SOIL MOISTURE AFFECTS SURVIVAL OF MICOORGANISMS IN HEATED
‘ CHAPPARRAL SOIl.
By: Dunn, Paul; Susan Barro, and Poth, Mark

INTRODUCTION: Fire is an integral part of the chaparral that occupies 8 million
hectares in southern California. Because wildfire is incompatible with the growing use of
chaparral areas for residences and recreation, the practice of selective prescribed burning
is gaining wider use. The exact mechanism by which heat kills soil microorganisms is
unknown; but we do know that steam heating is more effective at killing microbes than is
dry heat killing. In this study, soil was heated to various temperatures in factorial
combination with various soil moistures to determine the direct effects of fire and soil
moisture on the survival of microorganisms in chaparral soil.

RESULTS/DISCUSSION: Heat and soil moisture function together in the inactivation
of soil microbes. At moderate temperatures, net numbers of fungi increased as a result of
heating. As temperature increased, diversity decreased, and both heat-shock (heat
stimulated) fungi and bacteria, whose spores require heat to germinate were observable.
Heat-shock fungi were not seen in plating of unheated soil. Temperatures beyond that
which produced the heat shock community sterilized the soil. All three microbial groups
were increasingly sensitive to heat with increasing soil moisture except at the highest soil
moisture level. Sensitivity to heat for all three groups differed significantly: fungi>nitrite
oxidizers> bacteria. The effect of soil moisture is not readily apparent. Water probably
acts as a catalyst in the heat denaturing process. It lowers the amount of heat required to
reach the activated state, denature biomolecules, and subsequently inactivate cells.

CONCLUSION: For fungi, mild heating increased germination of dormant forms
yielding significantly higher counts than those in unheated soil. With increasing
temperatures, microbe populations showed an exponential decrease. For heterotrophic
soil bacteria, this decrease summarized as a function of soil moisture and temperature.
Physiologicaliy-active populations in moist soil were significantly more sensitive than
were dormant populations in dry soil. A mathematical model shows qualitatively that
more of the microbial biomass will be killed when the soil is moderately moist—as
during prescribed burning—than when it is dry. Mineralization of killed microbial
biomass in soil and release of plant nutrients may partially explain the increased plant
growth and reduced response to fertilizer at burned sites.
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MICROORGANISMS IN HEATED CHAPARRAL SOIL -

PauL H. DUnN, Susan C. BARrO and Marg PoTH

Pacific Southwest Forest and Range Expertment Station. Forest Service, U.S. Department of Agriculture,
: ‘Riverside, CA 92507, U.S.A. .

_(Accepted 30 Ocmbe_r 1984)

Summary—Prescribed burnirig, the planned appilication of fire to reduce the hazards of wildland fuels,
is coming into wider use-in southern California chaparral. Soil was heated to various temperatures in
‘factorial combination with various soil moeistures to determine the direct effects of fire and soil moisture
“on the survival of microorganisms in chaparral soil. For-fungi—mild-heating increasedwgermination of
.dommant forms._yielding significantly -higher counts. than those in unheated seil. With increasing
temperatures, microbe populations showed an exponential decrease. For heterotrophic soil bacteria, this
decrease was summarized as a function of soil I3oiSTuLE erature. Microbial grotps gifféred
; y_in_sensilivity to temperature: fungi > nltratﬂjiﬁ%;mme-
TS0 Were SIPnilicant]y more SensHive, T wer Guriian T pop G ons
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INTRODUCTION::

Fire is an integral part of the chaparral thdt occupies.
‘8 million hectares- in- southern California. Periodic
wildfire is inevitable in the chaparral ecosystem be-
cause of long dry summers, accumulation of dead
" materials and litter, and many other factors in this
Mediterranean-type climate (Hanes, 1971; Minnich,
1983). Because wildfire 1$ incompatibie with the grow-
ing nse of chaparral areas for residences arid recre-
ation, the practice of selective prescribed burning is
paning wider wse. 1t reduces the risk of intense,
* destructive wildfire by the planned burning of haz—
ardous fuels under controlled conditions.
;The effects of fire-induced soil heating on microbial
opulation dynamics as well as on nutrient and
succession dynamics have received little study. Fire
eases nutrients held in_slowly decomposing Litter
diin standing dead material (DeBano and Conrad,
978) and reinitiates autosuccession (Hanes, 1971)
eports on the effect of fire on microorganisms in soil
At rany and varied: some report that populations
®crease after burning, some that they increase, and
‘others that they do not change (Frita, 1930; Corbet,
934; Dungelli, 1938; Kivekas, 1939; Jaques, 1947,
hcn 1950; Wright and Tarrant, 1957; Wright and
Bolien 1961; Ahigren and Ahlgren, 1965; Niel 1 al.,

ddcn and Parkmson 1975). The vanied reports.
bably refiect differences in timing of postfire
Ampling, fire intensity, soil-and litter moisture ¢on-
t, soil type litter depth -and lack of dccurate
ontrols, -

The exact mechanism by which heat_kills soil
CTOOrganisms is unknown; but we do know that
=2m “heating i§ more cﬁ’ectwe at killing microbes?
$ dry heating {{Baker, 1970). Most prescribed
UIDing has been conducted in the moist winter-
‘L season when the danger of a fire escaping is

965; Cooke, 1970; Jorgensen and Hodges, 1970; -

ABEmETCal model presented shows qualitatively that more of the THErobial-biomass
ist—as durin ]
M&@}_@LQQMMMMWSL&WMSM@WMS may partiaily explaim the

lnmmmmmmgg}es .

rescribed burmins—than when it is dn

low. Most wildfires occur during the dry summer—{a§

* season. The question arises whether prescribed burns

m the moist season-—when soil microorganisms are
most active—and wildfires in the dry season-—when
soil microorganisms are dermant—produce the same
effects on the microorganisms. =

MATERIALS AND METHODS

Soil was coliected from Monroe Truck Trail and
Bluebird Truck Trail, San Dimas Experimental
Forest, Los Angeles County. The s0il from Monroe
Truck Trail is in the Cineba series (Typic Xerorthént)

“and that from the Bluebird Truck Trail in the Sopér -

series {Typic Argixeroll). **Samgles were taken from§
the upper 5cm of mineral soil funder Adenostoma
fmczculatum H. and A. and Ceanothus crassifolius
Torr. in-an area that had iast burped in a wildfire
23 yr before. The soil, which was dry when collected,
was sieved (<2mm) and had a gravimetric- water
content of 3%/ on a dry weight basis.

Several kxlog,rams of soil were mmstened 03,9, 14¢

or 20% moisture and heid for 14 days at 35°C# -
Subsamplcs of the soils were then placed in test tubes$

* for heat treatment at five temperatures from 25 to#

210°C for 30 min$ Temperature and moisture ievels
were used in a 5'x 4 factorial combma'uon with two

-replications.

Heat treatments were camcd out in a water bath
or mineral oil bath for temperatures above 100°C, to
allow rapid temperature adjustments of the soil in the
tubes. Soil temperature adjusted to bath temperature
in less than 3min as measured by chromel-alumel
thermocouples. After heating, the tubes with soil
were cooled in a water bath at room temperature. The
soil was held in capped test tubes at 4°C for no more
than 2 days before processing for microbial numbers.

One to nine (W:W) dilutions of soil in 0.2%)
water-agar were made. The initial dilution was a
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144 o PauL H. DURnN et al.
1-min emulsification at high speed in a sterile Waring 1000 - FUNGI ', inactivation is the
blender. Further dilutions were made in 0.2 water- hﬂatll sis of varance |
agar, All plate counts used five plates per dilution for 100 b Aﬂat{lre (P < 0.0001).
each replicate soil sampie. Fungi were counted by @ rafure-moisture
dilution plates on Martir's IIA Agar (10 g dextrose, ‘ mee ificant factors
2 g peptone, 0.25 g KH,PO,, 0.25 g MgSO,, 15 g agar 1or i il Slﬁms
and 1000 m] distilled water) with 50 units ml~' each ~ - SO MOISTURE org?
of potassium Penicillin G and Streptomycin sulfate to 001 Lg% - i, -
inhibit bacterial growth. NPX (Tergitol, Baker : ;22‘(‘)';“ : ;E[\ ¥ :
! Chem. Co.} was added at 0.1% of volume to the - 00001 ‘ t Heat and soil hoi
| medium to prevent fungal overgrowth. Plates were 1000 i . ctivation of soil T
held for 7-10 days at 25°C. Nitrite oxidizers werc = BACTERIA Il-la':;misarrls to heat is a
| counted with the most-probable-number (MPN) £ 100 or8 asteurization of
: 1 methods of Alexander (1965). MPN tubes were incu- I . ;},2‘3150“, 1975) show
| bated 5 weeks at 25°C. Heterotrophic bacteria were E | pacity) fungi are m¢
y counted on plates of Tryptic Soy Agar after 3—4 days. g 10 ignomycetes and tl
- . : 4
Straristical analysis 4 ? oo bac{mzi-es;p:;?“} 'Sﬁf;
Microbial survival was expressed as the natural - f:gmi}fy wet or dry §
_ ) logarithm of _100 (N/N,) where N, represents t‘hE 60001 ' 1 e peterotrophic b
! number of microbes capable of producing ¢olonies ’ 1000 ﬁ:icrobes in soil, are
g~' oven dry soil before heating, and N the number _ NITRITE OXIDIZERS . +.; il than in dry soil
) of microbes capable of producing colonies g~! oven - . S‘trif ing bacteria a
" dry soil after héaung. This transformation aliows 100 21 Slu?bancg! includir
direct comparisons between microbial groups even v:et soil can redw
though the number of -colony-forming units g~' of - 1.0 autotsophic itrite
: dry soil  may differ by orders - of magnitude.. : prolonged periods (
Differences in survival among microbial groups at 001 “The role of heat
various temperatures, soil moistures and times since N better understood |
moistening were determined by analysis of variance E . fects sur
X o U . 00001 L 1 ! 1 ! directly &
using the Statistical Analysis System (SAS) computer 20 . 60 80 100 120 qich as proteins, m
programs (Helwig and Council, 1979; Speed et al., o . TEMPERATURE (°C} are unstable at elev
1378). . ' ‘ ' Fig. 1. Survival of physiologically active populations of indir?:ctly mﬂut?nce'
Modeling fungi, heterotrophic bacteria, and nitrite oxidizers in heated genetic reguiation &
. . ‘ soil at four soi} moistures shows a heat shock effect fi The effect of soil
Survival was plotted against temperature for each  funpi. Values ploted are means {(n = [0); bars repre nt. Water probab

denaturing procest
‘required to reach’
“molecules, and St
vater also transfer

_microbial group. Least squares analysis (Bevington, +18E. -
1969) was used to determine linear relationships ST :
bmcégfzﬁesiﬁéﬁag;) a#d tempergt_ure (T)at _each S0il * 5 een as a net incréase in numbers immediately

? ' . . heating. At moderate temperatures net numbers

InS=—kT+b ' (1) Fungiine dasaT of heating. A temperature

The cateulated slopes {—~k) and intercepts (b) for 1pg;regsg_d, diversity 'def:rcased, and_bo’gh- hea
each microbial groupp wére_ pl)otted' against!:t)l'u:i:g cz)rre- i_heabsttmulat&d) fungi _au;“d bacteria, w-haseispo

“sponding gravimetric soil moistures and least squares Tequie heat.-tq germnate #(Bollen, 1 962; Ma m;g_n
analysis again used to solve for —k and b as functions and Newton, 1974), were observable? Hcat‘-;
of soil moisture. This techmique is similar to that used fungi Were _not seen 1 platlpgs of unhca:te: hSF’
by Hurst ef al. (1980) in studies of virus survival in Temperatures beyond ;EIL:"’“ which __p_:g’%duch e
soil. ‘The significant relationships for —k and b as ?EQX‘%&\EP_—%‘W}W soilf <

releases appr!
heat energy.

soil moistures. 1
isture (Fig. 1)
water could serve

functions of soil moisture, as determined by re- | “three microbial groups  were InCread
gression anazlysis, were then substituted into the

overall model (equation 1) for thermai inactivation as

a function of soil moisture and temperature.

" The model of bacterial heat survival was tested by
heating samples of the two soil types to 50, 60 or 70°C
at 7, 12 or 16% soil moisture and bacterial survivors

‘ g"sensiﬁve to heat with increasing soil moist
except at the highest soil moisture level (Table 1

‘Fig. 1). Sensitivity to heat, for_all thr 3

differed significantly: fungi > nitrite oxidizers

e

terid (Duncan’s multiple range test, P =
The similarity of survival curves for

“The vaporization
0 Increase surviv;
), which might

oxidation) reac
Baker, 1970). Or
stream at 110°C
of approximaiely

microbial groups (Fig. 1) shows that the patt

wete counted. Predicted survival was plotted against
measur i i . s
eas_ cd survival for e'aCh.- soil and 1,3 ast Squares - Table 1. Coefficients of delermination (r?} for survival in heat
analysis performed to check the model’s validity in . as a funciion of temperature (Fig. 1) by soil moisture
the two di ik - - —
e two different soils. . Soil “Heterotrophic . Nitri
moisture (74) Fungi bacteria

areas of the soil
g . .
microorganism 1

RESULTS o

S . i 3 0.825 0.79% 322

. Plots of survival against soil temperature for fungi,. 9 0.942 0.957 0.718

heterotrophic bacteria and nitrite oxidizers (Fig. 1) 14 - 0.977 0.916 0:808 ;
20 L0944 0.916 0.85

indicated & definite heating effect. This effect for fungi




' peat inactivation is the same for all microorganisms.
< pnalysis of variance results indicale that soil tem-
erature (P < 0,0001}, soil moisture (F < 0.0001) and
{emperature-moisture . interaction (P < 0.0001), are
a1l significant factors in heat inactivation of micro-
organtsms. ’ ’

DISCUSSION

Heat and soil moisture function together in the

" inactivation of soil microbes. Sensitivity of micro-
organisms io heat is affecied by soil moisture. Studies
on pasteurization of greenhouse soil (Martin, 1950,
Powlson, 1975) showed that in moist soil (503 field
Eapacity) fungi are most sensitive to heat, fellowed by
sctinomnycetes and then bacteria. Water content of
pacterial spores is an important factor; moderately
dry spores show more heat resistance than do ex-
tremely wet or dry spores (Murrell and Scott, 1966).
The heterotrophic bacteria, the most heat-resistant
microbes in soil. are more sensitive 1o heating in wet
soil than in dry soil (Dunn and DeBane, 1977). The
pitrifying bacteria are known to be semsitive to any
disturbance, including fire (Powlson, 1975). Fire over

-/

,l,

/]

CIDIZERS

autotrophic mitrite oxidizing bacteria in soils for
prolonged periods (Dunn et al.. 1679).

better understood than that of soil moisture. Heat
directly affects survival since cellular components
such as proteins, membrane lipids and nucieic acids
are unstable at elevated temperatures. Heat may also
indirectly infiuence survival by its powerful effects on
genetic reguiation and gene expression (Marx, 1983).

The effect of soil moisture is not as readily appar-

jenaturing process. 1t lowers the amount of heat
equired to reach the activated state, denature bio-
“molecules, and subsequtently inactivate cells. Soil
~water aiso transfers heat by the latent heat transfer
process (Hillel, 1981), which involves the absorption
of heat by liquid water and convective or diffusive
movement of the vapor to @ point where it condenses
d releases approximately 243 kg~' (580 cal g7

would account for the greater inactivation at higher
il moistures. The greater survival at 205, soil
moisture (Fig. 1) may indicate that large amounts of
water could serve as z significantly iarge heat sink.
The vaporization of water in the seil might also serve
increase survival by reducing the level of molecular
, which might be required for some denaturation
(oxidation) reactions that cause cell inactivation
(Baker, 1970). One gram of water when converted to
tream at 110°C and 0.101 MPa (] atm) has a volume
of approximately 1.75 1. The production of this much
vapor quite conceivably could flush O, from localized
reas of the soil atmosphere and possibly reduce the
Inicroorganism inactivation rate. :

Thermal inactivation of soil bactéria can be
thought of as the reaction:

N——N, @

Heat

here A is the present bacterial population capable
_fo}’ming colonies on laboratory medium and N, is
1na bactersa i i

Survival of microorganisms i heated soil

wet soil can reduce the populations of chemo- .

- The roie of heat-in microorganism inactivation is

ent. Water probably acts as a catalyst in the heat -

eat energy. This latent heat transfer process .
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forming colonies on laboratory medivm. The mag-
nitude of this reaction can be defined.as the change
in population (N) with change in temperature (T}
and is proportional to a reaction comstant (k):

ANJdT = —kN - B
The present population of bacteria (N) equals the

" initial population (V) less the nactivated cells (N,).

N=Ny— N, -4
Rearrangement and integration of equation (3) gives
In(Ng—N)=—kT+C 3]

where C is an integration constant. Under initial
conditions the heat killed population (N,} is zero.
Temperatures that would not cause a thermal nac-
tivation are invalid in this equation, but for the
purpose of evaluating C, temperature is set to zero
and the integration constant (C) evaluated by solving
equation (5). :

. C=—la(Ny (6)
This valde of the integration constant ¢an be substi-
tuted into equation {5} and the equation rearranged
to :

In((Ny— N}Ng) = —KT )

Equation (7) predicts @ logarithmic relationship
between the fraction of the original population that
survives and the temperature. This relationship is
apparent in Fig. 1. Least squares analysis indicates
that the lincar nature of these relationships between
survival and temperature was statistically significant
(P <0.05) (Table 1). The equations for the inac-
tivation of microorganisms, whether by heat (Lea,
1947; Powlson, 1975), radiation {Johnson and- Os-

-borne, 1964; Jackson et al., 1967; McLaren, 1969) or

fumigation (Munnecke et al,, 1978), all show a linear
response to increasing the dose of lethal agent as in
Fig. 1. For each case, T would represent the dose of
the lethal agent. A plot of the inactivation comstant
(—k) versus the gravimetric soil-water content for
bacteria and fungi (Fig. 2) shows a very different
response pattern for each. For bacteria, as soll-water

-0.030%
~0.050 |-

=0.070 -

-0020

-0.110}- BACTERIA
-0.40
0150
~-0470

-0190

—0.210 ' L J
3 9 14 20

SOIL MOISTURE {%, DRY WEIGHT BASIS)

Fig. 2. The refationship of the thermal inactivation constant

(—k) versus soit moisture for bacteria and fungi shows that

fungi are more susceptible to heat, and that the pattern of
esponse of the two communities is different.

THERMAL INACTIVATION CONSTANT- {SLOPE)
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content increases, —k becomes more negative, ap-
proaching a maximum decrease of 0.14% per degree
C. With increasing water content more water is
availablé to catalyze inactivation reactions. The cata-
Iytic effect approaches maximum as the amount of
water increases. This catalytic effect might also be due
to an increase in thermal conductivity.

For fungi, —k initially becomes more negative with
increasing soil moisture and subsequently less nega-
tive but is always more negative than —k for bacteria
(Fig. 2). Hence, fungi are more susceptible to heat,
which may be due to an inherently greater sensitivity
of fungi as well -as possible water-mediated heat
transfer or catalytic effects. In contrast to -~k - for
bacteria, —k for fungi becomes less negative with
increases in soil moisture beyond 9% indicating that
the inactivation reaction for fungl involves molecular
0,. The greater lethal effect of aerated steam on fungi
was demonstrated by Baker (1970). In the case of
fungi then, increasing soil-water content would lead
to increased steam formation, which could purge the
soil of O,. The water could also serve as a heat sink
_reducing the rate of thermal inactivation. The con-

" vergence of —k for bacteria and fungi at high soil -

motstures suggests that the inactivation mechanism
for both may be similar at high soil moistures.
Quanititatively the survival of bacteria in heated
soil can -be defined as ' )
5 = 100(N/Ny)
where N, is the initial population and N the surviving
population. The relationship between the logarithm

of survival and soil temperature is linear (Fig. 1,

Table 1) : . ,

: ‘InS=—kT+b _ (8)
where —k and b are_functionsiof the gra\}imctric
water content of the soi! (8}. From regression analysis
of the data shown in Fig. 2, - I

—k = (0.274/0)—0.144, r*=0.993, P <0.005, (9)
and from Fig. 3, ' S '
b = In (29056 —5673), r1=0.999, P <0.001. (10)

Equations (9) and (10) were substituted into equation
(8) to produce an overall modei of bacterial survival

pein (2905 B-5673]
0098

12\—
1

—
20

6k : '
I : .
3. ] [ 5]
SOIL MOISTURE (%, DRY WEIGHT BASIST

Fig. 3. Relationship of the intercepts (b) of the. survival
curves to Soil moisture for bacteria shows that high soil
moistures may provide limited protection for the soil bac-
terial population which is in contrast to the soil moisture
efiect on the inactivation constant (—k).

BACTERIAL SURVIVAL CURVE Y INTERCEPTS [Ln%)

PauL H. DUNN et al.

" of measured bacterial survival versus calculated sur-

20 .
% SURVIVAL =

EXP {{Q274 T-0.144T 8
(29056 ~S673 N Mta

-
k0

80IL MOISTURE (%, DRY WEIGHT BASIS)

70
TEMPERATURE
Fig. 4. Contour plot of bacterial survival in a heated Typic
Xerorthent as a fuinction of soil temperature and moist{xre
(6) iliustrates the model. Values> 1007] represent heat
stimuiated germination of dormant forms.

80 90 100 1o

(*C)

120

insoilasa functioﬁ of 501l temperature and moisture
(Fig. 4): i : :
In 5§ = [(0.274/6)—0.1441T + In (29056 - 5673). (11}

Equation {11) was tested for validi_ty within thé
temperature and soil moisture ranges studied. ‘A plot’

vival shows a good agreement (RSS=73294
r?=(.94) between the two (Fig. 5). When extended
to a different, finer-textured soil (Typic Argixeroll),
the model proves less accurate - (RSS=3316,
r=0.75) (Fig. 5). Other factors, which the modek

TYPIC ARGIXEROLL . .
100k r2-075 . 1
RS5=8316
a0
B0
) -
£ a0l ¢
a t
o
r 20k
2 .
< y s ' |
W ool% [ T SR S P
=
| 8o
2 7ol TYPE XERORTHENT .
g r2=0,93 R .
S eo RSS-3294
[ed "
> 5ok
S 50
40+ o : e
30
20+
-
10 2 & *
.
L Y (N S S N [ S |

4] 102030405060?OBO~
SURVIVAL— MODEL (%1

Fig. 5. Bacterial survival predicted with the model, which;
was developed for a Typic Xerorthent, shows a good cof-
relation with measured survival in that soil. The model 15:
tess accurate in a Typic Argixeroll. Both the coefficient ©
determination for the regression (%) as well as the resid
sums of squares (RSS) are shown as indicators of how well;
" the model fits this empirical data.
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