EDITOR'S
 EILE.COPY
 DIRECT SOLAR RADIATION ON VARIOUS SLOPES FROM O TO 60 DEGREES NORTH LATITUDE

JOHN BUFFO,
LEO J. FRITSCHEN,
AND JAMES L. MURPHY

Pacific Northwest Forest and Range Experiment Station Forest Service U.S. Department of Agriculture Portland, Oregon

ABSTRACT

Direct beam solar radiation is presented in graphical and tabular form for hourly, daily, and yearly values for seven slopes on each of 16 aspects from the Equator to 60 degrees north in 10-degree increments. Theoretical equations necessamy for the calculations are given. Solar altitude and azimuth during the day and year are also presented for the same latitudes.

Keywords: Solar radiation, slopes, aspects.

John Buffo is Research Assistant and Leo Fritschen is Professor, College of Forest Resources, University of Washington, Seattle. James Murphy was formerly project leader of the Cooperative Forest Fire Science project, Pacific Northwest Forest and Range Experiment Station, Seattle, Washington. He is now Assistant to the Deputy Chief for Research, U. S. Forest Service, Washington, D. C.

INTRODUCTION

Solar energy is by far the most important climatic factor. There are many situations in which accessible information concerning solar intensity might be used. For example, it is a significant parameter in ecological problems dealing with silviculture, entomology, pathology, and fire control.

Optimum use of solar energy requires knowledge of the exact location of the sun and the magnitude of insolation at any time of the day and year. Tables and graphs have been prepared which give the sun's location (that is, altitude and azimuth) as a function of latitude, time of day, and year (Smithsonian Institution 1958, Hutchinson and Cotter 1955). More recently, computer programs have been written which give not only the sun's location but also direct solar radiation on a horizontal surface (Robertson and Russelo 1968, Furnival et al. 1969). However, direct solar radiation on a horizontal surface may not be as useful as radiation on sloping surfaces or vertical walls. Such tables have been prepared by Frank and Lee (1966) and Fons et al. (1960). These tables present either daily solar radiation values or coefficients which have to be multiplied by direct solar radiation on a horizontal surface for specific aspects, slopes, and latitudes. Such tables are of limited use because of the range of latitudes and slopes presented and because additional calculations are required. Therefore, computer programs were modified and written to calculate direct solar radiation on selected slopes and aspects in $10-$ degree increments from the Equator to 60 degrees north. These results are presented in tabular form and as graphical plots of hourly and daily values.

THEORY

Theoretical derivation of the necessary equations has been given by Byram and Jemison (1943), Fons et al. (1960), and Frank and Lee (1966), among others. These equations are presented here for completeness. A sample surface is located in the Northern Hemisphere as shown in figure 1. The sun is directly overhead at point p on meridian τ_{q} with a declination δ. The sample surface is located at latitude ϕ, point r, on meridian $m q$ which has an hour angle h from the meridian l_{q}. The surface $c f g i$ has a slope α from the horizontal $j o$, a deviation of θ from the vertical $c d$, and an aspect β from the north no.

The sun's rays are striking the surface at r with an altitude angle Sok, called A, from the horizontal. The altitude A is given by:

$$
\sin A=\sin \phi \sin \delta+\cos \phi \cos \delta \cos h ;
$$

and the azimuth $A Z$ from the north, where $A Z=Z+90$ degrees, is given by:

```
sin}AZ=-\operatorname{cos}\delta\operatorname{sin}h/\operatorname{cos}A
```

The solar intensity I on the surface efgi is:

$$
I=I_{o} p^{1 / \sin A} \sin \theta
$$

where

$$
\sin \theta=\sin A \cos \alpha-\cos A \sin \alpha \sin (Z-\beta) .
$$

I_{0} is the radiation at the top of the atmosphere on a surface normal to the sun's rays and p is the atmospheric transmission coefficient.

A computer program, written by Furnival et al. (1969), calculated direct solar radiation at the top of the atmosphere on a surface parallel to the earth's surface. This program was modified to calculate direct solar radiation at the earth's surface on any slope and aspect, at latitudes from 0 to 60 degrees north, with any atmospheric transmission coefficient.

RESULTS AND DISCUSSION

Hourly solar radiation was computed for: slopes in 15-degree increments ranging from level to a vertical wall; 16 aspects, in 22-1/2-degree increments; 20 selected days of the year; latitudes, in 10-degree increments, from 0 to 60 degrees north; and atmospheric transmission coefficient of 0.9 . The possible combinations are detailed in table 1. Other options may have been desirable but were too costly. At latitudes greater than 60 degrees, where the sun does not set on certain days, the computations become more difficult and so were omitted.

The atmospheric coefficient of 0.9 was selected because it was representative of conditions on the top of a mountain, about $1,500 \mathrm{~m}$., on a clear day. Other values would be useful for some areas where atmospheric pollution is severe. List (Smithsonian Institution 1958) presents seasonal totals of direct solar radiation with different atmospheric coefficients at many latitudes. These values may be useful for comparison.

The hourly computations for the selected days are displayed in four ways as: (1) isograms of radiation drawn on graphs of time versus slope for specific days, aspects, and latitudes, (2) daily totals in tabular form for specific days, aspects, and latitudes, (3) isograms of daily totals versus days for specific latitudes, and (4) annual totals in tabular form for specific slopes; aspects, and latitudes. The details of display are discussed in the following section.

The computed values apply only to surfaces on level terrain where sunrise and sunset are not restricted by topographic features. Many applications of the radiation values are in city or mountainous areas which have limited day length. Other computer programs can be utilized for these special applications. 1/ Knowledge of the solar altitude and azimuth as a function of the time of day and day of year is required to compute solar radiation for these areas. List (Smithsonian Institution 1958) presents, in convenient graphical form, solar azimuths and elevations for the same days and latitudes as listed in table 1. For completeness, the graphs are duplicated here (figs. 51-57). ${ }^{2}$

[^0]
EXPLANATION OF FIGURES AND TABLES

Isograms of direct solar radiation (hourly values drawn for every 10 and labeled for every $20 \mathrm{cal} . \mathrm{cm}^{-2}$) were drawn on graphs of time (hours) versus slope (degrees) for each of the nine aspects and each of the 8 days at the seven latitudes. For convenience, all of the graphs for a specific day and latitude have been reduced and displayed together (figs. 2-36). Some subfigures are labeled double because the east and west aspects are mirror images with respect to solar radiation. The degree of slope is denoted across the bottom of each graph. The reader should note that:
(1) the left axis radiation values (zero slope) for each graph for a given day are the same for the same hours of each day,
(2) the south-facing walls (right axis of subfigure south) are in sunlight when the north-facing walls (right axis of subfigure north) are not,
(3) the east-facing slopes are in sunlight while the comparable west-facing slopes are not,
(4) the hours of daylight decrease from summer (fig. 21) to winter (fig. 17), and
(5) the degree of slope receiving the most radiation increases from summer to winter as the sun's altitude decreases.

The second method of presentation of the radiation data is in tabular form. The hourly values were accumulated to form daily totals. These are presented in tables 2-8 as a function of degree of slope and aspect for each of the 20 days and for each latitude. (See table 1 for days of equal value.)

The daily totals of solar radiation for selected north-, east-, and south-facing slopes were plotted versus day of the year (figs. 37-50). There are two graphs for each latitude, one containing the isograms for level, north $30-$, north $60-$, north $90-$, and east 30 -degree slopes, and the other containing isograms for east $60-$, east $90-$, south $30-$, south $60-$, and south 90 -degree slopes. These graphs can be used for quick comparison of various slopes and aspects; it should be noted that the values for the east and west slopes are equal. The latter half of the year can be assumed to be symmetrical to the first half.

Annual values of solar radiation for each slope and aspect are given in tables 9-15. Small errors exist in these totals because it was assumed that the period from December 22 to June 22 was identical to the period from June 22 to December 22. This error is small compared with variations in atmospheric transmission coefficients and in determining the slope and aspect of a particular surface.

Solar altitude and azimuth for the seven latitudes are given in figures 51-57 The user should refer to table 1 for the approximate date of the various declinations. For example, the declination of -5 degrees occurs on March 8 and October 6. Figure 51 shows the solar azimuth at 10:00 a.m. on either of the above dates to be 100 degrees and the elevation to be 60 degrees above the horizon. Intermediate latitudes can be linearly interpolated.

LITERATURE CITED

Byram, George M., and George M. Jemison
1943. Solar radiation and forest fuel moisture. J. Agric. Res. 67(4): 149-176.

Fons, W. L., H. D. Bruce, and Alan McMasters
1960. Tables for estimating direct beam solar irradiation on slopes at 30° to 46° latitude. USDA Forest Serv. Pac. Southwest Forest \& Range Exp. Stn., 298 p. Berkeley, Calif.

Frank, Ernest C., and Richard Lee
1966. Potential solar beam irradiation on slopes: Tables for 30° to 50° latitude. USDA Forest Serv. Res. Pap. RM-18, 116 p., illus. Rocky Mt. Forest \& Range Exp. Stn., Fort Collins, Colo.

Furnival, George M., W. E. Reifsynder, Eva Wyler, and Thomas G. Siccama
1969. Solar climate calculator. Third Forest Microclimate Symp. Proc., p. 181-187. Kanaskis Forest Exp. Stn., Seebee, Alberta.

Hutchinson, F. W., and M. O. Cotter
1955. Solar irradiation on south-facing inclined surfaces. Heating, Piping \& Air Conditioning 27(8): 118-120.

Robertson, George W., and D. A. Russelo
1968. Astrometeorological estimator for estimating time when sun is at any elevation, elapsed time between elevations in the morning and afternoon, and hourly and daily values of solar energy, Qo. Agric. Meteorol. Tech. Bull. 14, 22 p. Can. Dep . Agric., Plant Res. Inst., Ottawa, Ont.

Smithsonian Institution
1958. Smithsonian meteorological tables. Ed. 6, rev., 527 p., prepared by Robert J. List. The Smithsonian Inst. Press, Washington, D. C.

LIST OF TABLES

Page
Table 1. --Input data from which hourly values, daily and yearly totals of direct solar radiation were computed using the atmospheric transmission coefficient of 0.9 7
Table 2. --Daily values of direct solar radiation computed for selected slopes, aspects, and days at 0 degrees north latitude 8,9
Table 3. --Daily values of direct solar radiation computed for selected slopes, aspects, and days at 10 degrees north latitude 10,11
Table 4. --Daily values of direct solar radiation computed for selected slopes, aspects, and days at 20 degrees north latitude $.12,13$
Table 5. --Daily values of direct solar radiation computed for selected slopes, aspects, and days at 30 degrees north latitude $.14,15$
Table 6. --Daily values of direct solar radiation computed for selected slopes, aspects, and days at 40 degrees north latitude 16, 17
Table 7. --Daily values of direct solar radiation computed for selected slopes, aspects, and days at 50 degrees north latitude 18,19
Table 8. --Daily values of direct solar radiation computed for selected slopes, aspects, and days at 60 degrees norih latitude 20,21
Table 9. -- Yearly values of direct solar radiation computed for selected slopes and aspects at 0 degrees north latitude 22
Table 10. --Yearly values of direct solar radiation computed for selected slopes and aspects at 10 degrees north latitude 22
Table 11. -- Yearly values of direct solar radiation computed for selected slopes and aspects at 20 degrees north latitude 23
Table 12. --Yearly values of direct solar radiation computed for selected slopes and aspects at 30 degrees north latitude 23
Table 13. --Yearly values of direct solar radiation computed for selected slopes and aspects at 40 degrees north latitude 24
Table 14. --Yearly values of direct solar radiation computed for selected slopes and aspects at 50 degrees north latitude 24
Table 15. --Yearly values of direct solar radiation computed for selected slopes and aspects at 60 degrees north latitude 25

Table 1.--Input data from which hourly values, daily and yearly totals of direct solar radiation were computed using the atmospheric transmission coefficient of 0.9

Approximate date	Declination	Latitude	Slope	Aspect
		--------Degrees----------		
December 22	$-23^{\circ} 27^{\prime}$	0	0	N
Jan. 21-Nov. 22	-20 ${ }^{\circ}$	10	15	NNE-NNW
Feb. 9-Nov. 3	-15 ${ }^{\circ}$	20	30	NE-NW
Feb. 23-0ct. 20	-10°	30	45	ENE-WNW
Mar. 8-0ct. 6	-5°	40	60	E-W
Mar. 21-Sept. 23	0°	50	75	ESE-WSW
Apr. 3-Sept. 10	$+5^{\circ}$	60	90	SE-SW
Apr. 16-Aug. 28	$+10^{\circ}$	--	--	SSE-SSW
May 1-Aug. 12	+15 ${ }^{\circ}$	--	--	S
May 21-July 24	$+20^{\circ}$	--	--	--
June 22	$+23^{\circ} 27^{\prime}$	--	--	--

Table 2.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 0 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \text { day }^{-1} \text {) }
$$

LATITUDE		REES	NORTH		$\begin{gathered} 22 \\ \text { ASPEC } \end{gathered}$				
SLOPE (DEGREES)	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \mathrm{NH} \end{aligned}$	ENE NN	\mathbf{E}	$\begin{aligned} & \text { ESE } \\ & \text { NSH } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSM } \end{aligned}$	S
0	714	714	714	714	714	714	714	714	714
15	574	587	614	652	695	736	770	795	804
30	406	429	491	567	646	716	779	823	840
45	216	263	361	471	576	662	735	794	818
60	44	111	242	372	490	581	650	711	741
75	0	15	147	280	397	479	531	580	613
90	0	0	81	199	302	368	395	409	443

LATITUDE		ES	NOR	JAN	ASPEC				
$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNH	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE *NM	$\underset{\mathbf{N}}{\mathbf{E}}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	733	733	733	733	733	733	733	733	733
15	609	619	644	677	715	750	779	800	808
30	449	470	527	595	684	724	776	813	828
45	262	307	400	500	592	664	722	770	791
60	81	153	276	399	505	579	636	674	700
75	0	40	176	302	409	475	508	533	561
90	0	3	101	216	311	363	373	359	385

LATITUDE O DEGREES NORTH, FEB. 23

$\begin{aligned} & \text { SLOPE } \\ & \text { (OESREES) } \end{aligned}$	N	ANE NNW	$\begin{aligned} & \text { NE } \\ & \mathrm{NW} \end{aligned}$	ENE NN N	$\begin{gathered} \text { ASPEC } \\ \mathbf{E} \\ \mathbf{W} \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SH } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	766	766	766	766	766	766	766	766	766
15	687	692	707	726	746	764	778	788	792
30	562	578	612	655	694	723	744	757	764
45	402	433	496	565	620	651	668	677	685
60	217	275	374	464	529	557	559	551	558
75	35	134	258	361	429	450	433	394	394
90	0	46	163	263	327	341	307	234	202

LATITUDE D DEGREES NORTH, MAR. 8

$\begin{aligned} & \text { SLOPE } \\ & \text { (OEGREES) } \end{aligned}$	N	NNE NN N	NE	ENE WNW		ESE	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSM } \end{aligned}$	S
0	771	771	771	771	771	771	771	771	771
15	717	719	729	740	751	760	766	770	772
30	614	624	646	676	699	712	716	718	721
45	469	491	538	590	624	635	630	621	620
60	294	338	417	498	533	539	516	484	478
75	102	188	299	385	432	432	391	326	302
90	0	81	195	284	330	325	271	179	187

LATITUDE 0 DEGREES NORTH, MAR. 21

SLOPE (DEGREES)	N	NKE NNM	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	ENE WNM		$\begin{aligned} & \text { ESE } \\ & \text { NSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSM } \end{aligned}$	S
0	769	769	769	769	769	769	769	769	769
15	741	741	744	748	749	749	746	744	744
30	663	667	676	691	697	693	680	672	658
45	539	549	579	610	622	612	584	556	547
60	379	404	461	512	531	514	467	412	389
75	193	250	339	407	431	409	344	257	204
90	0	123	230	303	329	305	235	128	5

Table 2.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 0 degrees north latitude --CONTINUED

$$
\text { (Cal. } \mathrm{cm}^{-2} \mathrm{day}^{-1} \text {) }
$$

LATITUDE 0 DESREES NORTH, APR. 3

$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	$\begin{aligned} & \text { NNE } \\ & \text { NNH } \end{aligned}$	$\begin{aligned} & \text { NE } \\ & N \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { WNW } \end{aligned}$	ASPEC E W	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSN } \end{aligned}$	S
0	739	759	759	759	759	759	759	759	759
15	758	756	753	748	740	730	720	711	709
30	704	703	701	699	689	668	640	620	610
45	603	604	615	623	615	583	534	490	470
60	461	469	503	528	525	485	416	340	299
75	287	314	380	423	425	382	299	192	110
90	94	171	263	318	325	282	196	84	0

LATITUDE 6 DEGREES NORTH, APR. 16

SLOPE (DEGREES)	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE WNH	ASPEC E W	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SH } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	744	744	744	744	744	744	744	744	744
15	767	763	754	742	725	706	689	675	670
30	737	730	719	701	675	638	598	566	551
45	858	651	544	630	502	551	488	427	397
60	533	527	538	539	514	453	367	274	219
75	372	375	416	435	417	353	255	136	39
90	186	220	294	329	318	258	162	48	0

LATITUDE 0 degrees north, may 1

$\begin{gathered} \text { SLOPE } \\ \text { (DESREES) } \end{gathered}$	N	NNE NHM	NE NM	ENE WNW	$\begin{gathered} \text { ASPEC } \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	722	722	722	722	722	722	722	722	722
15	769	763	748	728	703	675	651	632	625
30	764	753	730	696	654	603	550	506	488
45	706	692	667	632	583	514	433	358	323
60	601	585	568	544	498	417	315	207	143
75	455	439	449	443	403	321	208	83	0
90	277	277	325	337	307	231	129	20	0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { LATITUDE } \\
& \text { SLOPE } \\
& \text { (DEGREES) }
\end{aligned}
$$ \& 0 OEG

N \& | REES |
| :--- |
| NNE |
| NNW | \& NORTH

NE

NH \& ENE HNM \& $$
\begin{gathered}
21 \\
\text { ASPECT } \\
E \\
W
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { ESE } \\
& \text { WSW }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { SE } \\
& \text { SW }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { SSE } \\
& \text { SSW }
\end{aligned}
$$
\] \& S

\hline 0 \& 692 \& 692 \& 692 \& 692 \& 692 \& 692 \& 692 \& 692 \& 692

\hline 15 \& 763 \& 756 \& 735 \& 708 \& 674 \& 639 \& 607 \& 584 \& 574

\hline 30 \& 782 \& 768 \& 733 \& 683 \& 627 \& 561 \& 497 \& 443 \& 423

\hline 45 \& 747 \& 728 \& 682 \& 627 \& 559 \& 471 \& 376 \& 289 \& 246

\hline 50 \& 862 \& 638 \& 596 \& 547 \& 476 \& 375 \& 259 \& 143 \& 75

\hline 75 \& 532 \& 505 \& 480 \& 449 \& 386 \& 285 \& 165 \& 37 \& 0

\hline 90 \& 365 \& 340 \& 353 \& 343 \& 294 \& 203 \& 94 \& 2 \& 0

\hline
\end{tabular}

LATITUDE O DEGREES NORTH, JUN. 22

Table 3.--Daily values of direct solar radiation.computed for selected slopes, aspects, and days at 10 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \mathrm{day}^{-1} \text {) }
$$

$\begin{gathered} \text { SL OPE } \\ \text { (DEGREES) } \end{gathered}$	N	$\begin{aligned} & \text { NNE } \\ & \text { NNM } \end{aligned}$	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	ENE WNW	$\begin{gathered} \text { ASPEC } \\ \mathrm{E} \\ \mathbf{W} \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { WSM } \end{aligned}$	$\begin{aligned} & S E \\ & S W \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	\$
0	641	641	641	641	641	641	641	641	641
15	497	508	536	577	623	669	707	733	743
30	322	350	412	493	580	650	727	775	794
45	138	189	292	406	519	616	700	765	790
60	0	61	190	321	445	547	632	702	733
75	0	5	114	243	363	458	529	592	627
90	0	0	66	174	278	357	404	441	477

LATITUDE 10 DEGREES NORTH, FEB. 9

$\begin{gathered} \text { SL OPE } \\ \text { (OEGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { WNH } \end{aligned}$		$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSM } \end{aligned}$	\mathbf{S}
0	6:1	581	681	681	681	681	681	681	681
15	553	564	589	624	663	702	733	754	762
30	392	415	472	544	618	684	738	776	792
45	205	256	349	454	553	633	698	746	767
$E 1$	33	114	241	364	475	557	617	665	690
75	0	30	154	279	388	462	507	539	566
90	0	7	93	203	298	358	379	380	404

Table 3.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 10 degrees north latitude -continued

$$
\text { (cal. } \left.\mathrm{cm}^{-2} \text { day }^{-1}\right)
$$

LATITUDE 10 DEGREES NORTH, APR. 3

$\begin{gathered} \text { SL OPE } \\ \text { (DFGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	ENE WNH	$\underset{\mathrm{E}}{\text { ASPEC }}$	$\begin{aligned} & \text { ESE } \\ & \text { WSH } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	767	767	767	767	767	767	767	767	767
15	731	732	736	742	748	751	751	750	751
30	645	648	662	682	696	699	692	688	684
45	515	524	559	599	622	622	603	579	570
60	350	372	439	501	532	525	489	443	417
75	161	221	323	398	432	419	365	289	238
90	10	111	220	298	330	313	247	147	49

LATITUDE 10 DEGREES NORTM, APR. 16

	ASPECT							$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
SL OPE (DFGREES)	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	ENE WNW	\mathbf{E}	ESE	$\begin{aligned} & S E \\ & S W \end{aligned}$		
0	771	771	771	771	771	771	771	771	771
15	7E0	759	756	755	751	745	738	731	730
30	697	694	698	701	698	686	664	649	639
45	586	586	603	620	623	602	563	525	505
60	435	441	485	523	531	503	444	378	342
75	255	281	361	418	431	397	322	227	156
90	57	152	252	314	328	292	212	99	0

LATITUDE 10 DEGREES NORTH, MAY 1

$\begin{gathered} \text { SL OPE } \\ \text { (OFGRESS) } \end{gathered}$	N	NNE NNH	NE NH	ENE NNW	ASPEC E W	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & S E \\ & S W \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	759	769	769	769	769	769	739	769	769
15	783	780	771	761	748	733	718	705	702
30	743	737	727	713	694	665	630	603	588
45	653	645	642	636	618	577	519	467	439
60	519	511	523	540	526	476	397	314	264
75	349	348	402	434	425	370	278	164	85
90	155	198	283	328	323	268	173	55	0

LATITUEF	DE	RES	NORTH		$\begin{gathered} 21 \\ \text { ASPEC } \end{gathered}$				
$\begin{gathered} \text { SLOPE } \\ \text { (DEGREFS) } \end{gathered}$	N	NNE NNW	NE	ENE WNW	$\begin{gathered} E \\ \mathbf{N} \end{gathered}$	$\begin{aligned} & \text { ESC } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	759	759	759	759	759	759	759	759	759
15	708	793	779	759	737	713	690	672	667
30	783	774	750	719	683	638	590	551	531
45	715	701	674	547	607	545	471	403	370
60	598	581	566	552	515	443	347	246	190
75	440	422	440	445	414	339	230	106	27
90	252	252	314	337	313	241	136	19	0

LATITUDE	DEG	ES	NORTH		ASPEC				
$\begin{gathered} \text { SLOPE } \\ \text { (OEGREFS) } \end{gathered}$	N	NNE NMW	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE WNW	E	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	747	747	747	747	747	747	747	747	747
15	802	796	778	752	725	695	658	647	641
30	802	790	758	718	671	617	560	515	494
45	748	731	692	650	595	522	438	361	325
60	643	622	588	557	504	419	31.3	203	147
75	493	470	460	450	404	317	199	70	4
90	311	289	333	341	304	222	113	2	0

Table 4.--Daily values of direct solar radiation computed for selected slopes, aspects, and days
at 20 degrees north latitude.
(Cal. cm^{-2} day $^{-1}$)

LATITUDE 20 DEGREES NORTH, JAN. 21

$\begin{aligned} & \text { SLOPE } \\ & \text { (DEGREES) } \end{aligned}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENF WNM	ASPEC \mathbf{E} \mathbf{H}	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	533	533	533	533	533	533	533	533	533
15	374	385	417	464	516	569	614	645	656
30	194	226	298	387	481	575	654	713	734
45	29	85	190	312	433	550	653	732	761
60	0	8	115	244	376	499	611	702	737
75	0	0	65	185	311	429	531	623	663
90	0	0	37	134	243	342	422	502	544

LATITUDE		ES	NORTH		ASPEC				
$\begin{aligned} & \text { SLOPE } \\ & \text { (OEGREES) } \end{aligned}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { HNW } \end{aligned}$	E	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & S E \\ & S W \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSN } \end{aligned}$	s
0	634	634	634	634	634	634	634	634	634
15	501	511	537	574	617	658	693	715	724
30	336	360	420	496	576	649	706	748	764
45	150	205	305	415	519	608	679	731	752
60	0	82	208	335	450	540	610	664	689
75	0	25	136	261	372	456	512	551	579
90	0	10	88	193	289	357	392	407	430

LATITUDE 20 DEGREFS NORTH, MAR. 8

					ASPEC				
$\begin{gathered} \text { SLOPE } \\ \text { (OFGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	ENE WNW	$\underset{\mathbf{W}}{\mathbf{E}}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & S W \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	677	677	677	677	677	677	677	677	677
15	562	571	593	625	650	694	722	739	746
30	408	429	483	550	618	677	721	753	764
45	229	274	365	465	557	628	681	716	730
60	40	136	262	380	483	554	601	630	647
75	0	55	178	299	399	462	493	506	519
90	0	25	118	223	311	360	369	354	356

LATITUDE 20 DEGREES NORTH, MAR. 21

$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE NN	ASPEC E W	$\begin{aligned} & \text { ESE } \\ & \text { USH } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SN } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	716	716	716	716	716	716	716	716	716
15	623	¢28	647	672	699	724	743	756	761
30	487	502	545	600	653	697	726	747	754
45	317	350	429	514	588	640	672	688	695
60	127	200	315	423	508	558	581	585	589
75	0	95	224	334	419	459	466	449	443
90	0	47	151	250	325	353	340	294	267

Table 4.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 20 degrees north latitude --continued
(Cal. cm^{-2} day $^{-1}$)

LATITUDE 20 DEGREES NORTH, APR. 16

$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE WNW	SPEC E H	$\begin{aligned} & \text { ESE } \\ & \text { NSH } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SH } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSN } \end{aligned}$	S
0	772	772	772	772	772	772	772	772	772
15	726	728	732	741	751	758	762	764	766
30	631	633	651	677	699	710	711	709	707
45	492	500	541	591	625	636	627	610	600
60	320	340	420	493	536	541	517	479	453
75	126	195	307	392	437	434	392	327	282
90	21	104	213	295	335	324	267	174	97

LATITUDE 20 DEGREES NORTH, MAY 1

$\begin{gathered} \text { St OPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNW	$\stackrel{N E}{N H}$	ENE WNW		$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	790	790	790	790	790	790	790	790	790
15	769	768	767	766	766	764	759	757	757
30	695	694	698	705	711	705	692	680	672
45	574	573	593	619	633	622	595	561	542
60	414	416	469	519	539	522	476	418	385
75	226	253	348	414	436	412	347	261	201
90	56	140	242	311	332	302	226	119	34

LATITUDE 20 DEGREES NORTH, MAY 21

$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	ENE WNH	$\begin{gathered} \text { ASPECT } \\ \mathbf{E} \\ \mathbf{W} \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	800	810	800	800	800	800	800	800	800
15	804	802	795	785	774	762	750	743	741
30	754	749	738	729	715	693	665	643	631
45	652	646	639	642	634	602	555	509	483
60	506	498	517	540	536	497	428	353	311
75	326	321	386	431	431	385	300	198	132
90	123	181	273	323	324	276	185	67	0

LATITUDE 20 DEGREES NORTH, JUN. 22

$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNH	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE HNH	$\begin{gathered} \text { ASPEC } \\ E \\ H \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSN } \end{aligned}$	§
0	800	800	800	800	800	800	800	800	800
15	821	818	807	792	774	756	739	729	725
30	786	779	759	740	714	682	645	616	601
45	698	688	668	656	631	586	527	472	444
60	562	549	544	551	532	478	397	313	264
75	387	373	413	440	426	366	271	157	90
90	186	209	291	330	319	259	159	37	0

Table 5.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 30 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \mathrm{day}^{-1} \text {) }
$$

latitude 30 degrees north, jan. 21

SLOPE (OEGREES)	N	NNE NNH	$\begin{aligned} & \text { NE } \\ & \text { NK } \end{aligned}$	ENE WNK	$\underset{\mathbf{E}}{\text { ASPEC }}$	ESE WSH	$\begin{aligned} & \text { SE } \\ & \text { SH } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	410	410	410	410	410	410	410	410	410
15	244	259	295	345	402	456	504	537	549
30	76	111	187	279	381	479	565	628	650
45	0	13	107	225	352	478	590	675	707
60	0	0	63	180	313	448	576	677	716
75	0	6	39	140	269	401	524	632	675
90	0	0	25	107	218	333	442	544	589

Latitude 30 degrees north, feb. 9

$\begin{aligned} & \text { SLOPE } \\ & \text { (OEGREES) } \end{aligned}$	N	NNE NNM	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { WNM } \end{aligned}$		$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SH } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSM } \end{aligned}$	S
0	478	478	478	478	478	478	478	478	478
15	317	328	363	411	465	517	564	595	606
30	141	175	249	341	439	532	611	672	693
45	0	52	158	277	402	521	624	782	732
60	0	5	97	222	354	481	594	685	722
75	0	0	63	174	301	423	531	621	662
90	0	0	39	132	242	346	434	515	558

LATITUOE 30 DEGREES NORTH, FEB. 23

$\begin{gathered} \text { SLOPE } \\ \text { (DESREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	ENE WNW		$\begin{aligned} & \text { ESE } \\ & \text { HSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	536	536	536	536	536	536	536	536	536
15	386	396	425	470	519	569	612	640	850
30	209	239	309	396	486	574	645	701	720
45	34	100	206	326	442	552	644	713	741
60	0	26	135	262	388	502	599	677	711
75	0	7	87	205	326	435	524	595	632
90	0	2	57	154	258	349	418	474	511

LATITUDE 30 DEGREES NORTH, MAR. 8

促					ASPEC				
$\begin{gathered} \text { SLOPE } \\ \text { (OEGREES) } \end{gathered}$	N	NNE NNW	$\begin{gathered} \text { NE } \\ \text { NH } \end{gathered}$	$\begin{aligned} & \text { ENE } \\ & \text { WNK } \end{aligned}$	Σ_{N}	ESE HSH	$\begin{aligned} & \text { SE } \\ & \text { SH } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	594	594	594	594	594	594	594	594	594
15	455	466	494	534	579	623	660	683	692
30	287	313	377	460	544	622	682	727	743
45	100	164	272	387	496	593	669	722	743
60	0	64	187	318	437	535	512	857	693
75	0	27	130	253	368	460	526	569	595
90	0	14	90	193	292	368	413	437	457

LATITUOE 30 DEGREES NORTH, MAR. 21

$\begin{gathered} \text { SLOPE } \\ \text { (OEGREES) } \end{gathered}$	N	$\begin{aligned} & \text { NNE } \\ & \text { NNW } \end{aligned}$	$\mathbf{N E}_{\text {NH }}$	ENE WNW	$\underset{\mathbf{E}}{\mathbf{E}}$	ESE	$\begin{aligned} & \text { SE } \\ & \text { SN } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSH } \end{aligned}$	S
0	651	651	651	651	651	651	651	651	651
15	530	538	563	598	535	673	702	721	728
30	373	393	452	524	598	663	710	744	756
45	190	238	338	446	545	624	681	718	731
60	0	115	245	370	478	558	512	642	657
75	0	56	174	297	402	473	513	530	538
90	0	31	123	228	318	375	394	385	383

Table 5.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 30 degrees north latitude-continued

$$
\text { (Cal. } \mathrm{cm}^{-2} \text { day }^{-1} \text {) }
$$

					ASPEC				
$\begin{aligned} & \text { SLOPE } \\ & \text { (DEGREES) } \end{aligned}$	N	NNE NNM	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	ENE NNW	$\underset{\mathbf{N}}{\mathbf{E}}$	$\begin{aligned} & \text { ESE } \\ & \text { MSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	703	703	703	703	703	703	703	703	703
15	602	608	627	655	686	714	735	750	756
30	461	475	521	583	643	692	727	749	757
45	287	318	405	499	582	642	681	781	707
60	95	174	300	414	508	566	598	506	608
75	5	91	217	333	423	473	487	479	468
90	1	53	152	255	332	368	361	327	297

LATITUDE 30 DEGREES NORTM, MAY 1

LA		S	NORTH		ASPEC				
$\begin{aligned} & \text { SLOPE } \\ & \text { (DEGREES) } \end{aligned}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE WNW	$\begin{aligned} & E \\ & \mathbf{W} \end{aligned}$	$\begin{aligned} & \text { ESE } \\ & \text { HSH } \end{aligned}$	$\begin{aligned} & S E \\ & S W \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	833	833	833	833	833	833	833	833	833
15	825	823	819	816	810	804	796	790	786
30	760	757	753	755	751	739	722	700	692
45	644	640	643	664	671	652	617	573	551
60	483	478	513	560	574	547	492	422	387
75	290	292	389	452	468	432	357	258	285
90	119	179	280	345	358	316	226	108	42

Table 6.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 40 degrees north latitude
(Cal. cm^{-2} day $^{-1}$)

					ASPEC				
SL OPE (DEGREES)	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	ENE HNW	$\begin{aligned} & \mathbf{E} \\ & \mathbf{H} \end{aligned}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	229	229	229	229	229	229	229	229	229
15	82	96	128	173	223	275	321	351	362
30	0	2	54	127	214	306	390	449	470
45	0	0	21	98	203	320	433	517	546
60	0	0	9	78	188	316	447	549	584
75	0	0	5	63	163	295	430	543	583
90	0	0	3	46	138	253	386	501	542

LATITUDE 40 DEGREES NORTH, JAN. 21

$\begin{gathered} \text { SL OPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNM	$\begin{aligned} & \mathrm{NE} \\ & \mathrm{NH} \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { WNH } \end{aligned}$	$\begin{gathered} \text { ASPEC } \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	278	278	278	278	278	278	278	278	278
15	123	136	171	218	272	327	373	405	416
30	0	21	87	170	262	357	44	504	526
45	0	0	42	135	249	370	485	569	600
60	0	0	24	110	230	361	492	595	633
75	0	$\overline{0}$	15	89	200	335	468	581	623
90	0	0	11	58	169	287	414	52%	570

			HORT		$\stackrel{9}{9}$				
SL OPE (DEGREES)	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { VNW } \end{aligned}$	$\underset{\mathbf{N}}{\mathbf{E}}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & S M \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	353	353	353	353	353	353	353	353	353
15	189	204	240	290	347	402	449	482	493
30	31	68	144	235	335	430	517	578	600
45	0	4	84	194	317	440	551	634	666
60	0	0	53	161	290	423	548	647	686
75	0	0	37	132	254	387	512	616	659
90	0	0	27	104	213	329	443	543	588

LATITUDE 40 DEGREES NORTH, MAR. 8

					ASPEC				
$\begin{gathered} \text { SL OPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNH	NE NW	ENE NNH	$\underset{\mathbf{W}}{\mathbf{E}}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	491	491	491	491	491	491	491	491	491
15	336	348	379	426	478	529	573	602	612
30.	160	192	268	360	454	544	618	673	692
45	0	71	180	300	421	534	628	697	724
60	0	24	123	248	377	497	596	674	707
75	0	11	88	202	326	440	535	605	642
90	0	6	61	159	266	363	439	499	533

LATITUDE 40 DEGREES NORTH, MAR. 21

$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { MNW } \end{aligned}$	$\begin{gathered} \text { ASPECT } \\ \text { E } \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { MSM } \end{aligned}$	$\begin{aligned} & S E \\ & S W \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	. 564	564	564	564	564	564	564	564	564
15	420	431	461	503	551	598	636	659	669
30	248	276	346	435	523	606	658	713	729
45	59	134	248	372	485	587	666	719	738
60	0	60	181	313°	436	541	621	675	698
75	0	34	134	258	376	474	545	589	610
90	0	22	99	204	306	388	439	466	480

Table 6.--Daily values of direct solar radiation computed for selected slopes, aspects, and days
at 40 degrees north latitude --CONTINUED

$$
\text { (Ca1. } \mathrm{cm}^{-2} \text { day }^{-1} \text {) }
$$

LATITUDE 40 DEGREES NORTH, APR. 3

$\begin{gathered} \text { SLOPE } \\ \text { (OEGREES) } \end{gathered}$	N	$\begin{aligned} & \text { NNE } \\ & \text { NNW } \end{aligned}$	$\begin{aligned} & \text { NE } \\ & \text { NE } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { HNW } \end{aligned}$	$\begin{gathered} \text { ASPEC } \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { HSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	633	633	633	633	633	633	633	633	633
15	506	514	539	577	618	657	688	709	718
30	344	363	425	504	584	654	706	740	753
45	158	207	318	433	537	623	686	724	737
60	10	104	234	365	478	565	625	658	671
75	2	60	176	300	408	487	535	555	559
90	0	38	130	235	329	392	419	416	409

LATITUDE 40 DEGREES NORTH, APR. 16

$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	ASPECT								
	N	NNE NNW	NE	$\begin{aligned} & \text { ENE } \\ & \text { WNH } \end{aligned}$	E_{W}	ESE	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	s
0	694	694	694	694	694	694	694	694	094
15	584	591	610	639	674	705	731	749	756
30	435	448	496	565	632	689	731	756	766
45	256	284	379	482	576	645	692	717	724
60	60	153	284	405	506	575	626	631	633
75	14	90	210	330	426	486	511	511	499
90	6	57	154	256	338	382	388	363	337

					ASPECT				
$\begin{aligned} & \text { SL OPE } \\ & \text { (DEGREES) } \end{aligned}$	N	NNE NNW	$\underset{\text { NE }}{\text { NE }}$	ENE	$\begin{aligned} & E \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { ESE } \\ & \text { WSH } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	s
0	753	753	753	753	753	753	753	753	753
15	668	672	687	708	732	755	774	785	787
30	537	546	581	634	688	727	755	766	771
45	370	383	460	551	626	673	699	705	703
60	177	224	353	463	549	594	609	599	586
75	57	139	267	380	460	496	491	462	437

	ASPECT								
SLOPE	N	NNE	NE	ENE	E	ESE	SE	SSE	s
DEGREES)		NNW	NW	WNW	N	WSW	SW	SSW	
0	811	811	811	811	811	811	811	811	811
15	753	755	762	775	790	802	811	815	814
30	643	648	665	702	736	760	772	769	768
45	489	496	542	614	668	693	697	683	673
60	302	312	423	520	582	602	591	557	532
75	122	193	324	423	485	494	463	403	37:
90	70	130	242	330	380	376	326	240	190

LATITUOE 40 DEGREES NORTH, JUN. 22

SLOPE (DEGREES)	N	NNE NNH	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE WNW	$\begin{gathered} \text { ASPEC } \\ \mathbf{E} \\ \mathbf{W} \end{gathered}$	ESE WSW	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSN } \end{aligned}$	S
0	843	843	843	843	843	843	843	843	843
15	802	803	805	811	819	825	828	828	827
30	705	707	715	739	762	774	775	765	761
45	561	564	589	645	685	697	688	664	650
60	378	382	462	546	594	599	573	526	498
75	175	231	353	444	491	484	439	365	326
90	98	154	264	343	382	362	299	199	147

Table 7.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 50 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \text { day }^{-1} \text {) }
$$

latitude 50 degrees morth. dec. 22

$\begin{aligned} & \text { SLOPE } \\ & \text { (DEGREES) } \end{aligned}$	N	NWE NNM	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE WNW		$\begin{aligned} & \text { ESE } \\ & \text { NSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSM } \end{aligned}$	S
0	105	105	105	105	105	105	185	105	105
15	3	12	34	67	104	145	179	203	211
30	0	0	5	44	105	175	241	287	303
45	0	0	1	35	106	195	286	351	373
60	0	0	0	30	102	204	311	391	419
75	0	0	0	25	95	200	316	404	436
90	0	0	0	19	84	181	299	390	423

LATITUDE 50 DEGREES NORTH, JAN. 21

$\begin{gathered} \text { SLOPE } \\ \text { (OEGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	ENE WNM	ASPEC E M	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	151	151	151	151	151	151	151	151	151
15	24	36	65	103	149	195	236	263	273
30	0	0	19	77	150	230	304	358	377
45	0	0	8	63	149	251	353	428	455
60	0	0	4	53	144	259	377	469	502
75	0	0	3	46	132	250	377	478	515
90	0	0	2	36	117	224	351	455	492

LATITUDE 50 DEGREES NORTH, FEB. 9

$\begin{aligned} & \text { SLOPE } \\ & \text { (DEGREES) } \end{aligned}$	N	NME NN	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { WNW } \end{aligned}$		$\begin{aligned} & \text { ESE } \\ & \text { MSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	222	222	222	222	222	222	222	222	222
15	74	88	121	167	218	289	315	345	356
30	0	2	54	128	215	305	387	445	466
45	0	0	28	106	208	323	432	515	544
60	0	0	18	89	200	325	449	549	585
75	0	0	12	77	179	308	438	546	586
90	0	0	10	61	156	271	397	506	548

LATITUDE 50 DEGREES NORTH, MAR. 21

SLOPE (OEGREES)	N	NHE NWM	$\begin{aligned} & \text { NE } \\ & \text { NM } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { NNM } \end{aligned}$		$\begin{aligned} & \text { ESE } \\ & \text { NSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	\$
0	455	456	456	456	456	456	456	456	456
15	298	310	344	393	447	500	545	573	584
30	119	157	238	336	435	526	600	653	671
45	0	60	167	290	415	529	623	688	713
60	0	32	128	253	384	505	604	677	706
75	0	21	101	214	341	459	555	620	651
90	0	15	77	178	288	389	467	526	552

Table 7.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 50 degrees north latitude -.CONTINUED
(Cal. cm^{-2} day $^{-1}$)

			NORTH		$\stackrel{3}{A S P E C}$				
$\begin{aligned} & \text { SLOPE } \\ & \text { (OEGREES) } \end{aligned}$	N	NNE NNN	NE NH	ENE WNH	$\begin{gathered} \mathbf{E} \\ \mathbf{N} \end{gathered}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & S E \\ & S N \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	541	541	541	541	541	541	541	541	541
15	392	402	433	478	529	577	616	642	652
30	217	243	319	414	506	593	658	702	719
45	27	114	234	359	478	584	665	718	737
60	4	64	178	310	437	547	630	685	705
75	0	43	140	264	386	489	565	609	624
90	0	31	109	215	321	408	464	495	502

LATITUDE 50 DEGREES NORTH, APR. 16

$\begin{aligned} & \text { SLOPE } \\ & \text { (OEGREES) } \end{aligned}$	N	$\begin{aligned} & \text { NNE } \\ & \text { NNH } \end{aligned}$	$\begin{aligned} & \mathrm{NE} \\ & \mathrm{NH} \end{aligned}$	ENE WNH	ASPEC E W	$\begin{aligned} & \text { ESE } \\ & \text { HSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SH } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
0	818	618	618	618	618	618	618	618	618
15	485	494	519	559	604	645	679	702	710
30	319	336	402	489	575	650	706	740	754
45	131	182	303	426	537	629	696	734	747
60	28	106	236	369	487	580	644	679	689
75	16	73	186	311	424	510	563	584	584
90	7	52	145	252	349	418	451	452	441

Table 8.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 60 degrees north latitude

$$
\text { (cal. } \mathrm{cm}^{-2} \mathrm{day}^{-1} \text {) }
$$

latitude 60 Degrees north, dec. 22

SLOPE (DEGREES)	ASPECT								
	N	NNE NNH	$\begin{aligned} & \text { NE } \\ & \text { NH } \end{aligned}$	ENE WNW	E	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	SE	$\begin{gathered} \text { SSE } \\ \text { SCU } \end{gathered}$	s
0	15	15	15	15	15	15	15	15	15
15	0	0	0	3	15	29	42	50	53
30	0	0	0	1	16	42	66	82	88
45	0	0	0	1	17	51	85	109	117
60	0	0	0	0	18	57	99	128	137
75	0	0	0	0	18	59	106	138	149
90	0	0	0	0	16	57	105	139	150

Latituo	DEGREES NORTH, JAN. 21								
SLOPE (DEGREES)	N	NNE NNW	$\begin{aligned} & \mathrm{NE} \\ & \mathrm{NH} \end{aligned}$	ENE WNW	$\underset{W}{E}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & S E \\ & S W \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	\$
0	41	41	41	41	41	41	41	41	41
15	J	0	2	19	42	68	92	107	113
30	0	0	0	12	46	91	135	166	177
45	0	0	0	10	49	108	170	213	228
60	0	0	0	9	50	118	193	246	264
75	0	0	0	7	49	120	203	262	282
90	0	0	0	6	45	114	199	260	281

LATITUDE 60 DEGREES NORTH, FEB. 9

LATITURE $\delta 0$ DEGREES NORTH, MAR. 8

-					ASPEC				
$\begin{gathered} \text { SLOP: } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNH	$\begin{aligned} & \mathrm{NE} \\ & \mathrm{NH} \end{aligned}$	ENE WNW	$\begin{aligned} & E \\ & W \end{aligned}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	S
9	244	244	244	244	244	244	244	244	244
15	87	102	139	188	242	296	341	373	384
30	D	15	76	156	247	338	419	476	498
45	0	3	53	142	249	364	459	548	579
60	0	$?$	43	129	246	372	489	582	619
75	0	1	34	118	228	356	479	576	618
90	0	0	30	99	204	319	436	531	574

Table 8.--Daily values of direct solar radiation computed for selected slopes, aspects, and days at 60 degrees north latitude --CONTINUED

$$
\text { (Cal. } \mathrm{cm}^{-2} \mathrm{day}^{-1} \text {) }
$$

			NORTH		$\begin{aligned} & 3 \\ & \text { ASPEC } \end{aligned}$				
$\begin{gathered} \text { SLOPE } \\ \text { (DEGREES) } \end{gathered}$	N	NNE NNW	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	ENE WNW	$\underset{\mathbf{W}}{\mathrm{E}}$	$\begin{aligned} & \text { ESE } \\ & \text { WSW } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSM } \end{aligned}$	\leq
0	429	429	429	429	429	429	429	429	429
15	267	279	314	364	421	476	520	550	581
30	88	126	215	315	417	509	583	635	655
45	5	60	163	285	410	524	617	680	704
60	1	41	135	259	390	512	610	679	705
75	0	31	114	229	355	474	571	633	658
90	0	24	92	194	307.	411	493	548	566

LATITUDE 60° DEGREES NORTH, APR. 16

					ASPEC				
SLOPE (DEGREES)	N	NNE NNH	$\begin{aligned} & \text { NE } \\ & \text { NW } \end{aligned}$	$\begin{aligned} & \text { ENE } \\ & \text { WNW } \end{aligned}$	$\underset{H}{E}$	ESE	$\begin{aligned} & S E \\ & S H \end{aligned}$	$\begin{aligned} & \text { SSE } \\ & \text { SSW } \end{aligned}$	s
0	524	524	524	524	524	524	524	524	524
15	373	383	414	462	515	564	604	631	638
30	197	219	305	407	504	592	657	697	711
45	46	116	238	367	491	597	676	723	738
60	26	84	202	335	464	573	654	701	714
75	19	67	172	295	420	525	598	633	642
90	13	55	141	252	361	448	503	528	525

Table 9.--Yearly values of direct solar radiation computed for selected slopes and aspects at 0 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \text { year-1) }
$$

Table 10.--Yearly values of direct solar radiation computed for selected slopes and aspects at 10 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \text { year }^{-1} \text {) }
$$

Latitude 10 degrees north ASPECTS						75	90
	0						
N	261965	242164	206245	157690	105146	63357	30089
nhe / nna	261965	243249	209419	164709	115810	72519	40205
Ne/ nh	261965	246112	217384	180345	140062	101891	69483
ENE / unh	261965	250274	227466	197719	164061	129373	96166
E/W	261965	254935	237031	211500	180610	146614	111894
ESE / HSH	261965	258964	243388	218066	185958	149742	112461
SE - SH	261965	261728	246536	219193	182699	141054	99587
SSE / SSW	261965	263223	248257	217949	175634	126719	79536
s	261965	264061	248269	216702	171396	117984	72667

Table 11.--Yearly values of direct solar radiation computed for selected slopes and aspects at 20 degrees north latitude
(Cal. cm^{-2} year ${ }^{-1}$)

LATITUDE 20 DEGREES NORTH
ASPECTS GRES NORTH
anNum potential raoiation

ASPECTS	Slope (Degree)						
	0	15	30	45	60	75	90
N	249369	219652	175631	122819	77514	41185	14880
NnE/ NnW	249369	221412	180504	132450	86881	51202	27913
NE $/ \mathrm{NH}$	249369	226473	192752	153907	115866	82833	56588
ENE ; Wnh	249369	233768	208961	179137	147375	116007	86441
E/W	249369	241992	225062	201375	172872	141269	108516
ESE 1 WSN	249369	249935	238871	217760	188672	154584	117834
SE / SH	249369	256243	248389	228023	196278	157035	114599
SSE / SSW	249369	260492	255199	233695	198527	153206	103707
s	249369	262107	256993	234908	197870	148988	96923

Table 12.--Yearly values of direct solar radiation computed for selected slopes and aspects at 30 degrees north latitude

$$
\text { (CaI. } \mathrm{cm}^{-2} \text { year }^{-1} \text {) }
$$

LATITUOE 30 DEGREES NORTH aspects	annual potential radiation						
				PE CDEGR			
	0	15	30	45	60	75	co
N	228998	191181	141938	93370	54585	24533	9291
NNE / Nnw	228998	193787	148426	101812	83939	36375	21647
NE / NH	228998	200880	164701	127474	94741	68680	48453
Ene / Hnw	228998	211217	186275	158918	131503	104854	79751
E / W	228998	222803	208487	188636	154169	136521	107168
ESE / WSW	228998	233857	228865	212889	188686	158766	124259
SE / SH	228998	243088	243293	230963	205901	171372	130713
SSE / SSW	228998	249277	253512	241794	215287	176287	129124
S	228998	251410	257090	245235	217802	176410	125019

Table 13.--Yearly values of direct solar radiation computed for selected slopes and aspects at 40 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \text { year-1) }
$$

LATITUOE 40 OEGREES NORTH ASPECTS		ANM	Lal poten	Ial radi	EION		90
		15	30	45	60	75	
N	201947	158569	109293	68691	35676	14296	8075
NNE / NNW	201947	161733	115743	76364	45321	27491	18235
NE / NH	201947	170272	134282	101682	76253	57241	42286
ENE Mnw	201947	182693	159363	136210	114381	93292	72747
E / H	201947	196743	185602	170586	151501	128594	103446
ESE / WSW	201947	210420	209707	200575	182540	157822	126960
SE/ SH	201947	221738	229278	224469	206725	178720	142449
SSE / SSW	201947	229203	241788	239559	221816	190753	149109
s	201947	231739	246356	244610	226325	194083	149746

Table 14.--Yearly values of direct solar radiation computed for selected slopes and aspects at 50 degrees north latitude

$$
\text { (Cal. } \left.\mathrm{cm}^{-2} \text { year }^{-1}\right)
$$

Table 15.--Yearly values of direct solar radiation computed for selected slopes and aspects at 60 degrees north latitude

$$
\text { (Cal. } \mathrm{cm}^{-2} \text { year-1) }
$$

ANNUL POTENTIAL RADIATION
LATITUDE 60 DEGREES NORTH

SLOPE (CPGREE)						
0	15	30	45	60	75	90
135941	96813	61924	34001	19553	14824	11711
135941	99480	66930	41292	29335	23506	18920
135941	107188	81395	64044	53842	45761	37822
135941	119111	104440	94079	85025	74867	62965
135941	133288	130203	126125	118704	107026	91477
135941	147272	154677	156417	151032	138302	118357
135941	158862	174569	181149	177270	163716	140167
135941	166463	187404	196841	194026	178905	152643
135941	169028	191739	202086	199718	183742	156459

LIST OF FIGURES

Page
Figure 1.--Ilustration of the angles necessary for the theoretical calculations of solar radiation on a particular surface in the Northern Hemisphere 31
Figure 2.--Isograms of hourly values of direct solar radiation for various slopes at 0 degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 32
Figure 3.--Isograms of hourly values of direct solar radiation for various slopes at 0 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 33
Figure 4.--Isograms of hourly values of direct solar radiation for various slopes at 0 degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 34
Figure 5. --Isograms of hourly values of direct solar radiation for various slopes at 0 degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 35
Figure 6. --Isograms of hourly values of direct solar radiation for various slopes at 0 degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 36
Figure 7. --Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 37
Figure 8. --Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 38
Figure 9. --Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 39
Figure 10. --Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 40
Figure 11. --Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 41Figure 12.--Isograms of hourly values of direct solar radiation for various slopes at20 degrees north latitude on December 22. For westerly exposures, the time is readfrom top to bottom (left time axis); for easterly exposures, the time is read frombottom to top (right time axis)42
Figure 13. --Isograms of hourly values of direct solar radiation for various slopes at 20 degrees north latitude on February 23 and October 20 . For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis)43

Figure 14.--Isograms of hourly values of direct solar radiation for various slopes at
20 degrees north latitude on March 21 and September 23. For westerly exposures,
the time is read from top to bottom (left time axis); for easterly exposures, the time
is read from bottom to top (right time axis) 44

Figure 15. --Isograms of hourly values of direct solar radiation for various slopes at
20 degrees north latitude on April 16 and August 28. For westerly exposures, the time
is read from top to bottom (left time axis); for easterly exposures, the time is read
from bottom to top (right time axis) 45
Figure 16. --Isograms of hourly values of direct solar radiation for various slopes at 20 degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis)46
Figure 17. --Isograms of hourly values of direct solar radiation for various slopes at 30 degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis)
Figure 18. --Isograms of hourly values of direct solar radiation for various slopes at 30 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).48

Figure 19. --Isograms of hourly values of direct solar radiation for various slopes at
30 degrees north latitude on March 21 and September 23. For westerly exposures, the
time is read from top to bottom (left time axis); for easterly exposures, the time is
read from bottom to top (right time axis) 49

Figure 20. --Isograms of hourly values of direct solar radiation for various slopes at
30 degrees north latitude on April 16 and August 28 . For westerly exposures, the
time is read from top to bottom (left time axis); for easterly exposures, the time is
read from bottom to top (right time axis) 50

Figure 21. --Isograms of hourly values of direct solar radiation for various slopes at
30 degrees north latitude on June 22. For westerly exposures, the time is read from
top to bottom (left time axis); for easterly exposures, the time is read from bottom to
top (right time axis) 51

Figure 22. --Isograms of hourly values of direct solar radiation for various slopes at
40 degrees north latitude on December 22. For westerly exposures, the time is read
from top to bottom (left time axis); for easterly exposures, the time is read from
bottom to top (right time axis). 52
Figure 23. --Isograms of hourly values of direct solar radiation for various slopes at 40 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis)53
Figure 24. --Isograms of hourly values of direct solar radiation for various slopes at 40 degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis)
Figure 25. --Isograms of hourly values of direct solar radiation for various slopes at 40 degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis). 55
Figure 26. --Isograms of hourly values of direct solar radiation for various slopes at 40 degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 56
Figure 27. --Isograms of hourly values of direct solar radiation for various slopes at 50 degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 57
Figure 28. --Isograms of hourly values of direct solar radiation for various slopes at 50 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 58
Figure 29. --Isograms of hourly values of direct solar radiation for various slopes at 50 degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 59
Figure 30.--Isograms of hourly values of direct solar radiation for various slopes at 50 degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 60
Figure 31. --Isograms of hourly values of direct solar radiation for various slopes at 50 degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 61
Figure 32. --Isograms of hourly values of direct solar radiation for various slopes at 60 degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 62
Figure 33. --Isograms of hourly values of direct solar radiation for various slopes at 60 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis; for easterly exposures, the time is read from bottom to top (right time axis) 63
Figure 34.--Isograms of hourly values of direct solar radiation for various slopes at 60 degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis) 64
Figure 35. --Isograms of hourly values of direct solar radiation for various slopes at60 degrees north latitude on April 16 and August 28. For westerly exposures, thetime is read from top to bottom (left time axis); for easterly exposures, the time isread from bottom to top (right time axis)65
Figure 36. --Isograms of hourly values of direct solar radiation for various slopes at60 degrees north latitude on June 22. For westerly exposures, the time is read fromtop to bottom (left time axis); for easterly exposures, the time is read from bottomto top (right time axis)66

Figure 37.--Isograms of daily values of direct solar radiation on level, north $30-$, north $60-$,
north $90-$, and east 30 -degree slopes at 0 degrees north latitude 67
Figure 38. -- Isograms of daily values of direct solar radiation on east $60-$, east $90-$, south $30-$, south $60-$, and south 90 -degree slopes at 0 degrees north latitude. 67
Figure 39. --Isograms of daily values of direct solar radiation on level, north $30-$, north $60-$, north 90 -, and east 30 -degree slopes at 10 degrees north latitude 67
Figure $40 .-$ - Isograms of daily values of direct solar radiation on east $60-$, east $90-$, south $30-$, south $60-$, and south 90 -degree slopes at 10 degrees north latitude 67
Figure 41. --Isograms of daily values of direct solar radiation on level, north $30-$, north $60-$, north 90 -, and east 30 -degree slopes at 20 degrees north latitude. 68
Figure 42. -- Isograms of daily values of direct solar radiation on east 60 , east 90 , , south $30-$, south $60-$, and south 90 -degree slopes at 20 degrees north latitude 68
Figure 43. -- Isograms of daily values of direct solar radiation on level, north $30-$, north $60-$, north 90 -, and east 30 -degree slopes at 30 degrees north latitude. 68
Figure 44. -- Isograms of daily values of direct solar radiation on east $60-$, east $90-$ south $30-$, south $60-$, and south 90 -degree slopes at 30 degrees north latitude 68
Figure 45. --Isograms of daily values of direct solar radiation on level, north $30-$, north $60-$, north 90 -, and east 30 -degree slopes at 40 degrees north latitude 69
Figure 46. --Isograms of daily values of direct solar radiation on east $60-$, east $90-$, south $30-$, south $60-$, and south 90 -degree slopes at 40 degrees north latitude 69
Figure 47. --Isograms of daily values of direct solar radiation on level, north $30-$, north $60-$, north 90 -, and east 30 -degree slopes at 50 degrees north latitude 69
Figure 48. - Isograms of daily values of direct solar radiation on east $60-$, east $90-$, south $30-$, south $60-$, and south 90 -degree slopes at 50 degrees north latitude 69
Figure 49.--Isograms of daily values of direct solar radiation on level, north 30-, north 60-, north 90 -, and east 30 -degree slopes at 60 degrees north latitude 70
Figure 50. --Isograms of daily values of direct solar radiation on east $60-$, east 90 , south $30-$, south $60-$, and south 90 -degree slopes at 60 degrees north latitude 70
Figure 51. --Solar altitude and azimuth for selected days of the year at 0 degrees north latitude 71
Figure 52.--Solar altitude and azimuth for selected days of the year at 10 degrees north latitude 71
Figure 53.--Solar altitude and azimuth for selected days of the year at 20 degrees north latitude 72
Figure 54. --Solar altitude and azimuth for selected days of the year at 30 degrees north latitude 72
Figure 55. --Solar altitude and azimuth for selected days of the year at 40 degrees north latitude 73
Figure 56.--Solar altitude and azimuth for selected days of the year at 50 degrees north latitude 73
Figure 57. --Solar altitude and azimuth for selected days of the year at 60 degrees north latitude 74

Figure 1.-Illustration of the angles necessary for the theoretical calculations of solar radiation on a particular surface in the Northern Hemisphere.

Figure 2.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{0}$ degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 3.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{0}$ degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 4.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{0}$ degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 5.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{0}$ degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 6.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{0}$ degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 7.-Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 8.-Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 9.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{1 0}$ degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 10.-Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 11.-Isograms of hourly values of direct solar radiation for various slopes at 10 degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 12.-Isograms of hourly values of direct solar radiation for various slopes at 20 degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 13.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{2 0}$ degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 14.-Isograms of hourly values of direct solar radiation for various slopes at 20 degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 15.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{2 0}$ degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 16.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{2 0}$ degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 17.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{3 0}$ degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 18.-Isograms of hourly values of direct solar radiation for various slopes at 30 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 19.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{3 0}$ degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 20.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{3 0}$ degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 21.-Isograms of hourly values of direct solar radiation for various slopes at 30 degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 22.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{4 0}$ degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 23.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{4 0}$ degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 24.-Isograms of hourly values of direct solar radiation for various slopes at 40 degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 25.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{4 0}$ degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 26.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{4 0}$ degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 27.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{5 0}$ degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 28.-Isograms of hourly values of direct solar radiation for various slopes at 50 degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 29.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{5 0}$ degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 30.-Isograms of hourly values of direct solar radiation for various slopes at 50 degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 31.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{5 0}$ degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).
$\begin{array}{cc}4 & 20 \\ 6 & 18 \\ 8 & 16 \\ 10 & 14 \\ 12 & 12 \\ 14 & 10 \\ 16 & 8 \\ 18 & 6 \\ 20 & 4 \\ 20 & 2\end{array}$ \square
\square

SIOPE (DEGREES)

Figure 32.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{6 0}$ degrees north latitude on December 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 33.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{6 0}$ degrees north latitude on February 23 and October 20. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 34.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{6 0}$ degrees north latitude on March 21 and September 23. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 35.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{6 0}$ degrees north latitude on April 16 and August 28. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 36.-Isograms of hourly values of direct solar radiation for various slopes at $\mathbf{6 0}$ degrees north latitude on June 22. For westerly exposures, the time is read from top to bottom (left time axis); for easterly exposures, the time is read from bottom to top (right time axis).

Figure 37.-Isograms of daily values of direct solar radiation on level, north 30 -, north $\mathbf{6 0}$-, north 90 , and east 30 -degree slopes at 0 degrees north latitude.

Figure 39.-Isograms of daily values of direct solar radiation on level, north 30-, north 60-, north 90-, and east 30 -degree slopes at 10 degrees north latitude.

Figure 38.-Isograms of daily values of direct solar radiation on east 60 -, east 90 -, south 30-, south 60 -, and south 90 -degree slopes at 0 degrees north latitude.

Figure 40.-Isograms of daily values of direct solar radiation on east 60 -, east 90 -, south 30 -, south 60 -, and south 90 -degree slopes at 10 degrees north latitude.

Figure 41.-Isograms of daily values of direct solar radiation on level, north 30-, north 60-, north 90-, and east 30 -degree slopes at 20 degrees north latitude.

Figure 43.-lsograms of daily values of direct solar radiation on level, north 30 -, north 60-, north 90-, and east 30 -degree slopes at 30 degrees north latitude.

Figure 42.-Isagrams of daily values of direct solar radiation on east 60 -, east 90 -, south 30-, south 60-, and south 90 -degree slopes at $\mathbf{2 0}$ degrees north latitude.

Figure 44.-Isograms of daily values of direct solar radiation on east 60-, east 90 -, south 30-, south 60-, and south 90 -degree slopes at 30 degrees north latitude.

Figure 45.-Isograms of daily values of direct solar radiation on level, north 30-, north $\mathbf{6 0}$ - north 90 -, and east 30 -degree slopes at 40 degrees north latitude.

Figure 47.-Isograms of daily values of direct
solar radiation on level, north 30 . solar radiation on level, north 30-, north 60-, north 90-, and east 30 -degree slopes at 50 degrees north latitude.

Figure 46.-Isograms of daily values of direct solar radiation on east 60 -, east 90 -, south 30-, south 60-, and south 90-degree slopes at 40 degrees north latitude.

Figure 48.-Isograms of daily values of direct solar radiation on east 60 -, east 90 -, south 30 -, south 60 -, and south 90 -degree slopes at 50 degrees north latitude.

Figure 49.-Isograms of daily values of direct solar radiation on level, north 30-, north 60 -, north 90 -, and east 30 -degree slopes at 60 degrees north latitude.

Figure 50.-Isograms of daily values of direct solar radiation on east 60 -, east 90 -, south 30, south 60 -, and south 90 -degree slopes at 60 degrees north latitude.

0 -

Figure 51.-Solar altitude and azimuth for selected days of the year at 0 degrees north latitude.

Figure 52.-Solar altitude and azimuth for selected days of the year at $\mathbf{1 0}$ degrees north latitude.

Figure 53.-Solar altitude and azimuth for selected days of the year at 20 degrees north latitude.

Figure 54.-Solar altitude and azimuth for selected days of the year at 30 degrees north latitude.

Figure 55.-Solar altitude and azimuth for selected days of the year at 40 degrees north latitude.

Figure 56.-Solar altitude and azimuth for selected days of the year at $\mathbf{5 0}$ degrees north latitude.

Figure 57.-Solar altitude and azimuth for selected days of the year at $\mathbf{6 0}$ degrees north latitude.

[^0]: 1/ Ross Lake Solar Program, Forest Meteorology, College of Forest Resources, University of Washington.

 2/ Courtesy of the Smithsonian Institution Press, Washington, D.C.

