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Introduction
The Four Forest Restoration Initiative (4FRI) is a landscape-scale project focused on restoring

Ponderosa pine forests in Arizona. An important part of the successful implementation of this project is

to assess the impacts of restoration treatments on forest structure. Northern Arizona University (NAU)

and the United States Department of Agriculture (USDA) Forest Service collaborated to quantify and

describe the amount, pattern, and distribution of canopy cover within and around Ponderosa pine

forests of the South Kaibab and Coconino National Forests.
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Methods and results
The architecture of this analysis contains many of the building blocks found in most predictive modeling

applications: gathering and preparation of data, feature selection and model tuning, model

evaluation/validation, and post hoc summaries. Each of these components are described in more detail

below.

Project area
The project area encompasses 1,224,900 acres and intersects portions of both Coconino and Kaibab

National Forests (Figure 1).

 

Figure 1: The project area / orthoimagery acquisition boundary in relation to the administrative boundaries of

Coconino National Forest and the South Kaibab (Tusayan and Williams Ranger Districts). Selectable layers

include image tile boundaries (nn = 619) and the locations of the spatially balanced random survey cells used to

develop training data for the canopy cover classi�cation model (nn = 158, ~300-acre cells). All told, 6,119 samples

were used to train the model, 40% of which were collected completely at random (from cells in blue) and 50% of

which were collected opportunistically (from cells in red). The remaining 10% of samples were collected

completely opportunistically outside of the spatially balanced survey cells.
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Imagery
High quality aerial imagery was acquired for the project area between June 6 and June 23, 2014 by the

USDA Farm Service Agency Aerial Photography Field Of�ce. The acquisition platform was a light

aircraft �ying ~5,570 m above ground level to achieve a nominal resolution of 0.3 m. The 4-band — red,

green, blue, and near infrared (hereafter, ‘NIR’) – imagery was collected using a Microsoft UltraCam

Eagle sensor with a 100.5 mm focal length. The images were orthorecti�ed, mosaicked, and

radiometrically adjusted to meet contract requirements. The primary difference between this imagery

and the better-known NAIP image archive is quality: i.e., how far off nadir acquisitions are allowed to

be, the increased overlap between photos, a requirement for no cloud cover, and restrictions on time of

day (to reduce shadows). For the purposes of this analysis, the imagery was stored as an asset (i.e., a

stack of images, referred to as an ImageCollection ) in Google Earth Engine

(https://earthengine.google.com/) (hereafter, ‘Earth Engine’). Each Image  object within the collection

represents a single Digital Orthophoto Quarter Quarter Quadrangle (DOQQQ).

Model building
We developed a 3-class (tree, non-tree, and shadow) supervized classi�cation model. Speci�cally, we

used a random forest classi�er (Breiman 2001). The model-building process entailed several steps, each

of which are described in more detail below:

1. Training data development;

2. Predictor variable development;

3. Data aggregation;

4. Feature selection and tuning for optimal model hyperparameters; and

5. Classi�cation.

Training data development
Spatially balanced random survey cells generated using the Reversed Randomized Quadrant-Recursive

Raster algorithm (RRQRR; Theobald et al. 2007) were used to develop training data for the canopy

cover classi�cation model (n = 158, ~300-acre cells).  All told, 6,119 samples were used to train the

model, 40% of which were collected completely at random and 50% of which were collected

opportunistically (Figure 1). The remaining 10% of samples were collected completely opportunistically

outside of the spatially balanced survey cells.

Predictor variable development
A large suite of predictors were developed using the imagery as well as digital elevation data. For

example, we computed the Normalized Difference Vegetation Index

(https://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index) (NDVI) from the red and NIR

bands in the imagery, and topographic layers (i.e., elevation, slope, aspect) using the USGS National

Elevation Dataset (NED; Farr et al. 2007). Additionally, we applied edge detection — including a

difference-of-Gaussians (DOG)  – as well as methods for estimating spatial texture, including entropy

1
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(https://en.wikipedia.org/wiki/Entropy_(information_theory)), a gray-level co-occurrence matrix

(GLCM) , and a local measure of spatial association (Geary’s C; Anselin 1995). All estimates of spatial

texture were computed using the near infrared band.

 

Figure 2: Examples of quantities derived using the imagery seen in true-color in the left-most panel. Predictors

shown here (the singleband pseudocolor images in the right-most panel) include NDVI, DOG, entropy, and GLCM

cluster shade.

 

Data aggregation
To extract predictor variable information to the locations of samples in the training data, we used

reducers (i.e., the ee.Reducer  class) in Earth Engine. Samples that fell in the overlapping area between

DOQQQ tiles had two (or more) sets of covariate information. We did not allow these redundant copies

enter the model-training step. Instead, we selected only one set of covariate information for these

samples, speci�cally the set corresponding to the DOQQQ tile whose centroid was nearest the

‘offending’ sample.

Feature selection and tuning for optimal model hyperparameters
We used automatic feature selection methods to identify the attributes (predictors) that were required

to build an accurate model. Approximately one-half of the variables were highly correlated (with

absolute correlations of 0.90 or higher). In the interest of removing some of these highly-correlated

variables, we used Recursive Feature Elimination (https://topepo.github.io/caret/recursive-feature-

elimination.html) (De Martino et al. 2008), a backwards selection algorithm, with a target number of

features of 5-30. The RFE identi�ed 27 variables as being informative. The top 5 variables included (in

order of importance) the red band, NDVI, another normalized difference based on the NIR band and

NDVI, and green and blue bands. 

         The training samples and associated covariate information were brought into R, where we used the

3
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caret  (https://github.com/topepo/caret) package to �nd optimal parameters for the random forest

algorithm. Speci�cally, we conducted a grid search of parameters, using repeated cross validation and

accuracy as the performance metric, to select the optimal model.

Classi�cation
The �nal, tuned model hyperparameters (i.e., the number of trees, variables per split, and minimum leaf

population), were then used in the ee.Classifier.randomForest  method in Earth Engine. We trained

the model against a regionally-boosted sample for each image in the �nal prediction in order to better-

calibrate the model against local conditions. The �nal canopy cover classi�cation model can be viewed

using the web application linked to in Figure 8.

Model evaluation
The performance of the classi�cation model was evaluated against a ‘test’ partition, a set (n = 621) of

samples selected at random from among the spatially-balanced training set and withheld from the

model during tuning/training. Statistical measures of the performance of the model are provided in a

confusion matrix (Table 1). Numbers along the diagonal (boldface font) represent correctly classi�ed

test samples. Overall accuracy (the sum of correctly classi�ed samples divided by the total number of

samples) was 98.4%.

 
Table 1: Confusion matrix for the

�nal classi�cation model.

Predicted

Canopy     Shadow     Other     

Actual

  Canopy 203 0 4

  Shadow 6 201 0

  Other 0 0 207

 

Off-diagonal elements represent different types of errors. For example, there were 4 samples that were

misclassi�ed as ‘other’ (non-tree/non-shadow) when the test data show they were actually canopy.

Additional measures of the performance of the classi�er for each class are reported in Table 2. For

example, sensitivity measures the proportion of the actual samples in a given class that were correctly

identi�ed as such, while the positive predictive value (or precision) is the proportion of predictions in a

given class that were correct. For more information regarding performance measures in Table 2, see

Wikipedia (https://en.wikipedia.org/wiki/Sensitivity_and_speci�city).

 
Table 2: Statistical measures of the performance of the model for

each class. Class-wise statistics were computed using a ‘one against

all’ approach.

  Sensitivity Speci�city

Positive

predictive

value

Negative

predictive

value

https://github.com/topepo/caret
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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  Sensitivity Speci�city

Positive

predictive

value

Negative

predictive

value

Canopy 0.981 0.986 0.971 0.990

Shadow 0.971 1.000 1.000 0.986

Other 1.000 0.990 0.981 1.000

 

Finally, we performed a ‘straight-face’ test (qualitative visual assessment) of the result. Though every

iteration of the model we produced ultimately passed the statistical tests, we noticed that some regions

within the project area were more problematic than others. For example, the craters in the NE quadrant

of the study area were showing up with more area classi�ed as tree canopy than expected, and a quick

visual assessment con�rmed that the model was likely confusing green grass in the understory as

canopy. This is what lead to the deployment of a larger opportunistic sample and the subsequent

development of a geographically boosted training set.

Spatial metrics
Indicators of desired forest structural conditions (Science and Monitoring Working Group 2012)

include patch size, density, and con�guration. The US Forest Service selected eight composite metrics, a

few of which consisted of several individual FRAGSTATS metrics, from Cushman et al. (2008) (Table 3).

We used the R package SDMTools  (https://github.com/jjvanderwal/SDMTools) to compute the majority

of the LSMs. Some of the metrics (i.e., ENN- and GYRATE-based metrics) did not have direct analogs in

SDMTools  and, as such, were calculated ‘by hand’ following FRAGSTATS documentation

(http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf). 

         The landscape/classi�cation was divided up into sublandscapes. Landscape structure metrics

(LSMs) were computed for each sublandscape and subsequently mosaicked into a new raster. LSMs

were developed at multiple scales (i.e., 1 and 5 acres) across the landscape.

 
Table 3: Horizontal forest structure (landscape pattern) metrics.

Landscape structure metric Speci�c FRAGSTATS metric

FRAGSTATS

acronym

Mean patch size Mean patch area AREA_MN

Edge contrast Total edge contrast index TECI

Patch aggregation Aggregation index AI

Nearest neighbor distance Mean nearest neighbor distance ENN_MN

Patch shape complexity Mean shape index SHAPE_MN

Patch shape complexity Mean fractal dimension index FRAC_MN

a

https://github.com/jjvanderwal/SDMTools
http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf
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Landscape structure metric Speci�c FRAGSTATS metric

FRAGSTATS

acronym

Patch shape complexity Area-weighted mean fractal

dimension index

FRAC_AM

Patch shape complexity Fractal dimension index,

coef�cient of variation

FRAC_CV

Patch dispersion Nearest neighbor distance,

coef�cient of variation

ENN_CV

Large patch dominance Largest patch index LPI

Large patch dominance Area-weighted mean patch area AREA_AM

Large patch dominance Area-weighted mean core area

index

CORE_AM

Large patch dominance Area-weighted mean disjunct

core area index

DCORE_AM

Shape and correlation of large

patches

Area-weighted mean radius of

gyration

GYRATE_AM

Shape and correlation of large

patches

Area-weighted mean shape index SHAPE_AM

 Computing TECI requires a matrix of contrast weights (the relative differences among patch types). However, these

weights could not be de�ned, largely because the notion of contrast between canopy and the blanket class, ‘other’ –

which includes a wide diversity of other patch types, from parking lots to water — and the contrast between canopy

and shadow, is unde�ned. In other words, the magnitude of edge contrast for each pairwise combination of patch

(class) types doesn’t make sense in this application, but the may warrant consideration in future work, including

future developments of this data. 

 The documentation for FRAGSTATS indicates that ‘from an organism-centered perspective, a single patch may

actually contain several disjunct patches of suitable interior habitat, and it may be more appropriate to consider

disjunct core areas as separate patches.’ Because the number and area of disjunct cores in each patch varies as a

function of the speci�ed edge depth (which would need to be de�ned according to the habitat requirements of a

speci�c species), we left this particular metric out. Should applications for speci�c species arise, estimates of the

(area-weighted) mean area per disjunct core could be generated using the canopy cover classi�cation.

 

Corrections for the effects of shadows
To develop the data necessary to calibrate LSMs against the effects of shadows we:

1. simulated a large (n = 5,000) set of arbitrary (hypothetical) forested areas in which the number

and crown widths of trees in a given area (e.g., a 1-acre window) were sampled from their

respective distributions;

2. calculated the shadows that would have been cast by those canopies for a given sun angle and

azimuth (both of which were drawn from the actual distributions of sun angles and azimuths

present at the time the images were taken); and,

3. computed LSMs for the simulated forested area both with and without shadows.

b

a

b
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Figure 3. An example of a simulated forested area with and without (left and center panel, respectively) at a 1-

acre scale of analysis. As a result of the presence of shadows (among other factors), estimates of LSMs can be

biased high or low, relative to the true value (right panel).

Data from the simulations allowed us to �t a model to predict the ‘true’ value of each LSM, i.e., the value

we would have obtained if shadows were not present. The data were modeled as

 

y  = β  + β x  + β x  + β x  + ... + β x  + ϵ  

 

where y  is the true value of metric i for sublandscape j. Predictors include the observed value of the

metric x , the proportion of canopy in the sublandscape, x , and the ratio of the proportion of shadow

to the proportion of canopy in the sublandscape, x . Parameters β  are tied to the two way

interactions between x . We then leveraged the relationship between true and observed values to

correct each metric for shadow effects. As expected, shadows have a stronger in�uence on some

variables than others (e.g., see AI vs. FRAC_CV; Figure 4). An estimate of the degree of con�dence in the

calibrated LSM can be approximated by the variance of observations around the 1:1 line (Figure 5).

 

ij 0 1 1, ij 2 2, i 3 3, i m m, i ij

ij

1, ij 2, j

2, j 4 − m

1 − 3
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Figure 4: Scatterplots of the observed vs. true values of each LSM. Perfect estimates would fall along the 1:1 line.

All others are either biased high (red) or low (blue; see the third panel in Figure 3).

 

 

Figure 5: The predicted (‘calibrated’) values of each LSM against their true values.

 

Shadow calibration — additional methodological details

Generating reasonably ‘realistic’ and representative tree canopies required several steps. Speci�cally,

we conditioned simulations on USFS Forest Inventory and Analysis (FIA) data, which we downloaded

from the FIA DataMart (https://apps.fs.usda.gov/�adb-downloads/CSV/datamart_csv.html) for Arizona.

We �ltered the plot table for plots within the project area  and used these plot indices to select all

relevant tree records from the tree table.  There were 122 plots that met the criteria speci�ed above.

Taken together, these plots contained 2,150 trees. 

         Simulating trees and tree canopies in a large number of arbitrary 1-acre areas requires drawing

numbers of stems either with replacement from the empirical distribution, or from a predictive

distribution. We chose the latter to better sample across the gradient of potential tree densities in the

project area. Speci�cally, we drew numbers of stems drawn from a negative binomial distribution

characterized using a simple Bayesian model �t to the plot data. For the sake of brevity, we will refrain

from describing these models here, but complete details regarding model parameterizations can be

found on the repository (https://bitbucket.org/lzachmann/4fri-lpa).  Posterior predictive checks for the

model indicated that it approximated the data quite well. For example, Figure 6 shows the empirical and

predicted distribution of the number of trees per acre (based on estimates generated at the plot level). 

         We assigned DBH values to stems using a complementary, but separate model — one built to

characterize the distribution of stem sizes within plots (taking the number of trees into account). Stems

4

5

6

https://apps.fs.usda.gov/fiadb-downloads/CSV/datamart_csv.html
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were then assigned crown widths following the equations in Bechtold (2003, 2004) that predict crown

width from stem diameter. The height of each stem was predicted in a similar fashion. Stems were

located completely at random within the 1-acre area.

 

Figure 6. Probability density functions for the empirical (dotted, transparent

white curve) and predictive (solid, green curves) distributions of the number of

trees per plot and tree DBH used in simulations tied to the shadow calibration.

Note that tree DBH varies as a function of trees per plot. As such, the model

used to characterize the distribution of tree DBH includes trees per plot as a

covariate.

 

Shadows were simulated using the insol  (https://github.com/cran/insol) R package by assuming that

tree crowns — from the altitude at which they were observed (5,770 m) – are effectively cylindrical. We

pulled sun altitude and azimuth from the empirical distribution (n = 1,975) of sun positions recorded

while images were being acquired.

 

Figure 7. The empirical distributions of sun altitude and azimuth at

the time the imagery was acquired.

 

Links to code and data 
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Perhaps the easiest way to access, interact with, and visualize the data is to connect to the web app we

built for the project.

 

(https://four-fri-lpa.appspot.com/)

(https://four-fri-lpa.appspot.com/)
Figure 8: A screenshot of the web application used to visualize the data products. You can click

anywhere on the �gure to launch the application in a new browser window.

 

The datasets themselves are accessible via Google Cloud Platform Buckets. Accessing the data will

require signing in with a Gmail account.

Canopy cover models (https://storage.cloud.google.com/four-fri-rf-ccc-v2), one for each

DOQQQ. Canopy cover models are at 0.3 m resolution and consist of 3 distinct values (0, 1, and 2

for ‘canopy’, ‘shadow’, and ‘other’, respectively).

Canopy cover summaries (https://storage.cloud.google.com/four-fri-cc-summaries-v2)

(proportion canopy cover) served as single large mosaicked images. Rasters show canopy cover at

1-, 10-, and 100-acres scales (i.e., within 1-, 10-, and 100-acre moving windows) at a 6 m

resolution.

Landscape structure metrics (https://storage.cloud.google.com/four-fri-lpis), which are also

served as DOQQQs, though are nested in folders as either the raw, ‘observed’ LSMs or ‘calibrated’

LSMs. Each raster contains estimates of LSMs at a given scale and consists of 13 bands (1 for each

LSM: AREA_MN, AI, ENN_MN, SHAPE_MN, FRAC_MN, FRAC_AM, FRAC_CV, ENN_CV, LPI,

AREA_AM, CORE_AM, GYRATE_AM, SHAPE_AM, respectively). LSM rasters are at ~32 m

resolution. The speci�c scale is conveyed in the suf�x for each �le: e.g.,

lpis_at_1_acre_(calibrated_lpis).tif .

Differentiating scales of analysis and image resolution

LSMs (and other statistics involving image neighborhoods, such as canopy cover) can be assembled on a

pixel-by-pixel basis. However, producing LSMs — in, for example, 1-acre neighborhoods — by sliding the

window from one 0.3 m cell to the next would produce a lot of redundant information at an

unnecessarily �ne scale, not to mention at a prohibitively expensive time- and compute-cost. As such,

we considered two alternative approaches to producing such statistics (albeit at somewhat lower �nal

image resolutions): blocks and ‘block subsampling’. In each case, blocks are sized according to the

desired scale of analysis and the image is subdivided into discrete ‘sublandscapes’. If simple, discrete

9
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blocks are used the �nal resolution of the image would correspond directly to the scale of analysis. In

other words, at a 1 acre scale of analysis, the landscape would be subdivided into many adjacent 1 acre

cells (square regions ~64 m on a side). However, in the case of block subsampling, image neighborhoods

(blocks) form an overlapping grid, which permits creating higher-resolution outputs in what is still an

‘acceptable’ amount of time (Figure 9). We took the latter approach to develop the 1-acre LSMs

referred to above.

 

Figure 9. An example of the process used to create 1-acre landscape structure metrics (LSMs). A 1-acre

window (in red) slides across the entire classi�cation image incrementally. In the case of simple block

sampling (the upper-most animation), the window moves in discrete 1-acre-sized steps or jumps. In the

case of block subsampling (the animation on the bottom), the landscape is subdivided into overlapping

‘sublandscapes’. The latter approach permits creating neighborhood-based metrics at somewhat higher

resolutions (in this case 2X the resolution that would have been obtained by taking the discrete

steps/jumps blocking approach). In each case, the LSM value within the moving window is mapped to the

window’s centroid (as illustrated by the red dot in the second panel of each animation), which in turn is

subsequently used to populate the �nal LSM raster with data (shown in the right-most panel of each

animation). We elected to use block subsampling to create the initial 1-acre LSM results.

 

Finally, several ancillary data �les live in a Google Drive folder

(https://drive.google.com/drive/folders/0B75dDdBQu0NWcW5IbjMwbFRSMUU?usp=sharing). Note

that these �les are provided largely for archival purposes. Many of the �les in this directory were in-

stream inputs or outputs to/of code and should not be considered deliverables in-and-of themselves. All

of the code used in developing this analysis is available in a Bitbucket repository

(https://bitbucket.org/lzachmann/4fri-lpa).

https://drive.google.com/drive/folders/0B75dDdBQu0NWcW5IbjMwbFRSMUU?usp=sharing
https://bitbucket.org/lzachmann/4fri-lpa
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Usage
We recommend visual inspection of the classi�cation (and any derived quantities) for class confusion in

green meadow areas, or where Pondersoa gives way to scrub brush communities near the rim. Steep

terrain poses an especially dif�cult challenge. Future work may may include evaluating changes in

canopy cover over time.
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1. Level 14 of the nested hierarchical global grid.↩

2. DOG involving ‘fat’ and ‘skinny’ Gaussian kernels σ = 7 and 1, respectively, for a Gaussian kernel

of radius 7 pixels.↩

3. For more information on GLCM outputs, see Haralick et al. (1973) and Conners et al. (1984).↩

4. Selected plots had to meet several additional criteria. Namely, we selected plots that were �eld

visited (physically examined), and for which all four subplots were fully described. Additionally,

we removed any variable-radius plots. If a given plot was sampled more than once, we selected

data only from the most recent inventory year. Finally, only plots for which all tree records were

ponderosa pine were selected.↩

5. As with the plot table, tree records used in this analysis had to meet several criteria. Speci�cally,

they had to be live trees >5 inches DBH.↩

6. See lpi_calib_n_trees_per_acre_(distribution).R  and

lpi_calib_stem_dbh_(distribution).R .↩

7. We found no evidence of signi�cant spatial correlation of DBH among stems within subplots

(using both variograms and the Mantel test). Additionally, we evaluated whether stem locations

followed a uniform Poisson point pattern, which they did.↩

8. Sun positions were calculated using the dates reported for each image and vetted using NOAA’s

Solar Calculator (http://www.esrl.noaa.gov/gmd/grad/solcalc/).↩

9. Scales of analysis in the context of this work are typically reported as units of area, whereas

resolution is generally reported as a linear unit (e.g., 1 acre and 0.3 m, respectively).↩

Copyright © 2016 Landscape Conservation Initiative. All rights reserved.

http://link.springer.com/article/10.1007/s00267-005-0199-x
http://www.esrl.noaa.gov/gmd/grad/solcalc/

