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Summary 
Being lungless, plethodontid salamanders respire through their skin and are 
especially sensitive to environmental disturbances. Habitat fragmentation, low 
abundance, extreme habitat requirements, and a narrow distribution of less than 
70 miles in length, makes one such salamander, Plethodon punctatus, a species 
of concern (S1) in West Virginia. To better understand this sensitive species, day 
and night survey hikes were conducted through ideal habitat and coordinate data 
as well as tail tips (10 to 20 mm in length) were collected. DNA was extracted 
from the tail tips and polymerase chain reaction (PCR) was used to amplify 
mitochondrial 16S rRNA gene fragments. Maximum parsimony, neighbor-joining, 
and UPGMA algorithms were used to produce phylogenetic haplotype trees, 
rooted with P. wehrlei. Based on our DNA sequence data, four disparate 
management units are designated. Surveys revealed new records on Jack 
Mountain, a disjunct population that expands the known distribution of the 
species 10 miles west.  In addition, surveys by Flint verified a population on 
Nathaniel Mountain, WV and revealed new records on Elliot Knob, extending the 
known range several miles south. DNA sequencing of 24 individuals revealed 8 
haplotypes. 16 individuals from the main population on Shenandoah Mountain all 
had the same haplotype, suggesting low genetic variability. Conversely, each 
individual from all other areas possessed a unique haplotype. Most importantly, a 
haplotype from Nathaniel Mountain, WV was deeply divergent and has probably 
been isolated since the early Pleistocene, making the population a conservation 
priority.  It is hoped that this new genetic data will increase the efficacy of Cow 
Knob salamander conservation efforts by providing the means to implement 
management plans that conserve intraspecific genetic diversity. 
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“Nature uses only the longest threads to 
weave her patterns, so each small piece 
of her fabric reveals the organization of 
the entire tapestry.” 

Richard Feynman 
The Character of Physical Law (1965) 

“When we begin to plan how to use a 
piece of Appalachia, we must set out 
from the start to save the full 
complement of native species. 
Nothing less will do.” 

George Constantz 
Hollows, Peepers & Highlanders (2004) 
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Chapter 1 

Introduction

   Species histories are often greatly influenced by geomorphological changes 

such as mountain building, fluctuations in sea level, removal of barriers to 

dispersal, and the coming and going of embayment events.  It is occurrences 

such as these that fabricate the genetic structure of populations across a 

landscape, and with modern genetic tools it is now possible to infer much of the 

history of a lineage and then compare it against known geological change (Avise, 

2000; Brunsfeld et al., 2001; Jockusch & Wake, 2002; Kuchta & Tan, 2006).  

Along with new genetic techniques, novel or existing statistical tools and more 

powerful computers have made it even easier to resolve lineage structure across 

landscapes. 

   For instance, in the Pacific Northwest the genealogic structure of the Pacific 

giant salamander, Dicamptodon tenebrosus (Baird & Girard, 1852) (family 

Dicamptodontidae Good & Wake, 1992) based on mitochondrial DNA (mtDNA), 

revealed distinct north and south clades.  These clades were shown to coincide 

with two large river valleys, which based on molecular clock estimates probably 

represents mid-Pleistocene refugia (Steele & Storfer, 2006).  In another 

interesting example based on mtDNA sequence analysis, three deep historical 

subdivisions within a species were revealed by the genetic structure of black 

ratsnakes (Pantherophis sp. – Utiger et al., 2002; family Colubridae Oppel, 1811) 

(Burbrink et al., 2000; Gibbs et al., 2006), in eastern North America.  The three 
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clades, or ‘phylogroups’, are arranged longitudinally into eastern, central, and 

western groups.  Western and central groups diverged allopatrically due to 

vicariance caused by the Mississippi River.  Eastern and central clades similarly 

diverged but separation was instead due to a combination of barriers to gene 

flow.  Most of the species’ range in the east was bifurcated by the Appalachian 

Mountains.  However, black ratsnakes also occurred throughout the southeastern 

coastal plains which lacked the Appalachian Mountain barrier, and vicariance 

was instead associated with a large embayment event.  During the interglacial 

periods of the Pliocene and Pleistocene, a large bay formed along the 

Apalachicola River and formed a contiguous barrier with the mountains, thus 

completely restricting gene flow among eastern and central populations.  Studies 

such as these, in which gene genealogies are interpreted in light of past 

geographic and paleoclimatic processes are part of a rapidly growing discipline 

called ‘phylogeography’. 

   Phylogeography is really just the amalgamation of phylogenetic and 

biogeographic principles, used together to answer evolutionary questions.  The 

so-called ‘father of phylogeography,’ John C. Avise, defines it as “the study of the 

processes controlling the geographic distributions of lineages by constructing the 

genealogies of populations and genes” (Avise, 2000).  The primary aim of 

phylogeography is to use geographic and genetic data to address the relative 

roles of historical forces in shaping population structure (Cruzan & Templeton, 

2000), usually by inferring past events such as range expansion, vicariance, 

isolation by distance, migration, and bottleneck events. 
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   In addition to answering important evolutionary questions, phylogeography can 

also be used to aid in conservation efforts.  It is well known that amphibian 

species in particular are experiencing considerable declines across the globe 

(Lannoo, 2005).  Fortunately, many programs (i.e. North American Amphibian 

Monitoring Program - NAAMP; Terrestrial Salamander Monitoring Program – 

TSMP) have been initiated in attempts to ameliorate these declines, and more 

importantly, to prevent extinctions and further loss of biodiversity.  As additional 

aid to these efforts, many phylogeographic studies of amphibian species have 

recently surfaced (Alexandrino et al., 2002; Eggert et al., 2006; Gabor & Nice, 

2004; Kozak et al., 2006; Kuchta & Tan, 2006; Nielson et al., 2006; Sites et al., 

2004; Templeton et al., 1995; Weisrock & Larson, 2006;), many of which directly 

establish conservation units and provide important recommendations regarding 

the management of species.  Populations are often prioritized in phylogeographic 

studies based on inherent levels of genetic diversity, giving land managers clear 

goals and direction for conservation efforts.  By assessing population structure 

across a geographical element, phylogeography can identify groups of closely 

related individuals, quantitate the genetic variability within and between clades, 

and assign conservation priority to clades based on the prior two analyses, 

usually in the form of ESUs and MUs (see Conservation Units, section 2.4). 

   The principal aim of this study was to do just that.  I used molecular data in the 

form of mitochondrial DNA sequences to investigate the genetic structure, at the 

population level, of the Cow Knob salamander, Plethodon punctatus Highton, 

1972 (Fig. 1).  The Cow Knob salamander is a sensitive species (S1 in WV) with 
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a small and narrow range and is found only at high elevations in a select few 

mountains within the Ridge and Valley physiographic province of West Virginia 

and Virginia (Petranka, 1998).  Surveys conducted during this study shed new 

light on the distribution of P. punctatus and genetic analyses suggest how clades 

within the species should be managed.  For those not familiar with the taxa, 

conventions, or geography examined in this study, I have included a brief 

overview of such topics (see Background, chapter 2).  As a corollary, and based 

mostly on anecdotal evidence, I suggest my own ideas about possible 

mechanisms that drove the speciation of this fascinating woodland salamander 

(Discussion section 5.3). 
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Figure 1: A Cow Knob salamander, Plethodon punctatus, in its natural habitat. 
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Chapter 2 

Background

2.1 Plethodon in West Virginia 

The genus Plethodon, with 55 valid species, comprises a group of North 

American lungless salamanders of the family Plethodontidae, the largest group of 

extant salamanders.  Members of the genus can be identified by the presence of 

4 toes on the front and 5 on the hind feet and a round or oval tail with no 

constriction at the base.  Males usually have a broader head and longer tail than 

females (Stebbins, 2003) and a more flattened snout (T.K. Pauley, pers. comm).

   All Plethodon species are nocturnal and adapted to an entirely terrestrial life 

cycle in woodland habitat; thus they are often called ‘woodland salamanders’.  

During hot, dry weather they either estivate or seek moisture in crevices or 

underground refugia (Conant & Collins, 1998).  Eggs are laid in moist logs or 

subterranean chambers where they spend their larval stage within the aquatic 

environment of the egg capsule (Green & Pauley, 1987). 

   Three major groups of related species exist within the genus Plethodon, the 

western plethodon, the eastern small plethodon, and the eastern large plethodon 

(Highton, 1962).  Members of two of these groups, the eastern small plethodon 

and the eastern large plethodon, occur in West Virginia.  The eastern small 

plethodon group in West Virginia consists of six species; Plethodon cinereus, P. 

nettingi, P. electromorphus, P. richmondi, P. hoffmani and P. virginia.  The



7

eastern large plethodon group is made up of five species in the state; P.

glutinosus, P. cylindraceus, P. kentucki, P. wehrlei and P. punctatus.  These five 

species can be identified by various characters provided in Table 1. 

   This study focused on a member of the eastern large plethodon group in West 

Virginia.  Representatives of this group can be found in every county in the state 

(Fig. 2), yet certain species have somewhat limited ranges.  Plethodon kentucki,

for example, is restricted to the southwest corner of West Virginia while P. 

cylindraceus and P. punctatus are confined to the eastern panhandle.  Plethodon

glutinosus and P. wehrlei, on the other hand, have much larger ranges in West 

Virginia and can be found throughout the large central portion of the state. 

   Morphologically, these salamanders are somewhat hard to distinguish and it 

was not until advances in molecular biology techniques that some were even 

described.  Electrophoretic and immunological analyses (Highton, 1989) of 

genetic variation split one group, the P. glutinosus complex, into 16 distinct 

species.  Three of these, P. kentucki, P. glutinosus and P. cylindraceus, are 

members of the eastern large plethodon group in West Virginia.  It should be 

noted, however, that many researchers (Frost & Hillis, 1990; Tilley et al, 1990; 

Petranka, 1998) fail to recognize 13 of the species resulting from the split and 

consider them all to be Plethodon glutinosus.  They argue that using genetic 

distance as the primary criterion for recognizing allopatric or parapatric species 

assumes that genetic distance tightly correlates with the development of 

reproductive isolating mechanisms.  They suggest that this might not be true in 

plethodontid salamanders and object to splitting species based solely on 
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arbitrarily selected genetic distances.  Under these criteria, one of the species in 

West Virginia, P. cylindraceus, would not be valid.  Conversely, my own 

morphological investigation (unpublished report) showed P. cylindraceus to be 

morphologically distinct from P. glutinosus and P. kentucki.  I used principal 

component analysis and canonical discriminate analysis to analyze quantitative 

morphological characters of the eastern large plethodon of West Virginia, and 

found all three glutinosus complex species to be morphologically, albeit slightly, 

distinct.

   The species investigated in this study is Plethodon punctatus, a member of the 

eastern large plethodon group.  This species is the most sensitive of the eastern 

large plethodon in West Virginia and is listed by the state West Virginia Division 

of Natural Resources as a species of concern.  More specifically, the agency 

ranks it as an S1 species, meaning that it is considered extremely rare and 

critically imperiled, or because of some factor(s), it is especially vulnerable to 

extirpation.

2.2 The Cow Knob Salamander 

   Two species of eastern large plethodon in West Virginia are not part of the P. 

glutinosus complex.  Rather, they group together in their own, the P. wehrlei

complex.  Plethodon punctatus and P. wehrlei (Fig. 3) are the only two members 

of this group and can be distinguished from each other by the modal number of 

trunk vertebrae and color pattern.  Most P. wehrlei have brassy flecking on the 

dorsum, have young with orange dorsal spots on the shoulders, and possess 18 
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modal trunk vertebrae.  Neither the orange spots nor the brassy flecking have 

been observed on the dorsum of P. punctatus, which has 19 modal trunk 

vertebrae (Highton, 1972).  Superficially these species can sometimes be 

identified by their slight difference in dorsal base color as well; P. punctatus is 

usually dark and almost black where P. wehrlei has a lighter base color and 

appears more grayish.  None of these characters are completely diagnostic, 

however, as variation in each species causes overlap.  For instance, the number 

of costal grooves ranges from 17-19 in P. wehrlei and 18-19 in P. punctatus.

Overlapping characters like this make it markedly difficult to identify these two 

species based on morphology and color patterns alone.  Therefore the treatment 

of this group as two distinct species has been debated. 

   On the contrary, biogeographic and genetic evidence suggests that P.

punctatus were derived from ancestral P. wehrlei stock that became 

geographically isolated from the main population (Highton, 1972).  Highton 

(1995) hypothesized that the dry periods of the Pliocene probably isolated many 

populations due to reduction of forests at lower elevations, which led to allopatric 

speciation.  Then, once the wetter climates returned, P. punctatus only survived 

in their restricted mountain habitat, and now have a very limited range. 

   Unfortunately, Highton (1995) didn’t mention a possible mechanism for his 

allopatric speciation theory or why Cow Knob salamanders remained in their 

high-elevation mountain refugia.  His estimate of time since divergence of P.

punctatus and P. wehrlei is that it occurred in the Pliocene epoch, which on a 

geologic timescale extends from 5.332 million to 1.806 million years before 
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present.  One goal of this study is to provide a more accurate molecular clock 

estimate of the species split, thus testing Highton’s hypothesis. 

   Cow Knob salamanders have been documented to be restricted to a strict set 

of habitat parameters (Tucker, 1998).  They are all generally found above 2,500 

feet with most being found above 3,000 feet, and prefer the cool and moist 

habitats of north-facing aspects, where they emerge and forage when humidity 

reaches 100% (Fig. 4).  Cover objects, especially rocks (Fig. 5), are important for 

identifying habitat, and they exist in 10 different forest types.  They occur with 

greatest densities in Oak-Birch-Hemlock forests, much of which is fragmented by 

forest service roads (Fig. 6). 

2.3 Distribution of P. punctatus

   In his original description of P. punctatus, Highton (1972) had to rely solely on 

his own records to estimate the distribution of the species.  He collected 11 

individuals which he designated as types (USNM 190224-190234), and 

examined specimens from 8 sites; 7 of which were from Shenandoah Mountain, 

the other from Great North Mountain (Fig. 7).  Since the ridges of these mountain 

ranges form the border between West Virginia and Virginia, Highton reported the 

species as occurring in 5 counties despite its small range: Pendleton and Hardy 

counties in WV, and Augusta, Rockingham [sic - MRG], and Shenandoah 

counties in Virginia.  He admits, however, that field surveys at the time were not 

sufficient and that populations on Shenandoah Mountain are possibly isolated 

from those on Great North Mountain (Highton, 1972). 
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   Over 20 years passed before the first intensive surveys were finally conducted 

for P. punctatus.  In 1995, Thomas Pauley (Marshall University) and his graduate 

students surveyed the West Virginia portion of the George Washington National 

Forest for the species.  In all they discovered 42 P. punctatus at 16 different 

sites.  All 42 specimens, however, were observed on Shenandoah Mountain, and 

none were discovered on Great North Mountain, despite their efforts.  All were 

found at elevations above 3,100 feet, mostly from north-facing aspects (Pauley, 

1995).

   The following year, one of Pauley’s graduate students, Robert Tucker, 

conducted surveys for P. punctatus under Hemlock stands within the George 

Washington National Forest (Tucker, 1996).  He observed 22 P. punctatus at 9 

sites.  Tucker’s results didn’t expand the known range of P. punctatus but they 

did increase the known elevational range since individuals were observed down 

to 2,950 feet in elevation; 150 feet lower than previously encountered. 

   Tucker went on to complete a master’s thesis on the Cow Knob salamander at 

Marshall University, during which he studied the natural history and ecology of 

the species (Tucker, 1998). He found 122 individuals and expanded the 

elevational minima to 2,540 feet.  Tucker also discovered that P. punctatus are

considerably more abundant at higher elevations and found a strong correlation 

between north-facing aspects and density, supporting the results of Pauley 

(1995).

   Concurrently, Pauley conducted more surveys for P. punctatus in West 

Virginia, this time outside of the George Washington National Forest (Pauley, 
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1998).  Much of the land he tried to survey turned out to be private, so he and his 

graduate students were mostly limited to sites open to the public.  He discovered 

and searched 17 sites from 1997 to 1998 and found P. punctatus at only two of 

them.  Both new sites were in Hardy County (one on Shenandoah Mountain near 

the Pendleton county border and one on Helmick Rock near Lost River State 

Park) and expanded the known range of the species to the northeast. 

   In the most recent work with Cow Knob salamanders, William Flint from James 

Madison University, completed another thesis on this species and added even 

more to our knowledge of its distribution (Flint, 2004).  Flint and his assistants 

added an astonishing 215 presence/absence location records.  He focused on 

the southern and eastern regions of the range (the Virginia side) and found 

several new localities.  More importantly, Flint extended the range 6.5 km south 

along the Shenandoah Mountain ridgeline and provided the most accurate 

distribution maps to date (Fig. 8).   

   Overall, what started out as a distribution roughed out by 8 documented sites, 

has turned into a much clearer, albeit not perfect, picture of the Cow Knob 

salamander’s true geographic range.  Several individuals, mostly from 

unaffiliated institutions, sometimes collaborating and sometimes not, built a nice 

foundation for the potential distribution.  It stood out to me, however, that much 

was still left uncertain.  For instance, nobody had since verified the Great North 

Mountain site published by Highton in his original description of the species.  

Furthermore, problems with access to private land in the west, and still 
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insufficient surveys in areas not accessible by roads leave a lot of this species’ 

true range unknown. 

   Part of the purpose of this study was to address the abovementioned issues 

and to provide additional insight to the actual distribution of this unique and 

sensitive species.  Understanding where a rare species like P. punctatus resides 

across a landscape is crucial, and probably the most important step towards 

implementing plans for its conservation.

2.4 Conservation Units 

   With the intention of discussing species’ survival programs, a group of 

conservation biologists met at the Zoological Society of Philadelphia in 1985, and 

tried to construe new ways to identify populations that possess genetic attributes 

important to the preservation of present and future generations of species.  The 

emphasis of the meeting was on subspecies, and the problems with taxonomy of 

the time in determining which subspecies actually represented legitimate 

examples of adaptive variation.  It was decided, however, that subspecies should 

not be the issue and that conservationists ought to instead address evolutionarily 

significant units (ESUs) within species (Ryder, 1986).  Essentially, as outlined by 

Ryder (1986), the idea was that ESUs should be established when differing 

techniques produce concordance among data sets.  Geographic distribution 

data, such as that which indicates discrete geographical populations, could 

therefore be used in conjunction with genetic techniques to assess which groups 

or gene pools are traveling though evolutionary time independently. 
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   The ESU acronym quickly caught on and in 1994 was given attention by the 

now esteemed University of California, Berkeley professor, Craig Mortiz.  In a 

1994 paper, he points out some potential shortcomings of the ESU idea; like the 

important fact that preserving variants adapted to previous conditions may 

counteract current natural selective pressures, thus negating the evolutionary 

process.  Moritz (1994) also strengthened the utility of ESUs by defining new 

criteria that all factions defined as so must meet.  Chiefly, ESUs “should be 

reciprocally monophyletic for mtDNA alleles and show significant divergence of 

allele frequencies at nuclear loci.”  Reciprocally monophyletic groups are clades 

of related individuals or haplotypes that do not contain any portion of the other 

(see Fig. 9); a product of long term restriction of gene flow.  Moritz (1994) admits 

that his criteria seem overly restrictive and dealt with this by contrasting ESUs to 

‘management units.’  These management units, or MUs, were noted as 

fundamental for the management of the more inclusive ESUs.  Moritz defined 

MUs with less constraint, as populations with significantly divergent alleles at 

either nuclear or mitochondrial loci.  Therefore, according to Moritz (1994), ESUs 

deal with the history of population structure and MUs address current structure, 

making them more useful in addressing short-term management issues. 

In the most recent and in-depth discussion about ESUs and MUs, Crandall et 

al. (2000) critically reanalyzed the Moritz definitions and pointed out a few flaws.  

The main problem with Moritz’s rationale is that functional divergence does not 

always necessitate a long history of isolation.  In fact in many instances 

speciation can occur even among sympatric species (see Dieckmann & Doebeli, 
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1999; Doebeli, 1996; Hedin, 1997; Turner & Burrows, 1995).  Crandell et al. 

(2000) propose a different approach, this time taking into account both “genetic 

exchangeability” and “ecological exchangeability,” or the idea that individuals can 

occupy the same ecological niche.  The shortcoming of this method is that the 

null hypothesis of ecological exchangeability should be tested using the statistical 

procedures of Templeton & Sing (1993), which requires broad knowledge of 

ecological life history in the form of quantitative data.  Such data are usually not 

readily available or realistically obtainable for many species. 

   There is debate over which concept to use, but due to the lack of ecological 

genetic data for the Cow Knob salamander, the criteria of Crandell et al. (2000) 

could not be used in this study.  Instead, like other authors of similar salamander 

studies (Miller et al., 2005; Pabijan et al., 2005), I use the Moritz criteria of 

reciprocal monophyly for ESUs and divergence of mtDNA loci for MU 

designation, with the overall ambition of defining units helpful to the maintenance 

of genetic diversity.  Conservation units, in the form of MUs, are defined but also 

prioritized based on the amount of genetic differentiation, under the assumption 

that the loss of a more diverse population would be more detrimental to the 

conservation of the species as a whole.  This is a crucial step in management, 

since the loss of diversity at the genetic level, often coupled with increased 

genetic load, diminishes the long-term prospects of populations (Frankham, 

2003; Row & Beebee, 2003) and may lead to extinction (Saccheri et al. 1998). 
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Figure 2:  Rough estimates of the distribution of the eastern large plethodon in 
West Virginia (based on Petranka, 1998; Pauley, pers. comm.). 



17

Figure 3: Plethodon wehrlei.  Note the grayish dorsal color, as opposed to the 
dark black back of P. punctatus.
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Figure 4: A Cow Knob salamander foraging during a rain. (photo courtesy of 
William D. Flint) 
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Figure 5: Typical cover object refuge of a Cow Knob salamander. Caliper 
placement to show scale. 
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Figure 6: Example of a forest service road fragmenting ideal Cow Knob 
salamander habitat on the west side of Shenandoah Mountain, WV. 
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Figure 7: Originally reported distribution of P. punctatus as estimated by 8 sites 
(red diamonds) examined in the type description. (adapted from Highton, 1972) 



22

Figure 8: Known distribution of P. punctatus after Flint (2004).  At the time, most 
records besides that of the main population had not been verified. 
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Figure 9:  An example of reciprocal monophyly.  According the criteria of Moritz 
(1994), clades abc and def could represent evolutionarily significant units 
(ESUs).
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Table 1. Key to the eastern large Plethodon of West Virginia (from an 
unpublished report by the author) 

1. Strong webbing on feet………………………………….wehrlei complex (2) 
Feet with no webbing to moderate webbing……………………………….(3) 

2. Brassy flecking dorsally, red spots dorsal to shoulders or medium to small 
white spots concentrated laterally…………………….………………wehrlei
Lack of brassy dorsal flecking, no red spots and medium to large white 
spots, with most concentrated laterally with a few large spots on back 
………………………………………………………………………....punctatus

3. Throat light…………………………………………………………..…………(4) 
Throat dark……………………………………………….…………glutinosus

4. Small white spots concentrated mostly on sides………………….kentucki
Large white dorsal and lateral spots ………………………….cylindraceus
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Chapter 3 

Methods

3.1 Geographic and Taxonomic Sampling 

   All sampling was conducted at sites within the Ridge and Valley physiographic 

province of the middle Appalachians in Virginia and West Virginia.  The ridge and 

valley region consists of extensively folded and thrust-faulted Paleozoic strata 

that form level-crested ridges that run in a southwest-northeast direction 

(Stephenson & Saxena, 1994).

   Survey techniques included visual encounter surveys, or VES (Flint & Harris, 

2005; Crump & Scott, 1994), and daytime cover object surveys through ideal 

habitat.  VES were conducted at night during or just after rain events by walking 

through habitat with flashlights.  Daytime cover object searches involved turning 

over objects such as flat rocks and logs.  Habitat searched was chosen by the 

following parameters specified by Tucker (1998); elevation (>2,500’), aspect 

(preferably north-facing), cover objects present, and major vegetation type (Oak-

Birch-Hemlock overstory preferred).

   When a specimen was found, latitude and longitude were recorded with a 

Garmin Etrex Legend™ GPS unit and the animal was placed in a Ziploc™ bag 

and carried back to the survey vehicle for data collection.  Individuals were 

identified as either male, female, or juvenile based on size and 

presence/absence of a small circular gland at the distal tip end of the chin called 
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the mental gland.  Size was recorded by using calipers to measure snout to vent 

length (SVL), measured from the tip of the snout to the posterior margin of the 

vent (Petranka, 1998).  Tips of the tails, 10 to 20 millimeters in length, were 

removed with sterile razorblades and immediately placed in a 1.5 mL 

Eppendorf™ containing 95% ethanol.  Tail tips were kept on ice until they were 

returned to the lab at Marshall University where they were stored in a freezer at 

minus 20 C. 

   To maximize efficiency, I collaborated with another researcher, William Flint, 

who was also conducting surveys for Cow Knob salamanders. Flint focused his 

searches, using primarily VES, on putative disjunct and unverified populations 

and conducted extensive surveys in Virginia and the extreme southern portion of 

the range.  My time, as well as that of my various assistants, was spent mostly 

doing daytime cover object searches in potential habitat west of the known 

range.

   Surveys conducted by my party are cataloged into three separate units; the 

main population on the Shenandoah Mountain ridgeline, Great North Mountain 

ridgeline, and western ridges and knobs.   Our Shenandoah Mountain ridgeline 

surveys included sites along the ridge of Shenandoah Mountain that forms the 

border between West Virginia and Virginia.  These were conducted on the 

western side of the ridge (the WV side) in Pendleton and Hardy counties in areas 

where P. punctatus were already known to occur, running from U. S. Forest 

Road 85 near Ugly Mountain northeast to Helmick Rock. 
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   The Great North Mountain ridgeline portion of our surveys included areas west 

of the ridgeline that comprises the WV/VA border in Hardy County.  We searched 

several sites as far south as County Road 20 northeast to Long Mountain and 

Big Schloss. 

   The western ridges and knobs region posed the greatest challenge for my 

survey team.  This region consists of areas of high-elevation west of the known 

populations on Shenandoah Mountain.  Most of this area is private land and an 

unusual amount of landowners posted no trespassing signs around their 

property, but we searched as many accessible areas as possible.  This included 

sites as far west as North Fork Mountain, as far north as Spring Mountain near 

Grant County, and south to the borders of Highland and Augusta Counties, VA. 

   Working together with Flint, our efforts made for an intensive survey of the 

entire known range of this species.  Since P. punctatus is such a sensitive 

species, the exact locations of survey sites will not be revealed.  West Virginia 

specimens were collected under scientific collecting permit number 2006.063 

issued by the West Virginia Division of Natural Resources. 

3.2 DNA Extraction, Amplification, and Purification 

   In the lab, tissue samples (10-20 millimeters tail tips) were sliced into small 

fragments by hand with sterilized razor blades.  Genomic DNA was then isolated 

from the tissue samples using a Qiagen DNeasy™ extraction kit and protocol. A 

fragment of the mitochondrial gene encoding 430–450 base pairs of LSU (large 

ribosomal subunit) 16S rRNA, was amplified by polymerase chain reaction 
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(PCR).  The gene fragment was targeted using the universal primer 16Sbr, or 

LR-J-12887, with a reverse primer designed by Victor Fet, known in the lab as 

‘40’; both were used in a number of phylogeographic and phylogenetic studies 

(see Fet et al., 2002; Teruel et al., 2006). 

   I attempted to amplify another gene as well, cytochrome b (a subunit of 

coenzyme Q – cytochrome c reductase, a transmembrane lipoprotein involved in 

cell respiration), but ran into problems with amplification.  Essentially the gene 

appeared to amplify, but non-specific priming of the cytochrome b primers, as 

evident by the appearance of numerous bands on agarose gels, made most of 

these results insufficient to sequence.  Several techniques could have been 

employed to deal with the non-specific priming problem (such as nested PCR or 

gel extractions), but due to time and financial limitations I focused my work on the 

16S gene which yielded excellent results nearly every time.  Primers used to 

attempt amplification of cytochrome b are L14841 (Table 2) and H15149 after 

Kocher et al. (1989) and several salamander studies (Caccone et al., 1997 ; 

Murphy et al., 2000; Shunqing et al., 2004; Riberon et al., 2001; Riberon et al. 

2002).

   A Perkin Elmer Genamp ® PCR 2400, version 2.10 thermocycler was used to 

amplify the 16S rRNA gene fragments using a standard protocol as outlined in 

Table 3.  Positive PCR products were verified using a 1% agarose 

electrophoretic gel (Fig. 10) and then purified with a Quiagen™ purification kit.  

Automated Sanger dideoxy sequencing of the double-stranded PCR product was 
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conducted at the Sequencing and Services Facility, University of Georgia 

(Athens, GA), on the ABI 9600 Sequencer. 

3.3 Phylogenetic analysis 

   DNA sequences were initially aligned using ClustalX 1.81 (Thompson et al., 

1997) and then further aligned by eye (Fig. 11). The alignment consisted of 383 

aligned positions (bases) which was saved as a Nexus (*.nex) output file 

compatible with PAUP* 4.0. 

   Maximum parsimony (MP), neighbor-joining (NJ), and unweighted pair group 

method with arithmetic means (UPGMA) analyses were implemented in PAUP* 

4.0b10 (Swofford, 1998).  Maximum parsimony searches were conducted with all 

characters equally weighted and employed the heuristic search option.  Gaps 

were treated as “missing” for all analyses.  Non-parametric bootstrapping was 

used to assess nodal support (Felsenstein, 1985) with 1,000 replicates.  

Transition to transversion ratio (TR:TV) was set to 3:1 and DNA sequence data 

from P. wehrlei was used to root the trees. 

   Since traditional phylogeny reconstruction, such as parsimony, neighbor-

joining, and maximum-likelihood make assumptions that are sometimes invalid at 

the population level (Clement et al., 2000), I have also used a haplotype network 

approach called TCS, or statistical parsimony.  This method calculates the 

probability of parsimony and is often used to infer population level genealogies.  

TCS algorithms, as outlined in Templeton et al. (1992), were implemented using 

the TCS version 1.21, a free program available online 
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(http://darwin.uvigo.es/software/tcs.html).  The maximum number of steps that 

haplotypes can differ from each other was estimated using a 95% confidence 

limit.  Gaps were treated as a fifth base pair. 
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Figure 10: Agarose gel showing 16S rRNA PCR products. 
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Figure 11. Clustal X interface demonstrating a multiple DNA sequence 
alignment.
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Table 2. Primers use to amplify mitochondrial cytochrome b and 16S rRNA 
genes.
Cytochrome b

    Forward (L14841): 5'-AAAAAGCTTCCATCCAACATCTCAGCATGATGAAA-3'
    Reverse (H15149): 5'-AAACTGCAGCCCCTCAGAATGATATTTGTCCTCA-3' 
16S rRNA 

    Forward (16Sbr): 5’-CGATTTGAACTCAGATCA-3’ 
    Reverse (40): 5’-GTGCAAAGGTAGCATAATCA-3’ 
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Table 3: Protocol used to amplify 16S rRNA gene fragments. 

Time Temperature

Denaturing

Annealing

Extension 

0:45

0:45

0:45

 94 

50

72

Pre-cycling

Cycles

Post-cycling

5 :00 

~

32

94

72
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Chapter 4 

Results

4.1 Distribution and Survey Results 

   William Flint, I, and our assistants conducted surveys spanning the entire 

known range and most of the potential range of the Cow Knob salamander from 

early April to September of 2006.  Our searches were most productive during the 

rainy month of May, but many specimens were found throughout the other 

summer months as well.  To minimize impact on P. punctatus, the two survey 

parties only collected 20 tail tips each, even though many more individuals were 

captured.

Graham surveys 

   Several assistants and I surveyed intensively for P. punctatus during May and 

June, 2006.  We searched 33 sites in 3 counties in West Virginia, Pendleton, 

Hardy, and Hampshire.  Of these, P. punctatus were observed at 9 sites.  Much 

time was spent attempting to access remote sites or sites on private land and we 

were never able to obtain access to an additional 17 sites. 

   We observed 33 P. punctatus from the 9 sites, of which we measured 31 and 

collected tail tips from 20.  At least 1 but no more than 3 tail tips were collected 

from each site.  Twenty-six measured individuals were mature adults, comprising 
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11 males and 15 females.  Males tended to be longer with a mean SVL of 66.5 

mm, while females averaged 61.2 mm SVL (Fig. 12). 

   All but one site where we discovered P. punctatus were along the Shenandoah 

Mountain ridgeline.  This included 3 sites along the southern end of the ridgeline, 

5 sites located centrally around High Knob and Cow Knob, and no sites along the 

northern extent of the ridge.   Several attempts were made to obtain specimens 

from the northern locations, especially Helmick Rock, but conditions were usually 

rather dry.  The sites in this region where P. punctatus were observed were all at 

or near sites where they have historically been found, so our records there did 

not expand the species’ range. 

   Several trips were made to the Great North Mountain in attempt to verify 

Highton’s record of individuals from the area in his 1972 type description of P.

punctatus.  We searched three sites east of Basore, and several areas of ideal 

habitat near Long Mountain and Big Schloss.  Despite our extensive surveys 

there, which even included long hikes into remote expanses, no individuals were 

observed.

   In the western ridges and valleys region we had the opportunity to be the first 

ever to search many areas for Cow Knob salamanders.  Most of the region 

consisted of private property, but among the sites searched we only verified the 

presence of P. punctatus at one.  This was surprising because at many sites that 

seemed like they should have Cow Knob salamanders, we found none and often 

could not find many salamanders at all.  Examples of this are Ant Knob near the 

border of Hardy County, and Heavener Mountain just north of Route 33.  Both of 
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these are high-elevation peaks (>2,800 feet), or knobs, located directly adjacent 

to Shenandoah Mountain where P. punctatus populations reside.  Both locations 

are remote and require steep uphill hikes to reach, and are thus relatively 

untouched by human activity, yet no Cow Knob salamanders were found there. 

   In stark contrast to these knobs is a site where P. punctatus were found, Jack 

Mountain.  Jack Mountain is a ridgeline running parallel to Shenandoah Mountain 

but set 12.5 miles to the west and bifurcated by several low-laying valleys where 

Cow Knob salamanders can not survive.  The area includes high peaks, such as 

Pine Tree Knob at 3,196 feet, but these peaks were inaccessible.  Instead, I was 

forced to survey a low section of Jack Mountain on its eastern side, the slope of 

Botkin Ridge at only 2,850 feet in elevation.  The first attempt at this site proved 

futile.  During a second attempt right after a hard rain, however, three 

salamanders were observed, two of which were captured.  Upon inspection, they 

initially looked more characteristic of P. wehrlei (Fig. 13) but did possess some of 

the distinguishing features of P. punctatus.  Tail tips were removed and after 

DNA analysis they turned out to in fact be P. punctatus, a new record that 

expands the range of the species 10 miles to the west. 

   Another exciting incident happened during our searches in a region of hills and 

ridges that run directly inline with Jack Mountain to the northeast.  It was at 

Brushy Mountain, a peak 2,980 feet in elevation that requires a short hike, that 

we might have discovered another western population of P. punctatus.  Two 

individuals were observed here directly after a strong rain under large flat rocks 

set into the soil.  Unfortunately, before we could capture these animals, both 
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salamanders escaped down holes deep into the ground and could not be dug 

out.  I observed these salamanders only briefly yet I feel that they could 

represent another population of isolated Cow Knob salamanders.  Both 

individuals were large and looked just like the specimens found a few miles to the 

south on Jack Mountain. 

Flint surveys 

Efforts to find Cow Knob salamanders in Virginia were left completely up to my 

colleague William Flint.  There, he and his assistants were able to expand the 

known distribution of P. punctatus 11 miles to the southwest and southeast with 

two new sites.  In the southwest, Flint found populations on the west northwest 

face of Northeast Peak, and in the southeast he found populations at Elliot Knob. 

   Flint surveyed other areas as well, and like I, could not find any individuals on 

Great North Mountain.  Flint did have more luck than I at Helmick Rock where he 

used VES to observe several P. punctatus, from which he removed two tail tips.  

Even further north northeast he verified unconfirmed reports of a population on 

Nathaniel Mountain.  There he managed to find a single individual which 

appeared to him as “wherlei-like” in appearance (pers. comm.). 

    In all, Flint collected 20 tail tips from 13 different sites, many of which were 

used in the molecular genetics portion of this study. 
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4.2 Phylogenetics 

   Mitochondrial DNA sequencing of 23 individuals resulted in 7 different 

haplotypes that mostly corresponded to different geographic populations.  

Sixteen individuals from throughout the range of Shenandoah Mountain all 

shared the same haplotype, suggesting low genetic variability within the 

population.  In contrast, only two individuals were sequenced from Helmick Rock 

and each possessed a distinct haplotype. 

   Phylogenetic reconstruction using an exhaustive search yielded a single MP 

tree and nearly identical NJ trees.  The MP tree (Fig. 14) displayed clear 

geographic structure with the three northern haplotypes (Nathaniel Mountain and 

two Helmick Rock haplotypes) grouping together in a polytomic clade, and 

southern haplotypes (Shenandoah Mountain and Elliot Knob) also grouping 

together.  Most interesting, however, is the Jack Mountain haplotype.  The 

branching of this haplotype, from specimens originally thought to be P. wehrlei,

was right between the northern and southern haplotypes, suggesting that the 

specimens actually represent another population of P. punctatus.

   Six different neighbor-joining cladograms were examined based on the 

following distance measures: absolute, Kimura 2-parameter, Jukes-Cantor, F81, 

HKY85, and Tamura-Nei.  All methods produced nearly identical trees so the 

Jukes-Cantor tree in Figure 15 is representative of them all.  Most strikingly, in 

this phylogeny the Nathaniel Mountain haplotype is strongly separated from the 

other P. punctatus haplotypes, depicting a deep divergence between this 

population and all other Cow Knob salamander populations. 
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   UPGMA of the 7 haplotypes produced a cladogram with similar results (Fig. 

16).  Two separate clades are clearly shown, one with northern haplotypes 

(Nathaniel Mountain and Helmick Rock) and one with Jack Mountain and 

southern haplotypes (Shenandoah Mountain and Elliot Knob). 

   Results of TCS analysis (Fig. 17) also show structure that corresponds to 

geography.  The outgroup haplotype is 17 mutational steps from the Shenandoah 

Mountain haplotype.  Northern haplotypes are several steps more divergent from 

the outgroup, with the Nathaniel Mountain haplotype the most divergent of all. 

   A genetic distance matrix of the 24 specimens used in this study is presented 

in Figure 18. 
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Figure 12. Snout to vent length (in millimeters) of Plethodon punctatus observed 
during ‘Graham’ surveys. 
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Figure 13: Plethodon punctatus from Jack Mountain, WV.  Specimens from this 
locality looked very similar to Werhle’s salamander, P. wehrlei, which is abundant 
in the nearby Allegheny Mountain physiographic province. 
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Figure 14:  Maximum parsimony consensus cladogram of P. punctatus
populations. Nodes are supported by bootstrap values of 100%. 
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Figure 15: Jukes-Cantor neighbor-joining cladogram of P. punctatus populations.  
Abbreviations represent haplotypes from the following locations: Shenandoah 
Mountain (Shen), Elliot Knob (Elli), Jack Mountain (Jack), Helmick Rock (Helm1 
and Helm2), and Nathaniel Mountain (Nath).  Tree is rooted with P. wehrlei
(WEHR).
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Figure 16:  UPGMA phylogram of P. punctatus populations. 
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Figure 17: Haplotype parsimony network produced by TCS version 1.21.  The 
ovals and square, except WEHR, represent Plethodon punctatus haplotypes 
from the following locations: Shenandoah Mountain (Shen2), Elliot Knob (Ell1), 
Jack Mountain (Jack1), Helmick Rock (Helm1 and Helm2), and Nathaniel 
Mountain (Nath).  Small circles represent hypothetical intermediate haplotypes. 
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                  1        2        3        4        5        6        7 
  1 Helm2         - 
  2 Helm1   0.00529        - 
  3 Nath    0.00799  0.00808        - 
  4 Jack1   0.00271  0.00264  0.01609        - 
  5 Jack2   0.00271  0.00268  0.01602  0.00000        - 
  6 Nor1    0.00271  0.00532  0.01866  0.00264  0.00265        - 
  7 Ell1    0.00805  0.01055  0.02131  0.00792  0.00528  0.00264        - 
  8 Shen2   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
  9 Tom1    0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 10 CR25    0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 11 Redd1   0.00537  0.00793  0.01862  0.00527  0.00262  0.00000  0.00264 
 12 PR87b   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 13 PR87    0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 14 WildO2  0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 15 Shen3   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 16 CowK1   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 17 Shen4   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 18 Tom2    0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 19 Shen1   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 20 WildO1  0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 21 Waln1   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 22 High1   0.00538  0.00792  0.01865  0.00528  0.00264  0.00000  0.00264 
 23 Ell2    0.00271  0.00268  0.01602  0.00000  0.00000  0.00265  0.00528 
 24 WEHR    0.05109  0.05328  0.05901  0.05031  0.04771  0.04508  0.04767 

Uncorrected ("p") distance matrix (continued) 

                  8        9       10       11       12       13       14 
  8 Shen2         - 
  9 Tom1    0.00000        - 
 10 CR25    0.00000  0.00000        - 
 11 Redd1   0.00000  0.00000  0.00000        - 
 12 PR87b   0.00000  0.00000  0.00000  0.00000        - 
 13 PR87    0.00000  0.00000  0.00000  0.00000  0.00000        - 
 14 WildO2  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000        - 
 15 Shen3   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 16 CowK1   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 17 Shen4   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 18 Tom2    0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 19 Shen1   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 20 WildO1  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 21 Waln1   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 22 High1   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 23 Ell2    0.00264  0.00264  0.00264  0.00262  0.00264  0.00264  0.00264 
 24 WEHR    0.04504  0.04504  0.04504  0.04509  0.04504  0.04504  0.04504 

Uncorrected ("p") distance matrix (continued) 

                 15       16       17       18       19       20       21 
 15 Shen3         - 
 16 CowK1   0.00000        - 
 17 Shen4   0.00000  0.00000        - 
 18 Tom2    0.00000  0.00000  0.00000        - 
 19 Shen1   0.00000  0.00000  0.00000  0.00000        - 
 20 WildO1  0.00000  0.00000  0.00000  0.00000  0.00000        - 
 21 Waln1   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000        - 
 22 High1   0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
 23 Ell2    0.00264  0.00264  0.00264  0.00264  0.00264  0.00264  0.00264 
 24 WEHR    0.04504  0.04504  0.04504  0.04504  0.04504  0.04504  0.04504 

Uncorrected ("p") distance matrix (continued) 

                 22       23       24 
 22 High1         - 
 23 Ell2    0.00264        - 
 24 WEHR    0.04504  0.04771        - 

Figure 18: Distance matrix (uncorrected “p”) 
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Chapter 5 

Discussion

5.1 Phylogeography 

   Based on the new data from our surveys for P. punctatus and the genetic work 

conducted in this study, we now have a better idea of the actual distribution of 

the species.  Instead of being thinly distributed along the ridges of Shenandoah 

Mountain and Great Mountain, it is now evident that the range of this species is 

much more complex.  It seems that all current populations are derived from a 

single ancestral population, evident by the relatedness of populations in relation 

to geography (Fig. 19).  Dispersal and/or vicariance do to climatic oscillations are 

likely to have since sundered this ancestral population into the isolated 

populations that exist today. 

   The most significant portion of this animal’s occurrence definitely occurs on 

Shenandoah Mountain.  All historical surveys and the 2006 surveys conducted 

by Flint and myself revealed healthy populations along the ridgeline.  Cow Knob 

salamander numbers appear dense here, from the southern peaks in Highland, 

Bath, and Augusta counties, VA, all the way north to the type locality, Cow Knob, 

WV.  I consider this stretch the main population which is 45 miles long running 

southwest to northeast.  Although relatively long, this is still a geographically tiny 

size for the significant portion of a species’ range.  Most of the range is extremely 



49

narrow, under 8 miles at its widest point and usually spanning less than 5 miles 

in width. 

   Our new record on Jack Mountain, which represents the western most location 

for this species, is a curious one.  Contrary to our expectations, the genetic data 

proved these individuals to be P. punctatus and not the more common and 

nearby P. wehrlei.  As shown in Figures 14-16, these individuals group right in 

between northern and southern clades.  In my opinion, the Jack Mountain 

population should be further investigated.  Most of the land on Jack Mountain is 

private property and my surveys were thus restricted to a site at only 2,800 feet 

in elevation, so it would be interesting to conduct surveys along the much higher 

ridgelines and peaks.  According to US Forest Service maps, there is a road that 

runs south along the ridgeline of Jack Mountain from CR 25 near Moyer Gap.  A 

gate blocks the road in the north, but the land is owned by the paper company 

MeadWestvaco, who might give access to researchers (Pauley, pers. comm.).  I 

recommend that those who survey for P. punctatus on Jack Mountain do so after 

a good rain event.  I spent considerable time looking for salamanders at the Jack 

Mountain site and had just about given up on it, but happened to be in the area 

during a very hard rain and salamanders actually turned out to be plentiful there. 

   Probably the most perplexing result of this study is the genetic distances of two 

specimens from Elliot Knob, Virginia.  One of these specimens, Ell2, shares the 

exact same haplotype as the Jack Mountain specimens, while the other is a 

haplotype that is actually the most genetically dissimilar to those.  This brings into 

question the validity of the sequence data of the Elliot Knob specimens, which 
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clearly should be much more genetically similar than they are. I cannot say for 

sure whether this difference represents natural genetic variation within the 

population, but I doubt it, and believe that the sequence data from this population 

should be resampled. 

   When I had first heard that Nathaniel Mountain represented a potential 

population of Cow Knob salamanders, I was skeptical.  Sure enough, however, 

Flint managed to find an individual during his surveys and sent me a tail tip.  The 

resulting haplotype grouped in with all the other haplotypes yet was still 

somewhat distinct.  All of the pairwise genetic distances with this haplotype were 

greater than 0.016 substitutions per site.  According to the molecular clock 

estimates (1.3%/Myr) employed by Weisrock et al. (2001), gene flow among the 

Nathaniel Mountain population has been restricted from the main population for 

1.32–1.62 million years.  This puts the split sometime in the early to middle 

Pleistocene, a time of extreme climatic oscillations (Barnosky, 2005).  It could be 

that P. punctatus inhabited a much larger range that went north all the way to 

Nathaniel Mountain, but was sundered by fluctuations in climate.  I believe that 

the Nathaniel Mountain population represents a relict population that has been 

isolated on its northern habitat for about 1.5 million years, left on its own 

evolutionary trajectory. 

   The most closely related Individuals to Nathaniel Mountain, were from Helmick 

Rock.  Tail tips from two specimens at this location were collected during William 

Flint’s VES surveys.  Genetic data from these specimens shows them as distinct, 
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but still groups them together with the Nathaniel Mountain specimen, forming a 

northern clade.

5.2 Conservation Implications 

Cow Knob salamanders face various threats across their range.  Flint (2004) 

found that roads in particular have a major influence on the abundance of P.

punctatus.  Roads and their peripheries, especially areas downhill of roads (up to 

74 meters), experience greatly reduced numbers of salamanders, likely caused 

by eroded loose soil filling in interstitial spaces. 

   Despite the impact of roads, Cow Knob salamanders and their habitat are still 

in pretty good shape.  Most of the range of this species lies within USDA Forest 

Service land, so it has received considerable attention.  In fact, in 1993, a 43,000 

acre area in the George Washington National Forest was created in part to 

preserve the forest habitat required by P. punctatus.  The designated area, the 

Shenandoah Mountain Crest – Special Interest Area (SMC-SIA), includes all land 

on Shenandoah Mountain above 914 meters within the Dry River Ranger District 

(Flint, 2004).  This reserve preserves an area with the greatest abundance of 

Cow Knob salamanders and is a great step toward the conservation of the 

species.

   Conversely, mere numbers of individuals being preserved is not always the 

most important consideration with developing a conservation plan.  A more 

effective strategy, especially for a species with a small range like this one, is to 

protect as much of the underlying genetic diversity within the species as possible.  
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Environmental change, both anthropogenic and natural, is an ongoing process, 

and genetic diversity provides populations with the means to adapt and evolve to 

such change.  Furthermore, loss of genetic diversity usually results in increased 

inbreeding and overall reduction of reproduction and survival (Frankham et al., 

2004).  Therefore, genetic results provided by this study are especially important 

to the future management of P. punctatus.

   Based on my genetic data, I suggest that populations on Helmick Rock, Jack 

Mountain, Shenandoah Mountain, and Nathaniel Mountain all be treated as 

separate management units (MUs).  All four populations meet the Moritz (1994) 

criteria for management units and are all likely on separate evolutionary 

trajectories.  In addition, the Nathaniel Mountain population represents a special 

concern and may even deserve an ESU designation.  Conclusions and 

recommendations for each population in this study are outlined below. 

Shenandoah Mountain (Fig. 20) 

   The majority of Cow Knob salamanders almost certainly occur in the 

Shenandoah Mountain region.  Therefore, this population is inherently important 

simply due to the sheer number of individuals it represents.  On the other hand, 

specimens throughout this region, represented by 1 haplotype from 16 

individuals in this study, possess especially low genetic variability (see Figs. 13–

16).  I therefore recommend that management of the Shenandoah Mountain 

region remain as is.  The current population appears healthy as surveys year 

after year have produced consistent records of many individuals.  Furthermore, 
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Cow Knob salamander habitat in much of this region is already being protected, 

and in some cases local populations are even being monitored.  In summary, this 

region represents a large proportion of global P. punctatus abundance, is a 

monophyletic group, but contains low genetic diversity.  It should be managed as 

a single large MU of medium importance. 

Helmick Rock (Fig. 21) 

   Based on haplotype diversity from Helmick Rock, Cow Knob salamanders 

there vary genetically from all other populations by 0.26–1.10 substitutions per 

base.  Based on molecular clock estimates (1.3%/mya) they have not been 

isolated longer than about 0.85 mya, and although they are an insular species 

now, they might have even experienced very recent gene flow.  This taken in 

regard to the population’s geographic location is not very surprising.  The main 

ridgeline of Shenandoah Mountain, where many individuals occur, extends north 

to only a few miles southwest of Helmick Rock.  Recent climatic fluctuations 

during the Pleistocene could have easily allowed individuals to disperse at lower 

elevations when the climate was cool.  It was only within the last couple of 

thousand of years when, as temperatures rose, a population could have become 

isolated, and would not have had time to undergo significant divergence at the 

genetic level. 

   Although recent gene flow is likely, the Helmick Rock population still represents 

the second most divergent population and should be valued from a conservation 

perspective for the genetic variation that it is able to contribute.  Diversity is still 
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much higher than that found within the large Shenandoah Mountain population, 

so this population should be managed as an additional MU also of medium 

importance to conservation. 

Jack Mountain (Fig. 22) 

   Sequence data from two individuals collected on Jack Mountain produced 

identical haplotypes, and thus low genetic diversity within the population can be 

expected.  These haplotype differ from all other populations by 0.26–0.79%, 

meaning that the Jack Mountain population has undergone even more recent 

gene flow with the Shenandoah Mountain population than the Helmick Rock 

population has.  This is astonishing since dispersal of specimens on Jack 

Mountain is blocked from Shenandoah Mountain individuals to the east by a 

series of low-laying valley barriers.  The valleys experience high temperatures 

and the rain shadow effect produces areas so dry that a native cactus species 

even occurs there.  It is therefore hard to imagine a moisture dependent species 

like P. punctatus traversing such extreme valleys. 

   It must have been that times of cooler climates in the Pleistocene allowed 

corridors between the ranges.  For the meantime, and as long as the earth’s 

temperature continues to increase, Jack Mountain individuals will remain isolated 

from other individuals and maintain their separate conduits through evolutionary 

time.  I suggest that this population be considered a MU of low to medium 

importance to the overall conservation of the species.  
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Nathaniel Mountain (Fig. 23) 

Pabijan et al. (2005) states that “rationale behind preserving conservation units 

stems from a compromise between limited resources and a need to preserve as 

much genetic diversity as possible in a given species.”  One way to preserve a 

hugely significant portion of genetic diversity within Cow Knob salamanders, and 

without putting limits on many resources, is to immediately and efficiently protect 

the habitat of individuals from Nathaniel Mountain, WV.  This population, 

unfortunately represented in this study by only one individual, contains a 

haplotype deeply divergent from all other Cow Knob salamander populations.    

Based on genetic distance measures, the Nathaniel Mountain haplotype is 0.79–

2.13 substitutions per site different from the other populations.  Using molecular 

clock estimates (1.3%/mya) the population diverged no sooner than 0.6 mya and 

maybe as late as 1.64 mya, or the late Pliocene to mid Pleistocene. 

   The loss of any population as differentiated as the Nathaniel Mountain 

population would result in the loss of an appreciable amount of genetic diversity 

in the species and should be avoided at all costs.  Unfortunately, this population 

is probably restricted to a very small range on Nathaniel Mountain in West 

Virginia, and rough estimates of abundance seem very low.  Several survey 

attempts in the area have proved futile (Pauley & Fisher, pers. comm.), and even 

Flint’s surveys only resulted in one tail tip for the study. 

   I believe that the population of P. punctatus inhabiting Nathaniel Mountain is in 

dire need of additional study.  Individuals there represent by far the most 

divergent population of Cow Knob salamanders, making them of extreme 
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importance to the preservation of the species.  Furthermore, additional genetic 

data should be gathered to determine if the population is reciprocally 

monophyletic and life history data should be quantitated for analysis of ecological 

exchangeability.  Such analyses might reveal that Nathaniel Mountain individuals 

actually represent ‘evolutionary significant units’ (ESUs), or even more 

importantly could even be a new species.  For now, the Nathaniel Mountain 

population of Cow Knob salamanders should be considered a MU of high 

importance.  This group, more than all of the others, warrants additional study, 

and could prove to be an important resource in the struggle to secure the 

preservation of the species as a whole.

5.3 Plethodon punctatus/wehrlei Divergence 

   Over the duration of this study, I spent a lot time in the field critically analyzing 

Cow Knob salamander habitat, ecology, and behavior and took extensive notes 

on syntopic, sympatric, and parapatrically occurring salamander species.  This 

experience, along with the newly derived genetic data (mentioned above), 

spurred my own ideas regarding the reasons and mechanism that drove the 

divergence of Plethodon punctatus and P. wehrlei.

   Essentially, I agree in part with Highton 1995 who hypothesized that the split 

resulted from climatic oscillations.  Highton suggested that the split took place 

during the Pliocene, which agrees with the molecular clock estimates of 3.5-4.5 

mya since divergence (based on 1.3%/mya) from this study, and the results of 

Weisrock et al. (2001).  On the contrary, Highton puts an emphasis on the “dry 
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periods of the Pliocene,” but I believe that the cause was more a result of overall 

temperature fluctuations that forced mesic habitat up and down mountainsides.  

Highton is probably right that populations were isolated from each other on 

different mountaintops, but why would they speciate allopatrically? And what is 

the mechanism? 

   It seems more feasible to me that the ancestral P. wehrlei/punctatus ancestor

was at one time abundant with a large range but was isolated on mountaintops 

during a “dry spell”.  The speciation event must have occurred when things 

became much cooler again.  As cooler temperatures returned, ideal habitat was 

then forced back down the mountainsides.  At one time, when temperatures were 

decreasing, the mesic forests which comprise such ideal habitat for these 

salamanders were centralized neither at the top nor at the bottom of the 

mountains, but somewhere in between.  Therefore, the maximum resources were 

at mid elevations and lots of species were competing for the same resources.  

This idea of course relies on the assumption that these salamanders are 

constrained by their habitat niches; an idea termed “niche conservatism” (Wiens, 

2004).  The general idea of niche conservatism is that dominant vegetation 

types, which comprise the overall countenance of a habitat, are adapted to 

certain climate regimes and adapt to changing climate by moving to different 

latitudes and elevations.  Smaller species found within these habitats, such as 

salamanders, are thus more likely to follow the moving habitat than to remain 

where they are and adapt to entirely different habitat and climate.  It is niche 
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conservatism then, which defines the geography and much of the genetic 

distribution of populations as landscapes change. 

   One species specifically adapted to the mesic mountain habitats must have 

been an especially formidable competitor, the white-spotted slimy salamander, or 

P. cylindraceus.  This salamander is much larger than both P. punctatus and P.

wehrlei and must have used a significant amount of their resources.  Interspecific 

competition is known to influence niche differentiation as inferior competitors are 

driven from contested resources through exploitation or interference (Gall et al., 

2002; Hairston, 1987).  Influences of competition have been documented in P.

punctatus, which as juveniles are the same size as adult sympatric P. hoffmanni

(now P. virginia) and utilize the same food and surface habitat.  Interspecific 

competition drove these two species to partition their food niches temporally, a 

phenomenon called noncoincident feeding (Fraser, 1976).  It is reasonable then, 

that even stronger competition with large and aggressive P. cylindraceus would 

have operated as a negative selective pressure on the P. werhlei/punctatus

ancestor and forced them into less optimal conditions.  With this in mind, I 

propose the following scenario. 

   When optimum resources were located at central elevations, selection must 

have been for individuals tolerant of the colder climates at the elevationally 

higher edges of resource availability, and for those tolerant of hot and dry 

conditions at the other end of the spectrum at low elevations.  One of the ways 

higher populations could have adapted to a much colder climate was by following 

cracks and crevices (interstitial spaces) of talus slopes deep underground into 
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the mountains.  Changes in phenology would then follow as these populations 

were forced into shorter active periods but benefited greatly by little competition 

for resources.  As the climate cooled even further, competitors might have 

followed resources down the mountains and became isolated long enough to 

speciate allopatrically.  Then, upon returning warmer temperatures, the high-

elevation individuals (P. punctatus) remained better adapted to the high elevation 

habitats and competitively excluded any returning individuals whose ancestors 

had followed the low elevation resources (P. wehrlei), thus shaping today’s 

distribution of the wehrlei complex.
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Figure 19.  Geographical overlay of maximum parsimony consensus tree. Each 
haplotype is representative of a distinct Plethodon punctatus population; Nath = 
Nathaniel Mountain, Helm = Helmick Rock, Jack = Jack Mountain, Shen = 
Shenandoah Mountain Range, Elli = Elliot Knob.  Tree is rooted with P. wehrlei
(WERH).
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Figure 20. Distribution of P. punctatus on the Shenandoah Mountain range. 
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Figure 21. Relief map of Jack Mountain.  Two P. punctatus individuals were 
discovered here at 2’800 feet in elevation in the area highlighted by the green 
oval.  Area in blue represents elevations over 3’000 feet, ideal habitat for the 
species.
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Figure 22.  Potential distribution of P. punctatus at Helmick Rock (south side of 
ridgeline) and Bear’s Hell (north side). Areas in red are elevations above 2,500 
feet (potential habitat) and blue areas are above 3,000 feet (ideal habitat).
Specimens from this study were collected from the area highlighted by the green 
oval.
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Figure 23.  Potential distribution of P. punctatus on Nathaniel Mountain, WV.
Red areas are elevations above 2,500 feet and indicate potential habitat for the 
species.  The specimen used in this study was collected at the point indicated by 
the blue cube. 
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Appendix Biographical Sketch & CV

My interest in science dates back to when I was a child.  Growing up around chaparral, 
montane, and desert ecosystems, I became enthralled by the native fauna that 
surrounded me.  I was especially curious about reptiles and amphibians, so my room 
was often cluttered with terrariums, heat lamps, and animals that clambered and 
slithered about.  Then in 1999, I came across a strange arachnid hiding under a boulder 
in Mission Gorge, San Diego.  It was a tiny and strikingly colored scorpion that turned 
out to be an exceptionally rare find and spurred an interest in scorpion biology.  Before I 
knew it I was at Marshall University studying scorpions with Dr. Victor Fet. 
   During my undergraduate years, Dr. Fet and I collaborated on many projects, and I 
became involved in the projects of other professors like Dr. James Joy and Dr. Guo-
Zhang Zhu as well.  It was during my final semester that I met Dr. Pauley while enrolled 
in his ornithology class. 
   Post graduation, I worked with birds as an intern for Point Reyes Bird Observatory 
Conservation Science (PRBO) at the Palomarin Field Station in northern California, but 
soon ended up back at Marshall for graduate school.  This time, however, I wanted to 
work with reptiles and amphibians and Dr. Pauley graciously accepted me into his lab. 
   Presently, I have accepted a position in the doctoral program at the School of Life 
Sciences of the University of Nevada, Las Vegas,  There I will be pursing both my 
passion for herpetology and scorpiology simultaneously.  Two professors, Drs. Jef 
Jaeger and Brett Riddle, will co-advise me on dissertation work concerning scorpion 
biogeography.  Financial support is to be supported by a research assistantship working 
toward the conservation of the endangered relict leopard frog, Rana onca.
   My long term goals include uncovering historical biogeographic patterns in North 
American scorpions, assisting in the revision of the North American scorpion family 
Vaejovidae, and completing a field guide on western United States scorpion fauna.
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