Dispersal distance: Its maximum annual dispersal is estimated to be 20 km for juve-
niles, but is usually less than 10 km.

Dispersal barriers: Roads; agriculture; residential, rural, and urban development;
rivers; arid lands; and lower elevations act as dispersal barriers.

Disturbance regimes: The pika is not tightly linked to particular disturbance re-
gimes, although changes in the frequency of drought and the intensity of wind may
affect food resources and dehydration.

Ecology: Changes in temperature and precipitation may affect forage.

Nonclimatic: Habitat loss and degradation have the potential to exacerbate the
impacts of climate change.

Other: A new predator could cause significant impacts as could the emergence of
nonanalog communities and changes in the plant community.

* http://climatechangesensitivity.org
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Box 6.2—Sensitivity assessment for the hoary marmot

For the hoary marmot, the overall sensitivity score was 64 (scale of 1 through 100)
and confidence in this score by experts populating the Climate Change Sensitivity
Database* was 60 (scale of 1 through 100). Sensitivity and confidence by sensitivity
factor are shown in the following table.

Confidence
Sensitivity factor Sensitivity in sensitivity
Generalist/specialist 5 4
Physiology 4 2
Life history 5 4
Sensitive habitats 7 5
Dispersal distance 5 3
Dispersal barriers 2 3
Disturbance regimes 5 4
Ecology 4 3
Nonclimatic 3 4
Overall 64 60

Below we describe the expert information that contributed to the score for each factor;
additional information can be found in the database.

Generalist/specialist: The hoary marmot is a habitat specialist that requires subalpine
meadows for habitat, but it is a generalist with respect to forage.

Physiology: It may be moderately physiologically sensitive to changes in precipitation
and temperature, but little is known.

Life history: It breeds after three years, and then breeds once per year having be-
tween two and five young in each litter.

Sensitive habitats: It depends on subalpine meadows, which are sensitive to climate
change.

Dispersal distance: Its maximum annual dispersal is estimated to be between 5
and 25 km.

Dispersal barriers: Rivers and geologic features act as barriers to dispersal.

Disturbance regimes: It is not linked to particular disturbance regimes, although
changes in snowpack will affect the persistence of subalpine meadows (as noted above
under sensitive habitats).

Ecology: Predation pressure may increase for hoary marmots if coyotes (Canis
latrans Say) move up in elevation as the duration or extent of snowpack decreases.
Hibernation patterns may be altered by changing snowpack duration, earlier snow-
melt, longer drier summers, and changes in forage species.

Nonclimatic: Habitat loss and degradation, recreational killing, and resource develop-
ment and mining all have the potential to exacerbate the impacts of climate change on
the marmot.

* http://climatechangesensitivity.org
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Box 6.3—Sensitivity assessment for the yellow-pine
chipmunk

For the yellow-pine chipmunk, the overall sensitivity score was 55 (scale of 1
through 100) and confidence in this score by experts populating the Climate Change
Sensitivity Database* was 60 (scale of 1 through 100). Sensitivity and confidence by
sensitivity factor are shown in the following table.

Confidence
Sensitivity factor Sensitivity in sensitivity
Generalist/specialist 3 4
Physiology 2 3
Life history 4 5
Sensitive habitats 7 5
Dispersal distance 6 3
Dispersal barriers 5 4
Disturbance regimes 4 5
Ecology 3 4
Nonclimatic 2 3
Overall 585 60

Below we describe the expert information that contributed to the score for each fac-
tor; additional information can be found in the database.

Generalist/specialist: The yellow-pine chipmunk is a generalist with respect to food
and habitat.

Physiology: It is not likely to be physiologically sensitive to changes in temperature
or precipitation.

Life history: It breeds after one year and breeds once per year having between one
and three young in each litter.

Sensitive habitats: It depends on open ponderosa pine forests that will be affected by
changes in moisture and disturbance regimes.

Dispersal distance: Its maximum annual dispersal is estimated to be between 1 and
5 km.

Dispersal barriers: Roads, agriculture, industrial and urban development, rivers,
arid lands, mountains, and geologic features can act as barriers to dispersal.

Disturbance regimes: Increased frequency of wind events could lead to increased
blow down, which would create more favorable habitats. Increased high-severity fire
could negatively affect habitat quality. Droughts could affect truffle abundance.

Ecology: Climate change could exacerbate competition with other chipmunk species.

Nonclimatic: Habitat loss and degradation and high-severity fire are factors that
could exacerbate the impacts of climate change and interact with climate change.

* http://climatechangesensitivity.org
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Box 6.4—Sensitivity assessment for the Cascade
red fox

For the Cascade red fox, the overall sensitivity score was 66 (scale of 1 through 100)
and confidence in this score by experts populating the Climate Change Sensitivity
Database* was 60 (scale of 1 through 100). Sensitivity and confidence by sensitivity
factor are shown in the following table.

Confidence
Sensitivity factor Sensitivity in sensitivity
Generalist/specialist 2 3
Physiology 2 1
Life history 5 4
Sensitive habitats 7 5
Dispersal distance 4 3
Dispersal barriers 5 3
Disturbance regimes 4 3
Ecology 5 4
Nonclimatic 5 3
Other 5 3
Overall 66 60

Below we describe the expert information that contributed to the score for each factor;
additional information can be found in the database.

Generalist/specialist: The Cascade red fox is a generalist, although it depends upon
alpine and subalpine habitats and the prey species associated with them (see sensitive
habitats below).

Physiology: It is not likely to be physiologically sensitive to changes in temperature or
precipitation, although there is little information on this assumption.

Life history: It breeds after one year, and breeds once per year having up to four
young in each litter.

Sensitive habitats: It depends on alpine and subalpine meadows that will be sensitive
to climate change.

Dispersal distance: Its maximum annual dispersal is estimated to be between 25 and
50 km.

Dispersal barriers: Low-elevation forest may act as dispersal barriers because the
species is not commonly found below 900 m.

Disturbance regimes: Fire and drought have the potential to affect alpine and subal-
pine habitats and prey species.

Ecology: Temperature and precipitation have the potential to affect prey species abun-
dance.

Nonclimatic: Invasive species, competition, and direct human interactions will likely
increase sensitivity to climate change. Additional concerns include already low popu-
lations and the potential expansion of coyotes (Canis latrans Say) and introduced red

fox (Vulpes vulpes L.) to higher elevations.

Other: Genetic ramifications of small population sizes are a concern; research on this
topic is ongoing.

* http://climatechangesensitivity.org
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Box 6.5—Sensitivity assessment for the western toad

For the western toad, the overall sensitivity score was 91 (scale of 1 through 100)
and confidence in this score by experts populating the Climate Change Sensitivity
Database* was 88 (scale of 1 through 100). Sensitivity and confidence by sensitivity
factor are shown in the following table.

Confidence
Sensitivity factor Sensitivity in sensitivity
Generalist/specialist 4 4
Physiology 6 5
Life history 2 5
Sensitive habitats 7 5
Dispersal distance 6 4
Dispersal barriers 5 4
Disturbance regimes 7 5
Ecology 7 5
Nonclimatic 7 5
Other 7 5
Overall 92 88

Below we describe the expert information that contributed to the score for each fac-
tor; additional information can be found in the database.

Generalist/specialist: The western toad is a specialist because it requires shallow
breeding habitat.

Physiology: The western toad, like many amphibians, is physiologically sensitive to
changes in temperature, precipitation, pH, and dissolved carbon dioxide.

Life history: Although it breeds only after 3 to 5 years and only once per year, it
produces about 12,000 eggs per clutch.

Sensitive habitats: It relies on seasonal streams, shallow wetlands, vernal pools,
seeps and springs, and alpine and subalpine areas.

Dispersal distance: Its maximum annual dispersal is estimated to be between 1 and
5 km.

Dispersal barriers: Roads, agriculture, suburban and rural residential development,
clearcuts, rivers, dams, mountains, and geologic features act as barriers. Trails may be
barriers to juveniles.

Disturbance regimes: It is likely to be highly sensitive to changes in flooding, dis-
ease dynamics, drought, and potentially fire.

Ecology: Changes in temperature, precipitation, and pH have the potential to affect
a wide array of factors including hydroperiod, food resources, competition, predator-
prey relationships, and disease dynamics.

Nonclimatic: Invasive species, direct human conflict (recreational uses and roads),
pollution, habitat loss and degradation, and disease will likely increase sensitivity to
climate change.

Other: In general, this species is rapidly declining across its range. Such a decline is
likely to make the species more susceptible to climate change.

* http://climatechangesensitivity.org
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reviewed and assessed during the workshop are not necessarily the most sensitive
species in the North Cascades. Many other species are likely to be as sensitive or
more sensitive to climate change; similar assessments of more species can be found
in the Climate Change Sensitivity Database.

The rankings provided by the Climate Change Sensitivity Database provide one
indication of sensitivity and are a tool for comparing sensitivity among species, but
the specific aspects of a species’ life history and habitat that make it sensitive to
climate change provide more information than rankings alone. Below we summa-
rize some aspects that the species and their habitats contribute to the ranking. This
information can inform adaptation actions, as well as focus additional monitoring
and research to better understand species’ responses to climate change.

American pika—

Physiological factors and habitat requirements make the American pika (fig. 6.2)
very sensitive to climate change. Its inability to tolerate high temperatures and de-
pendence on a moderate amount of snow cover limit its distribution to higher eleva-
tions. Although it does not specialize on particular grasses or forbs, it has relatively
specific habitat requirements because it needs rock fields in proximity to montane
meadows. Montane meadows themselves may be sensitive to higher temperature
and lower snowpack.

Figure 6.2—The American pika is a small
a lagomorph that inhabits boulder fields at higher
elevations. Pikas are particularly sensitive to
warm temperatures in the summer and to cold
8 temperatures in the winter.

Hoary marmot—
The hoary marmot (fig. 6.3) is likely to be very sensitive to climate change. Similar

to the pika, the hoary marmot depends on higher elevation habitats, particularly
alpine and subalpine meadows, which may decline in area because of tree encroach-
ment. Although the marmot does not share the physiological sensitivities of the
pika, it will be sensitive to the loss of alpine and subalpine vegetation and reduced
area of montane meadows.
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Eemeli Haverinen

Figure 6.3—The hoary marmot is a large ground
squirrel that lives at higher elevations. Marmots feed
on grasses and forbs and live near treeline.

Cascade red fox—

The Cascade red fox is likely to be very sensitive to climate change because of its
dependence on alpine and subalpine areas and high-elevation meadows. In addition,
the fox may be limited in its ability to disperse to other high-elevation areas and
will likely be sensitive to climate-driven changes in prey abundance.

Yellow-pine chipmunk—

The yellow-pine chipmunk (fig. 6.4) is likely to be moderately sensitive to climate
change. In the North Cascades, the chipmunk is a habitat specialist, inhabiting only
open ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) forests.
An increase in fire frequency in these forests may reduce habitat available for the
chipmunk, and droughts have the potential to reduce food abundance. Dispersal for
the chipmunk is relatively limited, particularly because of barriers such as roads,
which increases its sensitivity.

Damean Kuhn

Figure 6.4—The yellow-pine chipmunk is a small
rodent that inhabits drier forests of the Pacific
Northwest.
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Western toad—

The western toad (fig. 6.5) is likely to be sensitive to climate change because the
species life history depends on intermittent and permanent habitats such as streams,
seeps, wetlands, vernal pools, ponds, and lakes (Bull 2009) that are sensitive to
changes in precipitation and hydrologic regimes. Western toad survival is also af-
fected by disease such as chytridiomycosis, avian predation, desiccation, habitat
alteration, and fire (Bull 2009, Guscio et al. 2007). Western toad survival is highly
correlated with having adequate water sources for reproduction, dispersal, and rehy-
dration (Bull 2009). Desiccation and water loss in streams and pools along dispersal
routes can limit dispersal and create barriers to movement (Bull 2009).

Walter Siegmund

Figure 6.5—The western toad is a large toad with
a range that extends from Alaska to California and
east to Utah and Colorado.

Northern spotted owl—

The northern spotted owl (fig. 6.6) is likely to be very sensitive to climate change.
First, the owl is a specialist with respect to both habitat and food resources. It will
be sensitive to climate-driven changes in the distribution and abundance of prey
species, as well as climate-driven changes in the prevalence of late-successional
forest area and structural components. Second, the species is currently threatened
by reduced habitat and interactions with the barred owl. Bioclimatic envelope mod-
els indicate that as climate changes in the spotted owl’s range, higher elevation late-
successional reserves may become particularly important for preserving the species
(Carroll 2010).
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and Patrick Kolar

U.S. Geological Survey

Figure 6.6—The northern spotted owl inhabits late-successional
forests of the Pacific Northwest. Its population has declined in
response to habitat loss over the last century. In addition to loss of
habitat, the northern spotted owl is also threatened by competition
from the barred owl, whose range has expanded to overlap with that
of the northern spotted owl.

Marbled murrelet—

A combination of factors will likely make the marbled murrelet (fig. 6.7) very sensi-
tive to climate change. The marbled murrelet requires specific habitat structures in
late-successional forests for nesting and is already threatened by habitat loss. It is

a long-lived, slowly reproducing species. Thus, although it may be able to survive
several years of climatic conditions that are not favorable, the population will be
slow to recover from extreme conditions or events, and the likelihood of adapting to
rapidly changing climatic conditions will be relatively low.

Gus Van Vliet

Figure 6.7—The marbled murrelet is a member of the auk
family that forages at sea and nests in old trees in coastal
forests. The species has declined as a result of terrestrial habitat
reduction during the 20" century.

Clark’s nutcracker—
Clark’s nutcracker (Nucifraga columbiana Wilson) (fig. 6.8) is likely to be moder-
ately sensitive to climate change. Although it depends on conifers with large seeds

for food, its habitat contains a variety of species. It uses subalpine zones for feed-
ing and nesting, but also feeds and nests in lower elevation forests. Thus, climate
change will likely affect the nutcracker, but the species will not be as sensitive to
changes in forest structure and composition as other species.
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U.S. Fish

and Wildlife
Service, and
Dave Menke

Figure 6.8—The Clark’s nutcracker is a corvid
that feeds primarily on large pine seeds. Its use of
whitebark pine (Pinus albicaulis Engelm.) seeds
may make this species sensitive to climate change
because that resource is decreasing as a result of
whitebark pine mortality from white pine blister
rust (Cronartium ribicola A. Dietr)) and mountain
pine beetle outbreaks at higher elevations.

White-tailed ptarmigan—

The white-tailed ptarmigan (Lagopus leucura Richardson) (fig. 6.9) depends on
alpine and subalpine habitats, so it is likely to be very sensitive to climate change.
Ptarmigans are also more limited in their dispersal ability than other birds and thus
may have trouble tracking climatic changes that require movements between distant
mountain ranges.

John Hill

Figure 6.9—The white-tailed ptarmigan is a
small grouse species that inhabits alpine and
subalpine habitat. Its dependence on cool,
high-elevation habitats makes this species
particularly sensitive to a changing climate.

Elk—

Elk (fig. 6.10) are likely to be relatively insensitive to climate change. The species
could be affected by changes in climate, but elk are habitat and forage generalists,
so they have more potential food sources even if vegetation distribution and abun-
dance change. They can move long distances and tolerate a large range of climatic
conditions, which also decreases sensitivity.
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Figure 6.10—Elk are one of the largest land mammals in
| North America. They use a diversity of habitats including
low-elevation pastures and high-elevation meadows and

.4 forests.

Northern red-legged frog—
The northern red-legged frog (fig. 6.11) is well adapted to the cool and wet climate

of the western Pacific Northwest (PNW). This species inhabits and requires aquatic
habitats with stable water levels (such as extensive wetlands, shallow ponds, and
slow-moving streams with marshy edges) for the successful completion of its life
history (Leonard and McAllister 2005). This species could be sensitive to climate
change because of its dependence on these habits that are sensitive to changes in
precipitation and hydrologic regimes. Current threats to survival include wetland
destruction, habitat degradation and fragmentation, urbanization and residential
development, drought, and the introduction of exotic fish and bullfrogs. Climate
change has been hypothesized as a potential threat to the survival of the red-legged
frog, but present declines are more consistent with other threats (Davidson et

al. 2001). Like other amphibians, the northern red-legged frog may experience a
change in susceptibility or exposure to diseases such as the chytrid fungus, which is
sensitive to temperature (Berger et al. 2004). Movement of the species may be fur-
ther restricted if changes in climate lead to drier forest conditions.

Walter Siegmund

Figure 6.11—The northern red-legged frog inhabits
the coastal region from California north to British
Columbia.
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Wildlife Management in National Forests and National
Parks in the North Cascades

Planning and Regulation

Wildlife management in the national forests and national parks in the NCAP
reflects both “fine filter” and “coarse filter” approaches. Fine filter approaches
focus on managing individual species whereas coarse filter approaches focus

on managing habitat for multiple species by maintaining ecosystem processes
and functions. Direction and objectives for managing wildlife and habitat on the
national parks and forests are based on a mix of national, regional, and unit-level
policies, plans, and programs. Wildlife management practices include (1) manag-
ing threatened, endangered, sensitive, and iconic species; (2) monitoring wildlife
populations and habitat; and (3) protecting and restoring wildlife habitat.

Direction and objectives for managing wildlife on the Mount Baker-Snoqualmie
(MBSNF) and Okanogan-Wenatchee (OWNF) National Forests are based on
regional plans and strategies, as well as forest-specific land and resource manage-
ment plans (i.e., forest plans). In 1994, the forest plans of both national forests were
amended by the Northwest Forest Plan (NWFP) (USDA and USDI 1994). Motivated
by litigation associated with the listing of the northern spotted owl as a threatened
species under the Endangered Species Act (ESA) of 1973 (ESA 1973), the NWFP
provides direction for managing wildlife habitat and surveying critical species
within the range of the northern spotted owl, which includes all of the MBSNF
and the OWNF north and west of the Chewuch River. The objective of the plan is
to provide for the long-term sustainability of forests, including the wildlife species
that inhabit them, by establishing late-successional reserves and standards and
guidelines for protection and monitoring of late-successional habitat and dependent
wildlife species. Despite its emphasis on long-term sustainability, the NWFP did
not consider potential effects of climate change on wildlife species or climate-
driven changes in disturbance regimes on habitat and late-successional reserves
(Mawdsley et al. 2009).

Regional direction for wildlife management in the area of OWNF not covered
by the NWFP is provided by the East-Side Screens (the decision notice for the
revised continuation of interim management direction establishing riparian, eco-
system and wildlife standards for timber sales). Similar to the NWFP, the East-Side
Screens directs the OWNF to manage ecosystem processes and functions, but it
emphasizes the natural range of variability in ecosystem structure, rather than a
system of reserves. Management objectives in the East-Side Screens do not consider
climate change and assume static disturbance regimes.
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The USDA FS Pacific Northwest Region provides direction to both national for-
ests for managing wildlife habitat with the Terrestrial Restoration and Conservation
Strategy (TRACS) (USDA FS 2012a). This strategy identifies regional priorities for
species, habitats, and watersheds with the greatest need for conservation, restora-
tion, and habitat enhancement. Conservation protects and maintains a healthy func-  The Forest Service

tioning wildlife habitat, restoration improves degraded habitats, and enhancement has identified
augments habitat components for featured species. Included in TRACS is a list regional priorities for
of species and habitats that are threatened by climate change, and climate change species, habitats, and

(drought and extreme temperatures) is one factor in prioritizing a species or habitat.  watersheds.
The strategy encourages collaboration and integration with external partners to
manage wildlife across administrative boundaries and responding to climate change
impacts is highlighted as an opportunity for collaboration.

In addition to these regional plans, specific objectives and direction for wildlife
management are given in forest plans. The OWNF forest plan, currently under
revision, seeks to increase the consistency of objectives in forest-level planning
with that of the regional plans. The primary objective of wildlife management in
OWNF is to recover and maintain viable populations of native wildlife species,
but this objective is balanced with maintaining access for recreation, fire manage-
ment, and forest restoration. The revised OWNF forest plan modifies the previous
management focus on specific wildlife species with an approach that focuses more
on managing ecosystems processes to create diverse landscapes, a key factor in
enhancing resiliency of wildlife and vegetation to climate change.

The primary objective for wildlife management at MBSNF is to maintain and
restore wildlife resources to ensure the use of these resources and the maximum
benefit for the forest, its other resources, and associated communities. Restoration
actions for wildlife habitat are prioritized first for species with the highest political
and ecological significance and second for species for which actions will result in
substantial improvements to habitat and populations.

Direction and objectives for managing wildlife in the national parks are given
by the NPS Organic Act (NPS 1916), management policies (USDI NPS 2006b),
and individual park foundation statements and general management plans. The
NPS management policies direct park managers to maintain the natural abundance,
diversity, and genetic and ecological integrity of native wildlife species. Generally,
the NPS relies on natural processes to maintain ecosystem functions and compo-
nents, but managers can intervene with individuals or populations of native spe-
cies when intervention will not cause unacceptable effects on the species or other
components and processes of the ecosystem. Furthermore, managers can intervene
only to (1) protect unnaturally low or high population levels, (2) protect cultural
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resources, (3) accommodate development in areas designated for development, (4)
protect human health and safety, or (5) protect property when it is not possible to
change the pattern of human activities. Shifts in species distributions driven by
climate change may challenge policy definitions of native species. Furthermore,
these criteria by which managers can intervene to manage populations suggest that
attributing climate change to human causes may be necessary to justify interven-
tion to maintain current native species that are threatened by climate change.

Management of Wildlife Species in the North Cascades

All NCAP units are home to state or federally listed (sensitive, threatened, and
endangered) or candidate species, and managers are required to collaborate with
the USFWS and WDFW and participate in species recovery plans. The ESA (1973)
requires all federal agencies to conserve threatened and endangered species and
prohibits agencies from authorizing, funding, or carrying out any action that would
harm a listed species or its habitat.

The MBSNF is home to 3 threatened species and 1 endangered species, as well
as an additional 15 sensitive species, species of concern, or management indica-
tor species, which include large and small mammals, birds, and amphibians. The
national forest participates in recovery plans, and management for these species
focuses on monitoring populations and increasing late-successional habitat under
the NWFP.

The OWNF participates in recovery plans for several sensitive and listed
species including grizzly bear, Canada lynx (Lynx canadensis Kerr), gray wolf,
wolverine, fisher (Martes pennanti Erxleben), and the northern spotted owl. Man-
agement goals for these species differ but generally focus on reducing negative
impacts of roads on habitat quality and connectivity, protecting critical habitats, and
restoring late-successional forest conditions and structural components (e.g., large,
old trees and large snags). The OWNF participates in the grizzly bear recovery
plan (Servheen 1997), which has a goal of “no net loss” of high-quality grizzly bear
habitat. The recovery plan limits construction of new roads and trails and seeks to
reduce bear-human interactions. The forest plan for OWNF includes provisions to
increase habitat for grizzly bears while enhancing safety for humans with vegeta-
tion treatments and management of human access, road densities, and recreation
facilities. Canada lynx habitat is managed in accordance with the Lynx Conserva-
tion Assessment and Strategy, an interagency science-based assessment (Ruediger
et al. 2000). Managers protect den sites for the gray wolf. Management of wolverine
and fisher, which are listed as sensitive species for the USDA FS Pacific Northwest
Region and candidate species for listing under the ESA (1973), will be based on the
regional assessment of habitat needs for landscape connectivity.
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Climate change provides a new context through which to assess the feasibility
of goals and objectives of species-specific recovery plans, given potential effects on
populations and habitats. Management of the northern spotted owl on the OWNF
provides an example of the consequences of considering only static ecosystems in
recovery plans. The OWNF manages for northern spotted owl by restoring the his-
torical range of variability of late-successional habitat, but considerable habitat has
been lost to extensive, high-severity wildfire. This loss of habitat promoted a shift
towards managing for future range of variability. A revised goal of forest restora-
tion is to determine the extent and arrangement of late-successional habitat that is
sustainable now, but that will also be resilient to climate change and sustainable in a
warmer climate with more fire (USDA FS 2012b).

The NPS management policies (USDI NPS 2006b) direct managers to par-
ticipate in the recovery planning process; undertake active management programs
to inventory, monitor, restore, and maintain habitat for listed species; control
detrimental nonnative species; manage detrimental visitor access; and reestablish
extirpated populations as necessary. The national parks are required to manage
designated critical habitat, essential habitat, and recovery areas to maintain and
enhance their value for recovery of threatened and endangered species.

Wildlife ecology programs of the NPS include compliance and inventory,
monitoring, research, and protection of threatened and endangered species. Mount
Rainier National Park is home to 163 bird species, 55 mammals, 5 reptiles, and 14
amphibians, 2 of which (northern spotted owl and marbled murrelet) are federally
listed threatened and endangered species. Another 12 federal species of concern and
state-listed species occur or are likely to occur in the park. North Cascades National
Park Complex (NOCA) is home to 210 bird species, 78 mammals, 10 reptiles, and
12 amphibians. Of these species, 7 are federally listed species, 2 are federal can-
didates, and 16 are state listed. Wildlife managers inventory distributions of listed
species and comply with National Environmental Policy Act requirements to protect
species from all park activities associated with managing roads, trails, and facilities
(NEPA 1969). Both parks are potential sites for an experimental USFWS program
to remove barred owls (Strix varia Barton) with the goals of evaluating linkages
between northern spotted owl and barred owl populations and investigating the
feasibility of barred owl removal as a conservation tool. Mount Rainier National
Park includes 10 000 ha of suitable nesting habitat for the marbled murrelet, and
management of the species includes radar surveys of populations. The park also has
one of three populations of the Cascade red fox, which is a candidate species for
state listing.
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A primary focus of wildlife management in MORA and NOCA is to reduce
human impacts to wildlife from management and recreational activities. Managers
seek to reduce impacts associated with vehicle collisions and human feeding and
habituation. Increased visitation associated with warmer temperatures and a longer
snow-free season could increase human-wildlife interactions, although increased
visitation would likely be concentrated in areas that already have high use. Wildlife
managers minimize and mitigate impacts of construction; all newly constructed
or rehabilitated facilities are built to avoid critical habitat corridors, nesting, and
denning sites, and construction activities are timed to avoid sensitive periods of
wildlife activity. These considerations will become more important with increases
in construction associated with more flood and landslide damage in a changing
climate (see chapter 4).

Management of Wildlife Habitat in the North Cascades

In addition to fine filter approaches focused on listed species, wildlife managers
on the national forests and national parks in NCAP protect and maintain ecosystem
functions and processes associated with diverse, high-quality habitat for native
species. Management for wildlife habitat on the MBSNF focuses on protecting and
restoring late-successional habitat in areas outside of wilderness and reserves desig-
nated by the NWFP. Habitat management includes commercial and precommercial
thinning of 400 to 800 ha per year with the goal of accelerating development of
late-successional habitat for old-growth-dependent species.

Management for wildlife habitat in the revised OWNF Land and Resource
Management Plan (USDA FS 2011) and Restoration Strategy (USDA FS 2012b)
includes objectives for restoring and improving habitat, habitat effectiveness,
and core areas on approximately 100 000 ha over the next 15 years. In addition
to restoration projects designed for specific species, restoration projects will be
designed for groups of species with similar habitat requirements. The restoration
strategy shifts management from a focus on commodity production to a focus on
ecosystem restoration and resiliency. It focuses on restoring wildlife habitat in dry
fire-adapted forests that have been affected by selective harvesting and fire exclu-
sion, and it highlights the importance of maintaining forest structures for wildlife
such as snags, down woody debris, and large old trees. Currently, the extent of
late-successional habitat is below the natural range of variability in several forest
types in OWNF because of past management and recent severe fires. Restoration
of large trees, snags, and late-successional forest structure will increase the area of
late-successional habitat. The forest plan and restoration strategy also emphasize
the need for habitat connectivity given the increasing fragmentation of habitat sur-
rounding the OWNF.
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National Park Service managers focus on protecting and mitigating impacts
to ecological processes to preserve populations of native species. Thus manage-
ment for wildlife habitat focuses on actions by park staff and visitors rather than
habitat modifications. Examples of actions to mitigate impacts on wildlife habitat
include (1) restricting helicopter use by season or time of day, (2) restricting trail
use because of wildlife use, and (3) prescribing trail density and recreation activi-
ties (such as distances between cooking and camping areas) based on impacts to
wildlife habitat. Park managers also work cooperatively with the USDA FS and
other adjacent land management agencies to protect ecosystem habitat and wildlife
corridors.

Monitoring and
adaptive management
will be important for
detecting effects of
climate change on

Monitoring Wildlife and Habitat wildlife.

Monitoring as part of adaptive management is a key component of effective restora-
tion and management of wildlife habitat identified by USDA FS policies. To inform
their adaptive management program, wildlife managers on the OWNF monitor
habitat and wildlife population dynamics, including snag abundance and avian

and small mammal response to vegetation treatments. Wildlife managers on the
MBSNF monitor populations of northern spotted owls, mountain goats, and winter-
ing bald eagles (Haliaeetus leucocephalus L.) in the Skagit River valley. Wildlife
managers on both forests survey and manage critical species as required by the
NWEFP. Currently, wildlife monitoring on the national forests does not emphasize
climate change, but monitoring and adaptive management will become increasingly
important for detecting effects of climate change on wildlife.

Inventory and monitoring of wildlife species and habitats in MORA and
NOCA is conducted at both the park level and at the regional level as part of the
North Cascades and Coast Network (NCCN) inventory and monitoring program.
Wildlife monitoring by NCCN includes long-term surveys to determine trends in
land bird, bat, and forest carnivore populations. Elk are a biologically and politically
important species at MORA, so NCCN monitors elk populations there. The park-
level inventory and monitoring program in MORA monitors northern spotted owl
demography, human impacts to the Cascade fox population, and distributions of
butterflies, American pika, amphibians, and harlequin duck (Histrionicus histri-
onicus L.). The park-level inventory and monitoring program at NOCA periodically
monitors marmots and annually monitors mountain goats, bald eagles, peregrine
falcons (Falco peregrinus Tunstall), and butterflies. Wildlife research at NOCA
currently includes studies of the western gray squirrel (Sciurus griseus Ord),
mountain goat, American pika, grizzly bear, and wolverine. Both parks are under
consideration for the reintroduction of fishers.
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Adapting Management of Wildlife and Wildlife Habitat in
a Changing Climate

During the NCAP wildlife workshop, participants collaboratively identified adapta-
tion options for managing wildlife and wildlife habitat given projected effects of
climate change. Participants reviewed basic principles of adaptation and recom-
mendations for adapting management of wildlife and biodiversity to a changing
climate. In their review of adaptation literature, Heller and Zavaleta (2009) found
that research on climate change adaptation has been mostly conceptual and that 70
percent of recommendations in the scientific literature can be classified as general
principles rather than specific actionable tactics. Furthermore, because of the dif-
ficulties associated with developing experiments to test the effectiveness of adapta-
tion actions, many recommendations are based on general ecological principles
rather than specific research or empirical data (Heller and Zavaleta 2009).

The adaptation strategies and tactics for wildlife management identified in the
NCAP workshop reflect this current state of the science, but participants attempted
to increase specificity by identifying on-the-ground actions (i.e., tactics) in addition
to general strategies. Adaptation strategies and tactics reflect a mix of fine filter
approaches aimed at management of individual species and coarse filter approaches
aimed at management of habitats and ecosystem processes, reflecting the mixed
model with which wildlife is managed in the region. The adaptation strategies
are also a mix of resistance, resilience, and response strategies (see chapter 1 for
definitions); the relevance of each approach will likely change with time as climate
change effects are realized.

Scientists and managers identified adaptation strategies and tactics for five
habitats and associated species: (1) low-elevation maritime forests on the western
slopes of the Cascade Range, (2) low-elevation dry forests on the eastern slopes of
the Cascade Range, (3) riparian forests, (4) subalpine and alpine ecosystems, and
(5) wetlands. In several cases, adaptation strategies identified for management of
wildlife habitat are similar or complementary to adaptation strategies identified for
vegetation management (see chapter 5), indicating the importance of multidisci-
plinary coordination. The similarities of these strategies provide an opportunity to
identify “win-win” adaptation strategies for both wildlife and vegetation (Littell et
al. 2012).
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Adaptation Options for Low-Elevation Maritime Forests on the
Western Slopes of the Cascade Range

Low-elevation forests on the western slopes of the Cascade Range were considered
by managers to be the least sensitive of the five habitats, but participants identified
adaptation strategies and tactics to minimize adverse effects of shifts in species
distributions and increases in fire and insect disturbances (table 6.1). Ranges of

native tree species are likely to shift (Rogers et al. 2011), but forest managers may

be able to allow these shifts if the habitat structure and composition continue to More wildfire and
support viable populations of threatened and endangered species. However, more insect outbreaks will
wildfire and insect outbreaks will likely decrease the area of late-successional decrease the area of
forest habitat and increase habitat fragmentation for species that depend on large late-successional forest
areas of late-successional forests. This will challenge forest management under the ~ @nd increase habitat
NWFP, particularly in MBSNF, where management focuses on protecting a static fragmentation for some
system of late-successional reserves and large areas of contiguous habitat. species.

In the long term, increasing the resilience of low-elevation maritime forests to
fire and insects may be necessary to prevent the loss of critical late-successional
habitat (Dale et al. 2001, Millar et al. 2007). At large spatial scales, increasing the
diversity of forest structure and age classes can decrease susceptibility and spread
of severe and extensive disturbances, thus increasing resilience (Hessburg et al.
2005, Spies et al. 2006). At smaller spatial scales, resilience of individual stands
can be increased with vegetation treatments designed to increase tree vigor, accel-
erate development of late-successional structure, increase species diversity, and
protect critical habitat structures such as nest trees and snags (Halofsky et al. 2011).
These treatments can be prioritized in areas projected to have the largest increases
in drought stress. Monitoring of insects can detect infestations before outbreaks
become extensive, potentially creating triggers for management action to increase
forest resilience to insect outbreaks. These tactics are consistent with current man-
agement of the matrix, adaptive management areas, and developed zones of national
forests, and thus do not represent significant departures from current management.
However, managers may consider adjusting priority locations for treatment or
prescriptions based on projected changes in species distributions and drought stress.

In the long-term, climate change may motivate managers to consider changes
in management that are more significant departures from current practices. For
example, managing vegetation in reserves and increasing the use of prescribed
fire in ecosystems not historically adapted to fire may increase resilience to more
frequent disturbances. This would require a review of the current reserve system
and restrictions on management in reserves under the NWFP to increase manage-
ment options (Spies et al. 2006). The NWFP and late-successional reserves were
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designed with the notion of static ecosystems and do not reflect the increased
dynamism of these systems as climate changes (Mawdsley et al. 2009). This has
been recognized as a limitation of the NWFP for protecting late-successional
habitat in fire-adapted forests of the eastern Cascades. The extent of fire and insect
disturbances in low-elevation maritime forests has not caused substantial loss of
late-successional habitat, but climate change will increase the probability of such
events. However, management in reserves will need to consider tradeoffs between
short-term effects on threatened and endangered species and long-term benefits of
increased resilience to disturbance.

Management actions to increase resilience to climate change, such as increased
use of prescribed fire and unplanned ignitions, and planting species or varieties
that are adapted to a warmer climate, will have additional ecological and social
risks. Research is needed to determine which species to plant and how to modify
seed zone restrictions. A better understanding of the ecological effects of fire in
forests not historically adapted to frequent fire can inform prescriptions for fire and
thinning treatments to achieve desired future conditions in low-elevation maritime
forests.

Adaptation to climate change can be facilitated by altering inventory and
monitoring procedures to focus on species and habitats that are likely to be most
sensitive (Heller and Zavaleta 2009). For example, specialists and endemic species
are expected to be more sensitive because of their generally narrow habitat require-
ments. Identifying climate refugia can aid prioritization of critical areas to protect
(Heller and Zavaleta 2009). Monitoring procedures can be modified to include mea-
sures and indicators that distinguish between the effects of climatic and nonclimatic
stressors on populations. This is particularly important for developing adaptation
strategies in national parks because current NPS policies generally restrict interven-
tion to manage unnaturally high or low populations only when fluctuations are
caused by humans, not by natural processes and competition. Additional research is
needed to design monitoring protocols to detect shifts in species ranges and effects
and associated effects on ecological function, as well as attributing changes to
climatic versus nonclimatic stressors.

Adaptation Options for East-Side Fire-Adapted Forest Habitat
and Associated Species

Fire-adapted forests on the eastern slopes of the Cascade Range have recently
experienced loss of late-successional habitat because of large and severe insect out-
breaks and fires. These disturbances have shifted a greater portion of the landscape
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Resilience in dry
forests can be
increased by thinning,
removing surface fuels,
and allowing wildfire

to burn in areas where
it can diversify forest
structure.
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to earlier successional forests relative to the historical range of variability (Hessburg
et al. 2005), and large areas of late-successional habitat set aside as reserves under
the NWFP have been lost. The extent and connectivity of late-successional habitat
are also threatened by development and land use change. Increasing the resistance
and resilience of fire-adapted forests can limit habitat loss to insect outbreaks and
fire, especially if these concepts are incorporated in management plans (Dale et
al. 2001, Mawdsley et al. 2009). Actions to increase resilience include thinning
dense forests, removing accumulated surface fuels (e.g., with prescribed fire), and
allowing wildfire to burn in areas where it can beneficially increase diversity in
forest structure (table 6.2). The forest restoration and fire programs in fire-adapted
forests in OWNF and NOCA currently manage fire as a natural ecosystem process.
The OWNF Restoration Strategy and revised forest plan emphasize the additional
threat to late-successional habitat associated with more disturbances in a changing
climate. Recent modifications to the NWFP recognize the need to manage late-
successional habitat in fire-adapted forests as a dynamic system (Spies et al. 2006).
Maintaining late-successional habitat in fire-adapted forests will be most successful
with a large-scale approach to restoration and protection that recognizes the need to
protect critical remnant habitat in some locations while accepting short-term loss in
other locations with treatments to increase resilience in the long-term.

Habitat fragmentation caused by urban development limits the ability of species
to migrate and shift their ranges as climate changes (Noss 2001). Thus, increas-
ing habitat connectivity is the most commonly recommended adaptation strategy
for wildlife (Heller and Zavaleta 2009) and managers identified connectivity as a
critical adaptation strategy for many species in east-side fire-adapted forests (table
6.2). Climate change provides a new context with which to evaluate current objec-
tives and practices for increasing connectivity. Increasing connectivity requires
approaches that are tailored to specific species or groups of species. In a changing
climate, managers may consider focusing efforts on species with limited dispersal
abilities or species that are sensitive to climate change. For these species, the cor-
ridors and core habitats designated under current climate may not be as effective
in the future as climate, vegetation, and hydrologic regimes change. Furthermore,
climate change increases the importance of working across jurisdictions to increase
connectivity because it will not be possible to preserve all species in all places.
Managing connectivity will require an “all lands” approach that coordinates
management among ownerships to protect existing habitat in reserves and increase
the permeability of the matrix and unprotected lands so that species can migrate
(Hannah et al. 2002).
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Habitat connectivity and permeability of the matrix can be increased through
conservation easements, planning and management of urban growth boundar-
ies, restrictions on human use, and road closures to protect critical areas. New
and existing landscape restoration efforts that involve multiple agencies provide
an opportunity to address habitat connectivity across jurisdictional boundar-
ies. National forests and national parks in the NCAP are part of the Washington
Wildlife Habitat Connectivity Working Group, which is researching critical cor-
ridors and migration pathways that will allow species to shift ranges as climate
changes (WHCWG 2011). A fine-scale analysis for specific species and habitats
could inform adaptation tactics and priority locations for corridors and core habitat
protection.

Although increasing connectivity is a critical adaptation strategy, potential
tradeoffs will need to be considered. Increasing connectivity for native species of
concern may also increase the spread of invasive species, particularly those that
will benefit from a warmer climate with more disturbances. Actions to increase
connectivity and permeability in the matrix may compete with human access and
development and could be met with public opposition, particularly where skepticism
about climate change exists. An “all-lands” approach to managing for habitat con-
nectivity is likely to be more successful if it includes public outreach and education
on the effects of climate change on wildlife and habitat.

Adaptation Options for Riparian Forest Habitat and Associated
Species
Changes in hydrologic regimes will affect riparian habitats and riparian obligate
species in forests on both the west and east sides of the Cascade Range. More fre-
quent floods and higher peak flows could reduce riparian habitat in forests on the
western slopes, particularly areas in mixed rain-and-snow basins that will experi-
ence the biggest shift in winter precipitation falling as rain rather than snow (see
chapter 4). In these basins, adaptation tactics that increase water storage in uplands
to regulate runoff can be considered (table 6.3). One tactic is to manage for larger
beaver populations that create functional wetlands that store water. Beavers that
build dams that destroy roads and trails could be relocated rather than eliminated.
Drier forests on the eastern slopes of the Cascades are also likely to experience
changes in hydrologic regimes that will affect riparian habitats and species. Lower
snowpack, water availability in the summer, and summer streamflows (see chapter
4) will reduce the function of riparian habitat in drier forests. Similar to the west
side, it may be desirable to increase water storage on the landscape in winter to
maintain summer water availability and streamflow, and again, maintaining higher
beaver populations and the wetland habitats they create would be a useful tactic.
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Another tactic in areas where snowpack is critical is to use reflective tarps or other
devises to retain snow. Funding for such intensive management is not currently
available, but if riparian systems become severely compromised by climate change,
it may be possible to justify this investment.

Adaptation Options for Wetland Habitats and Associated Species

Wetlands in the North Cascades are likely to experience changes in hydroperiods
as the climate changes. Wetlands provide critical habitat for wildlife, including
many amphibian species that are likely to be sensitive to climate change. Workshop
participants identified adaptation strategies and tactics to reduce adverse impacts
on wetland habitats and species in general and specifically for the western toad
(table 6.4). Increasing resilience and resistance of populations of wetland obligate
species in response to changes in breeding habitat and survival rates would facili-
tate adaptation to climate change (Corn 2005). Additional research on the current
distribution of wetlands, changes in wetland hydrology, and methods to reduce
climate change effects will facilitate implementation of adaptation strategies.

Reducing nonclimatic stressors is a commonly identified adaptation strategy
because it is robust to a range of future climate scenarios and is often consistent
with current ecosystem management practices (Heller and Zavaleta 2009, Peterson
et al. 2011). Existing efforts in NOCA to reduce introduced fish species in high-ele-
vation lakes exemplify how reducing a nonclimatic stressor can increase resilience
to climate change (USDI NPS 2006a). Reducing the threat posed by introduced fish
species to mountain lake and wetland community dynamics is a low-risk, robust
strategy for increasing resilience (Hoffman et al. 2004). Restoration of wetland
habitats following timber harvest can improve habitat quality. Some wetlands in
the region have been adversely affected by the high density of roads and trails and
heavy recreation use. Limiting visitation and closing roads and trails near sensitive
wetlands can increase resilience. In many cases, reducing nonclimatic stressors can
increase resilience to climate change, but simply continuing current conservation
and ecosystem management practices without explicit consideration of climate
change will likely be insufficient.

Higher water temperature in lakes and streams may increase rates of disease
and fungal and bacterial infections (Blaustein et al. 2010). Closing roads and trails,
limiting human access, and educating the public about the sensitivity of wetland
communities may reduce the spread of pathogens. Intensive management, such as
managed relocation of wetland species, may be necessary to protect high-value rare
and sensitive species or populations over the long term (Mawdsley et al. 2009).
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Climate change will likely alter phenology and species interactions, thus
changing community dynamics in wetlands (Blaustein et al. 2010). Maintaining
biological diversity within these systems is one strategy to increase resilience of
ecological functions and allow the systems to better respond to changes in climate
(Mawdsley et al. 2009). Increased monitoring of population trends and habitat
conditions can inform prioritization of critical regions, locations, and species to
manage as the climate changes. Adaptive management protocols can be useful
for periodically reviewing and adjusting management priorities and objectives as
population changes are measured. Resource managers in NCAP national forests and
national parks are seeking opportunities to coordinate priorities, monitoring, and
management across jurisdictional boundaries, so that biodiversity is maintained in a
regional context, rather than separately for each unit (Lawler et al. 2009).

Adaptation strategies for the western toad, an aquatic breeding amphibian spe-
cies, are similar to those for wetland habitats and species in general, but additional
measures can be taken to facilitate adaptation of this species (table 6.4). Maintain-
ing wetland hydrology by managing snowpack with fences and water levels in
systems linked to reservoirs can protect aquatic breeding habitat. Using wetland
vegetation to increase shade can reduce temperature and moisture stress and protect
microhabitats within wetlands (Shoo et al. 2011). Habitat enhancement with woody
debris can increase microhabitat structures for climate refugia and egg deposition,
thus increasing breeding sites and reproduction (Shoo et al. 2011).

Survival in all life stages can be enhanced with actions to minimize disease
spread, manage toadlet migration, and increase invertebrate prey resources. The
spread of fungi and pathogens between ponds can be reduced with decontamina-
tion, visitor education (e.g., advising swimmers to swim in one pond per visit), and
microbial treatments of amphibians at small scales (Harris et al. 2009). Populations
can be protected with road or campground closures during critical periods of toadlet
migration. Removing exotic fish from ponds and lakes may also increase inver-
tebrate prey resources for native amphibians (Knapp et al. 2001). Although many
of these actions are already taken at small scales, increasing stress on amphibian
populations because of climate change may require that these actions be taken in
more locations or more often to ensure population resilience.

Current national forest and national park management objectives for wetlands
and associated species present both barriers and opportunities to implementing
these adaptation strategies (table 6.4). National Park Service policies limit intensive
management of species and habitat components such as vegetation or snowpack,
but the policies direct managers to mitigate adverse impacts of human actions.
Thus, NPS managers have the authority to manage trails, roads, infrastructure, and

Removing exotic fish

species from ponds

and lakes may increase

invertebrate prey for
native amphibians.
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recreational uses that are reducing wetland habitat extent and quality and spreading
diseases. Similarly, NPS managers have the authority to remove exotic species and
intervene to protect state and federally listed species. In the case of direct effects of
climate change on wetlands and species, attributing these changes to human-caused
climate change would provide NPS with the authority to mitigate the effects. The
NPS can intervene to protect threatened and endangered species, so the ESA (1973)
provides an opportunity to implement adaptation strategies designed to increase
resilience of threatened and endangered species to climate change. The USDA FS
policies provide more options to actively manage habitat outside of wilderness and
reserves. Current wetland restoration plans following timber harvests provide an
opportunity to evaluate the likelihood of achieving desired objectives given pro-
jected changes in climate.

Adaptation Options for Alpine and Subalpine Habitats and
Associated Species

Increased monitoring of alpine and subalpine habitats and associated wildlife spe-
cies will be needed to quantify the effects of climate change. Monitoring can detect
changes in the distribution and abundance of alpine and subalpine habitat. Monitor-
ing specifically designed to detect effects of climate change on subalpine and alpine
habitats could measure tree encroachment in meadows, changes in upper treeline,
soil development, and establishment of herbaceous species in areas that were previ-
ously occupied by perennial snow or glaciers (table 6.4).

Intervention could be deemed necessary to protect critical habitat and species.
Adaptation tactics for increasing habitat resilience include intensive management
to remove trees from meadows with fire or mechanical treatments (table 6.4).

Some subalpine and alpine ecosystems in the region are experiencing nonclimatic
threats associated with trails and human use. Access to these areas can be restricted
to increase habitat resilience. Summer range for elk includes subalpine habitats,
but the winter range of elk at lower elevations is often outside the boundaries of
national forests and national parks. This example illustrates that climate change
may require greater collaboration between resource management agencies and

in some cases private landowners to mitigate effects on species with large ranges
(Hannah et al. 2002). USDA FS and NPS managers will explore opportunities to
increase collaborative efforts with other agencies and landowners to identify and
protect winter habitat for elk in an effort to decrease the effects of reduced summer
habitat on elk populations.

Adaptation strategies focused on alpine and subalpine habitat may be needed
to protect some species that are typically associated with high-elevation vegetation
(table 6.5). Limited connectivity between isolated alpine and subalpine habitats
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decreases the ability of species to migrate. In the case of species with high social,
political, or ecological value, managers may need to consider assisted migration

or preserving species ex situ. Human-wildlife interactions such as feeding, habitu-
ation, and traffic accidents adversely affect populations. Reducing nonclimatic
threats from human-wildlife interactions through greater public education and
enforcement can increase population resilience and help maintain some species.
Some populations of a species may be more affected by climate change than others,
thus long-term management could include augmenting declining populations with
individuals from thriving populations elsewhere in the region. For example, moun-
tain goat populations in some areas of the North Cascades are well below historical
levels, and wildlife managers are considering augmenting these populations, an
effort that would require a regional focus to climate change adaptation.
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Chapter 7: Climate Change, Fish, and Fish Habitat in the

North Cascade Range
Nathan J. Mantua and Crystal L. Raymond1

Introduction

The North Cascadia Adaptation Partnership (NCAP) held a 2-day workshop to
assess vulnerability and adaptation options for the management of fish and fish
habitat in the North Cascade Range (the area in Washington state from Mount
Rainier north to the Canadian border). The workshop brought together regional
scientists, fish biologists, and aquatic ecologists. Scientists from the University of
Washington Climate Impacts Group, National Oceanic and Atmospheric Adminis-
tration (NOAA) Northwest Fisheries Science Center, U.S. Department of Agricul-
ture Forest Service (USDA FS) Pacific Northwest Research Station, Seattle City
Light, and Tulalip Tribes presented the latest science on climate change effects on
fish species and habitats. Fish biologists and aquatic ecologists from national forests
and national parks in the NCAP presented an overview of current practices for fish
management and aquatic habitat restoration. The goals of the workshop were to (1)
identify the key sensitivities of fish and habitat to climate change, (2) review and
share current management practices that increase resilience to climate change, (3)
use the latest scientific information on climate change effects on fish to identify
options for adapting management practices, and (4) identify opportunities to coordi-
nate a regional approach to adaptation.

During the first day of the workshop, participants focused on four key sensi-
tivities of fish and fish habitat: (1) higher flood frequency and magnitude of peak
flows, (2) lower low streamflows, (3) warmer stream temperatures, and (4) higher
sedimentation. Here we synthesize the latest scientific information on these sen-
sitivities of fish and fish habitat based on information presented in the workshop,
subsequent discussions with scientists and managers, and the scientific literature.
The second day of the workshop focused on adaptation planning. After reviewing
current practices for managing fish in the North Cascades, scientists and managers
worked collaboratively to identify adaptations to these management practices to
reduce detrimental effects associated with these sensitivities. Results of this adapta-
tion planning effort are summarized below.

! Nathan J. Mantua is a research scientist, National Oceanic and Atmospheric Adminis-
tration, Southwest Fisheries Science Center, 3333 North Torrey Pines Court, La Jolla, CA
92037; and Crystal L. Raymond is a climate change strategic advisor, City of Seattle,
Seattle City Light, 700 5™ Avenue, Seattle, WA 98124 (formerly a research biologist, U.S.
Department of Agriculture, Forest Service, Pacific Northwest Research Station, Pacific
Wildland Fire Sciences Laboratory, Seattle, WA).
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Effects of Climate Change on Streamflows

Global climate model (GCM) simulations are typically used to project future
climate for different greenhouse gas emission scenarios. In this assessment of the
vulnerability of fish and fish habitat to climate change, we used future temperature
and precipitation from monthly mean values generated from 10 GCMs under the
A1B emission scenario and downscaled to the Pacific Northwest (PNW). See
chapters 3 and 4 for more detail about these data and modeling approach. See box
7.1 for a summary of data and tools used to assess the vulnerability of fish and fish
habitat to climate change.

A warming climate, by itself, substantially affects the hydrology of watersheds
in the North Cascade Range. Among the key hydrologic changes projected under all
scenarios for the 2040s and beyond are a higher fraction of annual precipitation that

Box 7.1—Key datasets and analysis tools that can be used to
assess the vulnerability of fish and fish habitat in the North
Cascades to climate change

¢ Comprehensive hydrologic data for long-range water planning in the
Columbia River basin. Includes projections based on Intergovernmental
Panel on Climate Change scenarios. Developed by the University of
Washington Climate Impacts Group Access at http://www.hydro.washington.
edu/2860.

e Stream temperature data for the North Cascade Range. Includes simu-
lated weekly average maximum stream temperatures for summer. Developed
by University of Washington Climate Impacts Group (Mantua et al. 2010,
Snover et al. 2010).

¢ Fine-scale monthly climate change data for the Pacific Northwest. Includes
data for monthly meteorological forcings (precipitation, maximum tempera-
ture, minimum temperature) at 30 arc-seconds. Developed by University of
Washington Climate Impacts Group (Mauger 2011). Access at http://cses.
washington.edu/data/met30s.shtml.

¢ Historical and projected future changes in soil water equivalent (SWE)
for Oregon and Washington. Includes simulated SWE data at 30 arc-seconds.
Developed by University of Washington Climate Impacts Group (Mauger
2011). Access at http://cses.washington.edu/data/swe30s.shtml.

¢ Hydroclimate change projections for U.S. Forest Service lands in Oregon
and Washington. Includes summaries for Bailey ecosections, Omernik level
111 ecoregions, and Hydrologic Unit Code (HUC) levels 4 and 5 basins.
Developed by University of Washington Climate Impacts Group (Mauger
2011). Access at http://cses.washington.edu/data/ USDA FS_orwa.shtml.

¢ NetMap community watershed database and tools. Includes data devel-
oped by users of NetMap and shared analysis tools. Developed by Benda
et al. (2007). Access at http://www.netmaptools.org.
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falls as rain rather than snow, earlier snowmelt, lower springtime snowpack, higher
runoff and streamflow in winter and early spring, lower runoff and streamflow in
summer, an extended summer low-flow period, and overall reductions in summer
streamflow. These trends are expected for monthly average flows and for stream-
flow extremes at a shorter time scale. In addition, substantial increases in high
flows (e.g., 20-year return interval flows) are projected for autumn and winter, and
substantial reductions in 7-day average summer low flows are projected for most
locations in the North Cascades.

Projected Changes in Streamflow Timing

Historical runoff in subbasins of the North Cascades can be classified as either
snow dominant or transitional (meaning there are large contributions to cool season
streamflow from both rain-fed and snowmelt runoff). Simulations of future runoff
indicate a trend away from snow-fed runoff to more rain-fed runoff (Tohver et al., in
press). By the 2080s, no snow-dominant subbasins will exist in the North Cascades,
and most watersheds will be in the transitional classification (see chapter 4).
Simulated hydrographs for the Sauk River at Sauk, Washington, show the peak
runoff in this basin to occur with snowmelt in May and June, whereas in the future,
snowmelt runoff will be lower in late spring and early summer, and runoff will be
higher in autumn, winter, and early spring (fig. 7.1). The period of annual low flows
that historically occurred in September in the Sauk River may become a feature
of August and September monthly average flows as early as the 2020s, and this
kind of extended and amplified period of summer low flows could be common in
most of the watersheds in the North Cascades (Tohver et al., in press) (see chapter
4). The largest reductions in the lowest annual 7-day average flow with a recur-
rence interval of 2 years (7Q2) are projected for streams on the west slopes of the
Cascades, although reductions of 20 to 40 percent are also widespread for streams
on the east slopes of the Cascades in the 2040s and 2080s (fig. 7.2). Peak flows are
also projected to increase substantially for many watersheds in the North Cascades
(see chapter 4), and 20-year return interval flows are projected to increase 10 to 50
percent for many watersheds for the 2040s, with even larger increases for the 2080s
(fig. 7.3).

Projected Changes in Stream Temperature

Peak stream temperatures in summer have been modeled using nonlinear regres-
sions between 7-day averages for observed stream and air temperatures, where
historical stream temperature records are available (Mantua et al. 2010, Snover et
al. 2010). Figure 7.4 shows historical and 2040s August air temperatures and annual
maximum of weekly average water temperatures for select locations in Washington
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Figure 7.1—Simulated hydrographs for the Sauk River near Sauk, Washington (U.S. Geological
Survey gage 12189500). The x-axis shows a hydrologic year, from October (O) to September (S). The
y-axis shows combined monthly average total runoff and baseflow over the entire basin expressed as
average water depth (centimeters), a primary component of the simulated water balance and one of
the primary determinants of streamflow. Blue lines show simulated historical values; light red bands
show the range of different scenarios for the future time period and A1B emission scenario; dark red
lines show the ensemble average scenario. From Climate Impacts Group (2010).
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Figure 7.2—Ratio of future to historical simulated low flow for the lowest annual 7-day average flow with a recurrence interval of 2
years (7Q2), developed from and ensemble of 10 global climate model simulations under the A1B emission scenario. The left panel is for
the 2020s, middle panel is for the 2040s, and right panel is for the 2080s. Figure adapted from Mantua et al. (2010) and data from Hamlet

et al. (2010).
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Figure 7.3—Ratio of future to historical simulated 20-year return interval flood statistics, from and ensemble of 10 global climate model
simulations under the A1B emission scenario. The left panel is for the 2020s, middle panel is for the 2040s, and right panel is for the
2080s. Figure adapted from Mantua et al. (2010) and data from Hamlet et al. (2010).
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Figure 7.4—Color shading shows mean surface air temperatures for August, and shaded circles show
the simulated mean of the annual maximum for weekly water temperatures (average, not transient)

at select locations. Historical (1970-1999) reference period data are in the left panel, and the average
future scenario for an ensemble of 10 global climate models under the A1B emissions scenario for
the 2040s is shown in the right panel. The color scheme used here is tailored to three general catego-
ries for thermal rearing habitats for salmonids: greens indicate favorable, yellows indicate stressful,
and reds indicate fatal.

under the multimodel climate change ensemble with the A1B scenario. A number of
sites on the west slope of the North Cascades show warming that is large enough to
move from “favorable” to “stressful” categories of thermal rearing habitats for
salmonids, and a few sites remain within the favorable category (with annual
maximum weekly average stream temperature below 17 °C under this scenario for
the 2040s).

Snover et al. (2010) applied the same stream temperature modeling approach
to a different set of stream temperature records from the Skagit River basin (fig.
7.5). Most modeled locations in the upper Skagit basin have projected temperatures
remaining below 13 °C even for the 2080s, which is favorable for salmon and trout
spawning and incubation, and all locations had projected temperatures below 17 °C
in the 2080s, which is favorable for rearing habitat. These results suggest that some
headwater streams in the North Cascades are likely to remain favorable cold-water
habitat for salmonids even under significant warming in the 21% century.

Effects of Climate Change on Fish and Fish Habitat

Most salmon populations can respond favorably to altered habitat if changes are
comparable to those experienced in the past (Waples et al. 2008). This refers
primarily to disturbances that affect relatively small patches of habitat compared
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Figure 7.5—August mean surface air temperature and maximum weekly average water temperatures
for select locations in the Skagit River basin. The color scheme used here is tailored to three general
categories for thermal rearing habitats for salmonids. For mean air temperature, greens indicate
favorable, yellows indicate stressful, and reds indicate fatal. The color scheme for stream temperature
is associated with criteria for salmonids: green indicates temperatures below 17 °C.

to the much larger spatial extent of evolutionarily significant population groups
influenced by physiographic features. It is unknown if salmon populations in

the North Cascades can adapt through phenological, phenotypic, or evolutionary
mechanisms fast enough to survive a combination of climate change, altered habi-
tat, and other stresses in the future (Crozier et al. 2008). However, it should be noted
that genetic variants of some salmon species can in some cases adapt to changing
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environmental conditions (Quinn and Unwin 1993), at least in the short term and if
conditions are not extreme.

If salmon cannot adapt to rapidly changing habitat conditions, then higher
stream temperature, altered streamflow, and other limiting factors will result in
reduced quality and quantity of freshwater habitat (box 7.2). Effects on fish and fish
habitats related to stream temperature, high flows, summer low flows, and sedi-
mentation are summarized below.

Excessively high

water temperature Stream Temperature

affects the distribution,  Water temperature is a key aspect of water quality for salmonids, and excessively

migration, and health high water temperature affects their distribution, migration, and health (Farrell et

of salmonids. al. 2008, McCullough 1999, Richter and Kolmes 2005, U.S. Environmental Protec-
tion Agency [EPA] 2007). Excessively warm water can inhibit salmon migration
and breeding patterns and reduce cold-water refugia and connectivity. When aver-
age water temperature is higher than 15 °C, salmon can suffer increased predation
and competitive disadvantages with other native and nonnative warm-water fish
(EPA 2007). Water temperatures higher than 21 to 22 °C can prevent migration
(Goniea et al. 2006, High et al. 2006, Hyatt et al. 2003, McCullough 1999). Fur-

thermore, adult salmon become more susceptible to disease and the transmission

Box 7.2—EXxisting and emerging threats to fish and fish
habitat in the North Cascades

*  Reduced summer low flows, in some cases related to irrigation withdrawals,
diminish and degrade available spawning habitat, rearing habitat, and migra-
tion corridors.

»  Extreme peak flows scour redds while eggs are incubating.

» Invasive fish species perform better in warmer water and compete with or
prey on native cold-water fish.

*  Debris torrents are more frequent and intense in aggrading river channels.

*  Floodplain connectivity is reduced, limiting off-channel habitats and habitat
complexity that provide thermal buffers, thermal habitat diversity, and slow-
water refugia from extreme high-flow events.

*  Culverts, dams, natural falls, and logjams provide significant barriers to fish
passage.

*  Roads and related infrastructure, including hardened and engineered stream-
banks, degrade fish habitat.

*  Maximum summer stream temperatures exceed key ecological thresholds for
salmonids, contributing to adult migration barriers and increased susceptibil-
ity to pathogens.
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of pathogens in warmer water, and prolonged exposure to stream temperature above
around 21 °C (although this varies by species) can be lethal for juveniles and adults
(McCullough 1999). However, in some cases, adult salmon can migrate upstream
through unfavorable temperatures by moving to areas with cool groundwater
inputs, giving the impression that they tolerate high temperatures when in fact they
are taking advantage of local thermal variation (Berman and Quinn 1991). Some
species such as rearing coho (Oncorhynchus kisutch Walbaum) can tolerate stream
temperatures as high as 29 °C for brief durations, as observed following the 1980
eruption of Mount St. Helens, as long as food is plentiful (Bisson et al. 2005).

Stream temperature modeling projects significant increases in water tempera-
ture and thermal stress for salmon in portions of the North Cascades for both the
Al1B and Bl scenarios (Mantua et al. 2010, Snover et al. 2010). Projected water
temperature patterns indicate there will be increases in the number of locations
that are stressful for salmon in summer (where water temperature is higher than
18 °C) (figs. 7.4 and 7.5). Summer air temperatures higher than 18 °C will become
increasingly common for western Washington by the 2040s when only the higher
elevations of the Cascades have surface air temperatures like those characteristic of
the western Washington lowlands in the 1980s (figs. 7.4 and 7.5).

Climate change is also projected to increase the frequency and persistence of
thermal migration barriers and thermally stressed waters for salmon. Weeks with
water temperature higher than 21 °C will increase considerably for the warmer
streams in western Washington, such as the Stillaguamish River at Arlington,
Washington, where in recent years these conditions existed for a maximum of a
few weeks each summer. For this station, the period with water temperature higher
than 21 °C persists up to 13 weeks by 2100 and is centered on the first week of
August under the composite A1B scenario (Mantua et al. 2010) (fig. 7.6). The upper
reaches of North Cascades watersheds are likely to remain much cooler than lower
reaches (e.g., Stillaguamish River at Arlington). The lower reaches are typically key
migration corridors for summer-running adult salmon on their spawning migration,
indicating that thermal migration barriers and thermal stress will increase in at
least some salmon populations in North Cascades watersheds with especially warm
lower reaches.

Projected increases in water temperature will proceed at about an equal pace on
both sides of the Cascade Range, although shifts to increasingly stressful thermal
regimes for salmon will be highest for low elevations and the east side where the
historic baseline for water temperatures are typically warmer than those at higher
elevations. It is also likely that a warmer climate will reduce the availability of cold-
water refugia in some North Cascades watersheds, although additional research
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Figure 7.6—Simulated number of weeks each year that stream water tem-
perature exceeds 21 °C (average, not transient) (top panel), and chronological
weeks in each simulated year in which water temperature exceeds 21 °C (bot-
tom panel) for the Stillaguamish River at Arlington, Washington. All points
(historical and future) are from a simulation based on a regression between
observed air temperature and the annual maximum of weekly average stream
temperature, based on air temperature observations for 1916-2006, and the
10-model average A1B emission scenario for 2007-2100. Historical simula-
tions had no years with more than 3 weeks of water temperature higher than
21 °C, but this thermal threshold is consistently exceeded starting in the
2030s. Multiple points for a given year represent multiple weeks with water
temperature higher than 21 °C. Week 30 is approximately the last week of
July. From Mantua et al. (2010).
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is needed to determine the spatial extent of this effect. The effects of glaciers,

and their projected decrease in mass balance, on streamflow and temperature in
different watersheds is poorly quantified, although one would expect that smaller,
high-elevation streams in basins with significant coverage of glaciers would be
more responsive to glacial meltwater than larger, low-elevation streams. Tributaries
that face east have a higher contribution of glacial melt than west-facing streams
(Snover et al. 2010) and may therefore be more sensitive to variation in glacial melt.

Limiting environmental factors differ for different stocks and species of
Pacific salmon, which have a diversity of life history and habitat characteristics.
For example, the most important factors for juvenile coho survival in freshwater
are (1) in-stream temperature during the first summer, combined with the avail-
ability of deep pools to mitigate high temperatures, and (2) temperature during the
second winter, combined with the availability of beaver (Castor canadensis Kuhl.)
ponds and backwater pools to serve as refuges from cold temperatures and high
streamflow (Beechie et al. 1994, Reeves et al. 1989). Consequently, a combination
of higher summer water temperature, lower summer streamflow, and higher winter
flows and will create unfavorable conditions for coho salmon.

The effects of warming streams will differ for different fish populations. Sig-
nificant increases in stream temperature alone will create thermal stress for salmon
populations that have a stream-type life history that puts them in freshwater during
summer for spawning, rearing, spawning migrations, or seaward smolt migrations.
In the absence of thermal cues for initiating spawning migrations, temperature
effects on adult spawning migrations are projected to be most severe for stocks with
summertime migrations. These stocks include summer-run steelhead (Oncorhyn-
chus mykiss Walbaum), sockeye (O. nerka Walbaum), bull trout (Salvelinus
confluentus Suckley), and summer chinook (O. tshawytscha Walbaum in Artedi)
populations. Higher stream temperatures pose risks to the quality and quantity of
favorable rearing habitat for stream-type chinook and coho salmon, steelhead (sum-
mer and winter run), and bull trout, because these stocks spend at least one summer
(and for Washington steelhead typically two summers) rearing in freshwater. Lower
summer and autumn low flows in transient and rainfall-dominated basins might
also reduce the availability of spawning habitat for salmon and bull trout popula-
tions that spawn early in the autumn (e.g., Healey 1991).

Warmer water in streams in winter and spring may result in longer growing
seasons for vegetation, increased productivity of aquatic food webs, and faster
juvenile salmon growth and development in the freshwater life cycle (Beer and
Anderson 2011, Schindler and Rogers 2009). It is possible that this could increase
overall life-cycle productivity for some salmonids, such that positive effects

Increased stream
teperature will create
thermal stress for
salmon populations
that have a stream-type
life history.
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outweigh negative effects of climate change. For example, warmer stream tempera-
tures benefited coho salmon adjacent to areas harvested for timber on Vancouver
Island, British Columbia (Holtby 1988). Logging increased stream temperature
(0.7 °C in December and over 3 °C in August), which in turn contributed to higher
growth in juvenile coho, acceleration of its freshwater life history, and higher
overwinter survival rates for rearing juveniles. However, these apparent benefits
were balanced by reduced marine survival rates through earlier smolt migrations
to the ocean that may have been mismatched with ocean prey and predator avail-
ability. Warmer stream temperatures increased the full life-cycle coho production
in this system by approximately 9 percent (Holtby 1988). The potential for positive
effects of stream warming is highest in the coldest streams, such as those found on
the west side and at high elevations in the North Cascades.

Peak Streamflow

Seasonal and daily streamflow variations are limiting factors for freshwater salmon
habitat (Beechie et al. 2006, Rand et al. 2006). For chinook salmon in the Skagit
River, annual flood magnitude was a significant predictor of freshwater survival
rates (larger floods caused lower survival rates) (Seiler et al. 2003) and total life-
cycle return rates (Greene et al. 2005). These effects may be caused by several
mechanisms linking peak incubation flows to early freshwater life-stage survival
rates for salmon. Extreme flows during egg incubation periods can limit egg-to-fry
survival rates by scouring redds, crushing eggs with mobilized gravels (De Vries
1997, Holtby and Healy 1986, Montgomery et al. 1996), depositing fine sediments
on redds that reduce available oxygen (Lotspeich and Everest 1981), and reducing
populations of interstitial invertebrates. Peak flows can also reduce availability of
slow-water habitats, which can flush rearing juveniles downstream from preferred
habitats and subsequently reduce freshwater survival rates (Latterell et al. 1998).
Of all potential effects of climate change on the reproductive success of ocean-
type chinook salmon in the Snohomish River basin, projected increases in extreme
high flows were the most damaging (Battin et al. 2007). Projected increases in
the intensity and frequency of winter flooding in the transient runoff basins of the
North Cascades will likely reduce egg-to-fry survival rates for pink (Oncorhynchus
gorbuscha Walbaum), chum (O. keta Walbaum in Artedi), sockeye, chinook, and
coho salmon because of increased intensity and frequency of redd and egg scour-
ing. However, the effects of more winter flooding will likely differ across species
and populations because redd depth is a function of fish size (deeper redds will be
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less vulnerable to scouring and the deposition of fine sediments). Parr-to-smolt sur-

vival will likely decrease for coho and stream-type chinook salmon and steelhead

because higher peak flows reduce availability of slow-water habitat and increase the

displacement of rearing juveniles downstream, although in some cases, high flows Earlier snowmelt and

may provide access to floodplain habitats that might not otherwise be accessible. higher evaporation
Lower spring snowmelt may reduce smolt migrations from snowmelt dominantand il reduce streamflow
transient streams in which seaward migration has evolved to match the timing of in summer and early
peak flows from snowmelt. autumn.

Summer Low Streamflow

Earlier snowmelt and higher evaporation in most North Cascades river basins will
reduce streamflow in summer and early autumn, resulting in an extended period of
summer low flows, and rainfall-dominant basins are projected to have substantially
lower base flows. In combination with higher summer stream temperature, reduced
summer flow will limit rearing habitat for salmon with stream-type life histories
(in which juveniles rear in freshwater for one or more years) and increase mortality
during spawning migrations for summer-run adults.

Management of Fish and Fish Habitat in the North
Cascades

The two national forests and two national parks in the NCAP manage for threat-
ened fish species and naturally occurring riparian processes and aquatic habitat.
Fish are managed under the direction of multiple federal, regional, and unit-level
policies and guidelines. Many watersheds in the North Cascades provide critical
habitat for anadromous fish species and bull trout listed under the federal Endan-
gered Species Act (ESA) of 1973. Although management objectives for fish differ
among the national forests and national parks based on agency mandates and past
management, management on all four units focuses on recovering populations of
listed anadromous fish and bull trout and protecting and restoring natural aquatic
processes that create high-quality habitat for fish and other aquatic organisms.

In the North Cascades, the USDA FS, the National Park Service (NPS), other
resource management agencies, local utilities, municipal watersheds, watershed
councils, and many tribes collaborate to manage fish populations concurrently with
objectives for recreation, hydroelectric power generation, roads and infrastructure,
and cultural resources. Current management reduces nonclimatic threats to fish
populations including diseases, nonnative fish species, fish passage barriers, and
adverse effects caused by roads, infrastructure, and recreation.
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Management of Fish and Fish Habitat on the Mount Baker-
Snoqualmie and Okanogan-Wenatchee National Forests

The Mount Baker-Snoqualmie National Forest (MBSNF) and Okanogen-Wenatchee
National Forest (OWNF) manage for fish and aquatic habitat under the direction

of the Northwest Forest Plan (NWFP) Aquatic Conservation Strategy (USDA and
USDI 1994) and Pacific Northwest Region Aquatic Restoration Strategy (USDA

FS 2005). Two additional plans apply to fish habitat in OWNF only—the Interim
Strategy for Managing Anadromous Fish-Producing Watersheds in Eastern Oregon
and Washington, Idaho and Portions of California (USDA and USDI 1995) and the
Interim Strategy for Managing Fish-Producing Watersheds in Eastern Oregon and
Washington, Idaho, Western Montana, and Portions of Nevada (USDA FS 1995).
All of MBSNF and OWNF west and north of the Chewuch River are within the
jurisdiction of the NWFP Aquatic Conservation Strategy. The objective of the plan
is to prevent further degradation of aquatic habitat and restore and maintain aquatic
process on USDA FS and Bureau of Land Management lands within the range of
the northern spotted owl (Strix occidentalis caurina Merriam) (USDA and USDI
1994). The long-term (100 years) goal of the strategy is to develop a network of
functioning watersheds that can support populations of native fish and other aquatic
organisms (Reeves et al. 2006). The aquatic conservation strategy achieves this
goal through (1) watershed analysis, (2) riparian reserves with harvesting restricted
to that necessary for desired vegetation conditions for aquatic habitat, (3) designa-
tion of key watersheds, (4) watershed restoration, and (5) standards and guidelines
for management activities that could affect aquatic habitats.

Management direction for fish and aquatic habitat in the portion of OWNF not
covered by the NWFP is directed by the strategies PACFISH (USDA and USDI
1995) and INFISH (USDA FS 1995). PACFISH provides direction for protecting
and restoring watersheds in the western Pacific Northwest that support anadro-
mous fish. INFISH provides direction for maintaining aquatic habitat for native
fish species on national forest lands in the eastern PNW. The primary objective of
these regional strategies is to maintain and restore aquatic habitat and protect listed
fish species by reducing current threats associated with timber harvesting, roads,
recreation, fish passage barriers, and loss of stream channel complexity. Although
objectives of the regional strategies are similar, differences in terminology and
requirements create a complex policy and regulatory environment for managing
fish and aquatic habitat.

Additional direction for managing fish and aquatic habitat in the national for-
ests is provided by forest-specific land and resource management plans (e.g., forest
plan). The OWNF forest plan (currently in revision) consolidates direction provided
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by the multiple regional strategies into one common strategy for managing aquatic
habitat. Direction for restoring aquatic habitats is also included in the forest restora-
tion strategy. The goal of the forest plan and forest restoration strategy is to protect
aquatic habitat by reducing existing threats and restoring habitat that has been
adversely affected by past management, especially threats associated with roads.

Managers identify roads and road segments with the highest impact on aquatic
habitat based on hydrologic connectivity, fish distribution, slope and soil stability,
and stream channel confinement. Site-specific restoration plans are developed,
including several possible practices such as relocation, reconstruction, storm
proofing, upsizing culverts, and road closure and decommissioning. The OWNF
is currently taking the following actions to reduce current threats: (1) prioritizing
roads for closure and decommissioning, (2) removing culverts to reduce sediment
input, (3) modifying stream crossing surfaces, (4) installing drainage crossings,
and (5) reducing storm damage. Human-caused confinement of stream channels is
reduced by replacing culverts with bridges that span the active channel, relocating
roads from active flood plains, upsizing stream crossings to reduce channel con-
striction, and reconstructing road segments that contain berms. Large woody debris
are placed in and near streams to modify waterflow, provide habitat, and increase
the complexity of stream channels where past management has reduced input of
large woody debris. In addition to these actions to restore habitat, the OWNF coor-
dinates with other state and federal agencies to manage fish species listed under
ESA and participate in species-specific recovery plans. The OWNF is home to four
federally listed threatened and endangered species, five species of concern, and
critical habitat for two additional species. Management of aquatic habitat must meet
objectives of the recovery plans for chinook salmon, steelhead, and bull trout in
the Upper Columbia and Yakima River basins, and for bull trout in the Washington
state recovery plan.

The MBSNF forest plan was amended by the NWFP aquatic conservation
strategy in 1994, and a new forest plan has not been completed since then. Fish
management focuses on (1) maintaining or improving aquatic and riparian areas
with both active and passive restoration of watershed conditions and (2) protecting
and restoring aquatic habitats for the benefit of fish resources. Managers on the
MBSNF implement a range of actions to accomplish these goals with an emphasis
on restoring natural aquatic processes. Fish biologists work with recreation special-
ists and engineers to reduce detrimental impacts to aquatic habitat associated with
roads and trails. The MBSNF is completing a forestwide roads analysis and water-
shed analysis to identify priorities and locations for restoration. Ongoing inventories
will evaluate baseline conditions, opportunities for restoration, and effectiveness of
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restoration, including a survey of current road conditions and fish passage barriers.
Managers work to restore aquatic habitat in partnership with other resource man-
agement agencies and tribes and collaborate on species-specific recovery plans.

Management of Fish and Fish Habitat at Mount Rainier and
North Cascades National Parks

National Park Service management policies (USDI NPS 2006) direct park managers
to preserve and restore native fish species by preserving and restoring the natural
abundances, diversities, dynamics, and distributions of native populations; restoring
native populations when they have been extirpated by past human-caused actions;
and minimizing human impacts on native species, ecosystems, and the processes
that sustain them. Native species are defined as species that “have occurred, now
occur, or may occur as a result of natural processes” (USDI NPS 2006). Exotic
species are those that occupy national park lands directly or indirectly as the result
of human activities, and are not considered to be a natural component of the ecosys-
tem. Native species are maintained primarily through natural processes, but active
management is used when intervention will not cause unacceptable effects and is
required to maintain populations affected by humans.

Park-specific general management plans (GMP) guide management of fish and
aquatic habitat. The Mount Rainier National Park (MORA) GMP (USDI NPS 2001)
directs managers to preserve or restore natural aquatic habitats and the natural
abundance and distribution of native aquatic species, and provides the authority to
manage exotic fish species when they threaten park resources or public health and
when control is feasible. The park conserves all federally threatened and endan-
gered species and their critical habitats. MORA is home to eight species of native
fish, two of which are listed as threatened under ESA (1973) (chinook salmon and
bull trout) and another two are proposed for listing (coho salmon and coastal cut-
throat trout [O. clarkii clarkii Richardson]). Several rivers in the park are currently
blocked to anadromous fish passage by dams outside park boundaries. Managers
work collaboratively with other state, federal, local, and tribal resource management
agencies to restore native resident and anadromous fish species.

Direction for management of fish and aquatic habitat at North Cascades
National Park Complex (NOCA) is provided by the NOCA foundational statement
and the GMPs of North Cascades National Park, Ross Lake National Recreation
Area, and Lake Chelan National Recreation Area. Aquatic habitats are managed
primarily by protecting ecological processes such as the natural movement of
streams (stream meandering), rather than by managing for specific species or
biophysical features. For example, the Stehekin River has changed course naturally



Climate Change Vulnerability and Adaptation in the North Cascades Region, Washington

over time in response to flooding and other river dynamics, thus, the management
goal for the river is to maintain the natural movement of the channel whenever
possible and to control river movements only where it is necessary to protect facili-
ties or human health and safety. Individual species are managed only if they are
classified as threatened or endangered. Park managers collaborate with NOAA, the
U.S. Fish and Wildlife Service, and other agencies to ensure that listed species and
their habitat are protected by actively participating in recovery plans. Managers also
inventory and monitor listed species and critical habitat.

Most lakes in NOCA do not naturally contain fish, but many lakes have been
stocked with exotic fish (salmonids) through a Washington Department of Fish and
Wildlife (WDFW) program that maintains a recreational fishery. In 2009, NOCA
developed the Mountain Lakes Fishery management plan (USDI NPS 2009) in
coordination with WDFW in order to conserve native biological integrity while
providing recreational fishing opportunities. Focused on 91 naturally fishless lakes,
the plan includes authority and guidelines for removing reproducing populations of
exotic fish that have achieved high densities, followed by monitoring the recovery
of native species. Some lakes will continue to be stocked by WDFW with fish spe-
cies that are not capable of reproduction.

Management of fish and aquatic habitat in the two recreational areas within
NOCA emphasizes recreation associated with boating and fishing. Fishing is
permitted in Ross Lake and Lake Chelan National Recreation Areas in accordance
with federal and Washington state laws. Ross Lake is a popular fishing resort with
a naturally reproducing fishery. In the recreational areas, fish management must
balance the demands of recreation with preservation and protection of the fisheries
resource. In addition to managing fisheries for recreation, the recreational areas
also protect habitat for fish by protecting shoreline areas that provide spawn-
ing, feeding, and rearing habitats for fish, and support rare aquatic plant species.
Managers have the authority to use occasional or seasonal closures of specific
areas when drought or other conditions warrant additional resource protection. The
recreational areas also preserve genetic resources by maintaining the abundance of
unique populations to achieve desired levels of genetic variability.

Adapting Fish Management to Climate Change in the
North Cascades

Many of the adaptation options identified in the workshop were similar to current
practices for restoring fish habitat that are used in recovery plans for listed species
because many of the listed species in the North Cascades are cold-water fish whose
habitat is likely to be affected by warmer stream temperatures. In addition, many
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of the adaptation strategies that focus on increasing resilience of fish habitat to
changes in climate also increase resilience to habitat fragmentation, habitat loss,
and migration barriers. Some adaptation strategies overlap with those identified for
other resource sectors; for example, strategies that address impacts on fish habitat
that are exacerbated by roads (higher peak flows and sedimentation) are similar to
adaptation strategies identified for reducing impacts of higher peak flows on access
and infrastructure (table 7.1) (see chapter 4).

Adaptation Options to Reduce Effects of High Peak Streamflows

Climate change may motivate managers to alter practices for managing fish and
restoring aquatic habitats to account for increased frequency and magnitude of
peak streamflows. Higher peak flows will affect multiple life stages including egg
incubation, stream rearing, and river entry of fall spawning salmon and steelhead
(Mantua et al. 2010). One adaptation strategy to increase resilience of fish popula-
tions is to improve habitat quality and increase spawning habitat for fall-spawning
salmon and overwintering populations by restoring natural hydrologic processes
and flood plain dynamics (table 7.2). Removing natural or artificial barriers to
fish migration can directly increase spawning habitat (Beechie et al. 2012). Efforts
to survey and map alternative spawning habitat that will be robust to higher

peak flows will facilitate protection of spawning habitat in a changing climate.
Resilience can also be increased by restoring the natural complexity of the stream
channel and flood plain enabling stream channels to buffer the effects of high peak
flows. For example, engineered logjams are a means for directing streamflow and
protecting infrastructure without the use of artificial flood control structures that
may negatively affect downstream fish habitat.

Roads and infrastructure in the floodplain exacerbate the effects of higher
peak flows on aquatic habitats by increasing runoff and contributing to the flashi-
ness of floods. Higher peak flows in winter will challenge current efforts to bal-
ance restoration of fish habitat and protection of infrastructure in the floodplain.
Climate change may increase the desirability of restoring natural floodplains and
hydrological processes by disconnecting roads from streams, reducing road density,
removing infrastructure, and increasing the capacity of culverts and other stream
crossing structures. Managers in the North Cascades are already working to restore
natural floodplain processes. The minimum roads analysis, a process underway at
each national forest, is designed to identify and manage a sustainable road network.
One criterion used to determine which roads should be closed or decommissioned
is the risk posed by road segments to aquatic habitat. Increases in peak flows will
be especially high in mixed rain-and-snow basins where more winter precipitation
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Table 7.1—Summary of restoration actions and their ability to ameliorate climate change effects, and to
increase the resilience of salmon populations

Ameliorates Ameliorates Ameliorates Increases
temperature  base flow peak flow salmon
Category Common techniques increase ® decrease increase  resilience
Longitudinal connectivity Removal or breaching of dam + + 0 +
(barrier removal) Barrier or culvert replacement/ 0 0 0 +
removal
Lateral connectivity Levee removal + 0 + +
(flood plain reconnection) Reconnection of flood plain + 0 + +
features (e.g., channels, ponds)
Creation of new flood plain + 0 + +
habitats
Vertical connectivity Reintroduce beaver (dams increase + + + +
(incised channel sediment storage)
restoration)
Remove cattle (restored vegetation + + + 0
stores sediment)
Install grade controls 0
Streamflow regimes Restoration of natural flood regime 0 C
Reduce water withdrawals, restore 0 0
summer baseflow
Reduce upland grazing 0 C 0
Disconnect road drainage from 0 0 + 0
streams
Natural drainage systems, retention 0 Cc * 0
ponds, other urban stormwater
techniques
Erosion and sediment Road resurfacing 0 0 0 0
delivery
Landslide hazard reduction (side- 0 0 0 0
cast removal, fill removal)
Reduced cropland erosion (e.g., 0 0 0 0
no-till seeding)
Reduced grazing (e.g., fencing C 0 0 0
livestock away from streams
Riparian functions Grazing removal, fencing, + 0 0 0
controlled grazing
Planting (trees, other vegetation) 0 0 0
Thinning or removal of understory 0 0 0 0
Remove nonnative plants C C 0 0
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Table 7.1—Summary of restoration actions and their ability to ameliorate climate change effects, and to
increase the resilience of salmon populations (continued)

Ameliorates Ameliorates Ameliorates Increases
temperature  base flow peak flow salmon
Category Common techniques increase decrease increase  resilience

Instream rehabilitation Re-meandering of straightened C 0 0 C
stream, channel realignment

Addition of log structures, logjams C 0 0 0

Boulder weirs and boulders C 0 0 0

Brush bundles, cover structures 0 0 0 0

Gravel addition 0 0 0 0

Nutrient enrichment Addition of organic and inorganic 0 0 0 0
nutrients

# Actions are grouped by major processes or functions they attempt to restore. Effects are positive (+), none (0), or context-dependent (C). From
Beechie et al. (2012).
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will fall as rain rather than snow. Thus, it may be necessary to reevaluate the risks
of roads on aquatic habitat in these mixed rain-and-snow basins. National parks in
the NCAP are responding to current flood threats to aquatic habitat by mitigating
the impacts of roads and infrastructure in the floodplain, although mitigation must
consider the historical landmark designation of some roads and needs for access.

Higher peak flows will challenge current efforts to protect listed fish species
in the North Cascades. The presence of listed species restricts the types of actions
that can be used to restore floodplain processes. Given projected increases in peak
flows, it will be helpful to reevaluate the potential benefits of long-term restoration
efforts in aquatic ecosystems versus detrimental short-term effects on species. The
presence of listed species can also create opportunities for increasing political and
public support and funding for adaptation.

Adaptation Options to Reduce Effects of Lower Low Streamflows

Reduced streamflow in summer and extended periods of low flow will likely
require additional measures to protect rearing habitat for salmon with stream-type
life histories and spawning habitat for summer-run steelhead (table 7.3) (Mantua

et al. 2010). Lower summer flows will be most pronounced in rain-dominated and
mixed rain-and-snow basins that have less spring runoff from snowpack (Elsner

et al. 2010). Adapting fish management practices to mitigate the impacts of lower
summer flows may require shifting habitat restoration priorities to off-channel
habitats or to channels that are fed by wetlands because these channels typically
maintain higher summer flows and will be important habitat for life stages sensitive
to the magnitude of summer flows.

Mapping off-channel habitats, wetland-fed streams, and significant springs to
prioritize habitats for protection and restoration will be useful, particularly where
projects are planned to protect infrastructure from flooding that alter waterflow
from wetlands to streams. Restoring mid- and high-elevation wetlands where
hydrology has been altered by past management can increase water storage and run-
off to streams during low flow periods in summer (Beechie et al. 2012). Increasing
forest cover at mid to high elevations, areas most susceptible to decreasing snow,
may help retain snowpack later in spring and increase fog interception (Harr 1982).
However, higher forest cover could increase evapotranspiration in summer and
decrease runoff and introduce tradeoffs with managing lower density vegetation
to increase resilience to drought and disturbance (see chapter 5). These changes in
restoration priorities can be incorporated into existing vegetation and aquatic resto-
ration projects and strategies. Although funding for restoration is limited, it may be
feasible to initially focus on small projects for which funding may be available.
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Climate change may require changes in water use and additional conservation
measures to maintain in-stream flows and mitigate the effects of reduced sum-
mer flows on fish habitat (Beechie et al. 2012). Managing for in-stream flows will
need to be balanced with demand for multiple uses of water during the dry season
(Mantua et al. 2010). Although most withdrawals and water use for irrigation occur
outside of federal boundaries, national forests and national parks in the NCAP do
withdraw water for some operations. During seasonal low flows and years that are
drier than average, water availability can be enhanced by reducing water use and
withdrawals for facilities, operations, and recreation, as well as considering alterna-
tive water supplies. Coordinating with adjacent landowners, municipal and private
water suppliers, watershed planning groups, and downstream water users will
provide opportunities to increase water conservation and mitigate the impact of low
streamflows.

Adaptation Options to Reduce Effects of Warmer Stream
Temperatures

Warmer water temperatures associated with warmer air temperatures and lower
low flows will increase thermal stress on cold-water fish and require additional
actions to protect and restore fish populations and habitat for spawning (Mantua et
al. 2010). Protecting and increasing cold-water refugia in side channels, particularly
those that are fed by wetlands, can create more habitat for fish when temperatures
are high in the wider main channels. Streams fed by wetlands can have higher

low flows during the dry season and contribute colder water to the side and main
channels (table 7.4). Additional actions to increase resilience of spawning habitat to
warmer temperatures include reconnecting floodplains, restoring natural structure
and heterogeneity of stream channels, and removing dikes and levees to restore
natural streamflows that can buffer against warming temperatures (Beechie et al.
2012). Restoring riparian vegetation where it has been reduced or removed can
increase shading of streams and may also help maintain cooler water temperatures
(Beechie et al. 2012).

Existing aquatic restoration strategies and species-specific recovery plans
provide an opportunity to implement actions to mitigate the impacts of warmer
stream temperatures. Many of the actions for increasing resilience to warmer
stream temperatures are similar to actions taken as part of existing restoration plans
to reduce nonclimatic threats. Existing roads and other infrastructure in the flood-
plain affect natural hydrologic processes and functions in some areas, and roads
and infrastructure damaged by floods provide an opportunity for restoring natural
hydrologic processes and floodplains. Climate change creates a new context in
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Warmer stream
temperatures may
favor nonnative
species that typically
tolerate a wider
range of stream
temperatures.
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which to evaluate the objectives of current restoration plans relative to projections
for higher stream temperature. Some locations and fish stocks may become more

difficult to protect and maintaining all species in all locations will not be possible
(Lawler 2009), making it advisable to prioritize and allocate resources for restora-
tion accordingly (Beechie et al. 2008a).

Additional research on temperature tolerances of fish and thermal heterogeneity
in streams will provide critical information to increase the effectiveness of strate-
gies for adapting fish management and restoration to a warmer climate. Field-based
experiments can increase scientific understanding of temperature relationships for
multiple fish species and life histories and among different geographical regions. As
stream temperatures warm, it will be important to monitor changes in fish distribu-
tions to determine priority areas for restoration and inform where restoration will
be feasible and effective in a warmer climate. Monitoring and research will also be
important for informing policies on water temperature standards. National forests
and national parks in the NCAP can work collaboratively with the U.S. Environ-
mental Protection Agency to determine appropriate water temperature standards.

It will be important to increase understanding of thermal regimes of streams and
to identify microhabitats such as cold water refugia and locations of ground water
input and how fish use these microhabitats. Coordination among agencies in the
North Cascades can optimize resources available for these research and monitoring
needs.

Warmer stream temperatures may favor nonnative species that typically tolerate
a wider range of stream temperatures. One adaptation strategy is to increase the
resilience of native fish species by reducing barriers to fish migration and removing
nonnative fish. Removing barriers to native fish migration must be balanced with
the potential to increase the distribution of nonnative species. Additional monitor-
ing is needed to assess barriers to native fish migration and where these barriers
can be removed to increase native fish migration without increasing nonnative fish
migration. Existing fish surveys and monitoring programs can be leveraged for this
assessment. Where appropriate, exotic fish species can be removed or barriers can
be constructed to prevent the movement of these species. The current nonnative fish
removal program at NOCA is already removing nonnative species, although adapta-
tion efforts like this one may be met with opposition from user groups. It would
also be valuable to evaluate data from watersheds in the southern Cascades that
may indicate how native and nonnative fish species interact in warmer lakes and
streams. Multiple agencies in the North Cascades currently survey native and non-
native fish. Increased coordination and data sharing will improve efforts to adapt
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fish management in a changing climate by providing a broad spatial perspective for
data collection, restoration strategies, and optimal allocation of limited resources
for active management.

Warmer water temperatures may create more favorable conditions for diseases
and parasites, making fish health a higher priority. Resilience to diseases and
parasites can be improved by certifying that hatchery outplantings are disease-free
and increasing public education to eliminate pathways for the spread of diseases.
Increasing population resilience by protecting fish health will require collaboration
among multiple agencies which can coordinate monitoring, standardize methodolo-
gies, and increase data sharing on disease spread. Working with hatchery managers
may also be important for altering hatchery practices that contribute to the spread
of diseases and parasites.

Warmer water temperatures in cool seasons may increase productivity and
alter aquatic food webs. Baseline conditions can be established by understanding
current food web dynamics and monitoring how these dynamics change as water
temperatures warm. Several opportunities exist for coordinating between agen-
cies and universities to increase data and understand aquatic food webs. Previous
research has generally focused on only small streams and not provided information
on nonharvested species, which are also critical to aquatic ecosystems. Increasing
efforts to share these data among agencies will facilitate planning for restoration
and adaptation.

Adaptation Options to Reduce Effects of Sedimentation

Increased sedimentation in streams may be a significant stress on fish habitat

in some locations. Climate change is likely to increase sediment input from (1)
more frequent and severe flooding of roads and culverts, (2) receding glaciers and
exposure of loose moraine debris, and (3) erosion from wildfires that are likely to
burn more area and reduce vegetation cover (Littell et al. 2010). This may make it
necessary to increase efforts and reassess priorities for replacing culverts, decom-
missioning roads, and relocating roads away from stream channels (table 7.5).
Several current assessments and projects in NCAP national forests and national
parks are opportunities to alter sediment dynamics in road management, includ-
ing the minimum roads analysis currently underway in both national forests and
current road restoration projects in the Stehekin Valley (NOCA) and Carbon River
areas (MORA) (see chapter 4). Many adaptation strategies and tactics for reducing
the vulnerability of fish to climate change are similar to those for reducing threats
to access and infrastructure (see chapter 4). These strategies can be explored for
their combined benefits and potential “win-win” outcomes.
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Increased area burned and more high-severity fire combined with higher

winter rainfall will probably increase erosion of soil particles into streams. Projec- Road restoration

tions of altered fire regimes and hydrologic regimes can be incorporated into the strategies provide
prioritization of locations for streambank stabilization and upland erosion control. opportunities to plan
Increased monitoring of burned areas for erosive potential will help identify areas for the interacting
where mitigation activities could prevent erosion. Current road restoration strate- effects of climate

gies provide opportunities to plan for the interacting effects of climate change, fire, change, fire, and

and erosion on fish habitat. Complementary adaptation strategies for increasing erosion on fish habitat.

vegetation resilience to disturbance, such as prescribed fire and fuel treatments,
can reduce fire severity and erosion potential after fire. Interdisciplinary efforts
that consider restoration of terrestrial and aquatic components of ecosystems are
likely to have the greatest benefit for increasing resilience of fish and fish habitat to
climate change.
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Chapter 8: Conclusions
Crystal L. Raymond, David L. Peterson, and Regina M. Rochefort*

The North Cascadia Adaptation Partnership (NCAP) made significant progress on
the climate change response of national forests and national parks in the partner-
ship, contributed a synthesis of scientific information and potential management
solutions, and catalyzed a collaboration of land management agencies and stake-
holders seeking to address climate change in north-central Washington. The vulner-
ability assessment and adaptation options in this report, as well as the process used
to develop them, enabled the national forests to accomplish several components

of the U.S. Department of Agriculture Forest Service (USDA FS) climate change
response strategy as outlined in the National Roadmap for Responding to Climate
Change (USDA FS 2010a) and the Performance Scorecard for Implementing the
Forest Service Climate Change Strategy (USDA FS 2012b), a tool for documenting
unit-level progress. The goal of the agency is for all national forests and grasslands
to accomplish all elements of the scorecard by 2015. The NCAP process contributed
to the ability of participating forests to respond with “yes” to scorecard questions
for three of the four dimensions: organizational capacity, engagement, and adapta-
tion. Similarly, the NCAP process enabled participating national parks to make
progress towards implementing several components of the National Park Service
(NPS) Climate Change Response Strategy (CCRS) (USDI NPS 2010) by addressing
communication, science, and adaptation goals.

Relevance to Agency Climate Change Response
Strategies

Here we summarize the relevance of the NCAP process to the climate change
strategies of each agency and the accomplishments of participating national for-
ests and parks. The scientific information in this report is also relevant for other
land management agencies and stakeholders in the region. The NCAP process

can potentially be implemented by any organization, and many of the adaptation
options in this report are applicable throughout the Pacific Northwest and beyond,
providing a starting point for adaptation planning in other locations. Similar to past

! Crystal L. Raymond is a climate change strategic advisor, City of Seattle, Seattle City
Light, 700 5th Avenue, Seattle, WA 98124 (formerly, research biologist, U.S. Department

of Agriculture, Forest Service, Pacific Northwest Research Station, Pacific Wildland Fire
Sciences Laboratory, Seattle, WA); David L. Peterson is a research biological scientist,
U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station,
Pacific Wildland Fire Sciences Laboratory, 400 N 34" Street, Suite 201, Seattle, WA 98103;
and Regina M. Rochefort is a science advisor, U.S. Department of the Interior, National
Park Service, North Cascades National Park Complex, 2105 State Route 20, Sedro-Woolley,
WA 98284.
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adaptation efforts (e.g., Halofsky et al. 2011), a strong science-management partner-
ship was critical to the success of the NCAP, and we encourage others to emulate
this approach as a foundation for increasing climate change awareness, assessing
vulnerability, and developing adaptation plans.

Communication, Education, and Organizational Capacity

Organizational capacity, one of the dimensions in the USDA FS performance
scorecard, requires training and education to build institutional capacity at the unit
level, so that resource managers can better respond to climate change. The NCAP
process built organizational capacity by providing training at two levels. One-day
workshops provided basic education on applied climate change science and effects
on natural resources at a level that was accessible to all employees. The workshops
were well attended and strongly supported by unit supervisors, greatly contributing
to successful outcomes. The 2-day workshops for each of the four resource sectors
further built organizational capacity by providing indepth information on climate
change effects on specific resources. These workshops introduced principles, tools,
and processes for assessing vulnerability and planning for adaptation. Resource
specialists who attended these workshops increased their capacity to address
climate change in planning and project management. Climate change coordinators
for each unit can also benefit from and continue to use the information generated
during these workshops and summarized in this report.

Communication and education are two components of the NPS CCRS. The
strategy directs NPS staff to increase climate change knowledge and understanding
among employees and to communicate this information to the public, along with
information on actions taken by the NPS to respond to climate change. In addition
to increasing climate change awareness among NPS staff, information gathered
through the NCAP workshops will have cascading effects and raise awareness
beyond those who attended the workshops. Through the NCAP process, participants
shared information on additional tools and methods that could be used to assess
vulnerability in greater depth or to assess vulnerability of resources and systems
not included in this initial assessment. Climate change education for the public was
beyond the scope of the NCAP, but knowledge generated through this process could
be used for outreach and interpretive materials. The NCAP did engage a larger
public audience in the workshop on hydrology and access by including several user
groups, which was important for this issue because of its direct relevance to the
public. During this workshop, participants discussed the potential to work with user
groups to deliver information on the additional threats that climate change poses
to access and the efforts that the USDA FS and NPS are taking to mitigate these
effects.
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Partnerships and Engagement

In developing the NCAP, we focused on the partnership and process as much as the
products because of the importance of partnerships in successful agency responses
to climate change. Halofsky et al. (2011) identified as a “next step” of the Olympic
climate change case study the need to include partners from other organizations
and agencies in the planning process. We achieved this by building an inclusive
partnership of scientists and managers from multiple agencies, organizations, and

universities.

The USDA FS performance scorecard elements on engagement include (1) The NCAP process
building partnerships between managers and scientists and (2) incorporating strengthened
climate change considerations into existing partnerships. The NPS CCRS empha- interaction between
sizes prioritizing the process, as well as products, and the need for interpersonal the Forest Service and
interactions and engagement as part of the process. Thus, participation in the National Park Service,
NCAP increased unit-level compliance with the performance scorecard elements increasing capacity for
on engagement and the NPS CCRS. Resource managers interacted with scientific aregional response to
experts on climate change and its effects on natural resources, as well as with climate change.

managers from other agencies that are working on similar challenges.

The NCAP process strengthened interaction and engagement between the
USDA FS and NPS, increasing capacity for a coordinated regional response to cli-
mate change. A regional response is important in the North Cascades because of the
diversity of adjoining land ownerships. In this region, the USDA FS and NPS have
collaborated on many issues in the past, and the NCAP increased awareness of the
importance of a collaborative response to climate change. The NCAP also increased
awareness among resource managers of differences in agency missions and objec-
tives that may require different responses, as well as similarities that may provide
opportunities for a coordinated approach. The science-management partnership
will continue to be important in ongoing efforts to coordinate regional research on
climate change and adaptation planning across jurisdictional boundaries.

Assessing Vulnerability and Adaptation

Adaptation is included in the climate change response strategy of both the USDA
FS and NPS. The adaptation dimension of the USDA FS performance scorecard
includes (1) assessing vulnerability of human communities and ecosystems, and (2)
conducting adaptation actions that reduce these vulnerabilities. The NCAP vulner-
ability assessment used the best available science to identify infrastructure, species,
habitats, and ecosystems processes that are vulnerable to changes in climate. This
information was then used to identify a “menu” of adaptation options that can

be incorporated into existing programs and plans for each resource sector. The
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science-management dialogue identified management practices that, in their current
form or with slight modifications, are useful actions for increasing resilience, as
well as new management practices for adaptation. Implementing all of these options
may not be feasible, but resource managers can draw from this menu of options as
needed and when resources permit. Several options are sufficiently defined that
they could be implemented within the timeframe of the scorecard (by 2015), but the
implementation of others may require policy changes or more resources and greater
institutional capacity. Many options may be best implemented when management
plans are revised or as threats emerge, although it will be important to consider
these options before the effects of climate change are fully realized.

Although the NCAP did not specifically follow the adaptation planning process
as described in the NPS CCRS, the NCAP process did use many of the same prin-
ciples and accomplished several of the goals for assessing vulnerability and plan-
ning for adaptation. The NPS CCRS recommends that units implement adaptation
in all levels of planning to promote ecosystem resilience and enhance restoration,
conservation, and preservation of resources (USDI NPS 2010). The strategy specifi-
cally requires adaptation to increase the resilience and sustainability of facilities,
infrastructure, and cultural resources by identifying ways to incorporate climate
change science into design and maintenance. Progress toward this goal was made
through the analysis of climate change effects on hydrology and access. The NPS
CCRS emphasizes that adaptation planning be conducted across disciplines and
jurisdictional boundaries, as was initiated through the NCAP.

Science and Monitoring

Monitoring is an element of the USDA FS performance scorecard, and the NPS
CCRS stresses the importance of science, research, and monitoring. The NCAP
addressed monitoring by identifying current monitoring programs that provide
useful information for detecting effects of climate change, as well as new indicators
and priority ecosystems and species requiring additional monitoring. Cross-juris-
dictional connections that were initiated or strengthened through the NCAP may
increase opportunities for collaborative monitoring of climate change effects and
adaptation effectiveness at a regional scale. Many of the adaptation options inspired
discussions of research needs for detecting changes, attributing changes to climate,
and assessing the effectiveness of adaptation. Throughout the process, we used

the best available science on projected changes in climate and effects on natural
resources at the finest resolution that is scientifically valid. National forests and
national parks in the region work closely with scientists from several agencies and
universities to conduct research. Discussions between these scientists and managers
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during the NCAP workshops have already led to additional research collaborations
to meet information needs of land managers.

Mitigation and Sustainable Operations

It was beyond the scope of the NCAP to address elements of the USDA FS score-
card and NPS CCRS pertaining to carbon assessments, mitigation, and sustainable
operations. The USDA FS is engaged in efforts to assess carbon and increase the
sustainability of operations within many forest units. The two national parks in
the NCAP participated in the Climate Friendly Parks Initiative, which emphasized
mitigation and reducing emissions from park operations.

Next Steps
Engagement and Partnerships

The NCAP expanded on previous science-management partnerships by creating an
inclusive forum through which local and regional stakeholders could discuss cross-
boundary issues related to vulnerability and adaptation, but more work is needed to
truly achieve an “all lands” approach to adaptation. The agencies involved have dif-
ferent missions and objectives and are at different stages in the process of respond-
ing to climate change. These differences allowed agencies to share approaches and
learn from the experiences of others, but they presented challenges for the develop-
ment of collaborative adaptation plans. The NCAP national forests and national
parks collaborate with partners on many issues, and it was difficult to determine
the appropriate partners to include in this process. An all-lands approach may be
more effectively achieved by considering climate change in existing partnerships
that already focus on a single issue or a narrow range of issues. Another potential
approach is to develop partnerships around specific resources identified by this
report as being highly sensitive to climate change. Interactions through the NCAP
process, both among agencies and between scientists and managers, have already
led to new collaborative research and adaptation planning efforts.

Vulnerability Assessment and Adaptation Planning

The scope of this vulnerability assessment was intended to be broad and cover a
range of natural resources. By exploring four resource areas in detail—hydrology
and access; vegetation; wildlife; and fish—participants identified several species,
ecosystems, and ecosystem processes that are sensitive to climate change. In the
future, more detailed, quantitative, and spatial vulnerability assessments would
improve adaptation options summarized in this report by increasing specificity of
adaptation tactics and prioritizing locations for implementation.
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The vulnerability assessment could be expanded to cover additional systems
and ecosystem processes. The effects of climate change on natural resources in
the NCAP national forests and national parks will likely have implications for
the economies of adjacent communities. Assessing the vulnerability of social and
economic systems is an important next step for the North Cascades region. It will
also be beneficial to integrate carbon assessments with vulnerability assessments
of ecosystem processes. Although carbon assessments are a separate element in
the USDA FS scorecard, climate change effects on carbon stocks and sequestration
could be integrated into ecosystem vulnerability assessments. Integrating these
concepts would improve evaluation of tradeoffs and “win-win” situations for both
adaptation and mitigation actions. For example, one could assess how thinning
prescriptions and fire management plans adapted for a changing climate affect
carbon sequestration.

Implementing Adaptation Strategies and Tactics

The most important and potentially most challenging next step is to implement
adaptation strategies and tactics in resource management plans and projects. We
anticipate that implementation will occur gradually over time, with major advances
occurring as specific needs arise or in response to disturbances, extreme events,
plan and program revisions, and changes in policies and regulations. The assess-
ment of implementation opportunities summarized in each chapter can be used

to identify pathways and partnerships for implementing options into the current
management framework. As with the initial planning process, implementation will
require collaboration among multiple landowners and management agencies in the
region.

A Vision for Adaptation as a Dynamic Process

In some cases, similar adaptation options were identified for more than one
resource sector, suggesting a need to synthesize and integrate adaptation planning
across disciplines. Examples include coordinating adaptation of vegetation manage-
ment with that of wildlife habitat, and coordinating adaptation of infrastructure
design with management of aquatic habitat. Adaptation options that provide ben-
efits to more than one resource are likely to have the greatest effect and are thus
more likely to be implemented (Halofsky et al. 2011). Conversely, some adaptation
options involve tradeoffs (e.g., some actions may enable adaptation for one resource
at the expense of another) that could be explored in greater detail to prevent unin-
tended consequences. The NCAP resource sector workshops included specialists
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from related disciplines, and integrative concepts were discussed and explored, but
an important next step is to develop interdisciplinary teams to explore tradeoffs and
benefits.

Just as with a recent national perspective on the role of climate change adapta-
tion in federal agencies (Peterson et al. 2011), we are optimistic about how the
adaptation process will evolve in north-central Washington. In the future, we
anticipate that:

*  Climate change will be incorporated in planning, projects, and on-the-
ground activities similar to how other stressors such as fire, insects, and
human activities are currently addressed in resource management.

* Assessments of the effects of climate change and other natural and human
factors on ecosystems will be periodically developed, including updated
scientific documentation.

*  Monitoring activities will include indicators that detect the effects of cli-
mate change on species and ecosystems, and monitoring data will be used
to make periodic adjustments in planning and project management.

*  Agency planning processes will be sufficiently flexible that climate change
assessments and management objectives will be used to identify opportuni-
ties for managing across boundaries.

» Effects of climate change on ecosystem services will be examined to
determine if near-term management options can reduce undesirable future
effects.

* Restoration activities will be designed and implemented in the context of
the potential influence of climate change on the success of those activities.

*  Management of carbon will be coordinated with adaptation planning.

» Institutional capacity for adaptation will increase within federal agencies
as resource managers acquire technical expertise on climate change and
increasingly communicate with scientists to implement “climate smart”
management.

The USDA FS and NPS are in transition from viewing climate as unchang-
ing to viewing climate as dynamic and mediating changes in the environment
(Halofsky et al. 2011, Peterson et al. 2011, Swanston and Janowiak 2011). Evolving
science and climate policy, combined with near-term changes in ecosystems will
necessitate iterative evaluation of adaptation options for land management. We are
currently being deluged by new information about the effects of a changing climate
on ecosystems. Resource managers are observing changes in weather and ecologi-
cal disturbances and responding to those changes on the ground, thus learning
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about adaptation. This report provides a foundation for selecting and implementing
adaptation practices, which can be continually revisited as part of adaptive manage-
ment in the broadest sense of the term, facilitating the functionality of ecosystem
processes in preparation for a warmer world.
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