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Abstract.  This analysis quantifies the topoclimate niche of 14 tree species in southwestern Colorado and 

predicts the 2060 niche distribution for each species.  It draws on comprehensive, high-resolution 

vegetation datasets, a precise climate downscaling model, GCMs and RCPs used by IPCC, a foremost 

decision-tree learning algorithm, and advanced analytical techniques.  The models accurately predict 

recent species distributions at high resolution based on reference climate, slope, and aspect.  The results 

are presented as spatially explicit change zones to enhance utility in management.  Results can be used to: 

(a) determine site-specifically the most appropriate management actions for climate adaptation of 

vegetation, (b) focus efforts where they have the greatest likelihood of long-term success, and (c) identify 

potential climate refugia. 

Introduction 
In the southern Rocky Mountains, it is increasingly evident that weather, insects, diseases, stand 

conditions, and fire will interact to transform forests as the climate changes.  We have already seen 

widespread changes.  Fires have been larger and more severe (van Mantgem et al. 2013, Westerling et al. 

2006).  Piñon ips responded to the turn-of-the-century drought by killing piñon on over 2.9 million acres 

in the 4-corner states (Breshears et al. 2005).  In Colorado, sudden aspen decline impacted 1.2 million 

acres (17% of the aspen cover type) (Worrall et al. 2015), mountain pine beetle killed trees on 3.4 million 

acres, and spruce beetle has impacted 1.6 million acres to date (Howell et al. 2016).  These agents kill 

stressed trees, often building their populations to kill trees in the absence of stress. 
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These large-scale disturbances provide a strong reminder of the powerful influence of climate on 

vegetation.  The Forest Service and other agencies increasingly mandate extensive consideration of 

climate change in project, landscape, and forest planning.  While vulnerability assessments and other 

elements provide a good overview of potential climate change impacts and general adaptation measures, 

they do not provide the quantitative, spatially explicit projections needed to adapt vegetation management 

to climate change.  Impacts to tree species will vary greatly across the landscape – from habitat lost to 

new habitat emerging.  Our management today should be quite different among these locations. 

Bioclimate models offer an approach to develop spatially explicit projections of climate change impacts.  

By analyzing the relationship between known presence/absence of a species and reference climate (which 

led to the current distribution) at each point, they can predict the likelihood that a given climate will be 

suitable.  Predicted distributions based on grids of reference climate match very well with known 

distributions.  Grids of projected future climate then result in spatially explicit projections of future 

suitability.  Bioclimate models have been extensively used and tested in research (Fettig et al. 2013, Gray 

& Hamann 2012, Hamann & Wang 2006, Iverson et al. 2008, Rehfeldt et al. 2006, Rehfeldt et al. 2014a, 

Sáenz-Romero et al. 2012, Worrall et al. 2013).  Their application in management has been limited due to 

the coarse scale of mapping (~ 1 km resolution), lack of topographical response, and the complexity of 

results.  Recent work has addressed these issues: methods for mapping at a 90-meter pixel scale suitable 

for landscape analysis, incorporation of topographic variables to increase fine-scale accuracy, and a 

method for projecting change zones that are directly applicable to management (Rehfeldt et al. 2015).   

Here we report the methods, results, and some management implications of bioclimate modeling and 

change projections for 14 tree species in southwestern Colorado.  The objectives of this phase of the 

project were to:  (a) develop bioclimate models for dominant tree species of southwestern Colorado based 

on local data, incorporating topographic variables, and with results presented at a scale useful to 

management, and; (b) interpret the models by projecting change zones for the species (Lost, Threatened, 

Persistent, and Emergent) to make them useful for management. 

Methods 
Models were developed for 14 tree species (Table 1).  The process for model development and projection 

can be summarized as follows for a given species.  The steps are described in more detail below. 

1. Assemble and process ‘training’ data 

a. Points of known presence and absence of the species 

b. Reference climate, slope, and aspect for each point 

2. Provide training data to the ‘Random Forests’ algorithm.  The algorithm determines the 

combination of topoclimate variables and values that are importantly associated with presence 

and absence of the species. 

3. Mapping 

a. Create rasters of reference and projected future climate variables for the study area. 

b. Run the variables for each raster cell through the model, obtaining votes among all the 

‘trees’ for presence or absence in that cell.  The result is a map of votes, indicating 

suitability, for each climate. 

4. To project change from the reference period to the future, compare the vote grids for the two 

climates. 
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Table 1.  Species used in bioclimate modelling. 

Species Common name Code 

Abies concolor white fir ABCO 

Abies lasiocarpa subalpine fir (including corkbark) ABLA 

Juniperus osteosperma Utah juniper JUOS 

Juniperus scopulorum Rocky Mountain juniper JUSC2 

Picea engelmannii Engelmann spruce PIEN 

Picea pungens blue spruce PIPU 

Pinus aristata bristlecone pine PIAR 

Pinus concolor lodgepole pine PICO 

Pinus edulis piñon PIED 

Pinus flexilis limber pine PIFL2 

Pinus ponderosa ponderosa pine PIPO 

Populus tremuloides trembling aspen POTR5 

Pseudotsuga menziesii Douglas-fir PSME 

Quercus gambelii Gambel oak QUGA 

Study area 

Our study area ‘window’ is bounded by longitudes -109.1, -105.3 and latitudes 36.9, 39.45.  This is just 

outside Colorado’s borders with Utah and New Mexico, reaching just north of the GMUG and east to 

include the Sangre de Cristo Mountains (Figure 1). 

Software 

All analyses and data manipulations were conducted in R (R Core Team 2016).  Within R, we primarily 

used the packages rgdal (Bivand et al. 2015) for working with spatial polygons and points and their 

attributes, raster (Hijmans 2015) for working with rasters and certain other geographic data, 

randomForest (Liaw & Wiener 2002) for building and using Random Forests models, yaImpute 

(Crookston & Finley 2007) for building prediction rasters, and ggplot2 (Wickham 2009) for graphing and 

mapping.  Many other packages were used at various steps. 

Training data 

Spatial vegetation data were obtained from the land management units listed above (under Cooperators).  

These represent the highest resolution data available.  They are based on expert analysis and interpretation 

of remote images and ground observations, not on vegetation models.  They were supplemented by Forest 

Inventory and Analysis (FIA) plots.  

National Forest System 

For national forest data (including Tres Rios BLM, whose data are maintained together with SJNF), we 

used data from a nationwide USvegNRIS geodatabase compiled in 2015.  We searched the 

NRIS_VegSubpopulations table for species codes in the field SPECIES_SYMBOL that are used to 

indicate presence of each species.  If any were present, the species was considered present in the 

associated polygon; otherwise, it was considered absent.  We found no species data in the few polygons 
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of the Carson NF inside our window.  In the few polygons of the Manti-La Sal NF, most had species 

codes in the field SUBGROUP_1, so those were used to indicate presence/absence.   

Figure 1.  Map of window used for modeling, bounded by longitudes -109.1, -105.3 and latitudes 36.9, 39.45. 

 

Several corrections or refinements were made.  The floor of the San Luis Valley, not part of the Rio 

Grande NF, contained very large polygons (> 30,000 acres).  Most of them had no vegetation data; one 

had several tree species represented although most of the polygon was treeless.  Those polygons were 

deleted. 

On the GMUG, 78 polygons around Ouray known to have white fir were set to ‘present’ for that species, 

although white fir was not represented in the vegetation data. 
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Lodgepole pine that occurs in the Uncompahgre, San Juan, and southern Rio Grande NFs is all comprised 

of plantations outside of the native range.  In the shapefile, we set lodgepole pine to ‘absent’ in these 

areas, west of longitude -107.4 OR south of latitude 37.7. 

On the SJNF, white and subalpine fir were confused during automated analysis of satellite imagery to 

populate the vegetation data.  The result was that white fir appears to exist much higher in elevation than 

it does, all the way to the Continental Divide.  To correct this, we waited until we had a grid of sample 

points because elevation was associated with each point (see below).  On the SJNF, for any points above 

3000 m (9843 ft) and containing ABCO in the vegetation attributes, we set ABLA as present.  This added 

746 new ABLA points.  For any points meeting the same criteria, we then set ABCO to absent.  This 

resulted in dropping 12,853 ABCO points.   

Southern Ute Indian Tribe 

SUIT data are recorded as forest types.  After discussing with foresters representing the tribe and Bureau 

of Indian Affairs, we created a table of presence/absence rules for each species in each forest type.  

Species whose presence in a type was variable were assigned ‘NA’ for that type.  When building models 

for a given species, any sample points showing “NA” for that species were first deleted. 

Mesa Verde National Park 

Similar to SUIT, MVNP data is recorded as vegetation types.  We used the most specific, the Base_Class 

field, and developed rules for each type as with SUIT.  For polygons in developed areas, we assigned NA 

for any species that occurred anywhere in the Park. 

Large burned areas in the Park were marked as ‘post-fire’, and the pre-existing vegetation was not 

indicated.  However, the best data for our purposes are the vegetation that grew there recently, even if it is 

currently absent.  Therefore, MVNP provided supplemental files including a 1996 vegetation shapefile, 

together with data from 147 vegetation plots in the Park.  We used the post-fire polygons from the main 

shapefile to clip the 1996 shapefile.  The 1996 polygons and associated vegetation attributes were used to 

replace the burned polygons in the main shapefile. 

To take advantage of the plot data, we extracted the presence of tree species noted in each plot.  Because 

the plot is a small part of the polygon in many cases, we decided not to use plot data to assign absence; 

only presence.  Using the plot coordinates, we identified the polygon containing each plot, and assigned 

the corresponding presence data to each polygon.  If the polygon already had presence for a species based 

on shapefile attributes, it was unchanged. 

Sample points 

All resulting shapefiles, containing presence-absence data for each species, were sampled with a grid of 

points.  On SUIT and MVNP, we used a grid interval of 0.0023 degrees (Table 2).  On NFS/BLM land, 

because of the large area, we used a slightly larger interval, 0.0025 degrees.  Each point was assigned 

presence-absence data of the polygon over which it fell.  This process assured sampling proportional to 

area and covered the topography thoroughly.  The final count of sample points from vegetation shapefiles 

was 840,069, distributed among units as shown in Table 3. 



6 

 

FIA plots 

Sample points from spatial vegetation data were supplemented with data from FIA plots (O’Connell et al. 

2015).  As a supplement, FIA plots are attractive because they offer accurate species identification and 

complete census on about 0.17 acre (subplots were lumped in each plot).  Also, they occur on all land 

ownerships.  In addition, outside our window, they provide access to vegetation data for climates that do 

not currently occur in the window, but are projected to occur in the future. 

Table 2.  Distance between points in sample grids in the center of the study area. 

 0.0023 degrees 0.0025 degrees 

Latitude 255.3 m 277.5 m 

Longitude 201.5 m 219.1 m 

 

Table 3.  Number of vegetation sample grid points in each unit. 

Management unit Number of points 

Grand Mesa NF 25,372  

Gunnison NF 122,873  

Uncompahgre NF 75,031  

Manti-La Sal NF 167  

Pike NF 48,305  

Rio Grande NF 147,376  

San Isabel NF 67,581  

San Juan NF and Tres Rios BLM 252,779  

White River NF 71,656 

Mesa Verde National Park 5,728  

Southern Ute Indian Tribe 23,201  

TOTAL 840,069 

 

We retrieved complete FIA plot records for 6 states (AZ, CA, CO, NM, NV, UT) in August and 

September 2015.  We eliminated any plot sample records before 2002 and any plots with 

PLOT_STATUS 3 (not sampled, may or may not have forest).  We eliminated duplicate plot records so 

each plot was represented only once.  We dropped plots that had any condition 4 (census water).  To 

focus on the southwestern desert climates, in Nevada, we dropped plots north of latitude 38.5; in 

California, we dropped plots west of longitude -118.3.   

We then compared the provided elevation of the true location with the 90-meter DEM elevation (Jarvis et 

al. 2008) of the public (fuzzed/swapped) location.  We removed plots with more than 50 m discrepancy, 

on the assumption that those were fuzzed or swapped to a greater distance.  All remaining plots inside our 

study area window were kept and used as training data.   

In preliminary trials, piñon and some junipers appeared to expand in suitability and becoming emergent at 

lower elevations than where they currently occur.  We determined that the future climates in these areas 

do not occur to any extent in the window in the reference period.  If no procedures are available to 

account for novel climates (Rehfeldt et al. 2012), RF is forced to extrapolate into climates it has not been 

trained for.  After obtaining reference climate data for each FIA plot (see ‘Reference climate data’ below), 
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we filtered the remaining outside plots to retain only those that had climates similar to future climates in 

Four Corners and San Luis Valley areas.   

We accessed the FIA TREE tables to assemble species presence/absence records for each plot.  FIA staff 

provided DEM slope and aspect for true locations of each plot (before fuzzing/swapping).  The final 

count was 7280 FIA plots: 2633 inside the window and 4647 outside.  All FIA plots were placed in the 

pool of points to be sampled as training data.  However, to ensure all outside plots were used in every 

training sample, any not picked randomly were added before model development (see Model 

Development below).   

Desert grid 

Portions of the Four Corners and San Luis Valley, where no trees existed, were not adequately sampled in 

the management units or FIA plots.  Therefore, we delineated treeless polygons in them (verified with 

satellite imagery) and established a grid of 7493 points.  All were assigned ‘absent’ for all tree species. 

Reference climate data and variables 

The coordinates of each point and its 90-m DEM elevation (Jarvis et al. 2008) were submitted to a server 

that provides climate data (Crookston & Rehfeldt 2008) based on the spline climate model described by 

Rehfeldt (2006).  For each point, we retrieved climate variables derived from monthly averages for the 

reference period 1961-1990.  Additional ‘transformed’ variables were calculated from derived variables.  

For model development and prediction, we used a total of 23 variables (Table 4).  We assigned slope and 

aspect to each point (for calculation of heatload) from 90-meter DEMs as noted above.  ‘heatload’ is a 

replacement for the Cartesian slope/aspect variables used previously (Rehfeldt et al. 2015).  It more 

effectively reflects the influence of topography on local climate.  It was the second most important 

variable in predicting presence, and makes fine-scale mapping more accurate.  We use the term 

“topoclimate” to refer to the climate together with the influence of slope and aspect. 

In summary, there were 854,842 points available for training the models, including 840,069 from spatial 

vegetation datasets, 7280 FIA plots, and 7493 from the supplemental desert grid.  Any points that had 

‘NA’ for presence of the species at hand were deleted prior to sampling for model building.   

Model Development 

Our approach to model development was to apply a well-established protocol (Joyce & Rehfeldt 2013, 

Ledig et al. 2010, Rehfeldt et al. 2006, Rehfeldt & Jaquish 2010, Rehfeldt et al. 2015, Worrall et al. 

2013) adapted slightly to take advantage of our extensive vegetation data.  These procedures use the 

Random Forests classification algorithm (Breiman 2001) as implemented in the randomForest package of 

R (Liaw & Wiener 2002, R Core Team 2016).  This algorithm constructs ‘forests’ of decision ‘trees’.  

Given ample training data with true presence/absence, Random Forests is the preferred algorithm because 

it is unexcelled in accuracy, it runs efficiently with very large datasets, and it generates a sound, unbiased, 

internal estimate of goodness of fit (Biau & Scornet 2016, Breiman 2001, Cutler et al. 2007, Liaw & 

Wiener 2002, Prasad et al. 2006).  Because each tree is constructed with a different subset of the data and 

each node is split using one of a random subset of the predictor variables, while the decision is made by 

the ensemble, it is robust against overfitting.  Disadvantages in some cases include:  (a) it is demanding in 

terms of training data, which should be ample and must include presence and absence observations; (b) 

there is a learning curve to program it (no graphical interface); (c) advanced techniques may be required 
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to optimize the training dataset and prediction accuracy, and; (d) the model is difficult to interpret 

ecologically without additional analysis. 

Table 4.  Derived and transformed variables used in model development. 

 Derived variables (calculated by server from monthly values) 

mat mean annual temperature 

map mean annual precipitation 

gsp growing season precipitation, April to September 

mmin mean minimum temperature in the coldest month 

mmax mean maximum temperature in the warmest month 

fday Julian date of the first freezing date of autumn 

ffp length of the frost-free period (days) 

dd5 degree-days > 5 C (based on mean monthly temperature) 

d100 Julian date the sum of degree-days > 5 C reaches 100 

dd0 degree-days < 0 C (based on mean monthly temperature) ≈ winter cold 

mmindd0 degree-days < 0 C (based on mean minimum monthly temperature) 

winp winter precipitation: (Nov+Dec+Jan+Feb) 

 Transformed variables (calculated from derived variables) 

pratio precipitation ratio, growing season to annual: gsp/map 

adi annual dryness index: dd50.5/map 

sdi summer dryness index: gsdd50.5/gsp 

adimindd0 adi*mmindd0 

sdimindd0 sdi*mmindd0 

dd0map dd0/map 

gspdd5 gsp * dd5 / 1000 

mapdd5 (map*dd5)/1000 

tdiff mtwm-mtcm (temperature difference between warmest and coldest month) 

heatload 0.339 + 0.808*cos(L)*cos(S) + -0.196*sin(L)*sin(S) + -0.482 * cos(A) *sin(S), where 

L=latitude in radians, S=slope in radians, A=aspect folded around NE/SW in radians;  from 

McCune and Keon (2002) 

mapheat map/heatload 

 

The protocol we follow uses multiple ‘forests’ to model the climate niche.  A unique training dataset is 

built for each forest.  Random Forests is most effective when there are approximately equal observations 

within the classes, that is, in our case, about equal numbers of presence and absence observations.  

Constructing training datasets from presence-absence databases such as ours ordinarily requires sampling 

observations, because (a) there invariably are disproportionate numbers of observations in the presence-

absence classes, and (b) computer resources often limit the size of the training data that can be run by the 

Random Forests algorithm.  In our case, presence observations range from only 2% to 36% of the total 

(Table 5).  Previous modeling has shown that maintaining presence observations no less than 40% of the 

training dataset adequately satisfies Breiman’s conditions of equality among classes.  We chose 42% as 

the threshold to compensate for the samples that were later forced into dataset, which were mostly 

absence observations.  Our computing limits turned out to be about 300,000 observations.  Previous 

research has also shown that a doubling of presence observations in the training dataset greatly reduces 

errors of omission while exposing the model to an increased number of absence observations.  These 

three contingencies govern the sampling protocol. 
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Table 5. Number and types of observations in the full training dataset for each species and in samples allocated to forests. 

  Observations (percent of total)  Samples in forest (percent of total) 

Species 
Total obser-
vations (n) Present 

Absent, in 
envelope 

Absent, 
outside 

envelope 
Total samples 
per forest (n) Present 

Absent, in 
envelope 

Absent, 
outside 

envelope 

ABCO 848,331 4.0 68.5 27.6 159,938 42.0 42.0 16.0 

ABLA 854,842 21.5 71.9 6.7 300,000 42.0 52.5 5.5 

JUOS 834,977 8.0 69.1 22.9 300,000 42.0 44.7 13.3 

JUSC2 834,977 3.5 85.9 10.6 138,257 42.0 50.6 7.4 

PIAR 854,842 3.7 88.5 7.8 152,071 42.0 51.9 6.1 

PICO 854,842 8.2 73.6 18.1 300,000 42.0 46.8 11.2 

PIED 849,302 13.3 82.1 4.6 300,000 42.0 53.6 4.4 

PIEN 854,842 35.6 60.9 3.5 300,000 42.0 54.1 3.9 

PIFL2 854,842 2.3 91.8 5.9 92,743 42.0 52.9 5.1 

PIPO 854,278 17.2 80.9 1.9 300,000 42.0 54.9 3.1 

PIPU 854,357 1.8 93.2 5.0 71,662 42.0 53.4 4.6 

POTR5 847,481 35.1 63.0 1.9 300,000 42.0 55.0 3.0 

PSME 848,485 16.8 81.1 2.1 300,000 42.0 54.9 3.1 

QUGA 843,153 17.6 80.0 2.5 300,000 42.0 54.7 3.3 

 

To build training datasets, we used the following rules to govern the selection of presence observations 

such that their total would be about 42% of the number in the dataset.  If presence observations were 

>42% of 300,000, that is, >126,000, presence samples were randomly chosen (ABLA, PIEN, PIPO, 

POTR5, PSME, QUGA, Table 5).  If presence samples were <42% of the training data total yet >63,000, 

duplicate observations were chosen at random to fulfill the 42% threshold (JUOS, PICO, PIED).  If 

presence samples were <63,000, then all observations were added twice to the training data, which then 

required reducing the size of the dataset in order to maintain presence at 42% (ABCO, JUSC2, PIAR, 

PIFL2, PIPU).  After completion, the total number of observations in the training data sets ranged from 

71,662 to 300,000.  In all cases, presence observations were represented at 42% of the total (Table 5). 

To allocate absence observations to the training datasets, the protocol assorts absence observations into 

two groups depending on their climatic similarity with species distributions.  This is done to concentrate 

in the training data observations that would be most difficult to separate from presence observations.  To 

this end, an n-dimension climatic envelope (sensu Box et al. 1999) is made to bound the climatic limits of 

distribution of a species; each dimension of the envelope is delimited in climate space.  To reduce the 

dimensions of the envelope, we conducted a principle components analysis to produce orthogonal vectors 

of linear combinations of the climate variables.  Because strong intercorrelations exist within the matrix 

of climate variables, we limited the number of climate variables entering into the analysis to an array for 

which intercorrelations were r<0.9: map, mmin, dd5, dd0, adi, adimindd0, sdimindd0, and pratio.  The 

first 3 principal components accounted for 99% of the variance and were used to define the envelope. The 

protocol also calls for each dimension of the envelope to be enlarged somewhat; we expanded each vector 

by ±0.1 standard deviation.  Absence observations within the expanded envelope were considered ‘in’ the 

envelope; otherwise ‘out’. Those observations classified as ‘in’ are the most difficult to separate from 

presence.  



10 

 

Because 42% of each training set is presence observations, we allocate 58% to absence observations, 

favoring those from the ‘in’ group.  However, because the proportion of ‘in’ and ‘out’ groups varied so 

widely, we scaled the number of absence observations from the two groups according to the proportion of 

the total number of ‘out’ observations to the total number of observations in the database. When the 

proportion was high, the ‘in’ sample approached 42% of the training dataset; when the proportion was 

low, the ‘in’ sample approached 55% of the training dataset (Table 5).  As a result, the ‘in’ group 

comprised 42-55% of the training data, or 73-95% of each absence sample.   

After drawing training data accordingly, the forced samples (FIA plots outside the window) were 

examined to see if any were already in the sample, and the remainder was added. 

The number of forests used for each species-specific model was determined by the ratio of the total 

number of absence points in the envelope to the number that were put in the training data, constrained 

between 8 and 30.  In this way, the probability was high that each absence observation would be used at 

least once.  Each forest was comprised of 100 trees.   

Random Forests was run in a stepwise fashion, first eliminating the four poorest predictors (based on 

decrease in accuracy when it was removed), then 3, then 2, and then one at a time until only one variable 

remained.  Based on out-of-bag error rates (see below, Model verification – goodness of fit), a reasonably 

parsimonious number of variables to keep in the final model was determined to be eight.   

When the resulting model is used for prediction, an observation is run down all trees in all forests.  Each 

tree then casts a vote as to whether the topoclimate of that observation would be suited to the species. 

Model verification – goodness of fit 

Maps of topoclimate niche and species distribution 

We ‘predict’ current distribution of a species’ topoclimate niche using rasters of reference climate 

variables.  These are based on the same reference climate dataset as the point data used for training 

(Crookston & Rehfeldt 2008).  We input a raster of elevation with the extent of our window, and receive a 

corresponding raster for each derived variable.  We add slope and aspect from 90-m rasters and calculate 

heatload and other transformed variables for each raster cell.  The model reads all the variables, one cell 

at a time, and outputs votes for suitability at each cell.  We can compare the resulting raster of votes with 

distribution based on spatial vegetation data where that is available.   

Quantitative 

Goodness of fit between model predictions and actual observations can be evaluated with errors of 

commission (predicting presence for a point where the data indicate absence) and errors of omission 

(predicting absence where the data indicate presence).  Errors of commission are calculated as the number 

of absence points erroneously predicted as presence, divided by the total number of absence points.  

Likewise, errors of omission are calculated as the number of presence points erroneously predicted to be 

absent, divided by total number of presence points.  Total error rate is total number of errors divided by 

total number of points tested.   

Error is reported in two ways.  Both ways use, in part or in whole, data not used to build the model.  Both 

assume that the vegetation data used for training and testing are without error.  The first method was ‘out-

of-bag’ errors.  When each tree is built, about one third of the training dataset provided to its forest is 
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randomly withheld internally by Random Forests and not used to build that tree (i.e., not in the ‘bag’).  

The algorithm then puts each out-of-bag sample down its respective tree to get predictions and calculate 

error.  We report here those errors averaged among all forests. 

The second error rate reported is the entire training dataset (up to 854,842 points) tested against all 

forests.  Each forest was developed using some subset of these samples, but never all.  A voting threshold 

of 50% was used to predict presence or absence for an observation. 

Projecting future suitability 

We used variable grids for future climates to make projections.  The future climates we used are for the 

decade 2055-2064 (hereafter referred to as 2060) using three representative general circulation models 

(GCMs) used by the International Panel on Climate Change (IPCC).  GCM output was obtained from 

CMIP AR5 (http://cmip-pcmdi.llnl.gov/cmip5/) for CCSM4 from the Community Earth System 

http://www.cesm.ucar.edu/models/ccsm4.0/), GFDLCM3 from the Geophysical Fluid Dynamics 

Laboratory (http://www.gfdl.noaa.gov/coupled-physical-model-cm3), and HadGEM2ES from the Met 

Office, UK (http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-

models/hadgem2).  Representative carbon pathways were used to represent three scenarios for greenhouse 

gas emissions (Van Vuuren et al. 2011).  We used RCP4.5, RCP6.0 and RCP8.5; the RCP2.6 scenario 

was ignored because assumptions of reduced emissions already are invalid.  Climate variable grids for the 

resulting 9 climates were used as input for the models.  The resulting 9 vote grids were then averaged to 

make an average projection of future climate suitability for each cell (referred to as CGH, an acronym for 

the three GCMs used).   

Change classes 

Because management approaches will vary based on anticipated changes in the topoclimate niche, it is 

helpful to classify species’ habitat geographically according to the potential severity of the impact, that is, 

the change in votes.  Management can then be tailored to these classes.  We used the difference in model 

output between the reference and future periods to classify change zones as shown in Table 6. 

Table 6.  Change classes based on comparing reference vs. future suitability for a species. 

Change classes 
Reference 

votes 2060 votes Interpretation 

LOST ≥ 0.5 < 0.3 future climate will be so unfavorable, the species 

is unlikely to survive the century 

THREATENED ≥ 0.5 0.3-0.5 future climate will be unfavorable, but may 

survive if resilient 

PERSISTENT ≥ 0.5 ≥ 0.5 future climate will remain suitable 

EMERGENT < 0.5 ≥ 0.5 areas outside current distribution that will become 

climatically suitable 

http://cmip-pcmdi.llnl.gov/cmip5/
http://www.cesm.ucar.edu/models/ccsm4.0/
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadgem2
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadgem2
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Results and Discussion 

Goodness of fit 

Since they are based on real presence/absence data, there is a sound method for estimating fit of Random 

Forests models.  Predictions for the reference period can be compared to actual presence-absence data.  In 

this case, goodness of fit can be examined visually and quantitatively.   

Visual comparisons (Figure 2) illustrate the accuracy of the models in representing the distribution of the 

species.  Errors of omission (red), the most serious kind of error, are few and generally near the fringes of 

the distribution.  Apparent errors of commission (orange) tend to be scattered through the distribution in 

small patches.  These errors are almost all within areas correctly predicted to be suitable (dark blue). 

Figure 2.  Mapped model predictions based on reference climate compared to presence based on spatial vegetation data, for 

subalpine fir on the RGNF and SJNF in the area around Wolf Creek Pass.   

 

Some less common species have more extensive orange areas (apparent errors of commission, Figure 3).  

Even in these cases, however, the model correctly predicts general areas where the species occurs.  Also, 

errors of omission remain infrequent. 
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Figure 3.  As in Fig. 1, but bristlecone pine in the area around the La Garita Mountains on the southeastern GMUG and 

northern RGNF. 

  

It must be remembered that the models do not predict distribution, they predict suitable topoclimate niche.  

It is quite possible for the model to correctly predict suitability for an area that does not have the species.  

Apparent errors of commission may represent:  

1. Unoccupied niche.  The models may well be correct in many cases that the climate and 

topography are suitable for the species, but it is not there.  Often this is due to disturbance history, 

succession, poor substrate, or dispersal limitations. 

2. Inaccurate vegetation data.  On the national forests, most of the vegetation data was populated 

through interpretation of aerial photographs or processing of satellite imagery.  Uncommon 

species may be missed and misidentifications may exist.   

3. Model error.  Some portion of the ‘errors of commission’ is due to actual model error. 

To the extent these apparent errors of commission are indeed model errors, it means that the model is 

somewhat overly optimistic in predicting suitable habitat.  In turn, this means we are somewhat 

conservative in projecting lost habitat in the future.  This is important because all habitat for these 5-

needle pines is projected to be lost.   

Quantitatively, model predictions for Engelmann spruce and aspen fit actual observations at least as well 

as those from a previously published study using these two species on the GMUG (Rehfeldt et al. 2015).  

Except for the other abundant species (subalpine fir, Douglas-fir), fit for other species was considerably 

better (Table 7). 
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Table 7.  Goodness of fit for bioclimate models.  ‘Out-of-bag’ errors are based on testing with samples provided to random 

forests during model fitting but withheld internally for independent error testing.  ‘All samples’ represents the entire presence-

absence dataset tested against all forests.  Based on voting threshold of 50% to predict presence. 

 Out-of-bag errors (%)  All-sample errors (%) 
Species Commission Omission Total  Commission Omission Total 
ABCO 4.2 0.0 2.5  4.0 0.0 3.8 
ABLA 14.2 13.5 13.9  10.6 1.5 8.7 
JUOS 4.8 0.6 3.1  3.9 0.0 3.6 
JUSC2 5.7 0.1 3.4  5.5 0.0 5.3 
PIAR 7.3 0.0 4.3  7.1 0.0 6.8 
PICO 5.8 0.7 3.7  4.8 0.0 4.4 
PIED 7.5 6.3 7.0  6.1 0.0 5.3 
PIEN 13.0 13.7 13.3  8.8 5.4 7.6 
PIFL2 6.2 0.1 3.7  6.4 0.0 6.3 
PIPO 9.0 8.1 8.6  7.5 0.3 6.2 
PIPU 6.9 0.1 4.2  7.3 0.0 7.2 
POTR5 15.5 18.5 16.8  9.5 7.1 8.6 
PSME 14.0 14.8 14.3  10.7 0.3 9.0 
QUGA 8.7 7.0 8.0  7.3 0.3 6.0 

 

Except for the most common species, errors of omission were generally much fewer than errors of 

commission.  When all samples were tested against all forests, they are all in single digits and generally 

quite close to 0.  Errors of commission, on the other hand, were generally higher.   

In general, out-of-bag errors are higher than those for the entire dataset.  There are several reasons for 

this.  First, absence samples provided during model development, including out-of-bag samples were 

selected as being the most difficult to distinguish from presence.  This is justified from the view that 

errors of omission are much more informative than errors of commission because there are many valid 

ecological reasons that a species does not occur in all places where the topoclimate alone is suitable.  

Second, none of the out-of-bag samples were used for model development in the forest where they were 

tested.   

More detailed information about model performance and errors can be gleaned from histograms of the 

frequency of vote proportions (Figure 4).  Vote proportions near 0, all trees voting no, are most abundant, 

and contain no samples with the species present.  As favorable vote proportions increase, the proportion 

of samples with the species eventually starts to increase.  Where vote proportions are near 1, all trees 

voting yes, all samples have the species.  The vote proportion is marked with an arrow where there is an 

equal number of sample points of actual presence and absence.   
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Figure 4.  Histograms of vote proportion by sample type (absent or present). 
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Variable importance 

The order of elimination showed that variable importance varied among the species (Table 8).  Collating 

the variable rankings (Table 9) showed that only two variables were among the top 8 for all species, 

pratio (ratio of growing season precipitation to annual precipitation, separating continental precipitation 

patterns from monsoonal) and heatload (a function of slope, aspect, and latitude related to the effect of 

insolation, illustrating the importance of topography in altering local climate). 

Table 8.  Order of removal of most important 14 variables during stepwise random forest fitting.  The 8 variables in the final 

model are highlighted.  Starting with 23 variables.  See Table 4 for variable definitions. 

 

ABCO ABLA JUOS JUSC2 PIAR PICO PIED PIEN PIFL2 PIPO PIPU POTR5 PSME QUGA 

mmin fday map mmindd0 mmindd0 ffp d100 d100 mapheat gspdd5 mapheat d100 mmin dd0map 

winp winp gsp d100 dd0map mmax mapheat map adimindd0 mapheat adimindd0 mmindd0 winp dd5 

mmax map gspdd5 adimindd0 gspdd5 mapdd5 mmindd0 sdimindd0 mmindd0 ffp winp winp mapheat map 

tdiff gspdd5 dd0 ffp ffp winp sdimindd0 winp dd0map map mmindd0 mapdd5 mmindd0 mapheat 

mmindd0 ffp mapheat gspdd5 tdiff dd0map gspdd5 gspdd5 dd5 dd0map dd0 gsp tdiff sdimindd0 

mapdd5 dd0map tdiff mmin mapheat adimindd0 winp dd0map ffp sdimindd0 mapdd5 dd0map adimindd0 ffp 

sdimindd0 mapheat mapdd5 tdiff mapdd5 mapheat dd0map mapheat gsp winp mmin mapheat gspdd5 dd0 

adimindd0 sdimindd0 sdimindd0 dd0map adimindd0 mmindd0 gsp gsp mmin mmindd0 heatload gspdd5 gsp adimindd0 

gspdd5 pratio dd0map sdimindd0 gsp sdimindd0 mapdd5 mapdd5 gspdd5 adimindd0 sdimindd0 sdimindd0 dd0map winp 

ffp mapdd5 winp dd0 mmin gsp adimindd0 tdiff heatload heatload dd0map tdiff mapdd5 tdiff 

dd0 tdiff adimindd0 pratio heatload heatload tdiff pratio tdiff gsp pratio heatload sdimindd0 pratio 

heatload heatload pratio heatload sdimindd0 pratio pratio adimindd0 sdimindd0 pratio gspdd5 adimindd0 pratio heatload 

gsp adimindd0 heatload mapdd5 dd0 tdiff heatload heatload dd0 mapdd5 gsp pratio heatload gsp 

pratio  dd0  mmindd0  gsp  pratio  gspdd5  dd0  dd0  pratio  tdiff  tdiff  dd0  dd0  mapdd5  
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The next most important variables were related to winter cold.  dd0 (degree-days < 0 C) is closely related 

to mmindd0 and variables that represent interactions of dryness indices with winter cold (adimindd0, 

sdimindd0).  tdiff (temperature difference between warmest and coldest month) reflects the degree that 

the climate is controlled by continental influences (or its antithesis, monsoonal influences).  Growing-

season precipitation was fifth overall. 

In attempting to interpret how the variables influence presence, consider that the relationships are likely 

quite complex.  Breimann (2001), who developed the methodology, referred to random forests as a “black 

box” and wrote that “A forest of trees is impenetrable as far as simple interpretations of its mechanism 

go.”  A simple relationship between a variable and likelihood of presence is unlikely.  The variables 

interact, so that the effect of one depends on another.  There may be peaks of effect somewhere along the 

range of values, threshold values, and inverse relationships at different parts of the range.  The decision 

trees have tens of thousands of nodes (decision points).  Furthermore, each tree was trained on a different 

subset of the data and thus has a different method of making predictions.  Although it is possible to tease 

out relationships and examine decision trees, the process is very complex. 

Table 9.  Importance rankings of top 8 variables for each species (8 is most important) and for all species together (SUM); based 

on order of elimination. 

 pratio heatload dd0 tdiff gsp mapdd5 adimindd0 sdimindd0 gspdd5 dd0map mmindd0 winp mmin ffp mapheat SUM 

ABCO 8 6 5  7  2 1 3     4  36 

ABLA 3 6 8 5  4 7 2       1 36 

JUOS 6 7    1 5 2  3 8 4    36 

JUSC2 5 6 4 1 8 7  3  2      36 

PIAR 8 5 7  3 1 2 6     4   36 

PICO 6 5  7 4   3 8  2    1 36 

PIED 6 7 8 5 2 3 4   1      36 

PIEN 5 7 8 4 2 3 6        1 36 

PIFL2 8 4 7 5 1   6 3    2   36 

PIPO 6 4  8 5 7 3    2 1    36 

PIPU 5 2  8 7   3 6 4   1   36 

POTR5 7 5 8 4   6 3 2      1 36 

PSME 6 7 8  2 4  5 1 3      36 

QUGA 5 6 1 4 7 8 2     3    36 

SUM 84 77 64 51 48 38 37 34 23 13 12 8 7 4 4  

Projections into the future 

Projections of change zones for 2060 were based on cell-by-cell comparison of the vote raster for the 

reference period and the average vote raster from 9 future climate scenarios.  Maps of change zones are 

provided separately.  Because the study area is so large, maps are produced for various subsets of the 

area.  Rasters can be provided on request for use in GIS.  An example of a change map for PIED around 

the Southern Ute Indian Reservation illustrates how the change classes are distributed in zones (Figure 5). 

The threatened class was included in order to be conservative when declaring habitat lost.  A few of the 

most common species have a non-zero, but low, chance of species presence with votes < 0.5 (Figure 4).  
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Pessimistically, one could lump this category with lost, but the species is likely to persist longer here than 

in the lost zone. 

The lost zones indicate that, by 2060, unsuitable climate may be widespread in the current habitat of most 

species (Table 10).  Much habitat is also in the threatened class, where change in votes are equivocal, and 

there is less confidence in the habitat being either lost or persistent.  For most species, potential new 

habitat in the emergent category offsets the losses to some extent, but future distributions are likely to be 

smaller (Table 10).   

Figure 5.  Distribution of change classes for piñon in the Southern Ute Indian Reservation. 

 
The most severe losses are projected for the 5-needle pines (limber and bristlecone) and lodgepole pine.  

All current habitat is projected to be lost and no new habitat is expected to emerge.  There is strong 

agreement for this outcome among projections based on individual climate scenarios.  Blue spruce and 

white fir are similar, but there is some threatened habitat rather than all lost.  Rocky Mountain juniper 

extends the pattern with more threatened, but still almost no persistent and little emergent habitat. 

The most favorable projection, especially in the southern two-thirds of the window, is for Gambel oak 

(Table 10).  The projection indicates a fringe of lost habitat on the western desert edge, more persistent 

than threatened habitat, and large areas of emergent habitat.  Douglas-fir is similar, but there is much less 

persistent habitat between the threatened and emergent. 

Geographically, a consistent pattern is the greatest loss in the west, as desert influences expand eastward 

and upward.  Even the Uncompahgre Plateau is unlikely to be protected from this influence.  The 

projections show threatened habitat for Utah juniper on the shoulders of the Plateau, persistent and 

emergent habitat for piñon and Gambel oak, threatened Douglas-fir and a small amount of threatened 

aspen, with losses everywhere else.  If piñon and Gambel oak can migrate, those species are likely to 

dominate the top and shoulders of the Plateau in the latter part of the century.   
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Table 10. Area of contemporary niche, its projected fate in 2060, and projected changes in niche area for 14 species in the full 

southwestern Colorado window. 

Species Contemporary 
niche (ha) 

Percent 
Lost 

Percent 
Threatened 

Percent 
Persistent 

Niche 
change 1 a 

Niche 
change 2 b 

Emergent/ 
Lost 

Emergent/(Lost+ 
Threatened) 

PIAR 6,879 100 0 0 -100 -100 0 0 

PICO 7,482 100 0 0 -100 -100 0 0 

PIFL2 4,785 99 1 0 -99 -100 0 0 

PIPU 6,264 93 7 0 -93 -100 0 0 

ABCO 5,623 82 18 0 -81 -99 0.01 0.01 

JUSC2 12,484 51 47 2 -41 -89 0.19 0.10 

POTR5 25,292 51 45 5 -31 -76 0.39 0.21 

PIPO 20,008 38 51 11 -26 -77 0.32 0.14 

JUOS 18,459 25 61 14 -22 -82 0.14 0.04 

ABLA 16,300 36 51 14 -12 -62 0.68 0.28 

PIEN 21,911 22 43 35 -7 -50 0.66 0.22 

PIED 26,988 30 40 30 11 -29 1.36 0.59 

PSME 20,104 14 69 16 28 -42 2.95 0.50 

QUGA 22,361 5 36 58 60 23 11.87 1.56 
a Percent change in area of the niche; considering future niche Persistent, Threatened, and Emergent. 
b Percent change in area of the niche; considering future niche Persistent and Emergent. 

Large areas of piñon are projected to be lost in the southwest.  Even Gambel oak, which elsewhere may 

be a beneficiary of climate change, is mostly threatened with some lost in the southwest.  Mesa Verde is 

projected to lose Gambel oak habitat in the south, and it is threatened in the north.  No other species that 

we modeled is expected to persist in the Park, though there are areas of threatened Utah juniper. 

General Management Implications 
Mike Battaglia, research silviculturist with Rocky Mountain Research Station, will be developing specific 

vegetation management recommendations for some of the common transitions projected in the area.  Here 

we address some general management issues and an approach to utilizing change zones. 

Dealing with uncertainty 

We are confident that the bioclimate models are reliable, with low error.  They were developed with the 

best data and methods available.  They reliably predict current distributions, and care was taken to include 

in the training data all future climates that are projected for the study area.   

Less confidence can be placed in projections of future climates that are used to predict changes.  While 

we present average model output from runs with 9 different future climate scenarios, it should be 

recognized that the individual climate scenarios and changes predicted from them may vary substantially.  

Because no climate scenario is considered more likely than another, we feel the most reasonable and 

practical course for managers is to consider this average.   

In any case, the variations among climate scenarios can be viewed as variations in how fast the climate 

changes.  A given climate may be predicted for 2080 by one scenario and 2050 by another, but they are 

all pointing in the same general direction.  So the vegetation impacts that we project for 2060 may come 

sooner or later, but something like them is very likely. 
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A good way to address uncertainty in management is the use of “no-regrets” strategies, those that are 

beneficial under multiple scenarios and have little or no risk of socially undesired outcomes (Vose et al. 

2012).  Such actions benefit resources and values regardless of climate-change effects.  Actions discussed 

below generally meet those criteria.  If future climate change is minimal, despite all the projections to the 

contrary, these actions will still provide age diversity, species diversity, economic returns to communities, 

and facilitate recovery from disturbance.  If, on the other hand, climate change is more extreme than the 

projections used here, we will have done the best that we currently can to provide for the conservation of 

genetic and habitat diversity. 

Locally adapted populations and natural selection 

Rather than having a single, uniform climate niche, a species is typically composed of climatypes that are 

genetically adapted to local climate and have varying climate niches.  As the climate changes, populations 

may become maladapted to the new conditions (Rehfeldt et al. 2014b), even if the suited climatypes occur 

elsewhere in the window.  Thus, even in persistent habitat, the local populations may not be suited to the 

new climate, and planting under appropriate seed transfer guidelines may be needed.  Wherever we 

conduct planting, it is an opportunity to move seed sources upward where their climates are migrating.   

Alternatively, in persistent zones, natural selection may help the local population to adapt to the changing 

climate.  To facilitate such selection, treatments that stimulate high rates of reproduction should be 

encouraged.  Indeed, the recent stand-replacing disturbances, such as spruce beetle, may provide the 

benefit of a large population of seedlings and saplings that can be selected naturally as the climate 

changes.  However, multiple generations are needed to adapt a climatype to a new climate, and climate 

will be changing faster than this process can accommodate (Rehfeldt et al. 2014a). 

Emergent habitat and migration 

Emergent habitat will not be colonized quickly in many cases.  Some of it is unsuitable for reasons other 

than climate, such as lack of soil.  Otherwise it will depend on proximity to seed sources.  Natural 

migration rates vary widely among species, but, except perhaps for a species like aspen, it is considered 

that natural migration is too slow to keep up with climate change (Davis et al. 2005). 

Migration will be most successful where emergent habitat is adjacent to threatened or persistent habitat.  

For most species this is often the case.  However, for white fir, there is no persistent habitat, and the small 

amount of emergent habitat is mostly isolated from current white fir.  The exception is a small population 

of east of Trough Creek, a tributary of Saguache Creek.  This is an example of a population that could be 

critical for conserving the species.   

General use of change classes 

The most important use of change zones may be not changing how management is done, but where it is 

done.  The goal here is focusing each management action where it is likely to be most effective into the 

future.   

LOST HABITAT – In general, do not invest in improving or managing for the future of a species here.  

If management is needed in such areas, favor or introduce more future-suitable replacements. 

THREATENED HABITAT – Consider treating to increase resilience to drought, diseases, and insects, 

especially in stands where more future-suitable species can be favored. 
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PERSISTENT HABITAT – Normal management may proceed.  If persistent habitat is limited, this may 

be considered a climate refugium.  There may be a need to protect the species in persistent zones 

from stand-replacing disturbance and increase stand resilience.  May be a need to import adapted 

populations in species whose adaptive clines are steep.   

EMERGENT HABITAT – As appropriate, allow or create disturbance (fire or mechanical) to facilitate 

migration.  Consider assisted migration as the climate changes. 

A few potential examples: 

 A thinning is planned in ponderosa pine to improve stand quality and growth and reduce dwarf 

mistletoe.  There is scattered young piñon and juniper in the understory.  The stand is in the PIPO 

Lost zone, but piñon and juniper vary between Threatened and Persistent in this area.  Instead of 

masticating or cutting the piñon and juniper, as normally might have been done in this situation, 

we protect it during treatment and release it where possible, increasing the likelihood of 

continued tree cover through the century.   

 As part of its normal timber program, a district treats about 750 acres of spruce-fir with group 

selection each year.  Normally stands are selected within timber management areas based on 

stand conditions and road availability.  Spruce-fir climate change zones are now added to the 

selection criteria.  Stands in Lost zones are discriminated against, unless the stands include 

species that are projected to be more suited to the site in the future.  Most activity takes place in 

Threatened and Persistent zones, increasing stand resilience, where it is most likely to be 

effective. 

 Bristlecone pine is a valued cultural resource as well as being important to wildlife.  The average 

projection indicates that the entire distribution in southwestern Colorado is expected to be 

unsuitable in 2060.  Managers explore the projections of individual climate scenarios.  They 

discover that, in several of the most favorable climate scenarios, there is a small area of 

Threatened habitat near Lost Mountain.  The area is considered a possible climate refugium, and 

the decision is made to manage it to: (a) increase regeneration opportunities; (b) reduce chances 

of stand-destroying fire, and; (c) increase resilience to mountain pine beetle. 

 An important mesa is projected to lose all habitat for species that are currently there, but piñon 

should have emergent habitat on the mesa top.  Clark's nutcracker, Steller's jay, scrub jay, and 

pinyon jay are important in long-distance seed dispersal of piñon.  Wildlife biologists suggest 

treatments to improve habitat for these birds and increase populations, especially at and above the 

current upper elevation of piñon.  Implementing these tactics should facilitate natural migration of 

piñon toward the mesa top.   
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Appendix: Accuracy and Uncertainty in Modeling and Projections 

Bioclimate models cannot perfectly describe species distributions, because (a) there will always be a 

portion of the niche that is unoccupied (error of commission), and (b) there will always be favorable 

microsites that allow site occupancy in otherwise climatically unfavorable situations (error of omission).  

Likewise, projections of niche space into climates of the future are dependent on the GCMs producing the 

interrelationships among climate variables that exist today and, therefore, were present in the training 

data.  Errors in vegetation data may lead to model errors.  Although the best techniques were used, 

interpolating or downscaling climate information cannot replicate actual geographic variation in climate 

with complete accuracy.  And finally, there will always be statistical errors in fitting mathematical 

algorithms to comprehensive datasets. 

Climate projections are based on representative carbon pathways (i.e., emissions scenarios) that may not 

represent the actual future trend in greenhouse gases.  This source of uncertainty can generally be viewed 

as uncertainty in the rate of change rather than direction.  For example, conditions projected for 2060 may 

actually occur sooner if emissions are higher than projected, or later if they are lower.  Although 

boundaries between change zones must be precise for planning purposes, they should be regarded as the 

best estimate of fuzzy boundaries, and the timing of the projected changes as likely but uncertain. 

The models are quite effective at replicating the distribution of species at large scales, and are thus readily 

suited to regional and landscape-level planning.  At smaller scales, errors can be expected, in part because 

climate models cannot reflect microtopographic effects or effects of recent disturbance.  The best use of 

projections at small scales will be in conjunction with the expertise of managers well acquainted with the 

area. 
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