Ecosystem Changes after Pine Beetle and Salvage Logging in Colorado Subalpine Forests

Chuck Rhoades, Rob Hubbard, Kelly Elder, Byron Collins*, Mike Battaglia & Paula Fornwalt
USFS Rocky Mountain Research Station
Fort Collins, CO

*Presented by Byron Collins at:
Front Range Fuels Treatment Partnership Implementers’ Meeting
Lakewood, CO
7 March 2012
> 1.4 million hectares in CO & Southern WY since 1996
Overstory Mortality in Colorado

Pine losses
80-90% of basal area
Residual live trees
15-35% of stand BA

24 pine-dominated stands
Trees >10 cm DBH
Growing Stock in MPB Forests

Residual Live & New Trees

Overstory
- 312 t/ha (126 t/acre)
- 71% LPP; 18% AS; 7% SF

Understory Trees
- 3144 t/ha (1272 t/Ac)
- 35% AS; 32% SF; 29% LP

New Recruits
- 1612 t/ha (652 t/Ac)
- 69% SF; 19% LP; 4% AS

* Stocking Levels
370 t/ha (150 t/Ac)
Watershed Change

Responses Regulated by Change in
Canopy interception & Snowpack accumulation
Water uptake & Soil nutrient use

Complicating Factors
Responses may lag, difficult to detect, prolonged
Complex spatial & temporal patterns
Yellowstone Area ‘60 & ‘70s
About 40-70% of the overstory trees died
Surviving trees increased growth by 2-3 fold for two decades

(Romme et al. 1986)
35% of trees grew > 25% faster since the infestation
16% of trees grew faster than ever
Unrelated to precipitation
Decline in basal area explained 10-20% of response
*Assessed 123 cores in 4 basins
40% of trees added > 2X more height in ‘10 as in ’07. Proportionally, fir was most likely to double height; spruce was least likely.

Loss of basal area explains 13 - 23% of height increment. Pine most sensitive to BA; spruce least sensitive.
Management Response to MPB

Arapaho-Roosevelt NF, Colorado
Most harvesting since 1970s
Greatest extent of clear cutting

However:
<50% of infested area is treatable;
of that < 30% will be cut
90% of infested area will be untreated
Are there concerns about seedling colonization after harvest of MPB stands?

Since the outbreak, pine recruitment has been at least equal to previous decades

> 90% of units meet minimum stocking requirements

Compared USFS stocking surveys in pre- and post-outbreak harvest units. n = 30 stands; 3rd yr surveys; AR NF; Sulphur RD

(Collins et al. 2010)
Study Areas

Harvest vs. Retain?

Specific harvesting practices

CO State Forest
Willow Ck, Parks RD
Gore Pass, Yampa RD
Fraser Expt Forest
Methods

- 4 sites x 6 pairs of harvested and untreated stands (n = 24 total pairs)

- Overstory transects (5 x 100m)

- Surface fuel transects (15m)

- Seedling plots (1/100 acre; 3.6m radius) plots
Species Composition of Recruits

Harvesting stimulates new pine seedlings and aspen sprouts.

5 times more pine, aspen compared to uncut stands

Fir recruitment is promoted in uncut stands

*Cut stands meet minimum stocking requirements (i.e., > 150 t/acre)

*24 paired sites

(Collins et al. 2011)
Annual height growth of Fir & Pine has doubled since infestation beneath the dead overstory, but delayed in cuts.
Stand Dynamics

Future Species Composition

Forest Recovery - MPB-killed stands recover to pre-MPB stand structure in a century

Uncut & Partial Cut Stands
Dominated by fir

Clear Cut Stands
Similar to pre-MPB stands
Dominated by pine

(Collins et al. 2011)
Harvesting adds
- ~4X fine fuels (1, 10, 100 hr)
- ~3X total surface fuels

The increase in surface fuels may result in greater flame lengths (i.e., under extreme weather conditions: 2.3 vs 1.7 m compared to uncut).
- 1.2 m - halt direct-attack
- 2.5 m - halt dozers

Windthrow will increase the surface load in uncut areas
- ~2x higher than cut areas
Response to Management

Fire Behavior

Recovery of the forest canopy determines fire behavior

Risk of crown fire is low and will differ little between treated & uncut stands until crown develops (~20 yrs).

More fir in uncut stands = increases canopy BD and lower base height.

(Collins et al. in review)
Management Alternatives on MPB Acres

No Action
Untreated Beetle-Killed Stands

Fuel Reduction
Whole Tree Harvest

Water Delivery
Lop and Scatter Slash Retention

Forest Regeneration
Mechanical Scarification Site Prep
Effects of Slash Treatments on Surface Fuels

Lop and scatter treatments had 5x more fuel than control, ~2.3x more than WTH and scarification.

Coarse fuels predicted to persist for more than a century.
Response to Management Options

Soil Moisture

Soil moisture was highest in slash retention treatment

Scarification driest cut option

Gravimetric Moisture (%)

Spring

- p < 0.1

Summer

Fall

- p < 0.05

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Spring</th>
<th>Summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lop Scatter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Tree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarify</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response to Management Options

Soil Moisture
Response to Management Options

Soil Nitrogen Fertility

Soil N was highest in slash retention treatment

Ammonium (NH_4^+)
- 35% to 2.5X > uncut
- 20 - 30% > Whole Tree

Nitrate (NO_3^-)
- 1.3 to 5.2 fold > uncut

Cut vs Uncut
- 3 to 6 fold increase

*Extractable Soil N (0-15 cm mineral soil)
Response to Management Options

Seedling Height Growth

Greater in lop & scatter than other treatments \((p = 0.1)\)

74% survival overall commonly greater on scarified plots \((i.e., \text{in 5 of 6 plots})\).
Response to Management Options

Seedling Establishment

Seedling Occurrence

Whole Tree 58% of plots
Scarification 50%
Lop and Scatter 33%
Uncut 42%

Harvested areas were dominated by pine seedlings and aspen sprouts (i.e., 80-100% of recruits)

Uncut stands were dominated by fir and spruce

Seedling density: 9 – 18 k seedlings/ha

Adequately stocked units require 370 trees/ha
Take Home Messages

1. Tree regeneration is abundant in beetle-infested stands
2. Growth of residual overstory & understory trees are responding to loss of lodgepole
3. Harvesting leads to development of different stand types - with likely implications on future fire potential and effects
4. Slash Retention (Lop and Scatter) has positive effect on soil resources and seedling growth; Reduced colonization of new seedlings
Thanks to: Joint Fire Science Program, R2 Bark Beetle Incident Team, USFS Chief’s Emergency Fund, Colorado Water Conservation Board, Colorado Forest Restoration Institute, Staff at Arapaho-Roosevelt, Medicine Bow-Routt National Forests and Colorado State Forest Service for logistical support and numerous field crew members.

Further Reading:
