

USDA Forest Service Rocky Mountain Research Station, Boise Idaho

Overview

- Why do we care about fine sediment
- Road inventory description
- Sediment production calculation
- Watershed Examples
- ♦ GRAIP model GIS components
 - Sediment production
 - Sediment delivery
 - Mass wasting

Organic Act of 1897

Establish forest reserves,

"to improve and protect the forest within the reservation,... securing favorable conditions of water flows, and to furnish a continuous supply of timber for the use and necessities of citizens of the United States."

Early Watershed Studies

- Wagon Wheel Gap
- ♦ Rio Grande NF-1911
- Water Yield

- * Hubbard Brook
- New Hampshire 1955
- Water, Sediment
 Management

Carlos Bates, Forester in Charge, hauls supplies to the Fremont Experiment Station in 1917.

Major North American Watershed Studies

- Coweeta, NC 1939
- Andrews Forest, OR 1948
- Alsea River, OR 1959
- Hubbard Brook, NH 1955
- Casper Creek, CA 1962
- Zena Creek, ID 1972
- Carnation Creek, BC 1989

Fine sediment Issues in Streams

- Water quality- Clean Water Act
- Aquatic Organisms
 - Primary productivity
 - ♦ Invertebrates
 - ♦ Fish

Sediment Sources to Channels Undisturbed Basins

- * Bank erosion
- > Flood plain erosion
- Mass wasting
- ♦ Bed erosion
- Hillslope contributions/overland flow

Sediment Sources to Channels Disturbed Basins

- Road sediment
- Disturbed hillslope contributions/ overland flow
- Elevated mass wasting
- * Bank erosion
- > Flood plain erosion
- Bed erosion

Rates in Undisturbed Systems in Western US

Sediment transport rates from newly roaded basins

- 3 to 770 fold increase
- Large mass wasting effect
- Large events matter
- Declining over time
- Fine sediment persists
- Most studies include harvest

Oregon Sediment Plots

Road Sediment Plots Length and Slope

Three years of data

Why model road impacts?

- Difficult to measure in field
- * Quantify and compare sources
- Extrapolate to areas without data
- To estimate surface erosion for forest practice applications, TMDLs, prioritizing work
- · Project future conditions

Sediment Production Estimate

Sediment production by road segment

Sed Prod=B x L x S x V x R

Sed Prod Sediment production (Kg/yr)

B Erosion base rate

Flow path length

S Flow path slope

V
Vegetation factor

R Road surface factor

"B" can be determined experimentally or using a physically based model (e.g. WEPP)

Inventory Nuts and Bolts

- ♦ Two person inventory crew
- ♦ 1–5 miles of inventory per day
- ♦ \$50-\$250 per mile of road
- OPS unit and vehicle

Case Studies

- Lake Creek, Eugene BLM,
 Oregon
- Spencer Creek, Klamath Falls BLM, Oregon
- Gerber Creek, Klamath Falls BLM, Oregon
- Grouse Creek, Payette NF, Idaho
- SF Payette, Boise NF, Idaho
- Upper Lolo Creek, Nez Perce Tribe, Idaho

- Wall Creek, Umatilla NF, Oregon
- Bear Valley Creek, Boise NF, Idaho
- MF Payette, Boise NF, Idaho
- Beaver Creek, IPNF, Idaho
- NF Siuslaw, Siuslaw NF,
 Oregon
- Crown of the Continent, MT
- SF Stillaguamish, Washington
- ⋄ EF Weiser River, Idaho

Recent GRAIP Study Sites

GRAIP 1 ArcGIS Tool Bar

Sediment Delivery Can Be Very Localized

