Within the area of the prairie border forests (Abrams 1992), prairie vegetation dominated the landscape with oak-hickory forests existing within fire-protected ravines or along stream corridors forming gallery forests (Abrams 1992). While the region is strongly influenced by dry continental air flow patterns and periodic drought, historic fire frequency determined the prairie-forest boundary with much variation based on topography, fuel breaks, ignition sources, and climate (Whitney 1994, Anderson and Bowles 1999). Much has been written concerning these systems and excellent reviews can be found in Curtis (1959), Whitney (1994) and Anderson, Fralish and Baskin (1999). The area is primarily mollic grassland soils incorporating mesic and hydric prairie types (Curtis 1959). Mesic prairies occurred on flat and rolling topography including some on glacial outwash with porous subsoil of sand and gravel. Rolling areas were characterized by glacial till of recessional moraines or on residual aeolian loess deposits. Soil profiles consist of a black surface layer rich in organic material with high water-holding capacity. Wet
Prairies were found on poorly drained soils in drainage ways and concave positions on uplands and lowlands along waterways or in areas subject to inundation. Lowland prairies were in and along waterways or in areas subject to frequent inundation. Soils are rich in organic matter and show evidence of inundation in a gleying layer 3-4 ft below the surface. The region is strongly influenced by dry continental air flow patterns and periodic drought (Whitney 1994).

Vegetation Description

Dominated by big bluestem (Andropogon gerardii), Indiangrass (Sorghastrum nutans) and prairie dropseed (Sporobolus heterolepis) on more mesic sites with prairie cordgrass (Spartina pectinata) and bluejoint grass dominating the wet sites. Secondary species such as little bluestem (Schizachyrium scoparium) and porcupine grass (Stipa spartea) occupied the drier portions of these uplands and soil types and varied in importance. Forb families had their largest representation in Aster and legume. Conspicuous perennial forbs included the genera Asclepias, Aster, Echinacea, Helianthus, Solidago, Liatris, Dalea and Viola. Prairie shrubs include the genera Amorpha, Rosa spp. and Ceanothus.

Disturbance Description

Frequent fires impacted this prairie system every 1-3 yrs, maintaining grass and forb vegetation. Insect and small mammal herbivory impacts composition and dominance. Large mammals were present in low densities, main grazers were elk and deer, but impacts were likely minimal. Fire played an important role in the maintenance of the tallgrass prairie (Curtis 1959, Vogl 1964, Anderson 1990). Fire could occur throughout the year with larger, less frequent fires occurring during the dormant season and smaller, more frequent fires occurring during the growing season. Native American burning, essential to maintaining the eastern tallgrass prairie, was bimodal in distribution, peaking in April and October with lightning ignition occurring primarily during July and August (Higgins 1986). Bison grazing as a major disturbance was likely much more limited than prairies further west. Elk probably contributed to the impact of grazing and browsing as well but it is assumed that the total contributions of these two species was still considerably less than to the west. The elk may have contributed to the reduction of young woody saplings invading prairie adjacent to protected woody areas.

Ortmann in his review suggested that in addition to fire, drought, and grazing, that insect outbreaks would have impacted all classes.

Drought would have set back woody species invasion and would have increased fire intensity. Lack of winter snowfall would have reduced woody species due to desiccation of soils (citation pending).

Adjacency or Identification Concerns

Northern and central tallgrass prairie would be adjacent to north-central interior oak savanna, north-central oak barrens, north central interior sand and gravel prairie and sedge meadows and wet prairie.

Synonymous names for this system include: mesic prairie, wet prairie, deep soil prairie and blacksoil prairie.

This BpS might be confused with the north central interior sand and gravel prairie.

In the absence of historic fire invasive problems have increased dramatically, including gray dogwood, american plum, hazelnut. Exotics that have become invasive due to agricultural practices and roadside plantings include reed canary grass, leafy spurge (Euphorbia esula), sweet clover (Melilotus alba), crown vetch, yellow parsnip and birds foot trefoil. Domestic livestock grazing is also an issue.

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Today this system has a severely reduced native cover (approx. 99.9% loss) particularly for the mesic component of this type due to conversion to other uses such as agriculture. In addition to the massive reduction in extent of mesic prairie, the scale of its occurrence has also severely been altered. Currently this type occurs in fragmented small patches ranging from 1-10ac. Altering of the type is due to grazing and reduced fire resulting in greater shrub and tree component and a variety of native and non native shrubs, and non native cool season grasses (brome, bluegrass, quackgrass and redtop) resulting in reduced diversity.

This system has mainly been converted to agriculture and other development. Invasion of cool season grasses and shrubs often mask the identification of this type. It may be difficult to determine the difference between old fields and native prairie patches by using aerial photos or remote sensing data.

Again, species composition and structure were dependent on local factors such as topography, soil conditions, fire regime, plant competition and plant-animal interactions (Anderson and Bowles 1999).

As indicated this system interfaces and mingles on the east with oak savanna and on the west with mixed grass prairie (in NE and the Dakotas). On the east there would be limited woody invasion from protected areas during periods of increased precipitation. The woody component would be limited to the edge the prairie and would not exhibit any appreciable effect overall. Since mixed grass prairie is to the west, there would be little effect except in periods of extended drought the percentage of the mixed grass species would increase.

This system differs functionally from North-Central Interior Sand and Gravel Tallgrass prairie due to fire intensity - heavier fuels leading to higher fire intensity and a stronger grass competition for trees and shrubs to come in; so it's more difficult for trees and shrubs to come into this system.

Native Uncharacteristic Conditions

Many small trees and shrubs would be uncharacteristic of this system historically but occurs today due to the lack of fire. Domestic livestock grazing has also severely degraded this system. Haying would also have altered the species composition, especially for forbs species. Insects may not be as prevalent in modern times due to fragmentation (hypothesis by Tim Christiansen, pers. comm.).

Scale Description

Within regions of varied topography, type patches are typically large (>1000ac) most prevalent on flat to rolling topography. Most fires were stand replacement in nature. Once ignited, dormant season fires would have spread over a large area until reaching a major firebreak (e.g. previously burned area, major river, rugged terrain, etc.). Growing season fires may have been frequent but smaller in size than dormant season fires due to the greenness of the fuel and rain following lightning ignition. Growing season fires during drought years would have been much like dormant season fires. Mixed fires were probably limited to patchy grazed areas or areas where fuel was not uniformly cured.

Issues/Problems

The plant/animal interactions are not fully understood for this model and numerous studies of these phenomena are ongoing. Research exists for bison/fire interaction in detail in the western range of this system (i.e. KS and NE). Also, there is possible overlap with the North Central Interior Oak Savanna model (BpS ID 1394, MZs 41, 50 and 51). There is variation in oak species composition across the broad region covered by this model (i.e., bur oak [Quercus macrocarpa] increases in prevalence in the western portion of the range). There is also great variation in prairie type across this region. Within the western

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
ranges of this type there was a grazing and fire interaction. As one moves east in this region fire increases
to where it is the major disturbance factor for this type and grazing drops out as an influence. The species
composition also changes from east to west. Much of the literature on fire in the tallgrass prairie does not
include interaction with herbivory (Engle and Bidwell 2001) thus interpreting effects must be qualified.
In addition, little is know about native ungulate grazing in this area. It is generally accepted that bison
grazing was less in this grassland than in grasslands to the west. Even within this type grazing likely
played a larger role as one moves from east to west. Further, it has been recently suggested that elk
populations may have been large enough to have an effect on vegetative composition. Some woody plant
invasion may have occurred but it was limited to areas close to seed sources such as along the eastern
interface with the savanna and around woody pockets and river valleys.

This model in MZ41 was originally labelled as Central Tallgrass Prairie (14210), which was not totally
appropriate; thus we re-labelled the version of this model in MZ41 to Northern Tallgrass Prairie (1420).

Comments
Suggested reviewers: Dave Borneman, see also sand and gravel prairie reviewers. This model was
reviewed at the Landfire Vegetation Modeling Workshop by Elena Conteras, Randy Swaty, Mike Kost,
Chris Weber, Doug Cox and Becky Schillo.

This model for GL was adapted from the Rapid Assessment model R4PRTGc Tallgrass Prairie - Central
created by Daryl Smith daryl.smith@uni.edu and reviewed by Tom Bragg tom.bragg@mail.unomaha.edu
and John Ortmann jortmann@tnc.org and an anonymous reviewer.

<table>
<thead>
<tr>
<th>Vegetation Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A 40 %</td>
</tr>
<tr>
<td>Early Development 1 Open</td>
</tr>
<tr>
<td>Upper Layer Lifeform</td>
</tr>
<tr>
<td>☑ Herbaceous</td>
</tr>
<tr>
<td>❑ Shrub</td>
</tr>
<tr>
<td>❑ Tree</td>
</tr>
<tr>
<td>Fuel Model 3</td>
</tr>
<tr>
<td>Indicator Species and Canopy Position</td>
</tr>
<tr>
<td>ANGE Upper</td>
</tr>
<tr>
<td>SONU2 Upper</td>
</tr>
<tr>
<td>SPPE Upper</td>
</tr>
<tr>
<td>Structure Data (for upper layer lifeform)</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Cover</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Tree Size Class</td>
</tr>
<tr>
<td>Open refers to absence of tree or shrub canopy cover.</td>
</tr>
</tbody>
</table>

Description
Post Fire Regrowth Stage - Duration: one year. From blackened state, rapid regrowth of fire positive and fire
neutral perennial vegetation to maximum height by end of growing season. Warm season grasses and fire
positive forbs display increased height, flowering and fruiting and appear to be more abundant depending on
season of the burn. Annual, biennial and short-lived perennial species occupy space opened by litter removal.
Fire neutral perennial forbs maintain pre-fire composition, but may appear to be reduced. Fire negative
species are reduced. No litter accumulation in this class. Probability of a replacement fire is 1.00 as all
surface fires are replacement in this system.

The cover in this class is defined as 0-70% for mapping purposes. However, it could really go up to 100% cover.

**Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+
year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.**
Class B
59%
Mid Development 1 Open

Upper Layer Lifeform
- Herbaceous
- Shrub
- Tree
- **Fuel Model**
- **Fuel Model**
- **Fuel Model**

Description
Unburned Stage - Duration: 2-4yrs. This unburned stage continues to be dominated by big bluestem (Andropogon gerardii), Indiangrass (Sorghastrum nutans) and prairie dropseed on more mesic sites with prairie cordgrass (Spartina pectinata) and bluejoint grass dominating the wet sites. Secondary species such as little bluestem (Schizachyrium scoparium) and porcupine grass (Stipa spartea) occupied the drier portions of these uplands and soil types and varied in importance. Perennial forbs include genera such as Asclepias, Aster, Echinacea, Helianthus, Solidago, Liatris, Dalea, and Viola. Noticeable scattered shrubs, Amorpha, Rosa spp and Coenothus, annually increase in size. Litter accumulates annually. Annuals, biennials and short lived perennials gradually become less abundant.

Probability of a replacement fire is 0.33. If it's a cool fire, and intensity is low, it'll probably stay in B; won't remove all thatch and some shrubs will survive. However, with a lot of fuels, and if hot - could go all the way back to A. Without fire for about six years, sometimes it will move to C.

The cover in this class is defined for mapping purposes as 71-100%. Some shrubs might be coming up in this stage.

<table>
<thead>
<tr>
<th>Class C</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Development 1 All Structures</td>
<td></td>
</tr>
</tbody>
</table>

Upper Layer Lifeform
- Herbaceous
- **Shrub**
- Tree
- **Fuel Model**
- **Fuel Model**
- **Fuel Model**

Description
Unburned Thatch Accumulation Stage - Duration 5-20yrs. Continuation of unburned state from class B, however, with lack of fire for the long term, the prairie matrix weakens and it is succeeded by woody cover of shrubs and trees, depending on proximity of woody seed sources. Without fire the length of this stage is dependent on ppt and temperature as well as topography and soils. It can be inferred that the effect of large ungulates, bison and elk, was highly limited in this region of this type. Probability of a replacement fire is 0.33 approximately.

As thatch builds up, grasses will start to lose vigor and become less competitive, and then shrubs or trees might start moving in more, which would be uncharacteristic, because that would be due in part to lack of

Fire Regime Groups are:
I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Disturbances

<table>
<thead>
<tr>
<th>Fire Regime Group**</th>
<th>Fire Intervals (FI):</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Avg FI</td>
</tr>
<tr>
<td>Replacement</td>
<td>3.571</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td></td>
</tr>
<tr>
<td>All Fires</td>
<td>4</td>
</tr>
</tbody>
</table>

- Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class.

Sources of Fire Regime Data
- Literature
- Local Data
- Expert Estimate

Additional Disturbances Modeled
- Insects/Disease
- Native Grazing
- Other (optional 1)
- Wind/Weather/Stress
- Competition
- Other (optional 2)

References

Fire Regime Groups are:
- I: 0-35 year frequency, surface severity
- II: 0-35 year frequency, replacement severity
- III: 35-100+ year frequency, mixed severity
- IV: 35-100+ year frequency, replacement severity
- V: 200+ year frequency, replacement severity

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.