LANDFIRE Biophysical Setting Model

Biophysical Setting 3811320 Central Mixedgrass Prairie

☐ This BPS is lumped with:
☐ This BPS is split into multiple models:

General Information

Contributors (also see the Comments field) Date 4/22/2007
Modeler 1 Morgan Beveridge a00fm1@gmail.com Reviewer Jim Drake jim_drake@natureserve.org
Modeler 2 Paul Pooler paulpooler.bia@gmail.com Reviewer Susanne Hickey shickey@tnc.org
Modeler 3 Mark Browning a00giss@gmail.com

Vegetation Type Dominant Species Map Zone Model Zone
Upland Grassland/Herbaceous HECO26 NAVI4 38 Northern Plains

General Model Sources
- Literature
- Local Data
- Expert Estimate

Model Zone
- Alaska
- California
- N-Cent.Rockies
- Great Basin
- Great Lakes
- Hawaii
- Northeast
- Pacific Northwest
- South Central
- Southeast
- S. Appalachians
- Southwest

Geographic Range
This mixedgrass prairie system ranges from SD into the Rolling Plains and the Edwards Plateau of TX. The loessal regions in west-central KS and central NE, the Red Hills region of south-central KS and northern OK are all located within this system (NatureServe 2007).

This BPS is of limited extent in MZ42. It would have only had small, scattered occurrences in 251Gc and 251Ga. It is probably not a BPS that can be mapped in MZ42.

In MZ38, this BPS occurs in much of the zone although starts to transition to Central tallgrass prairie in subsections 251Ha, 251Hb, Hc, Hd, and 251Gc.

Biophysical Site Description
Elevations range from 1,200 to 3,000ft. Temperatures range between extremes of hot summers and cold winters that are typical of a continental climate. This system occurs in the 16-18in precipitation zone. In NE, ECOMAP section 332C, the rainfall is higher than this, approximately 20in or more east to west in subsections 332Cc, 332Cf, 332Ce. Most of the precipitation occurs during the growing season. Soils vary, but are generally mollisols. Soils in this BPS are formed from a diverse mixture of various sedimentary deposits. These soils range from clayey to loamy with sandy loams present in the western edge. Terrain consists of gently undulating hills to large expanses of flat open ground in central NE, this type occurs on loess soils with very rugged terrain.

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Vegetation Description

This vegetation type is characterized by the dominance of grasses such as western wheatgrass and little bluestem on thin uplands. This system typically contains grass species such as Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Hesperostipa comata, Sporobolus heterolepis, and Bouteloua gracilis, although the majority of the associations within the region are dominated by Pascopyrum smithii or Schizachyrium scoparium. Isolated patches of Quercus macrocarpa also can occur (NatureServe 2007).

This system includes elements from Western Great Plains Shortgrass (BOGR) but these are probably just micro sites as are elements from the Central Tallgrass Prairie on the eastern edge of range. Trees are limited to riparian areas and drainages which may be listed under a different BpS. Silver sage may be found in some floodplains. Other woody species include skunk brush sumac and snowberry, but these species are limited in abundance. Wild plum, buffalo berry, and choke cherry are present in limited amounts throughout the area.

Disturbance Description

This area is strongly influenced by wet-dry cycles. Fire, grazing by large ungulates and small mammals such as prairie dogs, and soil disturbances (i.e. buffalo wallows and prairie dog towns) are the major disturbances in this vegetation type. During dry conditions, there would be more grazing near permanent sources of water. During favorable conditions, grazers would graze further from permanent water sources.

It would be difficult for prairie dogs to move into an area without some kind of mechanism to reduce the vegetation, which could be drought, grazing or a combination of any. Under higher precipitation periods and with light grazing, grass would grow quickly, and prairie dogs and other native ungulates might not be able to keep the grass down. Heavy ungulate grazing could create the right conditions for the prairie dog stage. Under favorable conditions, the prairie dog towns could even shrink because the vegetation is growing so fast. During dry conditions, short stature vegetation coupled with grazing can create more of a prairie dog community. Dry conditions can also set the stage for fire, which might then homogenize the landscape. Then the regrowth areas would be nutritious and palatable for the grazers. In wet cycles, there is broader grazing, as grazers would venture from permanent sources of water (Jack Butler, USFS, pers comm.).

MZ39 and MZ40 modelers recognized a varied degree of grazing pre-European settlement due to bison migration and other ungulates. Heavy grazing would move the community back to earlier stages.

Local site heterogeneity occurs on an even smaller scale, such as with bison wallows – which could even create ephemeral wetlands and a mesic situation. Carcasses could even create heterogeneity. There is also patch grazing occurring, and repeated re-grazing, which is enhanced by urine deposition, and an increased chance of re-grazing. Patch grazing creates a mosaic. It is possible that fire could homogenize an area from the preceding patch mosaic (Jack Butler, USFS, pers comm.).

Historically, there were likely close interactions between fire and grazing since large ungulates (i.e.: bison) tend to be attracted to post-fire communities. Average fire intervals are estimated at five to 15yrs, with the average probably eight to 10yrs. Lightning fires were most common in July and August, but probably occurred from about April to September. Seasonality of fires influences vegetation composition. Recurring early season fires (April - May) tend to favor warm-season species, while late season fires (August - September) may affect grass species relatively equally. Cool season grasses begin to cure in mid June, making fire more likely in late summer than earlier in the growing season. Fires historically could occur

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
at any time of year, but most likely more common in late summer if dry and in early fall after frost and
than again in early spring prior to green up.

Native American fires were prevalent in and around encampments for the purpose of driving animals and
in some instances escaped cooking or warming fires.

Replacement fire in our model does remove 75% of the aboveground cover as assumed in the literature.
However, MZ39 and MZ40 modelers did not think that loss of the aboveground cover by the replacement
fire will necessarily induce retrogression back to an earlier seral stage because the main component of
dominant grasses remains unharmed to insure the continuity of the seral stage. However, fire will
significantly reduce cover for a season or two. Forb species are often more prevalent for the first few years
as well.

Ortmann in his RA review, suggested that, in addition to fire, drought and grazing, insect outbreaks
(Rocky Mountain locust) would have impacted all classes.

From instrumental weather records, droughts average about one in every 10yrs, but droughts are often
semi-periodic lasting three to four years in 30 to 40yr cycles.

Adjacency or Identification Concerns

This system is bordered by the shortgrass prairie on its western edge and the tallgrass prairie to the east.
In MZ42, Central Tallgrass Prairie and North-Central Sand and Gravel Tallgrass Prairie Systems would
often be adjacent to the small stands of this mixedgrass System.

There are some good examples of mixedgrass prairie still in the Dakotas. There are some well managed
ranches and parks. There is enough public land – approximately three million ac of national grasslands as
well as national parks which are in good condition. There are also some private lands in good condition.
There are some shifts in species but perhaps just western wheatgrass and blue grama (Jack Butler, USFS,
pers comm).

Current conditions in Loess Hills grassland system is degraded by chronic improper grazing with lots of
C3 exotic grasses having replaced former C4 dominants.

Typical to this region is the encroachment of eastern redcedar. Many unmanaged landscapes are becoming
totally dominated by redcedar. Differing tribal management practices can influence the degree of
encroachment, particularly along the Missouri River. Many introduced species such as smooth brome,
Kentucky bluegrass, Canada thistle, and, Japanese brome, are increasing. Sweet clover, biannual, can
increase during wet springs. Massive encroachment of other introduced species i.e. leafy spurge, redcedar.
Cheatgrass currently is increasing in portions of this system. Cheatgrass is a winter annual and decreases
under spring prescribed fire.

Plowing has occurred today.

Landscape burning was much more prevalent than today by either Native American burning or
unsuppressed free burning wildfire.

There might be more of the early successional, shortgrass class (A) on the landscape today, due to
introduced species and grazing.

**Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+
year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.**
When thinking about similarity or departure from historic or uncharacteristic communities at landscape levels, the following situations might be useful to check mapping results against classification and model logic. The major influences on current vegetation composition and structure in the Great Plains are:

1) Conversion of grassland to cropland.

2) Introduced species, primarily crested wheatgrass, annual bromes, smooth brome etc. and sweetclover.

3) Shift from midgrass dominated grassland communities to shortgrass dominated communities through season long heavy grazing (departure from historic), if percentage is outside range of variability. Prairie dog towns would fit into this category. This dynamic can be a response to long-term periodic drought as well (departure from historic range). The midgrass to shortgrass change is a shift that has occurred historically in response to fluctuating climate (drought, above normal precip cycles), grazing intensity/recovery. More may be in shortgrass, under current intensive pastoral grazing systems vs. migratory grazing patterns that occurred historically. Grazing would shift midgrass communities to shortgrass dominated communities (Bison may or may not have influenced this, but season long heavy livestock grazing seems to cause this shift). So a high percentage of the landscape in shortgrass, vs midgrass would indicate a departure.

4) Shift from grassland communities to forest, wooded, or shrub dominated communities in absence of fire (departure or uncharacteristic for grass bps). This may be a key shift that has occurred or is occurring on the great plains along with conversion of rangeland to cropland and planting of introduced grass species (CRP lands). Current CRP practices are native vegetation. Probably more meaningful in terms of fire disturbance relationships than the shortgrass-midgrass shift.

With the exception of areas occupied by prairie dog towns, the characteristic late succession communities should be dominated by midgrass dominated plant communities. Tall grass dominated communities would only occur as unmapped inclusions associated with topo-edaphic positions. Tall grass dominated communities include those dominated by prairie sandreed, big bluestem, and Indian grass.

Native Uncharacteristic Conditions

Scale Description

Fires probably ranged in size from 10s to 10,000s of ac. The variation depends on build-up of fuels which were influenced by precipitation and grazing. Extent of weather influences (wet-dry cycles) would have been very widespread. In the loess canyon regions and other areas where terrain is rugged, such as along the Missouri River, topography would influence spread of fire.

Local site heterogeneity occurs on an even smaller scale, such as with bison wallows – which could even create ephemeral wetlands and a mesic situation. Carcasses could even create heterogeneity. There is also patch grazing creating a mosaic. It is possible that fire could homogenize an area from the preceding patch mosaic (Jack Butler, USFS, pers comm.).

Issues/Problems

The model created by MZs 31 and 39 modelers was based upon a composite 26yrs of range management and prescribed fire monitoring, on the following Indian Reservations: Lower Brule, Crow Creek, Rosebud, Pine Ridge, Yankton, and land of the Ponca Tribe of NE.

Fire Regime Groups are:

I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Comments

For MZ38 this model was adopted from the same BpS in MZ43 by Randy Swaty (rswaty@tnc.org). Only minor editing of the description was done to fit the geographic range to MZ43 so modelership was not changed.

For MZ43 this model was adopted from the same BpS in MZ39 by Randy Swaty (rswaty@tnc.org). Only minor editing of the description was done to fit the geographic range to MZ43 so modelership was not changed.

The model was reviewed for MZ39 by Jack Butler (jackbutler@fs.fed.us) and Cody Wienk (cody_wienk@nps.gov).

This model for MZs 31 and 39 was adapted from the model from the same BpS 1132 from MZ30 created by Mitch Iverson, Amy Symstad, Travis Lipp and reviewed by Steve Cooper, Steve VanFossen, Eldon Rash. Model for MZs 31 and 39 changed significantly quantitatively. Co-RL for MZs 31 and 39 also made some model tweaks to more similarly match MZ30 model. Review also resulted in quantitative changes, but modelers were consulted to determine if they wanted to change modelership or not.

The model for BpS 1132 for MZ29/30 was adapted from the RA model R4PRMGn Northern Mixed Grass Prairie, created by Cody Wienk and Lakhdar Benkobi and reviewed by David Engle and John Ortman. Other modeler for MZ30 was Terry Chaplin. Other reviewer was Jim Von Loh. RL for MZ30 also provided input and changes to the model to a great extent. Approval from original modelers/reviewers sought.

Vegetation Classes

<table>
<thead>
<tr>
<th>Class A</th>
<th>96 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Development 1 Open</td>
<td></td>
</tr>
<tr>
<td>Upper Layer Lifeform</td>
<td></td>
</tr>
<tr>
<td>✓ Herbaceous</td>
<td></td>
</tr>
<tr>
<td>✓ Shrub</td>
<td></td>
</tr>
<tr>
<td>✓ Tree</td>
<td></td>
</tr>
<tr>
<td>Fuel Model</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Indicator Species and Canopy Position

- ARFR4
- BOGR2
- PASM
- BUDA

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Cover</th>
<th>0 %</th>
<th>40 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Herb 0m</td>
<td>Herb 0.5m</td>
</tr>
</tbody>
</table>

Description

This is the immediate-post-disturbance-post-fire stage or the very short-stature vegetation resulting from disturbance or heavy ungulate grazing. The fuels in this class are generally too sparse and/or too short to carry fire.

A variety of forb species such as scarlet globemallow and curlycup gumweed cab are common in this class, and grasses can also be common. This class will have species that are grazing resistant and low growing and drought-tolerant.

Common grass species include blue grama, buffalograss, western wheatgrass, and prairie junegrass. Fringed sagebrush can also be a component of this class. Prickly pear, man sage (ARLU), fringed sage, and broom snakeweed occur in this class. Abundance of prickly pear is much higher than in other seral stages. Other

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
species are SPCO and ARPU9.

This class was initially set to succeed to class B between three and seven years. However, reviewers questioned the low range of three years. It would succeed in three years only under favorable conditions – unless the site is occupied by prairie dogs, and then it would remain as a prairie dog stage. It would increase in size during drought and grazing and then it would decrease during a wet cycle. It’s a shifting mosaic of prairie dog movement and towns dependent on grazing and wet/dry cycles. If in a pdog state, then the class would last longer in order to transition out of it; however, this is accounted for, by having a pdog disturbance in the model, resetting succession and keeping it in this class. This class was therefore set to succeed to B after six years, as per reviewer comments.

Prairie dogs probably occupied between 15-40% of an area during some time. Class A should probably have between this amount, since class A includes both the prairie dogs and post-disturbance areas. Amount in this class would also vary by distance to permanent sources of water. During dry conditions, there would be more grazing near permanent sources of water. During favorable conditions, grazers would graze further from permanent water sources. However, it would be difficult for prairie dogs to move into an area without some kind of mechanism to reduce the vegetation, which could be drought, grazing or a combination of any. (Jack Butler, USFS, pers comm.).

Data from prairie dog towns (early seral, aka class A) suggest cover ranges from 0 to 40%. Height is most valuable measure of difference between early and other seral stages, but height in mixedgrass prairie often is not much greater than 50 cm -- resolution of mapping may not be great enough to distinguish among classes.

High, prolonged heavy grazing was modeled as Optional 1. This occurs on 20% of this class each year, keeping it in this class. This includes prairie dog impact.

Drought combined with grazing was modeled as Optional 2. This occurs on 1.2% (.012 probability - every 80yrs) of this class each year. Drought alone was modeled as wind/weather stress occurring every 25yrs but not setting it back to the beginning of the stage.

Regular grazing occurs on 60% of class each year.

Replacement fire occurs every 5-10yrs. However, reviewer questioned this interval, as this class and fire is driven more by wet/dry cycles. Most of this class A couldn’t carry a fire if heavy grazing and drought are occurring as well as prairie dogs. Therefore, this was changed to occur every 25yrs. Fire also doesn’t set this stage all the way back to the beginning, considering the grasses would quickly resprout. It would take fire, grazing, drought to set it all the way back to the beginning.

Drought conditions could force this stage back to bare ground and annuals. Historically, however, there was very little of the component of annuals and shrubs.

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Blue grama, western wheatgrass, needlegrasses, prairie junegrass, upland sedges, and little bluestem are common grasses. In some areas species such as big bluestem, prairie sandreed are locally common. Western wheatgrass and little bluestem are the most common species as this class ages. In some areas, western wheatgrass forms dense stands.

Common forbs include scurfpea, prairie coneflower, Rocky Mountain beeplant, scarlet globemallow, and dotted gayfeather. Prickly pear, man sage (Artemisia ludoviciana), fringed sage, snowberry and broom snakeweed occur in this class. Also, Agropyron smithii is present.

Cover in this class would actually range from 40 to 80%, depending on soils and weather for the year and the addition of the third class to account for abnormally long periods of low fire activity.

Native grazing occurs on approximately 20% of the class each year, maintaining this stage. High, prolonged heavy grazing was modeled as Optional 1. This occurs on approximately 25% of this class each year.

Replacement fire occurs approximately every ten years. It was modeled as occurring every 10yrs, most of the time not causing a transition back to the beginning, but some of the time causing a transition back to A. After fire, there is probably also heavy grazing.

Drought can also occur, but infrequently causing a transition back to class A. Regular drought could occur and not cause a transition (not modeled).

With lack of fire, encroachment might occur after this class. Trees (juniper, chokecherry) and shrubs might appear with higher cover. This class was therefore modeled as succeeding within itself but having an alternate successional pathway going to C with a probability of .01.

It would be uncharacteristic to have higher than 20% cover of shrubs/trees.
Disturbances

The transition to class C would occur due to lack of fire over an extended period of time. This shrubby stage might occur more on the eastern end of the mapzones or in areas that are more protected from fire such as ravines in the deep loess regions.

Shrubs and other climax species would dominate with an understory of fine fuels within the unburned area. Any areas within this class that do burn would return to class A conditions.

Grazing occurs that would cause a transition back to B on 2% of the class each year.

Replacement fire occurs approximately every 10yrs.

Fire Regime Groups are:
I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.

Disturbances

Fire Regime Groups are:
I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Fire Regime Group**:

<table>
<thead>
<tr>
<th>Historical Fire Size (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg 10000</td>
</tr>
<tr>
<td>Min 10</td>
</tr>
<tr>
<td>Max 100000</td>
</tr>
</tbody>
</table>

Sources of Fire Regime Data

- Literature
- Local Data
- Expert Estimate

Additional Disturbances Modeled

- Insects/Disease
- Native Grazing
- Other (optional 1) heavy prolonged grazing
- Wind/Weather/Stress
- Competition
- Other (optional 2) drought + grazing

Fire Regime Groups

- I: 0-35 year frequency, surface severity
- II: 0-35 year frequency, replacement severity
- III: 35-100+ year frequency, mixed severity
- IV: 35-100+ year frequency, replacement severity
- V: 200+ year frequency, replacement severity

Fire Intervals

<table>
<thead>
<tr>
<th>Fire Intervals</th>
<th>Avg FI</th>
<th>Min FI</th>
<th>Max FI</th>
<th>Probability</th>
<th>Percent of All Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>22.77</td>
<td>2</td>
<td>30</td>
<td>0.04392</td>
<td>100</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>23</td>
<td></td>
<td>0.04394</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire Intervals (FI):

- Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class.

References

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.

**Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.