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Summary 
 
A question regarding the accuracy of the biomass functions for urban forestry settings was raised during 
the development phase of the urban forestry protocol for the California Climate Action Registry (CCAR). 
Specifically, the relative accuracy of the urban forestry biomass functions for each in situ carbon pool 
compared to wildland forestry biomass functions was questioned. To address this query an error analysis 
was performed that characterized the statistical variability and appropriateness of application of the 
biomass functions to urban areas of the State.  
 The general findings were that there was no evidence that the methods presented in the protocols 
for estimating biomass were any less reliable on average than their wildland counterparts. Professional 
analysis in the application and improvement of biomass estimates is encouraged, which is consistent with 
the wildland application of allometric functions to tree inventory data. 
 
Introduction 
 
The application of biomass prediction equations is a necessary step since a complete characterization of 
tree form would be prohibitively expensive and actual weighing would destroy the tree and be expensive. 
Tree biomass is often estimated as species specific regression functions with diameter at breast height 
(DBH) as a minimum predictor variable. Total tree height is commonly included with DBH as this 
reduces the variance substantially. Height, however, is a more expensive variable to measure on each tree. 
Height is often measured as a subsample and regressions of DBH to height developed to provide unbiased 
estimates of height for trees not measured. 
 
Crow and Schlaegel (1988) described how to evaluate and compare biomass estimators. They discussed 
commonly used variables, model forms, transformations and statistical measures. They point out that care 
must be taken to ensure that comparisons are valid by looking at units of measure, assumptions of model 
forms in developing statistical measures, and bias corrections after logarithmic transformations. The 
statistical measures they recommend examining for comparing equations include coefficient of 
determination (R2), standard error (Se), fit index (FI), coefficient of variation (CV), and the range of the 
data. In applying biomass equations the authors recommend applying equations derived from data similar 
to that to which they are being applied. An idea of the variability may be estimated by applying multiple 
equations to a dataset. 
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Methods 
 
A survey of the biomass literature was conducted to summarize the variability within biomass functions. 
Common statistical measures were used to facilitate the comparison; they were standard error (Se), 
coefficient of variation (CV), data ranges, and fit index (FI) (Parresol 1999). Example biomass curves 
were presented to compare the suggested protocol functions to a range of available models in a check for 
reasonableness. 
 
A critique of the potential error sources that exist when applying biomass functions was done for wildland 
cases. The analysis was extended then to urban forests and placed in context of total error potential. 
Finally, conclusions and recommendations were made to address the initial question of the applicability of 
the available biomass functions to urban forests relative to wildland forests. 
 
Results 
 
Table 1 shows the results of biomass comparisons. The variety of functional forms, the evolution of the 
statistical reporting over time, lack of raw data reporting, and confusion regarding transformed data make 
comparisons problematic. The fit statistics address individual tree regression modeling but do not account 
for the application of individual tree biomass models to whole inventories, whether wildland or urban.  
 
Table 1. Biomass function comparison. 

 
 
The lack of specific biomass predictive equations may be handled by using stem volume functions, wood 
density values that are species-specific, and carbon pool ratios to expand to total tree biomass (Smith et al. 
2006; Smith et al. 2004). Volume equations specific to California urban trees were developed by Pillsbury 
et al. (1998) for fifteen species. Nine cities were sampled, which were stratified by climatic zone (coast, 
southern, central valley). Each city was blocked to ensure representative sample coverage. Species were 
selected based on a number of criteria including large size at maturity, frequency of occurrence and lack 
of existing volume equations. The non-destructively measured wood volume included bole and branches 
but not roots and foliage. The percent aggregate difference or accuracy over the entire sample was in the 0 
to 3% range, which is a highly accurate fit. The authors recognize that using the functions outside the 
range of the data, outside the geographical range for which they were modeled or on odd trees such as 
those that have been recently topped require diligence on the part of the urban forester. 
 
I examined a draft of McHale (2008) that developed volume equations for urban tree species in Fort 
Collins, Colorado and compared results with Pillsbury et al. (Pillsbury et al. 1998). A graphical 
comparison did not indicate substantial deviations in predictions although the local equations were 
superior for the local data as one would expect.  
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A meta analysis that pooled all available biomass functions for hardwood and softwood species across the 
United States was done by Jenkins et al. (2003). They systematically sampled data points from total 
aboveground biomass functions that were a function of DBH only. From these sampled data points they 
constructed new functions that were pooled by species groups. They found that 80% of the estimates from 
their functions were within about 30% of the mean estimates, which is an indication of goodness of fit and 
not a measure of accuracy from independent data.  
 
Figure 1 shows a comparison of biomass functions for sugar maple (Acer saccharum). The estimates of 
carbon dioxide for individual trees vary by up to 60%. The biomass function from the protocol is near the 
bottom of the curves. See Ter-Mikaelian (1997) for the specific curves used except Jenkins (2003). Figure 
2 is a comparison of using the Pillsbury (1998) urban tree volume functions to derive biomass to two 
other direct biomass estimates. The results show total above ground biomass and are from a function on a 
Yale University course web site (www.yale.edu/fes519b/biomass.html) and from Jenkins et al. (2003). In 
this case, again, the protocol estimates appear conservative. 
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Figure 1. Comparison of above-ground biomass functions for sugar maple with 20% reduction applied for 
being urban trees. See Ter-Mikaelian (1997) for most references. 
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Hackberry Biomass Comparison
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Figure 2. Comparison of above-ground biomass functions for hackberry with 20% reduction applied for 
being urban trees (where appropriate).  
 
The following discussion follows section 2 of Parresol (1999) and addresses the sampling error of forest 
biomass inventory estimates. There are two main components, the first of which is the random selection 
of sample units. This is influenced by  
 

 Sampling design 
 Sample size 
 Type of estimator used 
 Inherent variation. 

 
The second component is the error of the biomass regression and is affected by 
 

 Sampling design used to select trees used in regression 
 Sample size of trees used in regression 
 Estimation procedure 
 Inherent variation of trees about regression function. 

 
Statistical techniques have been developed by Cunia (i.e. 1988) to meaningfully combine these error 
sources for specific situations so that the contributions of each error component may be estimated. The 
biomass estimation component of the total error will be project specific. As is often the case in forest 
inventory or growth analysis, functions are nested with each function being a deterministic estimate. Error 
propagation can be complex to quantify in such cases (Cunia 1988; Parresol 1999).  
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Discussion 
 
Trees in a wildland setting may be either from planted stock or from natural regeneration. The vigor and 
mortality rate for a tree will depend on its physiological and competitive situation. Each species occupies 
a niche where it has a competitive advantage over other species. Drought stress, inundation periods, 
canopy position or light availability are some examples of factors that describe a species niche. However, 
a tree that is planted and grown in the open with no competitors and plentiful resources does not behave 
as it would in the wild. A tree found only in dry conditions in the wild may do well in a watered lawn; in 
other words the ecologically limiting factors in the wild do not necessarily follow to the urban landscape. 
Trees in urban settings have other challenges such as over-watering, under-watering, damage, disease, etc, 
and certainly they succumb to these stresses and senescence. Assuming no human caused aberrations such 
as severe pruning, while vigorous and growing these urban trees will likely exhibit less tree to tree 
variability in size, as a function of age, than wildland trees. In fact, wildland growth models sometimes 
use open grown trees as a standard by which to quantify competition (Krajicek et al. 1961). 
 
Statistically significant differences in estimated biomass between locations were generally found by 
researchers (i.e. Adams 1988; Jenkins et al. 2003; Phillips 1981; Ter-Mikaelian and Korzukhin 1997). 
This was more evident for crown components than for boles. Open grown trees in urban settings may be 
more likely to have multiple main stems than in a managed forest since these are selected against when 
growing trees for sawlogs. Applying consistent rules for measuring multi-stemmed trees will minimize 
this issue (Francis 1984).  
 
A key point is that regardless of the origin of biomass estimators, an analysis of their applicability must be 
conducted (i.e. Crow and Schlaegel 1988; Gholz et al. 1979; Wang and Kimmins 2002). This analysis 
may be qualitative or quantitative depending on the level of accuracy desired. The potential for error is 
large for both wildland and urban applications. The more trees in an inventory the higher the precision 
should be; bias however cannot be corrected for by sample size. Carbon projects that include a 
quantitative evaluation of the accuracy of biomass estimates should be noted by project verifiers so that 
appraisals of project value or risk may incorporate this information. The protocols state that inherent or 
scientific uncertainty is not to be specifically addressed in a project, but reporting uncertainty is to be 
addressed. The reduction of uncertainty below the accepted level in the default process is what I am 
referring to; this applies to both wildland and urban protocol applications. 
 
Adaptive management by means of incremental improvements in the accuracy of biomass equations may 
occur in both wildland and urban forestry contexts. Research and monitoring activities may include non-
destructive above-ground tree measurements possibly combined with destructive canopy subsampling or 
destructive whole-tree sampling. Below-ground sampling is more difficult and expensive but could 
possibly be coordinated with construction projects to minimize impacts and costs. The challenges to urban 
forestry to incrementally improve the accuracy of biomass equations are essentially the same as for 
wildland forestry. These are well articulated in the final paragraph of Jenkins et al. (2003) and include 
using consistent sets of measurement and reporting protocols, publishing of raw data, and sampling a 
wide range of tree sizes especially large trees. When using volume equations to convert to biomass 
estimates, Pillsbury et al. (1998, p. 26-27) provide suggestions for improved volume estimates. Parresol 
(1999) provides an excellent summary of statistical measures, regression approaches, carbon pool 
harmonization techniques, and efficient sampling procedures for developing biomass functions.  
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A commercial wildland forestry operation validates volume and biomass estimates by the measured and 
weight scaling that occurs based on loaded trucks, whether logs or chips. The accounting for wood fiber 
from a municipality by means of truck-load counts of chips and logs could also be used as a means of 
validation if accurate records exist. The participation of local governments in greenhouse gas accounting 
either in a voluntary or regulatory format may make this validation procedure more realistic in the near 
future.  
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