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Fluazifop-P-butyl, dated March 28, 2014.  The report has been modified for compliance with 
Section 508 of the Rehabilitation Act of 1973 as amended by the Workforce Investment Act of 
1998.  The compliance report is attached to the PDF version of this risk assessment. 
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EXECUTIVE SUMMARY 1 
Fluazifop-P-butyl is a post-emergent herbicide used to control both annual and perennial grasses.  2 
This document provides a screening level/scoping risk assessment for human health effects and 3 
ecological effects to support an assessment of the environmental consequences of using 4 
fluazifop-P-butyl in Forest Service vegetation management programs.  5 
 6 
In contrast to full risk assessments, scoping/screening level risk assessments are designed to 7 
determine if adequate data are available for the conduct of a full risk assessment (scoping), and, 8 
if possible, to give the Forest Service an indication of the most likely risks associated with the 9 
use of the pesticide under consideration (screening).  The most significant differences between 10 
scoping/screening level and full Forest Service risk assessments are that scoping/screening level 11 
risk assessments rely more heavily on secondary sources than full risk assessments. 12 
  13 
Formulations of fluazifop-P-butyl are not specifically labeled for applications to forests but are 14 
used in forestry related applications including the control of grasses in tree farms, conifer 15 
nurseries, and conifer plantations as well as applications to rights-of-way, utility lines, fence 16 
lines, and several other non-crop sites.  Fluazifop-P-butyl, the active ingredient (the a.i.), is 17 
rapidly converted to fluazifop-P, the acid equivalent (a.e.) which is a weak acid.  Because the a.e. 18 
is much more persistent than the a.i., the exposure assessments given in the current risk 19 
assessment are based on the a.e. 20 
 21 
All indications from the Forest Service are that the most common method of application for 22 
fluazifop-P-butyl, which has not been used before in Forest Service programs, will involve either 23 
directed foliar (e.g., spot treatment) or broadcast foliar applications.  Fluazifop-P-butyl is also 24 
labeled for aerial applications, which are considered in this risk assessment.  Fluazifop-P-butyl is 25 
labeled for single application rates of about 0.1 to 0.375 lb a.i./acre (0.0854 to 0.32 lb a.e./acre).  26 
The maximum seasonal application rate for fluazifop-P-butyl is 1.125 lb a.i./acre (0.96075 lb 27 
a.e./acre) as three single applications of 0.375 lb a.i./acre with a minimum application interval of 28 
14 days.  The current risk assessment explicitly considers a single application at the rate of 0.375 29 
lb a.i./acre (0.32 lb a.e./acre) as well as both two and three applications of 0.375 lb a.i./acre with 30 
a 14-day application interval. 31 
 32 
Human Health 33 
The quantitative risk characterization is based on the hazard quotient (HQ), which is defined as 34 
the anticipated exposure divided by a toxicity value.  An HQ of greater than 1 is defined as the 35 
level of concern—i.e., the exposure exceeds the level of concern.  For the human health risk 36 
assessment, the toxicity values are the acute RfD of 0.43 mg a.e./kg bw/day, a surrogate 37 
intermediate RfD of 0.017 mg a.e./kg bw/day for workers, and a chronic RfD of 0.0063 mg 38 
a.e./kg bw/day for longer-term exposures.  As discussed in Section 3.3, these toxicity values are 39 
taken from the most recent EPA human health risk assessment (U.S. EPA/OPP/HED 2011a) but 40 
are adjusted from units of a.i. (fluazifop-P-butyl) to units of a.e (fluazifop-P acid).  Similarly, all 41 
exposure estimates given in the workbooks that accompany this risk assessment are given in 42 
units of a.e.   43 
  44 
Based on the toxicity values and the central estimates of exposure, workers involved in ground 45 
broadcast spray and aerial applications of fluazifop-P-butyl do not appear to be at risk.  This 46 
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conclusion is consistent with the risk characterization for these worker groups expressed in U.S. 1 
EPA/OPP/HED (2011a).  The central estimate of the HQ for backpack workers (HQ=2), 2 
however, modestly exceeds the level of concern.  U.S. EPA/OPP/HED (2011a) does not assess 3 
backpack workers.  Based on upper bound estimates of exposures, most of the HQs exceed the 4 
level of concern by factors of up to 43.  These estimates indicate that measures to limit or 5 
otherwise mitigate worker exposures are warranted. 6 
 7 
For the general public, none of the acute exposure scenarios substantially exceed the level of 8 
concern, except for accidental exposure scenarios involving a spill of fluazifop-P-butyl into a 9 
small pond.  At the upper bounds, the acute (non-accidental) exposure scenario for the 10 
consumption of contaminated vegetation reaches the level of concern following one application 11 
(HQ=1) and modestly exceeds the level of concern following two applications (HQ=1.3) and 12 
three applications (HQ=1.4). 13 
 14 
Longer-term exposure scenarios involving the consumption of contaminated vegetation are a 15 
much greater concern than acute exposures with the central estimates of longer-term exposures 16 
reaching the level of concern following one application (HQ=1) and exceeding the level of 17 
concern following two applications (HQ=2) and three applications (HQ=3).  The upper bound 18 
HQs for these scenarios substantially exceed the level of concern—i.e., upper bound HQs of 10 19 
following a single application, 19 following two applications, and 29 following three 20 
applications.  The longer-term exposure scenarios involving dietary exposure developed in the 21 
current Forest Service risk assessment are much more severe than the dietary exposure scenarios 22 
used in U.S. EPA risk assessments.  Nonetheless, the exposure scenarios for the consumption of 23 
contaminated vegetation reflect potential exposures for individuals consuming treated vegetation 24 
following forestry applications of fluazifop-P-butyl.   These longer-term scenarios for the 25 
consumption of contaminated vegetation are standard exposure scenarios used in all Forest 26 
Service risk assessments for pesticides applied to vegetation and are considered relevant by the 27 
Forest Service.       28 
 29 
While the risk characterization for fluazifop-P-butyl is relatively severe, particularly for longer-30 
term exposure scenarios, the approach used in the current risk assessment is not the most 31 
conservative approach that could be adopted.  As discussed in the dose-response assessment for 32 
chronic toxicity (Section 3.3.2), the chronic RfD for fluazifop-P-butyl is based on a NOAEL of 33 
0.75 mg a.i./kg bw/day from a reproduction study in rats.  A standard chronic toxicity study in 34 
rats yields a somewhat lower NOAEL of 0.5 mg a.i./kg bw/day.  The rationale for using the 35 
higher NOAEL is not clearly articulated in the EPA risk assessments on fluazifop-P-butyl.  If the 36 
lower NOAEL were used to derive a chronic RfD, the HQs discussed above would increase by a 37 
factor of 1.5.  Adopting a lower RfD, however, would not have a substantial qualitative impact 38 
on the risk characterization, and the current Forest Service risk assessment defers to the most 39 
recent EPA human health risk assessment (U.S. EPA/OPP/HED 2011a). 40 
 41 
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Ecological Effects 1 
Fluazifop-P-butyl is an effective herbicide for the control of many annual and perennial grass 2 
weeds (i.e., Poaceae monocots); however, it is much less toxic to dicots and non-Poaceae 3 
monocots.  Consequently, applications of fluazifop-P-butyl do not appear to pose a risk to 4 
terrestrial dicots or non-Poaceae monocots.  This risk characterization is supported by several 5 
field studies.  Consistent with the labelled uses of fluazifop-P-butyl, this herbicide is more toxic 6 
in post-emergent foliar applications than pre-emergent/soil applications.  Drift is the scenario of 7 
greatest concern for nontarget sensitive Poaceae monocots.  Adverse effects in sensitive species 8 
of nontarget plants (i.e., Poaceae) could also occur in some cases if contaminated water is used 9 
for irrigation.  Runoff and wind erosion of soil from the treated site do not appear to pose risks to 10 
nontarget plants. 11 
   12 
The risk characterization of mammals and birds is constrained by the lack of field studies 13 
involving exposure of mammals and birds to applications of fluazifop-P-butyl.  Consequently, 14 
the risk characterization is based solely on laboratory studies and modeled estimates of exposure.  15 
Longer-term exposures to mammals and birds are a concern for exposure scenarios involving the 16 
consumption of contaminated vegetation.  Following three applications, the upper bound HQs 17 
reach up to 57 for a small bird and 146 for a small mammal.  Following one or two applications, 18 
the HQs are lower, but some scenarios exceed the level of concern (HQ=1).  The HQs for 19 
mammals are of greater concern because of a possible association between exposure levels and 20 
endpoints involving reproductive capacity (i.e., decreased testes weight).  There are no data to 21 
suggest that levels of long-term exposure to fluazifop-P-butyl will cause adverse effects in birds.  22 
Furthermore, acute exposures associated with the consumption of contaminated vegetation by 23 
birds do not appear to pose a hazard.  For mammals, some of the acute HQs associated with the 24 
consumption of contaminated vegetation exceed the level of concern (i.e., a maximum HQ of 7).  25 
The highest levels of exposure are associated with the consumption of contaminated short 26 
grasses, which enhances the level of concern for acute exposures, because fluazifop-P-butyl is 27 
applied to grasses.  For chronic exposures, the consumption of treated contaminated grasses is 28 
less plausible, because fluazifop-P-butyl will kill most treated grasses with the exception of 29 
resistant grasses.  Exposure scenarios for mammals and birds involving contaminated water are 30 
of much less concern than those associated with contaminated vegetation.  This is a common 31 
pattern in herbicide risk assessments.  Some scenarios for the consumption of contaminated fish 32 
by a canid, large mammalian carnivore, and piscivorous bird result in HQs that exceed the level 33 
of concern at the upper bounds of estimated exposures. 34 
 35 
For most herbicides, risks to terrestrial invertebrates are characterized using toxicity data on the 36 
honeybee as a surrogate species.  Based on these data, no risks to terrestrial insects would be 37 
anticipated.  For fluazifop-P-butyl, however, toxicity data are available from the European 38 
literature and some mesocosm and field studies published in the open literature.   Based on the 39 
results of one bioassay on a predatory mite (Typhlodromus pyri), risks to sensitive species of 40 
terrestrial arthropods could be substantial (i.e., an HQ of 80 for direct spray).   Based on another 41 
bioassay in this species as well as toxicity data on other terrestrial arthropods, risks are apparent 42 
but could be much lower (i.e., an HQ of 2 for direct spray).  Many of the most relevant studies 43 
are summarized only briefly in a review by the European Food Safety Authority (EFSA 2012).  44 
The full studies summarized in EFSA (2012) were not available for the preparation of the current 45 
risk assessment and no interpretation of the inconsistent toxicity data on Typhlodromus pyri can 46 
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be offered.  Published field studies indicate that applications of fluazifop-P-butyl used to enhance 1 
the growth of wildflowers can be beneficial to both bees and butterflies.  These field studies, 2 
however, do not exclude the possibility of direct adverse effects in sensitive species of terrestrial 3 
arthropods. 4 
 5 
The risk characterization for aquatic plants is variable.  The characterization of risks to aquatic 6 
macrophytes is limited in that data are available on only one genus, Lemna, an aquatic non-7 
Poaceae monocot.  No risks to Lemna are anticipated, even in the event of an accidental spill.  8 
By analogy to the more extensive data on terrestrial plants, it seems likely that risks to aquatic 9 
dicots and other non-Poaceae monocots would also be low.  In the absence of toxicity data, 10 
potential risks to aquatic Poaceae monocots are a concern; however, these risks cannot be 11 
assessed quantitatively.  Some species of algae do appear to be at risk (HQs up to 150) in non-12 
accidental exposure scenarios.  Both sensitive and tolerant species of algae could be adversely 13 
affected in the event of an accidental spill. 14 
 15 
The risk characterization for aquatic animals is somewhat less variable than that for aquatic 16 
plants.  Except for an accidental spill, exposure scenarios involving fish do not appear to present 17 
a risk.  Aquatic invertebrates are more sensitive than fish to fluazifop-P-butyl.  While the central 18 
estimates and lower bounds of exposures are not a concern, some of the upper bound estimates 19 
of exposure lead to HQs (1.4 to 4) that modestly exceed the level of concern (HQ=1). 20 
 21 
While relatively little information is available on soil-dwelling organisms including soil 22 
microorganisms, this information suggests that fluazifop-P-butyl is not likely to adversely affect 23 
this group of organisms. 24 
 25 
No data are available on the toxicity of fluazifop-P-butyl to reptiles and amphibians.  26 
Consequently, no risk characterization is developed for these groups of organisms. 27 
 28 
While the risk characterization for fluazifop-P-butyl focuses on the potential for direct toxic 29 
effects, there is potential for secondary effects in virtually all groups of nontarget organisms.  30 
Terrestrial applications of any effective herbicide, including fluazifop-P-butyl, are likely to alter 31 
vegetation within the treatment area.  This alteration could have secondary effects on terrestrial 32 
or aquatic animals, including changes in food availability and habitat quality.  These secondary 33 
effects may be beneficial to some species (e.g., bees and butterflies as noted above) and 34 
detrimental to other species; moreover, the magnitude of secondary effects is likely to vary over 35 
time.  While these concerns are acknowledged, they are not specific to fluazifop-P-butyl or 36 
herbicide applications in general.  Any effective method for vegetation management, including 37 
mechanical methods which do not involve fluazifop-P-butyl or any other herbicide, could be 38 
associated with secondary effects on both animals and nontarget vegetation. 39 
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1. INTRODUCTION 1 

1.1. Chemical Specific Information 2 

1.1.1. General Considerations 3 
Fluazifop-P-butyl is an herbicide used to control both annual and perennial grasses.  This 4 
document provides a screening level/scoping risk assessment for human health effects and 5 
ecological effects associated with the use of fluazifop-P-butyl in Forest Service vegetation 6 
management programs.  7 
 8 
In contrast to full risk assessments, scoping/screening level risk assessments are designed to 9 
determine if adequate data are available for the conduct of a full risk assessment (scoping) and, if 10 
possible, to give the Forest Service an indication of the most likely risks associated with the use 11 
of the pesticide under consideration (screening).  The most significant differences between 12 
scoping/screening level and full Forest Service risk assessments are that scoping/screening level 13 
risk assessments rely more heavily on secondary sources than full risk assessments and may not 14 
subject to peer review.  Although the Forest Service has elected to have the current risk 15 
assessment peer reviewed, the discussion of studies on most groups of nontarget organisms is 16 
still based largely on summaries of studies provided in U.S. EPA/OPP risk assessments rather 17 
than full copies of or Data Evaluation Records for the studies submitted to the U.S. EPA/OPP.  A 18 
major exception to the reliance of secondary sources involves the substantial open literature on 19 
terrestrial plants which is addressed in some detail in the current risk assessment.  20 
 21 
This risk assessment is somewhat complicated by the various forms of fluazifop (Table 1).  As 22 
with several herbicides, fluazifop is a carboxylic acid and fluazifop-butyl is the butyl ester of this 23 
acid.  As discussed further in Section 2.2.1, the fluazifop acid has a chiral carbon and thus can 24 
form enantiomers, stereoisomers that are nonsuperimposable mirror images of each other.  25 
Fluazifop-P-butyl is the butyl ester of fluazifop-P, which is the [R] enantiomer of fluazifop.   26 
 27 
Also as with several herbicides that are esters of weak acid, fluazifop-P is the active herbicidal 28 
agent.  Fluazifop-P-butyl is rapidly hydrolyzed to fluazifop-P both by plants and in soil 29 
(Section 2.2.1).  Consequently, data on both fluazifop-P-butyl and fluazifop-P are covered in the 30 
current risk assessment.  In addition, fluazifop-butyl (i.e., a mixture of [R] and [S] enantiomers) 31 
is metabolized in mammals predominantly (97%) to the [R] enantiomer, fluazifop-P.  Thus, 32 
fluazifop-butyl and fluazifop-P-butyl are … “similar, if not identical in toxicity” (U.S. 33 
EPA/OPP/HED 2004a), at least in mammals.  Because of these similarities in toxicity, the 34 
current risk assessment addresses studies not only on the [R] enantiomers, fluazifop-P-butyl and 35 
fluazifop-P, but also studies on mixtures of the enantiomers.   36 
 37 
Throughout this risk assessment, the nomenclature summarized in Table 1 is used to differentiate 38 
among the different agents under consideration.  Following the approach used by U.S. 39 
EPA/OPP/HED (2004a), the notations [R] and [S] are used to identify the individual 40 
stereoisomers of both the acid and ester.  If the test agent is a mixture of the enantiomers, the 41 
[RS] notation is used—e.g., [RS] fluazifop or [RS] fluazifop-P-butyl.  When the stereochemical 42 
composition is not clearly indicated in the available studies, the term fluazifop is used for the 43 
acid and the term fluazifop- butyl is used for the ester without the [RS] notation.  The terms 44 
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fluazifop and fluazifop-butyl are also used when a statement is made that applies equally to the 1 
enantiomers. 2 
 3 
Also following the convention used in U.S. EPA/OPP/HED (2004a) as well as the great 4 
preponderance of the literature on fluazifop and fluazifop-butyl, fluazifop-P is used rather than 5 
the equivalent term [R] fluazifop for both the acid and the ester.  The origin of and rationale for 6 
the -P notation as a convention to designate the [R] stereoisomer is not clear; however, this 7 
convention is used almost universally in the literature for fluazifop-P as well as similar 8 
herbicides such as quizalofop-P (e.g., Mallory-Smith and Retzinger 2003).  9 

1.1.2. Available Reviews 10 
As noted above, the current document is a scoping/screening level risk assessment and relies 11 
heavily on existing reviews, which is not the case in a full Forest Service risk assessment.  Table 12 
2 summarizes the reviews identified to date on the toxicity and environmental fate of fluazifop-13 
P-butyl and related compounds.  In an attempt to ensure that the most recent U.S. EPA/OPP 14 
reviews were identified, Freedom of Information Act (FOIA) requests were submitted to the U.S. 15 
EPA (EPA‐HQ‐2013‐009201, EPA-HQ-2013-010361).  In response, U.S. EPA provided the 16 
most recent human health risk assessment (U.S. EPA/OPP/HED 2011a) and most recent 17 
ecological risk assessments (U.S. EPA/OPP/EFED 2008, 2010a). 18 
 19 
In terms of the human health risk assessment, the available reviews on fluazifop-P-butyl clearly 20 
support the development of a screening level risk assessment.  The U.S. EPA’s Office of 21 
Pesticide Programs has prepared several human health risk assessments on fluazifop-P-butyl that 22 
are extremely detailed (e.g., U.S. EPA/OPP/HED 2004a; 2005a; 2011a).  In addition, these EPA 23 
risk assessments are supported by several additional documents that address special topics 24 
relating to both potential health effects (U.S. EPA/OPP/HED 2004b,c) as well as exposure (U.S. 25 
EPA/OPP/HED 2010c,e).  These EPA documents are the basis for the information used in the 26 
human health risk assessment presented in Section 3.  Information from these EPA documents is 27 
supplemented by several recent reviews from Europe (EFSA 2012; European Commission 28 
2011a), a summary of registrant studies by the California EPA (CalEPA 2002) and a published 29 
review by one of the developers of fluazifop-P-butyl (Ishihara Sangyo Kaisha 1990).  All of 30 
these reviews focus on registrant-submitted studies, which are classified as Confidential Business 31 
Information (CBI) and are not publically available.  Accordingly, the full studies were not 32 
available for the conduct of the current risk assessment.  Nonetheless, the EPA risk assessments 33 
and related documents, supplemented by the other reviews noted above, provide a robust and 34 
credible summary of the registrant studies relating to human health effects. 35 
 36 
The available reviews on the ecological effects of fluazifop-P-butyl also support the development 37 
of a screening level risk assessment.  As noted above, the U.S. EPA provided two recent 38 
ecological risk assessments on fluazifop-P-butyl (U.S. EPA/OPP/EFED 2008, 2010a).  The most 39 
recent document, however, provides only a brief and cursory summary of the registrant-40 
submitted studies and would not, in itself, be sufficient in support of a screening level 41 
assessment.  The 2008 document, however, is a standard and complete U.S. EPA/OPP/EFED 42 
ecological risk assessment and is sufficient to support a screening level ecological risk 43 
assessment.  A limitation in U.S. EPA/OPP/EFED (2008) risk assessment, however, is that the 44 
summaries of acute toxicity studies for several groups of organisms (e.g., fish and aquatic 45 
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invertebrates) report LC50 values but not NOAECs.  As discussed further in Section 4, the Forest 1 
Service prefers to use NOAECs rather than LC50 values for risk characterizations. 2 
  3 
The limitation in the data summaries provided in U.S. EPA/OPP/EFED (2008) is addressed, at 4 
least partially, using ECOTOX, an ECOTOXicology Database available at 5 
http://cfpub.epa.gov/ecotox/.  This database contains reasonably detailed albeit tabular 6 
summaries of several registrant-submitted studies on the toxicity of fluazifop-P-butyl and related 7 
compounds to several groups of organisms—e.g., fish, aquatic invertebrates, aquatic plants, 8 
birds, and nontarget plants.  Information from ECOTOX is supplemented by information from 9 
Pesticide Ecological Effects Database (U.S. EPA/OPP 2005b) which provides additional details 10 
on studies summarized in ECOTOX.  The information from the ECOTOX databases is 11 
considered reliable and is used directly in the current Forest Service risk assessment.   12 
 13 
ECOTOX (2013) also contains summaries of open literature publications.  As discussed below, 14 
the open literature studies were obtained for the current risk assessment.  While ECOTOX 15 
summaries of open literature studies are not used directly, they provide a measure of quality 16 
assurance for the discussion of the open literature studies. 17 
 18 
A recent review by the European Food Safety Commission (EFSA 2012) contains information 19 
on the ecological effects of fluazifop-P-butyl.  Some of the study summaries from this review are 20 
detailed and are used in the current risk assessment to supplement the data from ECOTOX 21 
(2013).  Other reviews (European Commission 2011b; Tomlin 2004) are less detailed and are 22 
used only to ensure that all relevant information has been identified. 23 
 24 
The publication by Nishiuchi and Asano (1979) is a compendium of toxicity values on several 25 
pesticides including fluazifop-P-butyl.  This article is written in Japanese but is summarized in 26 
ECOTOX.  As noted in Table 2, data from Nishiuchi and Asano (1979) has been rejected by the 27 
U.S. EPA/OPP in several risk assessments on the California Red-legged Frog (e.g., U.S. 28 
EPA/OPP 2009b) because control groups were not used in the study.  Data from the compendia 29 
by Nishiuchi and Asano (1979) are discussed in Section 4.1 as appropriate but are not used 30 
quantitatively in this risk assessment.  31 
 32 
In the U.S. EPA registration review program, pesticide registrations are reviewed on a 15-year 33 
cycle.  According to U.S. EPA/OPP (2013a), the EPA will not be opening a docket on the 34 
registration review of fluazifop-P-butyl until 2015.  Thus, the EPA’s registration review 35 
documents are not available for the current risk assessment. 36 
 37 
A scoping/screening level risk assessment on clethodim was recently prepared for the Forest 38 
Service (SERA 2013a).  While fluazifop-P-butyl is an aryloxyphenoxy propionate herbicide and 39 
clethodim is a cyclohexanedione herbicide, both classes of herbicides share a similar mechanism 40 
of action—i.e., the inhibition of acetyl coenzyme-A carboxylase (ACCase) activity.  41 
Consequently, and in the interest of economy, some of the discussions of mechanism of action 42 
and related literature in SERA (2013a) are incorporated into the current document on fluazifop-43 
P-butyl.   44 
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1.1.3. Scoping of Open Literature  1 
As part of the scoping effort, an initial search of the open literature was conducted using 2 
TOXLINE (http://toxnet.nlm.nih.gov) and ECOTOX (http://cfpub.epa.gov/ecotox/).  A topical 3 
overview of the open literature on fluazifop-P-butyl and related compounds is provided in Table 4 
3. While the open literature on fluazifop-P-butyl is modest (i.e., a total of 92 citations in the 5 
initial TOXLINE search), the open literature on fluazifop-P-butyl and other related compounds 6 
(Table 1) is substantial (i.e., a total of 545 citations in initial TOXLINE search).   7 

1.1.3.1. Human Health Effects 8 
In terms of the human health risk assessment, many studies are available in the open literature.  9 
As summarized in the upper portion of Table 3, these studies include several publications on 10 
dermal absorption, mechanism of action, metabolism/pharmacokinetics, toxicology, and worker 11 
exposure.  The most important studies appear to be those on dermal absorption and worker 12 
exposure.  As detailed in Section 3.2, several exposure assessments for the general public and 13 
workers involve dermal absorption, and workers are the group most likely to encounter the 14 
highest levels of exposure.  While the current document is a screening-level risk assessment, 15 
these studies are reviewed in some detail and are used quantitatively in the human health risk 16 
assessment.  The other studies on humans and experimental mammals do not quantitatively 17 
impact the risk assessment but are incorporated at least briefly into the human health risk 18 
assessment as appropriate. 19 

1.1.3.2. Terrestrial Plants 20 
The published literature relevant to the ecological risk assessment is focused largely on effects in 21 
plants.  This focus would be expected for any herbicide that has been in use for over 25 years.  In 22 
Table 3, the list of studies under general effects in terrestrial plants includes only those papers 23 
that have information relating to effects on nontarget plants.  Many more papers on efficacy are 24 
available, and some of these efficacy studies are listed in Section 5 (References) and summarized 25 
further in Appendix 4 (Table A4-6).  As with all Forest Service risk assessments on herbicides, 26 
efficacy studies are not covered extensively; nevertheless, some of these studies are used to 27 
define differences in sensitivity between target and nontarget plants.   Table 3 also summarizes 28 
studies concerned specifically with toxicity to nontarget plants.  U.S. EPA/OPP risk assessments 29 
typically focus on registrant-submitted studies rather than phytotoxicity studies from the open 30 
literature; however, that is not the case with fluazifop-P-butyl.  As discussed in Section 4.1.2.5, 31 
the U.S. EPA/OPP waived the requirement for standard Tier 2 assays for effects on dicots and 32 
monocots.  Consequently, the studies on nontarget plants from the open literature are used 33 
quantitatively in the current risk assessment.  There are several studies that address the 34 
development of resistance in target plant species.  Although the issue of resistance relates 35 
primarily to efficacy, these studies are discussed briefly with a focus on the apparent 36 
mechanisms of resistance and the quantitative measures of resistance (Section 4.1.2.5.5). 37 

1.1.3.3. Other Terrestrial Species  38 
There is relatively little information regarding the effects of fluazifop-P-butyl and other related 39 
compounds on terrestrial nontarget groups.  The three avian studies (Varnagy et al. 1996, 1999; 40 
Varga et al. 1999) are from the Hungarian literature but are published in English.  The earlier 41 
study by Varnagy et al. (1996), which involved exposures to chicken eggs, is not used 42 
quantitatively.  43 
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Most of the studies regarding the effects of fluazifop-P-butyl and related compounds on 1 
terrestrial insects (Table 3) involve secondary effects due to phytotoxicity.  Fluazifop-P-butyl is 2 
noted specifically by the Fish and Wildlife Service (2012a,b) as a concern for endangered and 3 
threatened butterflies, with particular reference to the study by Russell and Schultz (2010).  This 4 
study is discussed in Section 4.1.2.4 along with a field study on the impact of fluazifop-P-butyl 5 
on butterflies (Blake et al. 2011a). 6 
 7 
Forest Service risk assessments always consider information on the effects of pesticides on 8 
microorganisms, and there are several relevant studies in the open literature (Table 3). 9 
 10 
No information on the toxicity of fluazifop-P-butyl or related compounds to reptiles or 11 
amphibians were encountered in the published literature; furthermore, no form of fluazifop is 12 
included in the Database of Reptile and Amphibian Toxicology Literature (Pauli et al. 2000).  13 
The lack of toxicity data on reptiles and amphibians is common even for pesticides with a 14 
substantial open literature. 15 

1.1.3.4. Aquatic Species  16 
The open literature concerning the effects of fluazifop-P-butyl and related compounds on aquatic 17 
animals is limited to two studies on fish (Schramm et al. 1998; Tejada et al. 1994) and two 18 
studies on aquatic invertebrates (Tantawy 2002; Zidan et al. 2002).  The data on aquatic plants 19 
are more abundant; however, most of the studies are on algae (Table 3), including a series of 20 
publications by Ma and coworkers (Ma 2002; Ma et al. 2002a,b, 2004, 2006), which are 21 
commonly used in both EPA and Forest Service risk assessments.  There is only one study on 22 
aquatic macrophytes (Michel et al.  2004).  The lack of multiple studies on aquatic macrophytes 23 
is not unusual for pesticide registrations.  24 

1.1.3.5. Chemical Properties, Environmental Fate, and Monitoring  25 
The information on the chemical properties and environmental fate of fluazifop-P-butyl and 26 
related compounds is adequate to support a risk assessment.  While the literature from U.S. 27 
EPA/OPP (Section 1.2.3) is adequate to support exposure assessments for fluazifop-P-butyl, 28 
environmental fate studies in the open literature are useful and are cited in both EPA assessments 29 
and the current Forest Service risk assessment.  In addition, several monitoring studies are 30 
available in which fluazifop was detected in surface water.   31 

1.1.4. Conclusions in Scoping 32 
The readily available data on fluazifop-P-butyl and related compounds are clearly adequate to 33 
support a screening level risk assessment.  Moreover, the level of detail in EPA studies on 34 
mammals and the additional human exposure studies from the open literature would support a 35 
standard peer reviewed risk assessment. 36 
 37 
The data available to support the ecological risk assessment are more limited.  For some groups 38 
of organisms (e.g., mammalian wildlife and terrestrial as well as aquatic plants), the data are 39 
sufficient to support both a screening level risk assessment as well as a standard peer reviewed 40 
risk assessment.  The quality of summaries of the studies on birds and aquatic animals is more 41 
limited.  Nonetheless, the study summaries from ECOTOX and the risk assessments from U.S. 42 
EPA/OPP support a screening level assessment. 43 
 44 
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In addition to the FOIA to the U.S. EPA (Section 1.1.2), SERA contacted Syngenta Crop 1 
Protection, LLC (“Syngenta”).    As discussed in Section 2.2, Syngenta is the primary registrant 2 
for fluazifop-P-butyl and is responsible for the majority of studies submitted to U.S. EPA/OPP in 3 
support of the registration.  Syngenta kindly provided a number of Data Evaluation Records 4 
(DERs) to SERA. DERs are summaries and evaluations of registrant-submitted studies prepared 5 
by the U.S. EPA.  The information from the DERs is incorporated into this risk assessment and is 6 
discussed in several subsections of the ecological risk assessment (Section 4.0) as appropriate. 7 

1.2. General Information 8 
This document has four chapters, including the introduction, program description, risk 9 
assessment for human health effects, and risk assessment for ecological effects or effects on 10 
wildlife species.  Each of the two risk assessment chapters has four major sections, including an 11 
identification of the hazards, an assessment of potential exposure to this compound, an 12 
assessment of the dose-response relationships, and a characterization of the risks associated with 13 
plausible levels of exposure.  14 
 15 
This is a technical support document which addresses some specialized technical areas.  16 
Nevertheless an effort was made to ensure that the document can be understood by individuals 17 
who do not have specialized training in the chemical and biological sciences.  Certain technical 18 
concepts, methods, and terms common to all parts of the risk assessment are described in plain 19 
language in a separate document (SERA 2011a).  The human health and ecological risk 20 
assessments presented in this document are not intended to be comprehensive summaries of all 21 
of the available information.  Nonetheless, the information presented in the appendices and the 22 
discussions in chapters 2, 3, and 4 of the risk assessment are intended to be detailed enough to 23 
support a review of the risk analyses. 24 
 25 
As discussed in Section 1.1, the Forest Service may update and/or expand this risk assessment 26 
and welcomes input from the general public and other interested parties on the selection of 27 
studies included in the risk assessment.  This input is helpful, however, only if recommendations 28 
for including additional studies specify why and/or how the new or not previously included 29 
information would be likely to alter the conclusions reached in the risk assessments. 30 
 31 
As with all Forest Service risk assessments, almost no risk estimates presented in this document 32 
are given as single numbers.  Usually, risk is expressed as a central estimate and a range, which 33 
is sometimes quite large.  Because of the need to encompass many different types of exposure as 34 
well as the need to express the uncertainties in the assessment, this risk assessment involves 35 
numerous calculations, most of which are relatively simple.  Simple calculations are included in 36 
the body of the document [typically in brackets].  The results of some calculations within 37 
brackets may contain an inordinate number of significant figures in the interest of transparency – 38 
i.e., to allow readers to reproduce and check the calculations.  In all cases, these numbers are not 39 
used directly but are rounded to the number of significant figures (typically two or three) that can 40 
be justified by the data. 41 
 42 
Some of the calculations, however, are cumbersome.  For those calculations, EXCEL workbooks 43 
(sets of EXCEL worksheets) are included as attachments to this risk assessment.  As discussed 44 
further in Section 2.4, three workbooks are included with the current risk assessment—45 
Attachment 1 for a single application, Attachment 2 for two applications, Attachment 3 for three 46 
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applications of fluazifop-P-butyl.  The worksheets in these workbooks provide the detail for the 1 
exposure estimates and hazard quotients cited in the body of the document.  Documentation for 2 
the use of these workbooks is presented in SERA (2011b).   3 
 4 
The EXCEL workbooks are an integral part of the risk assessment.  The worksheets contained in 5 
these workbooks are designed to isolate the numerous calculations from the risk assessment 6 
narrative.  In general, all calculations of exposure scenarios and quantitative risk 7 
characterizations are derived and contained in the worksheets.  In these worksheets as well as in 8 
the text of this risk assessment, the hazard quotient is calculated as the ratio of the estimated 9 
exposure to a toxicity value, typically a no adverse effect level or concentration (i.e., NOAEL or 10 
NOAEC).  Both the rationale for the calculations and the interpretation of the hazard quotients 11 
are contained in this risk assessment document. 12 
  13 
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2. PROGRAM DESCRIPTION 1 

2.1. Overview 2 
Fluazifop-P-butyl is a selective postemergence herbicide used for the control of annual and 3 
perennial grass weeds.  Formulations of fluazifop-P-butyl are not specifically labeled for 4 
applications to forests but are used in forestry related applications including the control of 5 
grasses in tree farms, conifer nurseries, and conifer plantations as well as applications to rights-6 
of-way, utility lines, fence lines, and several other non-crop sites. 7 
 8 
Fluazifop-P-butyl was developed in the late 1980s and is currently off patent.  Consequently, 9 
numerous fluazifop-P-butyl formulations are available; however, they are not all labeled for uses 10 
relevant to Forest Service programs.  For the current risk assessment, Fusilade DX is taken as the 11 
representative formulation most likely to be used by the Forest Service.  Fusilade DX and many 12 
other formulations of fluazifop-P-butyl contain inerts including petroleum distillates.  The 13 
potential impact of these inert components on this risk assessment is discussed in Section 3.1.14 14 
(human health) and Section 4.1 (ecological effects). 15 
 16 
Fluazifop-P-butyl, the active ingredient (the a.i.), is rapidly converted to fluazifop-P, the acid 17 
equivalent (a.e.) which is a weak acid.  Because the a.e. is much more persistent than the a.i., the 18 
exposure assessments given in the current risk assessment are based on the a.e.  While most 19 
toxicity studies on fluazifop-P-butyl present values in units of a.i., these values are converted to 20 
units of a.e. in the development of the risk characterization using a conversion factor of 0.854 21 
a.e./a.i [327.26 g/mole fluazifop-acid divided by 383.37 g/mole fluazifop-butyl rounded to three 22 
significant place following the decimal], the same a.i. to a.e. conversion factor used in U.S. 23 
EPA/OPP/EFED (2008). 24 
 25 
All indications from the Forest Service are that the most common method of application for 26 
fluazifop-P-butyl, which has not previously been used in Forest Service programs, will involve 27 
either directed foliar (e.g., spot treatments) or broadcast foliar applications.  Fluazifop-P-butyl is 28 
also labeled for aerial applications, which are considered in this risk assessment.  Fluazifop-P-29 
butyl is labeled for single application rates of about 0.1 to 0.375 lb a.i./acre (0.0854 to 0.32 lb 30 
a.e./acre).  The maximum seasonal application rate for fluazifop-P-butyl is 1.125 lb a.i./acre 31 
(0.96075 lb a.e./acre) as three single applications of 0.375 lb a.i./acre with a minimum 32 
application interval of 14 days.  The current risk assessment explicitly considers both a single 33 
application at the rate of 0.375 lb a.i./acre (0.32 lb a.e./acre) as well as both two and three 34 
applications of 0.375 lb a.i./acre with a 14-day application interval—i.e., the three-application 35 
scenario is the maximum seasonal rate.  The consequences of using lower application rates are 36 
discussed in the risk characterization for human health effects (Section 3.4) and ecological 37 
effects (Section 4.4). 38 
 39 
Because fluazifop-P-butyl has not been used previously in Forest Service programs, the impact 40 
of its use by the Forest Service relative to agricultural use cannot be assessed directly.  Based on 41 
use statistics from California, however, it appears that agricultural uses of fluazifop-P-butyl are 42 
much greater than forestry related uses.  43 
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2.2. Chemical Description and Commercial Formulations 1 

2.2.1. Chemical Structures and Stereochemistry 2 
Most Forest Service risk assessments do not require an elaborate discussion of chemical 3 
structure; however, fluazifop-P-butyl is atypical because of issues associated with 4 
stereochemistry and metabolites.  Table 1 provides an overview of the major chemical structures 5 
discussed in this section, and the relevance of these structures to the risk assessment is discussed 6 
below.    7 
 8 
Fluazifop-P-butyl is the common name for butyl (R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy] 9 
phenoxy] propanoate: 10 

 11 
Fluazifop-P-butyl is the butyl alcohol (HO-CH2-CH2-CH3) ester of fluazifop-P, 12 

 13 
which is more formally referred to as (R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] 14 
propanoic acid following CAS naming conventions. 15 
 16 
Fluazifop-P is also an ester – i.e., the ester of 4-((5-(trifluoromethyl)-2-pyridinyl)oxy)-phenol 17 
[CAS No. 69045-85-8] 18 

 19 
with (R)-2-hydroxypropionic acid,  20 

 21 
which is more commonly referred to as [R]-lactic acid.   22 
 23 
The 2-carbon in lactic acid (marked above with an asterisk) has four different substituents, 24 
including a hydrogen, a hydroxyl group (OH), a methyl group (CH3), and a carboxylic acid 25 
group (COOH).  The 2-carbon of lactic acid is referred to as chiral, indicating the compound can 26 
form nonsuperimposable mirror images (i.e., enantiomers) which are often referenced as the left-27 
handed [S] enantiomer and right-handed [R] enantiomer.  The triangular thick lines in the above 28 
illustration of [R]-lactic acid are a convention to indicate that methyl and hydrogen substituents 29 
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of the chiral carbon are above the plane of the image.  As illustrated above, the chirality of lactic 1 
acid carries over to the structures of both fluazifop-P and fluazifop-P-butyl.  2 
 3 
A consideration of the stereochemistry of fluazifop-P-butyl is important to the current risk 4 
assessment for several reasons.  In terms of herbicidal activity, only the [R] enantiomer is active 5 
(e.g., Gronwald 1991).  This pattern, however, does not hold for other groups of organisms.  As 6 
noted in Section 1.1.1 and detailed further in the human health risk assessment (Section 3) and 7 
ecological risk assessment (Section 4), the information in the open literature as well as the 8 
unpublished studies on fluazifop-P-butyl is limited; however, it appears that the toxicity of 9 
fluazifop-P-butyl to animals is similar to that of [RS] fluazifop-butyl.  In addition, the [S] 10 
enantiomer of fluazifop-butyl is hydrolyzed in soil to [S]-fluazifop which is then converted to 11 
[R]-fluazifop within 1 to 2 days (Bewick 1986; Gronwald 1991; Muller and Buser 1997).  12 
Consequently, it is sensible to consider information on fluazifop-butyl (i.e., enantiomer blends) 13 
as well as fluazifop-P-butyl in order to expand the data that may be used in the current risk 14 
assessment. 15 

2.2.2. Active Ingredient and Acid Equivalents 16 
Fluazifop-P-butyl is a member of the aryloxyphenoxy propionate herbicides which include 17 
clodinafop, cyhalofop-butyl, diclofop, fenoxaprop, haloxyfop, propaquizafop, and quizalofop-P.  18 
Both aryloxyphenoxy propionate herbicides and the cyclohexanedione herbicides (e.g., 19 
clethodim) are phytotoxic through the inhibition of acetyl coenzyme-A carboxylase (ACCase) 20 
activity (Burden et al. 1990; Mallory-Smith and Retzinger 2003).   21 
 22 
Fluazifop-P-butyl is used in the post-emergent control of both annual and perennial grass weeds 23 
and is relatively nontoxic to broadleaves (dicots) as well as monocots that are not classified as 24 
true grasses—i.e., Gramineae or Poaceae (e.g., Haga et al. 1987; Ishihara Sangyo Kaisha 2013).  25 
The herbicidal properties of [RS] fluazifop-butyl were first reported by Plowman et al. (1980).  26 
The phytotoxicity of fluazifop-P-butyl is discussed in Section 4.1.2.5.   27 
 28 
The initial patent for [RS] fluazifop-butyl was granted to Ishihara Sangyo Kaisha [GB 1599121], 29 
and commercial development of this herbicide was conducted jointly by Ishihara Sangyo Kaisha 30 
and ICI Plant Protection (Tomlin 2004b).  The earliest label for technical grade fluazifop-P-butyl 31 
in the U.S. EPA/OPP label system is 1986 (http://oaspub.epa.gov/apex/pesticides/ 32 
f?p=PPLS:8:0::NO::P8_PUID,P8_RINUM:3019,100-1001) and is issued to the Agricultural 33 
Chemicals Division of ICI Americas Inc.  The EPA label site indicates that a conditional 34 
registration was granted on August 25, 1986 and that the registration for fluazifop-P-butyl was 35 
transferred to Syngenta Crop Protection on February 23, 2011.  As discussed in Section 2.2.3, 36 
Syngenta supplies the formulation of fluazifop-P-butyl most likely to be used by the Forest 37 
Service.  38 
 39 
As discussed in Section 2.2.1 and illustrated in Figure 1, fluazifop-P-butyl is the butyl ester of 40 
fluazifop-P, a weak acid.  Following standard conventions in Forest Service risk assessments 41 
involving esters of weak acids, a consistent distinction is made between the active ingredient 42 
(a.i.) and acid equivalents (a.e.).  For the current risk assessment, fluazifop-P-butyl is the a.i. and 43 
fluazifop-P is the a.e.  Many of the toxicity studies conducted on fluazifop-P-butyl report 44 
exposures in units of a.i. rather than a.e.  In the exposure assessments, however, the units of 45 
exposure are expressed in units of a.e., because fluazifop-P-butyl is rapidly converted to 46 
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fluazifop-P, which is much more persistent than fluazifop-P-butyl.  For the risk characterization, 1 
concentrations or doses in units of a.i. are converted to units of a.e. by multiplying the a.i. value 2 
by the ratio of the molecular weight of fluazifop-P acid (327.26 g/mole) to the molecular weight 3 
of fluazifop-P-butyl (383.37 g/mole)–i.e., 327.26 g a.i./mole ÷ 383.37 g a.e./mole ≈ 0.85364 4 
a.e/a.i.  For the sake of clarity, it is noted that considerations of stereochemistry do not impact 5 
a.i. (fluazifop-P-butyl) to a.e. (fluazifop-P) conversions. 6 
 7 
Selected chemical and physical properties of fluazifop-P-butyl are summarized in Table 4, and 8 
the chemical and physical properties of fluazifop-P are summarized in Table 5.  In terms of 9 
practical impact on the risk assessment, the most significant differences between fluazifop-P-10 
butyl and fluazifop-P concern lipophilicity and persistence.  Fluazifop-P-butyl has a high 11 
octanol-water partition coefficient (Kow ≈31,600); whereas, fluazifop-P has a much lower Kow of 12 
0.16 at a neutral pH.  The much higher lipophilicity of fluazifop-P-butyl relative to fluazifop-P is 13 
also reflected in binding to soil.  Estimates of koc values for fluazifop-P-butyl range from 3000 to 14 
nearly 6000 (Table 4); whereas, the koc for fluazifop-P is only about 8.3 (Table 5).  Although 15 
these properties might suggest a low potential for transport following applications to soil, the 16 
reality is that fluazifop-P-butyl is rapidly hydrolyzed to fluazifop-P, and, as indicated in Table 4, 17 
the soil hydrolysis of fluazifop-P occurs in only a few hours (U.S. EPA/OPP/HED 2004a, p. 11).  18 
As discussed in Section 3.1.3.1, a similar pattern is observed in mammalian studies in which 19 
both [RS] fluazifop-butyl and fluazifop-P-butyl are rapidly metabolized to fluazifop-P via ester 20 
hydrolysis. 21 
 22 
In the Tier 2 environmental fate modeling for applications of fluazifop-P-butyl, the U.S. 23 
EPA/OPP/EFED (2004d) elected to use the environmental fate data on fluazifop-P rather than 24 
explicitly model the conversion the fluazifop-P-butyl to fluazifop-P.  Given the rapidity in the 25 
degradation of fluazifop-P-butyl to fluazifop-P, this is a sensible approach.  A similar approach is 26 
taken in the current Forest Service risk assessment, as detailed in Section 3.2.3.4.    27 

2.2.3. Commercial Formulations 28 
Formulations of fluazifop-P-butyl listed at www.greenbook.net are summarized in Table 6 and 29 
include Fusilade DX (Syngenta), Fusilade II, Turf and Ornamental Herbicide (Syngenta), 30 
Ornamec 170 Grass Herbicide (PBI/Gordon Corporation), and Ornamec Over-the-top 31 
(PBI/Gordon Corporation).  Of these herbicides, only Fusilade DX is labeled specifically for 32 
Christmas tree plantings, nursery beds, and seedling establishment—i.e., uses that may be 33 
relevant to Forest Service programs.  As noted in Table 6, applications of Fusilade DX to 34 
conifers are not permitted in California; however, U.S. EPA/OPP has issued a Special Local 35 
Needs Label for applications of Fusilade DX in California to control grasses in wilderness areas.   36 
Fusilade II is specifically labeled for applications to rights-of-way, and the Forest Service has 37 
indicated that some programs may include fluazifop-P applications to rights-of-way—e.g., power 38 
lines, pipelines, roadsides (Bakke 2013).  39 
 40 
In addition to www.greenbook.net, there are many sources of information on pesticides 41 
formulations—e.g., http://iaspub.epa.gov, http://www.cdms.net/LabelsMsds, and 42 
http://www.cdpr.ca.gov/docs/label/.  For example, the pesticide data base maintained by the 43 
Pesticide Action Network lists 52 active formulations of fluazifop-P-butyl, many of which 44 
include other active ingredients in addition to fluazifop-P-butyl.  It is beyond the scope of the 45 
current Forest Service risk assessment to consider all commercially available formulations of 46 
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fluazifop-P-butyl, and doing so would serve little purpose because pesticide formulations are 1 
constantly being developed and/or changed, particularly for pesticides that are off patent.  In 2 
addition, Forest Service risk assessments do not generally address formulations that contain more 3 
than one active ingredient.  In considering formulations with multiple active ingredients, the 4 
Forest Service uses an EXCEL application, WorksheetMaker (SERA 2011b), which has been 5 
adapted to allow for the assessment of either mixture formulations or tank mixtures.  6 
Consequently, formulations of fluazifop-P-butyl that also contain other active ingredients are not 7 
considered further in this risk assessment. 8 
 9 
Based on the above considerations, the current Forest Service risk assessment focuses on 10 
Fusilade DX as a representative formulation of fluazifop-P-butyl.  This focus, however, is not 11 
intended to be exclusive.  Other formulations of fluazifop-P-butyl are available commercially, 12 
and new formulations of fluazifop-P-butyl may become available at some point in the future.  13 
The Forest Service may elect to use other formulations of fluazifop-P-butyl registered for 14 
applications relevant to forestry.  If other formulations are used in Forest Service programs, 15 
however, attempts should be made to identify information on the inerts in the formulations 16 
(discussed further below) as well as the toxicity of the formulations to ensure that the 17 
formulation under consideration is comparable to the formulations explicitly designated in 18 
Table 4.   19 
 20 
One exception to the inclusion of other formulations of fluazifop-P-butyl is Fusilade Max.  As 21 
discussed in Section 4.1.2.4.1, available data suggest that Fusilade Max is more toxic than 22 
technical grade fluazifop-P-butyl or other formulations of fluazifop-P-butyl to the honey bee.  23 
Furthermore, studies from European literature suggest that Fusilade Max may be toxic to other 24 
terrestrial arthropods at application rates as low as 0.005 lb a.e./acre (Section 4.1.2.4.2).   In the 25 
absence of other data, studies with Fusilade Max are sometimes used in this risk assessment.  26 
This approach should be regarded as conservative (i.e., protective). 27 
 28 
Pesticide formulations contain other ingredients, sometimes referred to as inerts, and the identity 29 
of the other ingredients is typically classified as proprietary or Confidential Business Information 30 
(CBI).  U.S. EPA/OPP (2010c, p. 5-14) encourages but does not require the disclosure of most 31 
inerts on product labels.  One exception, however, involves petroleum distillates, xylene or 32 
xylene range aromatic solvents at ≥10% (U.S. EPA/OPP (2010c, p. 5-7), which must be 33 
specified on product label.  All of the formulations listed in Table 6 contain other ingredients that 34 
are specified as petroleum distillates, hydrocarbons, and/or xylene range aromatic solvents.   35 
 36 
Table 6 includes information on the density and pH of the formulations taken from the Material 37 
Safety Data Sheets (MSDS) for the formulations.  Differences in such characteristics of pesticide 38 
formulations are important to risk assessments in that the differences may be related to 39 
differences in inerts that are used in the different formulations.  The density, pH, and other 40 
characteristics (e.g., % a.i.) of the two Syngenta formations, Fusilade DX and Fusilade II, are 41 
essentially identical. 42 
 43 
Table 7 provides a more detailed summary of the other ingredients in the formulations listed in 44 
Table 6 based on the MSDS for the formulations.  As illustrated in Table 7, different suppliers 45 
may elect to provide different levels of detail in their MSDS.  PBI Gordon lists the identities of 46 
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the inerts, the corresponding CAS number, as well as the percentage of each inert in the 1 
formulation.  The MSDSs from Syngenta, however, does not provide CAS numbers, and the only 2 
statement concerning the concentration of any specified inerts is that the formulations contain 3 
less than 5% naphthalene.  The lack of specificity in the percentage of inerts in the MSDS limits 4 
any component-based assessment of the potential significance of inerts in the formulation.  As 5 
discussed further in Section 3.1.14 as well as in various sections of the ecological risk 6 
assessment (Section 4), the assessment of inerts in formulations such as Fusilade DX is based on 7 
a comparison of toxicity information on the formulation with toxicity information on the active 8 
ingredient, in this case fluazifop-P-butyl. 9 
 10 
As summarized in Table 6, the product label for Fusilade DX recommends the use of crop oil 11 
concentrates, once-refined vegetable oil, or nonionic surfactants as adjuvants.  The impact of 12 
inerts and adjuvants on the human health risk assessment is addressed in Section 3.1.14, and data 13 
on the impact of inerts and adjuvants on the ecological risk assessment are addressed in Section 14 
4.1, as the available data warrant. 15 
 16 
Experimental formulations of fluazifop-P-butyl in water dispersible granules (Bell et al. 1998) 17 
are not available commercially in the United States and are not considered further in this risk 18 
assessment. 19 

2.3. Application Methods 20 
Fusilade DX may be applied in either ground or aerial broadcast applications as well as in 21 
directed foliar application (i.e., spot treatments).  Forest Service Region 5 (California and 22 
Hawaii) indicated that clethodim (a herbicide with uses similar to fluazifop-P-butyl) is most 23 
likely to be applied along roadsides, power lines, pipelines, rights-of-way, and other disturbance 24 
areas that are being restored back to chaparral (VinZant 2013), and Bakke (2013) indicated that 25 
similar application sites are being considered for fluazifop-P-butyl.  The list of potential target 26 
species for fluazifop-P-butyl summarized in Table 8 includes target species identified by the 27 
Forest Service as well as the target species identified on the Special Local Needs label for 28 
Fusilade DX. 29 
 30 
Different application methods involve different amounts of herbicide used by workers in a single 31 
day, based on the number of acres treated per day and the application rate.  Application rates are 32 
discussed in Section 2.4, and assumptions involving the number of acres that a worker might 33 
treat in a single day are discussed further in Section 3.2.2 (worker exposure assessments). 34 

2.4. Mixing and Application Rates 35 
As discussed in the previous section, Fusilade DX is a formulation of fluazifop-P-butyl labeled 36 
for uses that appear to be most relevant to Forest Service needs—i.e., conifer plantings, nursery 37 
beds, and seedling establishment.  While other formulations of fluazifop-P-butyl may be used, 38 
Fusilade DX is used as the representative formulation of fluazifop-P-butyl in the current risk 39 
assessment. 40 
 41 
As summarized in Table 6, the recommended single-application labeled rates for Fusilade DX 42 
are 6 to 24 ounces per acre.  As also summarized in Table 6, Fusilade DX contains 2 lbs 43 
a.i./gallon [2 lbs a.i./128 oz.].  Thus, the application rates of 6 to 24 ounces per acre correspond 44 
to 0.09375 to 0.375 lb a.i./acre [2 to 24 oz. x 2 lb a.i./128 oz.].  Using the a.i. to a.e. conversion 45 
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factor of 0.854 a.e/a.i. (Section 2.2.2), these application rates correspond to approximately 0.08 1 
to 0.32 lb a.e./acre.   2 
 3 
The maximum cumulative seasonal application rate is 3 applications of 24 ounces per acre with a 4 
minimum application interval of 14 days.  This corresponds to a maximum labeled seasonal or 5 
cumulative application rate of 1.125 lb a.i./acre [3 applications x 24 oz./acre/application x 6 
1 gal/128 oz. x 2 lbs a.i./acre] or about 0.96 lb a.e./acre [1.125 lb a.i./acre x 0.85364 a.e/a.i. = 7 
0.9603451 lb a.e./acre]. 8 
 9 
The current Forest Service risk assessment explicitly considers three application scenarios: 10 
one application at 0.375 lb a.i./acre, two applications at 0.375 lb a.i./acre with a 14-day 11 
application interval and three applications at 0.375 lb a.i./acre with 14-day application intervals.  12 
The consequences of using lower application rates are discussed in the risk characterization for 13 
human health effects (Section 3.4) and ecological effects (Section 4.4).  The exposure scenarios 14 
are detailed in EXCEL workbooks provided as attachments to the current risk assessment—i.e., 15 
Attachment 1 for a single application, Attachment 2 for two applications, and Attachment 3 for 16 
three applications. 17 
 18 
In addition to application rates, application volumes, meaning the number of gallons of pesticide 19 
solution applied per acre, have an impact on the estimates of potential risk.  The extent to which 20 
a formulation of fluazifop-P-butyl is diluted prior to application primarily influences dermal and 21 
direct spray scenarios, both of which depend on ‘field dilution’ (i.e., the concentration of 22 
fluazifop-P-butyl in the applied spray).  In all cases, the higher the concentration of herbicide 23 
(i.e., equivalent to the lower dilution of the herbicide), the greater is the risk.  As summarized in 24 
Table 6, the recommended application volumes for fluazifop-P-butyl formulations range from 25 
5 to 40 gallons/acre for ground applications (with a minimum volume of 10 gallons/acre for 26 
dense grass) and 5 to 10 gallons/acre for aerial applications.   27 
 28 
In the EXCEL workbooks that accompany this risk assessment, the range of application volumes 29 
is taken as 5 to 40 gallons per acre to encompass the application volumes that could be used in 30 
both aerial and ground applications.  The central estimate of the application volume is taken as 31 
20 gallons/acre, the minimum ground application volume for dense grass. 32 
   33 
The selection of application rates and dilution volumes in this risk assessment is intended to 34 
reflect plausible estimates of potential exposures.  In the assessment of specific program 35 
activities, the application rates and volumes can be changed in Worksheet A01 of the EXCEL 36 
workbooks that accompany this risk assessment (Attachments 1 and 2) to reflect the rates and 37 
volumes actually used in a particular Forest Service program or project. 38 

2.5. Use Statistics 39 
Forest Service risk assessments attempt to characterize the use of an herbicide or other pesticide 40 
in Forest Service programs relative to the use of the herbicide or other pesticide in agricultural 41 
applications.  Forest Service pesticide use reports up to the year 2004 are available on the Forest 42 
Service web site (http://www.fs.fed.us/ foresthealth/pesticide/reports.shtml).  While this dated 43 
information is not clearly relevant to the current use of pesticides by the Forest Service, 44 
fluazifop-P-butyl is not listed as a pesticide used by the Forest Service during 2004, the most 45 
recent year for which data are available. 46 
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  1 
Information on the agricultural use of pesticides is compiled by the U.S. Geological Survey 2 
(USGS) (http://water.usgs.gov/nawqa/pnsp/usage/maps/).  The USGS (2013) reports estimated 3 
uses as fluazifop rather than fluazifop-P-butyl.  As noted in the EPA Tolerance Reassessment for 4 
fluazifop-P-butyl (U.S. EPA/OPP 2005a, p. 2), fluazifop-P-butyl is currently the only form of 5 
fluazifop registered as a pesticide.  Consequently, the use data for fluazifop reported by USGS 6 
(2013) must apply to fluazifop-P-butyl.  Nonetheless, it is unclear whether the USGS (2013) is 7 
reporting the use data in units of fluazifop-P-butyl (a.i.) or in units of fluazifop-P (a.e.). 8 
 9 
The agricultural use of fluazifop-P-butyl in 2009 (the most recent year for which data are 10 
available from USGS) is estimated by the USGS (2013) to range from about 200,000 lbs 11 
(Figure 2) to somewhat over 400,000 lbs (Figure 3).  The greatest use of fluazifop-P-butyl is in 12 
the central United States running from North Dakota to Kansas and eastwards to Michigan and 13 
Kentucky.  Based on use data by crop (also summarized in Figure 2 and Figure 3), fluazifop-P-14 
butyl is currently used almost exclusively on soybeans.  The temporal pattern in the use of 15 
fluazifop-P-butyl is noteworthy with a sharp decrease in use from a maximum of about 1.3 16 
million pounds in 1997 to as little as 0.1 million pounds in 2008. 17 
 18 
Detailed pesticide use statistics are compiled by the state of California.  The use statistics from 19 
California for 2011, the most recent year for which statistics are available, indicate that a total of 20 
about 9073.64 pounds of fluazifop-P-butyl were used in California (CDPR 2013, p. 340).  The 21 
major use relevant to Forest Service programs appears to be rights-of-way management (about 22 
801 lbs or 8.8% of total use in California).  Based on these use statistics from California, 23 
agricultural uses of fluazifop-P-butyl are much greater than uses related to forestry.  CDPR 24 
(2013, p. 339) does report that a total of 8.38 lbs of fluazifop-butyl (presumably relating to the 25 
mixture of the [RS] enantiomers were also applied in 2011.  As noted in U.S. EPA/OPP/HED 26 
(2004a, p. 5), the registration for fluazifop-butyl (the enantiomer mixture) has been cancelled.     27 
While somewhat speculative, it seems likely that this application of the [RS] enantiomers 28 
involved an older stock which was acquired prior to the cancellation of the registration for 29 
fluazifop-butyl.   30 
 31 
The relevance of the California statistics to the current Forest Service risk assessment is not 32 
clear.  As indicated in Table 6, Fusilade DX is not labeled for applications to conifers as well as 33 
other nonbearing crops in California (Fusilade DX label SCP 1070A-L5A 0513, 4026127, p. 32) 34 
but the U.S. EPA issued a Special Local Needs label for applications of Fusilade DX in 35 
California for the control of grasses in wilderness areas. 36 
  37 
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3. HUMAN HEALTH 1 

3.1.   HAZARD IDENTIFICATION 2 

3.1.1. Overview 3 
Based on acute assays for systemic toxicity, fluazifop-P-butyl is relatively nontoxic. The U.S. 4 
EPA uses a classification system for acute responses ranging from Category I (most severe 5 
response) to Category IV (least severe response).  Fluazifop-P-butyl is classified as Category III 6 
to Category IV for acute oral, dermal, and inhalation exposures. Fluazifop-P-butyl is not likely to 7 
cause substantial skin irritation (Category IV) or eye irritation (Category IV).  These 8 
classifications, however, apply to fluazifop-P-butyl itself and not necessarily formulations of 9 
fluazifop-P-butyl.  Based on the Material Safety Data Sheets, the Fusilade formulations most 10 
likely to be used in Forest Service programs may cause slight eye irritation and moderate skin 11 
irritation.  The U.S. EPA determined that fluazifop-P-butyl is not a skin sensitizer.  The product 12 
labels for some Fusilade formulations, however, indicate that repeated or prolonged exposures 13 
may cause skin sensitization. 14 
 15 
Studies on the subchronic and chronic toxicity of technical grade fluazifop-butyl or fluazifop-P-16 
butyl are available in dogs, hamsters, and rats.  The durations of exposure used in these studies 17 
range from 90 days in subchronic studies to about 2 years in chronic studies.  Rats appear to be 18 
somewhat more sensitive than dogs or mice to fluazifop-butyl and fluazifop-P-butyl, and male 19 
rats appear to be more sensitive than female rats.  The most common signs of toxicity in the 20 
subchronic and chronic studies are decreases in body weight gain and increases in relative or 21 
absolute liver weights.  There are, however, no reports of liver necrosis (i.e., cell death) 22 
associated with exposures to fluazifop-butyl or fluazifop-P-butyl.   23 
 24 
Decreases in food conversion efficiency were observed in one reproduction study in rats and a 25 
subchronic study in hamsters.  This effect, however, is not seen in other reproduction studies in 26 
rats and rabbits as well as in a chronic study in hamsters.  While decreases in food conversion 27 
efficiency could be associated with changes in endocrine function, the most recent risk 28 
assessment on fluazifop-P-butyl by the U.S. EPA’s Office of Pesticide Programs indicates that 29 
fluazifop-P-butyl has been subject to in vitro assays for androgen and estrogen binding and no 30 
evidence of receptor binding was noted.   31 
 32 
Fluazifop-P-butyl has not been assayed specifically for effects on the nervous system and 33 
immune system.  Because of changes in the EPA requirements for pesticide registration, such 34 
studies will probably be conducted at some point.  Based on currently available information, 35 
there is no evidence that fluazifop-P-butyl is likely to cause direct damage to nerve tissue or have 36 
an impact on immune function. 37 
 38 
Formulations of fluazifop-P-butyl contain petroleum solvents, including naphthalene.  The 39 
primary effects of naphthalene and petroleum solvents involve CNS depression or other signs of 40 
neurotoxicity.  Fluazifop-P-butyl is degraded in the environment to several different metabolites; 41 
however, as is common with many pesticides, the toxicity of the metabolites is not well 42 
characterized. 43 
 44 
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As discussed in Section 2.1, the quantitative consideration of risks associated with applications 1 
of fluazifop-P-butyl is based on acid equivalents.  The U.S. EPA/OPP/HED documents that form 2 
the basis of much of the human health risk assessment (Table 2), however, cite doses for 3 
fluazifop-P-butyl as the a.i. (i.e., fluazifop-P-butyl itself) rather than the a.e. (fluazifop-P acid).  4 
In order to facilitate a comparison of the EPA documents and the current risk assessment, this 5 
hazard identification adopts the EPA approach, and all doses of fluazifop-P-butyl given in this 6 
section are expressed in units of mg a.i./kg bw, unless otherwise specified.  The conversion of 7 
dose to acid equivalents (a.e.) is handled in the dose-response assessment (Section 3.3). 8 

3.1.2. Mechanism of Action 9 
As noted in Section 2.2 and as discussed further in Section 4.1.2.5 (hazard identification for 10 
terrestrial plants), the phytotoxicity of fluazifop-butyl is based on the inhibition of acetyl 11 
coenzyme-A carboxylase (ACCase) activity.   ACCase occurs in mammals, plants, bacteria, 12 
yeast, and fungi (More et al. 2012; Tong 2005).  Deficiencies in some ACCase activities in 13 
mammals are associated with decreased body weight and reduced body fat (Tong 2005). 14 
 15 
As reviewed by Tong (2005), ACCase is a key enzyme in fatty acid metabolism and catalyzes 16 
the carboxylation of acetyl-CoA to produce malonyl-CoA.  Consequently, compounds which 17 
inhibit mammalian ACCase are potentially useful drugs to control obesity (Tong 2005).  Kemal 18 
and Casida (1992) examined the inhibition of rat liver ACCase activity by fluazifop-P-butyl and 19 
characterized the inhibition as competitive with a Km (50% binding) of 38µM (≈14.5 mg/L).  As 20 
discussed in Section 4.1.2.5, an ED50 of about 1-3 µM (≈0.38 to 1 mg/L) for the inhibition of 21 
ACCase in sensitive species of plants is associated with fluazifop.  While fluazifop-P and 22 
fluazifop-P-butyl may have a lesser affinity for mammalian ACCase, compared with the ACCase 23 
in sensitive species of plants, the prevalence of weight loss in mammalian studies on fluazifop 24 
compounds as well as some studies which indicate a decrease in food conversion efficiency seem 25 
to suggest that weight loss in mammals following exposure to fluazifop-P-butyl or fluazifop-26 
butyl could be associated with the inhibition of mammalian ACCase. 27 
  28 
As discussed in several sections below and summarized in Appendix 1, decreases in body weight 29 
gain are noted in many toxicity studies on fluazifop-butyl and fluazifop-P-butyl (e.g., U.S. 30 
EPA/OPP/HED 2004d, 2011a).  Decrease in body weight gain is common sign of toxicity 31 
observed in many pesticide exposure studies.  Nonetheless, increased weight gain was observed 32 
in a 2-generation reproduction study (i.e., MRIDs 00088859, 92067050, as discussed further in 33 
Section 3.1.9.2).  Changes in body weight gain may be associated with specific mechanisms such 34 
as an impact on endocrine function or may be a secondary response associated with changes in 35 
food consumption or other toxic effects.  As discussed further in Section 3.1.8 (Effects on 36 
Endocrine System), fluazifop-P-butyl has not evidenced agonist or antagonist activity with 37 
various estrogen and androgen receptors.  Thus, there is no basis for asserting that decreases in 38 
body weight gain seen in several toxicity studies with fluazifop-butyl or fluazifop-P-butyl are 39 
likely to be associated with a direct impact on endocrine function. 40 
 41 
As also summarized in Appendix 1 and discussed in U.S. EPA/OPP/HED (2011a), another 42 
common response noted in toxicity studies with fluazifop-butyl or fluazifop-P-butyl is increased 43 
liver weight.  Increases in liver weight are often associated with the induction of cytochrome 44 
P450 and the proliferation of smooth endoplasmic reticulum in the liver (e.g., Coon 2005).  The 45 
induction of cytochrome P450 in mice by fluazifop-butyl was demonstrated by Krijt et al. 46 
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(1993), and liver enlargement with the proliferation of smooth endoplasmic reticulum in rats 1 
following exposure to fluazifop (presumably as a racemic mixture) was demonstrated by Kostka 2 
et al. (2002).   3 

3.1.3. Pharmacokinetics and Metabolism 4 
Pharmacokinetics concerns the behavior of chemicals in the body, including their absorption, 5 
distribution, alteration (metabolism), and elimination as well as the rates at which these 6 
processes occur.  This section of the risk assessment addresses the pharmacokinetic processes 7 
involved in fluazifop-butyl exposure, including a general discussion about metabolism (Section 8 
3.1.3.1), with a focus on the kinetics of absorption (Section 3.1.3.2) and excretion (Section 9 
3.1.3.3).  Absorption kinetics, particularly the kinetics of dermal absorption, is important to this 10 
risk assessment because many of the exposure scenarios (Section 3.2) involve dermal exposure.  11 
Rates of excretion are generally used in Forest Service risk assessments to evaluate the likely 12 
body burdens associated with repeated exposure. 13 
  14 
In addition to the general consideration about how fluazifop-butyl behaves in the body, another 15 
consideration is the behavior of fluazifop-P-butyl in the environment and the extent to which the 16 
metabolism of fluazifop-butyl in the environment must be considered quantitatively in the risk 17 
assessment.  The consideration of environmental metabolites is discussed in Section 3.1.15.1. 18 

3.1.3.1. Metabolism   19 
For pesticide registration, the U.S. EPA/OPP generally requires a relatively standard metabolism 20 
study in rats in which the compound is administered by both intravenous and oral routes. The 21 
information available on the metabolism of fluazifop-butyl, however, is more extensive.  As 22 
summarized in U.S. EPA/OPP/HED (2011a), the EPA reviewed one standard metabolism study 23 
with fluazifop-butyl in rats, a metabolism study in dogs with fluazifop-butyl and a metabolism 24 
study in hamsters with fluazifop-P-butyl.  The metabolism studies in rats, hamsters, and dogs 25 
reviewed in U.S. EPA/OPP/HED (2011a) indicate that fluazifop-butyl and fluazifop-P-butyl are 26 
rapidly metabolized to fluazifop acid.  Other than the hydrolysis of fluazifop-butyl to fluazifop, 27 
no further metabolism of fluazifop-butyl is noted in human studies (Clark et al. 1993; Woollen 28 
1993).  In terms of potential differences in risks associated with fluazifop-butyl relative to 29 
fluazifop-P-butyl, it is important to note that fluazifop[S] is rapidly converted to fluazifop[R] – 30 
i.e., the enantiomer of fluazifop-P-butyl.   Thus, exposures to fluazifop-butyl—i.e., a mixture of 31 
the [R] and [S] enantiomers—are essentially identical to exposures to fluazifop-P-butyl.  Both 32 
types of exposures will involve the formation of fluazifop[R].  As discussed in the following 33 
sections of this hazard identification, there appears to be no difference in effects of fluazifop-34 
butyl, compared with fluazifop-P-butyl. 35 
 36 
In addition to these studies on experimental mammals, several metabolism studies with 37 
fluazifop-butyl are available in the open literature, including studies in humans.  McCracken and 38 
coworkers (McCracken et al. 1990, 1992, 1993a) demonstrated that fluazifop-butyl is 39 
metabolized to fluazifop acid by microsomal and cytosol fractions from the liver, lung, and skin 40 
of rats as well as by red blood cells and plasma.  As noted in Section 3.1.2, fluazifop-butyl is a 41 
substrate for cytochrome P450, and metabolism by microsomes would be expected.  The 42 
metabolism of fluazifop-butyl by cytosol fractions (which do not contain substantial amounts of 43 
cytochrome P450) suggest that esterases in addition to cytochrome P450 are involved in the 44 
hydrolysis of fluazifop-butyl to fluazifop acid.  The study by McCracken et al. (1993a), which 45 
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involved human tissues, notes that, compared with rat esterases, human plasma esterases 1 
metabolize fluazifop-butyl much more slowly.  Nonetheless, another metabolism study in 2 
humans, conducted with a Fusilade formulation of fluazifop-butyl, notes that fluazifop acid is the 3 
only major metabolite of fluazifop-butyl and that the only other metabolites appeared to be 4 
conjugates of fluazifop (Woollen et al. 1991).   Although the identity of the conjugates was not 5 
determined in the study by Woollen et al. (1991), the conjugation of weak acids with compounds 6 
such as sulfates and glucuronides is a common metabolic pathway in mammals (e.g., Hansel and 7 
Morris 1996).  8 

3.1.3.2. Dermal Absorption 9 
Most of the occupational exposure scenarios and many of the exposure scenarios for the general 10 
public involve the dermal route of exposure.  For these exposure scenarios, dermal absorption 11 
estimates are compared with an estimated acceptable level of oral exposure based on subchronic 12 
or chronic toxicity studies in animals.  In applying this approach, it is necessary to assess the 13 
extent to which fluazifop-butyl is likely to be absorbed from the skin surface.   14 
 15 
Two types of dermal exposure scenarios are considered in this risk assessment: immersion and 16 
accidental spills.  In the scenarios involving immersion, the concentration of the chemical in 17 
contact with the surface of the skin is assumed to remain constant or at least nearly so during 18 
exposure.  As detailed in SERA (2011a), the calculation of absorbed dose for dermal exposure 19 
scenarios involving immersion requires an estimate of the dermal permeability coefficient (Kp) 20 
expressed in cm/hour, and the rate of absorption is assumed to be essentially constant.  In 21 
exposure scenarios involving direct sprays or accidental spills where the compound is deposited 22 
directly on the skin, the concentration or amount of the chemical on the surface of the skin is 23 
assumed to be the limiting factor in dermal absorption.  For these scenarios first-order dermal 24 
absorption rate coefficients (ka), expressed as a proportion of the deposited dose absorbed per 25 
unit time—e.g., hour-1—are used in the exposure assessment. 26 

3.1.3.2.1. First-Order Dermal Absorption 27 
Data relevant to assessing the first-order dermal absorption rate coefficient (ka) for fluazifop-28 
butyl in humans are presented in Ramsey et al. (1992), U.S. EPA/OPP/HED (2011a), and 29 
Chester and Hart (1986).  The data from Ramsey et al. (1992) are also included in several 30 
subsequent publications by the same group of investigators (Auton et al. 1993a,b; Ramsey et al. 31 
1994).  Trebilcock et al. (1994) examined the use of tape stripping to assess the movement of 32 
fluazifop-butyl in human skin.  This study, which focuses primarily on method development, is 33 
not suitable for estimating dermal absorption rates.  Several additional studies are available on 34 
dermal absorption in rats (e.g., Auton et al. 1993a, Hilton et al. 1994; Rawlings et al. 1994b).  35 
Because of the availability of human data, however, the absorption studies in rats are not 36 
considered further. 37 
 38 
The paper by Ramsey et al. (1992) is by far the most detailed and best documented study on the 39 
dermal absorption of fluazifop-butyl.  In this study, fluazifop-butyl was applied at doses of 2, 20, 40 
or 200 mg to an 800 cm2 area on the back of six volunteers per exposure level.  A uniform 41 
volume of 0.25 ml was used in each application; thus, the concentrations of fluazifop-butyl in the 42 
solutions were 0.05%, 0.5%, and 5% in the 2, 20, and 200 mg dose groups, respectively.  The 43 
application sites were not occluded, the treated areas were washed after 8 hours, and the treated 44 
individuals showered after 24 hours.  Dermal absorption was assayed from urinary excretion 45 
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with urine samples collected for up to 216 hours after dermal dosing.  The results from the 1 
dermal absorption study from Ramsey et al. (1992) are summarized in Table 9 of the current risk 2 
assessment.  The average dermal absorption decreased with increasing dose—i.e., about 8% in 3 
the 2 mg dose group, 3.6% in the 20 mg dose group, and 1.6% in the 200 mg dose group.   4 
 5 
As discussed by Kissel (2010), a decrease in the proportion of the absorbed dose with increasing 6 
dermal loading—i.e., mg of agent per cm2 of skin—is common for many chemicals.  As noted in 7 
Table 9, the loadings associated with the doses of 2, 20, and 200 mg are 0.0025, 0.025, and 0.25 8 
mg/cm2.  As illustrated in Figure 4, the decrease in the percent dermal absorption (Abs%) with 9 
increasing dermal loading (L) follows an exponential relationship: 10 
 11 
 0.348% 0.96Abs L−=   (1) 12 
 13 
U.S. EPA/OPP/HED (2011a, pp. 15) and U.S. EPA/OPP/HED (2004d, p. 20-21) summarize a 14 
similar study, which may be a partial submission of the high and low dose portions of the study 15 
by Ramsey et al. (1992).  The EPA summaries indicate that groups of six individuals were 16 
exposed to fluazifop-butyl at doses of 2 or 200 mg over a skin surface of 800 cm2.  U.S. 17 
EPA/OPP/HED (2004d, p. 20-21) notes that the study authors (NOS) report an absorption factor 18 
of 8% is reported for the low dose group and a factor of 1.6% is reported for the high dose group.  19 
Based on a reanalysis of the data, the EPA derived somewhat different absorption rates—i.e., 9% 20 
for the low dose group and 2% for the high dose group.  Documentation of EPA’s reanalysis of 21 
the data, however, was not identified during the conduct of this risk assessment. 22 
 23 
The only other data available on the dermal absorption of fluazifop-butyl in humans is from the 24 
occupational exposure study by Chester and Hart (1986).  This study, which is discussed in 25 
greater detail in Section 3.2.2.1, examined occupational exposures of groups of backpack 26 
workers and ground spray workers during applications of fluazifop-butyl.  Based on estimates of 27 
the total dose deposited on the skin of the workers and the amounts of fluazifop-butyl excreted in 28 
their urine, Chester and Hart (1986, Table IV, p. 148) estimate the dermal absorption at 1.3 (0.4 29 
to 1.8) % for backpack workers and 11 (0.2 to 56) % for ground spray workers.  Based on 30 
individual data provided in Table II of Chester and Hart (1986, p.148), the one worker with an 31 
estimated dermal absorption of 56% is a clear outlier.  All other workers had estimates of dermal 32 
absorption in the range of 0.2% to 11%.  The basis for estimates of dermal absorption rates given 33 
by Chester and Hart (1986) are not detailed, and this paper is clearly focused on estimating 34 
absorbed doses for the two groups of workers rather than dermal absorption rates. 35 
 36 
In the absence of information on first-order dermal absorption rates, quantitative structure 37 
activity relationships (QSAR) are used to estimate these rates (SERA 2011a, Section 3.1.3.2.2, 38 
Equation 3).  As detailed in Worksheet B03b of Attachments 1, 2, and 3, the QSAR methods 39 
estimate a dermal absorption rate of about 0.0024 (0.00084 – 0.0070) hour-1 based on a Kow 40 
value of 31,600 and a molecular weight of 383.37 g/mole (Table 4).  These properties are within 41 
the range of values on which the algorithm is based—i.e., Kow values ranging from 0.0015 to 42 
3,000,000 and molecular weights ranging from 60 to 400 g/mole.  The QSAR method is based 43 
exclusively on dermal absorption data from studies in humans using a skin loading of 0.004 44 
mg/cm2 (i.e., Feldmann and Maibach 1969, 1970, 1974). 45 
 46 
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Based on the dermal absorption data reviewed by U.S. EPA/OPP/HED (2004a, 2011a) as 1 
discussed above, the EPA elected to use two dermal absorption factors: 2% for high exposures 2 
and 9% for low exposures (U.S. EPA/OPP/HED 2011a, p. 5).  The EPA does not quantify or 3 
specify the definitions of high and low exposures.  In practice, the EPA exposure scenarios 4 
involving dermal exposure appear to be based solely on the 9% dermal absorption factor.  As 5 
noted in U.S. EPA/OPP/HED (2011a, p. 9): Given this, use of the 9% factor in combination with 6 
high levels of exposure would result in a conservative estimate of risk. 7 
 8 
Forest Service risk assessments typically do not use absorption factors analogous to those used 9 
by U.S. EPA, because Forest Service risk assessments include accidental exposure scenarios 10 
involving exposure periods from 1 minute to 1 hour (Section 3.2.2.2).  As an alternative and as 11 
noted above, dermal absorption rate coefficients (ka) are derived based on the following 12 
equation: 13 
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 15 
where P is the proportion absorbed, M0 is the amount applied and Mt is the amount unabsorbed at 16 
time, t, after application.  In practice, the analysis involves the regression of the natural log of the 17 
proportion of the compound unabsorbed against time and ka is estimated from the slope of the 18 
regression. 19 
 20 
As discussed above and illustrated in Figure 4, there is a clear inverse relationship between 21 
dermal loading and absorption, which is not uncommon.  In such cases, the ka used in the risk 22 
assessment is based on dermal loadings that are most representative of the exposure scenarios 23 
considered in the risk assessment.  As discussed further in Section 3.2.2.2 (accidental dermal 24 
exposures) and detailed in the attachments that accompany this risk assessment (i.e., Worksheets 25 
C03a and C03b), the dermal loadings in exposure scenarios based on first-order dermal 26 
absorption are about 0.015 (0.008 to 0.06) mg/cm2.  These loadings are most similar to the 0.025 27 
mg/cm2 mid-dose exposure group from Ramsey et al. (1992), as summarized in Table 9.   28 
 29 
In addition to the exposure scenarios based directly on first-order dermal absorption rate 30 
coefficients, first-order dermal absorption rate coefficients are also used to adjust the 31 
occupational exposure rates (mg/kg bw per lb handled) used in the worker exposure assessment 32 
for backpack applications.  The details of this method are given in SERA (2013b).  As discussed 33 
further in Section 3.3.2, an occupational exposure study involving backpack applications of 34 
fluazifop-butyl (Chester and Hart 1986, p. 148, Table IV) reports dermal loadings of 0.036 35 
(0.025 to 0.051) µg/cm2 [i.e., dermal exposures of 209 (138-294) mg over a 5800 cm2 skin 36 
surface area].  Again, these dermal loadings are most similar to the mid-dose group (0.025 37 
mg/cm2 skin loading) from the study by Ramsey et al. (1992).  As detailed in Table 10, the 90% 38 
confidence interval—i.e., the lower 5% bound and upper 95% bound—for the percent absorption 39 
from the mid-dose group in Ramsey et al. (1992) is about 3.4% (2.8% to 4%). 40 
 41 
As indicated in Equation 2 above, the estimate of the ka requires an estimate of the duration of 42 
exposure (t).  This is somewhat problematic for the study by Ramsey et al. (1992) because the 43 
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skin was washed at 8 hours following exposure but the individuals did not shower for 24 hours 1 
after exposure.  As noted by Ramsey et al. (1992), washing the skin surface only removed about 2 
50% of the fluazifop-butyl.  Assuming that the remainder of the compound was effectively 3 
removed by showering at 24 hours, the functional duration of exposure is estimated at 16 hours 4 
[8 hours + (24 hours – 8 hours) * 0.5].  Based on this period of functional exposure, the ka for 5 
fluazifop-butyl in the mid-dose group from the study by Ramsey et al. (1992) is 0.00233 6 
(0.00173 to 0.00254) hour-1. 7 
 8 
The central estimate of 0.00233 hour-1 from Ramsey et al. (1992) is almost identical to the 9 
central estimate of about 0.0024 hour-1from QSAR discussed above and detailed in Worksheet 10 
B03b in the attachments to this risk assessment.  The confidence interval from Ramsey et al. 11 
(1992)—i.e., 0.00173 to 0.00254 hour-1), however, is much narrower than that from the QSAR 12 
algorithm (i.e., 0.00084 – 0.0070 hour-1).  Given the high variability in the estimates of dermal 13 
absorption from Chester and Hart (1985, Table IV, p. 148), it seems more prudent and protective 14 
to use the estimates of ka from the QSAR algorithm.  Consequently, for the current Forest 15 
Service risk assessment, the first-order dermal absorption rate coefficients are taken as 0.0024 16 
(0.00084 – 0.0070) hour-1. 17 

3.1.3.2.2. Zero-Order Dermal Absorption 18 
Exposure scenarios involving the assumption of zero-order dermal absorption require an estimate 19 
of dermal permeability (Kp) in units of cm/hour.  No experimental estimates of a Kp for 20 
fluazifop-butyl have been identified.  Several estimates of dermal absorption rates, in units of 21 
µg/cm-2 h-1, are reported in the literature (e.g., Auton et al. 1994; Chester and Hart 1985; Hilton 22 
et al. 1984).  While these types of measurements can be used to estimate a Kp (i.e., by dividing 23 
by the concentration of the compound in the exposure media), the studies in the open literature 24 
are not designed for this purpose and do not involve essentially constant concentrations—i.e., 25 
where the amount of fluazifop-butyl clearly saturates absorption. 26 
 27 
In the absence of experimental data, Forest Service risk assessments generally use a QSAR 28 
algorithm developed by the EPA (U.S. EPA/ORD 1992, 2007).  This approach is discussed in 29 
further detail in SERA (2011a, Section 3.1.3.2.1).  As with the algorithm for estimating the first-30 
order dermal absorption rate constant, the EPA algorithm is based on molecular weight and Kow 31 
(U.S. EPA/ORD 1992, 2007).  The molecular weight and Kow values used for estimating the Kp 32 
are identical to those used in the estimate of the first-order dermal absorption rate constants (i.e., 33 
a 31,600 and a molecular weight of 383.37 g/mole). 34 
 35 
The EPA algorithm is derived from an analysis of 95 organic compounds with Kow values 36 
ranging from about 0.0056 to 309,000 and molecular weights ranging from approximately 30 to 37 
770 (U.S. EPA/ORD 1992, 2007).  These ranges of Kow

 and molecular weight values encompass 38 
the estimates of the corresponding values for fluazifop-butyl. 39 
 40 
Details of the implementation of the algorithms are given in Worksheet B03a in the EXCEL 41 
workbooks for fluazifop-butyl (Attachments 1, 2 and 3).  Using the EPA algorithm results in an 42 
estimated dermal permeability (Kp) of about 0.012 (0.006 to 0.026) cm/hour. 43 
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3.1.3.3. Excretion 1 
Although excretion rates are not used directly in either the dose-response assessment or risk 2 
characterization, excretion half-lives can be used to infer the effect of longer-term exposures on 3 
body burden, based on the plateau principle (e.g., Goldstein et al. 1974, p. 320 ff.).  Under the 4 
assumption of first-order elimination, the first-order elimination rate coefficient (k) is inversely 5 
related to the half-life (T50) [k = ln(2) ÷ T50].  If a chemical with a first-order elimination rate 6 
constant of k is administered at fixed time interval (t*) between doses, the body burden after the 7 
Nth dose (XN Dose)relative to the body burden immediately following the first dose (X1 Dose) is: 8 
 9 
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 11 
As the number of doses (N) increases, the numerator in the above equation approaches a value 12 
of 1.  Over an infinite period of time, the plateau or steady-state body burden (XInf) can be 13 
calculated as: 14 
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 16 
Whole-body half-lives are most appropriate for estimating steady-state body burdens. 17 
 18 
As reviewed by U.S. EPA/OPP/HED (2011a), fluazifop-butyl is excreted rapidly and primarily 19 
(80%-92%) in the urine.  Similar excretion patterns are reported in the open literature (Auton et 20 
al. 1993b, 1994; Chester and Hart 1986; Ramsey et al. 1992; Rawlings et al. 1994a; Woollen et 21 
al. 1991).  The prevalence of urinary excretion is true for most weak acids.  U.S. EPA/OPP/HED 22 
(2011a, p. 15) summarizes a kinetic study in three male volunteers in which an oral dose of 23 
fluazifop-butyl (0.07 mg/kg bw) was completely excreted within 4 to 6 days.  Based on the EPA 24 
description, this study appears to be identical to Woollen et al. (1991) which reports urinary 25 
eliminations half-lives of 14 (9-21) hours.  The study also summarizes a pharmacokinetic study 26 
in dogs with a similar urinary half-life of about 20 hours. 27 
 28 
The urinary half-lives of 14 (9-21) hours corresponds to first-order urinary excretion rate 29 
coefficients (ke) of about 1.2 (0.83 to 1.8) day-1.  When these rate coefficients are substituted into 30 
the above equation for the plateau principle (Eq. 4), the estimated plateau for fluazifop-butyl is 31 
about 1.4 (1.2 to 1.8).  In other words, over very prolonged periods of exposure, the maximum 32 
increase in the body burden of fluazifop-butyl should be less than a factor of 2. 33 

3.1.4. Acute Oral Toxicity 34 
The standard acute oral toxicity studies are typically used to determine LD50 values—i.e., the 35 
dose estimated to be lethal to 50% of the animals.  LD50 values as well as other measures of 36 
acute toxicity discussed in following sections are used by the U.S. EPA/OPP to categorize 37 
potential risks.  U.S. EPA/OPP uses a ranking system for response ranging from Category I 38 
(most severe response) to Category IV (least severe response).  Details of the categorization 39 
system used by the Agency are detailed in SERA (2011a, Table 4) as well as the U.S. EPA’s 40 
Label Review Manual (U.S. EPA/OPP 2010c, p. 7-2). 41 
 42 
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The acute toxicity studies in mammals are summarized in Appendix 1, Table A1-1.  The acute 1 
oral LD50 values for fluazifop-butyl (one study in rats) and fluazifop-P-butyl (one study in rats 2 
and one study in mice) are summarized in Appendix 1, Table A1-1.  The studies in rats provide 3 
definitive LD50 values, and the LD50 in mice is indefinite—i.e., expressed as >2000 mg/kg bw.  4 
The definitive LD50 values for rats span a range of about 1.9—i.e., from the LD50 of 1940 mg/kg 5 
bw for fluazifop-butyl in male rats to the LD50 of 3680 mg/kg bw for fluazifop-P-butyl in male 6 
rats.  Based on these studies, U.S. EPA/OPP/HED (2011a) classifies fluazifop-butyl and 7 
fluazifop-P-butyl as Category III for acute oral toxicity.     8 
 9 
Based on the acute LD50 studies, no systematic differences are apparent between male and 10 
female rats; furthermore, the one study for which confidence intervals are available (MRID 11 
00162439) indicates that the differences between male and female rats are not statistically 12 
significant.  No substantial differences are apparent between the toxicity of fluazifop-butyl and 13 
fluazifop-P-butyl.  As discussed in Section 3.1.3.1, fluazifop[S] is rapidly converted to 14 
fluazifop[R]; thus, no differences in the toxicity of fluazifop-butyl (a mixture of [R] and [S] 15 
enantiomer) and fluazifop-P-butyl (the [R] enantiomer) would be expected. 16 
 17 
In addition to the standard acute LD50 assays, two acute toxicity studies are available in the open 18 
literature (Kostka et al. 2002; Krijt et al. 1993) and one unpublished acute toxicity study that is 19 
not covered in the literature from U.S. EPA/OPP was submitted to the U.S. EPA’s Office of 20 
Toxic Substances (U.S. EPA/OTS 1992c).  These studies are also summarized in Appendix 1, 21 
Table A1. 22 
 23 
The study by Kostka et al. (2002) involved gavage dosing of male rats with fluazifop acid for up 24 
to 14 days with doses ranging from 56 to 891 mg/kg bw.  Decreases in body weight with no 25 
change in food or water consumption were noted at doses of 446 and 891 mg/kg bw.  As noted in 26 
Section 3.1.2 and discussed further in Section 3.1.5, decreased body weight is the most common 27 
observation in toxicity studies on fluazifop-butyl and fluazifop-P-butyl.  The paper by Kostka et 28 
al. (2002) is focused primarily on the effects of fluazifop on the liver.  The doses associated at 29 
decreased body weight (i.e., 446 and 891 mg/kg bw) were also associated with substantial 30 
increases in liver weight (30% to 40%), which is also an endpoint commonly observed in studies 31 
on fluazifop-butyl and fluazifop-P-butyl.  Slight increases in liver weight (i.e., about 15%) along 32 
with changes in biochemical parameters (e.g., increased catalase activity) were observed at doses 33 
as low as 56 mg/kg bw.  This observation is noteworthy because the acute RfD for fluazifop-34 
butyl is based on a NOEL of 50 mg/kg bw/day from a developmental study in rats (Section 3.3).  35 
The proximity of the dose of 56 mg/kg bw associated with liver effects in the study by Kosta et 36 
al. (2002) is not of substantial concern.  As discussed in Section 3.1.2, increases in liver weight 37 
as well as other biochemical parameters appear to be related to the induction of cytochrome P450 38 
which is generally considered to be an adaptive response to compounds that are metabolized by 39 
cytochrome P450.  40 
 41 
The multiple dose study in rats summarized by Krijt et al. (1993) as well as the dietary study by 42 
Krijt et al. (1993) observed increases in liver weight.  Krijt et al. (1993) noted that the increase in 43 
liver weight (about a factor of 2) was accompanied by a similar increase (about a factor of 1.6) in 44 
cytochrome P450 activity.  Both of these studies involved doses substantially in excess of no-45 
effect levels used in the dose-response assessment (Section 3.3).    46 
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 1 
In addition to information from the open literature and EPA documents, the Material Safety Data 2 
Sheets (MSDS) for formulations of fluazifop-P-butyl contain some information on the toxicity of 3 
the formulations—i.e., acute oral and dermal LD50 values, an acute inhalation LC50 value, and 4 
information on eye and skin irritation as well as dermal sensitization.  The U.S. EPA/OPP 5 
requires that these assays are conducted on each distinct formulation of a pesticide product (U.S. 6 
EPA/OPP 2010c).  Information on these assays is summarized in Appendix 1 (Table A1-8) for 7 
Fusilade DX and Fusilade II.  That the information for Fusilade DX is identical to the 8 
information for Fusilade II suggests that U.S. EPA/OPP viewed the two formulations as 9 
sufficiently similar to one another that only one set of formulation toxicity studies was 10 
conducted.  The oral LD50 values for these formulations are discussed in this section, and data 11 
from the other assays are discussed in the appropriate sections below. 12 
 13 
The MSDS for both Fusilade DX and Fusilade II report indefinite oral LD50 values of >5000 14 
mg/kg bw for the rat.  The indefinite LD50 values (i.e., values reported as greater than a specific 15 
value) indicate that an LD50 could not be calculated and that the highest dose tested, in this case 16 
5000 mg/kg bw, caused less than 50% mortality.   Both MSDSs clearly indicate that the toxicity 17 
values are based on assays of the formulation and not a.i. and that the units of the toxicity values 18 
are given as the formulation.  Both formulations contain 24.5% fluazifop-P-butyl.  Thus, the 19 
acute oral LD50 of >5000 mg formulation/kg bw corresponds to >1225 mg a.i./kg bw. 20 
 21 
As discussed above, U.S. EPA/OPP/HED (2011a) reports definitive LD50 values for the rat that 22 
range from 1940 mg a.i./kg bw to 3680 mg/kg bw for fluazifop-butyl and fluazifop-P-butyl.  All 23 
of these LD50 values for fluazifop-P-butyl and fluazifop-butyl are above the formulation LD50 24 
when expressed in units of a.i.  Because the formulation LD50 is indefinite, the interpretation of 25 
the relationship between the formulation LD50 and the LD50 values for fluazifop-butyl and 26 
fluazifop-P-butyl is limited.  The most that can be asserted is that these studies are consistent 27 
with the assumption that the toxicity of the formulations is attributable to the active ingredient 28 
rather than other ingredients (a.k.a., inerts) in the formulation.  Information on the other 29 
ingredients in the fluazifop-P-butyl formulations is discussed further in Section 3.1.14.2. 30 

3.1.5. Subchronic or Chronic Systemic Toxic Effects 31 
As discussed in SERA (2011a, Section 3.1.5), subchronic and chronic are somewhat general 32 
terms which refer to studies involving repeated dosing.  Some repeated dose studies are designed 33 
to detect specific toxic endpoints, like reproductive and neurological effects.  Except for some 34 
comments in this subsection on general signs of toxicity, these more specialized studies are 35 
discussed in subsequent subsections of this hazard identification.  The focus of this subsection is 36 
toxicity studies designed to detect more general signs of systemic toxicity and to quantify no-37 
observable-effect levels (NOAELs) for the identified endpoints as well as levels associated with 38 
adverse effects—i.e., lowest-observed-effect-levels (LOAELS). 39 
 40 
The subchronic and chronic toxicity studies on fluazifop-butyl and fluazifop-P-butyl are 41 
summarized in Appendix 1 (Table A1-2), and an overview of these studies is given in Table 11.   42 
Since no subchronic or chronic toxicity studies are published in the open literature, all of the 43 
toxicity studies relevant to the current risk assessment were submitted to the U.S. EPA/OPP in 44 
support of the registration of fluazifop-P-butyl.  The summaries of these studies given in 45 
Appendix 1, Table A1-2 are taken primarily from U.S. EPA/OPP/HED (2011a), i.e., the most 46 
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recent human health risk assessment, with additional details from U.S. EPA/OPP/HED (2004d),  1 
the Hazard Identification Assessment. 2 
 3 
As summarized in Table 11, subchronic (90 days) studies are available on dogs, hamsters, and 4 
rats (two studies) and chronic studies are available on dogs (1 year), hamsters (80 weeks), and 5 
rats (about 2 years).  There are no consistent patterns in species sensitivity in these studies.  For 6 
dogs and hamsters, the subchronic NOAELs are higher by factors of about 5 to 6 than the 7 
chronic NOAELs and suggest a moderately strong dose-duration relationship.  This is not the 8 
case, however, for rats in which the subchronic and chronic NOAELs are comparable.  As 9 
discussed in Section 3.1.3.3, fluazifop-butyl is rapidly excreted and there is no basis for 10 
suggesting increases in body burden during prolonged periods of exposure.  This notion is 11 
consistent with similar subchronic and chronic NOAELs in rats but not with the higher 12 
subchronic, relative to chronic, NOAELs in dogs and hamsters.  Speculatively, the pattern in 13 
dogs and hamsters suggests rates of damage that exceed rates of repair rather than an increase in 14 
body burdens with increasing duration. 15 
 16 
Another noteworthy difference in these studies is the diversity of the most sensitive endpoints 17 
among dogs, hamsters, and rats in the chronic studies—i.e., adrenal and thymus changes in dogs, 18 
testicular, ovarian changes along with liver inflammation and cataracts in hamsters, and kidney 19 
damage and ovarian cysts with increased mortality in rats.  Except for the ovarian changes seen 20 
in hamsters and rats, there are no apparent similarities in sensitive endpoints among these three 21 
species. 22 

3.1.6. Effects on Nervous System 23 
In severely poisoned animals, virtually any chemical may cause gross signs of toxicity which 24 
might be attributed to neurotoxicity—e.g., incoordination, tremors, or convulsions.  A direct 25 
neurotoxicant, however, is defined as a chemical that interferes with the function of nerves, 26 
either by interacting with nerves directly or by interacting with supporting cells in the nervous 27 
system.  This definition of a direct neurotoxicant distinguishes agents that act directly on the 28 
nervous system (direct neurotoxicants) from those agents that might produce neurological effects 29 
secondary to other forms of toxicity (indirect neurotoxicants).  U.S. EPA has developed a battery 30 
of assays to test for neurotoxicity (Group E in U.S. EPA/OCSPP 2013), and U.S. EPA/OPP 31 
requires neurotoxicity studies for pesticides when standard toxicity studies or other 32 
considerations such as chemical structure suggest that concerns for effects on the nervous system 33 
are credible. 34 
 35 
Both the U.S. EPA/OPP Hazard Identification Assessment Review Committee (U.S. 36 
EPA/OPP/HED 2004d) and the most recent U.S. EPA/OPP human health risk assessment (U.S. 37 
EPA/OPP/HED 2011a) specifically address concerns for neurotoxicity.  The conclusion from the 38 
more recent human health risk assessment is given below: 39 
 40 

The assessment team concluded that there was not a concern for neurotoxicity 41 
resulting from exposure to fluazifop-P-butyl at relevant exposure levels. There 42 
was no evidence of clinical signs indicative of neurotoxicity or neuropathology 43 
in the available studies. Marginal increases in brain weights at termination were 44 
seen in a sub-chronic toxicity study in a rats and a carcinogenicity study in 45 
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hamsters, but only at high doses. A developmental neurotoxicity study is not 1 
required at this time. 2 

U.S. EPA/OPP/HED 2011a, p. 19. 3 
 4 
The reference to the brain weights refers to slight increases (2.5% in male hamsters and 1.6% in 5 
females) in the 3000 ppm exposure group of the chronic study in hamsters (MRIDs 6 
4534501/46082905), a 4% increase in brain weights in male and female hamsters in the 7 
subchronic study (MRID 46082902), and a 2.9% increase in brain weight in female rats in the 8 
2000 ppm dose group (MRID 46158402).  As noted in U.S. EPA/OPP/HED (2011a, p.19), the 9 
increases in brain weights were not accompanied by histological lesions in the brain, and the 10 
toxicological significance of the minor changes in brain weights is not clear.  The EPA reviews 11 
do not provide information concerning the statistical significance of the increases in brain 12 
weights.   13 
 14 
In the absence of signs of neurotoxicity in the many acute and longer-term toxicity studies on 15 
fluazifop-butyl and fluazifop-P-butyl, the EPA assessment that fluazifop-P-butyl is not likely to 16 
be neurotoxic is reasonable.  A similar assessment of the potential neurotoxicity of fluazifop-P-17 
butyl is briefly stated in the assessment of fluazifop-P-butyl by the European Food Safety 18 
Authority (EFSA, 2012, p. 7).  In terms of the potential significance of slight increases in brain 19 
weight noted in the above statement by U.S. EPA/OPP/HED (2011a, p. 19), it is notable that 20 
changes in brain weight are not commonly associated with neurotoxicity (Sellers et al. 2007). 21 
 22 
Notwithstanding the above considerations, U.S. EPA/OPP/HED (2011a, p. 16) notes that 23 
Revised Part 158 Data Requirements now require a 90-day neurotoxicity study for registered 24 
pesticides.  As discussed in Section 1.1.2, fluazifop-P-butyl is scheduled for registration review 25 
starting in 2015.  It seems likely that a neurotoxicity study on fluazifop-P-butyl will be 26 
conducted as part of the upcoming registration review. 27 

3.1.7. Effects on Immune System 28 
There is very little direct information on which to assess the potential immunotoxicity of 29 
fluazifop-P-butyl.  The only studies specifically related to the effects of fluazifop-P-butyl on 30 
immune function are skin sensitization studies (Section 3.1.11).  While these studies provide 31 
support for asserting that fluazifop-P-butyl is not likely to cause skin sensitization, they provide 32 
no information useful for directly assessing the potential for fluazifop-P-butyl to impair immune 33 
function. 34 
  35 
In addition to assays for immunotoxicity, typical subchronic or chronic animal bioassays conduct 36 
morphological assessments of the major lymphoid tissues, including bone marrow, major lymph 37 
nodes, spleen and thymus (organ weights are sometimes measured as well), and blood leukocyte 38 
counts.  These assessments can detect signs of inflammation or injury indicative of a direct toxic 39 
effect of the chemical on the lymphoid tissue.  Changes in morphology/cellularity of lymphoid 40 
tissue and blood, indicative of a possible immune system stimulation or suppression, can also be 41 
detected. 42 
 43 
Most of the earlier EPA assessments of fluazifop-P-butyl (e.g., assessments prior to 2011 in 44 
Table 2) do not specifically address potential concerns for the impact of fluazifop-P-butyl on 45 
immune function.  The most recent human health risk assessment of fluazifop-P-butyl, however, 46 
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does address concerns for the impact of fluazifop-P-butyl on immune function based on the 1 
standard toxicity studies (U.S. EPA/OPP/HED 2011a, p. 17).  The most relevant observations are 2 
those associated with effects on the thymus, spleen weights, bone marrow, and lymphatic tissue 3 
at the 25 and 125 mg/kg bw/day doses in the chronic study on dogs (MRIDs MRID 00131462, 4 
00131463, 92067018).  While these effects are all suggestive of a potential impact on immune 5 
function, the EPA discussion notes that the colony of dogs used in this study may have had pre-6 
existing health issues that contributed to the responses to fluazifop-P-butyl.  In addition, the 7 
interpretation of the results is compromised by several other issues associated with comparisons 8 
between the control and exposed groups.  Furthermore, the EPA notes the lack of any endpoints 9 
associated with immune function in the chronic studies in rats as well as the subchronic study in 10 
dogs.  11 
 12 
As with neurotoxicity, recent changes to pesticide regulations (40 CFR § 158) now require 13 
immunotoxicity assays as a condition for pesticide registration (U.S. EPA/OPP/HED 2011a, p. 14 
17).  These requirements, however, were not in effect when fluazifop-P-butyl was registered.  As 15 
discussed above, fluazifop-P-butyl will undergo registration review starting in 2015, and studies 16 
specific to the assessment of immune suppression may be conducted as part of this process.  17 

3.1.8. Effects on Endocrine System 18 
Assessments of the direct effects of chemicals on endocrine function are most often based on 19 
mechanistic studies on estrogen, androgen, or thyroid hormone systems (i.e., assessments on 20 
hormone synthesis, hormone receptor binding, or post-receptor processing).  The U.S. EPA has 21 
developed a detailed approach to the assessment of potential endocrine disruptors (U.S. EPA 22 
2014).  As part of this effort, U.S. EPA/OPP has developed a battery of screening assays for 23 
endocrine disruption which can be found at: http://www.epa.gov/ocspp/pubs/frs/ 24 
publications/Test_Guidelines/series890.htm.  Fluazifop-P-butyl, however, was not among the 25 
compounds listed to be screened in these assays (U.S. EPA/OPP/HED 2011a). 26 
 27 
Notwithstanding the above, both U.S. EPA/OPP/HED (2011a, p. 28) and the earlier report from 28 
the EPA Hazard Identification Assessment Committee (U.S. EPA/OPP/HED 2004d, p. 33) 29 
indicate that in vitro assays were conducted on both fluazifop-P-butyl and acid metabolites 30 
(NOS) using recombinant yeast strains sensitive to human estrogen or androgen receptors.  Both 31 
documents indicate that no estrogen or androgen activities were noted.  Details of these studies 32 
and references to MRID study numbers, however, are not provided in either of the EPA 33 
documents.  Based on these summaries, it is not clear if additional testing for endocrine activity 34 
will be required as part of the registration review for fluazifop-P-butyl. 35 
 36 
In terms of functional effects that have important public health implications, effects on endocrine 37 
function could be expressed as diminished or abnormal reproductive performance.  This issue is 38 
addressed specifically in the following section (Section 3.1.9).  39 
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3.1.9. Reproductive and Developmental Effects 1 

3.1.9.1. Developmental Studies 2 
No studies on the developmental effects of fluazifop-butyl or fluazifop-P-butyl were identified in 3 
the open literature.  A review by Sesline and Jackson (1994) indicates that fluazifop-butyl has 4 
been identified by the U.S. EPA as a teratogen—i.e., a compound that causes birth defects.  As 5 
discussed below, this statement is consistent with the summaries of registrant-submitted studies 6 
given in EPA documents on fluazifop-P-butyl.  Sesline and Jackson (1994) specify a Fulsilade 7 
formulation, which appears to be a misspelling of Fusilade, as a teratogen.  Pesticide 8 
formulations, however, are not typically used in developmental studies, and no studies on a 9 
Fusilade formulation were identified in the EPA literature. 10 
 11 
Developmental studies are used to assess the potential of a compound to cause malformations 12 
and signs of toxicity during fetal development.  These studies typically entail gavage 13 
administration of the chemical compound to pregnant rats or rabbits on specific days of 14 
gestation.  Teratology assays as well as studies on reproductive function (Section 3.1.9.2) are 15 
generally required by the EPA for the registration of pesticides.  Very specific protocols for 16 
developmental studies are established by U.S. EPA/OPPTS and are available at 17 
http://www.epa.gov/opptsfrs/publications/ OPPTS Harmonized . 18 
   19 
Standard developmental studies on fluazifop-P-butyl and fluazifop-butyl were conducted in rats 20 
and rabbits.  Details on these studies are given in Appendix 1 (Table A1-3) and an overview of 21 
these studies is given in Table 12.  Two studies were conducted on rabbits, one study using 22 
fluazifop-butyl (MRID 00088856) and the other study using fluazifop-P-butyl (MRID 23 
46082904).  Five studies were conducted on rats, two studies using fluazifop-butyl 24 
(MRIDs 00088857 and 00088858) and three studies using fluazifop-P-butyl (MRIDs 46158401, 25 
46082903, and 46082013).  Several of these studies involved more than one submission to the 26 
U.S. EPA and are associated with more than one MRID number.  The multiple MRID numbers 27 
are included in Appendix 1 (Table A1-3), but only the initial MRID number is cited in Table 12. 28 
 29 
Differences in the apparent sensitivities of rabbits and rats vary between maternal effects and 30 
fetal effects.  In terms of maternal toxicity, rabbits appear to be somewhat more sensitive than 31 
rats based on a comparison of the maternal LOAELs in rabbits (i.e., 50 and 90 mg/kg bw/day) to 32 
the upper range of the maternal NOAELs in rats (i.e., 100 mg/kg bw/day).  Based on fetal 33 
toxicity, rats appear to be more sensitive than rabbits based on higher NOAELs in rabbits (10 to 34 
30 mg/kg bw/day) relative to the LOAEL in rats (5 mg/kg bw/day) seen in two of the three 35 
studies on rats. 36 
 37 
Developmental studies involve multiple daily dosing of pregnant animals, typically from Day 6 38 
or 7 of gestation through to Day 20 to 28 of gestation.  In terms of a practical impact on the 39 
current risk assessment, the distinction made by the U.S. EPA/OPP between developmental 40 
effects and teratogenic effects (malformations) is important.  Developmental effects typically 41 
involve changes in body or organ weight as well as effects that may be associated with a delay in 42 
growth (e.g., delayed ossification).  Teratogenic effects are frank malformations.  Malformations 43 
could be associated with an exposure occurring on a single day.  Developmental effects, 44 
however, are commonly associated with effects caused by several days of exposure.   45 
 46 
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For fluazifop, doses associated with malformations, specifically an increase in the incidence of 1 
diaphragmatic hernia, occur at higher doses (i.e., LOAELs of 200 mg/kg bw/day) than 2 
developmental effects (LOAELs of 5 to 20 mg/kg bw/day for delayed ossification).  As 3 
discussed further in Section 3.3 (Dose-Response Assessment for Humans), these differences in 4 
the endpoints for developmental studies are the basis for the different ways in which these 5 
studies are used.  The higher NOAEL of 50 mg/kg bw/day for malformations is used as the basis 6 
for the acute RfD because the malformations are presumed to be associated with a single 7 
exposure.  The lower NOAEL of 2 mg/kg bw/day for developmental effects is used as the basis 8 
for the assessment of short-term occupational exposures (1-30 days) because the developmental 9 
effects are assumed to be associated with exposures that occur over a period of several days (i.e., 10 
about 14 to 23 days). 11 

3.1.9.2. Reproduction Studies 12 
Multi-generation reproduction studies typically involve dietary exposures of a group of rats or 13 
mice referred to as the parental generation or P1.  Male and female animals are selected from 14 
this group and mated.  Exposure of the female continues through gestation and after delivery.  15 
Offspring from the parental generation, typically referred to as F1, are then continued on dietary 16 
exposure through sexual maturity.  The F1 offspring are mated (and then referred to as the P2 17 
generation) producing an F2 generation.  This is the basic design of a “2-generation” study, 18 
although variations on this design are sometimes used, and occasionally the study is carried over 19 
to a third generation.  Multi-generation reproduction studies typically focus on effects on 20 
reproductive capacity—i.e., the number of young produced and their survival.  21 
 22 
As detailed in Appendix 1, Table A1-3, U.S. EPA/OPP/HED (2004a,d; 2011a) summarizes the 23 
results of a 2-generation reproduction study in rats (MRID 00088859, 92067050).  In this study, 24 
rats were exposed to fluazifop-butyl in the diet at concentrations of 0, 10, 80, or 250 ppm.  The 25 
durations of the exposures varied by generation—i.e., 100 days for the parental generation, 120 26 
days for the F1 generation, and up until weaning for the F2 generation.  No adverse effects were 27 
noted for any animals (parental or offspring) at the 10 ppm exposure level.  In the mid-dose 28 
group, effects were noted in both males from the parental generation and offspring.   Parental 29 
males evidenced a decrease in spleen weights.  Males from the F1 and F2 generations evidenced a 30 
decrease in absolute and relative testes and epididymal weights.  Female offspring evidenced 31 
decreases in pituitary and uterine weights.  In the high-dose group, parental females evidenced 32 
increases in liver and kidney weights as well as geriatric nephropathy.  The EPA documents do 33 
not describe the geriatric nephropathy in detail; however, it probably indicates changes in the 34 
kidney typically seen in older animals. 35 
 36 
As discussed further in Section 3.3 (Dose-Response Assessment), the chronic RfD for fluazifop-37 
P-butyl is based on the low dose group NOAEL for parental males and offspring using an 38 
estimated dose of 0.74 mg/kg bw/day with a corresponding LOAEL of 5.8 mg/kg bw/day (U.S. 39 
EPA/OPP 2011a).  This approach is somewhat unusual in that chronic RfDs are typically based 40 
on chronic feeding studies unless the NOAEL from the reproduction study is below the NOAEL 41 
from the standard chronic feeding study.  As discussed in Section 3.1.5 and summarized in 42 
Appendix 1 (Table A1-2), the chronic feeding study in rats yielded a NOAEL of 0.51 mg/kg 43 
bw/day for males and 5.2 mg/kg/day for females with corresponding LOAELs of 4.15 mg/kg 44 
bw/day for males and 16 mg/kg bw/day for females.  As with the reproduction study, the 45 
NOAEL dose of 0.51 mg/kg bw/day is based on a dietary concentration of 10 ppm.  The 46 
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somewhat lower mg/kg bw/day dose given for the chronic study, relative to the reproduction 1 
study, is to be expected since the period of exposure in the chronic study (106 to 107 weeks) was 2 
longer than that in the reproduction study (up to 120 days). 3 
 4 
The U.S. EPA/OPP documents reviewed in the preparation of this Forest Service risk assessment 5 
(i.e., the documents specified in Table 2) do not explicitly discuss the rationale for using the 6 
somewhat higher NOAEL of 0.74 mg/kg bw/day from the reproduction study rather than the 7 
NOAEL of 0.51 mg/kg bw/day from the chronic rat feeding study.  This dose selection for the 8 
chronic RfD is discussed further in the dose-response assessment (Section 3.3). 9 
 10 
As summarized at the end of Table A1-3 in Appendix 1, EFSA (2012) provides brief summaries 11 
of reproduction toxicity studies (note the plural form) and note a NOAEL of 0.8 mg/kg bw/day.  12 
This study or studies are not referenced.  As noted in the same table for MRID 00088859, the 2-13 
generation study described in detail in EPA documents, the NOAELs were 0.74 mg/kg bw/day 14 
for males and the corresponding dose in females was 0.88 mg/kg bw/day.  It seems reasonable to 15 
speculate that the NOAEL of 0.8 mg/kg bw/day reported by EFSA (2012) is from MRID 16 
00088859 based on the averaging of the mg/kg bw/day dose for the 10 ppm dietary dose group. 17 

3.1.10. Carcinogenicity and Mutagenicity 18 
A number of different test systems for mutagenicity (e.g., bacterial assays, mammalian cell 19 
culture assay, and assays for chromosome aberrations) are required for pesticide registration.  20 
These assays were conducted on fluazifop-butyl and fluazifop-P-butyl and provided no evidence 21 
of mutagenicity (U.S. EPA/OPP/HED 2011a, p. 24).  This assessment is consistent with reviews 22 
of mutagenicity studies on fluazifop-butyl and fluazifop-P-butyl from the European literature 23 
(EFSA 2012; FAO/WHO 2000). 24 
 25 
As summarized in Appendix 1 (Table A1-2) and discussed in Section 3.1.5, fluazifop-butyl was 26 
assayed for carcinogenicity in a chronic feeding study with rats (MRID 41563703) and fluazifop-27 
P-butyl was assayed for carcinogenicity in a chronic feeding study in hamsters (MRID 4534501, 28 
46082905).  No increases in the incidences of tumors were observed in either species.  Based on 29 
these studies as well as the supporting studies on mutagenicity, the most recent EPA risk 30 
assessment on fluazifop-P-butyl notes the following: 31 
 32 

Fluazifop-P-butyl is classified as “not likely to be carcinogenic to humans” 33 
and no mutagenic potential was observed in adequate in vivo and in vitro 34 
studies with fluazifop-P-butyl. 35 

U.S. EPA/OPP/HED 2011a, p. 5 36 
 37 
This position is repeated in other EPA risk assessments on fluazifop-P-butyl (Table 2) as well as 38 
the European reviews that address carcinogenicity (i.e., EFSA 2012; FAO/WHO 2000).   39 

3.1.11. Irritation and Sensitization (Effects on the Skin and Eyes) 40 
The U.S. EPA/OPP requires standard studies on skin and eye irritation as well as skin 41 
sensitization for pesticide registration (U.S. EPA/OCSPP 2013).  As with acute oral toxicity, the 42 
U.S. EPA/OPP uses a ranking system for responses ranging from Category I (most severe 43 
response) to Category IV (least severe response) for all three groups of endpoints discussed in 44 
this subsection (e.g., U.S. EPA/OPP 2011a). 45 
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3.1.11.1. Skin Irritation 1 
Assays for skin irritation and sensitization are summarized in Appendix 1, Table A1-4.  Assays 2 
for skin irritation were conducted on both fluazifop-butyl (MRID 00088853) and fluazifop-P-3 
butyl (MRID 00162441).  Both studies found mild dermal irritation that cleared within 72 hours.  4 
The most recent EPA human health risk assessment (U.S. EPA/OPP/HED 2011a, p. 59) 5 
classifies both fluazifop-butyl and fluazifop-P-butyl as a Category IV skin irritant—i.e., the least 6 
hazardous category.  This classification is consistent with the review of fluazifop-P-butyl by the 7 
European Food Safety Authority (EFSA 2012, p. 30). 8 

3.1.11.2. Skin Sensitization 9 
Information on the skin sensitization assays for fluazifop-butyl and fluazifop-P-butyl are also 10 
summarized in Appendix 1, Table A1-4.  Unlike the case with skin irritation, the available 11 
information on skin sensitization contains apparent inconsistencies.   12 
 13 
The U.S. EPA/OPP/HED (2011a) cites standard sensitization assays in guinea pigs indicating 14 
that neither fluazifop-butyl (MRID 00088854) nor fluazifop-P-butyl (MRID 00162441) cause 15 
skin sensitization.  This assessment is consistent with statements on skin sensitization given in 16 
the review of fluazifop-P-butyl by the World Health Organization (FAO/WHO 2000, p. 16).  The 17 
review by the European Food Safety Authority of fluazifop-P and fluazifop-P-butyl (EFSA 18 
2012) , however, indicates that fluazifop-P-butyl does cause skin sensitization and that labels for 19 
formulations containing fluazifop-P-butyl must include the following statement: May cause 20 
sensitization by skin contact (EFAS 2012, p. 7).  As indicated in Appendix 1 (Table A1-8), the 21 
MSDSs for both Fusilade DX and Fusilade II contain the following language: Repeated and/or 22 
prolonged contact may cause skin sensitization. 23 
 24 
The reasons for the discrepancies between the statements in the EPA and WHO documents, 25 
compared with the statements from EFSA and the MSDS for the Fusilade formulations, are not 26 
apparent.  The two MRID studies cited in U.S. EPA/OPP/HED (2011a) involved technical grade 27 
fluazifop-butyl (93.3%) and fluazifop-P-butyl (86.3%).  As noted in Section 3.1.4, the EPA 28 
requires skin sensitization assays on distinct pesticide formulations (U.S. EPA/OPP 2010c).  29 
Summaries of the results of skin sensitization assays with Fusilade formulations were not 30 
identified in the EPA literature (Table 2).   31 
 32 
Given the wording on the MSDS for the Fusilade formulations, it appears that skin sensitization 33 
assays on one or both of the Fusilade formulations may have evidenced a skin sensitization 34 
response.  In the absence of additional information, skin sensitization is viewed as an endpoint of 35 
concern in the current risk assessment. 36 

3.1.11.3. Ocular Effects 37 
Standard eye irritation studies in rabbits were conducted with technical grade fluazifop-butyl 38 
(MRID 00088855) and technical grade fluazifop-P-butyl (MRID 00162441).   These studies are 39 
summarized in Appendix 1, Table A1-5.  Based on these studies, U.S. EPA/OPP/HED (2011a, p. 40 
59) classifies fluazifop-butyl and fluazifop-P-butyl as Category IV, the lowest hazard category.  41 
The EPA summaries of these studies indicate that fluazifop-P-butyl caused mild irritation which 42 
cleared within 3 days; however, no description of eye irritation is given for fluazifop-butyl.  It is 43 
not clear whether the results in the two bioassays were substantially different or if the summary 44 
of the study on fluazifop-P-butyl is simply somewhat more elaborated than the summary on 45 
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fluazifop-butyl.  The classification of fluazifop-butyl and fluazifop-P-butyl as minimally 1 
irritating to eyes is consistent with the evaluation by EFSA (2012) and the MSDS for Fusilade 2 
DX and Fusilade II (Appendix 1, Table A1-8). 3 

3.1.12. Systemic Toxic Effects from Dermal Exposure 4 
As summarized in Appendix 1 (Table A1-6), acute dermal toxicity studies are available on 5 
technical grade fluazifop-butyl (MRID 00162439) and fluazifop-P-butyl (MRID 00093819).  In 6 
addition, a repeated dose (21-day) study is available on technical grade fluazifop-butyl (MRID 7 
00093819).  All of these studies were conducted in rabbits, and are cited in the most recent EPA 8 
human health risk assessment on fluazifop-P-butyl (U.S. EPA/OPP/HED 2011a).  A relatively 9 
detailed summary of the repeated dose study is given in U.S. EPA/OPP/HED (2004a). 10 

3.1.12.1. Acute Studies 11 
The acute toxicity studies on fluazifop-butyl and fluazifop-P-butyl are unremarkable, with both 12 
reporting indefinite LD50 values of >2000 mg/kg bw.  Based on these studies, the EPA classifies 13 
fluazifop-P-butyl as Category III for acute dermal toxicity (U.S. EPA/OPP/HED 2011a, p. 59).  14 
The classification of fluazifop-P-butyl as Category III appears to reflect the maximum dose 15 
tested rather than an assessment of greater hazard than a Category IV compound.  In order to 16 
classify a compound as Category IV for acute dermal toxicity, the dose tested must be greater 17 
than 5000 mg/kg bw (U.S. EPA/OPP 2010c, p. 7-2).   18 
 19 
Two reviews of fluazifop-P-butyl from the European literature cite an indefinite acute dermal 20 
LD50 value of >2110 mg/kg bw for fluazifop-P-butyl (EFSA 2012 , p. 30, FAO/WHO 2000, p. 21 
16), but do not provide a reference citation for the study associated with this indefinite LD50. 22 
 23 
As summarized in Appendix 1 (Table A1-6), the Material Safety Data Sheets (MSDS) for 24 
Fusilade DX and Fusilade II cite an acute dermal LD50 value for rabbits of >2000 mg/kg bw.  As 25 
discussed previously, the MSDS for these formulations both specify that the toxicity values 26 
apply to the “Finished Product”—i.e., the formulations rather than the active ingredient.  Given 27 
as acid equivalents, the LD50 of >2000 mg formulation/kg bw corresponds to >490 mg a.i./kg 28 
bw.  Because the dermal LD50 values for fluazifop-P-butyl and the formulations are all indefinite, 29 
these data are not useful for assessing the toxic potential of the other ingredients in the fluazifop-30 
P-butyl formulations. 31 

3.1.12.2. Repeated Dose Study 32 
In the 21-day repeated dose study on fluazifop-butyl (Appendix 1, Table A1-6), overt signs of 33 
toxicity included death in 1/10 male rats in the 500 mg/kg bw/day dose group as well as 4/10 34 
males and 5/10 females in the 2000 mg/kg bw/day dose group.  Effects suggestive of kidney 35 
damage (e.g., pathological changes in the glomerulus) were noted; however, it is unclear whether 36 
the effects reported in the summary of this study in U.S. EPA/OPP/HED (2004a) were caused 37 
directly by fluazifop-P-butyl or secondary to other effects.  No adverse effects were noted in the 38 
100 mg/kg bw/day dose groups. 39 
 40 
As discussed further in Section 3.2 (exposure assessment for human health effects), many of the 41 
exposure scenarios considered in this risk assessment involve dermal exposures.  The repeated-42 
dose dermal toxicity study on fluazifop-butyl reinforces concern that dermal exposures have the 43 
potential to cause systemic toxicity. 44 
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3.1.13. Inhalation Exposure 1 
The acute inhalation studies on fluazifop-butyl and fluazifop-P-butyl are summarized in 2 
Appendix 1 (Table A1-7).  Unlike most other endpoints discussed in this hazard identification, 3 
the reported data on the inhalation toxicity of fluazifop-P-butyl are somewhat disparate. 4 
 5 
The human health risk assessments and supporting documentation from U.S. EPA/OPP/HED 6 
(2004a,b,c,d; 2005a, 2011a) are typically consistent with each other in terms of summarizing 7 
studies and selecting studies for use in the various assessments.  This is not the case, however, 8 
for inhalation exposures.  The U.S. EPA/OPP/HED (2004a, p. 20) support document for the 9 
tolerance reassessment of fluazifop-P-butyl uses a relatively standard acute inhalation study 10 
(MRIDs 46082901 and 41563701) on technical grade fluazifop-butyl (97%) which reports acute 11 
LC50 values of >2.3 to >4.37 mg/L to classify fluazifop-butyl as Category III for acute inhalation 12 
exposures.  This study is not cited in the most recent EPA human health risk assessment on 13 
fluazifop-P-butyl (U.S. EPA/OPP/HED 2011a).   14 
 15 
As an alternative, EPA/OPP/HED (2011a, p. 59) uses a study on a mixture of fluazifop-P-butyl 16 
and fenoxyprop-P-ethyl to derive an acute LC50 of >1.7 mg/L expressed as fluazifop-P-butyl.  17 
This indefinite LC50 also leads to a classification of fluazifop-P-butyl as Category III for acute 18 
inhalation exposures.  Like fluazifop-P-butyl, fenoxyprop-P-ethyl is an aryloxyphenoxy 19 
propionate herbicide used to control grasses (U.S. EPA/OPP 2007b).  U.S. EPA/OPP/HED 20 
(2011a) does not discuss why the document used the mixture inhalation study rather than the 21 
studies cited in U.S. EPA/OPP/HED (2004a, p. 20).  Perhaps, the EPA gave preference to the 22 
mixture study simply because it involved fluazifop-P-butyl rather than fluazifop-butyl. 23 
 24 
A more important discrepancy, however, involves the inhalation LC50 values reported on the 25 
MSDS for Fusilade DX and Fusilade II.  As summarized in Appendix 1 (Table A1-8), the MSDS 26 
report definitive LC50 values of 0.54 mg/L for a 4-hour exposure (a standard duration in these 27 
types of bioassays).  The MSDS also note that identity of the animal used in the LC50 study is 28 
…“Not Available”.  No inhalation studies were identified in the literature on fluazifop-butyl or 29 
fluazifop-P-butyl with a reported inhalation LC50 of 0.54 mg/L.  Moreover, the notation that the 30 
identity of the test animal is unknown does not make sense and diminishes the credibility of the 31 
MSDS. 32 
 33 
The European literature cites an indefinite acute inhalation LC50 of >5.2 mg/L in rats for 34 
fluazifop-P-butyl (EFSA 2012, p. 30; FAO/WHO 2000, p. 16).  No details concerning this study 35 
are provided in the European reviews. 36 

3.1.14. Adjuvants and Other Ingredients 37 

3.1.14.1. Other Ingredients  38 
U.S. EPA is responsible for regulating both the active ingredients (a.i.) in pesticide formulations 39 
as well as any other chemicals that may be added to the formulation.  As implemented, these 40 
regulations affect only pesticide labeling and testing requirements.  The term inert was used to 41 
designate compounds that are not classified as active ingredient on the product label.  While the 42 
term inert is codified in FIFRA, some inerts can be toxic, and the U.S. EPA now uses the term 43 
Other Ingredients rather than inerts (http://www.epa.gov/opprd001/inerts/).  For brevity, the 44 
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following discussion uses the term inert, recognizing that inerts may be biologically active and 1 
potentially hazardous components. 2 
 3 
The identities of inerts in pesticide formulations are generally considered trade secrets and need 4 
not be disclosed to the general public.  Nonetheless, all inert ingredients as well as the amounts 5 
of the inerts in the formulations are disclosed to and reviewed by the U.S. EPA as part of the 6 
registration process.  Some inerts are considered potentially hazardous and are identified as such 7 
on various lists developed by the federal government and state governments.  Material Safety 8 
Data Sheets (MSDS) sometimes specify inerts used in pesticide formulations.  U.S. EPA/OPP 9 
(2010c, p. 5-14) encourages but does not generally require expanded inert statements on product 10 
labels which specifically identify the inert ingredients in the product.  One notable exception, 11 
however, involves petroleum distillates including xylene or xylene range solvents that are part of 12 
the formulation and at a concentration of ≥10%.  In this case, the product label must contain the 13 
following statement: Contains petroleum distillates, xylene or xylene range aromatic solvents 14 
(U.S. EPA/OPP 2010d, p. 5-7).   15 
 16 
Table 7 summarizes the product labels of all of the formulations of fluazifop-P-butyl explicitly 17 
covered in the current risk assessment.  As noted in Section 2, the Fusilade but not the Ornamec 18 
formulations are likely to be used in Forest Service programs.  Information on the Ornamec 19 
formulations is included in Table 7 simply as an example of a relatively detailed summary of the 20 
other ingredients in the formulations.  The Fusilade formulations provide relatively little detail 21 
on the composition of the other ingredients.  Nonetheless, the predominant inerts in both the 22 
Fusilade and Ornamec formulations consist of petroleum distillates.    23 
 24 
Petroleum distillates, including aromatic hydrocarbons, are complex mixtures (e.g., ATSDR 25 
1995, 1999).  Thus, it is possible that the specific constituents in the petroleum distillates of the 26 
different liquid formulations of fluazifop-P-butyl differ at least somewhat from one another.  As 27 
reviewed by ATSDR (1999), petroleum distillates can induce a wide range of toxic effects, 28 
particularly effects on the nervous system.  The U.S. EPA/OPP has not yet completed their RED 29 
for aromatic hydrocarbons (http://www.epa.gov/pesticides/reregistration/status.htm).  Petroleum 30 
distillates may also contain naphthalene as well as other aromatics.  As detailed in U.S. 31 
EPA/OPP (2008a), naphthalene is a pesticide registered for use as an insecticide and insect 32 
repellant.  For example, naphthalene is the active ingredient in mothballs. 33 
 34 
Given the complexity and variability of petroleum distillates and the limited information about 35 
the identity of the petroleum components in fluazifop-P-butyl formulations, it is difficult to 36 
assess the extent to which the petroleum distillates contribute to the toxicity of the formulations.  37 
One approach is to compare the toxicity of the formulations, expressed in units of active 38 
ingredient, to the toxicity of the active ingredient itself.  As discussed in previous sections, 39 
however, this approach cannot be applied to fluazifop-P-butyl, because the relevant acute 40 
toxicity data on the formulations consist primarily of indefinite LD50 or LC50 values.  As 41 
discussed in Section 3.1.4, the definitive oral LD50 values for fluazifop-butyl and fluazifop-P-42 
butyl along with the indefinite LD50 values for the Fusilade formulations are consistent with the 43 
assumption that the toxicity of the formulations is attributable to the active ingredient rather than 44 
other ingredients (a.k.a., inerts) in the formulations. 45 
 46 
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As discussed further in the ecological risk assessment (Section 4.1.3), definitive LC50 values for 1 
fluazifop-butyl and/or fluazifop-P-butyl are available along with data on some fluazifop-P-butyl 2 
formulations for aquatic organisms.  The relevance of these data to human health risks is tenuous 3 
at best. 4 

3.1.14.2. Adjuvants 5 
As summarized in Table 6, adjuvants, including nonionic surfactants, methylated seed oils, or 6 
vegetable oil concentrates are recommended for the Fusilade DX and Fusilade II formulations.  7 
These adjuvants are commonly used with herbicides to improve efficacy.  Product labels 8 
recommend the use of nonionic surfactants at a concentration of 0.25% v/v, methylated seed oil, 9 
vegetable oil at a concentration of 1% (v/v), or other commercially available adjuvants. 10 
  11 
Although methylated seed oils and vegetable oil concentrates are somewhat vague terms, there is 12 
no basis for asserting that these adjuvants are likely to enhance the toxicity of fluazifop-P-butyl 13 
to humans.  Several seed and vegetable oils are approved food additives (Clydesdale 1997); 14 
moreover, many vegetable and fruit oils are classified as minimal risk inerts (U.S. EPA/OPPTS 15 
2009).  Nonionic surfactants comprise a large and complex group of materials (e.g., Kosswig 16 
1994).  In the absence of mammalian studies regarding the potential toxicity of fluazifop-P-butyl 17 
in combination with various nonionic surfactants, it is not possible to generalize about potential 18 
hazards to human health.  As discussed further in the ecological risk assessment, some nonionic 19 
surfactants are much more toxic than fluazifop-P-butyl to aquatic species (Section 4.1.3.5). 20 

3.1.15. Impurities and Metabolites 21 

3.1.15.1. Metabolites 22 
As discussed in Section 3.1.3.1, metabolism studies in mammals as well as humans indicate that 23 
fluazifop-butyl and fluazifop-P-butyl are rapidly hydrolyzed to fluazifop-P (i.e., primarily the 24 
fluazifop[R] enantiomer).  With the exception of conjugation reactions, however, fluazifop[R] 25 
enantiomer is not further metabolized, at least, in detectable quantities.   26 
 27 
In the environment, however, fluazifop-P is extensively metabolized, and the major metabolites 28 
are 2-(4-hydroxyphenoxy) propionic acid (a.k.a. Metabolite III), 2-(4-hydroxyphenoxy)-5-29 
trifluoromethylpyridine (a.k.a. Metabolite IV), and 5-trifluoromethyl-2-pyridone (a.k.a. 30 
Metabolite X).  The structures of these compounds are given in the lower section of Figure 1.  31 
The analysis in U.S. EPA/OPP/HED (2004c) focuses exclusively on a discussion of the 32 
environmental metabolites and residue chemistry of fluazifop-P-butyl.  U.S. EPA/OPP/HED 33 
(2004c) indicates that no toxicity data were available on these metabolites.  Following standard 34 
practice, U.S. EPA/OPP/HED (2004c, p. 4) recommends that the major environmental 35 
metabolites should be considered to be as toxic as the parent compound.  In practical terms, this 36 
amounts to using input parameters for exposure models (e.g., environmental half-lives) adjusted 37 
to encompass fluazifop-P (the acid) as well as the major environmental metabolites.  This 38 
recommendation as well as the input parameters selected in U.S. EPA/OPP exposure assessments 39 
for fluazifop-P-butyl are discussed further in the exposure assessment (Section 3.2). 40 
 41 
For some exposure scenarios, like the consumption of contaminated fruit or broadleaf vegetation 42 
(Section 3.2.3.7), there is a concern that the estimates of exposure may not adequately 43 
encompass exposures to metabolites of fluazifop-P acid.  These instances are noted and 44 
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emphasized in the exposure assessment (Section 3.2) and discussed further in the risk 1 
characterization (Section 3.4).  2 
 3 
Consistent with the EPA review, U.S. EPA/OPP/HED (2004c), there are no mammalian toxicity 4 
data on metabolites for use in the current risk assessment.  As discussed further in Section 4.1.3 5 
(hazard identification for aquatic organisms), acute toxicity studies have been conducted on 5-6 
trifluoromethyl-2-pyridone (a.k.a. Metabolite X) in fish, aquatic invertebrates, and algae.  These 7 
studies consistently indicate that 5-trifluoromethyl-2-pyridone is less toxic than fluazifop-P-8 
butyl.  While these studies may not be directly or quantitatively applicable to the human health 9 
risk assessment, these studies in aquatic organisms are the only data available on the toxicity of 10 
5-trifluoromethyl-2-pyridone and this information diminishes concern for the toxicity of 5-11 
trifluoromethyl-2-pyridone. 12 

3.1.15.2. Impurities 13 
There is no information in the published literature or the summaries of registrant-submitted 14 
studies from EPA documents (Table 2) concerning the impurities in fluazifop-P-butyl.  15 
Nonetheless, virtually no chemical synthesis yields a totally pure product.  As summarized in 16 
Appendix 1, the reported levels of purity of fluazifop-P-butyl in mammalian toxicology studies 17 
range from about 86% to over 99%.  Thus, up to 14% of technical grade fluazifop-P-butyl may 18 
consist of impurities.  Registrants disclose the nature of impurities in their formulations to the 19 
U.S. EPA; however, the identities of the impurities are not disclosed to the public, because that 20 
information may provide insight into the manufacturing process, which is considered proprietary 21 
and is protected under FIFRA (Section 10).  Proprietary information on the identities of these 22 
impurities was not available for the preparation of the current Forest Service risk assessment. 23 
 24 
To some extent, concern for impurities in technical grade fluazifop-P-butyl is reduced because 25 
most of the existing toxicity studies were conducted with the technical grade product or 26 
formulated products.  Thus, any toxic impurities present in the technical grade product are likely 27 
to be encompassed by the available toxicity studies. 28 

3.1.16. Toxicological Interactions 29 
In terms of the mechanism of action, fluazifop-P is a weak acid excreted predominantly in the 30 
urine.  Many weak acids, both naturally occurring and man-made, are excreted in the urine via 31 
active transport processes in the kidney (e.g., Schnermann and Sayegh 1998).  Thus, it is likely 32 
that fluazifop-P, the major metabolite of fluazifop-P-butyl in humans (Section 3.1.3.1), would 33 
influence and would be influenced by other weak acids excreted by the kidney.  These 34 
influences, however, would be significant only at relatively high doses that saturated the active 35 
transport processes involved in the excretion of weak acids by the kidney. 36 
 37 
As discussed in Section 3.1.2, fluazifop-butyl is a substrate for cytochrome P450 which is 38 
involved in the hydrolysis of fluazifop-butyl to fluazifop acid prior to excretion.  Cytochrome 39 
P450 is a variable set of enzymes that are both induced by and involved in the metabolism of 40 
many naturally occurring as well as man-made compounds (e.g., Coon 2005).  Thus, exposures 41 
to other compounds that serve as inducers or substrates for cytochrome P450 could impact the 42 
metabolism or excretion of fluazifop-P-butyl.  In the absence of other information, the impact 43 
that these interactions might have on the toxicity of fluazifop-P-butyl cannot be further 44 
characterized.  Like kidney excretion, metabolic reactions involving cytochrome P450 are 45 
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saturable processes.  Thus, it seems reasonable to suggest that these interactions would be 1 
substantial only at relatively high levels of exposure in which cytochrome P450 would be 2 
induced or the metabolism of fluazifop-P-butyl would be competitively inhibited by other 3 
substrates of cytochrome P450.  4 
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3.2.   EXPOSURE ASSESSMENT 1 

3.2.1. Overview   2 
Two types of exposure assessments are considered: general exposure and accidental/incidental 3 
exposure.  For workers, the term general exposure is used to designate exposures involving 4 
absorbed dose estimates based on handling a specified amount of chemical during specific types 5 
of applications.  For the general public, the term general exposure is used to designate exposures 6 
that might be expected following a typical application of fluazifop-P-butyl.  The 7 
accidental/incidental exposure scenarios involve specific events that may occur during any type 8 
of application.  All applications are expressed in units of acid equivalents (a.e., fluazifop-P acid) 9 
rather than active ingredient (a.i., fluazifop-P-butyl).  Exposure assessments (i.e., those for 10 
workers as well as members of the general public and ecological receptors) are based on the 11 
maximum single application rate of 0.375 lb a.i./acre, which is equivalent to 0.32 lb a.e./acre.  12 
The exposures associated with a single application are detailed in Attachment 1.  The exposures 13 
associated with two and three applications with a 14-day application interval are detailed in 14 
Attachments 2 and 3, respectively.  For most exposure scenarios, exposure and consequent risk 15 
will scale linearly with the application rate.  The consequences of using lower application rates 16 
are considered in the risk characterization (Section 3.4). 17 

3.2.2. Workers  18 

3.2.2.1. General Exposures 19 

3.2.2.1.1. Standard Estimates  20 
As described in SERA (2011a), worker exposure rates are expressed in units of mg of absorbed 21 
dose per kilogram of body weight per pound of chemical handled.  Based on analyses of several 22 
different pesticides using a variety of application methods, exposure rates are estimated for three 23 
different types of applications: directed foliar (backpack), boom spray (hydraulic ground spray), 24 
and aerial.  The worker exposure rates are summarized in Table 13 of the current Forest Service 25 
risk assessment.  The worker exposure rates in Table 13 are taken from a recent update and 26 
reevaluation of the methods used to estimate worker exposure (SERA 2013b).  All exposure 27 
rates are based on biomonitoring studies of worker exposures during pesticide applications.    28 
 29 
As discussed further in Section 3.2.3.1.1 (Likelihood and Magnitude of Exposure), most 30 
exposure scenarios included in the current risk assessment are accompanied by estimates of 31 
variability and/or uncertainty and are expressed as a central value (most likely exposure) as well 32 
as estimates of the upper and lower bounds of exposure.  The revised worker exposure rates from 33 
SERA (2013b) are elaborated to include both 95% confidence intervals as well as 95% 34 
prediction intervals.  As discussed in SERA (2013b), the 95% confidence intervals should be 35 
interpreted as the region defining ranges of average exposures in groups of workers.  The 95% 36 
prediction intervals should be interpreted as the region in which most exposures for individual 37 
workers may occur. 38 
 39 
Another elaboration in the new worker exposure methods involves the adjustment for exposure 40 
rates in backpack workers based on differences in dermal absorption.  As Section 4.2.1.1 of 41 
SERA (2013b) explains, different exposure rates are based on data for backpack workers 42 
applying glyphosate, 2,4-D, and triclopyr BEE.  In developing backpack worker exposure rates 43 
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for another pesticide, one of these three rates is selected based on the first-order dermal 1 
absorption rate coefficients for these pesticides and the pesticide under consideration.  As 2 
discussed in Section 3.1.3.2.1, the central estimate of the first-order dermal absorption rate 3 
coefficient for fluazifop-P-butyl is taken as 0.0024 hour-1.  This estimate is based on quantitative 4 
structure-activity relationships detailed in Worksheet B03b of Attachments 1, 2, and 3 and is 5 
supported by and is virtually identical to the estimated first-order dermal absorption rate 6 
coefficient of 0.00233 hour-1 derived from the dermal absorption study in humans by Ramsey et 7 
al. (1992).   8 
 9 
The first-order dermal absorption rate coefficient of 0.0024 hour-1is only modestly higher than 10 
the corresponding coefficient of 0.0021 hour-1 for triclopyr BEE as discussed in SERA (2013b).   11 
Following the approach detailed in SERA (2013b, Equation 22), the exposure rates for triclopyr 12 
BEE derived in SERA (2013) are multiplied by the adjustment factor of about 1.14 [0.0024 13 
hour-1

 ÷ 0.0021 hour-1 ≈ 1.14286]—i.e., the coefficient for fluazifop-P-butyl divided by the 14 
coefficient for triclopyr BEE—and the central estimate of the exposure rate for backpack 15 
workers applying fluazifop-P-butyl is estimated at 0.011 with 95% confidence intervals of 16 
0.0008 to 0.015 and 95% prediction intervals of 0.00023 to 0.069 mg/kg bw/day per lb a.i. 17 
handled.  Details of these calculations are provided in Worksheet C01a-Sup of Attachments 1, 2, 18 
and 3. 19 
 20 
In addition to the application rate and absorbed dose rate, the other factor affecting worker 21 
exposure is the number of acres per day that a worker will treat.  Estimates of the number of 22 
acres per day that a worker might treat are also given in Table 13.  These values are based on 23 
treatment rates used in several Forest Service Environmental Impact Statements (USDA/Forest 24 
Service 1989a,b,c). 25 
 26 
Based on the above methods and the maximum single application rate of 0.32 lb a.e./acre, the 27 
estimates of worker exposures are given in Worksheets C01a (backpack directed foliar 28 
applications), C01b (ground broadcast applications), and C01c (aerial applications) of 29 
Attachment 1, 2, and 3.  The specific estimates are discussed further in Section 3.2.2.1.4 and 30 
compared to estimates from U.S. EPA/OPP/HED (2011a) and the worker exposure study of 31 
Chester and Hart (1986). 32 

3.2.2.1.2. EPA Estimates 33 
As discussed in SERA (2013b, Section 1.1), the U.S. EPA uses deposition-based methods rather 34 
than the absorption-based methods used in Forest Service risk assessments.  The deposition-35 
based methods typically use the Pesticide Handlers Exposure Database (PHED 1995).  U.S. 36 
EPA/OPP summarized surrogate exposures from PHED for 37 exposures scenarios, involving 37 
mixer-loaders, flaggers, and applicators, for several different types of formulations (e.g., liquid, 38 
granular, and wettable powders) applied with ground or aerial equipment (Keigwin 1998).  Using 39 
the estimates of deposited dose and concentration of the pesticide in air, the absorbed dose for 40 
workers can be calculated if estimates are available on absorption rates for inhalation and dermal 41 
exposure.  Table 14 provides an overview, adopted from Keigwin (1998), of the standard 42 
exposure rates used by the U.S. EPA. 43 
 44 
The specific worker exposure assessments derived in the most recent EPA human health risk 45 
assessment are given in Table 8 and 9 of U.S. EPA/OPP/HED (2011a).  Typically, the EPA 46 

40 



 

summaries of such assessments specify all of the inputs and give explicit estimates of both 1 
dermal and inhalation doses in units of mg/kg bw.  The estimates for fluazifop-P-butyl are 2 
somewhat unusual in that the worker exposure rates are not specified and only the dermal dose is 3 
given explicitly.  Nonetheless, the total absorbed doses for the worker groups can be estimated 4 
from the Margins of Exposure (MOEs).  The margin of exposure is defined as: 5 
 6 

 NOAELMOE
Exposure

=   (5) 7 

 8 
Taking Table 9 from U.S. EPA/OPP/HED (2011a) as an example, the margin of exposure for 9 
aerial applications is given as 746 and the margin of exposure for groundboom equipment is 10 
given as 813.  Both of these MOEs are based on the chronic NOAEL of 0.74 mg/kg bw/day from 11 
the reproduction study in rats (MRID 00088859 as summarized in Appendix 1, Table A1-3).  12 
Rearranging the above equation to solve for Exposure, these MOEs are associated with doses of 13 
about 0.00099 mg/kg bw for aerial applications [0.74 mg/kg ÷ 746] and 0.00091 mg/kg bw for 14 
ground applications [0.74 mg/kg ÷ 813]. 15 
 16 
To verify the above calculations of the estimated doses, an attempt was made to reconstruct the 17 
PHED exposure assessments given in Table 9 of U.S. EPA/OPP/HED (2011a).  These 18 
reconstructions are given in Worksheet PHED-Grnd for ground broadcast applications and 19 
Worksheet PHED-Aerial for aerial applications.  These worksheets follow Worksheet C01c (the 20 
last of the standard assessments for workers discussed in Section 3.2.2.1.1).  The dermal doses 21 
reported in U.S. EPA/OPP/HED (2011a) are identical to doses that would be obtained using the 22 
worker exposure rates in Scenario 7 (aerial) and Scenario 13 (groundboom) of Keigwin (1988).  23 
These scenarios are highlighted in Table 14 of the current Forest Service risk assessment.  The 24 
inhalation exposures associated with these scenarios from Keigwin (1988) lead to somewhat 25 
higher MOEs—i.e., about 863 for groundboom applications and 762 for aerial applications, 26 
which indicates that the EPA used somewhat higher inhalation exposure rates (U.S. 27 
EPA/OPP/HED 2011a).  The differences between the MOEs reported in U.S. EPA/OPP/HED 28 
(2011a) and the MOEs from the reconstructions given in Worksheets PHED-Grnd and PHED-29 
Aerial are insubstantial. 30 
 31 
A more noteworthy discrepancy, however, is a statement made in EPA’s discussion of the 32 
worker exposure assessments: “…occupational exposures for the new uses of fluazifop-P-butyl 33 
were found to range from a high of 0.07 mg/Kg/day to a low of 0.006 mg/Kg/day” (U.S. 34 
EPA/OPP/HED 2011a, p. 48).  The discussion then references Tables 8 and 9 of the EPA risk 35 
assessment.  The lower bound dose noted in U.S. EPA/OPP/HED (2011a) is consistent with the 36 
higher reported doses and MOEs in Tables 8 and 9 of the EPA risk assessment.  The upper 37 
bound dose of 0.07 mg/kg bw/day, however, would be associated with an MOE of only about 11 38 
using the chronic NOAEL of 0.74 mg/kg bw/day [0.74 mg/kg bw ÷ 0.07 mg/kg bw/day ≈ 39 
10.571] or an MOE of about 29 using the subchronic NOAEL of 2 mg/kg bw [2 mg/kg bw ÷ 40 
0.07 ≈ 28.57].  Both of these MOEs would be substantially less than the acceptable margin of 41 
exposure (MOE = 100) used in U.S. EPA/OPP/HED (2011a, Section 4.4.4.1, p. 21).  The EPA 42 
document notes that none of the worker exposures exceeds the Agency’s level of concern: In 43 
reaching or exceeding the LOC of 100, the resulting MOEs indicate these risks are not of 44 
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concern (U.S. EPA/OPP/2011a, p. 9).  A margin of exposure in the range of 11 to 29, however, 1 
is less than the acceptable margin of exposure, and this would exceed the level of concern. 2 
 3 
The reasons for the discrepancy in the EPA’s estimated worker doses of up to 0.07 mg/kg 4 
bw/day and the acceptable MOEs discussed by the Agency are not apparent.  As summarized in 5 
Table 15 of the current risk assessment, only the upper bound of the prediction intervals using 6 
the absorption based methods typically employed in Forest Service risk assessments exceed the 7 
dose of 0.07 mg/kg bw/day discussed in the EPA risk assessment. 8 

3.2.2.1.3. Chester and Hart 1986 9 
One worker exposure study involving applications of fluazifop-butyl was identified in the open 10 
literature (Chester and Hart 1986).  In this study, workers applied fluazifop-butyl by backpack 11 
and vehicle-mounted spray equipment.  While Chester and Hart (1986) do not specify the 12 
formulation of fluazifop-butyl that was used, the paper references unpublished internal reports 13 
from the Plant Protection Division of Imperial Chemical Industries indicating that a Fusilade 14 
formulation was used, at least in the study with vehicle-mounted sprays.  Estimates of the 15 
absorbed doses for workers were based on pharmacokinetic studies done on human volunteers 16 
(discussed in Section 3.1.3 of the current risk assessment) and complete urine samples for 9 days 17 
following applications.   18 
 19 
Chester and Hart (1986) estimated absorbed doses of 0.03 (0.02-0.04) mg/kg bw/day for 20 
backpack applications and 0.007(0.001 – 0.03) mg/kg bw/day for ground spray applications.  21 
While this is the type of worker exposure study on which the derivation of worker exposure rates 22 
in SERA (2013) are based, Chester and Hart (1986) do not provide information on the amount of 23 
fluazifop-butyl handled by the workers.  Thus, worker exposure rates in units of mg/kg bw/day 24 
per lb handled cannot be derived from this study. 25 

3.2.2.1.4. Estimates Used in Risk Assessment 26 
A summary and comparison of the worker exposures is given in Table 15 for the worker 27 
exposures derived in the current risk assessment using the methods from SERA (2013b), the 28 
worker exposures given in U.S. EPA/OPP/HED (2011a), and the worker exposures from the 29 
study by Chester and Hart (1986).  Note that both U.S. EPA/OPP/HED (2011a) and Chester and 30 
Hart (1986) give the estimated doses for workers in units of mg a.i./kg bw/day.  In the 31 
worksheets that accompany this risk assessment, all exposures are given in units of mg a.e.  For 32 
the comparison given in Table 15, the estimated doses for workers given in the workbooks that 33 
accompany this risk assessment are divided by 0.854 a.e./a.i. and all of the doses given in Table 34 
15 are expressed in units of mg a.i./kg bw/day. 35 
 36 
As summarized in Table 15, the estimated doses for workers based on tables from U.S. 37 
EPA/OPP/HED (2011a) are lower than the central estimates of doses using the methods from 38 
SERA (2013)—i.e., by a factor of about 4.6 for ground spray [0.0042 ÷ 0.00091 ≈ 4.615] and a 39 
factor of about 3.7 for aerial applications [0.0037 ÷ 0.00099 ≈ 3.7373].  While these differences 40 
might be viewed as substantial, the discussions in SERA (2013b) note that high variability in 41 
estimates of worker exposure, and this variability is expressed in the confidence and prediction 42 
intervals for the worker exposure rates from SERA (2013b).  For example, the 90% confidence 43 
intervals span a factor of about 13 [0.013 ÷ 0.00099 ≈ 13.13] and the prediction intervals span a 44 
factor of 7000 [0.35 ÷ 0.00005 = 7000] for the ground spray workers.  Thus, given the variability 45 
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among average exposure noted in different worker exposure studies as well as the variability 1 
among individual workers, differences of a factor of 4 or 5 are not remarkable. 2 
 3 
The above comparison of the exposure assessments from EPA/OPP/HED (2011a) to the 4 
assessments based on the methods in SERA (2013b) is somewhat distorted by differences in 5 
underlying assumptions.  As detailed in U.S. EPA/OPP/HED (2011a, Table 9, p. 50), the worker 6 
exposure assessments are based on the assumption that aerial applications involve treating 350 7 
acres and ground spray applications involve treating 80 acres.  As summarized in Table 13 of the 8 
current risk assessment, the estimates from SERA (2013b) are based on standard assumptions 9 
used in all Forest Service risk assessments: aerial operations may involve treating 490 (240-800) 10 
acres and ground spray operations may involve treating 112 (66-168) acres.  In Table 15, the 11 
values given in braces {} under the EPA column are adjusted to use the same number of acres as 12 
the central estimates from SERA (2013).  Based on this more appropriate comparison, the 13 
differences between the SERA (2013) and EPA estimates are reduced—i.e., a factor of 3.5 for 14 
ground spray [0.0042 ÷ 0.0012 = 3.5] and 2.6 for aerial applications [0.0037 ÷ 0.0014 ≈ 2.643].   15 
 16 
While the estimates of worker exposures using the methods from SERA (2013b) are somewhat 17 
higher than those from U.S. EPA/OPP/HED (2011a), the estimates from SERA (2013b) are 18 
somewhat lower than those from the worker exposure study with fluazifop-butyl (Chester and 19 
Hart 1986).  Based on the central estimates of exposure, the doses from Chester and Hart (1986) 20 
are higher than the estimated doses using the methods from SERA (2013b) by a factor of about 21 
1.7 for both backpack applications [0.03 ÷ 0.018 ≈ 1.67] and ground spray applications [0.007 ÷ 22 
0.0042 ≈ 1.67].  Again, however, given the high variability in worker exposure estimates, 23 
differences of a factor of about 2 are inconsequential.  This comparison, however, is not to imply 24 
that the study by Chester and Hart (1986) should be viewed as strong support for the estimates 25 
using the methods from SERA (2013).  As noted in Section 3.2.2.1.3, Chester and Hart (1986) do 26 
not provide information on the amount of fluazifop-butyl that the workers applied.  27 
Notwithstanding this reservation, the study by Chester and Hart (1986) presumably involved 28 
typical backpack and ground spray operations.  The relative concordance of the worker 29 
exposures from Chester and Hart (1986) with the estimates from SERA (21013b), which are 30 
based on typical Forest Service applications, are at least moderately supportive of the exposure 31 
estimates based on the methods in SERA (21013b). 32 
 33 
Given the relative concordance of the study by Chester and Hart (1986) with the estimates based 34 
on the standard methods used in Forest Service risk assessments (SERA 2013b) as well as the 35 
modest differences between the estimates from U.S. EPA/OPP/HED (2011a) and the standard 36 
SERA (2013b) methods, the current risk assessment estimates worker exposures using the SERA 37 
(2013b) methods—i.e., the worker exposures in the last column of Table 15.  While the central 38 
estimates of exposure do not differ remarkably from those in U.S. EPA/OPP/HED (2011a), the 39 
EPA only provides central estimates and does not provide estimates of variability.  As discussed 40 
further in Section 3.4.2 (Risk Characterization for Workers), the upper bounds associated with 41 
worker exposures have a substantial impact on the characterization of potential risks. 42 

3.2.2.2. Accidental Exposures 43 
Irritation to the skin and eyes of workers are most likely to be associated with accidental spills or 44 
splashes of pesticide solutions.  Nonetheless, fluazifop-P-butyl and formulations of fluazifop-P-45 
butyl are not strong irritants to either the skin (Section 3.1.11.1) or eyes (Section 3.1.11.3).  46 
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Quantitative exposure and dose-response assessments for skin and eye irritation are not 1 
developed in this or other Forest Service risk assessments; however, these effects are considered 2 
qualitatively in the risk characterization (Section 3.4.2).   3 
 4 
Generally, dermal exposure is the predominant route of exposure for pesticide applicators 5 
(Ecobichon 1998; van Hemmen 1992), and accidental dermal exposures are considered 6 
quantitatively in all Forest Service risk assessments.  The two types of dermal exposures 7 
modeled in the risk assessments include direct contact with a pesticide solution and accidental 8 
spills of the pesticide onto the surface of the skin.  In addition, two exposure scenarios are 9 
developed for each of the two types of dermal exposure, and the estimated absorbed dose for 10 
each scenario is expressed in units of mg chemical/kg body weight.  Both sets of exposure 11 
scenarios are summarized in Worksheet E01 of the EXCEL workbooks that accompany this risk 12 
assessment—i.e., Attachments 1, 2 and 3.  Additionally, Worksheet E01 references other 13 
worksheets in which the calculations of each exposure assessment are detailed. 14 
   15 
Exposure scenarios involving direct contact with solutions of fluazifop-P-butyl are characterized 16 
either by immersion of the hands in a field solution for 1 minute or wearing pesticide 17 
contaminated gloves for 1 hour.  The assumption that the hands or any other part of a worker’s 18 
body will be immersed in a chemical solution for a prolonged period of time may seem 19 
unreasonable; however, it is possible that the gloves or other articles of clothing worn by a 20 
worker may become contaminated with a pesticide.  For these exposure scenarios, the key 21 
assumption is that wearing gloves grossly contaminated with a chemical solution is equivalent to 22 
immersing the hands in the solution.  In both cases, the chemical concentration in contact with 23 
the skin and the resulting dermal absorption rate are essentially constant. 24 
 25 
For the scenarios involving contaminated gloves, the assumption of zero-order absorption 26 
kinetics is appropriate—i.e., the concentration of the pesticide in solution is constant or nearly 27 
so.  For these types of exposures, the rate of absorption is estimated based on a zero-order dermal 28 
absorption rate (Kp).  Details regarding the derivation of the Kp value for fluazifop-P-butyl are 29 
provided in Section 3.1.3.2.2.   30 
 31 
The amount of the pesticide absorbed per unit time depends directly on the concentration of the 32 
chemical in solution.  For terrestrial applications, the current risk assessment uses an application 33 
volume of 20 gallons/acre with a range of 5 to 40 gallons/acre, which encompasses the potential 34 
range of application volumes used in ground and aerial applications (Section 2.4).  At an 35 
application rate of 0.32 lb a.e./acre, the estimated concentrations in a field solution are 1.9 mg 36 
a.e./mL with a range of 0.96 to 7.7 mg a.e./mL (Worksheet A01 in the attachments). 37 
   38 
The details of the accidental dermal exposure scenarios involving first-order absorption consist 39 
of spilling a chemical solution on to the lower legs or spilling a chemical solution on to the 40 
hands, at least some of which adheres to the skin.  The absorbed dose is then calculated as the 41 
product of the amount of chemical on the skin surface (i.e., the amount of liquid per unit surface 42 
area multiplied by the surface area of the skin over which the spill occurs and the chemical 43 
concentration in the liquid), the first-order absorption rate coefficient, and the duration of 44 
exposure.  The first-order dermal absorption rates coefficients (ka) are derived in 45 
Section 3.1.3.2.1. 46 
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3.2.3.   General Public 1 

3.2.3.1. General Considerations 2 

3.2.3.1.1. Likelihood and Magnitude of Exposure  3 
As noted in Section 2.3, the Forest Service may apply formulations of fluazifop-P-butyl along 4 
roadsides, power lines, pipelines, and rights-of-way.  Although some of these applications may 5 
be made at locations remote from the general public, exposures to members of the general public 6 
cannot be excluded.  Because of the conservative exposure assumptions used in the current risk 7 
assessment, neither the probability of exposure nor the number of individuals who might be 8 
exposed has a substantial impact on the risk characterization presented in Section 3.4.  As noted 9 
in Section 1 (Introduction) and detailed in SERA (2011a, Section 1.2.2.2), the exposure 10 
assessments developed in this risk assessment are based on Extreme Values rather than a single 11 
value.  Extreme value exposure assessments, as the name implies, bracket the most plausible 12 
estimate of exposure (referred to statistically as the central or maximum likelihood estimate) 13 
with lower and upper bounds of credible exposure levels.   14 
 15 
This Extreme Value approach is essentially an elaboration on the concept of the Most Exposed 16 
Individual (MEI), sometimes referred to as the Maximum Exposed Individual.  As this name 17 
implies, exposure assessments that use the MEI approach attempt to characterize the extreme but 18 
still plausible upper limits of exposures.  This common approach to exposure assessment is used 19 
by U. S. EPA, other government agencies, and the International Commission on Radiological 20 
Protection (e.g., ATSDR 2002; ICRP 2005; Payne-Sturges et al. 2004).  In the current risk 21 
assessment, all upper bounds on exposure are intended to encompass exposures to the MEI.   22 
 23 
In addition to this upper bound MEI value, the Extreme Value approach used in this risk 24 
assessment provides a central estimate of exposure as well as a lower bound on exposure.  25 
Although not germane to assessing the upper bound risk, the point of using the central estimate, 26 
and especially the lower bound estimate, is not to lessen concern.  To the contrary, the central 27 
and lower estimates of exposure are used to assess the prospect of mitigation—e.g., protective 28 
measures to limit exposure.  If lower bound exposure estimates exceed a level of concern, there 29 
is strong indication that the pesticide cannot be used in a manner that will lead to acceptable 30 
estimates of risk. 31 
 32 
In addition to concern for the most exposed individual, there is concern for individuals who may 33 
be more sensitive than most members of the general population to fluazifop-P-butyl exposure.  34 
This concern is considered in the dose-response assessment (Section 3.3) which bases exposures 35 
on the most sensitive endpoint in the most sensitive species and uses an uncertainty factor for 36 
sensitive individuals.  Atypical sensitivities—i.e., special conditions that might increase an 37 
individual’s sensitivity to a particular agent—are also considered separately in the risk 38 
characterization (Section 3.4.4). 39 

3.2.3.1.2. Summary of Assessments  40 
The exposure scenarios developed for the general public are summarized in Worksheet E03 of 41 
the EXCEL workbooks that accompany this risk assessment—i.e., Attachments 1, 2, and 3.  As 42 
with the worker exposure scenarios, details about the assumptions and calculations used in these 43 
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assessments are given in the detailed calculation worksheets in the EXCEL workbook 1 
(Worksheets D01a–D11). 2 
 3 
For fluazifop-P-butyl, a standard set of exposure assessments used in all Forest Service risk 4 
assessments for broadcast applications are considered.  As summarized in Worksheet E03, the 5 
kinds of exposure scenarios developed for the general public include acute accidental, acute non-6 
accidental, and longer-term or chronic exposures.  The accidental exposure scenarios assume that 7 
an individual is exposed to the compound of concern either during or shortly after its application.  8 
Non-accidental exposures involve dermal contact with contaminated vegetation as well as the 9 
consumption of contaminated fruit, vegetation, water, or fish.  The longer-term or chronic 10 
exposure scenarios parallel the acute exposure scenarios for the consumption of contaminated 11 
fruit, water, or fish.  All of the non-accidental exposure scenarios are based on levels of exposure 12 
to be expected following a single application (Attachment 1), two applications (Attachment 3) or 13 
three applications (Attachment 3) of fluazifop-P-butyl at 0.32 lb a.e./acre with an application 14 
interval of 14 days for the multiple applications.  The upper bounds of the exposure estimates for 15 
the non-accidental scenarios involve conservative assumptions intended to reflect exposure for 16 
the MEI (Most Exposed Individual).  The impact of lower application rates of fluazifop-P-butyl 17 
on the risk characterization is discussed in Section 3.4. 18 
 19 
The nature of the accidental exposure scenarios is intentionally extreme.  The non-accidental, 20 
acute exposure scenarios are intended to be conservative but plausible, meaning that it is not 21 
unreasonable to assume that the magnitude of exposures in the non-accidental exposure scenarios 22 
could occur in the routine use of fluazifop-P-butyl.  This interpretation does not extend to the 23 
longer-term exposure scenarios.  The longer-term exposure scenarios essentially assume that an 24 
individual will consume either treated vegetation, fruits, or water from a treated area every day 25 
over a prolonged period of time.  Despite its unlikelihood, this exposure scenario warrants 26 
consideration.  As discussed further in Section 3.4.3, this scenario is an important consideration 27 
in the interpretation of hazard quotients associated with longer-term exposures to contaminated 28 
vegetation. 29 

3.2.3.2. Direct Spray 30 
Direct sprays involving ground applications are modeled in a manner similar to accidental spills 31 
for workers (Section 3.2.2.2).  In other words, it is assumed that the individual is sprayed with a 32 
solution containing the compound and that an amount of the compound remains on the skin and 33 
is absorbed by first-order kinetics.  Two direct spray scenarios are given, one for a young child 34 
(D01a) and the other for a young woman (D01b).   35 
 36 
For the young child, it is assumed that a naked child is sprayed directly during a ground 37 
broadcast application and that the child is completely covered (that is, 100% of the surface area 38 
of the body is exposed).  This scenario is intentionally extreme.  As discussed in Section 39 
3.2.3.1.1, the upper limits of this exposure scenario are intended to represent the Extreme Value 40 
upper limits of exposure for the Most Exposed Individual (MEI).   41 
 42 
The exposure scenario involving the young woman (Worksheet D01b) is somewhat less extreme.  43 
In this scenario, it is assumed that the lower legs and feet of a woman are accidentally sprayed 44 
with a pesticide.  The choice of a young woman rather than an adult male in this scenario is 45 
common to many of the exposure assessments and relates to concerns for both the Most Exposed 46 

46 



 

Individual (MEI) as well as the most sensitive individual.  As discussed in Section 3.1.9 and 1 
summarized in Table 12, fluazifop-P-butyl has been shown to cause adverse effects in offspring, 2 
sometimes at doses not associated with signs of maternal toxicity.  Consequently, the exposure of 3 
a young woman of reproductive age is used to better assess the potential for adverse effects in 4 
the population at risk of effects associated with exposures during pregnancy—i.e., the most 5 
exposed and the most sensitive individual.  For this exposure scenario, assumptions are made 6 
regarding the surface area of the skin and the body weight of the individual, as detailed in 7 
Worksheet A03.  The rationale for using specific values in these and other exposure scenarios as 8 
well as the sources of the specific values is provided in documentation for the preparation of 9 
Forest Service risk assessments (SERA 2011a) and the worksheets that accompany Forest 10 
Service risk assessments (SERA 2011b). 11 

3.2.3.3. Dermal Exposure from Contaminated Vegetation 12 
In this exposure scenario, it is assumed that fluazifop-P-butyl is sprayed on to vegetation and that 13 
a young woman comes in contact with sprayed vegetation or other contaminated surfaces at 14 
some period after the spray operation (Worksheet D02).  For these exposure scenarios, some 15 
estimates of dislodgeable residue (a measure of the amount of the chemical that could be freed 16 
from the vegetation) and the rate of transfer of the chemical from the contaminated vegetation to 17 
the surface of the skin must be available.   18 
 19 
As detailed in Durkin et al. (1995), dermal transfer rates are reasonably consistent for numerous 20 
pesticides, and the methods and rates derived in Durkin et al. (1995) are used as defined in 21 
Worksheet D02.  The topic of dislodgeable residues is not addressed in the available literature on 22 
fluazifop-P-butyl, which leads to uncertainty.  For this exposure scenario, a default dislodgeable 23 
residue rate of 0.1 of the nominal application rate is used.  The uncertainties associated with this 24 
exposure scenario do not have a substantial impact on the risk assessment.  As detailed in 25 
Section 3.4.3 (Risk Characterization for the General Public), hazard quotients for this scenario 26 
are far below the level of concern. 27 
 28 
The exposure scenario assumes a contact period of 1 hour and further assumes that the chemical 29 
is not effectively removed by washing for 24 hours.  Other approximations used in this exposure 30 
scenario include estimates of body weight, skin surface area, and first-order dermal absorption 31 
rates, as discussed in Section 3.2.3.2 (Direct Spray). 32 
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3.2.3.4. Contaminated Water 1 

3.2.3.4.1. Accidental Spill  2 
 The accidental spill scenario assumes that a young child consumes contaminated water shortly 3 
after an accidental spill of a field solution into a small pond.  The calculation of the concentration 4 
of fluazifop in water following the spill is given in Worksheet B04b, and the estimate of the dose 5 
to a small child is given in Worksheet D05.  Because this scenario is based on the assumption 6 
that exposure occurs shortly after the spill, no dissipation or degradation is considered.  Since 7 
this exposure scenario is based on assumptions that are somewhat arbitrary and highly variable, 8 
the scenario may overestimate exposure.  The actual chemical concentrations in the water will 9 
vary according to the amount of compound spilled, the size of the water body into which it is 10 
spilled, the time at which water consumption occurs, relative to the time of the spill, and the 11 
amount of contaminated water that is consumed.  All Forest Service risk assessments assume that 12 
the accidental spill occurs in a small pond with a surface area of about one-quarter of an acre 13 
(1000 m2) and a depth of 1 meter.  Thus, the volume of the pond is 1000 m3 or 1,000,000 liters. 14 
 15 
A spill volume of 100 gallons with a range of 20 to 200 gallons is used to reflect plausible spill 16 
events.  These spill volumes are used in all Forest Service risk assessments involving terrestrial 17 
applications unless program specific considerations suggest that other values are more 18 
appropriate.  The fluazifop-P-butyl concentrations in the field solution are also varied to reflect 19 
the plausible range of concentrations in field solutions—i.e., the material that might be spilled—20 
using the same values as in the accidental exposure scenarios for workers (Section 3.2.2.2).  21 
Based on these assumptions, the estimated concentration of fluazifop-P-butyl in a small pond 22 
ranges from about 0.07 to 5.8 mg a.e./L, with a central estimate of about 0.7 mg a.e./L 23 
(Worksheet B04b). 24 

3.2.3.4.2. Accidental Direct Spray/drift for a Pond or Stream 25 
This scenario involves the accidental direct spray or incidental spray drift to a small pond and a 26 
small stream.  The exposure scenarios involving drift are less severe but more plausible than the 27 
accidental spill scenario described in the previous section.  For each water body, two sets of drift 28 
scenarios are given, one based on fine droplets and the other on coarse droplets.  The product 29 
label for Fusilade DX notes that: The most effective way to reduce drift potential is to apply large 30 
droplets.  On the other hand, product labels for both Fusilade DX and Fusilade II also note the 31 
following: DO NOT USE FLOOD TYPE OR OTHER SPRAY NOZZLE TIPS WHICH 32 
DELIVER COARSE, LARGE DROPLET SPRAYS.  The capitalization and bold text are 33 
included in the labels.   34 
 35 
The product labels for Fusilade DX and Fusilade II do not specify or otherwise recommend 36 
specific droplet size distributions.  The lack of droplet size specifications on the product labels is 37 
unfortunate.  There is a reasonably consistent nomenclature on particle size distributions (e.g., 38 
ASABE 2013 Droplet Spectra; Fritz et al. 2012; Hopkins et al. 2009; Womac 2000).  39 
Nonetheless and as illustrated in Figure 5, there are substantial overlaps in particle sizes within 40 
the distributions.  In the current Forest Service risk assessment, coarse droplet estimates are 41 
based on Tier 1 using ASAE Coarse to Very Coarse drop size distributions (VMD≈440 µm) for 42 
aerial applications and on ASAE fine to Medium Coarse drop size distributions (VMD≈340 µm) 43 
for ground applications.  As illustrated in Figure 5, the two most coarse categorizations of 44 
particle size distributions have VMD values of >500 µm – i.e., Extra Coarse (>500 µm) and 45 
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Ultra Coarse (>650 µm).  While somewhat speculative, it seems reasonable to suggest that the 1 
labeled recommendation to avoid the use of “flood type” sprays would deal with VMDs of >500 2 
µm which would not typically be used in Forest Service applications.  3 
 4 
The distinction between fine and coarse droplet sizes applies only to aerial and ground broadcast 5 
applications.  Drift from backpack applications are always modeled using coarse droplet sizes 6 
(SERA 2011b). 7 
 8 
U.S. EPA typically uses a 2-meter-deep pond to develop exposure assessments.  If such a pond is 9 
directly sprayed with fluazifop-P-butyl at an application rate of 0.32 lb a.e./acre, the peak 10 
concentration in the pond would be about 0.036 mg a.e./L (Worksheet B04c1 and B04c2).  This 11 
concentration is more than 16 times less than the upper bound of the peak concentration of  12 
5.8 mg a.e./L after the accidental spill (Section 3.2.3.4.1, Worksheets B04a) [5.8 mg a.e./L ÷ 13 
0.36 mg a.e./L ≈ 16.111].   14 
 15 
Worksheets B04c1 (fine droplets) and B04c2 (coarse droplets) also model concentrations in a 16 
small pond at distances of from 25 to 900 feet down wind based on standard values adapted from 17 
AgDrift for the different terrestrial broadcast application methods considered in this risk 18 
assessment (SERA 2011b).  Based on these estimates, fluazifop-P-butyl concentrations in a small 19 
pond contaminated by drift from an application made 25 feet upwind would be about 20 
0.0003 mg a.e./L for backpack applications (coarse droplets).  For broadcast applications, the 21 
concentrations at 25 feet downwind would range from about 0.001 mg a.e./L (low boom ground 22 
applications) to 0.008 mg a.e./L (aerial) using fine droplets (Worksheet B04c1) and about 0.0004 23 
mg a.e./L (low boom ground applications) to 0.005 mg a.e./L (aerial) using coarse droplets 24 
(Worksheet B04c2). 25 
   26 
Similar calculations can be made for scenarios involving a stream contaminated either by direct 27 
spray or drift (Worksheets B04d1 and B04d2).  For this scenario, the resulting water 28 
concentrations depend on the surface area of the stream and the rate of water flow in the stream.  29 
The stream modeled in Gleams-Driver simulations (Section 3.2.3.4.3) is about 6 feet wide 30 
(1.82 meters), and it is assumed that the pesticide is applied along a 1038-foot (316.38 meters) 31 
length of the stream with a flow rate of 710,000 L/day.  Using these values, the concentration in 32 
stream water after a direct spray is estimated at about 0.03 mg a.e./L.  For backpack applications, 33 
the concentration in a small stream that is 25 feet downwind is estimated at about 0.0002 mg 34 
a.e./L.  For broadcast applications, the concentrations at 25 feet downwind would range from 35 
about 0.001 mg a.e./L (low boom ground applications) to 0.007 mg a.e./L (aerial) using fine 36 
droplets (Worksheet B04d1) and about 0.0003 mg a.e./L (low boom ground applications) to 37 
0.004 mg a/e//L (aerial) using coarse droplets (Worksheet B04d2). 38 
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3.2.3.4.3. GLEAMS Modeling 1 
The Forest Service developed a program, Gleams-Driver, to estimate expected peak and longer-2 
term pesticide concentrations in surface water.  Gleams-Driver serves as a preprocessor and 3 
postprocessor for GLEAMS (Knisel and Davis 2000).  GLEAMS is a field scale model 4 
developed by the USDA/ARS and has been used for many years in Forest Service and other 5 
USDA risk assessments (SERA 2007a; SERA 2011c).  Gleams-Driver offers the option of 6 
conducting exposure assessments using site-specific weather files from Cligen, a climate 7 
generator program developed and maintained by the USDA Agricultural Research Service 8 
(USDA/NSERL 2005).  Gleams-Driver was used in the current risk assessment to model 9 
fluazifop-P-butyl concentrations in a small stream and a small pond. 10 
 11 
As summarized in Table 16, nine locations are used in the Gleams-Driver modeling.  As 12 
discussed in SERA (2007a), these locations are standard sites used in Forest Service risk 13 
assessments for Gleams-Driver simulations and are intended to represent combinations of 14 
precipitation (dry, average, and wet) and temperature (hot, temperate, and cool).  The 15 
characteristics of the fields and bodies of water used in the simulations are summarized in 16 
Table 17.  For each location, simulations were conducted using clay (high runoff, low leaching 17 
potential), loam (moderate runoff and leaching potential), and sand (low runoff, high leaching 18 
potential) soil textures.  For each combination of location and soil, Gleams-Driver was used to 19 
simulate pesticide losses to surface water from 100 modeled applications at a unit application 20 
rate of 1 lb a.i./acre, and each of the simulations was followed for a period of about 1½ years 21 
post application.  Note that an application rate of 1 lb a.i./acre is used as a convention in all 22 
Forest Service risk assessments to avoid rounding limitations in GLEAMS outputs.  All exposure 23 
concentrations discussed in this risk assessment are based on an application rate of 0.32 lb 24 
a.e./acre. 25 
 26 
Table 18 summarizes the chemical-specific values used in Gleams-Driver simulations.  For the 27 
most part, the chemical properties used in the Gleams-Driver simulations are based on the 28 
parameters used by the Environmental Fate and Effects Division (EFED) of the U.S. EPA’s 29 
Office of Pesticides Programs modeling of fluazifop-P-butyl (U.S. EPA/OPP/EFED 2010a).  The 30 
EPA modeling efforts are discussed below (Section 3.2.3.4.4).  In the current risk assessment, 31 
most of the model input values are based on the environmental fate studies submitted to the U.S. 32 
EPA by registrants as well as standard values for GLEAMS modeling recommended by Knisel 33 
and Davis (2000).  The notes to Table 18 indicate the specific sources of the chemical properties 34 
used in the GLEAMS modeling effort. 35 
 36 
Details of the results for the Gleams-Driver runs are provided in Appendix 8 (single application), 37 
Appendix 9 (two applications with a 14-day application interval), and Appendix 10 (three 38 
applications with 14 day application intervals).  A summary of the results for the Gleams-Driver 39 
runs are presented in Table 19, along with a summary of other modeling efforts which are 40 
discussed further in the following subsection.  The uses of all of the available modeling estimates 41 
in developing the exposure assessments for the current risk assessment are discussed in 42 
Section 3.2.3.4.6. 43 

3.2.3.4.4. Other Modeling Efforts 44 
Other efforts to model concentrations of fluazifop-P-butyl in surface water are summarized in 45 
Table 19, which also summarizes the surface water modeling conducted for the current risk 46 
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assessment (Section 3.2.3.4.3).  To estimate concentrations of a pesticide in ambient water as 1 
part of a screening level risk assessment, the U.S. EPA typically uses Tier 1 screening models 2 
(e.g., GENEEC, FIRST, and SCIGROW).  For more refined and extensive risk assessment, the 3 
Agency will typically use PRZM/EXAMS, a more Tier 2 modeling system.  The U.S. EPA/OPP 4 
typically models pesticide concentrations in water at the maximum labeled rate.  All of the 5 
concentrations given in Table 19 involved applications at 0.32 lb a.e./acre, identical to the 6 
maximum rate used in the GLEAMS-Driver simulations and with one exception (U.S. 7 
EPA/OPP/EFED 2008) involved three applications.  As also noted in Table 19, EPA used 8 
application intervals of 14 to 21 days. 9 
 10 
The highest concentrations estimated in the EPA assessments involved the application of the 11 
FIRST model—i.e., a peak concentration of about 53 ppb and a longer-term concentration of 12 
about 11 ppb.  This is to be expected in the Tier 1 models, which are intended to be extremely 13 
conservative.  The PRZM/EXAMS modeling resulted in lower estimates of both peak 14 
concentrations—i.e., about 1.35 to 33.4 ppb—and longer-term concentrations—i.e., about 0.7 to 15 
6.84 ppb.  16 
 17 
Excluding the results from the FIRST model, the midpoint of the range of peak concentrations 18 
from the EPA assessments is about 17.4 ppb [(1.35 + 33.4) ÷ 2 ≈ 17.375].  This concentration is 19 
not substantially different from the central estimate of the peak concentration (16 ppb) from the 20 
GLEAMS-Driver simulations for a small pond involving three applications of fluazifop-P-butyl.    21 
The midpoint of the range for longer-term concentrations from the EPA assessments is about 3.8 22 
ppb [(0.74 + 6.84) ÷ 2 ≈ 3.79], which is only modestly below the average concentration of 6.53 23 
ppm from the GLEAMS-Driver simulations.   24 
 25 
The upper bound estimates from the GLEAMS-Driver simulations, however, are substantially 26 
higher than the peak concentrations modeled by EPA.  For three applications, the peak 27 
concentration from GLEAMS-Driver for a small pond is 150 ppb, which is a factor of about 5 28 
higher than the peak concentration reported by EPA [150 ÷ 33.4≈ 4.491].  For the longer-term 29 
concentrations, the upper bound from GLEAMS-Driver is about 61 ppb, which is a factor of 30 
about 9 higher than the upper bound from the EPA modeling [61.4 ÷ 6.84 ≈ 8.977]. 31 
 32 
The comparisons of the EPA and Gleams-Driver results for fluazifop-P-butyl are similar to many 33 
other comparisons noted in other Forest Service risk assessments.  Because Gleams-Driver is 34 
applied to numerous site/soil combinations and because 100 simulations are conducted for each 35 
site/soil combination, the upper bound values from Gleams-Driver often exceed the 36 
concentrations obtained from either the Tier 2 PRZM/EXAMS modeling or the more 37 
conservative Tier 1 modeling from EPA.  Because the overall intent of Gleams-Driver is to 38 
estimate both central estimates and uncertainty bounds associated with the central estimates, the 39 
conservative Tier I models from EPA typically yield concentrations higher than the central 40 
estimate from Gleams-Driver.  All of these patterns are evident in the surface water modeling for 41 
fluazifop-P-butyl. 42 

3.2.3.4.5. Monitoring Data 43 
Monitoring studies are most useful in evaluating the credibility of environmental modelling, such 44 
as the efforts detailed in Sections 3.2.3.4.3 and 3.2.3.4.4.  For this type of evaluation, however, 45 
the monitoring data must be associated with defined applications of the compound under review 46 

51 



 

or at least some estimate of the regional use of the compound.  No such studies are available for 1 
fluazifop-P-butyl.  One publication (Coupe et al. 1998) that specifically focuses on this type of 2 
assessment—i.e., the relationship of pesticide use to surface water contamination—provides data 3 
on the use of fluazifop in the Mississippi delta but does not provide information on the detection 4 
of fluazifop in surface water. 5 
 6 
The highest detected concentration of fluazifop-P-butyl in surface water is 0.2 µg/L from a river 7 
in Spain (Martinez et al. 2000, Table 4, p. 477).  Similar concentrations are reported in FANPP 8 
(2013a)—i.e., 0.06 to 0.17 µg/L—for surface water in California.  Much lower concentrations of 9 
about 0.0041 µg/L are reported for a stream in Northern Ireland (Scott and McConvey 2005).  10 
Fluazifop-butyl was not detected in Danish ground water at a detection limit of 0.004 µg/L 11 
(Spliid and Koppen 1998) and was not detected in Italian rainwater (Trevisan et al. 1993).  12 
Because none of these studies provide information on applications of fluazifop-P-butyl, they are 13 
not useful in assessing the credibility of the surface water modeling for fluazifop-P-butyl. 14 
 15 
In the interest of completeness, it is noted that very low air concentrations of fluazifop-P-butyl 16 
(i.e., 0.02 to 0.007 ng/m3) were detected in an agricultural area in Canada (White et al. 2006).  17 
As discussed in Section 3.1.13, the lowest reported 4-hour inhalation LC50 for fluazifop-P-butyl 18 
is 0.54 mg/L.  This LC50 is equivalent to 540 mg/m3, which is in turn equivalent to 540,000,000 19 
ng/m3.  This concentration is a factor of 27 billion times greater than the peak concentration of 20 
0.02 ng/m3 reported by White et al. (2006). 21 

3.2.3.4.6. Concentrations in Water Used for Risk Assessment 22 
The concentrations of fluazifop-P-butyl in water used in the current risk assessment are 23 
summarized in Table 20.  The concentrations are specified as water contamination rates 24 
(WCRs)—i.e., the concentrations in water expected at a normalized application rate of 1 lb 25 
a.e./acre, converted to units of ppm (a.e.) or mg a.e./L per lb a.e./acre.  In Table 19, the summary 26 
of all of the modeling efforts, units of exposure are expressed as ppb or µg/L, as a matter of 27 
convenience, for an application rate of 0.32 lb a.e./acre.  In Table 20, however, ppb is converted 28 
to mg/L (ppm) because mg/L is the unit of measure used in the EXCEL workbooks for 29 
contaminated water exposure scenarios in both the human health and ecological risk 30 
assessments.  The water contamination rates are entered in Worksheet B04Rt in Attachment 1 31 
(single application), Attachment 2 (two applications with a 14-day application interval) and 32 
Attachment 3 (three applications with 14-day application intervals).  The values in Worksheet 33 
B04Rt are linked to the appropriate scenario-specific worksheets in the EXCEL workbooks and 34 
the concentrations are adjusted to an application rate of 0.32 lb a.e./acre. 35 
 36 
These water contamination rates are based on the GLEAMS-Driver modeling discussed in 37 
Section 3.2.3.4.3.  The GLEAMS-Driver modeling is reasonably consistent with the FIRST and 38 
PRZM/EXAMS modeling as discussed in Section 3.2.3.4.4 and summarized in Table 19.  As 39 
summarized in Table 19, the Gleams-Driver simulations of the small pond are somewhat higher 40 
than those for a small stream.  Consequently, the Gleams-Driver simulations for the small pond 41 
are used to derive the Water Contamination Rates given in Table 20. 42 
 43 
Like most of the estimates provided in this risk assessment, the water contamination rates given 44 
in Table 20 are expressed as the central estimate with associated lower and upper bounds.  The 45 
central estimate and upper bound are taken directly from the GLEAMS-Driver modeling for one 46 
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application (Appendix 8), two applications (Appendix 9), and three applications (Appendix 10).  1 
The peak concentrations are given in Table 7, and the longer-term concentrations are given in 2 
Table 8 of each of these appendices.   3 
 4 
The lower bounds of the water contamination rates are taken as one-tenth of the central estimate.  5 
As detailed in the GLEAMS-Driver appendices, the lower bound for many of the site/soil 6 
combinations is zero.  Although setting a practical lower bound may seem somewhat arbitrary, 7 
the lower bounds based on one-tenth of the central estimates are reasonably close to the upper 8 
levels of exposure associated with drift at 25 feet from the application site (Table 19).  From a 9 
practical perspective, the lower bound exposure levels have no impact on the risk 10 
characterization for either the human health risk assessment (Section 3.4) or the ecological risk 11 
assessment (Section 4.4). 12 
 13 
As noted in 3.2.3.4.5, monitoring data on concentrations of fluazifop-P-butyl in surface water are 14 
much lower than estimates based on either the PRZM/EXAM modeling from EPA or the 15 
GLEAMS-Driver conducted in the current risk assessment.  The monitoring data, however, are 16 
not associated with defined applications of fluazifop-P-butyl and cannot be used to assess the 17 
plausibility of modelled estimates.  While the Gleams-Driver estimates are reasonably consistent 18 
with U.S. EPA/OPP modeling (Section 3.2.3.4.4), the lack of monitoring data to assess the merit 19 
of the modeled concentrations adds uncertainty to this risk assessment. 20 

3.2.3.5. Oral Exposure from Contaminated Fish 21 
Many chemicals may be concentrated or partitioned from water into the tissues of aquatic 22 
animals or plants.  This process is referred to as bioconcentration.  Generally, bioconcentration is 23 
measured as the ratio of the concentration in the organism to the concentration in the water.  For 24 
example, if the concentration in the organism is 5 mg/kg and the concentration in the water is 25 
1 mg/L, the bioconcentration factor (BCF) is 5 L/kg [5 mg/kg ÷ 1 mg/L].  As with most 26 
absorption processes, bioconcentration depends initially on the duration of exposure but 27 
eventually reaches steady state.  Details regarding the relationship of the bioconcentration factor 28 
to standard pharmacokinetic principles are provided in Calabrese and Baldwin (1993). 29 
 30 
Three sets of exposure scenarios are presented: one set for acute exposures following an 31 
accidental spill (Worksheets D08a and D08b), one set for acute exposures based on expected 32 
peak concentrations of fluazifop-P-butyl in water (Worksheets D09c and D09d), and another set 33 
for chronic exposures based on estimates of longer-term concentrations in water (Worksheets 34 
D09a and D09b).  The two worksheets for each set of scenarios are included to account for 35 
different consumption rates of caught fish among the general population and subsistence 36 
populations.  Details of these exposure scenarios are provided in Section 3.2.3.5 of SERA 37 
(2011a). 38 
 39 
The scenarios associated with consumption of contaminated fish are based on the same 40 
concentrations of fluazifop-P-butyl in water used for the accidental spill scenario (Section 41 
3.2.3.4.1.) and the drinking water exposure estimates (Section 3.2.3.4.6). 42 
 43 
This exposure scenario also requires estimates of the bioconcentration factor.  Experimental 44 
bioconcentration factors are required by the EPA as part of the registration process.  As 45 
summarized in Table 4, two bioconcentration studies were submitted to the EPA and are 46 
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summarized in U.S. EPA/OPP/EFED (2008).  One study appears to be a relatively standard 1 
study in bluegills in which bioconcentration factors of 120 are reported for muscle and 410 for 2 
whole fish (MRID 93196 and MRID 92067035).   3 
 4 
The other study (MRID 93195) appears to be a mesocosm experiment with catfish conducted 5 
over a period of 65 days.  This study reports much lower bioconcentration factors of 1.1 in 6 
muscle and 2.1 in whole fish.  In the mesocosm study, fluazifop-butyl was applied to loamy sand 7 
soil.  The soil was flooded after 14 days, at which time the catfish were added for an exposure 8 
period of 65 days. 9 
 10 
As noted in Section 2.2.1 and discussed in detail in U.S. EPA/OPP/EFED (2008), fluazifop-butyl 11 
is rapidly hydrolyzed in soil to fluazifop acid.  The lower bioconcentration factors in the catfish 12 
study are probably due to the hydrolysis of fluazifop-butyl to fluazifop acid prior to and/or 13 
shortly after the addition of the catfish to the mesocosm.  The study in bluegills appears to have 14 
measured the bioconcentration of fluazifop-butyl; whereas, the study in catfish appears to have 15 
measured the bioconcentration of fluazifop acid.  This supposition is supported by the estimated 16 
bioconcentration factor of 3.16 for fluazifop acid from EPI-Suite (2011) summarized in Table 5. 17 
 18 
For the current risk assessment, the higher BCF of 120 for fish muscle from the bluegill study is 19 
used for acute exposure scenarios in which the primary exposures to fish could be fluazifop-P-20 
butyl.  For the chronic exposure scenarios, the lower BCF of 1.1 in the muscle of catfish is used 21 
because any longer-term exposures following applications of fluazifop-P-butyl will involve 22 
fluazifop acid rather than the butyl ester.  This approach is identical to the approach used for the 23 
exposure scenario involving  the consumption of fish by wildlife (Section 4.2.2.5), except that 24 
whole fish bioconcentration factors are used rather than the bioconcentration factors for fish 25 
muscle. 26 

3.2.3.6. Dermal Exposure from Swimming in Contaminated Water 27 
Some geographical sites maintained by the Forest Service or Forest Service cooperators include 28 
surface water in which members of the general public might swim.  The extent to which this 29 
might apply to areas treated with fluazifop-P-butyl is unclear. 30 
 31 
To assess the potential risks associated with swimming in contaminated water, an exposure 32 
assessment is developed for a young woman swimming in surface water for 1 hour (Worksheet 33 
D10).  Conceptually and computationally, this exposure scenario is virtually identical to the 34 
contaminated gloves scenario used for workers (Section 3.2.2.2)—i.e., a portion of the body is 35 
immersed in an aqueous solution of the compound at a fixed concentration for a fixed period of 36 
time.   37 
 38 
As in the corresponding worker exposure scenario, the 1-hour period of exposure is somewhat 39 
arbitrary given that longer periods of exposure are plausible.  Nonetheless, the 1-hour period is 40 
intended as a unit exposure estimate.  In other words, both the absorbed dose and consequently 41 
the risk will increase linearly with the duration of exposure, as indicated in Worksheet D10.  42 
Thus, a 2-hour exposure would lead to an HQ that is twice as high as that associated with an 43 
exposure period of 1 hour.   44 
 45 
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In cases in which this or other similar exposures approach a level of concern, further 1 
consideration is given to the duration of exposure in the risk characterization (Section 3.4).  For 2 
fluazifop-P-butyl, however, the HQs for this scenario are far below the level of concern.  As 3 
indicated in Worksheet E04 of Attachment 3 (three applications), the upper bound HQ for this 4 
scenario is 0.002.  Thus, for this scenario to reach a level of concern (HQ=1.0), the period of 5 
exposure would need to be 500 hours or about 21 days. 6 
 7 
As with the exposure scenarios for the consumption of contaminated fish, the scenarios for 8 
exposures associated with swimming in contaminated water are based on the peak expected 9 
water concentrations of fluazifop-P-butyl used to estimate acute oral exposures associated with 10 
contaminated water (Section 3.2.3.4.6). 11 

3.2.3.7. Oral Exposure from Contaminated Vegetation 12 
Although none of the Forest Service applications of fluazifop-P-butyl will involve crop 13 
treatment, crop treatments may be conducted on some Forest Service lands by individuals or 14 
organizations with authorization from the Forest Service to use Forest Service lands for the 15 
cultivation of crops.  All such agricultural applications are subject to U.S. EPA/OPP regulatory 16 
constraints (e.g., tolerance limits) and exposures associated with agricultural applications are not 17 
explicitly considered in Forest Service risk assessments.  As discussed further in Section 3.4.3 18 
(Risk Characterization for the General Public), exposures to pesticides associated with 19 
agricultural applications of pesticides are below, and often far below, the exposure assessments 20 
developed for forestry applications of pesticides. 21 
 22 
For pesticides that may be applied to vegetation, Forest Service risk assessments include 23 
standard exposure scenarios for the acute and longer-term consumption of contaminated 24 
vegetation.  Two sets of exposure scenarios are provided: one for the consumption of 25 
contaminated fruit and the other for the consumption of contaminated vegetation.  These 26 
scenarios are detailed in Worksheets D03a (fruit) and D03b (broadleaf vegetation) for acute 27 
exposure and Worksheets D04a (fruit) and D04b (broadleaf vegetation) for chronic exposures. 28 
 29 
The pesticide contamination on fruit and vegetation is estimated using the empirical relationships 30 
between application rate and concentration on different types of vegetation (Fletcher et al. 1994).  31 
The rates provided by Fletcher et al. (1994) are based on a reanalysis of data originally compiled 32 
by Hoerger and Kenaga (1972) and represent estimates of pesticide concentration in different 33 
types of vegetation (mg chemical/kg vegetation) after a normalized application rate of 1 lb. 34 
a.e./acre.  Although the EPA human health risk assessments do not consider this exposure 35 
scenario, the residue rates recommended by Fletcher et al. (1994) are used by U.S. EPA/OPP in 36 
their ecological risk assessment of fluazifop-P-butyl (U.S. EPA/OPP/EFED 2008).   37 
 38 
The residue rates recommended by Fletcher et al. (1994) are given in Table 21 of the current 39 
Forest Service risk assessment.  Fletcher et al. (1994) and Hoerger and Kenaga (1972) provide 40 
only central and upper bound estimates of residue rates.  Accordingly, the lower bound estimates 41 
in Table 21 are made under the assumption that the ratio of the central estimate to the upper 42 
bound estimate is identical to the ratio of the lower bound estimate to the central estimate (i.e., 43 
the variability is log-symmetrical).  As summarized in Table 21, Fletcher et al. (1994) provide 44 
residue rates for four different classes of plant material, including short grass, tall grass, 45 
broadleaf vegetation, and fruits.  While all four groups of plant material are used in the 46 
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ecological risk assessment (Section 4.2.2), only broadleaf vegetation and fruit are used in the 1 
human health risk assessment. 2 
 3 
For longer-term exposures, the time-weighted-average concentrations are estimated using the 4 
initial pesticide concentration, the half-life on vegetation, the number of applications, and the 5 
application interval.  These calculations are detailed in Worksheet B05a (fruit) and Worksheet 6 
B05b) for broadleaf vegetation.  In these worksheets, the half-lives are identical to those used in 7 
the Gleams-Driver modeling—i.e., a central estimate of 7.5 days with a range of 6.6 to 8.7 days. 8 
 9 
In the study by Kulshrestha et al. (1995), technical grade fluazifop-P-butyl (85.6% purity) was 10 
applied to soybean at a rate of 0.5 kg/ha (≈0.446 lb a.i./acre) and residues on the soybean foliage 11 
were sampled for up to 90 days after exposure.  The residues were assayed as fluazifop-P acid 12 
derivatized to the methyl ester using gas liquid chromatography.  Kulshrestha et al. (1995) report 13 
a half-life of 7.9 days with a correlation coefficient of 0.96 (r2≈0.92) but do not report a 14 
confidence interval on this estimate.  Consequently, the mean residues data reported in 15 
Kulshrestha et al. (1995, Table 2, p. 279) were reanalyzed using the standard exponential decay 16 
model.  While the authors report residues for up to 90 days, residues at 90 days were below the 17 
limits of detection. Thus, only the data from the day of application to 60 days after application 18 
were used in the reanalysis.  Details of this reanalysis are given in Worksheet B06 of the 19 
attachments to this risk assessment. 20 
 21 
As illustrated in Figure 6, the mean residue data are well fit using a standard first-order decay 22 
function (r2=0.981, p=2.07x10-6) yielding a half-life of 7.51 with a 95% confidence interval of 23 
6.60-8.71 days.  The modest difference between the half-life reported by Kulshrestha et al. 24 
(1995) and the half-life from the reanalysis is probably attributable to the use of the individual 25 
data in the study and the use of mean estimates in the reanalysis.  For the current risk assessment, 26 
a half-life of 7.51 days with a 90% confidence interval of 6.60-8.71 days is used in order to 27 
consider, to the extent possible, the variability in the data.   28 
 29 
As discussed further in Section 3.4.3 (Risk Characterization for the General Public), the exposure 30 
scenarios associated with the consumption of contaminated fruit and broadleaf vegetation are a 31 
concern, particularly for longer-term exposures.  As with the exposure scenarios for the 32 
consumption of contaminated fish (Section 3.2.3.5), longer-term exposures for the consumption 33 
of contaminated vegetation are likely to involve fluazifop-P acid rather than fluazifop-P-butyl, 34 
which is accounted for in the data from Kulshrestha et al. (1995).  The analytical method used by 35 
Kulshrestha et al. (1995), however, does not appear to account for the possibly greater 36 
persistence of the metabolites of fluazifop-P.  Thus, the use of the half-lives from the study by 37 
Kulshrestha et al. (1995) could underestimate the longer-term residues of fluazifop-P 38 
metabolites. 39 
 40 
For longer-term exposure scenarios associated with the consumption broadleaf vegetation, the 41 
likelihood and plausibility of such exposures will be low for herbicides that are toxic to broadleaf 42 
vegetation.  Fluazifop-P-butyl, however, is most toxic to true grasses but relatively nontoxic to 43 
dicots (Section 4.1.2.5.2).  Thus, the phytotoxicity of fluazifop-P-butyl does not diminish 44 
concern for the consumption of broadleaf vegetation.  45 
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3.3. DOSE-RESPONSE ASSESSMENT 1 

3.3.1. Overview 2 
Table 22 provides an overview of the dose-response assessment for human health used in this 3 
risk assessment.  The available data on the toxicity of fluazifop-butyl and fluazifop-P-butyl to 4 
mammals is reasonably complete, and the toxicity values derived in the most recent EPA human 5 
health risk assessment (U.S. EPA/OPP/HED 2011a) are adopted without modification.  Forest 6 
Service risk assessments typically defer to the U.S. EPA in the derivation of toxicity values used 7 
in the human health risk assessment, unless there is a compelling reason to differ with the EPA.  8 
While there are concerns with the chronic RfD derived by the U.S. EPA, as discussed further in 9 
Section 3.3.2, the derivation of an alternate RfD would not have a substantial impact on the risk 10 
assessment.  11 

3.3.2. Chronic RfD 12 
The U.S. EPA has not derived an agency-wide RfD for fluazifop-P-butyl or fluazifop-butyl —13 
i.e., there is no RfD for these herbicides listed on the U.S. EPA Integrated Risk Information 14 
System (http://www.epa.gov/iris/).   15 
 16 
The most recent U.S. EPA/OPP human health risk assessment on fluazifop-P-butyl derives a 17 
chronic RfD of 0.0074 mg/kg/day (U.S. EPA/OPP/HED 2010a).  As summarized in Appendix 1 18 
(Table A1-3) and discussed in Section 3.1.9.2, the RfD is based on a 2-generation reproduction 19 
study in rats fed fluazifop-butyl at dietary concentrations of 0, 10, 80, or 250 ppm for up to 120 20 
days.  The RfD is based on a NOAEL for parental male rats in the 10 ppm group, equivalent to a 21 
dose of 0.74 mg/kg bw/day based on dose estimates provided by the EPA.  At 30 ppm (5.8 22 
mg/kg bw/day), parental generation male rats evidenced a decrease in spleen weights, and a 23 
decrease in absolute and relative testes and epididymal weights was noted in male offspring.  In 24 
deriving the chronic RfD, the EPA uses an uncertainty factor of 100 (10 for species-to-species 25 
extrapolation and 10 for sensitive subgroups in the human population) [0.75 mg/kg/day ÷ 100 26 
mg/kg/day = 0.0075 mg/kg bw/day]. 27 
 28 
There is some concern with the chronic RfD, based on the chronic toxicity data on fluazifop-29 
butyl.  As discussed in Section 3.1.5 and summarized in Table 11, the NOAEL for male rats in a 30 
2-year chronic feeding study is somewhat lower than NOAEL of 0.75 mg/kg bw/day from the 31 
reproduction study—i.e., the chronic NOAEL of 0.5 mg/kg bw/day from MRID 41563703 as 32 
detailed in Appendix 1 (Table A1-2).  Typically, the U.S. EPA/OPP derives chronic RfDs based 33 
on chronic/lifetime toxicity studies, and bases a chronic RfD on a multi-generation reproduction 34 
study only if the NOAEL from the reproduction study is below the NOAEL from the 35 
corresponding chronic toxicity study.  This is not the case for fluazifop-P-butyl, and the rationale 36 
for using the reproduction NOAEL of 0.75 mg/kg bw/day rather than the chronic NOAEL of 0.5 37 
mg/kg bw/day is not discussed in U.S. EPA/OPP/HED (2011a) and is not otherwise apparent. 38 
 39 
Forest Service risk assessments typically defer to the U.S. EPA in the derivation of toxicity 40 
values used in the human health risk assessment, unless there is a compelling reason to differ 41 
with the EPA. In the absence of an articulated or otherwise apparent rationale for using the 42 
higher NOAEL from the reproduction study, the use of a somewhat lower NOAEL from a 43 
chronic study that the EPA classifies as “Acceptable” could be viewed as compelling.  In the 44 
case of fluazifop-P-butyl, however, the differences between the NOAELs are not substantial.  45 
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While there are concerns with using the higher NOAEL, the small difference between the 1 
magnitudes of the NOAELs is such that it does not seem necessary to propose an alternate 2 
chronic RfD.  In addition and as noted in Section 1.1, copies of the full studies have been 3 
reviewed by the U.S. EPA/OPP/HED but the full studies were not available for the conduct of 4 
the current Forest Service risk assessment.  Thus, the current risk assessment will adopt the RfD 5 
from U.S. EPA/OPP/HED (2011a) and concerns for the NOAEL from U.S. EPA/OPP/HED 6 
(2011a) are discussed qualitatively in the risk characterization (Section 3.4).    7 
 8 
The European Food Safety Authority (EFSA 2012, p. 7) recommends a somewhat higher chronic 9 
value of 0.01 mg/kg/day.  This value is designated as an ADI (Acceptable Daily Intake) which is 10 
essentially equivalent to a chronic RfD.  The EFSA (2012, p. 7) states that this ADI is based on 11 
an “overall long-term NOAEL of 1 mg/kg bw/day” and an uncertainty factor of 100.  EFSA 12 
(2012) does not identify or provide a citation or citations for the NOAEL.  As summarized in 13 
Table 11 and detailed further in Appendix 1 (Table A1-2), a chronic NOAEL of 1 mg/kg bw/day 14 
was not identified in the literature reviewed as part of the current Forest Service risk assessment.  15 
In the absence of a more complete justification by EFSA (2012), the ADI of 0.01 mg/kg bw/day 16 
cannot be further evaluated. 17 
 18 
A final detail with the chronic RfD involves the units of measure used to report the chronic RfD 19 
by the U.S. EPA.  The discussion in U.S. EPA/OPP/HED (2011a) and other related EPA 20 
documents (Table 2) do not consistently or explicitly designate doses as active ingredient (a.i.) or 21 
acid equivalents (a.e.).  As discussed in Section 2, all exposure assessments used in the current 22 
Forest Service risk assessment are based on acid equivalents using a conversion factor of 0.854 23 
a.e./a.i.  Based on the study descriptions in U.S. EPA/OPP/HED (2011a), it appears that the 24 
doses are expressed in units of a.i.  Thus, the chronic RfD appears to be 0.0074 mg a.i./kg/day.  25 
For the current Forest Service risk assessment, this RfD is adjusted to 0.0063 mg a.e./kg bw/day 26 
[0.0074 mg a.i./kg/day x 0.854 a.e./a.i. = 0.0063196 mg a.e./kg bw/day]. 27 

3.3.3. Acute RfD 28 
The U.S. EPA/OPP sometimes derives acute RfDs for pesticides.  Typically, acute RfDs are 29 
based on developmental studies under the assumption that the endpoint observed in the 30 
developmental study could be associated with a single dose of the pesticide.  The EPA has 31 
followed this approach with fluazifop-P-butyl.   32 
 33 
Based on the NOAEL of 50 mg/kg bw/day from a developmental study in rats (MRIDs 34 
00088857 and 92067047), the EPA derived an acute RfD of 0.5 mg/kg bw/day using an 35 
uncertainty factor of 100 (U.S. EPA/OPP/HED 2011a, p. 68).  The rationale for this uncertainty 36 
factor is identical to the rationale for the uncertainty factor used for the chronic RfD 37 
(Section 3.3.2).  As detailed in Appendix 1 (Table A1-3), this NOAEL is associated with a 38 
LOAEL of 200 mg/kg bw/day based on delayed ossification and diaphragmatic hernias in 39 
offspring.  As summarized in Appendix 1 (Table A1-3), the developmental study in rats used by 40 
U.S. EPA/OPP/HED (2011a) is supported by another developmental study in rats (MRID 41 
00088858) which yielded a NOAEL of 10 mg/kg bw/day and a LOAEL of 200 mg/kg bw/day.  42 
Specifically, MRID 00088858 supports the LOAEL from MRIDs 00088857 and 92067047.  The 43 
lower NOAEL of 10 mg/kg bw/day from MRID 00088858 is an artifact of the experimental 44 
design and does not call into question the NOAEL of 50 mg/kg bw/day from MRIDs 00088857 45 
and 92067047). 46 
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     1 
Because the NOAEL is applicable to female rats and offspring, the EPA notes that the acute RfD 2 
is applicable to women of child-bearing age.  The EPA did not derive an acute RfD for the 3 
general population.  The rationale for not doing so is as follows: An appropriate endpoint 4 
attributable to a single dose was not available in the database including the developmental 5 
toxicity studies (U.S. EPA/OPP (2011a, p. 68).  Forest Service risk assessments typically apply 6 
an acute RfD based on a developmental study to exposure scenarios for both males and females.  7 
The rationale for this approach is that all Forest Service risk assessments are intended to 8 
encompass the most sensitive subgroup (Section 3.2.3.1.1).  As discussed further in Section 3.3.3 9 
(Surrogate RfD for Occupational Exposures), the U.S. EPA/OPP uses a similar rationale in their 10 
risk assessment for workers. 11 
 12 
The EFSA (2012, p. 7) proposes a lower acute RfD of 0.017 mg a.e./kg bw/day, specifically 13 
noting that this acute RfD is expressed as fluazifop acid.  This acute RfD is based on a NOAEL 14 
of 2 mg/kg bw/day from a developmental study in rats and an uncertainty factor of 100.  While 15 
not specifically cited in EFSA (2012), the NOAEL of 2 mg/kg bw/day appears to be based on 16 
MRID 46082903, as summarized in Appendix 1 (Table A1-3), with a corresponding LOAEL of 17 
5 mg/kg bw/day based on delayed ossification.  As discussed further in Section 3.2.3.1.1, these 18 
MRIDs are used in U.S. EPA/OPP/HED (2011a) as the basis for the risk characterization for 19 
short-term exposures in workers.  The U.S. EPA/OPP/HED would not typically use a NOAEL 20 
based on a LOAEL for delayed ossification for an acute RfD because delayed ossification would 21 
not be associated with an exposure occurring over the course of a single day. 22 
 23 
For the current Forest Service risk assessment, the acute RfD of 0.5 mg/kg bw/day is used to 24 
characterize risks associated with exposures occurring over a single day.  As with the chronic 25 
RfD (Section 3.3.2), the acute RfD from the EPA appears to be expressed in units of a.i. 26 
(fluazifop-P-butyl) rather than a.e. (fluazifop-P acid).  Consequently, the acute RfD from EPA is 27 
adjusted to 0.43 mg a.e./kg bw/day using the conversion factor of 0.854 a.e./a.i. [0.5 x 0.854 = 28 
0.427], as discussed in Section 2.1. 29 

3.3.4. Surrogate RfD for Occupational Exposures 30 
Instead of explicitly deriving RfDs for occupational exposure, the EPA typically identifies a 31 
NOAEL from an appropriate study in mammals and recommends a margin of exposure (MOE).  32 
Often, the EPA uses the same longer-term toxicity value used to derive the chronic RfD, in 33 
which case, the recommended MOE will be identical to the uncertainty factor used to derive the 34 
chronic RfD. 35 
 36 
This approach is taken in U.S. EPA/OPP/HED (2011a, Table 1a, p. 28) for longer-term 37 
occupational exposures of 1 to 6 months.  The NOAEL is identified as 0.74 mg/kg/day and is 38 
based on the same study used to derive the chronic RfD (Section 3.3.2).  The level of concern is 39 
set with a target MOE of 100.  Thus, the functional RfD for longer-term occupational exposures 40 
is identical to the chronic RfD—i.e., 0.74 mg/kg/day ÷ 100 = 0.0074 mg/kg/day). 41 
 42 
Somewhat atypically, the EPA also uses a NOAEL of 2 mg/kg bw/day for shorter-term 43 
exposures of 1 to 30 days (U.S. EPA/OPP/HED 2011a, p. 28)   This NOAEL is also used with a 44 
MOE of 100 to characterize risks for workers (U.S. EPA/OPP/HED 2011a, p. 49).  The NOAEL 45 
of 2 mg/kg bw/day is based on MRIDs 46082913 and 46082903, as summarized in Appendix 1 46 
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(Table A1-3).  The NOAEL of 2 mg/kg bw/day is associated with a LOAEL of 5 mg/kg bw/day 1 
based on an increased incidence of hydroureter (abnormal distension of the ureter with urine) and 2 
delayed ossification in rat offspring. 3 
 4 
As with the acute RfD (Section 3.3.3), the basis for the shorter-term occupational exposure 5 
involves developmental effects.  The EPA, however, specifically notes that this short-term 6 
exposure criterion is applied to all population subgroups.  The rationale for this approach is given 7 
as: 8 

Since females of child-bearing age cannot be excluded or treated separately from 9 
the general population should regulatory and/or mitigation measures be 10 
necessary, it is incumbent upon the Agency to address the potential risks of the 11 
most sensitive population as representative of the entire population. 12 

U.S. EPA/OPP/HED (2011a, p. 71) 13 
 14 
As discussed in Section 3.3.3 (Acute RfD), this is essentially the same rationale used in all Forest 15 
Service risk assessments in the application of acute RfDs based on developmental studies to both 16 
males and females.  In other words, the acute RfD, which is based on a response in female 17 
animals, is applied to exposure scenarios that may involve either males and females because 18 
females …cannot be excluded or treated separately from the general population. 19 
 20 
For the current risk assessment, the surrogate RfD of 0.02 mg/kg bw/day [2 mg/kg bw/day ÷ 21 
100] is used to characterize short-term (1-30 days) exposures in workers.  Because the U.S. EPA 22 
uses both this shorter-term value as well as the chronic RfD for characterizing risks to workers, 23 
Worksheet E02 in the attachments to this risk assessment was modified accordingly to make the 24 
risk characterization for workers comparable with the EPA risk characterization.  These risks are 25 
discussed further in Section 3.4.2. 26 
 27 
As with the acute and chronic RfDs, the NOAEL of 2 mg/kg bw/day from MRID 46082903 28 
involved a study with fluazifop-P-butyl, and the NOAEL appears to be expressed in units of 29 
fluazifop-P-butyl.  Consequently, the surrogate short-term occupational RfD of 0.02 mg/kg 30 
bw/day is adjusted to 0.017 mg a.e./kg bw/day using the conversion factor of 0.854 a.e./a.i. as 31 
discussed in Section 2.1 [0.02 x 0.854 = 0.0.01708]. 32 

3.3.5. Dose-Severity Relationships 33 
Forest Service risk assessments sometimes consider dose-severity relationships in an effort to 34 
more fully characterize potential risks in exposure scenarios where the doses exceed the RfD.  35 
For fluazifop-P-butyl, this consideration is important because several of the exposure scenarios 36 
for both workers and members of the general public lead to estimated doses that substantially 37 
exceed the RfDs (Section 3.4). 38 
 39 
As summarized in Table 22, the ratios of the LOAEL to the corresponding NOAEL are 4 for the 40 
acute RfD [200 ÷ 50], about 8 for the chronic RfD [5.8 ÷ 0.74 ≈ 7.837], and 2.5 for the shorter-41 
term surrogate occupational RfD [5 ÷ 2].  While these ratios might not reflect dose-severity 42 
responses in human populations, they are the most objective basis for assessing potential 43 
concerns for exceedances in the RfDs.  As discussed further in Section 3.4, an additional factor 44 
to consider is the uncertainty factor of 100 used in the derivation of all of the RfDs. 45 
  46 
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3.4.   RISK CHARACTERIZATION 1 

3.4.1. Overview 2 
The quantitative risk characterization is based on the hazard quotient (HQ), which is defined as 3 
the anticipated exposure divided by a toxicity value.  An HQ of 1 is defined as the level of 4 
concern—i.e., if an HQ exceeds 1, the exposure exceeds the level of concern.  For the human 5 
health risk assessments the toxicity values are the acute RfD of 0.43 mg a.e./kg bw/day, a 6 
surrogate intermediate RfD of 0.017 mg a.e./kg bw/day for workers, and a chronic RfD of 0.0063 7 
mg a.e./kg bw/day for longer-term exposures.  As discussed in Section 3.3, these toxicity values 8 
are taken from the most recent EPA human health risk assessment (U.S. EPA/OPP/HED 2011a) 9 
but are adjusted from units of a.i. (fluazifop-P-butyl) to units of a.e (fluazifop-P acid).  Similarly, 10 
all exposure estimates given in the workbooks that accompany this risk assessment are given in 11 
units of a.e.   12 
  13 
Based on the toxicity values and the central estimates of exposure, workers involved in 14 
mechanical ground spray and aerial applications of fluazifop-P-butyl do not appear to be at risk.  15 
This conclusion is consistent with the risk characterization for these worker groups by the U.S. 16 
EPA/OPP/HED (2011a).  The central estimate of the HQ for backpack workers, however, 17 
modestly exceeds the level of concern (HQ=2).  U.S. EPA/OPP/HED (2011a) did not assess 18 
backpack workers.  Based on upper bound estimates of exposures, most of the HQs exceed the 19 
level of concern by factors of up to 43.  These estimates indicate that measures to limit or 20 
otherwise mitigate worker exposures are warranted. 21 
 22 
For the general public, none of the acute exposure scenarios substantially exceed the level of 23 
concern, except for accidental exposure scenarios involving a spill of fluazifop-P-butyl into a 24 
small pond.  At the upper bounds, the acute (non-accidental) exposure scenario for the 25 
consumption of contaminated vegetation reaches the level of concern following one application 26 
(HQ=1) and modestly exceeds the level of concern following two applications (HQ=1.3) and 27 
three applications (HQ=1.4). 28 
 29 
Longer-term exposure scenarios involving the consumption of contaminated vegetation are a 30 
much greater concern than acute exposures with the central estimates of longer-term exposures 31 
reaching the level of concern following one application (HQ=1) and exceeding the level of 32 
concern following two applications (HQ=2) and three applications (HQ=3).  The upper bound 33 
HQs for these scenarios substantially exceed the level of concern—i.e., upper bound HQs of 10 34 
following a single application, 19 following two applications, and 29 following three 35 
applications.  The longer-term exposure scenarios involving dietary exposure developed in the 36 
current Forest Service risk assessment are much more severe than the dietary exposure scenarios 37 
used in U.S. EPA risk assessments.  Nonetheless, the exposure scenarios for the consumption of 38 
contaminated vegetation reflect potential exposures for individuals consuming contaminated 39 
vegetation following forestry applications of fluazifop-P-butyl.  The distinction between 40 
exposure following forestry applications and exposures following agricultural applications is 41 
important in that forestry applications are not regulated by tolerance limits.  These longer-term 42 
scenarios for the consumption of contaminated vegetation are standard exposure scenarios used 43 
in all Forest Service risk assessments for pesticides applied to vegetation and are considered 44 
relevant by the Forest Service.     45 
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 1 
While the risk characterization for fluazifop-P-butyl is relatively severe, particularly for longer-2 
term exposure scenarios, the approach used in the current risk assessment is not the most 3 
conservative approach that could be adopted.  As discussed in the dose-response assessment for 4 
chronic toxicity (Section 3.3.2), the chronic RfD for fluazifop-P-butyl is based on a NOAEL of 5 
0.75 mg a.i./kg bw/day from a reproduction study in rats.  A standard chronic toxicity study in 6 
rats yields a somewhat lower NOAEL of 0.5 mg a.i./kg bw/day.  The rationale for using the 7 
higher NOAEL is not clearly articulated in the EPA risk assessments on fluazifop-P-butyl.  If the 8 
lower NOAEL were used to derive a chronic RfD, the HQs discussed above would increase by a 9 
factor of 1.5.  Adopting a lower RfD, however, would not have a substantial qualitative impact 10 
on the risk characterization, and the current Forest Service risk assessment defers to the most 11 
recent EPA human health risk assessment, U.S. EPA/OPP/HED (2011a). 12 

3.4.2. Workers 13 
The quantitative risk characterization for workers is summarized in Table 23.  The HQs given in 14 
this table are taken from Worksheets E02 in Attachment 3 (three applications).  Note that the 15 
HQs for workers are identical in the EXCEL workbooks for one, two, and three applications.   16 
Accidental exposure scenarios model only a single event.  The general exposure scenarios 17 
assume that the worker will repeatedly apply the pesticide—i.e., a longer-term toxicity value is 18 
used.  Thus, the risk to the worker remains the same, whether the worker is repeatedly applying 19 
the pesticide to the same field or applying the pesticide to different fields. 20 
 21 
Table 23 is divided into two sections.  The upper section gives the Hazard Quotients (HQs)—i.e., 22 
the estimated dose divided by the appropriate RfD or surrogate RfD, as discussed in Section 3.3.  23 
HQs are the standard numerical expression of the risk characterization used in Forest Service risk 24 
assessments with a level of concern of 1 (i.e., HQ=1).  If the HQ exceeds 1, concern for potential 25 
adverse effects is triggered.   26 
 27 
The lower section of Table 23 gives the Margins of Exposure (MOE) that correspond to the HQs.  28 
The MOE is the appropriate animal NOAEL divided by the estimated exposure.  The MOE is 29 
used by the U.S. EPA/OPP with a defined level of concern.  In the case of fluazifop-P-butyl, an 30 
MOE of less than 100 triggers concern.   31 
 32 
HQs and MOEs are essentially reciprocal expressions.  Assuming that the level of concern for 33 
the MOE is equal to the uncertainty factor used to derive the RfD, the MOE associated with a 34 
particular HQ is simply the uncertainty factor divided by the HQ.  In the case of fluazifop-P-35 
butyl, the EPA uses an MOE of 100 to trigger concern and the uncertainty factor used for all of 36 
the RfDs is also 100.  Margins of exposure are not typically discussed explicitly in Forest 37 
Service risk assessments.  An exception is made with the current risk assessment to facilitate the 38 
comparison of the risk characterization for workers offered by U.S. EPA/OPP/HED (2011a) and 39 
the risk characterization developed in the current risk assessment. 40 

3.4.2.1. Accidental Exposures 41 
The only accidental exposure scenario that leads to an excursion above the level of concern 42 
[HQ=1] is the upper bound of the HQ for wearing contaminated gloves for 1 hour [HQ=6].  As 43 
summarized in Table 12, the HQ for this and other accidental exposure scenarios is based on the 44 
acute RfD of 0.5 mg/kg bw/day which, in turn, is based on a NOAEL of 50 mg/kg bw/day with a 45 
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corresponding LOAEL of 200 mg/kg bw/day based on diaphragmatic hernias noted in a 1 
developmental study in rats (MRIDs 00088857 and 00088858).  As discussed in Section 3.3.2, 2 
the RfD of 0.5 mg/kg bw/day appears to be expressed as fluazifop-P-butyl, and the values used 3 
in the attachments to derive the HQs are based on exposures expressed as acid equivalents; thus, 4 
the RfD is adjusted to 0.43 mg a.e./kg bw/day. 5 
 6 
The HQ of 6 is greater than the dose spacing of the NOAEL and LOAEL [200÷50=5]; thus, the 7 
upper bound HQ for wearing contaminated gloves for 1 hour is regarded with concern.  Because 8 
of the endpoint on which the acute RfD is based (i.e., fetal effects) the greatest concern would be 9 
for female workers of child-bearing age.   10 
 11 
As noted in Section 3.3.2, the acute RfD is based on an uncertainty factor of 100, a factor of 10 12 
for potentially sensitive individuals and a factor of 10 for species-to-species extrapolation.  As 13 
discussed in Section 3.1, no remarkable or consistent patterns in sensitivity among species are 14 
apparent for fluazifop-P-butyl based on studies in mice, rats, hamsters, dogs.  As with many 15 
pesticides, however, no toxicity data are available on primates.  Thus, concern for the potentially 16 
greater sensitivity of humans, relative to laboratory mammals, is not substantially alleviated. 17 
 18 
In practical terms, the most sensible interpretation of the HQ of 6 reflects what should be 19 
standard practice in any pesticide application—i.e., hands should be washed and gloves should 20 
be replaced as soon as possible after they become contaminated.  This caution is particularly 21 
important for women of child-bearing age.  22 
 23 
As discussed in Section 3.1.11, fluazifop-P-butyl is not a strong skin or eye irritant.  Nonetheless, 24 
prudent measures and care should be taken handling any pesticide to avoid contact with the skin 25 
or eyes.  This type of cautionary language is appropriately included in the product labels for 26 
Fusilade formulations.  A somewhat greater concern involves the potential for skin sensitization.  27 
As discussed in Section 3.1.11.2, U.S. EPA/OPP/HED (2011a) notes that neither fluazifop-butyl 28 
nor fluazifop-P-butyl is a skin sensitizer.  The review by the European Food Safety Authority, 29 
however, indicates that fluazifop-P-butyl is a skin sensitizer and cautionary language concerning 30 
the potential for skin sensitization is included in the MSDS and product labels for Fusilade DX 31 
and Fusilade II.  Consequently, workers who develop skin reactions, even in the absence of gross 32 
exposures, during or after handling fluazifop-P-butyl should receive appropriate medical 33 
attention. 34 

3.4.2.1. General Exposures  35 

3.4.2.1.1. Central Estimates 36 
At the central estimates of exposure, the only HQ to exceed a level of concern (HQ=1) is the HQ 37 
for backpack workers involved in longer-term application programs.  Using the criteria defined 38 
in U.S. EPA/OPP/HED (2011a, p. 27-28), longer-term would be defined as 1 to 6 months.  As 39 
detailed in U.S. EPA/OPP (2013a), the occupational exposures developed by the U.S. EPA are 40 
based on average or “best-fit” estimates.  Consequently, the central estimates of risk from the 41 
current Forest Service risk assessments are compared with the corresponding estimates of risk 42 
from the most recent EPA human health risk assessment (U.S. EPA/OPP/HED 2011a). 43 
 44 
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For backpack workers, the central estimate of the HQ is 2.  As discussed in 3.3.5, the ratio of the 1 
LOAEL to the NOAEL for the study on which the chronic RfD is based is 8.  Because the HQ is 2 
well below 8, it is not clear that adverse effects would be anticipated in backpack workers, based 3 
on the central estimates of exposure.  Nonetheless, the endpoint on which the LOAEL is based, a 4 
decrease in testes weights, is relatively severe, and care as well as risk mitigation in longer-term 5 
applications of fluazifop-P-butyl may be warranted.   6 
 7 
Confidence in the risk characterization based on the central estimates of exposure is relatively 8 
high.  As discussed in Section 3.2.2.1, the estimated exposures for backpack workers and ground 9 
broadcast workers are consistent with the Chester and Hart (1986) study.  As summarized in 10 
Table 15 and discussed in Section 3.2.2.1.2, the estimated exposures for ground spray and aerial 11 
applications are higher than the estimates in U.S. EPA/OPP/HED (2011a) by a factor of about 5 12 
for ground spray workers [0.0042 ÷ 0.00091 ≈ 4.66] and a factor of about 4 for aerial 13 
applications [0.0037 ÷ 0.00099 ≈ 3.73].  As also summarized in Table 15, the differences 14 
between the exposure estimates developed in the current risk assessment and the exposure 15 
estimates developed by the EPA (U.S. EPA/OPP/HED 2011a) are more modest when the EPA 16 
estimates are modified to consider the same amount of pesticide handled as used in the current 17 
Forest Service risk assessment.  With this normalization, the exposure estimates used in the 18 
current Forest Service risk assessment are higher than the EPA estimates by a factor of 3.5 for 19 
backpack applications [0.0042 ÷ 0.0012 = 3.5] and a factor of 2.6 for aerial applications [0.0037 20 
÷ 0.0014 ≈ 2.64].  Given the substantial variability in worker exposures as well as the exposure 21 
assumptions, these differences are not remarkable.   22 
 23 
For ground broadcast and aerial applications, the qualitative risk characterization given in the 24 
current risk assessment is qualitatively consistent with the risk characterization given in U.S. 25 
EPA/OPP/HED (2011a) in that the level of concern is not reached for either of these worker 26 
groups.  The MOEs derived in U.S. EPA/OPP/HED 2011a (Table 8, p. 49) are 2000 for ground 27 
spray and 1763 for aerial applications based on short-term exposures.  The corresponding MOEs 28 
derived in the current risk assessment are 472 for ground spray workers and 542 for aerial 29 
applications.  For the longer-term exposures, the MOEs from U.S. EPA/OPP/HED 2011a (Table 30 
9, p. 50) are 813 for ground spray and 746 for aerial applications.  The corresponding MOEs 31 
derived in the current risk assessment are 176 for ground broadcast workers and 201 for aerial 32 
workers.  Details of these calculations are given in Table 23 and Worksheet E02 in Attachments 33 
1, 2, and 3.   34 
 35 
The EPA assessment (U.S. EPA/OPP/HED 2011a) does not cover backpack applications of 36 
fluazifop-P-butyl. 37 

3.4.2.1.2. Lower and Upper Bound Estimates 38 
As detailed in SERA (2009, Sections 2.2 and 4.1), one basic difference between the risk 39 
characterizations for workers in Forest Service risk assessments compared with risk 40 
characterizations from the U.S. EPA is that Forest Service risk assessments provide estimates of 41 
risks based on upper bound as well as lower bound exposures.  As discussed in the previous 42 
section, the U.S. EPA/OPP provides point estimates—i.e., single values based on average or 43 
best-fit estimates (U.S. EPA/OPP 2013a).  As detailed in SERA (2013b), Forest Service risk 44 
assessments provide both confidence intervals and prediction intervals for the HQs relating to 45 
worker exposures.  As discussed in SERA (2013b), confidence intervals may be viewed as the 46 
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range in which average values would fall if a new study were conducted – i.e., another group of 1 
workers were sampled and the average were taken.  The prediction interval may be viewed as the 2 
range in which a new single measurement might be found if a measurement were taken of a new 3 
individual.  4 
 5 
As discussed in Section 3.2.3.1.1, the lower bound estimates of risk are intended to assess 6 
whether or not a pesticide can be used safely even under reasonably good conditions—e.g., 7 
acceptable worker hygiene practices, good site conditions.  For fluazifop-P-butyl, all of the lower 8 
bounds of the exposure estimates for workers are below the level of concern (HQ=1) with HQs 9 
ranging from 0.006 (the lower prediction interval for aerial applications) to 0.6 (the lower 10 
confidence interval for backpack applications (Table 23).   11 
 12 
Based on upper bounds of estimated exposures, most of the HQs exceed the level of concern, and 13 
several of the exceedances are substantial (Table 23).  As discussed in Section 3.3 (Dose-14 
Response Relationships), U.S. EPA/OPP/HED (2011a) characterizes risks to workers for both 15 
short-term and longer-term exposures, and the same approach is used in the current Forest 16 
Service risk assessment.  Shorter-term exposures are characterized with a surrogate RfD of 0.017 17 
mg a.e./kg bw/day (Section 3.3.4) and longer-term exposures are characterized with the chronic 18 
RfD of 0.0063 mg a.e./kg bw/day (Section 3.3.2).  As discussed in Section 3.3.4 (Dose-Severity 19 
Relationships), HQs of 2.5 would be a clear concern for shorter-term scenarios and HQs of 8 20 
would be a clear concern for longer-term exposure scenarios. 21 
 22 
Based on the HQs for shorter-term exposures, the upper bound confidence intervals exceed the 23 
level of concern (HQ=1) for backpack applications (HQ=2) and aerial applications (HQ=1.1).  24 
The upper bound confidence interval for aerial applications only modestly exceeds the level of 25 
concern.  The exceedance for backpack applications is greater (HQ=2) and approaches the level 26 
of clear concern for adverse effects (HQ=2.5).  The upper bound prediction intervals for shorter-27 
term exposures are 10 to 16 and all of these HQs substantially exceed the level of clear concern 28 
for adverse effects in short-term exposures (HQ=2.5).    29 
 30 
Based on the HQs for longer-term exposures, the upper bound confidence intervals exceed the 31 
level of concern (HQ=1) for backpack applications (HQ=6), ground broadcast spray (HQ=1.7), 32 
and aerial applications (HQ=3).  The upper bound confidence interval for ground broadcast 33 
applications only modestly exceeds the level of concern and is well-below the level for clear 34 
concern in longer-term exposures (HQ=8).  The exceedance for backpack applications is greater 35 
(HQ=6) and approaches the level of clear concern for adverse effects following longer-term 36 
exposure (HQ=8).  The upper bound prediction intervals of the HQs for longer-term exposures 37 
are 28 to 43, and all of these HQs substantially exceed the level of clear concern for adverse 38 
effects following longer-term exposures (HQ=8). 39 
 40 
As detailed in SERA (2013b), the upper bound exposures for the prediction interval would most 41 
likely reflect adverse conditions during the application (e.g., rough terrain) and/or poor worker 42 
practices in terms of limiting exposures.  A mitigating factor in poor terrain could involve the 43 
assumptions on which the exposure assessment is based.  As summarized in Table 13, the upper 44 
bounds of the numbers of acres treated per day are used with the upper bounds of the worker 45 
exposure rates.  In the case of applications in particularly rough terrain that is difficult to treat, 46 
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the use of upper bound treatment rates (i.e., acres treated per day) with upper bound exposure 1 
rates may not be realistic.  This argument is not considered further in the current risk assessment 2 
which does not explicitly involve site-specific applications; nonetheless, this consideration could 3 
have merit in a specific planned application of fluazifop-P-butyl. 4 
 5 
The characterization of risk for workers that uses both confidence and prediction intervals 6 
combined with considerations of both shorter-term and longer-term exposures and dose-severity 7 
relationships is admittedly cumbersome.  In plain language, the current Forest Service risk 8 
assessment concurs with the risk characterization for workers developed in U.S. EPA/OPP/HED 9 
(2011a): Based on the central estimates of exposure, ground broadcast and aerial applications of 10 
fluazifop-P-butyl do not appear to pose risks to workers.  Based on upper bound estimates of 11 
exposures, however, caution is warranted, and measures to limit or otherwise mitigate worker 12 
exposures are justified.  Backpack workers may be at greater risk based on central as well as 13 
upper bound levels of exposure, particularly when workers are involved in longer-term 14 
applications.  Even in shorter-term backpack applications, the central estimate of the HQ for 15 
workers (HQ=0.9) approaches a level of concern (HQ=1).   16 

3.4.3. General Public   17 
The risk characterizations for members of the general public are summarized in Table 24 for 18 
acute exposures and Table 25 for longer-term exposures.  All HQs for the acute exposure 19 
scenarios are based on the acute RfD from U.S. EPA/OPP/HED (2011a) corrected for acid 20 
equivalents—i.e., 0.043 mg a.e./kg bw/day, as discussed in Section 3.3.3.  All HQs for the 21 
longer-term exposure scenarios are based on the chronic RfD from U.S. EPA/OPP/HED (2011a) 22 
corrected for acid equivalents—i.e., 0.0063 mg a.e./kg bw/day, as discussed in Section 3.3.2.  23 
These tables are based on Worksheet E04 in the attachments to this risk assessment—i.e., 24 
Attachment 1 for a single application, Attachment 2 for two applications, and Attachment 3 for 25 
three applications. 26 

3.4.3.1. Accidental Exposures 27 
The two general types of accidental exposure scenarios considered include dermal exposure 28 
through accidental spray and oral exposure through the consumption of contaminated water or 29 
fish following an accidental spill.  Like the accidental exposure scenarios for workers, the 30 
accidental exposure scenarios for members of the general public are the same for one, two, and 31 
three applications—i.e., accidental exposures are assumed to occur only once. 32 
 33 
None of the exposure scenarios involving dermal exposure lead to HQs that exceed the level of 34 
concern (HQ=1).  The highest HQ is 0.5, the upper bound HQ for the accidental spray of naked 35 
child.  The naked child scenario is intended to be extreme.  While the upper bound for this 36 
exposure scenario is below the level of concern, it is worth noting that this exposure scenario 37 
covers a 1-hour exposure period.  In other words, the assumption is made that the pesticide is 38 
effectively removed from the surface of the child after 1 hour.  Thus, a longer period of exposure 39 
(in this example about 2.25 hours) would result in an HQ of 1, which reaches the level of 40 
concern.  As with any event involving accidental exposure to a pesticide, prudent measures 41 
should be taken promptly to mitigate the exposure. 42 
 43 
All of the HQs associated with an accidental spill exceed the level of concern (HQ=1) at least at 44 
the upper bounds of exposures.  For the consumption of contaminated water by a child, the 45 
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exceedance at the upper bound of the HQ is modest (HQ=1.5).  In addition, this scenario 1 
assumes that the child consumes 1 liter of water—i.e., about the amount that a child might 2 
consume over the course of a single day.   3 
 4 
The upper bound HQs for the consumption of contaminated fish by an adult are more 5 
substantial—i.e., an upper bound HQ of 4 for members of the general public and 18 for members 6 
of subsistence populations who may consume a larger quantity of caught fish.  As discussed in 7 
Section 3.3.5 (Dose-Severity Relationships), the ratio of the LOAEL to the corresponding 8 
NOAEL used to derive the acute RfD is 4—i.e., a LOAEL of 200 divided by the NOAEL of 50 9 
mg/kg bw].  The endpoint associated with the LOAEL is the development of diaphragmatic 10 
hernias in rat offspring from a developmental study (MRIDs 00088857).  In the event of an 11 
accidental spill of fluazifop-P-butyl, vigorous efforts would be justified to minimize exposures 12 
associated with the consumption of contaminated fish by members of the general public, 13 
particularly women of child-bearing age. 14 

3.4.3.2. Acute Non-Accidental Exposures 15 
The risk characterization for acute non-accidental exposures is relatively simple.  All scenarios 16 
involving contaminated water as well as contact with contaminated vegetation are below the 17 
level of concern (HQ=1).  The highest of these HQs is 0.5, and this HQ is associated with the 18 
upper bound for the consumption of contaminated fish by subsistence populations following 19 
three applications of fluazifop-P-butyl at the maximum application rate.  This HQ is based on 20 
both upper bounds of estimated concentrations of fluazifop-P-butyl in water as well as upper 21 
bound estimates for the consumption of fish. 22 
 23 
The only exposure scenario that triggers a level on concern (HQ>1) involves the consumption of 24 
contaminated broadleaf vegetation following two applications (upper bound HQ of 1.3) or three 25 
applications (HQ 1.4) of fluazifop-P-butyl.  These are very modest excursions above the acute 26 
RfD.  While these excursions, by definition, would not be viewed as acceptable, it is not clear 27 
that these exposures would be associated with any observable effects. 28 
  29 
As discussed in Section 2, fluazifop-P-butyl will be used to treat grassy weeds and will not be 30 
intentionally applied to vegetation or fruits that might be consumed by humans in a treated area.  31 
While the inadvertent application of fluazifop-P-butyl to edible vegetation would not be likely in 32 
backpack (i.e., directed foliar) applications, the inadvertent application of fluazifop-P-butyl to 33 
edible vegetation seems plausible in ground broadcast applications and likely in aerial 34 
applications, if consumable vegetation is in the treated area. 35 

3.4.3.3. Longer-term Exposures 36 
As with the acute exposure scenarios, all of the scenarios involving contaminated water are 37 
substantially below the level of concern (HQ=1).  The highest HQ for this group is 0.3 for the 38 
consumption of contaminated water following two or three applications.  Note that identical HQs 39 
for two and three applications are an artifact of rounding conventions.  In Forest Service risk 40 
assessments, HQs between 0.1 and 0.9 are rounded to one significant place.  The underlying 41 
exposures are 0.00176 mg/kg bw/day for two applications and 0.00219 mg/kg bw/day for three 42 
applications.  Dividing these values by the chronic RfD of 0.0063 mg/kg bw/day leads to HQs of 43 
about 0.2786 for two applications and 0.3483 for three applications, both of which round to an 44 
HQ of 0.3. 45 

67 



 

 1 
As summarized in Table 25, the longer-term HQs associated with the consumption of 2 
contaminated broadleaf vegetation are much greater than the corresponding acute HQs.  Based 3 
on the central estimate of exposures, the HQ reaches a level of concern following a single 4 
application (HQ=1), and exceeds the level of concern following two applications (HQ=2) and 5 
three applications (HQ=3).  Based on the upper bound levels of exposure, the HQs substantially 6 
exceed the level of concern following one application (HQ=10), two applications (HQ=19), and 7 
three applications (HQ=29). 8 
 9 
As discussed in the hazard identification (Sections 3.1.5 and 3.1.9.2), both the reproduction study 10 
on which the chronic RfD is based and the chronic toxicity study in rats indicate that males are 11 
more sensitive than females.  The endpoint of concern in the reproduction study on which the 12 
RfD is based involved decreased testicular weight which was seen at a dose that was a factor of 13 
about 8 higher than the NOAEL.  In the chronic toxicity study (MRID 41563703 as summarized 14 
in Appendix 1, Table A1-3), the LOAELs in male rats involved kidney damage and increased 15 
mortality which also occurred at a dose of about a factor of 8 times greater than the NOAEL 16 
[4.15 ÷ 0.51 ≈ 8.13].  Thus, as discussed in Section 3.3.5 (Dose-Severity Relationships), chronic 17 
HQs in excess of 8 are a clear cause for concern.   18 
 19 
Based on the relationships discussed above, the upper bound HQs of 10 for two applications and 20 
19 for three applications are clearly a substantial concern.  Based on the observations in rats, 21 
concerns would be higher for males than for females, and, clearly, the endpoints of concern 22 
would be considered severe—i.e., decreased testicular weight, kidney damage, and mortality.   23 
 24 
Notwithstanding the above considerations, the results from animal studies may not be directly 25 
transferable to assessing risks in humans in both quantitative terms (i.e., the relationship of 26 
NOAELs to LOAELs) and in qualitative terms (i.e., the specific effect that might be caused in 27 
humans).  While this is a general limitation in most pesticide risk assessments, and the limitation 28 
is acknowledged, animal studies are used for and are often the only source of estimating 29 
acceptable or tolerable levels of exposure in humans. 30 
  31 
Another consideration in interpreting the exceedances in chronic exposures to contaminated 32 
vegetation involves the plausibility of the exposure scenarios.  As discussed in 3.2.3.6, the 33 
exposure scenario assumes that edible vegetation is contaminated and that an individual 34 
consumes this vegetation in amounts that account for the typical consumption of vegetation by 35 
humans over a prolonged period of time.  In other words, this scenario could be most relevant to 36 
subsistence populations who gather most of the vegetation that they consume from a treated area.    37 
In addition to subsistence populations, other individuals may gather wild plants regarded as 38 
delicacies (e.g., Peterson and Peterson 1977) but such individuals would often consume lesser 39 
amounts of contaminated vegetation from treated areas for a prolonged period than the estimates 40 
used in the current risk assessment.  While the exposure scenarios for the longer-term 41 
consumption of contaminated vegetation may be viewed as highly conservative and perhaps 42 
limited to only a minority of the general population, this scenario is a standard in all Forest 43 
Service risk assessments for pesticides applied to vegetation, and this scenario is considered 44 
relevant by the Forest Service. 45 
 46 

68 



 

It should be noted that the types of exposure scenarios for contaminated vegetation that are 1 
routinely used in Forest Service risk assessments are not considered in pesticide risk assessments 2 
conducted by the U.S. EPA/OPP.  For example, the total chronic dietary assessment for 3 
fluazifop-P-butyl from the U.S. EPA/OPP/HED (2010a, Table 6, 12) estimates doses in the range 4 
of 0.0006 to 0.007 mg/kg bw/day. For comparison, the exposure assessments for the 5 
consumption of contaminated vegetation used in the current Forest Service risk assessments are 6 
in the range of about 0.0004 to 0.06 mg/kg bw/day following one application and 0.001 to 0.18 7 
mg/kg bw/day following three applications.  8 
 9 
The reason for the substantial differences between EPA exposure assessments and the exposure 10 
assessments given in the current Forest Service risk assessment relates to differences in both 11 
assessment methods and underlying assumptions.  As detailed in U.S. EPA/OPP/HED (2011a), 12 
the U.S. EPA uses a dietary exposure model that estimates total pesticide consumption from 13 
commercially purchased foods based on dietary patterns as well as pesticide residue data from 14 
FDA market basket surveys (e.g., Egan 2013) and the USDA Pesticide Data Program (e.g., Punzi 15 
et al. 2005).  This type of exposure assessment is appropriate for a consideration of risks 16 
associated with agricultural applications for which tolerance limits are set by the EPA.  17 
Tolerance limits, however, are applicable and enforced in agricultural applications but are not 18 
applicable to forestry uses of a pesticide.  This is essentially the rationale used by the Forest 19 
Service to assess dietary exposures associated with the consumption of contaminated vegetation 20 
following forestry applications. 21 

3.4.4. Sensitive Subgroups  22 
As with sethoxydim (SERA 2001) and clethodim (SERA 2013a), there is no information to 23 
assess whether or not specific groups or individuals may be especially sensitive to the systemic 24 
effects of fluazifop-P-butyl.  As indicated in Section 3.1.3, the mechanism of action for the acute 25 
and chronic toxicity in mammals is unclear.  Effects noted in experimental mammals include 26 
decreases in food consumption as well as decreased body weight and the occurrence of liver and 27 
kidney pathology.  These effects, however, occur only at high doses, and it is not clear that 28 
exposures to fluazifop-P-butyl following the types of applications proposed by the Forest Service 29 
would aggravate responses in individuals with metabolic disorders. 30 

3.4.5. Connected Actions 31 
No data are available regarding the toxicity of fluazifop-P-butyl in combination with other 32 
pesticides in mammals.  As noted in Section 2, formulations of fluazifop-P-butyl contain 33 
petroleum solvents and/or surfactants.  There is no information, however, suggesting that these 34 
agents have a substantial impact on the toxicity of fluazifop-P-butyl to humans or experimental 35 
mammals.  As discussed in Section 3.1.14.2, the very limited information on the toxicity of 36 
fluazifop-P-butyl formulations suggests that the contribution of the other ingredients is not 37 
substantial. 38 
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3.4.6. Cumulative Effects 1 
Cumulative effects may involve either repeated exposures to an individual agent or simultaneous 2 
exposures to the agent of concern (in this case fluazifop-P-butyl) and other agents that may cause 3 
the same effect or effects by the same or a similar mode of action. 4 
 5 
In the tolerance reassessment for fluazifop-P-butyl, the EPA declines to assess whether other 6 
pesticides may have cumulative effects with fluazifop-P-butyl: 7 
 8 

EPA has not made a common mechanism of toxicity finding as to 9 
fluazifop-P-butyl and any other substances, and fluazifop-P-butyl does not 10 
appear to produce a toxic metabolite that is also produced by other 11 
substances. For the purposes of this tolerance action, therefore, EPA has 12 
not assumed that fluazifop-P-butyl has a common mechanism of toxicity 13 
with other substances. 14 

U.S. EPA/OPP/HED (2005a, p. 3) 15 
 16 
As noted in the current risk assessment (Section 2.2.2), fluazifop-P-butyl is an aryloxyphenoxy 17 
propionate herbicide and shares a common mechanism of phytotoxic actions with other 18 
aryloxyphenoxy propionate herbicides as well as cyclohexanedione herbicides, like clethodim 19 
(Burden et al. 1990; Mallory-Smith and Retzinger 2003).  The relevance of this common 20 
mechanism of phytotoxic action to potential effects in humans, however, is not clear. 21 
  22 
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4.  ECOLOGICAL RISK ASSESSMENT 1 

4.1. HAZARD IDENTIFICATION 2 

4.1.1. Overview 3 
The open literature on the impact of fluazifop-butyl and fluazifop-P-butyl on terrestrial 4 
vegetation is robust.  With the exceptions of reptiles and amphibians, at least minimal 5 
information is available on other groups of organisms.  The key information on receptors other 6 
than terrestrial plants, however, is taken from EPA risk assessments (U.S. EPA/OPP/EFED 7 
2008, 2010a) as well as assessments of fluazifop-P-butyl from the European literature, 8 
particularly the review by the European Food Safety Authority (EFSA 2012).  Most of the 9 
studies covered in these reviews are unpublished; full copies or detailed summaries of most of 10 
these studies were not available for the preparation of the current risk assessment.  While the 11 
summaries from the EPA and the European literature are useful, the lack of detail in and 12 
inconsistencies among the available reviews lead to uncertainties which are highlighted, as 13 
necessary, in the current risk assessment. 14 
 15 
U.S. EPA/OPP/EFED (2008, p. 31) classifies fluazifop-P-butyl as Practically Non-toxic to birds 16 
and terrestrial invertebrates and only Slightly Toxic to mammals.  These classifications are 17 
commonly applied to herbicides.  Fluazifop-P-butyl, however, is classified as Very Highly Toxic 18 
to fish and invertebrates.  These classifications are well supported by the information presented 19 
in U.S. EPA/OPP/EFED (2008) as well as other reviews of fluazifop-P-butyl (Table 2).  As with 20 
most ecological risk assessments, toxicity data are available on only a few species, relative to the 21 
numerous species likely to be exposed to fluazifop-P-butyl; thus, the hazard assessment for  most 22 
groups of terrestrial nontarget species is constrained. 23 
 24 
Fluazifop-P-butyl is toxic to true grasses—i.e., monocots which are members of the Poaceae 25 
(a.k.a. Gramineae) family—at application rates as low as 0.01 kg a.i./ha (≈0.0076 lb a.e./acre).  26 
Fluazifop-P-butyl, however, is much less toxic to other monocots, dicots, and algae.  There is a 27 
substantial open literature indicating that fluazifop-P-butyl is only minimally phytotoxic to non-28 
Poaceae monocots at application rates ranging from about 0.25 to over 3 kg a.i./ha (≈0.2 to 2.3 lb 29 
a.e./acre).  Similarly, numerous publications indicate that dicots are tolerant of fluazifop-P-butyl 30 
at applications rates on the order of about 0.75 to up to 6 kg a.i./ha (≈0.7 to 5.6 lb a.e./acre). 31 
 32 
The application of any effective herbicide will damage at least some vegetation, and this damage 33 
may alter the suitability (either positively or negatively) of the treated area for terrestrial and 34 
aquatic organisms in terms of habitat, microclimate, or food supply.  These secondary effects 35 
(i.e., effects on the organism that are not a consequence of direct exposure to fluazifop-P-butyl) 36 
would occur with any equally effective method of vegetation management—i.e., mechanical or 37 
herbicide use.  The potential for secondary effects is acknowledged but not otherwise considered 38 
in the hazard identification for nontarget species, except for some fluazifop-P-butyl field studies 39 
in terrestrial invertebrates. 40 
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4.1.2. Terrestrial Organisms 1 

4.1.2.1. Mammals 2 
The toxicity studies on mammals used to assess the potential hazards of fluazifop-P-butyl to 3 
humans (Appendix 1) are applicable to the risk assessment for mammalian wildlife.  While the 4 
toxicity of fluazifop-P-butyl to plants is understood relatively well (Section 4.1.2.5), the 5 
mechanism of action in mammals is unclear (Section 3.1.2).   Field studies to investigate the 6 
impact of fluazifop-P-butyl on mammalian wildlife were not found in the available literature.  As 7 
discussed in Section 3.1 and summarized in Appendix 1, decreased body weight gain is a 8 
common effect observed in experimental mammals exposed to fluazifop-P-butyl in acute, 9 
subchronic, and chronic toxicity studies.  In terms of the productivity of mammalian wildlife, 10 
adverse effects on reproduction and development are also a concern.  As discussed in Section 3.3 11 
and summarized in Table 22, all of the toxicity values used quantitatively in the human health 12 
risk assessment are from either developmental or reproduction studies. 13 
 14 
While human health risk assessments typically focus on the most sensitive species, the ecological 15 
risk assessment is concerned with differences in toxicity among species.  As summarized in 16 
Appendix 1 (Table A1-1), almost all of the acute toxicity studies were conducted in rats and 17 
involve gavage exposure.  Only one indefinite LD50 of >2000 mg/kg bw is available in mice 18 
(EFSA 2012, p. 30).  Based on this one study in mice and the reported definitive LD50 values in 19 
rats (i.e., about 1900 to 3700 mg/kg bw), the difference in the sensitivities between mice and rats 20 
cannot be assessed well, but appear to be negligible.  21 
 22 
Subchronic and chronic toxicity studies are available in dogs, hamsters, and rats (Table 11) and 23 
reproduction studies are available in rabbits and rats (Table 12).  The only consistent pattern in 24 
these studies is that rats appear to be more sensitive than the other species on which data are 25 
available.  The difference in sensitivity is most marked in the subchronic studies in which the 26 
NOAEL for rats is about 0.5 mg/kg bw/day, the NOAEL in dogs is 25 mg/kg bw/day, and the 27 
NOAEL in hamsters is close to 80 mg/kg bw/day.   28 
 29 
A common concern with weak acids (which would include fluazifop-P) is the potential increased 30 
sensitivity of dogs and other canid species.  As discussed in the Forest Service risk assessments 31 
for triclopyr (SERA 2011d), dogs have an impaired capacity to excrete some weak acids and, as 32 
a result, are sometimes much more sensitive than other mammals to weak acids.  As discussed 33 
above, the available toxicity studies indicate that dogs are not more sensitive than other 34 
mammals to fluazifop-P-butyl.  In addition, Woollen et al. (1993) cite an unpublished study that 35 
indicates that the half-life for fluazifop-butyl in dogs is about 20 hours, which is not substantially 36 
different from the half-life 9 to 21 hours in humans, as discussed in Section 3.1.3.3.  Thus, canids 37 
are not regarded as a sensitive subgroup for exposures to fluazifop-P-butyl. 38 
 39 
The only other consistent pattern in the mammalian toxicity studies is the greater sensitivity of 40 
male rats compared with female rats.  This difference in sensitivity is apparent in the NOAELs 41 
from the chronic toxicity study in rats (0.5 mg/kg bw/day for male rats and 5.2 mg/kg bw/day for 42 
female rats from MRID 41563703) and from the reproduction study in rats (0.74 mg/kg bw/day 43 
for male rats and 7.1 mg/kg bw/day for female rats from MRID 00088859).  As discussed further 44 
in Section 4.3.2.1, the toxicity values for mammalian wildlife are based on toxicity data from 45 
rats, and separate toxicity values are not derived for male and female rats.  In terms of impacts on 46 
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populations of mammals, it seems sensible to base the risk assessment on the most sensitive sex 1 
as well as the most sensitive species, and there is no reason to derive an alternate assessment for 2 
the more tolerant sex. 3 

4.1.2.2. Birds  4 

4.1.2.2.1 Standard Studies 5 
All of the information on studies submitted to the U.S. EPA/OPP is taken from the most detailed 6 
EPA ecological risk assessment (U.S. EPA/OPP/EFED 2008) and ECOTOX, as discussed in 7 
Section 1.1.2.  Information on standard toxicity studies in birds from the European literature is 8 
taken from FAO/WHO (2000).  For the most part, the studies summarized in FAO/WHO (2000) 9 
appear to be identical to the studies summarized in U.S. EPA/OPP/EFED (2008).  In addition to 10 
these secondary sources, Data Evaluation Records (DERs) were available on several of the 11 
studies as specified in Appendix 2. 12 
 13 
A standard set of toxicity studies—i.e., acute gavage studies (Appendix 2, Table 1), acute dietary 14 
studies (Appendix 2, Table 2), and reproduction studies (Appendix 2, Table 3) were submitted to 15 
the U.S. EPA/OPP in support of the registration of fluazifop-P-butyl.  The U.S. EPA/OPP 16 
typically requires these studies to be conducted on both mallard ducks and bobwhite quail.  17 
Acute dietary studies are available in quail, mallards, and pheasants, and reproduction studies are 18 
available in both quail and mallards.  Acute gavage studies were conducted in mallards; 19 
however, corresponding studies with bobwhite quail were not identified.  20 
 21 
One acute dietary study on pheasants reporting an LC50 of 18,500 ppm (a.i.) is taken from 22 
ECOTOX, but this study is not summarized in U.S. EPA/OPP/EFED (2008).  U.S. 23 
EPA/OPP/EFED (2008, Table 4-4, p. 73 and p. 180) does, however, report a dietary study in 24 
pheasants with a slightly higher LC50 of 20,767 ppm (a.i.).  The summary of this study 25 
(designated as MRID 00087482) on p. 180 of the EPA risk assessment has the notation, 26 
“Fluazifop-butyl (Dieldrin), 99.6%”.  A DER for this study is available (Ross et al. 1980a).  27 
Based on this DER, the notation concerning dieldrin refers to the use of dieldrin as a positive 28 
control for the study. 29 
  30 
A general consideration in the risk assessment on fluazifop-P-butyl is the relevance of toxicity 31 
data on fluazifop-butyl (i.e., the blend of [R] and [S] enantiomers) to the assessment of the risks 32 
associated with fluazifop-P-butyl.  The data on birds are consistent with the data on mammals in 33 
which no marked differences between the toxicities of fluazifop-butyl and fluazifop-P-butyl to 34 
birds are apparent.  Comparisons between fluazifop-P-butyl and fluazifop-butyl are limited, 35 
however, because all of the gavage LD50 values and most of the dietary LC50 values are 36 
indefinite—i.e., the values are specified as greater than (>) the highest dose or concentration 37 
tested.  For the acute gavage studies in mallards, all of the LD50 values are indeterminate—i.e., 38 
an LD50 of >4270 mg a.e./kg bw for fluazifop-butyl and LD50 values of >3528 mg a.e./kg bw and 39 
>3382 mg/kg bw for fluazifop-P-butyl.  For the acute dietary studies, the reported LC50 values 40 
for fluazifop-butyl are >21,348 ppm (a.e.) for mallards and 15,799 ppm (a.e.) for pheasants.  The 41 
dietary LC50 values for fluazifop-P-butyl are all >4000 ppm (a.e.).  The lower concentrations for 42 
fluazifop-P-butyl relative to fluazifop-butyl simply reflect the lower doses used in the studies on 43 
fluazifop-P-butyl and cannot be used to infer differences in toxic potency. 44 
  45 
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As with studies included in the human health risk assessment, the U.S. EPA/OPP uses a 1 
classification system for categorizing the acute toxicity of pesticides to various groups of 2 
nontarget species (see SERA 2011a, Table 16 with discussion in Section 4.1.2 of SERA 2011a).  3 
Based on the dietary LC50 values, U.S. EPA/OPP/EFED (2008, p. 11) classifies fluazifop-P-butyl 4 
as practically nontoxic to birds. 5 
 6 
In addition to the standard acute toxicity studies in birds, standard reproduction studies were 7 
conducted in both mallards and quail.  DERs for both of these studies were available for the 8 
conduct of the current risk assessment—i.e., the study in mallards (MRID 00093801) is Roberts 9 
et al. (1981a) and the study in quail (MRID 00093802) is Roberts et al. (1981b).  These studies 10 
are summarized in Appendix 2 (Table A2-3) and less detailed summaries are given in U.S. 11 
EPA/OPP/EFED (2008) and FAO/WHO (2000).  No statistically significant (p<0.05) signs of 12 
toxicity or effects on reproduction were noted at dietary concentrations of 43 ppm (a.e.).  In both 13 
studies, some adult mortality was noted that was not attributed to treatment.  In U.S. 14 
EPA/OPP/EFED (2008, Appendix C) both of these studies are classified as Supplemental.  In the 15 
DERs, these studies are classified as Core. 16 

4.1.2.2.2 Open Literature 17 
The open literature on birds consists of three studies from the Hungarian literature (Varga et al. 18 
1999; Varnagy et al. 1996, 1999).  The studies by Varga et al. (1999) and Varnagy et al. (1996) 19 
both involved egg injection—i.e., pheasant eggs in the former study and chicken eggs in the 20 
latter study—using a 12.5% a.i. formulation identified as Fusilade S.  Both studies noted embryo 21 
lethality.  These types of studies are commonly used as screening tools to examine the potential 22 
developmental effects of chemicals.  Given the route of exposure, however, these studies are not 23 
directly useful in the hazard identification. 24 
 25 
Varnagy et al. (1999) describe a field study in pheasants involving Fusilade S (which appears to 26 
be a European formulation of fluazifop-P-butyl) in combination with Sumithion 50 EC.  27 
Sumithion is a formulation of fenitrothion, an organophosphate insecticide.  Varnagy et al. 28 
(1999) monitored the concentration of these compounds in the food consumed by the pheasants.  29 
At reported concentrations of up to 2250 ppm Fusilade (presumably referring to concentrations 30 
of fluazifop-P-butyl), no deaths attributable to toxicity were noted.  Because of co-exposure to 31 
the organophosphate, this study is not directly useful in the current risk assessment.  32 
Nonetheless, it seems worth noting that the functional NOAEL of 2250 ppm fluazifop-P-butyl is 33 
consistent with the standard bioassay data on birds (Section 4.1.2.2.1). 34 

4.1.2.3. Reptiles and Amphibians (Terrestrial Phase) 35 
No information regarding the toxicity of fluazifop-P-butyl or related compounds (Table 1) to 36 
reptiles or terrestrial-phase amphibians was identified in the open literature or in the available 37 
reviews (Table 2).  Neither the database maintained by Pauli et al. (2000) nor the open literature 38 
includes information on the toxicity of fluazifop-P-butyl to reptiles or terrestrial-phase 39 
amphibians.   40 
 41 
Risks to terrestrial phase amphibians are addressed in the EPA ecological risk assessments on 42 
fluazifop-P-butyl prepared by the Environmental Fate and Effects Division (EFED) of U.S. 43 
EPA/OPP (U.S. EPA/OPP/EFED 2008, 2010a,b).  In these ecological risk assessments as well as 44 
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many similar ecological risk assessments prepared by U.S. EPA/OPP, birds are used as 1 
surrogates for terrestrial phase amphibians and reptiles (e.g. U.S. EPA/OPP/EFED 2008, p. 36).   2 
 3 
A concern with the use of birds as a surrogate for amphibians involves the permeability of 4 
amphibian skin to pesticides and other chemicals.  While no data are available on the 5 
permeability of amphibian skin to fluazifop-P-butyl, Quaranta et al. (2009) noted that the skin of 6 
the frog Rana esculenta is much more permeable to several pesticides than pig skin and that 7 
these differences in permeability are consistent with differences in the structure and function of 8 
amphibian skin relative to mammalian skin. 9 

4.1.2.4. Terrestrial Invertebrates 10 
Insects have coenzyme-A carboxylase (ACCase) enzymes (e.g., Goldring and Read 1993; 11 
Russell and Schultz 2010) but information on the similarity of insect ACCase to ACCase in 12 
plants and the effect of fluazifop-butyl on insect ACCase activity has not been identified.  As 13 
discussed further in Section 4.1.2.5 (Terrestrial Plants), differences in plant ACCase enzymes at 14 
least partially accounts for the observed sensitivity differences among plants exposed to 15 
fluazifop-P-butyl.   Thus, the presence of ACCase in insects or other terrestrial invertebrates does 16 
not imply that fluazifop-P-butyl is likely to be highly toxic to these animals. 17 

4.1.2.4.1. Toxicity to Honeybees 18 
The honey bee is the standard test organism for assessing the potential effects of pesticides on 19 
terrestrial invertebrates.  For pesticides registered for broadcast applications, which may result in 20 
honey bee exposures, U.S. EPA requires an acute contact study with the technical grade 21 
pesticide. 22 
 23 
As summarized in Appendix 3, Table A3-1, standard oral and contact assays in honeybees are 24 
summarized in U.S. EPA/OPP/EFED (2008, Appendix C), and additional details of these studies 25 
are available from ECOTOX.  Bioassays are available on technical grade fluazifop-butyl and a 26 
25 EC formulation (MRID 00093809) as well as a 13.8% formulation (MRID 00162453).  The 27 
25 EC formulation appears to correspond to the Fusilade formulations explicitly considered in 28 
the current risk assessment (Table 6).  In addition to these studies, the review by the European 29 
Food Safety Authority reports contact and LD50 values for fluazifop-P-butyl (presumably 30 
technical grade) and Fusilade Max (EFSA 2013).  Fusilade Max is a 13.7% (w/w) formulation 31 
fluazifop-P-butyl (http://www.syngenta.com/ country/ie en/Product_Guide/ 32 
Herbicides/Pages/FusiladeMax.aspx).   33 
 34 
A DER is available for MRID 00093809 (Smailes and Wilkinson 1979).  As summarized in 35 
Appendix 3 (Table A3-1), there are minor discrepancies between the summary of this study in 36 
the DER and in U.S. EPA/OPP/EFED (2008).  The DER was prepared in 1982, and it is not 37 
unusual for the EPA to reevaluate studies in the preparation of a risk assessment.  Consequently, 38 
the summary in U.S. EPA/OPP/EFED (2008) is used in the current risk assessment. 39 
 40 
As with data on other groups of organisms, the toxicity data on bees indicate no substantial 41 
differences in the toxicity of technical grade fluazifop-butyl and fluazifop-P-butyl.  U.S. 42 
EPA/OPP/EFED (2008) reports a definitive oral LD50 for fluazifop-butyl of 180 µg/bee, and 43 
EFSA (2012) reports an indefinite LD50 of >200 µg/bee for fluazifop-P-butyl.  In the absence of 44 
additional details on both studies, this apparent difference is not remarkable.  The contact LD50 45 
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of >240 µg/bee for fluazifop-butyl reported by EPA/OPP/EFED (2008) is consistent with the 1 
contact LD50 of >200 µg/bee for fluazifop-P-butyl reported by EFSA (2012).   2 
 3 
The only remarkable inconsistency in the honeybee toxicity data concerns the data from MRID 4 
00162453 summarized in ECOTOX for a 13.8% formulation of fluazifop-butyl which reports a 5 
contact LD50 of 54 µg/bee with a corresponding NOAEL of >200 µg/bee.  This NOAEL is given 6 
only in ECOTOX. This inconsistency is noteworthy because the contact LD50 of 54 µg a.e./bee 7 
(reported as 63 µg a.i./bee in ECOTOX) is the lowest toxicity value reported for bees.  The 8 
reported NOAEC of >200 µg/bee, however, is over 3 times greater than the reported LD50 [200 ÷ 9 
63 ≈ 3.17], which makes no sense.  The current Forest Service risk assessment does not 10 
explicitly include a 13.8% formulation of fluazifop-P-butyl.  Given the lack of detail and 11 
apparent inconsistency in the report on MRID 00162453 and the questionable relevance of 12 
13.8% formulations to Forest Service uses of fluazifop-P-butyl, the data from MRID 00162453 13 
are not used quantitatively in the current risk assessment.  The LD50 of 63 µg a.i./bee, however, 14 
is cited and used in the EPA ecological risk assessment, U.S. EPA/OPP/EFED (2008, p. 55).  15 
The EPA risk assessment, however, does not cite the NOAEL given in ECOTOX. 16 

4.1.2.4.2. Toxicity to Other Terrestrial Arthropods 17 
Information on the toxicity of fluazifop-P-butyl on terrestrial arthropods other than the honeybee 18 
is summarized in Appendix 3 (Table A3-2).  This information is from the European literature. 19 
Most of the studies are reported in the review of fluazifop-P-butyl by the European Food Safety 20 
Authority (2012), which provides little experimental detail.  This is also true for the open 21 
literature publication by Hautier et al. (2005), also from the European literature.  All of these 22 
studies appear to be laboratory assays rather than field studies.  The available field studies are 23 
discussed in the following section.   24 
 25 
Toxicity studies are available on spiders, mites, and four orders of insects, including Coleoptera, 26 
Diptera, Hymenoptera, and Neuroptera, and all toxicity values are expressed as application rate 27 
equivalents.  The only formulation specified in these studies is Fusilade Max.  As noted in 28 
Section 4.1.2.4.1, Fusilade Max is a 13.7% (w/w) formulation of fluazifop-P-butyl which is not 29 
being considered for use in Forest Service programs.  As also in Section 4.1.2.4.1, the toxicity 30 
data in honeybees indicates that Fusilade Max may be more toxic than the 24.5% a.i. Fusilade 31 
formulations that are being considered by the Forest Service. 32 
 33 
There are substantial differences in the sensitivity of different arthropods to the formulations of 34 
fluazifop-P-butyl covered in the European literature.  The most sensitive organism appears to be 35 
a predatory mite, Typhlodromus pyri.  EFSA (2012, p. 70) reports an LR50 (a term that 36 
functionally corresponds to the LD50) of 5.6 g a.s./ha.  The term “a.s.” is an abbreviation used in 37 
the OECD literature for “active substance” (e.g., http://www.oecd.org/env/ehs/pesticides-38 
biocides/1944058.pdf).  In the case of fluazifop-P-butyl, this term probably designates fluazifop-39 
P-butyl itself rather than the acid equivalent.  Under this assumption, the application rate of 5.6 g 40 
a.s./ha corresponds to about 0.0043 lb a.e./acre [0.0056 kg a.s./ha x 0.892 lb/acre per kg/ha x 41 
0.854 a.e./a.i. = 0.0042659 lb a.e./acre].  This application rate is below the maximum application 42 
rate considered in the current risk assessment by a factor of over 70 [0.32 lb a.e./acre ÷ 0.0043 lb 43 
a.e./acre ≈ 74.4186].   44 
 45 
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The high sensitivity of Typhlodromus pyri to fluazifop-P-butyl is noted as a concern by EFSA 1 
(2012).  In the absence of additional details on this study, the following discussion from the 2 
EFSA review is given verbatim with bolded text added for emphasis: 3 
 4 

The in-field risk to non-target arthropods (Typhlodromus pyri and Aphidius 5 
rhopalosiphi) was assessed as high at the first tier according to the guidance 6 
SETAC (2001). Extended laboratory studies on T. pyri were submitted and the 7 
magnitude of effects (60%) was slightly above the recommended trigger 8 
(i.e.50%). However, the off-field risk was assessed as low and, based on the 9 
residue decline and the time of application, the experts concluded that recovery in 10 
the treated field area for the most sensitive species may occur within one year.  11 

EFSA 2012, p. 12 12 
 13 
The nature of the extended laboratory studies is not clear and may refer to a 3-dose study on 14 
Typhlodromus pyri with Fusilade Max, which is also summarized in Appendix 3 (Table A3-2).   15 
The summary of this study in EFSA (2012) reports the results as an LR50 of 0.174 g a.s./ha or 16 
about 0.132 lb a.e./acre [0.174 kg a.s./ha x 0.892 lb/acre per kg/ha x 0.854 a.e./a.i. = 0.1325476 17 
lb a.e./acre].  EFSA (2012) also indicates that an 8% impact on reproduction was observed at the 18 
lowest application rate of 15 g a.i./ha.  EFSA (2012), however, does not discuss the discrepancy 19 
between the reported LR50 of 5.6 g a.i. and the much higher LR50 of 177 g a.i./ha, presumably 20 
from the extended laboratory studies. 21 
  22 
EFSA (2012) does not provide details of the bioassay on Typhlodromus pyri, and it is not clear if 23 
the exposure was dietary or involved direct spray.  Given that this species is a predatory mite, it 24 
seems likely that the exposure involved direct spray.  The next most sensitive species was a 25 
parasitic wasp, Aphidius rhopalosiphi [Hymenoptera: Aphidiinae] with a reported LR50 of about 26 
0.137 lb a.e./acre.  Note that this LR50 for Aphidius rhopalosiphi is virtually identical to the 27 
higher LD50 for Typhlodromus pyri (i.e., 0.132 lb a.e./acre). 28 
 29 
The toxicity data for other species included in the EFSA (2012) review and the publication by 30 
Hautier et al. (2005) generally indicate far lesser sensitivity in other arthropods.  Hautier et al. 31 
(2005), however, does not provide any detailed information on dose-response relationships, 32 
indicating only that an unspecified Fusilade formulation caused less than 30% mortality at an 33 
application rate of about 0.38 lb a.e./acre. 34 

4.1.2.4.3. Field Studies in Arthropods 35 
The impact of fluazifop-butyl or fluazifop-P-butyl on terrestrial insects is addressed in several 36 
mesocosm and two field studies in the open literature (Appendix 3, Table A3-3).  The term 37 
mesocosm is used somewhat loosely in this discussion to characterize studies in which exposures 38 
consist of insects and host plants.  The studies by Blake et al. (2011a,b) would be classified as 39 
true field studies; whereas, the other studies summarized in Appendix 3, Table A3-3, would be 40 
classified as simple mesocosm studies (i.e., the insect and host vegetation).  While the papers by 41 
Blake et al. (2011a,b) and Russell and Schultz (2010) are relatively detailed reports, the papers 42 
by De Freitas Bueno et al. (2008) and House et al. (1987) provide only cursory summaries of 43 
information relevant to fluazifop-P-butyl, and are not discussed further. 44 
 45 
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The most severe effect reported on insects is a 21% decrease in survival of the small cabbage 1 
white butterfly larvae following direct spray of a 24.5% Fusilade formulation both in 2 
combination with and without a soy-based nonionic surfactant (Russell and Schultz 2010).  As 3 
noted in Section 1.1.3.3, this study is cited by the Fish and Wildlife Service (2012a,b) in a 4 
Federal Register notice concerning endangered and threatened butterflies.  While this study is 5 
cited, however, there is no discussion of the results from the study in the notice by the Fish and 6 
Wildlife Service.  The formulation of fluazifop-P-butyl used by Russell and Schultz (2010) is 7 
specified only as a 24.5% Fusilade formulation.  This description is consistent with both Fusilade 8 
DX and Fusilade II, both of which are explicitly encompassed in the current risk assessment.  9 
While Russell and Schultz (2010) do not explicitly state the application rate, they state that the 10 
maximum application rate was used.  This paper is a U.S. publication from Washington State and 11 
the application rate was probably 0.32 lb a.e./acre.  The herbicide and the herbicide/surfactant 12 
blend were applied to mustard plants (Brassica rapa) onto which newly hatched larvae had been 13 
placed.  Larvae were observed every 2 days through pupation, and observations on adults were 14 
made shortly after emergence.  As summarized in Appendix 3 (Table A3-3), the decrease in 15 
survival cannot be attributed to the surfactant because a separate exposure to the surfactant alone 16 
resulted in an increase in survival.  Other observed effects include statistically significant but 17 
modest decreases in wing surface area (-10%) and pupal weight (-6%).  As discussed by Russell 18 
and Schultz (2010), these effects could be secondary to effects on the host plant (mustard plants) 19 
rather than direct toxicity to the insect.  The small white cabbage butterfly is not a threatened or 20 
endangered species (http://ecos.fws.gov/tess_public/). 21 
 22 
Russell and Schultz (2010) conducted a similar bioassay on Puget Blue butterfly (Icaricia 23 
icarioides blackmorei) larvae on lupine.  The Puget Blue is also not a threatened or endangered 24 
species, at least currently, but two other subspecies of Icaricia icarioides are listed as 25 
endangered—i.e., Icaricia icarioides fenderi and Icaricia icarioides missionensis.  In the Puget 26 
Blue assay, the only effects reported by Russell and Schultz (2010) are a somewhat earlier 27 
emergence of pupae and an increase in survival.  The increased survival, relative to untreated 28 
controls, was observed with the surfactant alone, with the Fusilade formulation alone, and with 29 
the combination of the Fusilade formulation and the surfactant.   30 
 31 
The field studies by Blake et al. (2011a,b) indicate that applications of Fusilade Max are 32 
beneficial to mixed populations of butterflies (0.092 lb a.e./acre) and bumble bees (0.072 lb 33 
a.e./acre from  Blake et al. 2011b).  Both of these studies involved long-term observations 34 
following applications of the Fusilade Max formulations.  The study in butterflies was conducted 35 
over a 2-year period (Blake et al. 2011a), and the study in bumblebees was conducted over a 3-36 
year period (Blake et al. 2011b) following the applications of Fusilade Max.  In these studies, the 37 
beneficial effects are clearly secondary and attributable to the beneficial impact of fluazifop-P-38 
butyl on the wild flower populations.  As discussed in previous sections, it appears that a 39 
formulation of fluazifop-P-butyl consistent with Fusilade Max may be atypically toxic to the 40 
honeybee (Section 4.1.2.4.1) and may be toxic to some nontarget arthropods, particularly 41 
Typhlodromus pyri (Section 4.1.2.4.2). 42 
   43 
It should be emphasized that the studies by Blake et al. (2011a,b) showing beneficial effects to 44 
insects do not contradict the Russell and Schultz (2010) study demonstrating adverse effects in 45 
other insects.  The studies by Russell and Schultz (2010) involved observations of individual 46 
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organisms over a relatively short-term period following a controlled exposure.  Field studies such 1 
as those published by Blake et al. (2011a,b) cannot rule out a direct toxic effect because only the 2 
populations of organisms were monitored over a prolonged period following application.  3 
Nonetheless, the field studies on populations do suggest that the beneficial effect on habitat (i.e., 4 
vegetation management) may outweigh or at least outlast any possible direct toxic effects for 5 
species of insects that rely on wildflowers. 6 

4.1.2.4.4. Earthworms 7 
Studies on the toxicity of fluazifop-butyl to earthworms are summarized in Appendix 3 (Table 8 
A3-4).  The descriptions of all of these studies are taken from EFSA (2012).  As noted 9 
previously, the summaries of the studies in EFSA (2012) are cursory.  Notwithstanding this 10 
limitation, the reported toxicity data for fluazifop-butyl clearly indicate that this herbicide is not 11 
toxic to earthworms at high concentrations (i.e., LC50 > 1,000 mg/kg soil) and excessive 12 
application rates (up to 3.8 lb a.e./acre). 13 
 14 
The data on earthworms also include a 14-day bioassay on 5-trifluoromethyl-2-pyridone.  As 15 
illustrated in Figure 1, this environmental metabolite is referred to in the literature concerning 16 
fluazifop-butyl as Compound X or Metabolite X.  The reported LC50 for this metabolite is 17 
identical to that for fluazifop-butyl—i.e., >1,000 mg/kg soil.  While these indefinite LD50 values 18 
cannot be used to define relative toxicity, this report is one of the very few bioassays on a 19 
fluazifop-butyl metabolite and indicates that this metabolite does not appear to be remarkably 20 
more toxic than fluazifop-butyl.  As discussed further in Section 4.1.3, Metabolite X is less toxic 21 
than fluazifop-butyl to fish, aquatic invertebrates, and algae. 22 

4.1.2.5. Terrestrial Plants (Macrophytes) 23 

4.1.2.5.1. Mechanism of Action 24 
As indicated in Section 2.2, the mechanism of action involved in the phytotoxicity of fluazifop-25 
P-butyl and other aryloxyphenoxy propionate herbicides is the inhibition of acetyl coenzyme-A 26 
carboxylase (ACCase).  Based on this mechanism, fluazifop-P-butyl is categorized as a Group 1 27 
herbicide under the system used by the Weed Science Society of America and a Class A 28 
herbicide under the system used by the Herbicide Resistance Action Committee.  Other similarly 29 
classified aryloxyphenoxy propionate herbicides include clodinafop, cyhalofop-butyl, diclofop, 30 
fenoxaprop, haloxyfop, propaquizafop, and quizalofop-P.  Cyclohexanedione herbicides (e.g., 31 
clethodim, alloxydim, butroxydim, cycloxydim, sethoxydim, and tralkoxydim) also act through 32 
the inhibition of ACCase (Mallory-Smith and Retzinger 2003).  ACCase is a key enzyme in fatty 33 
acid metabolism and catalyzes the carboxylation of acetyl-CoA to produce malonyl-CoA (Abell 34 
1996; Burton et al. 1989; Dotray et al. 1993; Focke and Lichtenthaler 1987; Kobek and 35 
Lichtenthaler 1990; Lichtenthaler et al. 1991; Maier et al. 1994; Rendina et al. 1990; Tong 36 
2005).  Fluazifop-P-butyl inhibits the production of chlorophyll in grass leaves, leading to 37 
chlorosis, and also inhibits the growth of grass roots (Derr et al. 1985a; Kabanyoro 2001).   38 
 39 
Fluazifop-P-butyl is rapidly absorbed by plant leaves and then rapidly hydrolyzed to fluazifop 40 
acid, which is the phytotoxic agent (Balinova and Lalova 1992; Carr 1986a; Derr et al. 1985b).  41 
Fluazifop sensitivity differences among monocots are related to differences in the rate of 42 
absorption (Derr et al. 1985a).  While fluazifop acid is highly mobile in phloem, fluazifop-butyl 43 
is not (Brudenell et al. 1995; Hicks and Jordan 1984).  The transport of fluazifop acid from 44 
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leaves to roots appears to be variable.  Rapid translocation to roots was observed in soybeans 1 
(Balinova and Lalova 1992) and quackgrass (Chandrasena and Sagar 1986b); however, other 2 
studies report relatively little transport from leaves to roots (Carr et al. 1986a; Derr et al. 1985a). 3 
   4 
The phytotoxicity of fluazifop is limited to the [R] enantiomer, fluazifop-P (e.g., Gronwald 1991; 5 
Harwood 1988; Walker et al. 1988a,b).   The specificity of the phytotoxicity to the [R] 6 
enantiomer was noted in several other herbicides, including diclofop, haloxyfop, and quizalofop 7 
(Gronwald 1991).  As discussed further in Section 4.1.2.5.2, true grasses (i.e., monocots of the 8 
Poaceae/Gramineae family) are much more sensitive than dicots and non-Poaceae monocots to 9 
fluazifop-P (Walker et al. 1988a,b).  As discussed by Herbert et al. (1997), the basis for the 10 
sensitivity of Poaceae monocots and the tolerance of dicots is attributable to differences in the 11 
structure of acetyl coenzyme-A carboxylase (ACCase) between grasses (i.e., a multifunctional 12 
protein) and dicots (i.e., a multi-enzyme complex).  The tolerance of non-Poaceae monocots to 13 
fluazifop-P is not specifically discussed in the literature but is presumably due to differences in 14 
the structure of ACCases between these groups of plants.  In vitro assays note substantial 15 
inhibition of ACCase in Poaceae monocots at fluazifop-P concentrations in the range of 1 to 5 16 
µM [i.e., ≈0.327 to 1.635 mg a.e./L] (Burton et al. 1989; Gronwald 1991).  In the common pea 17 
(Pisum sativum, a dicot), however, fluazifop-P-butyl had no impact on ACCase activity at 18 
concentrations of up to 100 µM (i.e., ≈33 mg/L). 19 
 20 
Fluazifop-P-butyl is much more toxic to grasses than other groups of plants, and its mechanism 21 
of action in grasses is well understood.  Nonetheless, fluazifop-P-butyl can impact some dicots, 22 
albeit at high levels of exposure.  The specific mechanism of action of fluazifop-P-butyl in some 23 
dicots has not been well characterized.  Using a dilute (1:250) solution of fluazifop-P-butyl, 24 
Chronopoulou et al. (2012) note an induction of glutathione transferases in the leaves of the 25 
common bean (Phaseolus vulgaris, a dicot) and suggest that this induction may be a general 26 
stress response.  Luo et al. (2004) report that a 5 µM solution of fluazifop-P-butyl causes signs of 27 
oxidative stress in seedlings of the bristly starbur (Acanthospermum hispidum), another dicot. 28 

4.1.2.5.2. Phytotoxicity 29 
4.1.2.5.2.1. Overview of Information 30 

In general, the registration requirements for herbicides involving assays on terrestrial plants are 31 
relatively rigorous, since terrestrial vegetation is the target for terrestrial herbicides. The testing 32 
requirements typically include bioassays for vegetative vigor (i.e., post-emergence applications), 33 
bioassays for seedling emergence (i.e., pre-emergence applications), and bioassays for seed 34 
germination.  These assays usually include four species of monocots from at least two families 35 
and six species of dicots from at least four families.   36 
 37 
Apparently, the EPA, somewhat atypically, did not require the standard phytotoxicity assays for 38 
the registration of fluazifop-P-butyl.  The two most recent ecological risk assessments from the 39 
EPA both note that: No toxicity data have been submitted regarding the toxicity of fluazifop-p-40 
butyl to plants (U.S. EPA/OPP/EFED 2008, p. 35; U.S. EPA/OPP/EFED 2010a, p. 4).  The most 41 
detailed ecological risk assessment from the EPA does indicate that these assays are viewed as 42 
data requirements for fluazifop-P-butyl (U.S. EPA/OPP/EFED 2008, p. 9).  As noted in Section 43 
1.1.2, fluazifop-P-butyl will be undergoing registration review (U.S. EPA/OPP 2013a), and it is 44 
possible that these standard bioassays will be required to support the registration review. 45 
 46 
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While documentation for what appears to be the waiver by the EPA of standard plant bioassays 1 
has not been encountered, the ecological risk assessments from the EPA suggest that the tests 2 
may have been waived based on the presumption of toxicity to monocots and lack of toxicity to 3 
dicots: 4 
 5 

Although there are no acceptable data to assess the possible risks of fluazifop-p-6 
butyl to dicot species, risks are presumed to be minimal due to the fact that 7 
fluazifop-p-butyl is an herbicide with a mode of action specific to monocot plants 8 
and is routinely applied to a variety of dicot plant crops at similar application 9 
rates and there are no reported incidents of damage to dicot plant species in the 10 
EIIS [EFED’s Ecological Incident Information System] database for registered 11 
uses. 12 

U.S. EPA/OPP/EFED 2008, p. 19 13 
 14 
Although standard registrant-submitted studies are not available, there is a reasonably robust 15 
open literature on the toxicity of fluazifop-P-butyl to terrestrial plants, as summarized in several 16 
tables of Appendix 4: 17 
 18 

Table A4-1: Monocots Greenhouse Toxicity Studies, Pre-Emergence 19 
Table A4-2: Dicots Greenhouse Toxicity Studies – Pre-Emergence 20 
Table A4-3: Monocots Greenhouse Toxicity Studies, Post-Emergence 21 
Table A4-4: Dicots Greenhouse Toxicity Studies – Post-Emergence 22 
Table A4-5: Ferns Greenhouse Toxicity Studies, Post-Emergence 8 23 
Table A4-6: Field Studies with Fluazifop 24 

 25 
An overview of this literature is given in Table 26.  While efficacy or field studies are typically 26 
considered apart from laboratory or greenhouse studies, the two types of studies are reasonably 27 
consistent and reinforcing and are considered together in the current discussion.  Most studies 28 
from the open literature on the phytotoxicity of fluazifop-P-butyl express exposures in units of 29 
kg a.i./ha rather than lb a.e./acre.  To facilitate a review of the current risk assessment, units of kg 30 
a.i./ha are maintained in the following discussion.  In the dose-response assessment (Section 31 
4.3.2.5), units are converted to lb a.e./acre to maintain consistency with the exposure assessment. 32 
 33 

4.1.2.5.2.2. Toxicity to Monocots 34 
One substantial elaboration on the hazard identification from the U.S. EPA/OPP involves the 35 
distinction between true grasses (i.e., monocots in the family Poaceae, also termed Gramineae) 36 
and monocots from other families.  Numerous greenhouse and field studies clearly indicate that 37 
fluazifop-P-butyl is toxic to most species of Poaceae at application rates as low as about 0.01 kg 38 
a.i./ha, based on greenhouse studies, and only modestly higher application rates of about 0.035 39 
kg a.i./ha, based on field studies.  Monocots from other families, however, are much less 40 
sensitive to fluazifop-P-butyl. 41 
 42 

4.1.2.5.2.2.1. True Grasses (Poaceae/Gramineae) 43 
Differences in sensitivities to fluazifop-P-butyl among the true grasses are apparent, although 44 
most studies indicate that the differences are not pronounced.  Two studies suggest that red 45 
fescue may be somewhat less sensitive than other true grasses to fluazifop-P-butyl, evidencing 46 
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relatively minor damage compared with other true grasses following application rates of up to 1 
0.18 kg a.i./ha (Blake et al. 2012; Cisar and Jagschitz 1984a).  In addition to the studies 2 
summarized in Table 26, Haga et al. (1987, Table 2, p. 314) noted only moderate damage in two 3 
species of Poaceae—i.e., Imperata cylindrica (3/10) and Miscanthus sinensis (4/10) at an 4 
application rate of 0.25 kg a.i./ha).  In this publication, visual damage was ranked on a scale from 5 
0 (no damage) to 10 (complete kill).  While damage to these Poaceae species was only moderate 6 
at an application rate of 0.25 kg a.i./ha, both species of Poaceae were severely damaged at an 7 
application rate of 1 kg a.i./ha. 8 
 9 
The most remarkable tolerance in a true grass, however, is reported in the field study by Calkins 10 
et al. (1996) indicating that blue fescue (Festuca ovina var. glauca) evidenced relatively little 11 
damage following applications of fluazifop-P-butyl at 1.12 kg a.i./ha.    The study by Calkins et 12 
al. (1996) is a survey involving the application of several herbicides to several species of 13 
nontarget plants for weed control.  The results reported in Calkins et al. (1996) are not detailed 14 
and are expressed as signs of visual injury rated on a score from 0 (dead plants) to 5 (excellent 15 
condition).  The field study appears to have been long-term with treatments repeated for 2 16 
additional years following the initial application.  When fluazifop-P-butyl was applied at a rate 17 
of 1.12 kg a.i./ha, the response of blue fescue was rated as 3.5 in the treated group relative to 18 
scores of 3.9 in both non-weeded and manually weeded control groups.  In this study, blue 19 
fescue was injured by other herbicides including Goal (a formulation of oxyflurfen) and Rout (a 20 
formulation containing oxyflurfen and oryzalin).  Studies to corroborate the tolerance level of 21 
fescue to fluazifop-P-butyl reported by Calkins et al. (1996) were not identified in the open 22 
literature. 23 
 24 

4.1.2.5.2.2.2. Other Monocots 25 
Other non-Poaceae monocots are much less sensitive than the true grasses to fluazifop-P-butyl, 26 
and the distinction between sensitive and tolerant non-Poaceae monocots is based largely on the 27 
severity of the observed responses rather than responses at different application rates.   28 
 29 
In addition to the assays on the Poaceae discussed in the previous section, Haga et al. (1987) 30 
assayed two species of Cyperaceae (sedges) and one species each of Commelinaceae 31 
(spiderworts), Liliaceae (lilies), and Araceae (taro).  At application rates of 0.25 and 1 kg a.i./ha, 32 
minimal damage (1/10) was noted.  In addition, Rokich et al. (2009) noted no damage in two 33 
species of Anthericacae (3- to 4-month-old Sowerbaea laxiflora and Thysanotus manglesianus) 34 
at application rates of up to 3.4 kg a.i./ha.  These observations are consistent with the field study 35 
by Calkins et al. (1996) which noted no adverse effects on lilies from the families 36 
Xanthorrhoeaceae and Asparagaceae at an application rate of up to 1.12 kg a.i./ha.  While not 37 
summarized in Table 26, the tolerance of Xanthorrhoeaceae is also supported in the field study 38 
by Skroch et al. (1990) in which no adverse effects were observed in two species of 39 
Xanthorrhoeaceae from this family at lower applications rates of  ≈0.2 kg a.i./ha.   40 
 41 
At high application rates, fluazifop-P-butyl has caused adverse responses in some non-Poaceae 42 
monocots.  In the study by Rokich et al. (2009), severe visual damage as well as a reduction in 43 
plant height (≈34%) was observed in 4- to 5-month-old Sowerbaea laxiflora (Anthericacae) 44 
following an application of 1.69 kg a.i./ha fluazifop-P-butyl.  As noted above, adverse effects 45 
were not observed in 3- to 4-month-old plants of this species at applications up to 3.4 kg a.i./ha.  46 
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In addition, 4- to 5-month-old Haemodoraceae (Anigozanthos manglesii) evidenced a modest but 1 
statistically significant reduction in height (≈20%) following foliar as well as separate soil 2 
applications of fluazifop-P-butyl at 1.69 kg a.i./ha.  Somewhat surprisingly, 4- to 5-month-old 3 
Thysanotus manglesianus [Anthericacae] evidenced leaf burn with some leaf drop (but no effect 4 
on plant height) following soil but not foliar applications of fluazifop-P-butyl at 1.69 kg a.i./ha.  5 
Damage to some non-Poaceae was observed in the field study by Calkins et al. (1996)—see the 6 
discussion of this study in the previous section.  Most notably, a miniature dwarf bearded iris 7 
[Iridaceae] evidenced relatively severe damage (i.e., score of 1.7 vs 3.5 in weeded control) 8 
following an application of fluazifop-P-butyl at 1.12 kg a.i./ha.  In addition, a daylily 9 
[Xanthorrhoeaceae] also evidenced damage at the same application rate (i.e., score of 2.6 vs 3.3 10 
in weeded control).  These responses in Iridaceae and Xanthorrhoeaceae appear to have been 11 
more severe than the response in Festuca ovina, a Poaceae (i.e., a score of 3.5 vs 3.9 in weed 12 
control) at the same application rate.  As discussed in Section 4.1.2.5.2.2.1, the response in 13 
Festuca ovina is one of the few examples of an apparently tolerant Poaceae.   14 
 15 
While the above paragraph discusses examples of non-Poaceae that appear to be atypically 16 
sensitive to fluazifop-P-butyl, all of the adverse responses occurred following application rates of 17 
at least 1.12 kg a.i./ha, equivalent to about 0.85 lb a.e./acre.  This application rate is more than 18 
twice the maximum registered single application rate [0.85 lb a.e./acre ÷ 0.32 lb a.e./acre ≈ 19 
2.656] and close to the maximum seasonal application rate [0.85 lb a.e./acre ÷ 0.96 lb a.e./acre ≈ 20 
0.8854] for fluazifop-P-butyl. 21 
 22 

4.1.2.5.2.3. Toxicity to Dicots and Other Plants 23 
As with the discussion of non-Poaceae monocots, the discussion of sensitive and tolerant dicots 24 
focuses on different severities of responses, most of which occur at high applications relative to 25 
the application rates generally effective in the control of Poaceae monocots—i.e., at or below 26 
about 0.2 kg a.e./acre.  As detailed in Appendix 4 (Table A4-4) and summarized in Table 26, 27 
most greenhouse studies on dicots note no adverse effects at application rates of 0.75 to up to 6 28 
kg a.i./ha.  These studies are supported by many field studies in which application rates of about 29 
0.1 to 1.6 kg a.i./ha had no adverse effect on dicots (Appendix 4, Table A4-6). 30 
 31 
Based on the available toxicity studies, the red clover (Trifolium pratense) appears to be the most 32 
sensitive species of dicot.  In the study by Blake et al. (2012), red clover evidenced visible 33 
damage (chlorosis) which was dose-related following applications of 0.09375, 0.1875, and 0.75 34 
kg/ha.  Over the 21-day observation period, however, the damage was transient and declined 35 
from Days 7 to 21 (Days 3 to 21 at the highest rate).  By Day 21, damage was apparent but 36 
statistically significant only at the highest application rate.  In addition to leaf damage, the 37 
biomass of red clover was significantly reduced (Blake et al. 2012, Figure 1 and Table 2).  This 38 
is the only report of an adverse effect on a dicot in the range of application rates considered in 39 
the current risk assessment.   40 
 41 
In a study of the responses of Australian plants to fluazifop-P-butyl, Rokich et al. (2009) report 42 
damage in two species of dicots—i.e., Acacia lasiocarpa (a lower-story shrub) and Eucalyptus 43 
gomphocephala (Australian Tuart tree).  Soil applications of 1.69 kg a.i./ha to 4- to 5-month-old 44 
shrubs were associated with visible leaf damage.   This effect, however, was not seen in 4- to 5-45 
month-old shrubs following similar foliar exposures.  In addition, 3- to 4-month-old shrubs 46 
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evidenced no adverse effects following foliar applications of fluazifop-P-butyl at rates up to 3.4 1 
kg a.i./ha.  Thus, in the shrub, somewhat older plants appeared to be more sensitive than younger 2 
plants.  The reverse pattern, however, is evident with Eucalyptus gomphocephala.   A dose-3 
related decrease in plant height (a maximum of about 35%) and modest leaf damage was 4 
observed in 3- to 4-month-old trees following foliar applications of 0.42, 0.84, 1.69, or 3.4 kg 5 
a.i./ha fluazifop-P-butyl.  In 4- to 5-month-old trees, however, no damage was apparent 6 
following either foliar or soil applications of fluazifop-P-butyl at 1.69 kg a.i./ha. 7 
 8 
The only other report of damage to a dicot involves a brief note by Talbert et al. (1995) 9 
indicating that applications of fluazifop-P (not otherwise specified) at rates of 0.84 and 1.68 10 
kg/ha were associated with transient leaf curl in “Gaillardia red plumme” following field 11 
applications for the control of grassy weeds.  The crop species presumably refers to Gaillardia 12 
pulchella.  Because fluazifop-P had been registered in the United States as an herbicide, it seems 13 
likely that this report involves fluazifop-P rather than fluazifop-P-butyl. 14 
 15 

4.1.2.5.2.4. Pre-Emergent vs Post-Emergent Exposures 16 
As discussed in Section 2, fluazifop-P-butyl is registered as a post-emergent herbicide and is not 17 
registered for pre-emergent applications.  Nonetheless, some studies examine the impact of pre-18 
emergent applications in both monocots (Appendix 4, Table A4-1) and dicots (Appendix 4, 19 
Table A4-2), although these studies are few compared with the numerous studies on post-20 
emergent applications.  The most relevant studies are summarized in the lower section of Table 21 
26.  All of the studies are greenhouse experiments, and no pre-emergent field trials of fluazifop-22 
P-butyl were identified in the published literature. 23 
 24 
For the most part, the studies on pre-emergent applications parallel those on post-emergent 25 
applications.  As noted by Derr et al. (1985c), fluazifop-butyl offers effective control of several 26 
Poaceae monocots (i.e., goosegrass, crabgrass, and giant foxtail) at application rates comparable 27 
to the effective rates in post-emergent applications (i.e., 0.035 kg a.i./ha).  As detailed further in 28 
(Appendix 4, Table A4-1), however, some species such as corn are adversely damaged by 29 
fluazifop-butyl applications but at rates much higher (i.e., 0.1 to 0.3 kg a.i./ha) than those that are 30 
effective in post-emergent applications.  Except for the study by Rokich et al. (2009), no 31 
information is available on pre-emergent applications in non-Poaceae monocots, and this study 32 
notes only that Haemodoraceae is not sensitive to pre-emergent applications at 0.84 kg a.i./ha.   33 
 34 
Some studies indicate that dicots may be affected by pre-emergent applications of fluazifop-butyl 35 
or fluazifop-P-butyl at rates comparable to those causing effects in some dicots in post-emergent 36 
applications.  The most sensitive dicot appears to be cucumber, in which a 34% reduction in stem 37 
length was noted following pre-emergent applications of fluazifop-butyl at 0.56 kg a.i./ha 38 
(Boucounis et al. 1988).  As discussed in Section 4.1.2.5.2.3, red clover appears to be a dicot that 39 
is relatively sensitive to fluazifop-P-butyl (rates of 0.1 to 0.75 kg a.i./ha) based on the study by 40 
Blake et al. (2012).  The same investigators noted that pre-emergent applications of fluazifop-P-41 
butyl at 0.75 kg a.i./ha caused only mild signs of toxicity in red clover (i.e., <5% visual damage). 42 
 43 
Rokich et al. (2009) is the only other study noting signs of toxicity in a dicot following pre-44 
emergent applications.  Rokich et al. (2009) assayed two formulations of fluazifop-P-butyl 45 
(Fusilade (NOS) and Fusilade Forte) at comparable application rates.  At a pre-emergent 46 
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application rate of 0.84 kg a.i./ha Fusilade Forte to Eucalyptus gomphocephala, no emergence 1 
occurred with seeds planted at a depth of 20 mm.  With the other Fusilade formulation, however, 2 
emergence from seeds planted at 20 mm was greater, relative to control seeds.  It should be noted 3 
that the paper by Rokich et al. (2009) is from the Australian literature and it is not clear that the 4 
formulations used by these investigators are registered or used in the United States.  The only 5 
information provided by Rokich et al. (2009) on Fusilade Forte is that this formulation “… 6 
possesses unique inbuilt ‘isolink’ surfactant technology to ensure maximum leaf surface 7 
coverage, in addition to special penetrants to aid rapid movement of the active ingredient”.  It is 8 
not clear, however, that the surfactant would account for the differences in pre-emergent 9 
applications; hence, the effects on emergence noted in this study may have been incidental. 10 

4.1.2.5.3. Resistance 11 
Resistance is a common concern with many herbicides, including fluazifop-P-butyl.  As with 12 
differences in sensitivity among different groups of plants (Section 4.1.2.5.1), the mechanism of 13 
resistance in plants involves differences in acetyl coenzyme-A carboxylases (ACCases) 14 
(Catanzaro et al. 1993a; Cocker et al. 2001; Herbert et al. 1997; Moss et al. 2003) as well as 15 
differences in the rate of metabolism of fluazifop-P-butyl (Alarcón-Reverte and Moss 2008; 16 
Cocker et al. 2001).  Moss et al. (2003) note that the resistant allele for insensitive ACCase in a 17 
species of foxtail (Alopecurus myosuroides) shows complete dominance. 18 
 19 
As is typically the case, the ratios of equally effective doses in sensitive and resistant strains are 20 
highly variable, ranging from about 5.7 for strains of Johnsongrass based on shoot dry mass 21 
(Burke et al. 2006a) to about 970 for strains of Italian rye-grass (Lolium multiflorum) based on 22 
reductions in foliage fresh weight (Cocker et al. 2001, Table 1, p. 590).  The study by Cocker et 23 
al. (2001) is particularly interesting in that these investigators also assayed ACCase activity in 24 
the sensitive and resistant strains (Cocker et al. 2001, Table 5, p. 593) and noted differences in 25 
sensitivity up to only a factor of about 8.8.  As discussed by Cocker et al. (2001), these 26 
differences argue for the importance of factors other than tolerant ACCase in the development of 27 
resistance, at least in this species.  Intermediate resistance factors are  reported for several other 28 
species of grass (Burke et al. 2006b; Catanzaro et al. 1993a; Moss et al. 2003; Smeda et al. 29 
1997). 30 
 31 
The development of cross-resistance is also common with herbicides, and there are reports of the 32 
cross-resistance of grasses to fluazifop-P-butyl and other aryloxyphenoxy propionate and 33 
cyclohexanedione herbicides (Bradley and Hagood 2001; Michitte et al. 2003). 34 

4.1.2.6. Terrestrial Microorganisms  35 
Studies on terrestrial microorganisms are not required for pesticide registration in the United 36 
States, and the EPA ecological risk assessments on fluazifop-P-butyl (U.S. EPA/OPP/EFED 37 
2008, 2010a) do not address effects on terrestrial microorganisms.  Microorganisms possess 38 
ACCase, and various ACCase inhibitors are proposed or are used as microbicides (e.g. Kurth et 39 
al. 2009; More et al. 2012).  As with mammalian ACCases, the ACCases in bacteria are 40 
structurally different from ACCases in plants (e.g., Tong 2005). 41 
 42 
Little information is available on the effect of fluazifop-P-butyl on soil microorganisms.  Abdel-43 
Mallek et al. (1996) conducted a laboratory soil assay in which soil fungal populations were 44 
monitored over an 8-week period in clay soil containing fluazifop-butyl at concentrations of 0.6, 45 
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3, or 6 mg/kg soil (dry weight).  No effects were noted at the lowest concentration.  At 3 mg/kg 1 
soil, fungi populations were reduced by about 50% over the first 2 weeks of the study.  At 6 2 
mg/kg soil, fungi populations were also reduced by about 50%, and the decrease was apparent in 3 
observations at 1, 2, and 8 weeks but not at 6 weeks (Abdel-Mallek et al. 1996, Table 1, p. 153).  4 
Abdel-Mallek et al. (1996) also assayed responses of five species (pure cultures) of soil fungi—5 
i.e., Aspergillus flavus, Aspergillus niger, Alternaria alternate, Cunninghamella echinulata, and 6 
Trichoderma harzianum—in liquid media at fluazifop-butyl concentrations of 2, 12, or 24 mg/L.  7 
Growth inhibition (assayed as dry weight of fungi) was noted only at the 24 mg/L concentration 8 
and only for two species—i.e., Aspergillus flavus and Alternaria alternate. 9 
 10 
The observations by Abdel-Mallek et al. (1996) are consistent with the earlier study by Gardner 11 
and Storey (1985) which noted the incomplete inhibition of germination and growth in 12 
Beauveria bassiana (an entomogenous soil fungus) at fluazifop-butyl (as an early Fusilade 4E 13 
formulation) concentrations of 6 mg/L and higher. 14 
 15 
As discussed in Section 4.2.5 (exposure assessment for terrestrial microorganisms), the 16 
maximum concentration of fluazifop-P in soil following three applications of fluazifop-P-butyl at 17 
the maximum application rate of 0.32 lb a.e./acre is about 0.25 mg/kg soil (dry weight) [0.77 18 
ppm/(lb/acre) x 0.32 lb a.e./acre = 0.2464].  While the studies by Abdel-Mallek et al. (1996) and 19 
Gardner and Storey (1985) are relevant to the hazard identification, the study by Abdel-Mallek et 20 
al. (1996) is clearly the most relevant for assessing potential risks to soil microorganisms and is 21 
discussed further in Section 4.3.2.6 (dose-response assessment for terrestrial microorganisms). 22 
 23 
Other published information on the toxicity of fluazifop-P-butyl to soil microorganisms is less 24 
detailed and of marginal relevance.  An English abstract of a paper from the Russian literature 25 
(Sapundzhieva and Kuzmanova 1987) notes inhibition of soil fungi following application of a 26 
20% Fusilade formulation (NOS).  The precise application rate, however, is not apparent.  The 27 
review by the European Food Safety Authority (EFSA 2012) reports variable effects on soil 28 
microorganisms based on nitrogen mineralization (-21.6% to 13.1%) and carbon mineralization 29 
(-7.7% to 14.4%) following an application of Fusilade Max at an application rate of 3.75 kg 30 
a.i./ha.  Very few details are provided in EFSA (2013), and the relevance of these reported 31 
effects to the current risk assessment is marginal, given that the application rate noted in EFSA 32 
(≈2.86 lb a.e./acre) is substantially higher than the maximum application considered in the 33 
current risk assessment (i.e., 0.32 lb a.e./acre). 34 

4.1.3. Aquatic Organisms 35 

4.1.3.1. Fish 36 
The U.S. EPA/OPP typically requires acute toxicity data in both freshwater and saltwater fish as 37 
well as longer-term toxicity studies.  For many pesticides, the EPA requires at least some toxicity 38 
studies on formulations as well as the active ingredient.  While full lifespan studies with fish are 39 
conducted on some pesticides, they are unusual.  Typically, the longer-term toxicity studies 40 
consist of early life stage (i.e., egg-to-fry) studies. 41 
 42 
The available toxicity data on fish are summarized in Appendix 5 in the following tables: 43 

 44 
Table A5-1: Acute Toxicity to Freshwater Fish 45 
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Table A5-2: Acute Toxicity to Saltwater Fish 1 
Table A5-3: Chronic Toxicity to Fish. 2 

 3 
An overview of these studies is presented in Table 27, which provides a summary of LC50 values 4 
and NOAECs (when available) for acute toxicity studies and NOAEC and LOAEC values for the 5 
longer-term studies. 6 
  7 
Most of the available toxicity studies on fluazifop-butyl are studies submitted to the U.S EPA 8 
and are summarized U.S. EPA/OPP/EFED (2008).  As noted in Appendix 5, DERs were 9 
available on the acute toxicity studies with fluazifop-butyl in fathead minnows (MRID 10 
00093808, Wilson et al. 1981) and bluegills (MRID 00087485, Hill et al. 1981) as well as an 11 
acute toxicity study with the Fusilade 4E formulation with sheepshead minnow (MRID 12 
00152173, Hill 1985).  A DER was also available on an early life stage study in fathead 13 
minnows (MRID 00093808, Wilson et al. 1981). 14 
 15 
Some additional unpublished studies are summarized in FAO/WHO (2000) and EFSA (2012).  16 
Information from the open primary literature is limited to an LD50 in tilapia from Tejada et al. 17 
(1994) and field observations in trout (Schramm et al. 1998).  The study by Tejada et al. (1994) 18 
is discussed below.  The paper by Schramm et al. (1998) reports changes in liver function and 19 
morphology in brown trout from streams with detectable levels of fluazifop as well as many 20 
other contaminants.  This paper cannot be used to assess the impact of fluazifop-P-butyl on trout 21 
and is not considered further in this risk assessment. 22 
 23 
The acute toxicity data on fluazifop-butyl are reasonably consistent with all but one of the LC50 24 
values ranging from 0.25 mg a.e./L (Nile tilapia) to 1.2 mg a.e./L (rainbow trout).  One notable 25 
exception, however, is the LC50 of 99.9 mg a.e./L or 117 mg a.i./L (MRID 00087483) for 26 
rainbow trout from U.S. EPA/OPP/EFED (2008, p. 179).  The EPA indicates that this LC50 was 27 
conducted on fluazifop-butyl.  EFSA (2012) indicates an LC50 in trout of 117 mg a.e./L based on 28 
an assay using fluazifop acid.  Syngenta was queried on this discrepancy and has confirmed that 29 
the entry in EFSA (2012) is correct.  The rainbow trout bioassay in MRID 00087483 was 30 
conducted on fluazifop acid. 31 
 32 
The review by EFSA (2011) also provides the only information on the toxicity of a metabolite of 33 
fluazifop-P-butyl, 5-trifluoromethyl-2-pyridone, which is referenced in the literature on fluazifop 34 
as Compound X or Metabolite X.  Based on the bioassay of Compound X in rainbow trout, 35 
Compound X is less toxic than fluazifop-butyl by a factor of 200 [240 mg/L ÷ 1.2 mg a.e./L].  As 36 
with earthworms (Section 4.1.2.4.4.) and as discussed further below, Compound X is also much 37 
less toxic than fluazifop-butyl to both aquatic invertebrates (Section 4.1.3.3) and algae (Section 38 
4.1.3.4.1). 39 
 40 
Data are available on the toxicity of fluazifop-P-butyl formulations.  Two of the studies are for 41 
unspecified 25.8% a.i. formulations (MRID 00087486; MRID 00087484) and are summarized in 42 
U.S. EPA/OPP/EFED (2008).  As indicated in Table 6, the percent 25.8% a.i. in these 43 
formulations is similar to the nominal 24.5% a.i. in Fusilade DX and Fusilade II.  An LC50 for 44 
Fusilade Max (12.5% a.i.) is also reported in EFSA (2012).  The toxicity data in rainbow trout 45 
indicate that Fusilade Max is more toxic than the 25.8% a.i. formulation(s) by about a factor of  3 46 
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[4.2 mg/L ÷ 1.37 mg/L ≈ 3.066].  Nonetheless, all of the toxicity data on the fluazifop-P-butyl 1 
formulations indicate that the formulations are less toxic than fluazifop-butyl when the units of 2 
dosing are expressed in units of mg a.e./L.  Hence, the inerts in these formulations do not seem to 3 
contribute to the toxicity of the formulations to fish.  As discussed further in Section 4.1.3.3, the 4 
opposite pattern is seen with aquatic invertebrates—i.e., the formulations of fluazifop-butyl are 5 
much more toxic than technical grade fluazifop-butyl to aquatic invertebrates. 6 
 7 
As noted above, a DER is available on the study with Fusilade 4E in sheepshead minnow (MRID 8 
00152173, Hill 1985).  In the EPA ecological risk assessment on fluazifop-P-butyl (U.S. 9 
EPA/OPP/EFED  2008), the LC50 reported for this study is 6.85 mg a.e./L.  This LC50 appears to 10 
be based on the LC50 of 8.1 mg/L reported in the DER under the assumption that the units used 11 
in the DER are mg a.i./L [8.1 mg/L x 0.854 a.e./a.i. ≈ 6.91 mg a.e./L].  The DER, however, 12 
appears to express units in terms of the formulation (46.83% a.i.).  Correcting for the percent a.i. 13 
in the formulation, the EC50 value in acid equivalents should be about 3.2 mg a.e./L [8.1 mg 14 
formulation/L x 0.4683 a.i./formulation x 0.854 a.e./a.i. ≈ 3.2394 mg a.e./L]. 15 
 16 
While not discussed in U.S. EPA/OPP/EFED (2008), the study by Hill (1985, (MRID 00152173) 17 
also assayed a formulation blank—i.e., the formulation without the a.i.  As detailed in Appendix 18 
5 (Table A5-2), the LC50 for the formulation blank is reported as 10.4 mg formulation/L, which 19 
is only modestly higher than the LC50 reported for the full formulation with the a.i.—i.e., 8.1 mg 20 
formulation/L.  Based on this relationship, the discussion in the DER notes: 21 
 22 

Comparison of the results for Fusilade 4E and the Fusilade blank indicated 23 
the solvent used in the formulation was a major contributing factor to the 24 
toxicity determined in the study. 25 

Hill 1985, DER, p. 5. 26 
 27 
As noted above and discussed further in Section 4.1.3.3, this assessment is consistent with the 28 
formulation toxicity data in aquatic invertebrates.  In the absence of DERs on the other 29 
formulation studies in fish, the reporting of units in U.S. EPA/OPP/EFED (2008) for the other 30 
registrant-submitted formulation studies cannot be verified. 31 
 32 
Several of the studies summarized in U.S. EPA/OPP/EFED (2008) report both LC50 values and 33 
NOECs, and some of the studies report slopes of the dose-response curves.  While it is not clear 34 
if the slopes are based on common or natural logarithms of the concentrations, it is apparent that 35 
the slopes are steep and that most of the NOAECs are only modestly below the LC50 values, by 36 
factors of less than 4.  The only exception is a formulation bioassay in rainbow trout (MRID 37 
00087484) in which the NOAEC is a factor of about 12 below the LC50 [4.2 ÷ 0.34 ≈ 12.353]. 38 
 39 
Based on the LC50 values for fathead minnows (Table 27), the EPA classifies fluazifop-P-butyl 40 
as Very Highly Toxic to fish (U.S. EPA/OPP/EFED 2008, p. 43).  41 
 42 
While no full lifespan toxicity studies are available in fish, early life stage studies are available 43 
on fluazifop-butyl (MRID 00093808), fluazifop-P-butyl (EFSA 2012; FAO/WHO 2000), and 44 
fluazifop acid (EFSA 2012).  These studies report NOAECs of >0.203 mg a.e./L (fluazifop-45 
butyl),  0.07 mg a.e./L (fluazifop-P-butyl), and 1.46 mg a.e./L for fluazifop acid.  Note that the 46 
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greater than (>) symbol is explicitly used by the U.S. EPA to indicate that adverse effects were 1 
not observed at the highest concentration tested.  Based on the DER for MRID 00093808 2 
(Wilson et al. 1981), it is clear that no adverse effects on any reproductive parameters were 3 
noted.  At the highest concentration assayed (0.238 mg a.i./L or 0.203 a.e./L), mean body 4 
weights were depressed with respect to untreated controls but not with respect to solvent controls 5 
(details in Appendix 5, Table A5-3).  A handwritten note on the DER indicates that individual 6 
animal data were submitted by the registrant and that these data supported a classification of 7 
0.203 mg a.e./L as a NOAEC.  The individual animal data, however, are not given in the DER. 8 
 9 
In addition to the standard toxicity studies in fish, U.S. EPA/OPP/EFED (2008, p. 75), reports 10 
one incident in the Ecological Incident Information System maintained by EFED of a fish kill 11 
associated with fluazifop-P-butyl, as fully summarized below: 12 
 13 

1998 A fish kill occurred in a small pond in Phillipstown, IL, killing about 14 
200 catfish, largemouth bass, crappie, and red ear sunfish. The kill 15 
happened following application with a tank mix of Fusion (fluazifop-p-16 
butyl and fenoxaprop-p-ethyl) and Flexstar (Fomesafen Sodium) to nearby 17 
soybeans. The treated area was separated from the pond by a minimum of 18 
100 feet with thick hedgerow and mature trees in between. The pond was 19 
1110 acre and about 10 feet deep. On the evening following the application 20 
there was a 0.9" rainfall. Winds were reported to be between 10 and 20 21 
mph. There was no evidence of damage to plants around the pond. This 22 
suggests that there were not significant amounts of drift of the herbicides 23 
into the pond, but the pond could have been contaminated by runoff from 24 
the fields after the rainfall. Fomesafen sodium is not likely the: cause of the 25 
fish mortality since it is practically nontoxic to fish. Fenoxaprop-p-ethyl 26 
could have contributed to the cause because it is highly toxic to fish. 27 

4.1.3.2. Amphibians  28 
As with terrestrial phase amphibians, there are no data to characterize the toxicity of fluazifop-29 
butyl or fluazifop-P-butyl to aquatic phase amphibians.  The EPA risk assessments on fluazifop-30 
P-butyl do not cite any registrant-submitted studies on aquatic-phase amphibians (U.S. 31 
EPA/OPP/EFED 2008, 2010a), which is not unusual, since toxicity data on aquatic-phase 32 
amphibians are not required for most pesticide registrations.  The general lack of toxicity data on 33 
aquatic-phase amphibians extends to the open literature and the database maintained by Pauli et 34 
al. (2000). 35 
 36 
As noted in the EPA problem formulation for fluazifop-P-butyl (U.S. EPA/OPP/EFED 2008, p. 37 
32), toxicity data on fish are used as a surrogate for aquatic-phase amphibians.  This is a standard 38 
practice in EPA ecological risk assessments. 39 

4.1.3.3. Aquatic Invertebrates 40 
The available toxicity data on aquatic invertebrates are summarized in Appendix 6 in the 41 
following tables: 42 

 43 
Table A6-1: Acute Toxicity to Freshwater Invertebrates 44 
Table A5-2: Acute Toxicity to Saltwater Invertebrates 45 

89 



 

Table A5-3: Chronic Toxicity to Aquatic Invertebrates 1 

4.1.3.3.1. Acute Studies 2 
An overview of acute toxicity studies is presented in Table 28, which provides a summary of 3 
LC50 values and NOAECs (when available).   An overview of the chronic toxicity studies is 4 
presented in Table 29, which provides a summary of NOAEC and LOAEC values (when 5 
available).  6 
 7 
Two studies from the open literature summarized in Appendix 6 (Table A6-1) are not included in 8 
Table 28 —i.e., Nishiuchi and Asano (1979) and Tantawy (2002).  The study by Nishiuchi and 9 
Asano (1979) reports an LC50 of >40 ppm for a Fusilade formulation in a species of mayfly 10 
(Cloeon dipterum) nymphs.  This study is from the Japanese literature and is published in 11 
Japanese.  A translated copy of this publication was obtained for the current risk assessment.  As 12 
noted in Section 1.1.2., the U.S. EPA/OPP rejected this study in several risk assessmenOts on the 13 
California Red-legged Frog (e.g., U.S. EPA/OPP 2009b) because control groups were not used in 14 
the study.  While the reported indefinite LC50 is consistent with definitive LC50 values reported in 15 
Daphnia magna (Table 28), any indefinite LC50 is only minimally useful.  As with the EPA risk 16 
assessments, the Nishiuchi and Asano (1979) study is not considered quantitatively in the current 17 
risk assessment.  Tantawy (2002) reports an LC50 of 17.6 and an LC5 of 1.76 for fluazifop-P-18 
butyl (NOS) in Biomphalaria alexandrina, an Egyptian snail that is a vector for Schistosoma 19 
mansoni, cause of schistosomiasis.  The paper by Tantawy (2002) provides few experimental 20 
details, and it cannot be determined if the LC50 value is reported in units of formulation, a.i., or 21 
a.e.  This LC50 value would not have a quantitative impact on the risk assessment but would 22 
expand the class of species on which data are available.  In the absence of better documentation 23 
of the units for the toxicity value, however, the paper by Tantawy (2002) is not considered useful 24 
in the hazard identification for aquatic invertebrates. 25 
 26 
Apart from the above two studies, there are uncertainties in some of the reported LC50 values in 27 
Table 28.  U.S. EPA/OPP/EFED (2008) reports an LC50 of 8.5 mg a.e./L in Daphnia magna 28 
(MRID 00087488).  In ECOTOX, however, the LC50 is reported as indefinite with a value of >10 29 
mg a.i./L (≈8.54 mg a.e./L).  Given the other daphnid toxicity data on fluazifop-P-butyl, it seems 30 
likely that the definitive LC50 of 8.5 mg a.e./L reported in U.S. EPA/OPP/EFED (2008) should 31 
have been reported as an indefinite LC50.of >8.5 mg a.e./L.  In the absence of additional details 32 
on the study, however, no clearer determination can be made. 33 
 34 
As summarized in Table 28 and detailed further in Appendix 6 (Table A6-1) a series of studies 35 
were conducted in Daphnia magna using 1:1, 1:7, and 1:14 blends of the [R]:[S] enantiomers.  36 
U.S. EPA/OPP/EFED (2008, Appendix C, p. 190) indicates that the test substance was fluazifop-37 
butyl.  Two DERs are available for this study (Jealotts Hill Research Station 1983; Hamer and 38 
Hill 1983), both of which indicate that the test substance was fluazifop acid rather than fluazifop-39 
butyl.  This ambiguity does not have a substantial impact on the current risk assessment because 40 
these studies are not used quantitatively.   41 
 42 
Another issue involves the reported LC50 of 240 mg a.e./L for fluazifop-butyl from MRID 43 
00087490, as summarized in U.S. EPA/OPP/EFED (2008).  An identical LC50 of 240 mg a.e./L 44 
is reported by EFSA (2012) for fluazifop acid.  The two identical LC50 values for fluazifop-butyl 45 
and fluazifop acid may be correct but seems unlikely for a weak acid and the corresponding 46 
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ester.  Again, in the absence of the studies on which the EPA and EFSA summaries are based, 1 
this issue cannot be resolved. 2 
 3 
Notwithstanding the uncertainties in the data as discussed above, a clear difference is apparent in 4 
the toxicity data on aquatic invertebrates compared with corresponding data on fish.  For the 5 
freshwater aquatic invertebrates, the formulations appear to be much more toxic than technical 6 
grade fluazifop-butyl.  Ignoring the indefinite LC50 of >8.5 mg a.e. for fluazifop-butyl, the 7 
formulations appear to be more than a 100 times more toxic than the technical grade material to 8 
Daphnia magna—i.e., LC50 values of 240 to 466 mg a.e./L for technical grade fluazifop-butyl 9 
and LC50 values of about 1.8 to 5.5 mg a.e./L for formulations.  As with fish, the data indicate 10 
that Fusilade Max is about 3 times more toxic than the formulations under consideration by the 11 
Forest Service—i.e., an LC50 of 1.79 mg a.e./L for Fusilade Max and 5.14 to 5.5 mg a.e./L for 24 12 
to 25% formulations considered in U.S. EPA/OPP/EFED (2008). 13 
 14 
Saltwater invertebrates are substantially more sensitive to technical grade fluazifop-P-butyl 15 
(LC50s of 0.083 to 0.46 mg a.e./L) than are freshwater invertebrates (LC50s of >240 a.e./L).  This 16 
difference, however, is not reflected in the apparent sensitivities to formulations of fluazifop-17 
butyl or fluazifop-P-butyl—i.e., LC50 values of about 2 to 4 mg a.e./L for freshwater 18 
invertebrates and corresponding values of about 3.5 to 5 mg a.e./L for saltwater invertebrates.   19 
 20 
As with fish, 5-trifluoromethyl-2-pyridone (Metabolite X) is less toxic than fluazifop-butyl or 21 
fluazifop-P-butyl to Daphnia magna by about a factor of 2 to 3. 22 
 23 
Based on the LC50 values in Daphnia magna (Table 28), the EPA classifies fluazifop-P-butyl as 24 
Very Highly Toxic to freshwater invertebrates (U.S. EPA/OPP/EFED 2008, p. 43).  25 

4.1.3.3.2. Reproduction Studies 26 
As summarized in Table 29, the longer-term studies with technical grade fluazifop-butyl in 27 
aquatic invertebrates indicate a clear and pronounced impact of duration.  Unlike the case with 28 
fish, the longer-term NOAECs for aquatic invertebrates are substantially below the acute 29 
NOAECs, although the difference is much more pronounced in freshwater invertebrates 30 
compared with saltwater invertebrates.  Taking the lowest acute chronic NOAECs for freshwater 31 
and saltwater invertebrates in bioassays of fluazifop-butyl, the chronic NOAECs are lower than 32 
the acute NOAECs by a factor of nearly 1000 for freshwater invertebrates [82.8 ÷ 0.0854 ≈ 967] 33 
and about 3 for marine/estuarine invertebrates [0.040 ÷ 0.014 ≈ 2.8571]. 34 
 35 
A DER (Edwards et al. 1981) for the chronic study in Daphnia magna (MRID 00093807) 36 
indicates that a new chronic study in Daphnia magna is required.  The DER was prepared in 37 
1991.  A new study has not been identified. 38 

4.1.3.4. Aquatic Plants 39 
Bioassays on both algae and aquatic macrophytes are typically required to support herbicide 40 
registration.  As with terrestrial plants (Section 4.1.2.5), standard assays in algae and aquatic 41 
macrophytes do not appear to have been required for the registration of fluazifop-P-butyl.  The 42 
lack of registrant-submitted studies on algae and aquatic macrophytes is noted explicitly in 43 
recent EPA ecological risk assessments (U.S. EPA/OPP/EFED 2008, p. 19; U.S. 44 
EPA/OPP/EFED 2010a, p. 8).   45 
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 1 
U.S. EPA/OPP/EFED (2008, p. 9) indicates that bioassays in a Lemna species are required for 2 
fluazifop-P-butyl.  As discussed in Section 1.1.2, fluazifop-P-butyl is undergoing registration 3 
review and bioassays on Lemna may be required as part of this process. 4 
 5 
As summarized in Table 30 and detailed further in Appendix 7, several algal bioassays on 6 
fluazifop-P-butyl and formulations of fluazifop-P-butyl are cited in European reviews (e.g., 7 
EFSA 2012; FAO/WHO 2000), and additional toxicity studies are published in the open 8 
literature (Felix et al. 1988; Ma 2002; Ma et al. 2002a,b, 2004, 2006; Michel et al. 2004; 9 
Perschbacher et al. 1997).  Except for the paper by Perschbacher et al. (1997), which was 10 
conducted in the United States, all of these toxicity studies on algae are from the European 11 
literature (EFSA 2012; FAO/WHO 2000; Felix et al. 1988) or Chinese literature (the 12 
publications by Ma and coworkers).  Perschbacher et al. (1997) used an unspecified Fusilade 13 
formulation.  Studies summarized in EFSA (2012) involved technical grade fluazifop-P-butyl, 14 
fluazifop acid, 5-trifluoromethyl-2-pyridone (Metabolite X), and Fusilade Max.  The studies by 15 
Ma and coworkers involved an unspecified 53% EC formulation. 16 

4.1.3.4.1. Algae 17 
While data are available on the toxicity of fluazifop-P-butyl and related compounds to nine 18 
different species of algae (Table 30), only Pseudokirchneriella subcapitata and Navicula 19 
pelliculosa have been assayed with more than one form of fluazifop or formulation.   20 
 21 
Pseudokirchneriella subcapitata has been assayed using technical grade fluazifop-P-butyl, 22 
fluazifop acid, 5-trifluoromethyl-2-pyridone (Metabolite X), and Fusilade Max.  While the 23 
bioassays on fluazifop-P-butyl and fluazifop acid are indefinite, they suggest that fluazifop-P-24 
butyl may be more toxic than fluazifop acid, similar to the observations in fish (4.1.3.1) and 25 
aquatic invertebrates (4.1.3.3).  Also as with fish and aquatic invertebrates, the 5-trifluoromethyl-26 
2-pyridone metabolite of fluazifop-P-butyl appears to be much less toxic than fluazifop-P-butyl.  27 
Fusilade Max has been assayed in Pseudokirchneriella subcapitata with and without sediment.  28 
As noted in Table 30, the EC50 without sediment (0.02 mg a.e./L) is much lower than the EC50 29 
with sediment (0.128 mg a.e./L).  As summarized in Table 4, fluazifop-P-butyl may bind to 30 
sediment (Koc values of 2010 to 5700), which may explain the apparent decrease in toxicity in a 31 
sediment/water system.  Similarly, unless sterile sediment was used, the decrease in toxicity to 32 
algae could be due to the more rapid metabolism of fluazifop-P-butyl to fluazifop acid.  In the 33 
absence of additional details on the design and conduct of these studies, these suppositions 34 
cannot be elaborated. 35 
 36 
The bioassays on Navicula pelliculosa involved both technical grade fluazifop-P-butyl and 37 
Fusilade Max.  As with Pseudokirchneriella subcapitata, the EC50 for the Fusilade formulation 38 
(0.118 mg a.e./L) is less than the EC50 for technical grade fluazifop-P-butyl (EC50 0.44 mg 39 
a.e./L); however, the magnitude of the difference—i.e., about a factor of 4 [0.44 ÷ 0.118 ≈ 3.73] 40 
—is much less than the factor of over 77 with Pseudokirchneriella subcapitata [>1.54 ÷ 0.02 41 
>77].    42 
 43 
Most of the bioassays with the Chinese 53% EC formulation yielded EC50 values that are higher 44 
(i.e., 0.89 to 22.8 mg a.e./L) than those for Fusilade Max (i.e., 0.02 to 0.18 mg a.e./L).  Since 45 
there is no species overlap in the algae assayed with the Chinese and Fusilade Max formulations, 46 
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it is not clear if these differences are attributable to differences in the toxicity of the two 1 
formulations, differences in species sensitivities to the formulations, other experimental details, 2 
or a combination of factors. 3 
 4 
The bioassay with Dunaliella bioculata by Felix et al. (1988) was conducted at a Sandoz facility 5 
in Switzerland.  The paper specifies that a formulated product was used but does not identify or 6 
otherwise describe the formulation.  The EC50 (≈0.327 mg a.e./L) reported by Felix et al. (1988) 7 
is similar to the EC50 for Fusilade Max in Navicula pelliculosa (0.188 mg a.e./L), which may be 8 
coincidental. 9 
 10 
The only other information on the effect of fluazifop-P-butyl on algae is a mesocosm study by 11 
Perschbacher et al. (1997) with an unspecified Fusilade formulation.  In this study, 500 liter 12 
pools were over-sprayed with the formulation at rates equivalent to 0.001, 0.01, and 0.1 kg 13 
a.i./ha.  No effects on algal populations (based on estimates of chlorophyll a and phytoplankton 14 
productivity) were noted over a 48-hour observation period.  In this study, the depth of the pools 15 
was 0.7 m.  The highest application of 0.1 kg a.i./ha is equivalent to 0.0854 kg/ha, which is in 16 
turn equivalent to 8.85 mg/m2 [85,400 mg/10,000 m2].  Using the water depth of 0.7 m, the 17 
initial concentration in the water (assuming complete mixing) would be about 0.006 mg/L [8.85 18 
mg/m2 x 0.7 m/1000 L/m3 = 0.006195 mg/L].  The lack of effects on algae noted in the 19 
Perschbacher et al. (1997) publication seems consistent with the toxicity data on algae, discussed 20 
above. 21 

4.1.3.4.2. Aquatic Macrophytes 22 
As summarized in the bottom section of Table 30, levels of exposure to fluazifop-P-butyl or 23 
fluazifop-P-butyl formulations that cause adverse effects in Lemna have not been determined.  24 
The reported EC50 values for Lemna gibba are indeterminate—i.e., >1.2 mg a.e./L for technical 25 
grade fluazifop-P-butyl and >11.6 mg a.e./L for Fusilade Max.  Based on the study by Michel et 26 
al. (2004), analytical grade fluazifop-P-butyl (NOS) caused no effect based on growth in a 7-day 27 
bioassay of Lemna paucicostata at a concentration of 1 mM (i.e., ≈327 mg a.e./L).   28 
 29 
Lemna is a monocot of the family Araceae.  The available data on this monocot genus is 30 
consistent with data on terrestrial non-Poaceae monocots (Section 4.1.2.5.2.2.2) indicating that 31 
fluazifop-P-butyl appears to be highly selective to Poaceae monocots but is relatively nontoxic to 32 
other monocots. 33 

4.1.3.5. Surfactants 34 
As noted in Section 3.1.14.2, nonionic surfactants, methylated seed oils, or vegetable oil 35 
concentrates are recommended for applications of fluazifop-P-butyl formulations.  It is beyond 36 
the scope of the current risk assessment to review the toxicity of all the adjuvants recommended 37 
for use with fluazifop-P-butyl or the potential impact of these adjuvants on aquatic organisms.   38 
 39 
As discussed above, fluazifop-P-butyl is toxic to aquatic animals.  At least some of the 40 
recommended nonionic surfactants may be equally toxic to some aquatic animals.  For example, 41 
the review by McLaren/Hart (1995) compiles LC50 values for fish and EC50 values for aquatic 42 
invertebrates in assays of several nonionic surfactants used with other herbicides.  The acute 43 
toxicity values for these surfactants cover a wide-range of LC50 values (i.e., about 1 to >1000 44 
mg/L).   45 
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 1 
Based on the label instructions for fluazifop-P-butyl formulations likely to be used in Forest 2 
Service programs, the recommended concentration for nonionic surfactants is 0.25% to 0.5% v/v 3 
(Table 6).  Assuming a surfactant density of 1 g/mL for illustration, 0.5% w/v corresponds to a 4 
concentration of 5000 mg/L.  In order to assess potential hazard to aquatic organisms, however, 5 
the dilution of the surfactant must be considered.  Three applications of fluazifop-P-butyl at a 6 
rate of 0.32 lb a.e./acre with a 14-day application interval may be taken as a reasonable example.  7 
As detailed in Attachment 3 (Worksheet B04a), the peak expected concentration of fluazifop-P-8 
butyl in surface water would be about 0.47 mg a.e./L.  If 0.5% surfactant is added to a 9 
representative formulation containing 20.09% a.e. (Table 6), the peak concentration of the 10 
surfactant in surface water would be about 0.01 mg/L [0.47 mg a.e./L x 0.5% ÷ 20.09%  a.e. ≈ 11 
0.011196 mg/L].  12 
 13 
As discussed in the EPA ecological risk assessments on fluazifop-P-butyl (U.S. EPA/OPP 2008), 14 
the standard criterion used by U.S. EPA/OPP is a level of concern for endangered species of 15 
0.05, meaning that the ratio of the anticipated concentration in water to the acute LC50 should be 16 
no greater than 0.05.  Using a very toxic surfactant with an acute LC50 of 1 mg/L, the ratio of the 17 
anticipated concentration of the surfactant in water (0.011 mg/L) to the LC50 of 1 mg/L is 18 
0.011—i.e., below the 0.05 level of concern by a factor greater than 4 [0.05 ÷ 0.011 ≈ 4.545].  19 
Thus, there is no apparent basis for asserting that the use of surfactants with fluazifop-P-butyl 20 
applications is likely to pose an acute hazard to aquatic species.  The use of a relatively nontoxic 21 
surfactant (e.g., an LC50 of 1000 mg/L) would result in a correspondingly lower ratio and lesser 22 
assessment of potential risk. 23 
 24 
The above discussion applies only to potential acute risks.  Since a useful compendium on the 25 
longer-term toxicity of nonionic surfactants to aquatic organisms is not available, the potential 26 
for longer-term risks cannot be assessed. 27 
  28 
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4.2. EXPOSURE ASSESSMENT 1 

4.2.1. Overview 2 
A standard set of exposure assessments for terrestrial and aquatic organisms is provided in the 3 
EXCEL workbooks for fluazifop-P-butyl.  Attachment 1 details the exposure assessments for a 4 
single application at the maximum single application rate of 0.32 lb a.e./acre.  Attachment 2 5 
details the exposure assessments for two applications at an application rate of 0.32 lb a.e./acre an 6 
application interval of 14 days.  Attachment 3 details the exposure assessments for three 7 
applications (the maximum seasonal application rate) at 0.32 lb a.e./acre with application 8 
intervals of 14 days. 9 
 10 
As in the human health risk assessment, three general types of exposure scenarios are 11 
considered: accidental, acute non-accidental, and longer-term.  Exposure assessments for 12 
mammals are detailed in Worksheet G01a for mammals and in Worksheet G01b for birds. For 13 
both mammals and birds, the highest exposure scenarios are associated with the consumption of 14 
contaminated vegetation. This is a common pattern for foliar applications of any pesticide.  The 15 
highest exposures are associated with the consumption of contaminated short grass by a small 16 
mammal or bird. 17 
   18 
For terrestrial plants, five exposure scenarios are considered quantitatively: direct spray, spray 19 
drift, runoff, wind erosion, and the use of contaminated irrigation water.  The highest exposures 20 
for terrestrial plants are associated with direct spray and spray drift. 21 
 22 
Exposures of aquatic plants and animals to fluazifop-P-butyl are based on essentially the same 23 
information used to assess the exposure to terrestrial species from contaminated water. 24 
 25 
As with the exposure assessment for human heath (Section 3.2), all exposure assessments 26 
involving applications of fluazifop-P-butyl are expressed in units of fluazifop acid, and units of 27 
fluazifop acid are also used in the dose-response assessment (Section 4.3).  It is noted that at 28 
least some acute exposure scenarios could involve fluazifop-P-butyl or a combination of 29 
fluazifop-P-butyl and fluazifop acid, which is considered further in the selection of toxicity 30 
values (Section 4.3). 31 

4.2.2. Mammals and Birds 32 
All exposure scenarios for terrestrial animals are summarized in Worksheet G01 in the EXCEL 33 
workbooks that accompany this risk assessment (Attachments 1, 2 and 3).  An overview of the 34 
mammalian and avian receptors considered in the current risk assessment is given in Table 31.  35 
These data are discussed in the following subsections.  Because of the relationship of body 36 
weight to surface area as well as to the consumption of food and water, for any type of exposure, 37 
the dose for small animals is generally higher, in terms of mg/kg body weight, than the dose for 38 
large animals.  The exposure assessment for mammals considers five nontarget mammals of 39 
varying sizes: small (20 g) and medium (400 g) sized omnivores (e.g., mouse and squirrel), a 40 
5 kg canid, a 70 kg herbivore, and a 70 kg carnivore.  Four standard avian receptors are 41 
considered: a 10 g passerine, a 640 g predatory bird, a 2.4 kg piscivorous bird, and a 4 kg 42 
herbivorous bird.  Because of presumed differences in diet, (i.e., the consumption of food items), 43 
all of the mammalian and avian receptors are not considered in all of the exposure scenarios 44 
(e.g., the 640 g predatory bird is not used in the exposure assessments for contaminated 45 
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vegetation).  Toxicity data are not available on terrestrial-phase amphibians (Section 4.1.2.3); 1 
accordingly, exposure assessments for these terrestrial vertebrates are not developed. 2 

4.2.2.1. Direct Spray 3 
The unintentional direct spray of wildlife during broadcast applications of a pesticide is a 4 
credible exposure scenario, similar to the accidental exposure scenarios for the general public 5 
discussed in Section 3.2.3.2.  In a scenario involving exposure to direct spray, the amount of 6 
pesticide absorbed depends on the application rate, the surface area of the organism, and the rate 7 
of absorption. 8 
 9 
For this risk assessment, two direct spray or broadcast exposure assessments are conducted.  The 10 
first spray scenario (Worksheet F01a) concerns the direct spray of half of the body surface of a 11 
20 g mammal during a pesticide application.  This exposure assessment assumes first-order 12 
dermal absorption using the first-order dermal absorption rate coefficient (ka) discussed in 13 
Section 3.1.3.2.  The ka used in this risk assessment is identical to the ka used in the human 14 
health risk assessment (Section 3.1.3.2).  The second exposure assessment (Worksheet F01b) 15 
assumes complete absorption over Day 1 of exposure.  This assessment is included in an effort to 16 
encompass increased exposures due to grooming.  17 
 18 
Exposure assessments for the direct spray of a large mammal are not developed.  As discussed 19 
further in Section 4.4.2.1, the direct spray scenarios lead to HQs far below the level of concern, 20 
and an elaboration for body size would have no impact on the risk assessment. 21 

4.2.2.2. Dermal Contact with Contaminated Vegetation 22 
As discussed in the human health risk assessment (Section 3.2.3.3), the approach for estimating 23 
the potential significance of dermal contact with contaminated vegetation is to assume a 24 
relationship between the application rate and dislodgeable foliar residue as well as a transfer rate 25 
from the contaminated vegetation to the skin.  Unlike the human health risk assessment for 26 
which estimates of transfer rates are available, there are no transfer rates available for wildlife 27 
species.  Wildlife species are more likely than humans to spend long periods of time in contact 28 
with contaminated vegetation.  It is reasonable to assume that for prolonged exposures, 29 
equilibrium may be reached between pesticide levels on the skin, rates of dermal absorption, and 30 
pesticide levels on contaminated vegetation.  Since data regarding the kinetics of this process are 31 
not available, a quantitative assessment for this exposure scenario cannot be made in the 32 
ecological risk assessment. 33 
 34 
For fluazifop, as well as most other herbicides and insecticides applied in broadcast applications, 35 
the failure to quantify exposures associated with dermal contact adds relatively little uncertainty 36 
to the risk assessment, because the dominant route of exposure will be the consumption of 37 
contaminated vegetation, as addressed in the following section. 38 

4.2.2.3. Ingestion of Contaminated Vegetation or Prey 39 
 In foliar applications of pesticides, the consumption of contaminated vegetation is an obvious 40 
concern.  Except for the large carnivorous mammal and the predatory bird, exposure assessments 41 
for the consumption of contaminated vegetation are developed for all mammals and birds listed 42 
in Table 31.  43 
 44 
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The initial concentrations of fluazifop-P-butyl on contaminated food items are based on the U.S. 1 
EPA/OPP (2001) adaptation of the residue rates from Fletcher et al. (1994), as summarized in 2 
Table 21.  The methods of estimating the peak and time-weighted average concentrations of 3 
fluazifop-P-butyl in vegetation are identical to those used in the human health risk assessment 4 
(Section 3.2.3.7).  As summarized in Table 21, fruit and short grass comprise the food 5 
commodities with the lowest pesticide residue rates (fruit) and the highest pesticide residue rates 6 
(short grass).  Tall grass and broadleaf forage plants are estimated to have intermediate residue 7 
rates.  For each of these four types of vegetation, both acute and longer-term exposure scenarios 8 
are developed, as detailed in Worksheet G01a for mammals and Worksheet G01b for birds, in 9 
the attachments to this risk assessment. 10 
 11 
The acute and chronic exposure scenarios are based on the assumption that 100% of the diet is 12 
contaminated, which may not be realistic for some acute exposures and seems an unlikely event 13 
in chronic exposures—i.e., animals may move in and out of the treated areas.  While estimates of 14 
the proportion of the diet contaminated could be incorporated into the exposure assessment, the 15 
estimates would be an essentially arbitrary set of adjustments.  The proportion of the 16 
contaminated diet is linearly related to the resulting HQs, and its impact is discussed further in 17 
the risk characterization (Section 4.4.2.1).   18 
 19 
The estimated food consumption rates by various species of mammals and birds are based on 20 
field metabolic rates (kcal/day), which, in turn, are based on the adaptation of estimates from 21 
Nagy (1987) by the U.S. EPA/ORD (1993).  These allometric relationships account for much of 22 
the variability in food consumption among mammals and birds.  There is, however, variability 23 
not apparently related to body weight, which is remarkably constant among different groups of 24 
organisms (Table 3 in Nagy 1987).  As discussed by Nagy (2005), the estimates from the 25 
allometric relationships may differ from actual field metabolic rates by about ±70%.  26 
Consequently, in all worksheets involving the use of the allometric equations for field metabolic 27 
rates, the lower bound is taken as 30% of the estimate and the upper bound is taken as 170% of 28 
the estimate.   29 
 30 
The estimates of field metabolic rates are used to calculate food consumption based on the 31 
caloric value (kcal/day dry weight) of the food items considered in this risk assessment and 32 
estimates of the water content of the various foods.  Estimates of caloric content are summarized 33 
in Table 22.  Most of the specific values in Table 22 are taken from Nagy (1987) and U.S. 34 
EPA/ORD (1993).  35 
 36 
Along with the exposure scenarios for the consumption of contaminated vegetation, similar sets 37 
of exposure scenarios are provided for the consumption of small mammals by either a predatory 38 
mammal (Worksheet F10a) or a predatory bird (Worksheet F10b) and the consumption of 39 
contaminated insects by a small mammal, a larger (400 g) mammal, and a small bird 40 
(Worksheets F09a-c).  The residue rates for insects are taken from the U.S. EPA/OPP (2001) 41 
adaptation of the residue rates in Fletcher et al. (1994), as summarized in Table 21. 42 

4.2.2.4. Ingestion of Contaminated Water 43 
The methods for estimating concentrations of fluazifop in water are identical to those used in the 44 
human health risk assessment (Section 3.2.3.4.6.1).  The only major differences in the exposure 45 
estimates concern the body weight of and the quantity of water consumed by the mammal or 46 
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bird.  Like food consumption rates, water consumption rates, which are well characterized in 1 
terrestrial vertebrates, are based on allometric relationships in mammals and birds, as 2 
summarized in Table 31.  From these estimates, exposure scenarios involving the consumption 3 
of contaminated water are developed for mammals and birds for accidental spills (Worksheets 4 
F02a-f), expected peak concentrations (Worksheets F08a-f), and expected longer-term 5 
concentrations (Worksheets F16a-f) of Attachments 1, 2 and 3.    6 
 7 
Like food consumption, water consumption in birds and mammals varies substantially with diet, 8 
season, and many other factors; however, quantitative estimates regarding the variability of water 9 
consumption by birds and mammals is not well documented in the available literature and is not 10 
considered in the exposure assessments.  Nevertheless, as summarized in Table 20, the upper and 11 
lower bound estimates of concentrations of fluazifop in surface water vary substantially (i.e., by 12 
a factor of over 94 [0.047 mg/L ÷ 0.005 mg/L] for acute exposures and a factor of over 100 [0.2 13 
mg/L ÷ 0.002] for chronic exposures).  Given this degree of variability in the estimated 14 
concentrations of fluazifop in surface water, it is unlikely that a quantitative consideration of the 15 
variability in water consumption rates of birds and mammals would have a substantial impact on 16 
the risk characterization.  In addition and as discussed further in Section 4.4.2.1 (risk 17 
characterization for mammals) and Section 4.4.2.2 (risk characterization for birds), exposures 18 
associated with the consumption of contaminated surface water are far below the level of 19 
concern (HQ=1).  Consequently, even extreme variations on the consumption of contaminated 20 
water by mammals and birds would have no impact on the risk characterization for mammals 21 
and birds. 22 

4.2.2.5. Consumption of Contaminated Fish 23 
In addition to the consumption of contaminated vegetation, insects, and other terrestrial prey 24 
(Section 4.2.2.3), the consumption of contaminated fish by piscivorous species is a potentially 25 
significant route of exposure to fluazifop-P-butyl (acute exposures) and fluazifop acid (longer-26 
term exposures).  Exposure scenarios are developed for the consumption of contaminated fish 27 
after an accidental spill (Worksheets F03a-c), expected peak exposures (Worksheets F011a-c), 28 
and estimated longer-term concentrations (Worksheets F17a-c).  These exposure scenarios are 29 
applied to 5 and 70 kg carnivorous mammals as well as a 2.4 kg piscivorous bird.  The 70 kg 30 
carnivorous mammal is typical of a black bear (which does not actively hunt fish) but could be 31 
representative of a small or immature brown bear (Ursus arctos), which is an endangered species 32 
that actively feeds on fish (Reid 2006).  As summarized in Table 31, the 5 kg mammal is 33 
representative of a fox, and the 2.4 kg bird is representative of a heron. 34 
 35 
Exposure levels associated with the consumption of contaminated fish depend on the 36 
concentration of the compound in water and the bioconcentration factor for the compound in 37 
fish.  The concentrations of fluazifop in water are identical to those discussed in Section 4.2.2.4.  38 
As discussed in Section 3.2.3.5, fluazifop acid is not likely to accumulate in fish, but fluazifop-P-39 
butyl may accumulate substantially.  Thus, for acute exposure scenarios, the bioconcentration 40 
factor of 120 from MRIDs 93196 and 92067035 is used and, presumably, applies to fluazifop-P-41 
butyl.  For longer-term exposure scenarios, the bioconcentration factor of 2.1 from MRID 93195 42 
is used and, presumably, applies to fluazifop acid.  As noted in Section 4.1.1, all exposures are 43 
expressed in units of fluazifop acid, regardless of the bioconcentration factor, and this conversion 44 
has no impact on the hazard quotients discussed in Section 4.4. 45 
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4.2.3. Terrestrial Invertebrates 1 

4.2.3.1. Direct Spray and Drift 2 
Estimated levels of exposure associated with broadcast terrestrial applications of fluazifop-P-3 
butyl are detailed in Worksheet G09 of Attachments 1, 2 and 3 (the EXCEL workbooks for 4 
fluazifop-P-butyl).  This is a custom worksheet which includes aerial, ground broadcast (high 5 
boom and low boom), and backpack applications. 6 
 7 
Honeybees are used as a surrogate for other terrestrial insects, and honeybee exposure levels 8 
associated with broadcast applications are modeled as a simple physical process based on the 9 
application rate and planar surface area of the bee.  The planar surface area of the honeybee (1.42 10 
cm2) is based on the algorithms suggested by Humphrey and Dykes (2008) for a bee with a body 11 
length of 1.44 cm.  12 
 13 
The amount of a pesticide deposited on a bee during or shortly after application depends on how 14 
close the bee is to the application site as well as foliar interception of the spray prior to 15 
deposition on the bee.  The estimated proportions of the nominal application rate at various 16 
distances downwind given in G09 are based on Tier 1 estimates from AgDRIFT (Teske et al. 17 
2002) for distances of 0 (direct spray) to 900 feet downwind of the treated site.  Further details of 18 
the use of AgDRIFT are discussed in Section 4.2.4.2 (Off-Site Drift) with respect to nontarget 19 
vegetation. 20 
 21 
In addition to drift, foliar interception of a pesticide may occur.  The impact of foliar interception 22 
varies according to the nature of the canopy above the bee.  For example, in studies investigating 23 
the deposition rate of diflubenzuron in various forest canopies, Wimmer et al. (1993) report that 24 
deposition in the lower canopy, relative to the upper canopy, generally ranged from about 10% 25 
(90% foliar interception in the upper canopy) to 90% (10% foliar inception by the upper canopy).  26 
In Worksheet G09, foliar interception rates of 0% (no interception), 50%, and 90% are used. 27 
 28 
During broadcast applications of a pesticide, it is likely that terrestrial invertebrates other than 29 
bees will be subject to direct spray.  As discussed in further detail in Section 4.3.2.3 (dose-30 
response assessment for terrestrial invertebrates), toxicity data on other terrestrial invertebrates 31 
are available from EFSA (2012).  These data involve exposures expressed in units of application 32 
rate.  Thus, other than the nominal application rate for fluazifop-P-butyl, additional exposure 33 
assumptions are not necessary. 34 

4.2.3.2. Ingestion of Contaminated Vegetation or Prey 35 
Like terrestrial mammals and birds, terrestrial invertebrates may be exposed to fluazifop-P-butyl 36 
through the consumption of contaminated vegetation or contaminated prey.  As with 37 
consumption scenarios for mammals (Section 4.2.3.2), estimates of residues on contaminated 38 
vegetation or prey are based on estimated residue rates (i.e., mg/kg residues per lb applied) from 39 
Fletcher et al. (1994), as summarized in Table 21. 40 
   41 
An estimate of food consumption is necessary to calculate a dose level for a foraging 42 
herbivorous insect.  Insect food consumption varies greatly, depending on the caloric 43 
requirements in a given life stage or activity of the insect and the caloric value of the food to be 44 
consumed.  The derivation of consumption values for specific species, life stages, activities, and 45 
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food items is beyond the scope of the current analysis.  Nevertheless, general food consumption 1 
values, based on estimated food consumption per unit body weight, are readily available.   2 
 3 
Reichle et al. (1973) studied the food consumption patterns of insect herbivores in a forest 4 
canopy and estimated that insect herbivores may consume vegetation at a rate of about 0.6 of 5 
their body weight per day (Reichle et al. 1973, pp. 1082 to 1083).  Higher values (i.e., 1.28-2.22 6 
in terms of fresh weight) are provided by Waldbauer (1968) for the consumption of various types 7 
of vegetation by the tobacco hornworm (Waldbauer 1968, Table II, p. 247).  The current risk 8 
assessment uses food consumption factors of 1.3 (0.6 to 2.2) kg food /kg bw.  The lower bound 9 
of 0.6 is taken from Reichle et al. (1973), and the central estimate and upper bound are taken 10 
from the range of values provided by Waldbauer (1968). 11 
  12 
A summary of the estimated exposures in terrestrial herbivorous insects is given in Worksheet 13 
G08a and details of the calculations for these scenarios are provided in Worksheets G07a, G07b, 14 
G07c, and G07d of the EXCEL workbooks that accompany this risk assessment (Attachments 1, 15 
2, and 3).  These levels pertain to the four food items included in the standard residue rates 16 
provided by Fletcher et al. (1994) at summarized in Table 21. 17 

4.2.3.3. Contaminated Soil 18 
Forest Service risk assessments do not typically include estimates of soil exposures, because 19 
toxicity values for soil invertebrates are not typically available.  As discussed in Section 20 
4.1.2.4.4, however, brief summaries of toxicity studies are available in earthworms with 21 
fluazifop-P-butyl and 5-trifluoromethyl-2-pyridone (Metabolite X) and these studies indicate no 22 
effects at concentrations of 1000 mg/kg soil.  As summarized in Appendix 10, Table A10-2, the 23 
estimated peak concentrations of fluazifop in the top 12 inches of soil are 0.41 (0.311 - 0.88) mg 24 
a.e./kg (dry weight) soil following three applications of fluazifop-P-butyl at a unit application 25 
rate of 1 lb a.e./acre (i.e., the application rate used in the Gleams-Driver modeling).  At the 26 
maximum labeled application rate of 0.32 lb a.e./acre for fluazifop-P-butyl, the estimated peak 27 
concentrations of fluazifop acid would be about 0.13 (0.010 to 0.28) mg a.e./kg (dry weight) soil.  28 
These levels of exposure are far below the NOAEC of 1000 mg/kg soil for fluazifop-P-butyl 29 
(≈854 mg a.e./kg soil).  Consequently, there is no basis for asserting that fluazifop-P-butyl is 30 
likely to pose a risk to earthworms. 31 

4.2.4. Terrestrial Plants 32 
Generally, the primary hazard to nontarget terrestrial plants associated with the application of 33 
most herbicides is unintended direct deposition or deposition of spray drift.  In addition, 34 
herbicides may be transported off-site by percolation or runoff or by wind erosion of soil 35 
resulting in deposition of contaminated soil onto nontarget vegetation.  As noted in Section 36 
4.1.2.5 (Hazard Identification for Terrestrial Plants) and discussed further in Section 4.3.2.5 37 
(Dose-Response Assessment for Terrestrial Plants), the toxicity data on fluazifop-P-butyl are 38 
sufficient to interpret risks associated with these exposure scenarios.  Consequently, exposure 39 
assessments are developed for each of these exposure scenarios, as detailed in the following 40 
subsections.  These exposure assessments are detailed in Worksheet G04 (runoff), Worksheet 41 
G05 (direct spray and drift), Worksheet G06a (contaminated irrigation water), and Worksheet 42 
G06b (wind erosion) for directed or broadcast foliar applications.  These worksheets are included 43 
in the attachments that accompany this risk assessment. 44 
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4.2.4.1. Direct Spray 1 
Unintended direct spray will result in an exposure level equivalent to the application rate.  For 2 
many types of herbicide applications, it is plausible that some nontarget plants immediately 3 
adjacent to the application site could be sprayed directly.  This type of scenario is modeled in the 4 
worksheets that assess off-site drift (see Section 4.2.4.2 below). 5 

4.2.4.2. Off-Site Drift 6 
Estimates of off-site drift are modeled using AgDRIFT.  These estimates are summarized in 7 
Worksheets G05a and G05b of the EXCEL workbooks for fluazifop-P-butyl (Attachments 1, 2, 8 
and 3).  These are custom worksheets that include estimates of drift for aerial, ground broadcast, 9 
and backpack applications.  The drift estimates used in the current risk assessment are based on 10 
AgDRIFT (Teske et al. 2002) using Tier 1 analyses for aerial and ground broadcast applications.  11 
The term Tier 1 is used to designate relatively generic and simple assessments which can be 12 
viewed as plausible upper limits of drift.   13 
 14 
In Worksheet G05a, aerial drift estimates are based on Tier 1 using ASAE Fine to Medium drop 15 
size distributions.  Tier 1 estimates of drift for ground broadcast applications are modeled using 16 
both low boom and high boom options in AgDRIFT.  For both types of applications, the values 17 
are based on Very Fine to Fine drop size distributions (VDM≈137 µm) and the 90th percentile 18 
values from AgDRIFT.  The use of small droplet sizes in Worksheet G05a is intended to 19 
generate extremely conservative estimates of drift that would not be anticipated in typical Forest 20 
Service applications. 21 
 22 
In Worksheet G05b, aerial drift estimates are based on Tier 1 using ASAE Coarse to Very 23 
Coarse drop size distributions (VMD≈440 µm) and the ground broadcast applications are based 24 
on ASAE fine to Medium Coarse drop size distributions (VMD≈340 µm).  As discussed in 25 
Section 3.2.3.4.2, the product labels for all formulations of fluazifop-P-butyl explicitly 26 
considered in this risk assessment (Table 4) specifically note that flood type nozzles which 27 
deliver coarse droplet sizes should not be used in aerial or ground applications.  As also 28 
discussed in Section 3.2.3.4.2, the labels do not specify droplet size distributions but flood type 29 
applications are typically associated with VMD values of >500 µm.  Thus, modeling of coarse 30 
droplets in Worksheet G05b (VMD≈440 µm) are consistent with likely Forest Service practice 31 
and are not excluded by the label language. 32 
 33 
Drift associated with backpack applications (directed foliar applications) is likely to be much less 34 
than drift from ground broadcast applications.  Few studies are available for quantitatively 35 
assessing drift after backpack applications.  For the current risk assessment, estimates of drift 36 
from backpack applications are based on an AgDRIFT Tier 1 run of a low boom ground 37 
application using Fine to Medium/Coarse drop size distributions as well as 50th percentile 38 
estimates of drift (rather than the 90th percentile used for ground broadcast applications). 39 
 40 
The values for drift used in the current risk assessment should be regarded as little more than 41 
generic estimates similar to the water concentrations modeled using GLEAMS (Section 42 
3.2.3.4.3).  Actual drift will vary according to a number of conditions—e.g., the topography, 43 
soils, weather, drop size distribution, carrier, and the pesticide formulation. 44 
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4.2.4.3. Runoff and Soil Mobility  1 
Terrestrial plant exposures associated with runoff and sediment losses from the treated site to an 2 
adjacent untreated site are summarized in Worksheet G04 of the EXCEL workbooks for 3 
fluazifop-P-butyl (Attachments 1, 2, and 3).   4 
   5 
Any pesticide can be transported from the soil at the application site by runoff, sediment loss, or 6 
percolation.  Runoff, sediment loss, and percolation are considered in estimating contamination 7 
of ambient water (Section 3.2.3.4).  Only runoff and sediment loss are considered in assessing 8 
off-site soil contamination.  This approach is reasonable because off-site runoff and sediment 9 
transport will contaminate the off-site soil surface and could have an impact on non-target plants.  10 
Percolation, on the other hand, represents the amount of herbicide transported below the root 11 
zone, which may affect water quality but should not affect off-site vegetation.  As with the 12 
estimates of fluazifop-P-butyl in surface water, estimates of runoff and sediment losses are 13 
modeled for clay, loam, and sand at nine sites that represent different temperatures and rainfall 14 
patterns, as specified in Table 16. 15 
 16 
The exposure scenario for runoff and sediment losses assumes that the pesticide is lost from the 17 
treated field and spread uniformly over an adjacent untreated field of the same size.  This 18 
assumption is admittedly arbitrary.  Much more severe exposures could occur if all of the runoff 19 
losses were distributed into a much smaller area.  Conversely, lower exposures would occur if 20 
runoff losses were distributed from the treated field to a much larger area. 21 
  22 
For fluazifop-P-butyl, the results of the standard GLEAMS modeling of runoff and sediment 23 
losses are summarized in Appendix 8 for a single application, Appendix 9 for two applications, 24 
and Appendix 10 for three applications.  Note that amount of runoff and sediment loss will vary 25 
substantially with different types of climates—i.e., temperature and rainfall—as well as soils, 26 
with no or very little runoff or sediment loss anticipated in predominantly sandy soils.  The input 27 
parameters used to estimate runoff and sediment losses are identical to those used in the Gleams-28 
Driver modeling for concentrations of fluazifop-P-butyl in surface water as discussed in Section 29 
3.2.3.4 and summarized in Table 17 (site characteristics) and Table 18 (chemical-specific input 30 
parameters).  31 
 32 
For a single application, the runoff for fluazifop-P-butyl as a proportion of the application rate is 33 
taken as 0.0009 (0.00009 to 0.037).  The central estimate and upper bound are taken directly 34 
from the Gleams-Driver modeling—i.e., the median and empirical upper 95% bound, as detailed 35 
in Appendix 8 (Table A8-1)—rounding all values to one significant place.  The lower bound is 36 
effectively zero—i.e., for sandy soils regardless of temperature and rainfall rates.  The lower 37 
bound value of 0.0009 is simply the central estimate divided by 10.  Much lower loss rates are 38 
plausible—i.e., in areas with predominantly sandy soils, as discussed further in the risk 39 
characterization (Section 4.4.2.5.2). 40 
 41 
For two applications, the runoff as a proportion of the application rate is taken as 0.002 (0.0002 42 
to 0.06).  For three applications, the runoff as a proportion of the application rate is taken as 43 
0.0025 (0.00025 to 0.073).  As with the single application, the central estimate and upper bound 44 
are taken directly from the Gleams-Driver modeling—i.e., the median and empirical upper 95% 45 
bound, as detailed in Appendix 9 (Table A9-1) for two applications and Appendix 10 (Table 46 
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A10-1) for three applications—rounding all values to one significant place.  Also as with the 1 
single application, the lower bound is effectively zero and the effective lower bound values 2 
simply the central estimates divided by 10. 3 

4.2.4.4. Contaminated Irrigation Water 4 
Forest Service risk assessments include this standard scenario for the use of contaminated water 5 
for irrigation.  The exposure levels associated with this scenario depend on the pesticide 6 
concentration in the ambient water used for irrigation and the amount of irrigation water used.  7 
Concentrations in ambient water are based on the peak concentrations modeled in the human 8 
health risk assessment, as discussed in Section 3.2.3.4.6. 9 
 10 
The amount of irrigation used will depend on the climate, soil type, topography, and plant 11 
species under cultivation.  Thus, the selection of an irrigation rate is somewhat arbitrary.  In the 12 
absence of any general approach for determining and expressing the variability of irrigation 13 
rates, the application of 1 inch of irrigation water with a range of 0.25 to 2 inches is used in this 14 
risk assessment.  Details of the calculations used to estimate the functional application rates 15 
based on irrigation using contaminated surface water are provided in Worksheet G06a of the 16 
EXCEL workbooks for fluazifop-P-butyl (Attachments 1, 2 and 3). 17 
 18 
While the labels and/or EPA documents for some herbicides specifically state that water 19 
potentially contaminated with herbicides should not be used for irrigation, no such language was 20 
identified on the product labels for Fusilade DX and Fusilade II.  21 

4.2.4.5. Wind Erosion 22 
Wind erosion can be a major transport mechanism for soil (e.g., Winegardner 1996), and wind 23 
erosion is also associated with the environmental transport of herbicides adsorbed to soil (Buser 24 
1990).  Wind erosion leading to off-site movement of pesticides is likely to be highly site-25 
specific.  The amount of fluazifop-P-butyl that might be transported by wind erosion depends on 26 
several factors, including application rate, depth of incorporation into the soil, persistence in the 27 
soil, wind speed, and topographical and surface conditions of the soil.  Under desirable 28 
conditions—e.g., relatively deep (10 cm) soil incorporation, low wind speed, and surface 29 
conditions which inhibit wind erosion—it is unlikely that a substantial amount of fluazifop-P-30 
butyl would be transported by wind. 31 
 32 
For this risk assessment, the potential effects of wind erosion are estimated in Worksheet G06b 33 
in Attachments 1, 2 and 3.  In this worksheet, it is assumed that fluazifop-P-butyl is incorporated 34 
into the top 1 cm of soil, which is identical to the depth of incorporation used in GLEAMS 35 
modeling (Table 18).  Average soil losses are estimated to range from 1 to 10 tons/ha/year with a 36 
central estimate of 5 tons/ha/year.  These estimates are based on the results of agricultural field 37 
studies which found that wind erosion may account for annual soil losses ranging from 2 to 6.5 38 
metric tons/ha (Allen and Fryrear 1977). 39 
 40 
As noted in Worksheet G06b, offsite losses are estimated to reach as much as 0.014% of the 41 
application rate.  Larney et al. (1999), however, report that wind erosion of other herbicides 42 
could be associated with losses up to 1.5% of the nominal application rate following soil 43 
incorporation or 4.5% following surface application.  This difference appears to be due to the 44 
much higher soil losses noted by Larney et al. (1999)—i.e., up to 56.6 metric tons/ha from a 45 
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fallow field.  The losses reflected in Worksheet G06b may be somewhat more realistic for forest 1 
or rangeland applications, because forestry applications of herbicides are rarely made to fallow 2 
areas.  As noted by Patric (1976), total soil erosion from all sources in well-managed forests is 3 
typically in the range of about 0.12-0.24 tons/ha/year [0.05 to 0.10 ton/acre/year], substantially 4 
below the range from 1 to 10 tons/ha/year used in Worksheet G06b.  Thus, losses due to wind 5 
erosions following pesticide applications under forest canopies or heavily vegetated areas may be 6 
much less than the estimates used in this risk assessment. 7 
 8 
In any event, the higher offsite losses reported by Larney et al. (1999) are comparable to 9 
exposures associated with offsite drift at distances of about 50 feet from the application site 10 
following low boom and high boom ground broadcast applications (Worksheet G05).  All of the 11 
estimates for wind erosion and offsite drift are likely to vary dramatically according to site 12 
conditions and weather conditions. 13 

4.2.5. Terrestrial Microorganisms 14 
As summarized in Section 4.1.2.6, the study by Abdel-Mallek et al. (1996) indicates no adverse 15 
effects on soil fungi at a concentration of 0.6 mg/kg soil (dry weight).  Given these toxicity data, 16 
the exposure assessment for soil dwelling invertebrates (Section 4.2.3.3) is relevant.  As 17 
discussed in Section 4.2.3.3, the maximum expected soil concentration in the top 12 inches of 18 
soil is about 0.13 (0.010 to 0.28) mg a.e./kg soil (dry weight). 19 

4.2.6. Aquatic Organisms 20 
The concentrations of fluazifop in surface water used to estimate exposures for aquatic species 21 
are identical to those used in the human health risk assessment, as discussed in Section 22 
3.2.3.4.6.1 and summarized in Table 20. 23 
  24 
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4.3. DOSE-RESPONSE ASSESSMENT 1 

4.3.1. Overview 2 
An overview of the toxicity values used in the ecological risk assessment is given in Table 33.  3 
The derivation of each of these values is discussed in the following subsections.  The available 4 
toxicity data support separate dose-response assessments in eight classes of organisms: terrestrial 5 
mammals, birds, terrestrial invertebrates (honeybees, other sensitive insects, and earthworms), 6 
terrestrial plants, fish, aquatic invertebrates, aquatic algae, and aquatic macrophytes.  Different 7 
units of exposure are used for different groups of organisms, depending on the nature of 8 
exposure and the way in which the toxicity data are expressed.  To maintain consistency with the 9 
exposure assessment, which is necessary for the development of hazard quotients (HQs) in the 10 
risk characterization (Section 4.4.), all toxicity values given in Table 33 are expressed as acid 11 
equivalents (a.e.). 12 

4.3.2. Toxicity to Terrestrial Organisms 13 

4.3.2.1. Mammals  14 
In characterizing risk to mammalian wildlife, Forest Service risk assessments generally consider 15 
the NOAELs on which the acute and chronic RfDs used in the human health risk assessment are 16 
based.  As summarized in Table 22 and discussed in Section 3.3, the acute RfD is based on a 17 
NOAEL of 50 mg a.i./kg bw fluazifop-butyl from a developmental study in rats in which the 18 
LOAEL (based on diaphragmatic hernias in offspring) is 200 mg a.i./kg bw (MRIDs 00088857 19 
and 00088858).  For acute exposure scenarios for mammalian wildlife, the NOAEL of 50 mg 20 
a.i./kg bw is adjusted to units of acid equivalents and rounded to two significant places—i.e., 50 21 
mg a.i./kg bw x 0.854 a.e./a.i. = 42.7 mg a.e./kg bw ≈ 43 mg a.e./kg bw. 22 
 23 
As also summarized in Table 22 and discussed in Section 3.3, the chronic RfD is based on a 24 
NOAEL of 0.74 mg a.i./kg bw/day fluazifop-butyl, also from a developmental study in rats in 25 
which the LOAEL (based on decreased testes weight) is 5.8 mg/kg bw/day (MRIDs 000088859, 26 
92067022, and 92067050).  As with the acute NOAEL, the chronic NOAEL is adjusted to acid 27 
equivalents—i.e., 0.74 mg a.i./kg bw/day x 0.854 a.e./a.i. = 0.63196 mg a.e./kg bw—and 28 
rounded to two significant places. 29 
 30 
With any weak acid, there is a concern that dogs and perhaps other canid species could be more 31 
sensitive than other mammals, because canids do not excrete weak acids as well as other 32 
mammals (e.g., SERA 2011d).  This is not the case for fluazifop acid.  As discussed in the 33 
human health risk assessment, dogs appear to be less sensitive than rats to fluazifop-butyl 34 
(Section 3.1.5), and the excretion of fluazifop by dogs is comparable to that in humans (Section 35 
3.1.3.3).  Consequently, the acute NOAEL of 43 mg a.e./kg bw and the chronic NOAEL of 0.63 36 
mg a.e./kg bw/day are used for canids without modification. 37 
 38 
It should be noted that the dose-response assessment for mammals differs from the dose-39 
response assessment used by U.S. EPA/OPP/EFED (2008, pp. 54-55).  For acute exposures, the 40 
EPA uses the oral LD50 of 1940 mg a.i./kg bw (MIRD 00162439).  The use of an LD50 is a 41 
standard practice by U.S. EPA/OPP/EFED.  The Forest Service prefers to use an acute NOAEL 42 
rather than an acute LD50 for risk characterization (SERA 2009).   43 
 44 
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In U.S. EPA/OPP/EFED (2008), the approach for chronic exposures is unclear.  In Table 3-7 of 1 
the EPA risk assessment, a NOAEL of “0.74 ppm a.i.” from MRID 92067050 is designated (U.S. 2 
EPA/OPP/EFED 2008, p. 55).  This value is functionally identical to the 0.74 mg a.i./kg bw/day 3 
dose used in the current risk assessment, as discussed above.  In the derivation of mammalian 4 
risk quotients, however, the EPA designates a 2-generation reproduction NOAEL of “14.8 ppm” 5 
(U.S. EPA/OPP/EFED 2008, p. 74, Table 4-5).  This value appears to be derived from the 6 
NOAEL for female rats in the 2-generation reproduction study (MRID 00088859, 92067050)—7 
i.e., [17.5 mg a.i./kg bw/day x 0.854 a.e./a.i. = 14.945 mg a.e./kg bw/day.]. 8 

4.3.2.2. Birds 9 

4.3.2.2.1. Acute Exposures 10 
The available toxicity studies in birds consist of standard assays submitted to the U.S. EPA/OPP 11 
in support of the registration of fluazifop-p-butyl (Section 4.1.2.2.1) as well as a few publications 12 
in the open literature (Section 4.1.2.2.2).  The latter group of studies, however, is not useful for 13 
deriving toxicity values.   14 
 15 
As noted in Section 4.1.2.2.1, the EPA uses an acute oral LC50 of 20,767 ppm (a.i.) for the 16 
development of acute dietary risk quotients for birds (U.S. EPA/OPP/EFED 2008, p. 73, Table 4-17 
4).  As in the dose-response assessment for mammals, the Forest Service prefers to use acute 18 
NOAECs rather than LC50 values.   19 
 20 
As summarized in Appendix 2 (Table A2-2), dietary NOAELs range from 2545 ppm a.e. in 21 
mallards (MRID 40859401) to 6996 ppm a.e. in pheasants (ECOTOX 2013).  For the current 22 
Forest Service risk assessment, the lower NOAEL of 2545 ppm a.e. (2545 mg a.e./kg food) for 23 
mallards is used.  No information is available on the food consumption during the mallard study.  24 
Taking a food consumption value of 0.42 kg food/kg body weight from an acute dietary study in 25 
mallards with aminopyralid (SERA 2007b), the dose for the mallards is taken as 1069 mg a.e./kg 26 
bw [2545 mg a.e./kg food x 0.42 kg food/kg body weight = 1068.9 mg a.e./kg bw].  Gavage 27 
dosing is more stressful to animals than dietary exposures; hence, NOAELS for gavage 28 
administration are generally lower than those for short-term dietary exposures.  This is not the 29 
case with fluazifop-P-butyl.   30 
 31 
As summarized in Appendix 2 (Table A2-1), a gavage NOAEL of about 3528 mg a.e./kg bw is 32 
available for mallards (MRID 40829201).  Thus, the estimated NOAEL of 1069 mg a.e./kg bw 33 
from the dietary study may be viewed as conservative and perhaps overly so.  Conversely, a 34 
concern with using default values for food consumption concerns the possible impact of 35 
fluazifop-butyl on food consumption in birds.  Based on the DER for a different acute dietary 36 
study in mallards (MRID 00087481, Ross et al. 1980a), food consumption in mallards was 37 
substantially reduced at dietary concentrations of fluazifop-butyl as low as 6554 ppm (a.i.), 38 
corresponding to about 5600 ppm (a.e.).  Food consumption data are not reported in the DERs or 39 
other study summaries for any of the acute dietary studies in birds.  If food consumption were 40 
reduced in MRID 40829201, the dietary NOAEL expressed as mg a.e./kg bw would be 41 
underestimated.   42 
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4.3.2.2.2. Longer-term Exposures 1 
As summarized in Appendix 2 (Table A2-3), the only longer-term studies in birds are the 2 
standard avian reproduction studies in mallards and quail, both of which yield a dietary NOAEL 3 
of 50 ppm a.i. or 43 ppm a.e. (43 mg a.e./kg food).  The chronic NOAEL of 50 ppm a.i. is used 4 
in U.S. EPA/OPP/EFED (2008, p. 73, Table 4-4) in the development of chronic risk quotients for 5 
birds. 6 
 7 
Based on the average of the reported food consumption and body weights for birds in the DERs 8 
for these studies, the dietary concentration of 43 mg a.e./kg food corresponds to about 4.9 mg 9 
a.e./kg bw/day for mallards and 3.3 mg a.e./kg bw/day for quail.  For characterizing risks to birds 10 
associated with longer-term exposures, the somewhat lower NOAEL for quail is used in the 11 
current risk assessment. 12 

4.3.2.3. Reptiles and Amphibians (Terrestrial Phase) 13 
Since toxicity data are not available for terrestrial-phase reptiles or amphibians (Section 4.1.2.3), 14 
no dose-response assessment can be derived for these groups of organisms. 15 

4.3.2.4. Terrestrial Invertebrates 16 
In most Forest Service risk assessments as well as EPA risk assessments the honeybee is used as 17 
a surrogate species for terrestrial insects. Often, the honeybee bioassays are the only toxicity data 18 
for terrestrial invertebrates.  For fluazifop-P-butyl, however, data are available on other species 19 
of insects as well as earthworms.  These three sets of data are considered separately in the 20 
following subsections and are used separately in the risk characterization (Section 4.4.2.4). 21 

4.3.2.4.1. Honeybee (Standard Surrogate Species) 22 
As discussed in Section 4.1.2.4 and summarized in Appendix 3, standard oral and contact 23 
bioassays are available in honeybees.  These studies are summarized in U.S. EPA/OPP/EFED 24 
2008 (Appendix C), and additional details on NOAELs are available in ECOTOX.  In the 25 
ecological risk assessment (U.S. EPA/OPP/EFED 2008, p. 73, Table 4-3), the EPA uses the 26 
acute contact LD50 of 63 µg a.i./bee (MRID 00162453) to estimate risk quotients for the 27 
consumption of contaminated vegetation and fruit by a terrestrial insect.  As discussed in Section 28 
4.1.2.4.1, ECOTOX indicates a NOAEL for this study of 200 µg/bee, which appears to be an 29 
error; accordingly, this NOAEL is not used in the current Forest Service risk assessment.  In 30 
addition, the formulation used in this study (13.8% a.i.) corresponds to Fusilade Max but not 31 
formulations that will be used in Forest Service programs—i.e., 24.5% a.i. formulations such as 32 
Fusilade DX and Fusilade II.  Consequently, the contact LD50 of 63 µg a.i./bee from MRID 33 
00162453 is not used in the current Forest Service risk assessment because studies on other 34 
formulations more similar to those that might be used in Forest Service programs are available. 35 
 36 
As with other receptors considered in the current risk assessment, the Forest Service prefers to 37 
use NOAELs rather than LD50 values for risk characterization (SERA 2009).  For the current risk 38 
assessment, the oral NOAEL of 85.4 µg a.e./bee (MRID 00093809) for a 25% EC formulation of 39 
fluazifop-butyl is used to characterize risks associated with oral exposures.  While the specific 40 
formulation used in this study is not identified, the 25% a.i. formulation is similar to 41 
formulations that might be used in Forest Service programs.  Typical body weights for worker 42 
bees range from 81 to 151 mg (Winston 1987, p. 54).  Taking 116 mg as an average body 43 
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weight, a dose of 85.4 µg/bee corresponds to about 736 mg a.e./kg bw [0.0854 mg a.e. ÷ 1 
0.000116 kg ≈ 736.207 mg/kg bw]. 2 
 3 
For direct spray and drift exposure scenarios, the current risk assessment uses the contact 4 
NOAEL of 81µg a.e./bee from MRID 00093809, which also used a 25% EC formulation of 5 
fluazifop-butyl.  Taking the same approach used with the oral toxicity study, the dose to the bee 6 
is estimated as 698 mg a.e./kg bw [0.081 mg a.e. ÷ 0.000116 kg ≈ 698.276 mg/kg bw]. 7 

4.3.2.4.2. Other Terrestrial Arthropods 8 
In addition to the standard toxicity studies on the honeybee, additional data on terrestrial 9 
arthropods include what appear to be standard bioassays (Section 4.1.2.4.2; Appendix 3, Table 10 
A3-2) as well as field/mesocosm studies (Section 4.1.2.4.3; Appendix 3, Table A3-3).  Most of 11 
the information on other terrestrial arthropods appears to have been generated after the recent 12 
EPA ecological risk assessments, (U.S. EPA/OPP/EFED 2008, 2010a), and the discussions of 13 
risks to insects in the EPA risk assessments include only the toxicity data on bees. 14 
 15 
As discussed in Section 4.1.2.4.2, the most sensitive terrestrial arthropod (based on mortality) 16 
appears to be Typhlodromus pyri [Acarina: Phytoseiidae] with a reported LD50 of 5.6 g a.i./ha or 17 
about 0.004 lb a.e./acre (EFSA 2012).  As noted in Appendix 3 (Table A3-2), this study involved 18 
Fusilade Max.  As noted in the previous discussion of honeybees (Section 4.3.2.4.2), Fusilade 19 
Max appears to be more toxic than 25% a.i. formulations to the honeybee.  In the absence of data 20 
on the effects of 25% a.i. formulations on Typhlodromus pyri, the studies on Fusilade Max from 21 
EFSA (2012) are used in the current risk assessment.  22 
 23 
EFSA (2012) also reports another and a much higher LD50 of 174 g a.i./ha (≈0.13 lb a.e./acre) for 24 
Typhlodromus pyri.  As noted in Section 4.1.2.4.2, EFSA (2012) does not discuss the 25 
discrepancy between the reported LD50 of 5.6 g a.i. and the much higher LD50 of 177 g a.i./ha 26 
(≈0.13 lb a.e./acre), presumably from the extended laboratory studies.  The lower LD50 is about a 27 
factor of 74 higher than the application rate of 0.32 lb a.e./acre being considered by the Forest 28 
Service [0.32 lb a.e./acre ÷ 0.0043 lb a.e./acre ≈ 74.4186].  The higher LD50 is a factor of about 29 
2.5 higher than this application rate [0.32 lb a.e./acre ÷ 0.13 lb a.e./acre ≈ 2.4615].  These 30 
differences obviously have a substantial impact on risk characterization. 31 
 32 
The magnitude of the difference between the lower and higher LD50 values for Typhlodromus 33 
pyri is a factor of over 30 [177 g a.i./ha ÷ 5.6 g a.i./ha ≈ 31.607].  While details of the two 34 
experiments (or sets of experiments) with Typhlodromus pyri are not available, the difference in 35 
the LD50 values between the two studies appears to be beyond the range of normal variability, 36 
and it seems likely that the two studies used different protocols.  In the absence of additional 37 
information, the more relevant study cannot be identified.  Consequently, the risk 38 
characterizations for potentially sensitive terrestrial insects will be based on both the lower LD50 39 
of 0.004 lb a.e./acre and the higher LD50 of 0.13 lb a.e./acre (Section 4.4.2.4.2).  Note that the 40 
higher LD50 for Typhlodromus pyri (177 g a.i./ha) is very close to the LD50 of 0.137 lb a.e./acre 41 
for Aphidius rhopalosiphi [Hymenoptera: Aphidiinae] reported in EFSA (2012). 42 
 43 
Other species of terrestrial arthropods appear to be much more tolerant to fluazifop-P-butyl.  44 
Presumably, the increased mortality (21%) in larvae of the small cabbage white butterfly 45 
reported in the study by Russell and Schultz (2010) is associated with an application rate of 0.32 46 
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lb a.e./acre.  While this study does not demonstrate a dose-response relationship (i.e., only a 1 
single dose was used), the mortality in this study is supported by LD50 values in more tolerant 2 
species from the review by EFSA (2012).  The potential effects of fluazifop-P-butyl on more 3 
tolerant species of insects are handled qualitatively in the risk characterization (Section 4 
4.4.2.4.2). 5 
 6 
The field studies by Blake et al. (2011a,b) clearly indicate that applications of fluazifop-P-butyl 7 
may enhance the growth of wildflowers and that this form of vegetation management can benefit 8 
several groups of insects including bees and butterflies.  These types of field studies do not, 9 
however, contradict the toxicity data.  Consequently, the field studies by Blake et al. (2011a,b) 10 
are not used quantitatively in the dose-response assessment but are considered qualitatively in 11 
the risk characterization (Section 4.4.2.4.2). 12 

4.3.2.4.3. Earthworm 13 
As discussed in Section 4.1.2.4.4, screening studies summarized by EFSA (2012) indicate no 14 
adverse effects on earthworms at soil concentrations of >1000 mg/kg (dry weight) for either 15 
fluazifop-butyl or 5-trifluoromethyl-2-pyridone (Metabolite X).  A formal dose-response 16 
assessment for earthworms is not conducted in the current risk assessment due to the limited 17 
nature of the available toxicity data and the lack of experimental details on these studies.  18 
Nonetheless, the NOAECs are considered further in the risk characterization for earthworms, 19 
relative to the concentrations of fluazifop-P-butyl likely to occur in soil (Section 4.4.2.4.3). 20 

4.3.2.5. Terrestrial Plants (Macrophytes) 21 
The dose-response assessment for terrestrial plants in most Forest Service risk assessments is 22 
based on standard registrant-submitted phytotoxicity studies, and the species and endpoints 23 
selected for the dose-response assessment are typically those used by the U.S. EPA/OPP/EFED.  24 
As detailed in Section 4.1.2.5, however, this approach cannot be used for fluazifop-P-butyl 25 
because the EPA did not require standard phytotoxicity studies.  In the ecological risk 26 
assessments from EPA (U.S. EPA/OPP/EFED 2008, 2010a), risks to nontarget plants are 27 
addressed qualitatively—i.e., risks to monocots are presumed and risks to dicots are classified as 28 
minimal (e.g., U.S. EPA/OPP/EFED 2008, p. 9). 29 
 30 
Notwithstanding the above assessment from EPA, the available toxicity data on fluazifop-P-butyl 31 
and fluazifop-butyl support a dose-response assessment in terrestrial plants at least to the level of 32 
defining exposures for sensitive and tolerant groups of terrestrial plants.  The only substantial 33 
elaboration of the EPA’s qualitative assessment is that the sensitivity of monocots is limited to 34 
true grasses (Section 4.1.2.5.2.2.1) and does not appear to extend to other monocots (Section 35 
4.1.2.5.2.2.2).  The toxicity values selected below are based on the toxicity values summarized in 36 
Table 26 with additional details from Appendix 4 (Tables A4-1 to A4-6). 37 

4.3.2.5.1. Sensitive Monocots (Poaceae) 38 
True grasses (i.e., members of Poaceae/Gramineae family) are defined as sensitive species.  39 
Apparently due to the high toxicity of fluazifop-P-butyl to true grasses, clear NOAECs for true 40 
grasses have not been determined.  Consequently, EC50 values or LOAECs are used rather than 41 
NOAECs for true grasses. 42 
  43 
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Based on information in the review by EFSA (2012), corn appears to be the most sensitive 1 
species of Poaceae with an EC50 for growth of 0.0091 kg a.i./ha.  This EC50 is supported by 2 
LOAELs for several other Poaceae in the range of 0.02 to 0.04 kg a.i./ha.  The EC50 for corn is 3 
equivalent to about 0.007 lb a.e./acre [0.0091 kg a.i./ha x 0.892 ha/acre x 0.854 a.e./a.i. ≈ 4 
0.006932 lb a.e./acre].  Forest Service risk assessments seldom use EC50 or similar estimates 5 
(e.g., LD50) for risk characterization and often divide values such as an EC50 by factors of 10 to 6 
20 to estimate an NOAEC.  This approach is not taken for fluazifop-P-butyl.  As detailed further 7 
in Section 4.4.2.5, the risk characterization for exposures in sensitive species of monocots is 8 
unambiguous; hence, there would be little purpose in attempting to estimate a NOAEC, given the 9 
substantial body of information on fluazifop-P-butyl, which failed to define an NOAEC in 10 
sensitive species/populations of Poaceae. 11 
 12 
For soil applications (which are relevant for the assessment of offsite nontarget damage to plants 13 
due to runoff losses), a LOAEL of 0.035 kg a.i./ha in goosegrass, crabgrass, and giant foxtail is 14 
used from the study by Derr et al. (1985c).  This LOAEL may be considered as severe if not 15 
more so than an EC50 in that the exposure was associated with 73-95% control of the target 16 
grasses.  Somewhat higher LOAELs (≈0.094 kg a.i./ha) are available from the study by Blake et 17 
al. (2012) on several other Poaceae.  The application rate of 0.035 kg a.i./ha is equivalent to 18 
about 0.027 lb a.e./acre [0.035 kg a.i./ha x 0.892 ha/acre x 0.854 a.e./a.i. ≈ 0.0266619 lb 19 
a.e./acre]. 20 
 21 
As summarized in Table 26, not all Poaceae are as sensitive to fluazifop-P-butyl as the sensitive 22 
species/populations of Poaceae used in the above dose-response assessment.  The distinction 23 
between sensitive and tolerant species/populations of Poaceae is discussed further in the risk 24 
characterization (Section 4.4.2.5). 25 

4.3.2.5.2. Tolerant Terrestrial Plants 26 
As summarized in Table 26 and discussed in Section 4.1.2.5.2, the preponderance of the 27 
reasonably extensive information on the toxicity of fluazifop-butyl and fluazifop-P-butyl to non-28 
Poaceae indicates that these plants are tolerant, and most often highly tolerant.  The tolerant 29 
plants include non-Poaceae monocots as well as dicots.  Based on a single study in a fern 30 
(Pteridophyte sp.), these organisms also appear to be highly tolerant of exposures to fluazifop-P-31 
butyl. 32 
 33 
For foliar exposures, a NOAEC of 1 kg a.i./ha or about 0.76 lb a.e./acre is used for the risk 34 
characterization for typically tolerant species of terrestrial plants [1 kg a.i./ha x 0.892 ha/acre x 35 
0.854 a.e./a.i. = 0.761768 lb a.e./acre].  As summarized in Table 26, the application rate of about 36 
1 kg a.e./ha is well-documented as an NOAEC for non-Poaceae monocots as well as dicots in 37 
both greenhouse studies (Haga et al.1987; Blake et al. 2012) and field studies (Appendix 4, Table 38 
A4-6). 39 
 40 
While few studies are available on pre-emergent and/or soil exposures relative to the numerous 41 
studies on foliar/post-emergent exposures, the studies by both Rokich et al. (2009) and Blake et 42 
al. (2012) support a pre-emergent NOAEC of 0.75 kg a.i./ha, which is equivalent to about 0.57 lb 43 
a.e./acre [0.75 kg a.i./ha x 0.892 ha/acre x 0.854 a.e./a.i. = 0.571326 lb a.e./acre].  Thus, 0.57 lb 44 
a.e./acre is taken as a NOAEC for pre-emergent exposures in typically tolerant species of non-45 
Poaceae monocots and dicots. 46 
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 1 
Some dicots may evidence transient damage from fluazifop-P-butyl at levels of exposure 2 
substantially below the above toxicity values.  For example, Blake et al. (2012) noted transient 3 
damage (e.g., chlorosis) in red clover following an application of fluazifop-P-butyl at rates as 4 
low as 0.1 kg a.i./ha (≈ 0.07 lb a.e./acre).  As with tolerant or resistant Poaceae 5 
(Section 4.3.2.5.1), issues associated with atypically sensitive non-Poaceae are discussed further 6 
in the risk characterization (Section 4.4.2.5). 7 

4.3.2.6. Terrestrial Microorganisms 8 
As discussed in Section 4.1.2.6, the paper by Abdel-Mallek et al. (1996) is the most relevant 9 
study for assessing potential risks in soil microorganisms and defines a NOAEC for soil fungi of 10 
0.6 mg/kg soil (dry weight).  This is the only bioassay of microorganisms in a soil matrix.  EFSA 11 
(2012) notes effects on nitrogen and carbon mineralization following an application rate of about 12 
2.86 lb a.e./acre but the relevance of these effects to the much lower registered application rates 13 
for fluazifop-P-butyl (i.e., up to 0.32 lb a.e./acre) is unclear. 14 

4.3.3. Aquatic Organisms 15 

4.3.3.1. Fish 16 
As discussed in Section 4.1.3.1, there is a relatively standard set of acute and early life stage studies 17 
on fluazifop-P-butyl as well as related compounds and formulations.  U.S. EPA/OPP/EFED (2008, 18 
pp. 71-72) uses the LC50 of 0.32 mg a.e./L to characterize acute risks to freshwater fish and the 19 
NOAEC of ≥0.203 mg a.e./L from an early life stage study to assess longer-term risks to freshwater 20 
fish.  Both of these studies involved fathead minnows and are attributed to MRID 00093808.   21 
 22 
U.S. EPA/OPP/EFED (2008) derives separate toxicity values for saltwater/estuarine fish.  Deriving 23 
separate toxicity values for freshwater and saltwater organisms is a standard practice in EPA 24 
ecological risk assessments.  Because of the many potential nontarget species relative to the number 25 
of species on which toxicity data are available, Forest Service risk assessments will generally select 26 
the most sensitive as well as the most tolerant species (freshwater or saltwater) for the dose-response 27 
assessment unless there is a clear reason to do otherwise. 28 

4.3.3.1.1. Acute Toxicity 29 
As summarized in Table 27, the LC50 of 0.32 mg a.e./L is the lowest reported LC50 in the studies 30 
reviewed by the EPA.  In the paper from the open literature, Tejada et al. (1994) report a modestly 31 
lower LC50 of 0.25 mg a.e./L in the Nile tilapia.  Tejada et al. (1994), however, do not report an 32 
NOAEC.  The current Forest Service risk assessment will use the acute NOAEC of 0.203 mg a.e./L 33 
for fathead minnows—i.e., the NOAEC from the acute study used by U.S. EPA—to characterize 34 
risks to sensitive species of fish following acute exposures.  For tolerant species, the acute NOAEC 35 
of 0.68 mg a.e./L for technical grade fluazifop-butyl in rainbow trout is used for risk characterization.  36 
This may be viewed as somewhat conservative in that higher NOAECs are available for formulations 37 
of fluazifop-butyl and still higher NOAECs are available for sheepshead minnow (an 38 
estuarine/saltwater species).  Given the lack of experimental detail available on the studies in fish, 39 
this modestly conservative approach appears justified. 40 

4.3.3.1.2. Chronic Toxicity 41 
For longer-term exposures, the current risk assessment will use the NOAEC of 0.203 mg a.e./L from 42 
the early life stage study in the fathead minnow.  Given the patterns of toxicity in the acute studies 43 
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(i.e., fathead minnows appear to be sensitive species based on acute toxicity studies), the longer-term 1 
NOAEC in fathead minnows is applied to sensitive species.   2 
 3 
U.S. EPA/OPP/EFED (2008, pp. 72) uses a relative potency method to approximate a longer-term 4 
NOAEC of 4.3 mg a.e./L in sheepshead minnow.  As detailed in U.S. EPA/OPP/EFED (2008, p. 23, 5 
footnote 1), this approximation involves multiplying the longer-term NOAEC in the fathead minnow 6 
by the ratio of the lowest LC50 in sheepshead minnows (6.86 mg a.e./L) to the corresponding LC50 in 7 
fathead minnows (0.32 mg a.e./L) to [0.203 x 6.86 ÷ 0.32 ≈ 4.3518].  This approach is not used in the 8 
current risk assessment.  As detailed further in Section 4.4.3.1, none of the longer-term exposures in 9 
fish exceed the level of concern for the presumably sensitive species.  Thus, an extrapolated 10 
elaboration for presumably tolerant species of fish is unnecessary. 11 

4.3.3.2. Amphibians 12 
As noted in Section 4.1.3.2, no information is available on the toxicity of fluazifop-butyl or 13 
fluazifop-P-butyl to aquatic-phase amphibians.  Consequently, no dose-response assessment is 14 
proposed for this group of organisms. 15 

4.3.3.3. Aquatic Invertebrates 16 

4.3.3.3.1. Acute Toxicity 17 
U.S. EPA/OPP/EFED (2008, pp. 71-72) uses an EC50 value of 5.14 mg a.e./L (Daphnia magna, 18 
MRID 00087489) for characterizing risks to sensitive species of freshwater invertebrates and an 19 
EC50 value of 0.083 mg a.e./L (Pacific oyster, MRID 00131460, 98.6% fluazifop-butyl) for 20 
assessing risks to sensitive species of aquatic invertebrates.   21 
 22 
As summarized in Table 28, acute toxicity data are available on one species of freshwater 23 
invertebrate (Daphnia magna) and five species of saltwater/estuarine invertebrates (Pacific 24 
oyster, American oyster, fiddler crab, pink shrimp and opossum shrimp).  Given the much larger 25 
number of aquatic invertebrates that might be exposed to any pesticide, Forest Service risk 26 
assessments will typically identify the most sensitive and most tolerant invertebrates on which 27 
data are available as representative of sensitive and tolerant organisms in freshwater and 28 
saltwater. 29 
 30 
Based on the EC50 values, the most sensitive species is the Pacific oyster.  Rather than using the 31 
EC50 of 0.083 mg a.e./L, the current risk assessment will use the NOAEC of 0.048 mg a.e./L.  A 32 
modestly lower NOAEC of 0.041 mg a.e./L is reported for opossum shrimp (MRID 00093806).  33 
The difference between these two NOAECs is insubstantial and preference is given to the 34 
NOAEC for the Pacific oyster both to maintain consistency with the EPA study selection and 35 
because EC50 values are preferable to NOAECs in ranking species sensitivities.  In the absence 36 
of additional details on the studies in question—e.g., the number and spacing of concentrations 37 
tested—this approach seems reasonable.   38 
 39 
The highest acute EC50 values are reported for bioassays of technical grade fluazifop-butyl and 40 
fluazifop-P-butyl in Daphnia magna—i.e., EC50 values of >200 mg a.e./L as summarized in 41 
Table 28.  Unlike the case with fish, however, the available data indicate that fluazifop-P-butyl 42 
formulations are much more toxic (i.e., EC50 values in the range of 1.79 to 5.14 mg a.e./L) than 43 
unformulated fluazifop-P-butyl.  Because acute exposures will most likely involve the 44 
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formulated product, the acute toxicity data on technical grade fluazifop-butyl are not considered 1 
further for the dose-response assessment. 2 
 3 
As summarized in Table 28, the only formulation acute LC50 with a corresponding NOAEC for 4 
Daphnia magna is 5.14 mg a.e./L (MRID 00087489).  As noted above, this is the study used by 5 
U.S. EPA/OPP/EFED (2008) for the dose-response assessment for freshwater invertebrates.  For 6 
the current risk assessment, the NOAEC of 1.07 mg a.e./L is used to characterize risks for 7 
tolerant species of aquatic invertebrates.  8 

4.3.3.3.2. Chronic Toxicity 9 
The longer-term toxicity studies on fluazifop-butyl, fluazifop-P-butyl, and formulations are 10 
summarized in Table 29.  The U.S. EPA/OPP/EFED (2008, Table 4-2, p. 72) uses the 11 
reproduction NOAEC of 0.0148 mg a.e./L for opossum shrimp (MRID 00093805) to assess risks 12 
to estuarine/marine invertebrates and the reproduction NOAEC of 0.0854 mg a.e./L to assess 13 
risks to freshwater aquatic invertebrates (MRID 00093807).   14 
 15 
As with the ecological risk assessment from EPA, the current Forest Service risk assessment uses 16 
the reproduction NOAEC of 0.0148 mg a.e./L for opossum shrimp (MRID 00093805) to 17 
characterize risks of longer-term exposures for sensitive species of aquatic invertebrates and the 18 
NOAEC of 0.0854 mg a.e./L to characterize risk for more tolerant species of aquatic 19 
invertebrates.   20 
 21 
Given that there are only two species on which longer-term toxicity data are available and given 22 
that the range of reported NOAECs varies by only a factor of about 6 [0.0854 mg a.e./L ÷ 0.0148 23 
mg a.e./L ≈ 5.7703], there is no expectation that the available data will necessarily encompass 24 
the variability that could be evidenced in several aquatic invertebrates which might be exposed to 25 
fluazifop-P-butyl.   26 

4.3.3.4. Aquatic Plants 27 
As summarized in Table 30 and discussed in Section 4.1.3.4, several bioassays are available on 28 
the toxicity of fluazifop-P-butyl and related compounds to algae and three bioassays are 29 
available on the toxicity of fluazifop-P-butyl to aquatic macrophytes.  This literature is not 30 
addressed in U.S. EPA/OPP/EFED (2008; 2010a), the EPA ecological risk assessments on 31 
fluazifop-P-butyl.  Consequently, the following sections contain no discussion of concordance 32 
with the EPA risk assessments. 33 

4.3.3.4.1. Algae 34 
The data on algae are highly variable and, as discussed in Section 4.1.3.4, this could be due to 35 
differences in species sensitivities, differences in the toxicity of different formulations, a 36 
combination of these factors, or other factors that cannot be identified from the available 37 
summaries.  The only clear pattern based on the summaries from EFSA (2012) is that Fusilade 38 
Max is much more toxic than technical grade fluazifop-P-butyl.  The greater toxicity of Fusilade 39 
Max relative to other formulations has been discussed previously with respect to honeybees 40 
(Section 4.1.2.4.1). 41 
 42 
For sensitive species, the EC50 of 0.02 mg a.e./L for Fusilade Max assayed in 43 
Pseudokirchneriella subcapitata (EFSA (2012) is the lowest reported EC50 for fluazifop-P-butyl 44 
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or other fluazifop-P-butyl formulations.  As noted above, Fusilade Max appears to be more toxic 1 
to honeybees than Fusilade formulations that are representative of formulations that the Forest 2 
Service proposes to use (Section 4.1.2.4.1).  In the absence of information on the toxicity of 3 
Fusilade DX or Fusilade II to algae, however, the EC50 of 0.02 mg a.e./L is used in the current 4 
risk assessment to characterize risks in sensitive species of algae.  In the absence of a NOAEC 5 
from this study, the EC50 is divided by 20 to approximate an NOAEC (SERA 2011a, Section 6 
4.3.2, p. 98).  Thus, the NOAEC for Pseudokirchneriella subcapitata is estimated as 0.001 mg 7 
a.e./L. 8 
 9 
Based on the series of studies by Ma and coworkers, the highest EC50 is 22.8 mg a.e./L—i.e., the 10 
EC50 for Scenedesmus obliquus using a 53% a.i. formulation, presumably from China.   As with 11 
potentially sensitive species, the EC50 is divided by 20 and the NOAEC is estimated as 1.14 mg 12 
a.e./L. 13 
 14 
The need to use toxicity data for formulations other than those likely to be used by the Forest 15 
Service and the need to extrapolate an NOAEC from an EC50 greatly diminish confidence in the 16 
risk assessment for potentially sensitive and tolerant species of algae.  This is emphasized further 17 
in the risk characterization (Section 4.4.3.4.1). 18 

4.3.3.4.2. Aquatic Macrophytes 19 
The available data on aquatic macrophytes is sparse—i.e., limited to two indefinite EC50 values 20 
in Lemna gibba from EFSA (2012) and one reported NOAEC in Lemna paucicostata from 21 
Michel et al. (2004).  The paper by Michel et al. (2004) is essentially a methods development 22 
paper in a species of Lemna that is not commonly used in risk assessment.  While the bioassay 23 
on fluazifop-P-butyl is not described in detail, the publication does clearly indicate that 24 
fluazifop-P-butyl caused no effect at a concentration of 1,000 µM (Michel et al. 2004, Table 2, p. 25 
1076 of paper), equivalent to about 327 mg a.e./L.  This documentation is superior to the brief 26 
summaries in EFSA (2012) of the bioassays in the more commonly used species, Lemna gibba. 27 
Consequently, the concentration of 327 mg a.e./L is used in the current risk assessment. 28 
 29 
Because no data are available on other species of aquatic macrophytes, the NOAEC of 327 mg 30 
a.e./L is considered applicable to apparently tolerant species.  In the absence of additional data, 31 
no dose-response assessment is proposed for potentially sensitive species of aquatic 32 
macrophytes.  As discussed further in Section 4.4.3.4.2, potentially sensitive species of aquatic 33 
macrophytes would include aquatic Poaceae monocots. 34 
  35 
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4.4. RISK CHARACTERIZATION 1 

4.4.1. Overview 2 
Fluazifop-P-butyl is an effective herbicide for the control of many annual and perennial grass 3 
weeds (i.e., Poaceae monocots); however, it is much less toxic to dicots and non-Poaceae 4 
monocots.  Consequently, applications of fluazifop-P-butyl do not appear to pose a risk to 5 
terrestrial dicots or non-Poaceae monocots.  This risk characterization is supported by several 6 
field studies.  Consistent with the labelled uses of fluazifop-P-butyl, this herbicide is more toxic 7 
in post-emergent foliar applications than pre-emergent/soil applications.  Drift is the scenario of 8 
greatest concern for nontarget sensitive Poaceae monocots.  Adverse effects in sensitive species 9 
of nontarget plants (Poaceae) could also occur in some cases if contaminated water is used for 10 
irrigation.  Runoff and wind erosion of soil from the treated site do not appear to pose risks to 11 
nontarget plants. 12 
   13 
The risk characterization of mammals and birds is constrained by the lack of field studies 14 
involving exposure of mammals and birds to applications of fluazifop-P-butyl.  Consequently, 15 
the risk characterization is based solely on laboratory studies and modeled estimates of exposure.  16 
Longer-term exposures to mammals and birds are a concern for exposure scenarios involving the 17 
consumption of contaminated vegetation.  Following three applications, the upper bound HQs 18 
reach to 57 for a small bird and 146 for a small mammal.  Following one or two applications, the 19 
central estimates of the HQs are lower, but some scenarios exceed the level of concern (HQ=1).  20 
The HQs for mammals are of greater concern because of a possible association between 21 
exposure levels and endpoints involving reproductive capacity (i.e., decreased testes weight).  22 
There are no data to suggest that levels of long-term exposure to fluazifop-P-butyl will cause 23 
adverse effects in birds.  Furthermore, acute exposures associated with the consumption of 24 
contaminated vegetation by birds do not appear to pose a hazard.  For mammals, some of the 25 
acute HQs associated with the consumption of contaminated vegetation exceed the level of 26 
concern (i.e., a maximum HQ of 7).  The highest levels of exposure are associated with the 27 
consumption of contaminated short grasses, which enhances the level of concern for acute 28 
exposures, because fluazifop-P-butyl is applied to grasses.  For chronic exposures, the 29 
consumption of treated contaminated grasses is less plausible, because fluazifop-P-butyl will kill 30 
most treated grasses with the exception of resistant grasses.  Exposure scenarios for mammals 31 
and birds involving contaminated water are of much less concern than those associated with 32 
contaminated vegetation.  This is a common pattern in herbicide risk assessments.  Some 33 
scenarios for the consumption of contaminated fish by a canid, large mammalian carnivore, and 34 
piscivorous bird result in HQs that exceed the level of concern at the upper bounds of estimated 35 
exposures. 36 
 37 
For most herbicides, risks to terrestrial invertebrates are characterized using toxicity data on the 38 
honeybee as a surrogate species.  Based on these data, no risks to terrestrial insects would be 39 
anticipated.  For fluazifop-P-butyl, however, toxicity data are available from the European 40 
literature, and some mesocosm and field studies are published in the open literature.   Based on 41 
the results of one bioassay on a predatory mite (Typhlodromus pyri), risks to sensitive species of 42 
terrestrial arthropods could be substantial (i.e., an HQ of 80 for direct spray).   Based on another 43 
bioassay in this species as well as toxicity data on other terrestrial arthropods, risks are apparent 44 
but could be much lower (i.e., an HQ of 2 for direct spray).  Many of the most relevant studies 45 
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are summarized only briefly in a review by the European Food Safety Authority (EFSA 2012).  1 
The full studies summarized in EFSA (2012) were not available for the preparation of the current 2 
risk assessment and no interpretation of the inconsistent toxicity data on Typhlodromus pyri can 3 
be offered.  Published field studies indicate that applications of fluazifop-P-butyl used to enhance 4 
the growth of wildflowers can be beneficial to both bees and butterflies.  These field studies, 5 
however, do not exclude the possibility of direct adverse effects in sensitive species of insects. 6 
 7 
The risk characterization for aquatic plants is variable.  The characterization of risks to aquatic 8 
macrophytes is limited in that data are available on only one genus, Lemna, an aquatic non-9 
Poaceae monocot.  No risks to Lemna are anticipated, even in the event of an accidental spill.  10 
By analogy to the more extensive data on terrestrial plants, it seems likely that risks to aquatic 11 
dicots and other non-Poaceae monocots would also be low.  In the absence of toxicity data, 12 
potential risks to aquatic Poaceae monocots are a concern; however, these risks cannot be 13 
assessed quantitatively.  Some species of algae do appear to be at risk (HQs up to 150) in non-14 
accidental exposure scenarios.  Both sensitive and tolerant species of algae could be adversely 15 
affected in the event of an accidental spill. 16 
 17 
The risk characterization for aquatic animals is somewhat less variable than that for aquatic 18 
plants.  Except for an accidental spill, exposure scenarios involving fish do not appear to present 19 
a risk.  Aquatic invertebrates are more sensitive than fish to fluazifop-P-butyl.  While the central 20 
estimates and lower bounds of exposures are not a concern, some of the upper bound estimates 21 
of exposure lead to HQs (1.4 to 4) that modestly exceed the level of concern (HQ=1). 22 
 23 
While relatively little information is available on soil-dwelling organisms including soil 24 
microorganisms, this information suggests that fluazifop-P-butyl is not likely to adversely affect 25 
this group of organisms.   26 
 27 
No data are available on reptiles and terrestrial or aquatic amphibians.  Consequently, no risk 28 
characterization is developed for these groups of organisms. 29 
 30 
While the risk characterization for fluazifop-P-butyl focuses on the potential for direct toxic 31 
effects, there is potential for secondary effects in virtually all groups of nontarget organisms.  32 
Terrestrial applications of any effective herbicide, including fluazifop-P-butyl, are likely to alter 33 
vegetation within the treatment area.  This alteration could have secondary effects on terrestrial 34 
or aquatic animals, including changes in food availability and habitat quality.  These secondary 35 
effects may be beneficial to some species (e.g., bees and butterflies as noted above) and 36 
detrimental to other species; moreover, the magnitude of secondary effects is likely to vary over 37 
time.  While these concerns are acknowledged, they are not specific to fluazifop-P-butyl or 38 
herbicide applications in general.  Any effective method for vegetation management, including 39 
mechanical methods which do not involve fluazifop-P-butyl or any other herbicide, could be 40 
associated with secondary effects on both nontarget animals and vegetation. 41 
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4.4.2. Terrestrial Organisms 1 

4.4.2.1. Mammals 2 
Table 34 gives an overview of the risk characterization for mammals associated with acute and 3 
longer-term exposure scenarios following three applications of fluazifop-P-butyl.  This table is 4 
taken from Worksheet G02a of Attachment 3.   5 
 6 
Table 34 does not include the accidental exposure scenarios.  As discussed in Section 4.2.2, the 7 
accidental exposure scenarios involve direct spray and the consumption of contaminated water or 8 
fish following an accidental spill.  These accidental exposure scenarios are identical for one, two, 9 
or three applications.  The only accidental exposure scenarios that exceed the level of concern 10 
(HQ=1) are the upper bound HQs for the consumption of contaminated fish by a 5 kg canid 11 
(HQ=9) and a 70 kg carnivore (HQ=13). 12 
 13 
For the acute non-accidental exposure scenarios, the central estimates of the HQs are below the 14 
level of concern except for the small mammal consuming contaminated grass (central HQ = 1.4).  15 
The upper bounds HQs for a small mammal exceeds the level of concern for the consumption of 16 
broadleaf vegetation (HQ=4), tall grass (HQ=3), and short grass (HQ=7).  The upper bound HQ 17 
for a 400 g mammal consuming short grass (HQ=1.7) also modestly exceeds the level of 18 
concern. 19 
 20 
The HQs associated with the longer-term consumption of contaminated vegetation are much 21 
higher, reflecting the substantial difference between the acute NOAEC (43 mg a.e./kg bw) and 22 
the longer-term NOAEC (0.63 mg a.e./kg bw/day).  Two of the lower bound HQs for a small 23 
mammal modestly exceed the level of concern—i.e., an HQ of 1.2 for contaminated broadleaf 24 
foliage and an HQ of 2 for contaminated short grass.  Several of the central estimates associated 25 
with the consumption of contaminated vegetation exceed the level of concern and some by 26 
substantial margins.  The central estimates of the HQs are highest for the small mammal, ranging 27 
from 3 for the consumption of contaminated fruit to 26 for the consumption of contaminated 28 
short grass.  All of the upper bound HQs for the consumption of contaminated vegetation exceed 29 
the level of concern for all receptors (20 g, 400 g, and 70 kg mammals) and all forms of 30 
vegetation.  The upper bound HQs range from 1.6 (the consumption of contaminated fruit by a 31 
large mammal) to 146 (the consumption of short grass by a small mammal).   32 
 33 
As discussed in Section 3.2.3.7, concern for the longer-term exposure scenarios involving the 34 
consumption of contaminated broadleaf vegetation is not reduced because fluazifop-P-butyl is 35 
relatively nontoxic to broadleaf vegetation.  Conversely, fluazifop-P-butyl is highly toxic to 36 
grasses.  Consequently, concern for the exceedances in exposure scenarios associated with the 37 
longer-term consumption of grasses by mammals is reduced. 38 
 39 
In addition to the exposure scenarios for contaminated vegetation, the upper bounds of the HQs 40 
for contaminated fish also exceed the level of concern—i.e., an HQ of 7 for a 70 kg carnivore 41 
and HQ of 10 for a 5 kg canid. 42 
 43 
As summarized in Table 22 and discussed in Section 3.3, the acute NOAEL of 50 mg a.i./kg bw 44 
is derived from a developmental study (submitted in both MRID 00088857 and MRID 45 
92067047) with a LOAEL of 200 mg a.i./kg bw.  The HQ associated with this LOAEL is about 4 46 
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[200 ÷ 50].  The LOAEL is based on diaphragmatic hernias in offspring.  The acute exceedances 1 
might be associated with conditions that could impair the ability of offspring to survive and/or 2 
develop normally; however, overt signs of toxicity would probably not be observed.  Acute HQs 3 
at or above 4 are noted only at upper bound exposures for the small mammal consuming 4 
broadleaf vegetation (HQ=4) or short grass (HQ=7). 5 
   6 
The acute risk characterization given above for acute exposure scenarios is not consistent with 7 
U.S. EPA/OPP/EFED (2008, p. 7) which notes that …no acute risks are expected for mammals.  8 
As discussed in Section 4.3.2.1, a major difference between the current Forest Service risk 9 
assessment and the EPA risk assessment is the EPA’s use of an acute oral LD50 of 1940 mg 10 
a.i./kg bw (MIRD 00162439) for risk characterization, which is about 39 times greater than the 11 
acute NOAEL 50 mg a.i./kg bw used in the current risk assessment [1940 mg a.i./kg bw ÷ 50 mg 12 
a.i./kg bw = 38.8]. 13 
 14 
As also summarized in Table 22, the longer-term NOAEL of 0.74 mg a.i./kg bw/day is 15 
associated with a LOAEL of 5.8 mg a.i./kg bw/day, with a corresponding HQ of about 8 [5.8 mg 16 
a.i./kg bw/day ÷ 0.74 mg a.i./kg bw/day ≈ 7.838].  The chronic LOAEL is associated with 17 
decreased testes weight in male offspring.  This chronic exceedance could be associated with 18 
diminished reproductive capacity.  As with the acute exceedances, there would be no expectation 19 
of overt signs of toxicity.   20 
 21 
The risk characterization for longer-term exposures discussed above is reasonably consistent 22 
with U.S. EPA/OPP/EFED (2008, p. 7) which notes that … the chronic mammalian RQ [risk 23 
quotient] values exceed the Agency's LOC [level of concern] for all proposed uses except for 24 
mammals feeding only on fruits, pods, large insects or seeds. The minor differences between the 25 
current risk assessment and the EPA risk assessment reflect differences in the mammalian 26 
receptors that are considered and the methods used to estimate food consumption. 27 
 28 
As discussed in Section 4.2.2.3, the exposure assessments for mammalian wildlife assume that 29 
100% of the diet of the receptor is contaminated.  For some mammals, particularly the canid and 30 
the 70 kg mammal, this assumption might be conservative and in some cases extremely 31 
conservative for longer-term exposures if only moderate or small areas are treated with 32 
fluazifop-P-butyl.   In such cases, the receptors could move in and out of the treated areas and a 33 
small proportion of the diet would be contaminated.  Given the magnitude of the HQs, however, 34 
these considerations do not have a substantial impact on the risk characterization. 35 

4.4.2.2. Birds 36 
Table 35 gives an overview of the risk characterization for birds associated with acute and 37 
longer-term exposure scenarios following three applications of fluazifop-P-butyl.  This table is 38 
taken from Worksheet G02b of Attachment 3.   39 
 40 
As with the corresponding table for mammals (Table 34), Table 35 does not include the 41 
accidental exposure scenarios.  For birds, all of the accidental exposure scenarios are below the 42 
level of concern (HQ=1).  The highest accidental HQ for birds is 0.6, the upper bound HQ for the 43 
consumption of contaminated fish by a piscivorous bird. 44 
 45 
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Unlike the case with mammals (Section 4.4.2.1), none of the acute non-accidental exposure 1 
scenarios lead to HQs that exceed the level of concern.  The highest acute HQ is 0.7, the upper 2 
bound for the consumption of short grass by a small bird following three applications of 3 
fluazifop-P-butyl.  The major factor in the much less severe acute risk characterization for birds, 4 
relative to mammals, is the difference in the toxicity values—i.e., an NOAEC of 1069 mg/kg bw 5 
for birds and an NOAEL of 43 mg/kg bw for mammals.   6 
 7 
For chronic exposures, the NOAEC for birds (3.3 mg a.e./kg bw/day) is only modestly higher 8 
than the NOAEC for mammals (0.63 mg a.e./kg bw/day), and the longer-term risk 9 
characterization for birds is similar (although somewhat less severe) than that for mammals.  10 
None of the lower bound chronic HQs substantially exceed the level of concern.  Based on the 11 
central estimates of exposure, the HQs exceed the level of concern for a small bird consuming 12 
short grass (HQ=12), tall grass (HQ=5), and broadleaf vegetation (HQ=7) as well as a large bird 13 
consuming contaminated grass (HQ=1.4).  The upper bound estimates of the HQ substantially 14 
exceed the level of concern—i.e., HQs of up to 8 for a large bird and 69 for a small bird 15 
consuming contaminated short grass. 16 
 17 
As discussed in Section 4.3.2.2, the reproduction studies in birds from which the NOAEL of 3.3 18 
mg a.e./kg bw/day is taken do not identify an adverse effect level.  Consequently, it is not 19 
possible to associate specific adverse effects with HQs that exceed the level of concern (HQ=1).  20 
Nonetheless, concerns would be minimal for modest exceedances (e.g., HQ=1.4) and more 21 
substantial for greater exceedances. 22 
 23 
The qualitative risk characterization for birds given in the current risk assessment is similar to 24 
that in U.S. EPA/OPP/EFED (2008, Table 4-4, p. 73)—i.e., no acute risks to birds are 25 
anticipated; however, exposures involving short grasses modestly exceed the EPA’s level of 26 
concern.   Numerically, the EPA gives an RQ (risk quotient) of <1.8 based on the bobwhite quail 27 
and mallard duck NOAEC of 50 ppm.  For the same exposure scenario, the central estimates of 28 
the HQs in the current risk assessment range from 1.4 (large bird) to 12 (small bird).  The EPA 29 
does not derive lower or upper bound HQs.  The EPA RQs and the HQs in the current risk 30 
assessment differ primarily due to disparities in the exposure assessments. 31 

4.4.2.3. Reptiles and Amphibians (Terrestrial Phase) 32 
Risks to reptiles and terrestrial phase amphibians cannot be characterized directly because of the 33 
lack of data on the toxicity of fluazifop-P-butyl to these groups of organisms.  As discussed in 34 
Section 4.1.2.3, the U.S. EPA/OPP/EFED typically uses data on birds as a surrogate for reptiles 35 
and terrestrial phase amphibians.  Given the very limited data available on birds as well as other 36 
concerns relating to absorption noted in Section 4.1.2.3, this approach seems tenuous for 37 
fluazifop-P-butyl. 38 

4.4.2.4. Terrestrial Invertebrates 39 

4.4.2.4.1. Honeybee (Standard Surrogate Species) 40 
Based on the available oral toxicity data on the honeybee and using this species as a surrogate for 41 
herbivorous insects, there is no basis for asserting that herbivorous insects would be at risk 42 
following the consumption of contaminated vegetation.  As detailed in Attachment 3 43 
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(three applications), Worksheet G03b, the highest HQ is 0.2, the upper bound HQ associated 1 
with the consumption of contaminated grass. 2 
 3 
Based on the available contact toxicity data on the honeybee, there is no basis for asserting that 4 
fluazifop-P-butyl would cause adverse effects following direct spray or surface contamination of 5 
the insect due to spray drift.  As summarized in Worksheet G09 of the workbooks that 6 
accompany this risk assessment, the HQ associated with direct spray is only 0.03—i.e., below 7 
the level of concern by a factor of over 30.  HQs based on drift with or without foliar interception 8 
are much lower. 9 

4.4.2.4.2. Other Terrestrial Arthropods 10 
As discussed in Section 4.3.2.4.2, brief summaries of toxicity studies on insects other than the 11 
honeybee are included in the assessment by the European Food Safety Authority (2012).  The 12 
lowest reported LD50 is 0.004 lb a.e./acre for Typhlodromus pyri, a predatory mite.  A subsequent 13 
study on this species yielded a much higher LD50 of 0.13 lb a.e./acre.  As noted in Section 14 
4.3.2.4.2, the more relevant study cannot be identified due to the lack of information on these 15 
studies.  Given this lack of information, the risk characterization for potentially sensitive 16 
terrestrial arthropods is based on both the lower LD50 of 0.004 lb a.e./acre as well as the higher 17 
LD50 of 0.13 lb a.e./acre.  The HQs for sensitive arthropods are given in Worksheet G10 of the 18 
workbooks that accompany this risk assessment (Attachments 1 to 3).  The worksheet is included 19 
in this risk assessment as Table 36.  The HQs in Table 36 are different from all other HQs 20 
discussed in the current risk assessment because the values are based on an LD50 rather than an 21 
estimated NOAEC.  Following the approach generally used by the U.S. EPA/OPP/EFED, the 22 
levels of concern may be viewed as variable, ranging from 0.5 for direct toxicity to 0.1 for 23 
threatened or endangered species.   24 
 25 
Based on the lower LD50 of 0.004 lb a.e./acre, the HQ for direct spray is 80—i.e., the exposure 26 
would exceed the LD50 by a factor of 80.  This HQ requires little elaboration.  Assuming that the 27 
LD50 of 0.004 lb a.e./acre is relevant; the death of insects that are similarly sensitive to fluazifop-28 
P-butyl as are Typhlodromus pyri would be anticipated.  HQs reach or exceed the LOC of 0.1 at 29 
distances of 900 feet for aerial application (HQ=1.0) and high boom ground broadcast 30 
application (HQ=0.1), 500 feet for low boom ground broadcast application (HQ=0.2), and 100 31 
feet for backpack directed foliar application (HQ=0.2).  As discussed above, these HQs are all 32 
based on an LD50 and hence the level of concern is variable, ranging from 0.5 for direct toxicity 33 
to 0.1 for threatened or endangered species.   34 
 35 
Based on the higher LD50 of 0.13 lb a.e./acre, the HQ for direct spray is 2.  While this HQ is 36 
much lower than the corresponding HQ for direct spray discussed above, an exposure at twice 37 
the LD50 would be associated with substantial rates of mortality.  These rates, however, cannot 38 
be estimated without information on the slope of the dose-response curve.  The offsite HQs reach 39 
or exceed the level of concern only at distances of about 100 feet for aerial applications 40 
(HQ=0.2) and 50 feet for high boom ground broadcast application (HQ=0.1). 41 
 42 
There are obvious and substantial concerns with this risk characterization.  The studies cited by 43 
EFSA (2012) were conducted with Fusilade Max (13.7% a.i.), and their relevance in assessing 44 
risks associated with formulations of ≈25% a.i. (i.e., Fusilade DX and Fusilade II) that might be 45 
used in Forest Service Programs  is not clear.  Furthermore, since EFSA (2012) provides few 46 
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details on how the studies were conducted and assessed, there is little confidence in the high HQs 1 
based on the lower LD50.  Instead, confidence is much greater in the lower HQs based on the 2 
higher LD50 because the higher LD50 is supported by a similar LD50 in another species—i.e., the 3 
LD50 of 0.137 lb a.e./acre for Aphidius rhopalosiphi [Hymenoptera: Aphidiinae] also reported in 4 
EFSA (2012).    5 
   6 
As noted in Section 4.1.2.4.2, EFSA (2012, p. 12) does offer an interpretation of the data on 7 
Typhlodromus pyri which is essentially a risk characterization worth repeating:  …the off-field 8 
risk was assessed as low and, based on the residue decline and the time of application, the 9 
experts concluded that recovery in the treated field area for the most sensitive species may occur 10 
within one year. 11 
 12 
Based on the HQs discussed above, the current risk assessment concurs with the statement that 13 
adverse effects on terrestrial arthropods could be observed in the treated site following 14 
applications of fluazifop-P-butyl but that offsite effects would be less substantial.  The statement 15 
concerning a 1-year recovery period, however, is less clearly supported.  EFSA (2012) does not 16 
discuss in detail fluazifop-P-butyl half-lives on vegetation.  Based on the upper bound half-life of 17 
8.7 days (Table 18), the dissipation coefficient for fluazifop-P-butyl on vegetation is about 18 
0.07967 days-1 [ln(2)÷8.7 days].  Taking the most conservative approach by using the HQ of 80 19 
and a level of concern of 0.1 (threatened and endangered species), the time required for an HQ of 20 
80 to reach an HQ of 0.1 would be about 84 days—i.e., 80 x e-0.07967 x 83.9037 = 0.1.  Based on 21 
these crude calculations, a recovery period of about 3 months seems possible.  Depending on the 22 
life cycle of the insect, however, functional recovery (i.e., repopulation) could take longer to 23 
occur, and the estimate of 1 year by EFSA (2012) could be reasonable. 24 
 25 
Concern for sensitive species of terrestrial arthropods is enhanced by the Russell and Schultz 26 
(2010) publication as discussed in Section 4.1.2.4.3.  While the field studies by Blake et al. 27 
(2011a,b) clearly indicate that applications of fluazifop-P-butyl may be beneficial to some 28 
insects over the longer-term due to changes in vegetation, these field studies do not diminish 29 
concern for the potential for direct toxic effects on sensitive species of arthropods. 30 

4.4.2.4.3. Earthworm 31 
A quantitative risk characterization for earthworms is not developed.  Nonetheless, as discussed 32 
in the hazard identification (Section 4.1.2.4.4), fluazifop-P-butyl as well as 5-trifluoromethyl-2-33 
pyridone (Metabolite X) are not toxic to earthworms at soil concentrations that substantially 34 
exceed those anticipated from field applications of fluazifop-P-butyl. 35 

4.4.2.5. Terrestrial Plants 36 

4.4.2.5.1. Direct Spray and Spray Drift 37 
The HQs for sensitive and tolerant species of terrestrial plants are summarized in Worksheet 38 
G05a (fine droplets) and Worksheet G05b (coarse droplets).  These worksheets are customized to 39 
reflect the use of four sets of values for drift: aerial application, ground high-boom broadcast 40 
application, ground low-boom broadcast application, and directed foliar backpack application. 41 
 42 
As detailed in Section 4.2.4.2, all estimates of drift are based on AgDRIFT (Teske et al. 2002).  43 
As detailed in Section 4.3.2.5 and summarized in Table 23, all HQs are based on NOAELs from 44 
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studies on vegetative vigor (foliar applications)—i.e., a NOAEL of 0.007 lb a.e./acre for 1 
sensitive species of Poaceae monocots and a NOAEL of 0.76 lb a.e./acre for dicots and tolerant 2 
species of non-Poaceae monocots. 3 
  4 
Fluazifop-P-butyl is an effective herbicide for the control of grassy weeds.  If sensitive species of 5 
Poaceae monocots are directly sprayed with fluazifop-P-butyl at the maximum application rate of 6 
0.32 lb a.e./acre, the impact on the true grasses will be severe (HQ=46).  Following a direct 7 
spray, the HQ for tolerant species (i.e., dicots and tolerant species of monocots) is 0.6—i.e., no 8 
adverse effects would be anticipated. 9 
  10 
Based on estimates of drift using AgDRIFT, risks to sensitive monocots remain above the level 11 
of concern downwind from the application site.  As summarized in Worksheet G05a for the 12 
application of fine droplets, the risks will be greatest with aerial applications (HQ=1.4 at 300 feet 13 
down wind).  The HQs for fine droplet applications, however, should be viewed as essentially 14 
accidental exposures and misapplications of fluazifop-P-butyl.  For coarse droplet applications, 15 
which would be the norm in actual applications in Forest Service programs, the risks to sensitive 16 
species of nontarget vegetation fall below the level of concern at a distance of 300 feet 17 
downwind (HQ=0.4) for aerial applications.  As discussed in Section 3.2.3.4.2, some product 18 
labels for fluazifop-P-butyl prohibit flood type nozzle tips which deliver large droplet sprays but 19 
very large droplets (e.g., >500 µm) are not typically used by the Forest Service in pesticide 20 
applications. 21 
 22 
To put it simply, directed spray ground applications using coarse droplets (i.e., the most likely 23 
type of application to be used by the Forest Service) are not likely to damage offsite nontarget 24 
Poaceae monocots at distances as close to 25 feet from the application site.  Other types of 25 
vegetation—i.e., tolerant non-Poaceae monocots and dicots—are not likely to be damaged even 26 
if sprayed directly. 27 

4.4.2.5.2. Soil Exposures by Runoff 28 
Risks to nontarget vegetation associated with runoff and sediment losses to a field adjacent to the 29 
treated site are estimated in Worksheet G04 of the EXCEL workbook attachments that 30 
accompany this risk assessment.  The risk characterization for soil exposures is unambiguous.  31 
Even following three applications at the maximum application rate and minimum application 32 
interval of 14 days, the upper bound of the HQ for sensitive species (i.e., true grasses) is only 33 
0.9, approaching but not exceeding the level of concern (HQ=1).  For tolerant species of plants 34 
(e.g., non-Poaceae monocots and most dicots), the maximum HQ is 0.03, below the level of 35 
concern by a factor of about 33.  Given the extreme value approach used in the GLEAMS-Driver 36 
modeling on which the exposure assessment is based (Section 3.2.3.4.3), there is no basis for 37 
asserting that runoff of fluazifop-P-butyl (most likely as fluazifop acid) is likely to adversely 38 
affect nontarget or even target vegetation.  While fluazifop-P-butyl can be phytotoxic in pre-39 
emergent or soil applications (Section 4.1.2.5.2.4), these types of applications are less phytotoxic 40 
than foliar applications. 41 

4.4.2.5.3. Contaminated Irrigation Water 42 
The HQs for nontarget plants associated with using fluazifop-P-butyl contaminated surface water 43 
for irrigation are summarized in Worksheet G06a.  For a single application (Attachment 1), the 44 
HQs are 0.2 (0.003 to 5) for sensitive species and 0.003 (0.00006 to 0.06) for tolerant species of 45 
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terrestrial plants.  For two applications (Attachment 2), the HQs are 0.4 (0.009 to 8) for sensitive 1 
species and 0.005 (0.0001 to 0.1) for tolerant species of terrestrial plants.  For three applications 2 
(Attachment 3), the HQs are 0.5 (0.01 to 10) for sensitive species and 0.006 (0.0002 to 0.1) for 3 
tolerant species of terrestrial plants.  The identical upper bound of 0.1 for sensitive species of 4 
plants following two and three applications is an artifact of the rounding.  The underlying values 5 
are about 0.10429 for two applications and about 0.11956 for three applications. 6 
 7 
Based on these HQs, there is no basis for asserting that tolerant species of plants (e.g., non-8 
Poaceae monocots and most dicots) will be damaged if contaminated water is used for irrigation.  9 
In most cases, no damage should be seen in sensitive species (i.e., Poaceae/true grasses).  At the 10 
upper bounds of estimated exposures, however, HQs in the range of 5 to 10 could be associated 11 
with detectable damage to sensitive monocots. 12 
 13 
As discussed in Section 4.2.4.4, the product labels for Fusilade II and Fusilade DX do not 14 
include cautionary language concerning the use of contaminated surface water for irrigation.    15 
The lack of cautionary language concerning the use of contaminated surface water on the product 16 
labels is not a substantial concern, except for highly sensitive crops (e.g., corn).     17 

4.4.2.5.4. Wind Erosion 18 
Risks to nontarget vegetation associated with wind erosion of contaminated soils are 19 
insubstantial.  At the maximum seasonal rate—i.e., three applications at 0.32 lb a.e./acre with a 20 
14-day application interval, the upper bound HQ for sensitive species is 0.006, below the level of 21 
concern by a factor of over 166 (Worksheet G06b in Attachment 3).  As detailed in Section 22 
4.2.4.5, substantial uncertainties are associated with this exposure scenario, and the expected loss 23 
rates for soil are intended to represent forestry applications.  Much higher loss rates (i.e., up to a 24 
factor of about 8.7) could occur if fluazifop-P-butyl were to be applied inadvertently to fallow 25 
soil.  Even within this range of uncertainty, the HQs for both sensitive and tolerant species 26 
indicate that wind erosion is not a substantial concern relative to other routes of exposure, 27 
particularly direct spray or drift (Section 4.4.2.5.1). 28 

4.4.2.6. Terrestrial Microorganisms 29 
As with most other Forest Service risk assessments, a quantitative risk characterization for 30 
terrestrial microorganisms is not developed in the current risk assessment because the available 31 
data do not support a quantitative risk characterization.  Based on the NOAEC for soil fungi of 32 
0.6 mg/kg soil (dry weight) (Section 4.3.2.6) and the highest estimated concentrations of 33 
fluazifop-P-butyl in soil following three applications of fluazifop-P-butyl at 0.32 lb a.e./acre—34 
i.e., 0.13 (0.010 to 0.28) mg a.e./kg soil (dry weight)—there is no basis for asserting that soil 35 
fungi would be adversely affected by applications of fluazifop-P-butyl.    36 
 37 
Notwithstanding the above, the data on the potential effects of fluazifop-P-butyl on soil 38 
microorganisms are viewed as marginal given the numerous soil microorganisms that could be 39 
exposed to fluazifop-P-butyl.  The statements in EFSA (2012) on the variable effects of 40 
fluazifop-P-butyl on carbon and nitrogen mineralization by soil microorganisms (Section 4.1.2.6) 41 
are not given in sufficient detail to allow for an elaboration of the risk characterization for soil 42 
microorganisms. 43 

123 



 

4.4.3. Aquatic Organisms 1 
The risk characterization for aquatic organisms is summarized in Table 37 (fish), Table 38 2 
(aquatic invertebrates), Table 39 (algae), and Table 40 (aquatic macrophytes).  Each of these 3 
tables summarizes the relevant HQs for the accidental spill scenario, the non-accidental acute 4 
exposures, and longer-term exposures.  The latter two sets of scenarios include the HQs for 1, 2, 5 
and three applications.  These tables are a minor reformatting of Worksheet G03 in Attachment 1 6 
(one application), Attachment 2 (two applications with a 14-day application interval), and 7 
Attachment 3 (three applications with 14-day application intervals).  8 

4.4.3.1. Fish 9 
As summarized in Table 37, the HQs for fish are below the level of concern (HQ=1), except for 10 
the accidental exposure scenarios.   11 
 12 
The upper bounds of the HQs for the accidental spill scenarios are 25 for sensitive species of fish 13 
and 9 for tolerant species of fish.  As detailed in Worksheet B04b of the attachments to this risk 14 
assessment, the upper bound HQs are based on a water concentration of about 5.8 mg a.e./L 15 
fluazifop-P-butyl.  As summarized in Table 27, the acute LC50 values for technical grade 16 
fluazifop-butyl and formulations of fluazifop-butyl range from about 0.25 mg a.e./L (Tejada et 17 
al. 1994) to 4.2 mg a.e./L (MRID 00087484).  In the event of a serious accidental spill similar to 18 
that developed in the current risk assessment (Section 3.2.3.4.1), fish mortality would probably 19 
be observed. 20 
 21 
For the non-accidental exposures, none of the HQs exceed the level of concern.  The highest HQ 22 
is 0.7—i.e., the upper bound of the acute HQ for sensitive species of fish following three 23 
applications of fluazifop-P-butyl.  There is no basis for asserting that fish will be adversely 24 
impacted due to exposures to fluazifop-P-butyl anticipated in the normal use of this herbicide in 25 
Forest Service programs. 26 
 27 
Some of the HQs for two and three applications are identical in Table 37.  This is also true for 28 
other groups of organisms discussed below.  As discussed in Section 4.4.2.5.3, the identical HQs 29 
for two and three applications is an artifact of rounding—i.e., HQs below 1 are rounded to the 30 
nearest significant decimal.  For example, the upper bound HQs for tolerant species of fish 31 
following two and three applications are both 0.2.  The underlying value in the G03 worksheets 32 
is 0.192941176 for two applications and 0.221176471 for three applications.  Other such 33 
similarities are not discussed further in the following sections for other groups of aquatic 34 
organisms; nonetheless, the differences in the underlying value can be verified by an 35 
examination of the G03 worksheet in the attachments. 36 

4.4.3.2. Amphibians  37 
As noted in Sections 4.1.3.2 and 4.3.3.2, no information is available on the toxicity of fluazifop-38 
butyl or fluazifop-P-butyl to aquatic-phase amphibians.  Consequently, no risk characterization is 39 
developed for this group of organisms. 40 

4.4.3.3. Aquatic Invertebrates  41 
As with the HQs for fish (Table 37), the HQs for aquatic invertebrates are above the level of 42 
concern for the accidental spill scenario.  The upper bound HQs are 121 for sensitive species and 43 
5 for tolerant species.  As with the fish scenario, these upper bound HQs are based on a water 44 
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concentration of about 5.8 mg a.e./L fluazifop-P-butyl.  As summarized in Table 28 and 1 
discussed in Section 4.1.3.3, the formulations of fluazifop-P-butyl are much more toxic than 2 
technical grade fluazifop-P-butyl to Daphnia magna, and the dose-response assessment does not 3 
consider the relatively high LC50 values for technical grade fluazifop-P-butyl in Daphnia magna.  4 
For the accidental spill scenario, this approach is clearly justified.  Excluding these high LC50 5 
values, the acute LC50 values range from about 0.083 mg a.e./L (Pacific oyster, MRID 6 
00131460) to 5.5 mg a.e./L (Daphnia magna, 25% a.i. EC formulation, MRID 00087488).  Thus, 7 
even for presumably tolerant species of aquatic invertebrates, detectable mortality could be seen 8 
following an accidental spill.  For sensitive species, the upper bound level of exposure is a factor 9 
of about 70 above the LC50 [5.8 mg a.e./L ÷ 0.083 mg a.e./L ≈ 69.88]m and mortality in sensitive 10 
species of aquatic invertebrates could be complete or nearly so. 11 
 12 
None of the central estimates or lower bounds of the HQs for acute non-accidental or longer-13 
term exposures exceed the level of concern.  14 
 15 
For acute exposures, the upper bound HQs exceed the level of concern for sensitive species (HQs 16 
of 1.5 to 3).  The upper bound acute HQs are associated with concentrations of fluazifop-P-butyl 17 
in water of about 0.074 mg a.e./L (one application) to 0.15 mg a.e./L (three applications).  As 18 
summarized in Table 28, the lowest acute LC50 value for aquatic invertebrates is 0.083 mg a.e./L 19 
(Pacific oyster, MRID 00131460).  If this saltwater species is representative of sensitive 20 
freshwater species, detectable and substantial mortality would be expected.  The LC50 values for 21 
fluazifop-P-butyl in freshwater invertebrates range from about 1.8 to 5.5 mg a.e./L, and all of 22 
these LC50 values are for Daphnia magna.  In the absence of toxicity data on additional species 23 
of freshwater invertebrates, the applicability of the lower LC50 values in saltwater species to 24 
potentially sensitive freshwater invertebrates cannot be assessed further. 25 
 26 
For longer-term exposures, the upper bound HQs also exceed the level of concern for sensitive 27 
species (HQs of 1.8 to 4).  These upper bound HQs are associated with estimated concentrations 28 
of fluazifop-P-butyl (most likely as fluazifop acid) of about 0.027 mg a.e./L (one application) to 29 
0.064 mg a.e./L (three applications).  As summarized in Table 29, these concentrations are 30 
modestly below the LOAEC of 0.066 mg a.e./L for the most sensitive saltwater species 31 
(opossum shrimp, MRID 00093805) and substantially below the LOAEC of 0.213 mg a.e./L for 32 
Daphnia magna (MRID 00093807).  While these relationships cannot exclude the possibility of 33 
longer-term effects in aquatic invertebrates, concern is less than that associated with acute 34 
exposures.  As with the acute exposures, the few species on which data are available, relative to 35 
the numerous species that might be exposed to fluazifop-P-butyl, limits the risk characterization. 36 

4.4.3.4. Aquatic Plants 37 

4.4.3.4.1. Algae 38 
As detailed in Section 4.3.3.4.1 (the dose-response assessment for algae), the toxicity data on 39 
algae are highly variable, which may be due to differences in species sensitivities, differences in 40 
the toxicity of different formulations, a combination of these factors, or other factors that cannot 41 
be identified from the available summaries of the bioassays on algae.  Another limitation with 42 
the data on algae is that few NOAECs are available (Table 30).  Thus, for both sensitive and 43 
tolerant species, NOAECs are estimated by dividing the EC50 values by a factor of 20 (SERA 44 
2011a, Section 4.3.2, p. 98).  While this procedure is a standard practice in Forest Service risk 45 
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assessments and is consistent with the approach used by U.S. EPA/OPP/EFED, the use of this 1 
method introduces additional uncertainties into the dose-response assessment, which carry over 2 
to the risk characterization. 3 

4 
Within the above limitations, which are substantial, the HQs for algae (Table 39) suggest that 5 
sensitive species of algae could be adversely affected by fluazifop-P-butyl based on the central 6 
estimates of the non-accidental HQs (which range from 2 to 16) and the upper bounds of the 7 
HQs (which range from 27 to 150).  8 

9 
The acute concentrations of fluazifop-P-butyl in water associated with the central estimates of 10 
the HQs range from about 0.0064 mg a.e./L (central estimate for one application) to 0.15 mg 11 
a.e./L (upper bound, three applications).  As summarized in Table 30, the reported EC50 values12 
for algae range from 0.02 to 22.8 mg a.e./L.  It appears that tolerant species of algae would not 13 
be exposed to fluazifop-P-butyl at a sufficient level to cause detectable adverse effects.  In some 14 
cases, however, sensitive species could be adversely affected to the extent that their populations 15 
might decrease. 16 

17 
The longer-term HQs for algae are associated with longer-term concentrations of fluazifop-P-18 
butyl in water in the range from about 0.0024 mg a.e./L (central estimate for one application) to 19 
0.064 mg a.e./L (upper bound, three applications).  Only the upper bound concentrations would 20 
appear to pose a longer-term risk to sensitive species of algae.  As discussed in Section 3.2.3.4.3, 21 
the concentrations of fluazifop-P-butyl in water used in the current risk assessment are based on 22 
modeling nine different locations with substantially different climates.  In specific applications 23 
of fluazifop-P-butyl, site-specific modeling would be necessary to better characterize potential 24 
impacts on sensitive species of algae. 25 

4.4.3.4.2. Macrophytes 26 
As discussed in Section 4.3.3.4.2, toxicity data on aquatic macrophytes are limited to bioassays 27 
on Lemna, a monocot but not a true grass.  As summarized in Table 40, all HQs for this 28 
presumably tolerant genus of aquatic plants are well-below the level of concern.  The upper 29 
bound of the HQ for the accidental spill is 0.02—i.e., below the level of concern by a factor of 30 
50.  As with the risk characterization for terrestrial non-Poaceae monocots and terrestrial dicots,31 
there is no basis for asserting that applications of fluazifop-P-butyl would adversely impact 32 
Lemna.  By analogy to tolerant terrestrial plants, the largely benign risk characterization for 33 
Lemna may apply to other non-Poaceae aquatic monocots as well as aquatic dicots. 34 

35 
The lack of data on aquatic Poaceae monocots, however, is a concern.  In the absence of toxicity 36 
data on aquatic Poaceae monocots (e.g. Crow and Hellquist 2000; Martínez-y-Pérez et al. 2007), 37 
however, this concern cannot be further elaborated. 38 

39 
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181. [Set02]  

{Yu et al. 2007} Yu Q; Collavo A; Zheng MQ; Owen M; Sattin M; Powles SB. 2007.  Diversity of Acetyl-
Coenzyme A Carboxylase Mutations in Resistant Lolium Populations: Evaluation Using Clethodim. Plant 
Physiology.  145(2):547-58.  [SET01 - Toxline01 - Clethodim] 

{Zidan et al. 2002} Zidan ZH; Ragab FM; Mohamed KH. 2002.  Molluscicidal Activities of 
Certain Pesticide and Their Mixtures against Biomphalaria alexandrina. Journal of the Egyptian 
Society of Parasitology.  32(1):285-96.  [Set01 - ToxL Fluazifop Full] 
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Table 1: Nomenclature Used in This Risk Assessment for Agents 

Agent CAS No.[1] Description 
Acid Forms   

Fluazifop-P 83066-88-0 The [R] enantiomer of [RS]fluazifop. 
Fluazifop 69335-91-7 [2]  [RS]fluazifop – both the [R] and [S] enantiomers 

Butyl Ester 
Forms 

  

Fluazifop-P-butyl  79241-46-6 The butyl ester of fluazifop-P (a.k.a. [R] fluazifop). 
[RS] Fluazifop-
butyl 

69806-50-4 A mixture of the butyl esters of the [R] and [S] 
enantiomers of fluazifop. 

[1] CAS numbers from ChemIDplus (http://chem.sis.nlm.nih.gov/chemidplus/). 
[2] Several additional CAS numbers have been assigned to compounds designated as fluazifop 

with no stereochemistry specified – i.e., 121958-44-9, 86023-37-2, 87168-00-1, and 93171-
48-3.  

 
See Section 1.1.1 for discussion. 

See Figure 1 for illustration of structures. 
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Table 2: Relevant Reviews and Related Documents on Fluazifop-P-butyl 
Reference [# pages][1] Comment 
CalEPA 2002 [15 pp.] Summary of registrant studies on toxicity to mammals.  May supplement the information in U.S. 

EPA/OPP/HED (2004a,b, 2011a). 
ECOTOX 2013 EPA database on ecotoxicity values for both terrestrial and aquatic species.  Information from this 

database is used as a source for registrant submitted studies.  Information directly from ECOTOX is 
supplemented with information from the Pesticide Ecological Effects Database (U.S. EPA/OPP 
2005b) 

EFSA 2012 [77 pp.] Review of studies relevant to environmental fate, human health, and ecological effects.  Information 
is cited primarily to other EU documents/reviews and the primary studies (which appear to be 
registrant submitted studies) are not identified. Most studies summaries provide only toxicity values 
and study quality cannot be assessed with confidence.  Information on Compound X. 

European Commission 
2011a [25 pp.] 

Focuses primarily on studies relevant to the human health effects of Compound X – i.e., 5-
trifluoromethyl-2-pyridone.  No ecotoxicity data.  Based on U.S. EPA/OPP (2004c) – i.e., the 
metabolism review committee – it does not appear that the information in European Commission 
(2011a) will quantitatively impact the risk assessment.  This is also consistent with the conclusions 
in European Commission (2011a). 

European Commission 
2011b [56 pp.] 

Tabular summaries of data (toxicity and fate) as well as modeled estimates of exposure.    
Summarizes ecotoxicity values (pp. 42-54) but no study details.  Summary of metabolite structures 
(pp. 55-56) but no toxicity data.  This study is not used in the current risk assessment. 

FANPP 2013a,b Fluoride Action Network web pages with links to EPA and other sites as well as a summary of data.  
Used primarily to check literature search. 

FAO/WHO 2000 [21 pp.] Brief review of chemical and physical properties as well as mammalian and ecological toxicity 
studies.  Very little detail.  No primary literature is cited.  

FWS 2012a [22 pp.] No detailed data.  Cites data Russell and Schultz (2010, p. 53) study on potential effects to 
butterflies.  See FWS (2012b) for full reference. 

HSDB 200 [12 pp.] Brief review of information relevant to environmental fate and human health effects.  Most citations 
are to other secondary sources.  No primary literature is cited. 

Ishihara Sangyo Kaisha 
1990 [6 pp.] 

Summary of chemical-physical properties and mammalian studies from the original developer of 
fluazifop.  May be useful in supplementing EPA/OPP reviews. 

Nishiuchi and Asano 
1979 

This is a compendium covering the effect of several pesticides on aquatic organisms. Article is 
written in Japanese and is summarized in ECOTOX.  This paper has been rejected by U.S. EPA/OPP in 
various CRLF analyses (e.g. U.S. EPA/OPP/EFED 2009a). 

NMFS 2012  [783 pp.] Biological opinion on oryzalin, pendimethalin, and trifluralin.  Discusses fluazifop-P-butyl only as a 
tank mix with pendimethalin.  Marginal use in current RA. 

Tomlin 2004 [3 pp.] E-Pesticide Manual.  Brief summary of fate and toxicity data. 
U.S. EPA/EFED 2008 
[208 pp.] 

U.S. EPA/OPP Ecological Fate and Effects Division risk assessment for new uses on peanuts and 
beans and amended uses on soybeans.  This is a standard and relatively detailed ecological risk 
assessment. 

U.S. EPA/OPP/EFED 
2010a [126 pp.] 

U.S. EPA/OPP Ecological Fate and Effects Division risk assessment for new uses on bananas, 
plantains, citrus, grapes, and sugar beets.  Most recent ERA but all except the first 8 pages consist of 
appendices of data requirements.  No detailed summary of studies. 

U.S. EPA/OPP/EFED 
2010b [27 pp.] 

Drinking water exposure assessment for most recent human health risk assessment (U.S. 
EPA/OPP/HED 2011a). 

U.S. EPA/OPP HED 
2004a [97 pp.] 

U.S. EPA/OPP Health Effects Division toxicology chapter in support of the T-RED.  This will form 
the basis for the human health risk assessment.  This will be the key source of data for HHRA. 

U.S. EPA/OPP/HED 
2004b [67 pp.] 

U.S. EPA/OPP Health Effects Division residue chemistry in support of the T-RED.  Data on fate 
may be useful in exposure assessments. 

U.S. EPA/OPP/HED 
2004c [40 pp.] 

U.S. EPA/OPP report by the Metabolism Assessment Review Committee.  Will be useful in 
discussion of metabolites in HHRA.  No ecotoxicity data. 

U.S. EPA/OPP/HED 
2005a [14 pp.] 

This is the T-RED (tolerance reassessment).  Less detailed than U.S. EPA/OPP/HED (2004a,b,c) 
documents but will be consulted for consistency with other EPA documents. 

U.S. EPA/OPP/HED 
2010a [27 pp.] 

Recent dietary and drinking water exposure assessment for HHRA. 

U.S. EPA/OPP/HED 
2011a [78 pp.] 

Most recent HHRA.  Screened to ensure that all material is consistent with U.S. EPA/OPP 2004a.  

[1] Key reviews are indicated by light green shading with the most relevant reviews designated by bold font.  Some U.S. 
EPA/OPP tolerances and other narrowly focused documents – e.g., exposure assessments, registration status, use 
applications, etc. – are not summarized above but are discussed in the text as appropriate in the text and are listed in 
Section 5 (References). 

See Section 1.1.2 for discussion. 
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Table 3: Summary of Open Literature Most Relevant to Fluazifop-P-butyl Risk Assessment 
Topic Citations[1] 

Human Health  
Dermal Absorption Auton et al. 1993a,b, 1994; Clark et al. 1993; Dick and Scott 1992; Hilton et al. 

1994; Ramsey et al. 1994; Rawlings et al. 1994b; Trebilcock et al. 1994;  
Mechanism Kemal and Casida 1992; Kostka et al. 2002; Krijt et al. 1993, 1997;  
Metabolism McCracken et al. 1990, 1993a,b,c; Mutch et al. 1990; Williams et al. 1990;  

Pharmacokinetics Ramsey et al. 1992; Rawlings et al. 1994a; Woollen et al. 1991; 
Toxicology Mousa 1982; Sesline and Jackson 1994; U.S. EPA/OTS  1992a,b,c; 

Worker Exposure Chester and Hart 1986; Woollen 1993;  
Terrestrial Species  

Birds Varnagy et al. 1996, 1999; Varga et al. 1999   
Invertebrates, 

Terrestrial 
Agnello et al. 1986a,b, 1987;  De Freitas Bueno et al. 2008; Hautier et al. 2005; 
House et al. 1987; Russell and Schultz 2010 

Plants, Terrestrial 

General [2] 
Balinova and Lalova 1992; Banks and Tripp 1983; Barnwell and Cobb 1993; 
Boucounis et al. 1988; Burden et al. 1989,1990; Carr 1986a,b; Catanzaro et al. 1993; 
Chandrasena  and Sagar 1986a,b, 1987; Chronopoulou et al. 2012; Clay et al. 1990; 
Cocker et al. 2001; Clarke et al. 1998; ; Dekker and Chandler 1985; Derr et al. 
1985a,b,c; Gilreath 1987; Gronwald 1991; Haga et al. 1987; Harwood 1988; Herbert 
et al. 1997; Nalewaja and Skrzypczak 1986; Nalewaja et al. 1986; Page et al. 1994; 
Talbert et al. 1995, 1996; Walker et al. 1988; Walker et al. 1988;  

Nontarget plants Baldos 2009; Blake et al. 2012; Boucounis et al. 1988; Calkins et al.  1996; Defrank 
1990; Chernicky and Slife 1986; Clay et al. 1990; Doohan et al. 1986; Skroch et al. 
1990; Street and Snipes 1987; Svenson et al. 1985;   

Resistance in plants Alarcón-Reverte and Moss 2008; Beckie and Morrison 1993; Bradley and Hagood 
2001; Burke et al. 2006a,b; Catanzaro et al. 1993a,b; Cisar and Jagschitz 1984a; 
Cocker et al. 2001; Rosenberg 1997; Yu et al. 2007 

Soil Microorganisms Abdel-Mallek et al. 1996a,b; Gardner and Storey 1985; Sapundzhieva and 
Kuzmanova 1987;  

Aquatic Species  
Fish Schramm et al. 1998;  Tejada et al. 1994; 

Invertebrates, Aquatic. Tantawy 2002; Zidan et al. 2002; 
Plants, Aquatic Felix et al. 1988; Ma 2002; Ma et al. 2002a,b, 2004, 2006; Michel et al.  2004 

(Lemna); Perschbacher et al. 1997;  
Environmental Fate  
Environmental Fate and 

Properties 
Bewick 1986; Buhler and Burnside 1984b ; Chamberlain et al. 1996; Clegg 1987; 
Frigerio et al. 1987; Gennari et al. 1991; Kah and Brown 2007a,b; Kah et al. 2007;  
Kulshrestha et al. 1992, 1995; Mills and Simmons 1998; Miyazaki 1997; Negre et al. 
1988, 1993; Patumi et al. 1987; Rick et al. 1987; Smith 1987; Spliid et al. 2006;  

Monitoring Carabias Martinez et al. 2000; Coupe et al. 1998; Spliid and Koppen 1998; Trevisan 
et al. 1993; White et al. 2006;  

 [1] Full bibliographic citations are given in Section 5.  
[3] Papers on mechanisms, metabolism, and other related topics.  There is a large literature on 

efficacy and a partial listing of these studies is given in Section 5. 
 

  See Section 1.1.3 for discussion. 
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Table 4: Chemical and Physical Properties of Fluazifop-P-butyl 
Item Value Reference[1] 

 Identifiers  
Common name: Fluazifop-P-butyl Tomlin 2004 
CAS Name butyl (R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy] 

phenoxy]propanoate 
Tomlin 2004 

 (R)- 2-(4-((5-(trifluoromethyl)-2-
pyridinyl)oxy)phenoxy) propanoic acid, butyl ester 

U.S. EPA/OPP 2004b, Table 1 

CAS No. 79241-46-6 Tomlin 2004; U.S. EPA/OPP 
2004b, Table 1 

Chemical Group 
(Fluazifop-P) 

Aryloxyphenoxy propionate Mallory-Smith and Retzinger 
2003; U.S. EPA/OPP 2004a 

Development Codes PP005; ICIA0005 (both ICI); SL-118 (Ishihara 
Sangyo). 

Tomlin 2004 

 PP009 Plowman et al. 1980 
 PP009: fluazifop-P-butyl 

PP005: fluazifop-butyl 
U.S. EPA/OPP/HED 2004a, 
Table 4.1a, footnote a. 

IUPAC Name butyl (R)-2-[4-(5-trifluoromethyl-2-pyridyloxy) 
phenoxy]propionate 

Tomlin 2004 

 (R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy] 
phenoxy]propanoic acid 

Mallory-Smith and Retzinger 
2003 

 butyl (2R)-2-(4-{[5-(trifluoromethyl)pyridin-2-
yl]oxy} phenoxy)propanoate 

U.S. EPA/OPP 2004b, Table 1 

Molecular formula C19H20F3NO4 Tomlin 2004; U.S. EPA/OPP 
2004b 

Mechanistic group 
(Fluazifop-P) 

WWSA Group 1/HRAC Class A: Inhibitors of acetyl 
CoA carboxylase (ACCase) 

Mallory-Smith and Retzinger 
2003 

EPA PC Code 122809 U.S. EPA/OPP 2004b 
Smiles Code without 
stereochemistry 

CCCCOC(=O)C(C)Oc1ccc(Oc2ccc(cn2)C(F)(F)F)cc1 Tomlin 2004 

 CCCCOC(=O)[C@@H](C)Oc1ccc(Oc2ccc(cn2)C(F)(F)F
)cc1 

Tomlin 2004 

Smiles Code with 
stereochemistry 

n1cc(C(F)(F)F)ccc1Oc2ccc(OC(C)C(=O)OCCCC)cc2 EPI Suite 2011 

Structure 

 

U.S. EPA/OPP 2004b, Table 1 

 Chemical Properties(1)  
a.i. to a.e. conversion 0.85364  [327.26 g/mole ÷ 383.37 g/mole] 

In calculations, this value is rounded to 0.854 to 
maintain consistency with calculations in U.S. 
EPA/OPP/EFED 2008. 

See Section 2.2.2 

Aqueous photolysis Half-life of 6 days (pH 5) Tomlin 2004 
Boiling point 154 °C/0.02 mmHg Tomlin 2004 
Density 1.20 g/cm3 U.S. EPA/OPP 2004a, 

MRID 92067999 
Form Colorless liquid Tomlin 2004 
Henry’s Law Constant 1.1 x 10-2 Pa m3 mol-1 Tomlin 2004 

154 
 



 

Item Value Reference[1] 
Hydrolysis DT50 (days) pH at 25°C 

>30 5 
78 7 
≈1.2 

[29 hrs] 
9 

 

Tomlin 2004 

 Stable at pH 4 and 7. 
Half-life of 2.5 days at pH 9. 

Negre et al. 1998 

Kow ≈31,600 [logP = 4.5] (20 °C) Tomlin 2004;  U.S. EPA/OPP 
2004a, MRID 92067999; EFSA 
2012  

Molecular weight 
(g/mole) 

383.37 U.S. EPA/OPP 2004a,b,  
MRID 92067999 

 383.4 EFSA 2012; Tomlin 2004  
Melting point -20 °C Tomlin 2004 
 164 °C at 0.02 mm Hg 

Decomposes at 210 °C 
U.S. EPA/OPP 2004b, Table 1 

Photolysis Stable Tomlin 2004 
Specific gravity 1.22 (20 °C) Tomlin 2004 
Thermal 
decomposition 

 Tomlin 2004 

Vapor pressure 0.033 mPa (20 °C) Tomlin 2004 
 3 x 10-8 kPa at 20 °C U.S. EPA/OPP 2004a, 

MRID 92067999 
Water solubility 1 mg/L U.S. EPA/OPP 2004a,b 
 1.1 mg/l (20 °C) Tomlin 2004 
 2.0 mg/L Knisel and Davis 2000; 

Plowman et al. 1980; Rick et al. 
1987 

 0.5568 mg/L (Estimated) EPI-Suite 2011 
 Environmental Properties  
Bioconcentration in 
fish (BCF) 

Bluegill sunfish 
410 - whole fish 
120 – muscle 
4800 – viscera 
Fluazifop-butyl.  All values based on total C14.  
Degradates III and X  made up 21%-25% each of the 
total residues. 
This is a laboratory study and was classified as 
supplemental by U.S. EPA/OPP/EFED (2008, p. 95). 

U.S. EPA/OPP/EFED 2008 
citing MRID 93196 and MRID  
92067035 

 Catfish 
2.1 - whole fish 
1.1 – muscle 
8.0 – viscera 
Fluazifop-butyl.  All values based on total C14. 
This is a field study and was not classified by U.S. 
EPA/OPP/EFED (2008, p. 95). 

U.S. EPA/OPP/EFED 2008 
citing MRID 93195, 1981  
 

 320 EFSA 2012 
Field dissipation ≈3.5 to 6.25 days [Values appear to be for ester and 

not both ester and acid.] 
El-Metwally and Shalby 2007 

Foliar washoff fraction 0.4 Knissel and Davis 2000 
Foliar half-life  5 days Knissel and Davis 2000 
 5 days (soybean) abstract Kulshrestha et al. 1992 
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Item Value Reference[1] 
 7.9 days (soybean) as reported. 

7.5 (6.6-8.7) days based on reanalysis.  See Section 
3.2.3.7 for discussion. 

Kulshrestha et al. 1995 

Koc  3000 Knissel and Davis 2000 
 5700 USDA/ARS 1995 
 2010 Spliid et al. 2006 
Sediment half-life ≈2080 days [50,000] (Estimate) EPI-Suite 2011 
Soil half-life (NOS) 21 days Knissel and Davis 2000 
 <1 day (non-sterile soil) 

3 days (sterile soil) 
Negre et al. 1988 

 11 to 23 days (as fluazifop acid) Smith 1987 
Soil half-life, aerobic A few hours  U.S. EPA/OPP 2004a, p. 11 
Soil dissipation half-
life 

5.5 days Kulshrestha et al. 1992 

 Biphasic:  
Initial phase (to 14 day): 6.2 to 7.2 days 
Terminal phase (14-90 days): 17.7 to 24.6. 

Kulshrestha et al. 1995 

 <7 to 21 days (four studies) U.S. EPA/OPP/EFED 2008, 
MRID 87495. 

 120 days [2880 hours]  (Estimate) 
Note: This appears to be for fluazifop and 
the ester. 

EPI-Suite 2011 

Water Half-life  60 days [1440 hours] (Estimate) EPI-Suite 2011 
[1] There a many sources of information on the standard values for fluazifop-P-butyl – e.g., molecular weight.  In 
general, only two sources as cited for each value.  More than two sources are cited only to highlight apparent 
discrepancies. 

See Section 2.2.2 for discussion. 
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Table 5: Chemical and Physical Properties of Fluazifop-P 
Item Value Reference 

 Identifiers  
Common name: Fluazifop-P Tomlin 2004 
CAS Name (R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl] 

oxy]phenoxy]propanoic acid 
Tomlin 2004 

CAS No. 83066-88-0 Tomlin 2004 
IUPAC Name (R)-2-[4-(5-trifluoromethyl-2-pyridyloxy) phenoxy]propionic acid Tomlin 2004 
Mechanistic 
group 

WWSA Group 1/HRAC Class A: Inhibitors of acetyl CoA 
carboxylase (ACCase) 

Mallory-Smith and 
Retzinger 2003 

Chemical Group Aryloxyphenoxy propionate Mallory-Smith and 
Retzinger 2003 

Molecular 
formula 

C15H12F3NO4 Tomlin 2004 

Smiles Code n1cc(C(F)(F)F)ccc1Oc2ccc(OC(C)C(=O)O)cc2 EPI-Suite 2011 
Structure 
(resolved [R] 
stereo- isomer) 

Fluazifop-P 

  

U.S. EPA/OPP 2004b, 
Table 3 

Structure 
(racemic, without 
stereochemistry) 

Fluazifop 

 

U.S. EPA/OPP 2004b, 
Table 3 

 Chemical Properties(1)  
Form Pale yellow, glass-like material Tomlin 2004 
Henry’s Law 
Constant 

3 x 10-7 Pa m3 mol-1 (calc.) Tomlin 2004 

Hydrolysis Stable at pH 5 to 9 at 25°C Tomlin 2004 
 78 days at pH 7 U.S. EPA/OPP 2004a, p. 

11 
Kow pH (20°C) ≈Kow Log Kow 

2.6 1260 3.1 
7 0.16 -0.8 

Note: These appear to be measured values. 

Tomlin 2004 

 ≈1510 [Log Kow = 3.18] 
Note: This measured value is probably at acidic pH.  
See above from Tomlin 2004. 

EPI-Suite 2011 

 ≈1510 [Log Kow = 3.18] 
Cited as measured value. 

Chamberlain et al. 1996 

MW (g/mole) 327.3 Tomlin 2004 
 327.26 EPI-Suite 2011 
pKa 2.8 U.S. EPA/OPP 2003a, 

Table 2, MRID 
41900604 

 3.22 [specified as fluazifop] Chamberlain et al. 1996 
 2.98 [fluazifop-P] Kah and Brown 2007b; 

Kah et al 2007 
Vapor pressure 7.9 x 10-4 mPa (20 °C) Tomlin 2004 
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Item Value Reference 
Water solubility 780 mg/L (20 °C) [pure water] Tomlin 2004 
 40.52 mg/L [Experimental] 

327.25 [Estimated] 
EPI-Suite 2011 

 780 mg/L (fluazifop-P) Kah and Brown 2007b; 
Kah et al. 2007 
U.S. EPA/OPP/EFED 
2010b, MRID 46190602 

 Environmental Properties  
Bioconcentration 
factor (BCF) 

3.16 EPI-Suite 2011 

Foliar half-life  None identified. N/A 
Kd 0.27-1.57 (fluazifop-P) Kah and Brown 2007 
Koc  8.3 mL/g U.S. EPA/OPP (2003a, 

Table 2) 
 25.93 - 31 0.8 U.S. EPA/OPP/EFED 

2008 citing MRID 
46190603; Kah and 
Brown 2007 

 8.3 to 51  U.S. EPA/OPP/EFED 
2008 citing MRID 
41900604 

 39-84 (fluazifop-P) Kah and Brown 2007b 
 25-60 (fluazifop-P) Kah et al. 2007 
Sediment Half-
life  

≈2080 days [50,000 hours] (Estimate) EPI-Suite 2011 

Soil half-life 
(NOS) 

35-140 days USDA/ARS 1995 

Soil half-life, 
aerobic 

30 days 
Upper bound of 11 half-lives for ace and butyl ester. 
  

U.S. EPA/OPP 2010b 
citing MRIDs 46190602 
and 87493, 92067032. 

 18 days (mean of 5 values, used  in SCIGROW modeling) 
22 days (upper 90% confidence limit of 5 values, used  in FIRST 

modeling) 

U.S. EPA/OPP (2003a, 
Table 2) 

 120 days [2880 hours] (Estimate) EPI-Suite 2011 
 2-168 days (p. 1338, individual values not included). Kah and Brown 2007b 
 6.0-31 days (Table 4 of paper for individual values) Kah et al. 2007 
Soil half-life, 
anaerobic 

1-3 years U.S. EPA/OPP 2004a and  
U.S. EPA/OPP/EFED 
2003a, MRID 92067033 

Water half-times 78 days U.S. EPA/OPP 2003a, 
Table 2, MRID 
41598002 

 60 days [1440 hours] (Estimate) EPI-Suite 2011 
[1] There a many sources of information on the standard values for fluazifop-P-butyl – e.g., molecular weight.  In 
general, only two sources as cited for each value.  More than two sources are cited only to highlight apparent 
discrepancies. 

See Section 2.2.2 for discussion. 
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Table 6: Selected Fluazifop-P-Butyl Formulations 
Source: www.Greeenbook.net    

Formulation, 
Supplier, EPA 
Registration 

Number 

Composition/ 
Characteristics[1] 

Application Information, Methods and 
Rates[2] 

Fusilade DX 
Syngenta 
EPA Reg. No. 100-1070 
EPA SLN No. CA-

110010 
  

24.5% a.i. on label and 
MSDS. (20.09 % a.e.) 

2 lbs. a.i./gallon 
(1.708 lbs a.e./gallon) 
 
75.5% inerts, Contains 

petroleum distillates. 
 
Density: 0.9807 g/ml @ 

68°F (20°C) 
 
pH: 6.2 (1% w/w 

dilution in deionized 
water) 

Relevant Labeled Uses: Conifers – Christmas tree 
plantings, nursery beds, and seedling establishment.   
Application to conifers is not applicable in California.  
In California, however, the EPA has issued a Special 
Local Need Label for the control of wild oats, perennial 
ryegrass, ripgut brome, red brome, and soft brome in 
wildlands. 

Application rates: 0.09375 to 0.375 lb. a.i./acre (6-24 
oz./acre).  Rates are variable based on target species and 
location.  Consult label. 

Maximum Seasonal Rate: 1.125 lb a.i./acre/season [3 
applications of 24 oz/day] 

Minimum Application Interval: 14 days 
Adjuvants: COC or NIS 
Crop oil concentrates (COC) or once-refined vegetable oil 

concentrate with 15-20% emulsifier at 0.5-1% v/v 
(ground).  1 pt. of COC per acre for aerial. 

NIS with 75% surface active agent at 0.25%-0.5% v/v for 
ground application.  1 pt./acre for aerial application. 

Application Volumes 
Ground Application: 5-40 gals./acre, minimum of 20 

gals/acre for dense grass. 
Aerial Application: 5-10 gal./acre. 

Fusilade II, Turf and 
Ornamental Herbicide. 

Syngenta 
EPA Reg. No. 100-1084 
 
Cannot be used in Nassau 
and Suffolk Counties in 
NY. 
 

24.5% a.i. on label and 
MSDS. (20.09 % a.e.) 

2 lbs. a.i./gallon 
(1.708 lbs a.e./gallon) 
 
75.5% inerts, Contains 

petroleum 
hydrocarbons. 

 
Density: 0.98 g/ml @ 

68°F (20°C) 
 
pH: 6.2 (1% w/w 

dilution in deionized 
water) 

Relevant Labeled Uses:  Non-crop areas including rights-
of-way.  Not specifically labeled for applications to 
conifers.  

Application rates: ≈0.094 to 0.38 lb. a.i./acre (6-24 
oz./acre).  Rates are variable based on target species and 
location.  Consult label. 

Maximum Seasonal Rate: None specified for conifers. 
Adjuvants: COC or NIS 
COC or once-refined vegetable oil concentrate with 15-

20% emulsifier at 0.5-1% v/v (ground).  1 pt. of COC 
per acre for aerial. 

NIS with 75% surface active agent at 0.25%-0.5% v/v for 
ground application.  1 pt./acre for aerial application.  

Application Volumes 
Ground Application: 5-40 gals./acre, minimum of 20 

gals/acre for dense grass. 
Aerial Application: 5-10 gal./acre. 
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Formulation, 
Supplier, EPA 
Registration 

Number 

Composition/ 
Characteristics[1] 

Application Information, Methods and 
Rates[2] 

Ornamec 170 Grass 
Herbicide 

PBI/Gordon Corporation 
EPA Reg. No. 2217-751 

1.7% a.i. on label and 
MSDS. 

0.125 lb. a.i./gallon 
(0.107 lb a.e./gallon) 
 
98.3% inerts, Contains 

petroleum distillates. 
 
Density: 7.44 lbs./gal. 
Specific gravity: 0.89037 
  
 
pH: N.S. 

Relevant Labeled Uses: Not specifically labeled for 
applications to conifers.  No other relevant uses are 
apparent on the product label.  Labeled specifically 
for ornamentals. 

Application rates: 0.0059-0.0088 lb./1000 ft2  (6-9 
oz./1000 ft2).  Equivalent to ≈0.257 to 0.3855 lb. 
a.i./acre. 

Maximum Seasonal Rate: 1.1 lbs. a.i./acre/season. 
Adjuvants: None specified. 
Application Volumes 

Ground Application: N.S.  Spray to coverage but not to 
runoff. 

Aerial Application: N/A 
Ornamec Over-the-top 
 
PBI/Gordon Corporation 
 
EPA Reg. No. 2217-728 

6.75% a.i. on label and 
MSDS. 

0.5 lbs. a.i./gallon 
(0.427 lb a.e./gallon) 
 
93.25% inerts, Contains 
petroleum distillates, 
xylene or xylene range 
aromatic solvent. 
 
 
Density: 7.43 lbs./gal. 
Specific gravity: 0.89121 
 
pH: N.S. 

Relevant Labeled Uses: Control of grasses in non-crop 
areas with ornamentals, trees, shrubs, and ground cover.  
No specific forestry applications. 

Application rates: 64-96 oz./acre (0.25–0.375 lb. a.i./acre). 
Maximum Seasonal Rate: N.S. 
Adjuvants: Nonionic surfactant with at least 75% surface 

wetting agent at 0.25% v/v. 
Application Volumes 

Ground Application: Minimum of 30 gallons/acre. 
Aerial Application: N/A 

[1] The % inerts and notations on inerts are taken from product label.  See Table 7 for additional details. 
[2] Unless otherwise noted, application rates are for the control of grasses on conifers. 
[3] a.i. is (+) isomer (fluazifop-P-butyl). 
KEY: COC=crop oil concentrates; NIS = non-ionic surfactant. 
 
Note: Syngenta also provides a mixture formulation, Fusion, which contains 24.15% fluazifop-P-butyl and 6.76% 

fenoxaprop-P-ethyl.  Mixture formulations and tank mixtures are not explicitly covered in this or other Forest 
Service risk assessments.   See Section 2.2.3 for discussion. 

 
Note: Individuals involved in field applications must consult the relevant product label for 

details.  More specific directions for or limitations on applications may exist in some 
specific locations.  Summaries in this table are limited to forestry and other relevant 
non-agricultural applications. 
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Table 7: Disclosed Inerts in Fluazifop-P-butyl Formulations 

Sources: Material Safety Data Sheets 
Formulation 

(Supplier) 
/a.i., Inerts 

Inert[1] CAS No. from 
MSDS % w/w from MSDS 

Fusilade DX (Syngenta) 
 

Naphthalene N.S. <5% 

24.5% a.i.,  
75.5% total inerts 

Petroleum distillates, light 
paraffinic 

N.S. N.S. 

 Petroleum Solvent N.S. N.S 
Fusilade II (Syngenta)  Naphthalene N.S. <5% 
24.5% a.i. 
75.5% total inerts 

Petroleum distillates, light 
paraffinic 

N.S. N.S. 

 Petroleum Solvent N.S. N.S 
Ornamec 170 (PBI 

Gordon) 
1,2,4-trimethylbenzene 95636 9.0% 

1.7% a.i.  Ethyl benzene 100414 1.7% 
98.3% total inerts Petroleum solvent 64742956 11.3% 
 Xylenes 1330207 0.9% 
Ornamec Over-the-top  1,2,4-trimethylbenzene 95636 9.6% 
(PBI Gordon) Ethyl benzene 100414 2.0% 
6.75% a.i.  Petroleum solvent 64742956 13.6% 
93.25% total inerts Xylenes 1330207 7.0% 
[1] Chemical names as indicated on MSDS. 
 

See Section 2.2.3 for initial discussion. 
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Table 8: Potential Target Species for Fluazifop-P-butyl 
Scientific Name Common Name(s) Sources 

Avena fatua Wild oats SLN-CA 
Bromus diandrus Ripgut brome FS/R5 and SLN-CA 
Bromus hoardeaceus Soft brome FS/R5 and SLN-CA 
Bromus madritensis Compact brome FS/R5 
Bromus rubens Red brome  FS/R5 and SLN-CA 
Bromus subvelutinus Hoary brome FS/R5 
Bromus tectorum Cheat grass FS/R5 and FS/R6 
Brachypodium sylvaticum False brome FS/R6 
Lolium perenne Perennial ryegrass SLN-CA 
Hordeum murinum Wall barley/ False barley FS/R5 
Phalaris arundinacea Reed canarygrass FS/R6 
Piptatherum milaceum Smilo grass FS/R5 
Poa bulbosa Bulbous bluegrass FS/R5 
Schismus barbatus Mediterranean grass  FS/R5 
Taeniatherum canput-
medusae 

Medusahead rye FS/R5 and FS/R6 

Ventenata sp. Wiregrass FS/R6 
Vulpia myuros Rat’s tail fescue FS/R5 
 

Sources: FS/R5 from Bakke 2013; VinZant 2013 
FS/R6 email from Shawna Bautista 

SLN-CA from Syngenta Section 24(c) Special Local Need Label for Fusilade DX Herbicide. 
See Section 2.3 for discussion. 
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Table 9: Dermal Absorption of fluazifop-butyl in humans from Ramsey et al. 1992 
Body Weights of 

Subjects (kg) Dose (mg) Dermal Loading 
(mg/cm2)[1] 

Fluazifop-butyl 
Absorption (µg) % Absorption 

86 2 0.0025 109 5.5 
67 2 0.0025 169 8.5 
80 2 0.0025 161 8.5 
76 2 0.0025 202 10.1 
77 2 0.0025 170 8.5 
61 2 0.0025 145 7.3 

   Average for 2 
mg: 

8.0 

83 20 0.025 644 3.2 
79 20 0.025 451 2.3 
83 20 0.025 921 4.6 
67 20 0.025 625 3.2 
80 20 0.025 660 3.3 
81 20 0.025 729 3.6 

   Average for 20 
mg: 

3.6 

86 200 0.25 4340 2.2 
68 200 0.25 2809 1.7 
80 200 0.25 3421 1.4 
76 200 0.25 3225 1.6 
77 200 0.25 2244 1.1 
61 200 0.25 3585 1.18 [2] 

   Average for 200 
mg: 

1.6 

[1] Compound applied to 800 cm2 area of the back of each subject. 
[2] A value of 1.18% is given in the Ramsey et al. (1992) paper but this value appears to be a 

typographical error.  Based on the reported dose (200,000 µg) and the amount absorbed (3,585 
µg), the percent absorption would be about 1.79%.  The value of 1.8% is consistent with the 
average value of 1.6% given by Ramsey et al. (1992) for the high dose group.  The value of 
1.18% yields a group average of 1.53%. 

 
Source: Ramsey et al. 1992, p. 251, Table 1. 

See Figure 4 for illustration. 
See Section 3.1.3.2.1 for discussion. 

 
  

163 
 



 

 

Table 10: Confidence Bounds for Dermal Absorption from Ramsey et al. 1992 
Item Number Value Square of Error 

1 3.2  0.027778 
2 2.3  1.137778 
3 4.6  1.521110 
4 3.2  0.027778 
5 3.3  0.004444 
6 3.6  0.054444 

 
Statistic Value 

Average  3.366667 
SSE  2.773332 

Sample Standard Deviation  0.744759 
Critical Value of t at 0.1 2.015 

Value of 5% Lower Bound 2.7540131 
Value of 95% Upper Bound 3.9793209 

 

Data from the mid-dosed group in Ramsey et al. 1992 as detailed in Table 10. 

See Section 3.1.3.2.1 for discussion. 
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Table 11: Overview of Subchronic and Chronic Studies in Mammals 

Species[1] Duration[2] NOAEL 
(mg/kg/day) 

LOEAL (mg/kg bw/day): 
Major signs of toxicity 

Dog 90 d 25 125/250: Body weight loss, liver toxicity 
Dog 1 y 5 25: Alterations in adrenal gland and thymus. 
Hamster* 90 d 78.3 (M) 

79.0 (F) 
291.9/319.6 (M/F): Decreases in food conversion 

efficiency, body weight gain, and food 
consumption. 

Hamster* 80 w 12.5 (M) 
12.1 (F) 

47.5/45.5:  Reduced sperm and testicular 
degeneration as well as liver inflammation and 
eye cataracts in males and ovarian hyperplasia in 
females. 

Rats 90 d 0.7 7.1: liver and kidney histopathology 
Rats 90 d 0.5 5: Decreased spleen and testicular weights with 

hematological changes in males. 
Rats 106 w 

107 w 
0.51 [M] 
5.2 [F] 

4.15/16 (M/F): Kidney damage and increased 
mortality.  Increased incidence of ovarian cysts at 
the LOAEL for females. 

[1] Species marked with an asterisk (*) indicate studies with fluazifop-P-butyl.  All other studies 
used fluazifop-butyl. 

[2] d=days; w=weeks’ y=year 
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Table 12: Overview of Developmental Studies in Mammals 

Species[1] 

Maternal 
NOAEL 
(mg/kg 
bw/day) 

Maternal 
LOAEL 
(mg/kg 
bw/day) 

Fetal 
NOAEL 
(mg/kg 
bw/day) 

Fetal 
LOAEL[4] 

(mg/kg 
bw/day) 

MRID[2] 

Rabbit 30 90 30 90 00088856 
Rabbit* 10 50 10 50 46082904 
Rats 200 N/A[3] N/A[3,5] 

50 [6] 
10[5] 

200 
00088857 

Rats 200 N/A[3] 1[5] 
10 

5[5] 
200 

00088858 

Rats* 20 300 1 20 46158401 
Rats* 100 N/A[3] 2[7] 5 46082903 
Rats* 100 N/A[3] 2[7] 5 46082013 
[1] Species marked with an asterisk (*) indicate studies with fluazifop-P-butyl.  All other studies 

used fluazifop-butyl. 
[2] Only the initial MRID from Appendix 1, Table A1-3 is included. 
[3] N/A: A NOAEL or LOAEL was not observed. 
[4] All effects are developmental unless otherwise noted.’ 
[5] The values in the upper section based on developmental effects (e.g., decreased fetal weight or 

delayed ossification) and values given below these are based on malformations (i.e., 
diaphragmatic hernia). 

[6] Basis for Acute (1 day) RfD. 
[7] EPA basis for short-term (1 to 30 days) occupational risks. 
 

See Appendix 1, Table A1-3 for details. 
See Section 3.1.9 for discussion. 
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Table 13: Worker Exposure Rates 
 
Absorbed Dose Rates (mg/kg bw/day per lb applied) 

Worker Group Central 
Estimate Lower C.I. Upper C.I. Lower P.I. Upper P.I. 

Directed foliar 0.08 0.02 0.06 0.1 0.5 

Broadcast foliar 0.0001 0.00004 0.0002 0.000002 0.005 

Aerial 0.00002 0.000006 0.00007 0.0000005 0.0008 

CI: Confidence Interval.   
PI: Prediction Interval. 
 
Treatment Rates: Acres Treated per Day 

Worker Group Central Lower Upper 

Directed foliar 4.4  1.5 8.0 

Broadcast foliar 112 66 168 

Aerial 490 240 800 

 
Source: SERA (2013). 

    See Section 3.2.2.1 for discussion. 
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Table 14: Worker Exposure Rates Used in EPA Risk Assessments 

Scenario No 
clothing[1] 

Single 
Layer, No 
gloves[1] 

Single layer, 
Gloves[1] Inhalation[1] 

1. Dry flowable, open mixing and loading 1.1 0.066 0.066 0.00077 
2. Granular, open mixing and loading 0.032 0.0084 0.0069 0.0017 
3. All liquids, open mixing and loading 3.1 2.9 0.023 0.0012 
4. Wettable powder, open mixing and loading 6.7 3.7 0.17 0.04342 
5. Wettable powder, water soluble bags 0.039 0.021 0.0098 0.00024 
6. All liquids, closed mixing and loading   0.0086 0.000083 
7. Aerial-fixed wing, enclosed cockpit/liquid[2] 0.0050 0.0050 0.0022 0.000068 
8. Aerial-fixed wing, enclosed cockpit/granular 0.0044 0.0017 0.0017 0.0013 
9. Helicopter application, enclosed cockpit  0.0019 0.0019 0.0000018 
10. Aerosol application 480 190 81 1.3 
11. Airblast application, open cockpit 2.2 0.36 0.24 0.0045 
12. Airblast application, enclosed cockpit   0.019 0.00045 
13. Groundboom applications, open cab[2] 0.046 0.014 0.014 0.00074 
14. Groundboom applications, enclosed cab 0.010 0.0050 0.0051 0.000043 
15. Solid broadcast spreader, open cab, AG 0.039 0.0099  0.0012 
16. Solid broadcast spreader, enclosed cab, AG 0.0021 0.0021 0.0020 0.00022 
17. Granular bait dispersed by hand   71 0.47 
18. Low pressure handwand 25 12 7.1 0.94 
19. High pressure handwand 13 1.8 0.64 0.079 
20. Backpack applications 680   0.33 
21. Hand gun (lawn) sprayer   0.34 0.0014 
22. Paintbrush applications 260 180  0.280 
23. Airless sprayer (exterior house stain) 110 38  0.830 
24. Right-of-way sprayer 1.9 1.3 0.39 0.0039 
25. Flagger/Liquid 0.053 0.011 0.012 0.00035 
26. Flagger/Granular 0.0050   0.00015 
27. WP or liquid/open pour/airblast/open cab 26   0.021 
28. WP or liquid/open pour/airblast/closed cab 0.88 0.37 0.057 0.0013 
29. Liquid or DF /open pour/ground boom/closed cab 0.22 0.089 0.029 0.00035 
30. Granule/open pour/belly grinder 210 10 9.3 0.062 
31. Push type granular spreader  2.9  0.0063 
32. Liquid/open pour/low pressure handwand 110 100 0.43 0.030 
33. WP/open pour/low pressure handwand   8.6 1.1 
34. Liquid/open pour/backpack   2.5 0.03 
35. Liquid/open pour/high pressure handwand   2.5 0.12 
36. Liquid/open pour/garden hose end sprayer 34   0.0095 
37. Liquid/open pour/termiticide injection   0.36 0.0022 

[1] All rates are in units of mg/lb a.i. handled. 
[2] These entries are discussed in the risk assessment. 

Source: Keigwin 1988 
See Section 3.2.2.1.2 for discussion. 
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Table 15: Comparison of Worker Exposure Estimates 

All exposures in units of mg a.i./kg bw/day 

Worker Group Chester and Hart 
1986 

U.S. EPA/OPP 
2011a 

This Risk 
Assessment[5] 

Backpack 0.03 
(0.02-0.04)[1] N/A 

0.018 
(0.0045 – 0.045) 

[0.0038-0.21] 
Ground spray 0.007 

(0.001 – 0.03) [2] 
0.00091[3] 

{0.0012}[6] 

0.0042 
(0.00099-0.013) 
[0.00005-0.35] 

Aerial 
N/A 0.00099[3] 

{0.0014}[6] 

0.0037 
(0.00054-0.021) 
[0.000045-0.24] 

Range of worker 
exposures (NOS) N/A 0.006 to 0.07[4] N/A 

 
[1] Chester and Hart (1986), p. 141. 
[2] Chester and Hart (1986), p. 144. 
[3] Based on MOE (NOEL ÷ Dose) given in U.S. EPA/OPP/HED (2011a), Table 9, p. 50 and the 

NOAL of 0.74 mg/kg bw – i.e., Dose = NOAEL ÷ MOE.  Reported MOEs are 813 for ground 
broadcast and 746 for aerial. 

[4] Range of worker exposures (NOS) given by U.S. EPA/OPP/HED (2011a), p. 48: … 
occupational exposures for the new uses of fluazifop-P-butyl were found to range from a high 
of 0.07 mg/Kg/day to a low of 0.006 mg/Kg/day.   

[5] From Worksheets C01a (backpack), C02b (ground broadcast), and C02c (aerial) in the 
attachments that accompany this risk assessment.  Confidence intervals are given in 
parentheses and prediction intervals are given in braces [].  The values in these worksheets are 
divided by 0.854 a.e./a.i. to adjust the rates to units of a.i. rather than a.e. 

[6] The rates in braces {} are adjusted to use number of treated acres used in standard Forest 
Service risk assessments.  These values are more comparable to the values in the last column 
of this table as discussed further in Section 3.2.2.1.4. 

 
See Section 3.2.2.1.4 for discussion. 
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Table 16: Precipitation, Temperature and Classifications for Standard Test Sites 

Location Precipitation Temperature 

Average 
Annual 
Rainfall 
(inches) 

Average 
Annual 

Temperature 
(◦F) 

HI, Hilo Wet Warm 126.06 73.68 
WA, Quillayute 1 Wet Temperate 95.01 49.14 
NH, Mt. 
Washington 

Wet Cool 98.49 27.12 

FL, Key West Average Warm 37.68 77.81 
IL, Springfield Average Temperate 34.09 52.79 
MI, Sault Ste. Marie Average Cool 32.94 40.07 
AR, Yuma Test 
Station 

Dry Warm 3.83 73.58 

CA, Bishop Dry Temperate 5.34 56.02 
AK, Barrow Dry Cool 4.49 11.81 
1 Based on composite estimation in WEPP using a latitude of 47.94 N and a longitude of -124.54 
W.  See SERA (2006c) for details. 
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Table 17: Field and Waterbody Parameters Used in Gleams-Driver Modeling 

Field Characteristics Description Pond Characteristics Description 
Type of site and surface (FOREST) Field (0) Surface area 1 acre 
Treated and total field areas 10 acres Drainage area: 10 acres 
Field width 660 feet Initial Depth 2 meters 
Slope 0.1 (loam and clay) 

0.05 (sand) 
Minimum Depth 1 meter 

Depth of root zone 36 inches Maximum Depth 3 meters 
Cover factor 0.15 Relative Sediment Depth 0.02 
Type of clay Mixed   
Surface cover No surface depressions   

 

Stream Characteristics Value 
Width 2 meters 

Flow Velocity 6900 meters/day 
 Initial Flow Rate 710,000 liters/day  

 

GLEAMS Crop Cover 
Parameters[3] 

Description Value 

ICROP Weeds 78 
CRPHTX Maximum height in feet. 3 
BEGGRO Julian day for starting growth 32 
ENDGRO Julian day for ending growth 334 

 

Application, Field, and Soil Specific 
Factors [1] Code[3] Clay Loam Sand 

Percent clay (w/w/): CLAY 50% 20% 5% 
Percent silt (w/w/): SILT 30% 35% 5% 

Percent sand (w/w/): N/A 20% 45% 90% 
Percent Organic Matter: OM 3.7% 2.9% 1.2% 

Bulk density of soil (g/cc):  BD 1.4 1.6 1.6 
Soil porosity (cc/cc): POR 0.47 0.4 0.4 

Soil erodibility factor (tons/acre): KSOIL 0.24 0.3 0.02 
SCS Runoff Curve Number [2]: CN2 83 70 59 
Evaporation constant (mm/d): CONA 3.5 4.5 3.3 

Saturated conductivity below root zone (in/hr): RC 0.087 0.212 0.387 
Saturated conductivity in root zone (in/hr) SATK 0.087 0.212 0.387 

Wilting point (cm/cm): BR15 0.28 0.11 0.03 
Field capacity (cm/cm): FC 0.39 0.26 0.16 

[1] The qualitative descriptors are those used in the QuickRun window of Gleams-Driver. Detailed input values for the soil types 
are given in the sub-table below which is adapted from SERA (2007b, Tables 2 and 3).  All fields are run for about 6 months 
before the pesticide is applied in early summer. 

[2] From Knisel and Davis (Table H-4), Clay: Group D, Dirt, upper bound; Loam: Group C, woods, fair condition, central 
estimate; Sand: Group A, meadow, good condition, central estimate. 

[3]Codes used in documentation for GLEAMS (Knisel and Davis 2000) and Gleams-Driver (SERA 2007a) 
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Table 18: Chemical parameters used in Gleams-Driver modeling 
All values for fluazifop-P unless otherwise specified. 

Parameter Values Note/Reference 

Half-life (days)   

   Aquatic Sediment 1056 Note 1 

   Foliar 7.5 (6.6-8.7) Note 2 

   Soil 23 (15 to 32) Note 3 

   Water 82 Note 4 

Soil Ko/c, mL/g 8.3 to 51 Note 5 

Sediment Kd, mL/g 0.27-1.57 Note 6 

Water Solubility, mg/L 780 Note 7 

Foliar wash-off fraction 0.4 Knisel and Davis 2000 

Fraction applied to foliage 0.5 Default 

Depth of Soil Incorporation 1 cm Default 
 

Note 1 Upper confidence bound of four half-lives from U.S. EPA/OPP/EFED (2010b citing MRIDs 87493 
and 92067032). 

Note 2 Reanalysis of mean residue data from Kulshrestha et al. (1995, Table 2, p. 279).  Application of 
fluazifop-P-butyl but analysis of fluazifop-P.  C14 label not used.  Knissel and Davis (2000) report a 
half-life on vegetation of 5 days.  No foliar half-lives identified for fluazifop-P expressed a C14.  These 
values may not adequately account for metabolites of fluazifop-P.  See Section 3.2.3.7 for discussion. 

Note 3 U.S. EPA/OPP/EFED (2010b) uses 30 days base on 90% upper bound of 11 half-lives citing MRIDs 
MRID 46190602 and 87493, 92067032.  Values used here are based on same data but use the mean 
and 90% confidence interval – i.e., 5% and 95% bounds. 

Note 4 Upper confidence bound of four half-lives from U.S. EPA/OPP/EFED (2010b) citing MRID 
46190605. 

Note 5 U.S. EPA/OPP/EFED 2008 citing MRID 41900604.  Higher Koc values (25.93-51) are reported in 
U.S. EPA/OPP/EFED (2010b) citing MRID 46190602 as well as values published by Kah and Brown 
(2007). 

Note 6 Kah and Brown 2007. 

Note 7 U.S. EPA/OPP/EFED 2010b citing MRID 46190602 as well as Kah and Brown 2007b; Kah et al. 
2007. 

 
Note: The database for Gleams-Driver includes only central estimates for the above parameters.  The 

uniform distribution is used for ranges in the simulations discussed in this risk assessment were 
implemented using the Full Run feature in Gleams-Driver. 
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Table 19: Summary of Modeled Concentrations in Surface Water 

All concentrations in units of ppb or µg a.e./L for an application rate of  0.32 lb a.e./acre 
Scenario Peak Long-Term Average 

Modeling for This Risk Assessment   
Accidental Spill (Section 3.2.3.4.1) 700 (70-5,800)  
Direct Spray and Spray Drift   

Pond, Direct Spray (Section 3.2.3.4.2) 36 N/A 
Pond, drift at 25 feet (Section 3.2.3.4.2) 0.3-8 N/A 
Stream, Direct Spray (Section 3.2.3.4.2) 30 N/A 

Stream, drift at 25 feet (Section 3.2.3.4.2) 0.2-7 N/A 
Gleams-Driver    

Single Application (see Appendix 8 for details)   
Pond, Section 3.2.3.4.4 6.27 (0-73.9) 2.39 (0-26.6) 

Stream, Section 3.2.3.4.4 3.42(0-42.9) 0.170 (0-1.57) 
Two Applications at 14-day Interval  

(see Appendix 9 for details) 
  

  Pond, Section 3.2.3.4.4 11.6 (0-131) 4.48 (0-51.2) 
Stream, Section 3.2.3.4.4 6.30 (0-86.4) 0.336 (0-3.17) 

Three Applications at 14-day Intervals 
(see Appendix 10 for details) 

  

  Pond, Section 3.2.3.4.4 16.2 (0 to 150) 6.59 (0 to 62.4) 
Stream, Section 3.2.3.4.4 8.51 (0-115) 0.490 (0 to 4.32) 

EPA Modeling   
U.S. EPA/OPP/EFED 2003a, FIRST, Tier 1.  Three 
applications at 0.375 lb a.i./acre with 14 day interval. 53.327 11.336 

U.S. EPA/OPP/EFED 2004a, PRZM/EXAMS, Index 
Reservoir, 3 applications at 0.375 lb a.i./acre (0.32 lb 
a.e./acre) with 21-day interval. CA Fruit. PCA 0.87, ranges 
from Appendix A 

5.6 
(2.7 to 26) 

1.5 
(0.74 to 6.84) 

U.S. EPA/OPP/EFED 2008, PRZM/EXAMS, 2 applications 
at 0.36 kg a.e./ha (0.32 lb a.e./acre) 1.35 to 14.3 N/A 

U.S. EPA/OPP/EFED 2010a, PRZM/EXAMS, cites 2008 and 
2010 EFED risk assessments.  26.2 to 33.4 N/A 

U.S. EPA/OPP/EFED 2010b, Three ground applications, at 
0.36 kg a.e./ha (0.32 lb a.e./acre) with 14-day interval.  
CAGrapes, CAWineGrape, NYGrapesSTD and Citrus using 
Index Reservoir.  Table 3, p. 7. 

8.7 to 27.3 2.0 to 4.4 

 
See Section 3.2.3.4.3 for a discussion of the GLEAMS-Driver modeling. 

 See Section 3.2.3.4.4 for a discussion of the EPA modeling. 
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Table 20: Concentrations of fluazifop-P (a.e.) in surface water used in this risk assessment 
 

Foliar Broadcast, one application Peak[1] Longer-term[1] 

Central 0.020 0.0075 

Lower 0.002 0.00075 

Upper 0.23 0.083 
Foliar Broadcast, two applications Peak[1] Longer-term[1] 

Central 0.036 0.014 

Lower 0.0036 0.0014 

Upper 0.41 0.16 
Foliar Broadcast, three applications Peak[1] Longer-term[1] 

Central 0.05 0.02 

Lower 0.005 0.002 

Upper 0.47 0.20 
[1] All concentrations given as Water Contamination Rates – concentrations in units of mg a.i./L 

expected at an application rate of 1 lb a.i./acre.  Units of mg a.e./L are used in the EXCEL 
workbook that accompanies this risk assessment.  

 
Working Note: The above are all based on GLEAMS-Driver modeling of the pond, with the 

lower bound set at 0.1 of the average.  All values are rounded to 2 significant digits.  These 
are all water contamination rates and are taken from Table 7 (peak) and Table 8 (longer-
term) of Appendix 8 (one application), Appendix 9 (two applications), and Appendix 10 
(three applications).  

 
See Section 3.2.3.4.6 for discussion. 
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Table 21: Estimated residues in food items per lb a.i. applied 
 

All concentration given in units of ppm (mg agent/kg food) per lb/acre. 
Food Item Central a Lower b Upper a 

Short grass 85 30 240 
Tall grass 36 12 110 
Broadleaf/forage plants and small 
insects 

45 15 135 

Fruits, pods, seeds, and large insects 7 3.2 15 
 
 
a U.S. EPA/EFED 2001, p. 44 as adopted from Fletcher et al. (1994).     
b Central values × (Central Value ÷ Upper Value). 
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Table 22: Summary of toxicity values used in human health risk assessment 
Acute – single exposure 

Element Derivation of  RfD 
EPA Document U.S. EPA/OPP/ HED 2011a 

Study MRIDs 00088857 and 92067047 

NOAEL Dose 50 mg a.i./kg bw 

LOAEL Dose 200 mg a.i./kg bw 

LOAEL Endpoint(s) Diaphragmatic hernias 

Species, sex Rats, fetuses 

Uncertainty Factor/MOE 100 

Equivalent RfD 0.5 mg a.i./kg bw/day [0.43 mg a.e./kg bw/day] 
 
Chronic – lifetime exposure 

Element Derivation of  RfD 
EPA Document U.S. EPA/OPP/ HED 2011a 

Study MRIDs 000088859, 92067022, and 92067050 

NOAEL Dose 0.74 mg/kg bw/day 

LOAEL Dose 5.8 mg/kg bw/day 

LOAEL Endpoint(s) Rats, male 

Species, sex Decrease testes weight 

Uncertainty Factor/MOE 100 

Equivalent RfD 0.0074 mg a.i./kg bw/day [0.0063 mg a.e./kg bw/day] 
 
Occupational – 1 to 6 month exposure periods 

Element Derivation of  RfD 
EPA Document U.S. EPA/OPP/HED 2011a, p. 49 

Study MRIDs 46082903 supported by MRID 46158401 

NOAEL Dose 2 mg/kg bw/day 

LOAEL Dose 5 mg/kg bw/day 

LOAEL Endpoint(s) Increased incidence of hydroureter (abnormal distension of the ureter with 
urine) and delayed ossification. 

Species, sex Rat, female and offspring 

Uncertainty Factor/MOE 100 

Equivalent RfD 0.02 mg/kg bw/day 
0.017 mg a.e./kg bw/day 

[1] The toxicity values from EPA are expressed in units of fluazifop-P-butyl (mg a.i./kg bw/day).  For the workbooks 
that accompany this risk assessment, all exposure values are in units of fluazifop-P (a.e.).  Consequently, the toxicity 
values from EPA are adjusted to units of a.e. using the conversion factor of 0.854 a.e./a.i. as discussed in Section 
2.1.  The a.e. values are bolded in this table. 

See Section 3.3 for discussion. 
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Table 23: Risk Characterization for Workers 

Summary of Hazard Quotients 
Accidental/Incidental: Dose ÷ 0.43 mg a.e./kg bw Acute RfD  

Scenario Receptor Central Lower 
CI Upper CI 

Contaminated 
Gloves, 1 min. Worker 1E-02 3E-03 9E-02 

Contaminated 
Gloves, 1 hour Worker 0.6 0.2 6 

Spill on Hands, 1 
hour Worker 1E-03 2E-04 1E-02 

Spill on lower legs, 
1 hour Worker 3E-03 4E-04 3E-02 

 

General Exposures - Short-term: Dose ÷ 0.0017 mg a.e./kg bw Short-term Surrogate RfD  
Worker Group Central Lower 

PI 
Lower 

CI Upper CI Upper PI 

Backpack Applications: 0.9 0.2 0.2 2 10 
Ground Broadcast 
Applications: 0.2 2E-03 5E-02 0.6 16 

Aerial Applications: 0.2 2E-03 3E-02 1.1 12 
 

General Exposures - Longer-Term:  Dose ÷ 0.00063 mg a.e./kg bw Chronic RfD  
Worker Group Central Lower 

PI 
Lower 

CI Upper CI Upper PI 

Backpack Applications: 2 0.5 0.6 6 28 
Ground Broadcast 
Applications: 0.6 7E-03 0.1 1.7 43 

Aerial Applications: 0.5 6E-03 0.1 3 33 
 

Summary of Worker Margins of Exposure 
General Exposures - Short-term: 1.7 mg a.e./kg bw NOAEL ÷ Exposure 

Worker Group Central Lower 
PI 

Lower 
CI 

Upper 
CI 

Upper 
PI 

Backpack Applications: 110 528 443 44 10 
Ground Broadcast 

Applications: 474 40246 2012 158 6 

Aerial Applications: 542 44271 3689 95 8 
 
General Exposures – Intermediate: 0.63 mg a.e./kg bw NOAEL ÷ Exposure 

Worker Group Central Lower 
PI 

Lower 
CI 

Upper 
CI 

Upper 
PI 

Backpack Applications: 41 196 164 16 4 
Ground Broadcast 

Applications: 176 14915 746 59 2 

Aerial Applications: 201 16406 1367 35 3 
CI: Confidence Interval    PI: Prediction Interval 
 

Source: Worksheet E02 in Attachments 1, 2, and 3. 
See Section 3.4.2 for discussion.  
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Table 24: Risk Characterization for the General Public, Acute Exposures 
 
Accidental Acute Exposures (dose in mg/kg/event) 

Scenario Receptor Central Lower Upper 
Direct Spray of Child, whole body Child 4E-02 7E-03 0.5 

Direct Spray of Woman, feet and lower 
legs 

Adult Female 4E-03 7E-04 5E-02 

Water consumption (spill) Child 0.1 8E-03 1.5 
Fish consumption (spill) Adult Male 0.5 5E-02 4 

Fish consumption (spill) 
Subsistence 
Populations 2 0.2 18 

 
Non-Accidental Acute Exposures 
Number of Applications 

Scenario Receptor Central Lower Upper 

One Application        
Vegetation Contact, shorts and T-shirt Adult Female 4E-03 1E-03 1E-02 

Contaminated Fruit Adult Female 9E-03 4E-03 0.1 
Contaminated Vegetation Adult Female 0.1 8E-03 1.0 

Swimming, one hour Adult Female 5E-05 2E-06 1E-03 
Water consumption Child 1E-03 7E-05 2E-02 

Fish consumption Adult Male 4E-03 4E-04 5E-02 

Fish consumption 
Subsistence 
Populations 2E-02 2E-03 0.2 

Two Applications        
Vegetation Contact, shorts and T-shirt Adult Female 4E-03 1E-03 1E-02 

Contaminated Fruit Adult Female 1E-02 5E-03 0.2 
Contaminated Vegetation Adult Female 0.2 1E-02 1.3 

Swimming, one hour Adult Female 8E-05 4E-06 2E-03 
Water consumption Child 2E-03 1E-04 3E-02 

Fish consumption Adult Male 7E-03 7E-04 8E-02 

Fish consumption 
Subsistence 
Populations 4E-02 4E-03 0.4 

Three Applications        
Vegetation Contact, shorts and T-shirt Adult Female 4E-03 1E-03 1E-02 

Contaminated Fruit Adult Female 1E-02 5E-03 0.2 
Contaminated Vegetation Adult Female 0.2 1E-02 1.4 

Swimming, one hour Adult Female 1E-04 6E-06 2E-03 
Water consumption Child 3E-03 2E-04 4E-02 

Fish consumption Adult Male 1E-02 1E-03 9E-02 

Fish consumption 
Subsistence 
Populations 5E-02 5E-03 0.5 

 
Sources: Worksheets E04 of Attachments 1, 2, and 3. 

See Sections 3.4.3.1 and 3.4.3.2 for discussion. 
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Table 25: Risk Characterization for the General Public, Chronic Exposures 
All values expressed as Hazard Quotients (Exposure ÷ Chronic RfD) 

Number of Applications 
Scenario Receptor Central Lower Upper 

One Application        

Contaminated Fruit Adult Female 7E-02 3E-02 1.3 
Contaminated Vegetation Adult Female 1.0 6E-02 10 

Water consumption Adult Male 0.1 8E-03 0.1 
Fish consumption Adult Male 6E-04 6E-05 7E-04 

Fish consumption 
Subsistence 
Populations 5E-03 5E-04 5E-03 

Two Applications        

Contaminated Fruit Adult Female 0.1 6E-02 3 
Contaminated Vegetation Adult Female 2.0 0.1 19 

Water consumption Adult Male 2E-02 1E-03 0.3 
Fish consumption Adult Male 1E-04 1E-05 1E-03 

Fish consumption 
Subsistence 
Populations 9E-04 9E-05 1E-02 

Three Applications        

Contaminated Fruit Adult Female 0.2 9E-02 4 
Contaminated Vegetation Adult Female 3 0.2 29 

Water consumption Adult Male 3E-02 2E-03 0.3 
Fish consumption Adult Male 2E-04 2E-05 2E-03 

Fish consumption 
Subsistence 
Populations 1E-03 1E-04 1E-02 

 
Sources: Worksheets E04 of Attachments 1, 2, and 3. 

See Section 3.4.3.3 for discussion. 
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Table 26: Toxicity Studies in Terrestrial Plants 
Group Sensitive Tolerant 

 Post-emergence  
 Poaceae/Gramineae Monocots  

Greenhouse 0.0091 kg a.i./ha, ED50 growth, Corn 
(EFSA 2011).   

ED50s of 0.02 to 0.04 kg a.i./ha for several 
other species (Appendix 4, Table A4-3). 

0.18 kg a.i./ha, Red fescue, some visual damage 
(Blake et al. 2012). 

Supported by little visual damage to red fescue at 
0.15 lb/acre from (Cisar and Jagschitz 1984a). 

Field 0.035 kg a.i./ha: smooth crabgrass, 
moderate control (Cisar and Jagschitz 
1984b) 

≥ 0.07 kg a.i./ha, Many species of grasses, 
good control (Appendix 4, Table A4-6). 

0.0375 to 0.075 lb/ac, Red fescue (Festuca rubra) 
and bluegrass, and bentgrass, minimal injury 
(Cisar and Jagschitz 1984b) 

1.12 kg/ha, blue fescue (Festuca ovina), minor 
damage (Calkins et al. 1996) 

 Other monocots  
Greenhouse 1.69 kg a.i./ha, Some Anthericacae  and 

Haemodoraceae, modest reduction in 
plant height or leaf damage (Rokich et 
al. 2009). Most pronounced in 4-5 month 
of plants. 

1 kg a.i./ha, No or little damage to Cyperaceae (2 
sp.), Commelinaceae (1 sp.), Liliaceae (1 
species), or Araceae (1 sp.) (Haga et al.1987). 

3.4 kg a.i./ha, 3-4 month old Anthericacae (2 sp.) no 
adverse effect (Rokich et al. 2009) 

Field 1.12 kg a.i./ha, Iridaceae (miniature dwarf 
bearded iris) and Xanthorrhoeaceae 
(after dark daylily), relatively 
pronounced visual damage  (Calkins et 
al.  1996). 

 

1.12 kg a.i./ha, One species of Xanthorrhoeaceae  
(young love daylily) and one species of 
Asparagaceae (plantain lily), no adverse effects 
(Calkins et al. 1996). 

0.19 lb a.i./acre [0.21 kg a.i./ha]: Two species of 
Xanthorrhoeaceae, No signs of damage (Skroch 
et al. 1990) 

 Dicots  
Greenhouse ≈0.1 to 0.75 kg a.i./ha:  Red clover (most 

sensitive dicot) transient chlorosis from 
Day 7 to 14 but not significant effect by 
Day 21 (Blake et al. 2012). 

0.4 kg a.i./ha: Dose-related decreases in 
plant in 2 Australian dicots (Rokich et al. 
2009). 

0.75 to 1 kg a.i./ha: No toxicity in many species and 
families (Blake et al. 2012, Haga et al. 1984) 

6 kg a.i./ha: Minimal reduction in growth in 
soybean (Buhler and Burnside 1984b) 

Field 0.84 and 1.68 kg Fluazifop-P (NOS)/ha: 
Indian blanket (Gaillardia pulchella), 
transient and slight injury. 

≈0.1 to 1.6 kg a.i./ha: Many species.  No injury 
(Appendix 4, Table A4-6). 

 Pre-emergence  
 Poaceae/Gramineae Monocots  

Greenhouse 0.035 kg a.i./ha, Several grasses, 73-95% 
control (Derr et al. 1985c) 

Not defined 

 Other monocots  
Greenhouse None identified 0.84 kg a.i./ha, two species of Haemodoraceae, no 

significant effects (Rokich et al. 2009) 
 Dicots  

Greenhouse 0.56 kg a.i./ha, Cucumber, 34% reduction 
in stem length (Boucounis et al. 1998)  

0.75 kg a.i./ha, Red clover, <5% visual 
damage (Blake et al. 2012).  

0.75 kg a.i./ha, Several species of dicots, no effects 
(Blake et al. 2012) 

0.84 kg a.i./ha, Several species of  Australian dicots, 
no effects (Rokich et al. 2009) 

 Ferns (only 1 study)  
Greenhouse None Identified 1 kg/ha, several species of Pteridophyte, no effects 

(Haga et al. 1987) 
Source: Appendix 4, Tables A4-1 to A4-6. 

See Section 4.1.2.5.2 for discussion. 
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Table 27: Toxicity Data in Fish 
 

ACUTE TOXICITY 
Species 

Agent 
LC50  

(mg a.e./L)[1] 
NOAEC 

(mg a.e./L) Reference 

Freshwater    
Fluazifop-butyl     

Nile tilapia 0.25 N.R. Tejada et al. 1994 
Fathead minnow 0.32 0.23 MRID 00093808 
Bluegill 0.45 0.31 MRID 00087485 
Carp 1.12 N.R. FAO/WHO 2000 

Rainbow trout  1.2 
[Slope=15.2] 0.68 MRID 00131458 

Fluazifop Acid    
Rainbow trout 117 N.R. EFSA 2012 

Metabolite X    
Rainbow trout 240 N.R. EFSA 2012 

Formulations    

Bluegill, 25.8% formulation 2.28 
[Slope=10.1] 1.92 MRID 00087486 

Rainbow trout, 25.8% 
formulation  

4.2 
[Slope=13.2] 0.34 MRID 00087484 

Rainbow trout, Fusilade Max, 
12.5 % EC 1.37 N.R. EFSA 2012 

Saltwater    
Formulations    

Sheepshead minnow  3.21 N.R. MRID 00152173 
Sheepshead minnow  9.4 2.56 Accession No. ACC070630 

 

LONGER-TERM TOXICITY 
Species,  

Agent 
NOAEC 

(mg a.e./L) 
LOAEC 

(mg a.e./L) Reference 

Fathead minnow,  
fluazifop-butyl  >0.203 N/A MRID 00093808 

Fathead minnow 
fluazifop-P-butyl  0.07 N/A EFSA 2012; FAO/WHO 

2000 
Fathead minnow 

fluazifop acid 1.46 N/A EFSA 2012 
[1] Values for Metabolite X are given in units of mg metabolite/L.  All other values are given as mg a.e./L. 
[2] U.S. EPA/OPP/EFED (2008) reports and LC50 of 6.86 mg a.e./L.  This value, however, appear to be an error.  See 

Section 4.1.3.1 for discussion. 
N.R.: Not reported. 
N/A: Not available. 

Source: Appendix 5, Tables A5-1 (freshwater) and A5-2 (saltwater) 
See Section 4.1.3.1 for discussion. 
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Table 28: Acute Toxicity Data in Aquatic Invertebrates 
 

Species 
Agent 

EC50  
(mg a.e./L)[1] 

NOAEC 
(mg a.e./L) Reference 

Freshwater    

Fluazifop-butyl     
Daphnia magna, 97.8% a.i. 240 82.8 MRID 00087490[3] 

Fluazifop-P-butyl    
Daphnia magna, 94.8% >8.5 [4] 8.5 MRID 00087488 

Daphnia magna, [R]:[S]::1:1[2] 473 162 MRID 00162452 

Daphnia magna, [R]:[S]::1:7[2] 466 254 MRID 00162452 

Daphnia magna, [R]:[S]::1:14[2] 352 138 MRID 00162452 

Fluazifop Acid    
Daphnia magna, NOS 240 N.R. EFSA 2012 

Metabolite X    
Daphnia magna, NOS 681 N.R. EFSA 2012 

Formulations    
Daphnia magna, 24% a.i. 5.14 1.07 MRID 00087489 

Daphnia magna, EC 25% a.i. 5.5 N.R. MRID 00087488 

Daphnia magna, Fusilade Max 1.79 N.R. EFSA 2012 

Saltwater    

Fluazifop-butyl    
Pacific oyster, 98.6% a.i. 0.083 0.048 MRID 00131460 

Opossum shrimp, 98.6% 0.184 0.041 MRID 00093806 [5] 

Fluazifop-P-butyl    
Opossum shrimp, 92.2% a.i. 0.44 0.17 MRID 00131460 

Opossum shrimp, NOS 0.46 N.R EFSA 2012 

American oyster, 90% a.i. 0.40 0.15 MRID 41900601 

American oyster, NOS 0.45 N.R. EFSA 2012 

Formulations    
Fiddler crab, 25.4% a.i. 3.5 2.1 MRID 00093806 

Pink shrimp, 25.4% a.i. 5.1 2.6 MRID 00093804 
[1] Values for Metabolite X are given in units of mg metabolite/L.  All other values are given as mg a.e./L. 
[2] Specified blends of the [R] and [S] enantiomers.  U.S. EPA/OPP/EFED (2008) indicates that the test 

substance was fluazifop-butyl.  The DERs for this study (Jealotts Hill Research Station 1983; Hamer and 
Hill 1983) indicates that the test substance was fluazifop acid.  See discussion in Section 4.1.3.3. 

[3] It is unclear if this was a study on fluazifop-butyl or fluazifop acid.  See discussion in Section 4.1.3.3. 
[4] The EC50 is reported as >10 mg a.i./L in ECOTOX but as 10 mg a.i./L or 8.5 mg a.e./L in U.S. EPA/OPP/EFED (2008, p. 

190).  The DER for this study (Getty et al. 1979) confirms and is consistent with ECOTOX – i.e., no effects observed at 
any concentration. 

[5] DER (Hollister et al. 1980/1981) available and consistent with summary in U.S. EPA/OPP/EFED (2008).  The DER, 
however, does not cover the assay of a 25.4% formulation in the fiddler crab. 

N.R.: Not reported. 
Source: Appendix 6, Tables A6-1 (freshwater) and A6-2 (saltwater).  

See Section 4.1.3.3 for discussion.  
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Table 29: Longer-term Toxicity Data in Aquatic Invertebrates 
All studies on fluazifop-butyl 

Species, Duration, Purity (if 
available) 

NOAEC 
(mg a.e./L) 

LOAEC 
(mg a.e./L) Reference 

Daphnia magna, 21 days, 
97.2% a.i.  0.0854 0.213 MRID 00093807[2] 

Opossum shrimp, 28 days 0.0148 0.066[1] MRID 00093805 

Opossum shrimp, 28 days 0.041 N.R. EFSA 2012 
[1] This value is specified as an LC50 in ECOTOX.  This submission not discussed in U.S. 

EPA/OPP/EFED (2008). 
[2] A relatively standard DER is available (Edwards et al. 1981).  The DER (prepared in 1991) indicates that 

a new study will be required.  No new study has been encountered. 
N.R.: Not reported. 

Source: Appendix 6, Tables A6-3. 
See Section 4.1.3.3 for discussion. 
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Table 30: Toxicity to Algae and Aquatic Macrophytes 
 
ALGAE 

Agent 
Species 

EC50  
(mg a.e./L)[1] 

NOAEC 
(mg a.e./L) Reference[2] 

Fluazifop-P-butyl     
Pseudokirchneriella subcapitata >1.54 0.75 EFSA 2012 (+) 
Navicula pelliculosa 0.44 N.R. EFSA 2012 (+) 

Fluazifop Acid    
Pseudokirchneriella subcapitata >40 N.R. EFSA 2012 

Metabolite X    
Pseudokirchneriella subcapitata 340 N.R. EFSA 2012 

Formulations    
Fusilade Max (EC125 g/L)    
Pseudokirchneriella subcapitata 0.02 N.R. EFSA 2012 
Pseudokirchneriella subcapitata 0.128[3] N.R. EFSA 2012 
Navicula pelliculosa 0.188 N.R. EFSA 2012 
Chinese 53% EC formulation    
Chlorella pyrenoidosa 13.3 N.R. Ma 2002 
Chlorella pyrenoidosa 13.4 N.R. Ma et al. 2002b 
Chlorella vulgaris 18.5 N.R. Ma et al. 2002a 
Raphidocelis subcapitata 0.89 N.R. Ma et al. 2006 
Scenedesmus obliquus 22.8 N.R. Ma 2002 
Scenedesmus quadricauda 15.6 N.R. Ma et al. 2004 
Unspecified formulation    
Dunaliella bioculata 0.327[4] 0.033 Felix et al. 1988 
 

AQUATIC MACROPHYTES 
Agent 

Species 
EC50  

(mg a.e./L)[1] 
NOAEC 

(mg a.e./L) Reference[2] 

Fluazifop-P-butyl     
Lemna gibba >1.2 N.R. EFSA 2012 (+) 
Lemna paucicostata N.R. 327 Michel et al. 2004 

Fusilade Max (EC125 g/L)    
Lemna gibba >11.6 N.R. EFSA 2012 (+) 

[1] Values for Metabolite X are given in units of mg metabolite/L.  All other values are given as 
mg a.e./L.  If multiple endpoints are available, only the most sensitive endpoint is give. 

[2] A reference followed by (+) indicates that the study is summarized in more than one review.   See 
Appendix 7, Table A7-1 for details. 

[3] Assayed in sediment/water system. 
[4] A 60% reduction in growth. 
 
N.R.: Not reported. 

Source: Appendix 7, Tables A7-1 (algae) and A7-2 (macrophytes).  
See Section 4.1.3.4 for discussion. 
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Table 31: Terrestrial Nontarget Animals Used in Ecological Risk Assessment 
MAMMALS [1] 

Animal Representative 
Species W[4] Food 

Consumption[5] Water Consumption 
Small mammal Mice 20 2.514 W0.507   [Eq 3-48] 0.099 W0.9 [Eq 3-17] 
Larger mammal Squirrels 400 2.514 W0.507   [Eq 3-48] 0.099 W0.9 [Eq 3-17] 
Canid Fox 5,000 0.6167 W0.862 [Eq 3-47] 0.099 W0.9 [Eq 3-17] 
Large Herbivorous 
Mammal 

Deer 70,000 1.518 W0.73   [Eq 3-46] 0.099 W0.9 [Eq 3-17] 

Large Carnivorous 
Mammal 

Bear 70,000 0.6167 W0.862  [Eq 3-47] 0.099 W0.9 [Eq 3-17] 

 
BIRDS [2] 

Animal Representative 
Species W[4] Food 

Consumption[5] Water Consumption 
Small bird Passerines 10 2.123 W0.749 [Eq 3-36] 0.059 W0.67 [Eq 3-15]  
Predatory bird Owls 640 1.146 W0.749 [Eq 3-37] 0.059 W0.67 [Eq 3-15] 
Piscivorous bird Herons 2,400 1.916 W0.704 [Eq 3-38] 0.059 W0.67 [Eq 3-15] 
Large herbivorous 
bird 

Geese 4,000 1.146 W0.749 [Eq 3-37] 0.059 W0.67 [Eq 3-15] 

 
INVERTEBRATES [3] 

Animal Representative 
Species W[4] Food 

Consumption[5] 
Honey bee [7] Apis mellifera  0.000116 ≈2 (1.2 to 4)[6] 
Herbivorous Insects Various Not used 1.3 (0.6 to 2.2) 
 
[1] Sources: Reid 2006; U.S. EPA/ORD 1993.   
[2] Sources: Sibley 2000; Dunning 1993; U.S. EPA/ORD 1993. 
[3] Sources: Humphrey and Dykes 2008; Reichle et al. 1973; Winston 1987 
[4] Body weight in grams. 
[5] For vertebrates, based on allometric relationships estimating field metabolic rates in kcal/day for rodents 

(omnivores), herbivores, and non-herbivores.  For mammals and birds, the estimates are based on Nagy (1987) 
as adapted by U.S. EPA/ORD (1993).  The equation numbers refer to U.S. EPA/ORD (1993).  See the 
following table for estimates of caloric content of food items.  For herbivorous insects, consumption estimates 
are based on fractions of body weight (g food consumed/g bw) from the references in Note 3.    

[6] For honeybees, food consumption based on activity and caloric requirements.  Used only when estimates of 
concentrations in nectar and/or pollen can be made, which is not the case in the current risk assessment. 

[7] A surface area of 1.42 cm2 is used for the direct spray scenario of the honey bee.  This value is based on the 
algorithms suggested by Humphrey and Dykes (2008) for a bee with a body length of 1.44 cm. 

 
See data on food commodities in following table. 

See Sections 4.2.2 and 4.2.3.2 for discussion. 
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Table 32: Diets: Metabolizable Energy of Various Food Commodities 

Food Item Animal 
Group 

Caloric 
Value [1] 

(kcal/g bw) 

Water 
Content  [2] Comment/Source(s) 

Fruit Mammals 1.1 0.77 See Footnote 3 
 Birds 1.1 0.77 See Footnote 4 
Fish Mammals 4.47 0.70 Water content from Ali et al. (2005). 
 Birds 3.87 0.70 Water content from Ali et al. (2005). 
Insects Mammals 4.47 0.70 Water contents from Chapman 1998 ( p. 491). Typical 

ranges of 60-80%. 
 Birds 4.30 0.70 Water contents from Chapman 1998 ( p. 491). Typical 

ranges of 60-80%. 
Vegetation (NOS) Mammals 2.26 0.85 See Footnote 5 
 Birds 2.0 0.85 See Footnote 5 
[1] Metabolizable energy.  Unless otherwise specified, the values are taken from U.S. EPA/ORD (1993), Table 3-1, p. 

3-5 as adopted from Nagy 1987. 
[2] From U.S. EPA/ORD (1993), Table 4-2, p. 4-14 unless otherwise specified. 
[3] Based on a gross caloric value of 2.2 kcal/g bw (U.S. EPA/ORD 1993, Table 4-2).  An assimilation factor for 

mammals eating fruit not identified.  Use estimate for birds (see below). 
[4] Based on a gross caloric value of 2.2 kcal/g bw (U.S. EPA/ORD 1993, Table 4-2) and an assimilation factor for 

the consumption of fruit by birds of 51% [2.2 kcal/g bw x 0.51 ≈ 1.1 kcal/g bw] 
[5] Based on a gross caloric value of 4.2 kcal/g bw for dicot leaves (U.S. EPA/ORD 1993, Table 4-2).  For birds, the 

value is corrected by an assimilation factor for the consumption leaves by birds of 47% [4.2 kcal/g bw x 0.47 = 
1.974 kcal/g bw] 

 
See Sections 4.2.2.3 for discussion. 
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Table 33: Summary of toxicity values used in ecological risk assessment 
Group/Duration 

Organism Endpoint Toxicity Value  
(a.e.) Reference 

Terrestrial Animals    

Acute    
Non-canine Mammals Basis for Acute RfD 43 mg/kg bw Section 4.3.2.1. 

Canine Mammals No indication more sensitive N/A Section 4.3.2.1. 
Birds  Mallard acute dietary 1069 mg/kg bw Section 4.3.2.2.1 

Herbivorous Insect (oral) Oral NOAEL from honey bee 736 mg/kg bw Section 4.3.2.4.1 
Honey Bee (contact) Contact NOAEL 698 mg/kg bw Section 4.3.2.4.1 

Sensitive insects Typhlodromus pyri LD50 0.004 and 0.13 lb/acre Section 4.3.2.4.2 

Longer-term    
Mammal Basis for Chronic RfD 0.63 mg/kg bw/day Section 4.3.2.1 

Bird Reproductive, quail 3.3 mg/kg bw/day Section 4.3.2.2.2 

Terrestrial Plants    

Soil Sensitive Sensitive monocot, LOAEL 0.027 lb/acre Section 4.3.2.5.1 
Tolerant  Tolerant dicot, NOAEL 0.57 lb/acre Section 4.3.2.5.2 

Foliar Sensitive Sensitive monocot, EC50 0.007 lb/acre Section 4.3.2.5.1 
Tolerant  Tolerant dicot, NOAEL 0.76 lb/acre Section 4.3.2.5.2 

Aquatic Animals    

Acute    
Amphibians Sensitive No information N/A Section 4.3.3.2 

Tolerant  No information N/A  
Fish Sensitive Fathead minnow NOAEC 0.203 mg/L Section 4.3.3.1 

Tolerant Trout NOAEC 0.68 mg/L  
Invertebrates Sensitive Oyster embryo NOAEC 0.048 mg/L Section 4.3.3.3 

Tolerant Daphnia magna NOAEC 1.07 mg/L Section 4.3.3.3 

Longer-term    
Amphibians  Sensitive No information N/A Section 4.3.3.2 

Tolerant No information N/A  
Fish Sensitive Fathead minnow NOAEC 0.20 mg/L Section 4.3.3.1 

Tolerant No data N/A Section 4.3.3.1 
Invertebrates Sensitive Shrimp NOAEC 0.0148 mg/L Section 4.3.3.3 

Tolerant  Daphnia magna NOAEC 0.085 mg/L Section 4.3.3.3 

Aquatic Plants    

Algae  Sensitive P. subcapitata LC50÷20 0.001 mg/L Section 4.3.3.4.1 
Tolerant S. obliquus LC50÷20 1.14 mg/L Section 4.3.3.4.1 

Macrophytes Sensitive Not identified. N/A Section 4.3.3.4.2 
Tolerant Lemna NOAEC 327 mg/L Section 4.3.3.4.2 
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Table 34: Risk Characterization for Non-Accidental Exposures in Mammals (3 applications) 
All values given as Hazard Quotients. 

Item Receptor Central Lower Upper 

Acute        
Fruit      

 Small mammal (20g) 0.2 2E-02 0.6 
 Larger Mammal (400g) 4E-02 5E-03 0.1 
 Large Mammal (70 kg) 2E-02 3E-03 8E-02 

Broadleaf Foliage     
 Small mammal (20g) 0.8 7E-02 4 
 Larger Mammal (400g) 0.2 2E-02 0.9 
 Large Mammal (70 kg) 1E-01 9E-03 0.5 

Tall Grass     
 Small mammal (20g) 0.6 6E-02 3 
 Larger Mammal (400g) 0.1 1E-02 0.8 
 Large Mammal (70 kg) 8E-02 8E-03 0.4 

Short Grass      
 Small mammal (20g) 1.4 0.1 7 
 Larger Mammal (400g) 0.3 3E-02 1.7 
 Large Mammal (70 kg) 0.2 2E-02 1.0 

Surface Water     
 Small mammal (20g) 5E-05 5E-06 5E-04 
 Larger Mammal (400g) 4E-05 4E-06 4E-04 
 Canid (5 kg) 3E-05 3E-06 3E-04 
 Large Mammal (70 kg) 2E-05 2E-06 2E-04 
Insects     
 Small mammal (20g) 0.2 2E-02 1.0 
 Larger Mammal (400g) 4E-02 4E-03 0.2 
Small mammal     
 Canid (5 kg) 2E-02 6E-03 3E-02 
Fish     
 Large Mammalian Carnivore  

(70 kg) 
5E-03 5E-05 0.2 

 Canid (5 kg) 6E-03 6E-05 0.3 
Chronic        
Fruit  Lowest Residue Rates    

 Small mammal (20g) 3 0.4 12 
 Larger Mammal (400g) 0.7 8E-02 3 
 Large Mammal (70 kg) 0.4 5E-02 1.6 

Broadleaf Foliage     
 Small mammal (20g) 14 1.2 82 
 Larger Mammal (400g) 3 0.3 19 
 Large Mammal (70 kg) 1.8 0.2 11 

Tall Grass     
 Small mammal (20g) 11 1.0 67 
 Larger Mammal (400g) 3 0.2 15 
 Large Mammal (70 kg) 1.5 0.1 9 

Short Grass  Highest Residue Rate    
 Small mammal (20g) 26 2 146 
 Larger Mammal (400g) 6 0.6 33 
 Large Mammal (70 kg) 3 0.3 19 

Surface Water     
 Small mammal (20g) 1E-03 1E-04 1E-02 
 Larger Mammal (400g) 1E-03 1E-04 1E-02 
 Canid (5 kg) 9E-04 9E-05 9E-03 
 Large Mammal (70 kg) 7E-04 7E-05 7E-03 
Fish     
 Large Mammalian Carnivore 

(70 kg) 
0.1 1E-03 7 

 Canid (5 kg) 0.2 2E-03 10 
Source: Attachment 3, Worksheet G02a. 

See Attachment 1, Worksheet G02a, for one application and  
Attachment 2, Worksheet G02a, for two applications. 

See Section 4.4.2.1 for discussion.  
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Table 35: Risk Characterization for Non-Accidental Exposure in Birds (3 applications) 

All values given as Hazard Quotients. 
Item Receptor Central Lower Upper 

Acute        
Fruit     
 Small bird (10g) 1E-02 2E-03 5E-02 

 Large Bird (4 kg) 2E-03 2E-04 6E-03 
Broadleaf Foliage     

 Small bird (10g) 8E-02 7E-03 0.4 
 Large Bird (4 kg) 9E-03 8E-04 5E-02 

Tall Grass     
 Small bird (10g) 6E-02 6E-03 0.3 
 Large Bird (4 kg) 7E-03 7E-04 4E-02 

Short Grass     

 
Small bird (10g) 0.1 1E-02 0.7 

 Large Bird (4 kg) 2E-02 2E-03 8E-02 
Water     

 Small bird (10g) 4E-06 4E-07 4E-05 
 Large Bird (4 kg) 6E-07 6E-08 5E-06 

Insects     
 Small bird (10g) 2E-02 2E-03 1E-01 
Small mammal     
 Carnivorous bird (640 g) 1E-03 3E-04 2E-03 
Fish     

 Fish-eating bird (2.4 kg) 3E-04 3E-06 2E-02 

Chronic        
Fruit     

 Small bird (10g) 1.2 0.1 5 
 Large Bird (4 kg) 0.1 2E-02 0.6 

Broadleaf Foliage     
 Small bird (10g) 7 0.6 39 
 Large Bird (4 kg) 0.7 7E-02 4 

Tall Grass     

 
Small bird (10g) 5 0.5 32 

 Large Bird (4 kg) 0.6 5E-02 4 
Short Grass     

 Small bird (10g) 12 1.2 69 
 Large Bird (4 kg) 1.4 0.1 8 

Water     
 Small bird (10g) 5E-04 5E-05 5E-03 
 Large Bird (4 kg) 7E-05 7E-06 7E-04 

Fish     
 Fish-eating bird (2.4 kg) 4E-02 4E-04 2 

Source: Attachment 3, Worksheet G02b. 
See Attachment 1, Worksheet G02b, for one application and  

Attachment 2, Worksheet G02b, for two applications. 
See Section 4.4.2.2 for discussion. 
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Table 36: Risk Characterization for Sensitive Species of Terrestrial Arthropods 
 
Hazard Quotient based on LD50 of 0.004 lb a.e./acre 

Distances downwind in 
feet [0 feet = direct 

spray] 
Aerial 

High Boom 
Ground 

Broadcast 

Low Boom 
Ground 

Broadcast 
Backpack 

Direct Spray 80 80 80 80 
25 18 8 3 0.7 
50 14 4 1.4 0.3 

100 8 2.0 0.8 0.2 
300 2 0.6 0.3 8E-02 
500 1.5 0.3 0.2 5E-02 
900 1.0 0.1 9E-02 2E-02 

 
Hazard Quotients based on LD50 of 0.13 lb a.e./acre 

Distances downwind in 
feet [0 feet = direct 

spray] 
Aerial 

High Boom 
Ground 

Broadcast 

Low Boom 
Ground 

Broadcast 
Backpack 

Direct Spray 2 2 2 2 
25 0.5 0.3 9E-02 2E-02 
50 0.4 0.1 4E-02 1E-02 

100 0.2 6E-02 2E-02 6E-03 
300 8E-02 2E-02 9E-03 2E-03 
500 5E-02 1E-02 5E-03 1E-03 
900 3E-02 4E-03 3E-03 8E-04 

 
Source: Worksheet G10 of Attachments 1 to 3. 

See Section 4.4.2.4.2 for discussion. 
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Table 37: Risk Characterization for Fish 
All values given as Hazard Quotients. 

Applications Type Central Lower Upper 
Accidental     
 All Sensitive 3 0.3 25 

 Tolerant 1.1 0.1 9 
Other Acute       
One Sensitive 3E-02 3E-03 0.3 

 Tolerant 9E-03 9E-04 0.1 
Two Sensitive 5E-02 5E-03 0.6 

 Tolerant 2E-02 2E-03 0.2 
Three Sensitive 7E-02 7E-03 0.7 

 Tolerant 2E-02 2E-03 0.2 
Chronic       
One Sensitive 1E-02 1E-03 0.1 

 Tolerant N/A[1] N/A[1] N/A[1] 
Two Sensitive 2E-02 2E-03 0.3 

 Tolerant N/A[1] N/A[1] N/A[1] 
Three Sensitive 3E-02 3E-03 0.3 

 Tolerant N/A[1] N/A[1] N/A[1] 
[1] Not available because of the lack of toxicity data in a clearly 

tolerant species. 
 

Source: Attachments 1 through 3, Worksheet G03. 
See Section 4.4.3.1 for discussion. 
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Table 38: Risk Characterization for Aquatic Invertebrates 
All values given as Hazard Quotients. 

Applications Type Central Lower Upper 
Accidental     
 All Sensitive 15 1.5 121 

 Tolerant 0.7 7E-02 5 
Other Acute       
One Sensitive 0.1 1E-02 1.5 

 Tolerant 6E-03 6E-04 7E-02 
Two Sensitive 0.2 2E-02 3 

 Tolerant 1E-02 1E-03 0.1 
Three Sensitive 0.3 3E-02 3 

 Tolerant 1E-02 1E-03 0.1 
Chronic       
One Sensitive 0.2 2E-02 1.8 

 Tolerant 3E-02 3E-03 0.3 
Two Sensitive 0.3 3E-02 3 

 Tolerant 5E-02 5E-03 0.6 
Three Sensitive 0.4 4E-02 4 

 Tolerant 8E-02 8E-03 0.8 
 

Source: Attachments 1 through 3, Worksheet G03. 
See Section 4.4.3.3 for discussion. 
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Table 39: Risk Characterization for Algae 
All values given as Hazard Quotients. 

Applications Type Central Lower Upper 
Accidental     
All Sensitive 719 73 5,829 

 Tolerant 0.6 6E-02 5 
Other Acute       
One Sensitive 6 0.6 74 
 Tolerant 6E-03 6E-04 6E-02 
Two Sensitive 12 1.2 131 
 Tolerant 1E-02 1E-03 0.1 
Three Sensitive 16 1.6 150 

 Tolerant 1E-02 1E-03 0.1 
Chronic       
One Sensitive 2 0.2 27 
 Tolerant 2E-04 2E-04 2E-02 
Two Sensitive 4 0.4 51 
 Tolerant 4E-03 4E-04 4E-02 
Three Sensitive 6 0.6 64 

 Tolerant 6E-03 6E-04 6E-02 
 

Source: Attachments 1 through 3, Worksheet G03. 
See Section 4.4.3.4.1 for discussion. 
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Table 40: Risk Characterization for Aquatic Macrophytes 
 

Applications Type Central Lower Upper 
Accidental     
All Sensitive    

 Tolerant 2E-03 2E-04 2E-02 
Other Acute       
One Sensitive N/A[1] N/A[1] N/A[1] 

 Tolerant 2E-05 2E-06 2E-04 
Two Sensitive N/A[1] N/A[1] N/A[1] 

 Tolerant 4E-05 4E-06 4E-04 
Three Sensitive N/A[1] N/A[1] N/A[1] 

 Tolerant 5E-05 5E-06 5E-04 
Chronic       
One Sensitive N/A[1] N/A[1] N/A[1] 
 Tolerant 7E-06 7E-07 8E-05 
Two Sensitive N/A[1] N/A[1] N/A[1] 
 Tolerant 1E-05 1E-06 2E-04 
Three Sensitive N/A[1] N/A[1] N/A[1] 

 Tolerant 2E-05 2E-06 2E-04 
[1] Not available because of the lack of toxicity data in a clearly 

sensitive species. 
 

Source: Attachments 1 through 3, Worksheet G03. 
See Section 4.4.3.4.2 for discussion. 
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Fluazifop-P-butyl and Fluazifop-P (Free Acid) 

 
Fluazifop-P-butyl ([R] enantiomer of fluazifop-P-butyl)  

 
 

 
Fluazifop-P ([R] enantiomer of fluazifop) 

 
 
Major Environmental Metabolites 

 
2-(4-hydroxyphenoxy) propionic acid (Compound III metabolite) 

 

 
 

2-(4-hydroxyphenoxy)-5-trifluoromethylpyridine (Compound IV metabolite) 
 

 
5-trifluoromethyl-2-pyridone (Compound X metabolite) 

 
 
Figure 1: Structure of Fluazifop-P-butyl and Major Environmental Metabolites 

 
Sources:  U.S. EPA/OPP/HED 2004a.b,c; U.S. EPA/OPP/EFED 2008 

 
See Section 2.2 for general discussion of enantiomers. 

See Section 3.1.15.1 for discussion of metabolites. 
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Figure 2: Lower Bound Estimated Agricultural Use of Fluazifop-P-butyl for 2009 

 
Source: USGS(2013) 

See Section 2.5 for discussion. 
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Figure 3: Upper Bound Estimated Agricultural Use of Fluazifop-P-butyl for 2009 

 
Source: USGS (2013) 

See Section 2.5 for discussion. 
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Figure 4: Relationship of Dermal Absorption to Dermal Loading 

 
Data from Ramsey et al. 1992 as summarized in Table 9. 

See Section 3.1.3.2.1 for discussion. 
 

Note: The relationship of dermal absorption (Abs) to dermal loading (L) fits the following 
exponential function:  0.3480.96Abs L−=  (r2 = 0.91, p = 9x10-10).  
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Figure 5: Sample Reference Graph for Droplet Size Classification 

 
Source: ASABE (American Society of Agricultural and Biological Engineers) 2013. 

Available at: http://www.asabe.org/media/107792/s572_figure_1.jpg.  
 

See Section 3.1.3.2.1 for discussion. 
  

199 
 

http://www.asabe.org/media/107792/s572_figure_1.jpg


 

 

 
Figure 6: Residues on soybean foliage from Kulshrestha et al. (1995) 
 
Note: Data fit a standard first-order decay function (r2=0.981, p=2.07x10-6) yielding a half-life of 

7.51 (6.60-8.71) days. 
 

See Section 3.2.3.7 for discussion. 
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Appendix 1: Toxicity to Mammals. 
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MRID studies from U.S. EPA/OPP HED 2004a unless otherwise 

specified.   
The summaries in this appendix are initially summarized from 

U.S. EPA/OPP/HED 2004a, Tables 4.1a and 4.1b with little 
modification.  Elaborations are made for some studies based 
on other information in U.S. EPA/OPP HED 2004a or information 
taken from U.S. EPA/OPP/HED 2011a (most recent RA) and U.S. 
EPA/OPP/HED 2004d (Report of Hazard Identification Assessment 
committee). 

The Agency documents appear to express the doses and other 
measures of exposure as a.i. rather than mg a.e.  This is 
discussed further in the dose/response assessment (Section 
3.3).  No a.i. to a.e. transformations are made in this 
appendix. 

For the subchronic, chronic and reproduction studies, daily 
doses in mg/kg bw/day for dietary concentrations are taken 
directly from the U.S. EPA summaries. 

 
A1 Table 1: Acute Oral LD50 Values 

Species Compound Response Reference 
Gavage    
Mice Fluazifop-P-butyl 

(NOS) 
LD50: >2000 mg/kg bw EFSA 2012 , p. 30 

Rats Fluazifop-butyl, 
PP009, 97.2% 

Acute LD50 
Males: 1940 (1193-2758) mg/kg 
Females: 2653 (1764-3625) mg/kg  
Toxicity Category III 

MIRD 00162439,  
1983 

Rats Fluazifop-P-butyl, 
PP005, 93.7% and  
86.3%  

 

Acute LD50 
Males: 3680 mg/kg 
Females: 2451 mg/kg  
Toxicity Category III 

MRID 00162440, 
1984 

Also cited in 
FOA/WHO 2000 
and EFSA 2012 
(females only) 
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Appendix 1: Toxicity to mammals (continued) 
 

Species Compound Response Reference 
Gavage    
Rats, Wistar, male Fluazifop acid, 

92.2%, at doses of 
0, 56, 112, 223, 
446 and 891 
mg/kg/day for 7 
days. 

Significant increases in liver 
palmitoyl-CoA oxidation at doses 
greater than 56 mg/kg bw. 

Significant and dose-related 
increases in catalase activity and 
relative liver weight at all doses. 

(Table 2 of paper) 

Kostka et al. 2002 

Rats, Wistar, male Fluazifop acid, 
92.2%, dose of 
446 mg/kg bw/day 
for up to 14 days 

Increase in thymidine incorporation 
after single dose. 

No effect on liver cell mitoses. 
Transient increase in binuclear 

hepatocytes    from Day 2 to 
Day 7. 

(Table 3 of paper) 

Kostka et al. 2002 

Rats, Wistar, male Fluazifop acid, 
92.2%, single 
doses of 0, 223, 
446, and 891 
mg/kg bw  

Significant increases in liver DNA 
synthesis, and the number of 
binuclear hepatocytes.  No 
significant increase in mitoses. 

(Table 4 of paper) 

Kostka et al. 2002 

Rats, Wistar, male Fluazifop acid, 
92.2%, 446 mg/kg 
bw/day for 14 
days. 

Significant increase in liver 
peroxisomes on Day 4 and 
thereafter. 

Significant increase in liver weight 
on Day 2 and thereafter. 

Reduced body weight gain from 
Day 7 to Day 14. 

Kostka et al. 2002 

Rats, Wistar, M/F, 
10/sex/dose. 

Fluazifop-butyl, 
doses of  0, 4, 20, 
100 and 500 
mg/kg/day, 5 d/w, 
for 2 weeks. 

500 mg/kg: Signs of toxicity 
(piloerection, reduced motor 
activity, retinal pallor, and a 
prone or hunched posture) with 
mortality in 2 animals (sacrificed 
in extemis) evidenced liver 
necrosis. 

100 mg/kg: Increase in absolute and 
relative liver weights in male rats. 

U.S. EPA/OTS 1992c 

Dietary    
Mice, male, 

C57B1/6J 
Fluazifop-butyl, 

dietary 
concentration of 
2500 ppm for 10 
days. 

Increase in liver weight (about 2x 
controls) as well as cytochrome 
P450 (≈1.6x controls). 

Krijt et al. 1993 

 
Note on Kostka et al. 2002: No signs for liver pathology in any of the above studies.  Other than decreases in body 
weight at 446 and 891 mg/kg bw, no overt signs of toxicity or changes in food and water consumption were noted. 

See Section 3.1.4 for general discussion. 
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Appendix 1: Toxicity to mammals (continued) 
 

A1 Table 2: Subchronic and Chronic Toxicity Studies 
Summaries from U.S. EPA/OPP/HED 2011a unless otherwise specified. 

Organism Agent/Exposure Response 
MRID, Study 

Date, 
Classification 

Dogs  Fluazifop-butyl, 90 days 
Doses: 0, 5, 25, 125/250 

mg/kg/day 

NOAEL = 25 mg/kg/day 
LOAEL = 125/250 mg/kg/day based on 

multiple pathologies in 3 dogs (2 males 
and 1 female) killed at 1 month dosed 
at 250 mg/kg/day.  

Also seen were body weight loss gut 
lesions, severe eye lesions and 
hepatotoxicity.  

In remaining surviving dogs dosed at 125 
mg/kg/day , mild to equivocal liver 
lesions were seen. 

MRID 
00093821 
1980, 
Acceptable 

Dogs Fluazifop-butyl 
Doses: 0, 5, 25, 125 

mg/kg/day for 1 year. 

NOAEL = 5 mg/kg/day 
LOAEL = 25 mg/kg/day based on 

marginally increased incidence adrenal 
fatty vacuolation & increased incidence 
of thymic involution and at 125 
mg/kg/day death of 4/6 males and 2/6 
females, eye, gastrointestinal tract 
lesions, adrenal and bone marrow 
pathology and thymic involution. 

MRID 
00131462, 
00131463, 
92067018,  
(1982), 
Acceptable 

Hamsters Fluazifop-P-butyl, 90 
days 

M: 0, 19.5, 78.3 or 291.9 
mg/kg/day 

F: 0, 19.9, 79.0 or 319.6 
mg/kg/day 

 
Working Note: This study 
appears to be a dietary 
exposure study but the 
dietary concentrations 
are not specified in 
U.S. EPA/OPP/HED 2011a 
or other documents. 

NOAEL = M/F: 78.3/79.0 mg/kg/day 
LOAEL = M/F: 291.9/319.6 mg/kg/day 

based on decreased body weight/body 
weight gain and food efficiency in 
males and evidence of liver toxicity; 
centrilobular eosinophilia/loss of 
glycogen in males and females. 

MRID 
46082902,  
2001, 
Acceptable 

Hamsters Fluazifop-P-butyl , 80 
weeks 

Dietary Conc: 200, 750, 
3000 ppm 

M: 0, 12.5, 47.4,193.6  
mg/kg/day 

F; 0, 12.1, 45.5, 181.4 
mg/kg/day 

NOAEL = M/F 12.5/12.1 mg/kg/day 
LOAEL = 47.5/45.5 mg/kg/day based on 

based on increased incidence of males 
with reduced sperm, testicular 
degeneration, eye cataract changes, 
liver inflammation and gall stones and 
in females, increased incidence of 
ovarian stroma cell/sex chord 
hyperplasia. 

High Dose Group: Slight increase in 
brain weights. 

No evidence of carcinogenicity 

MRID 
4534501, 
46082905, 
(2001), 
Acceptable 

Rats Fluazifop-butyl, 90 days 
Dietary Conc: 0, 10, 100, 

2000  ppm 
M: 0, 0.7, 7.1, 144.5 mg/kg/day 
F; 0, 0.8, 8.0, 161.9 mg/kg/day 

NOAEL=0.7 mg/kg/day 
LOAEL=7.1 mg/kg/day based on liver 

and kidney histopathology 

MRID 
00093820 , 
1980, 
Acceptable 
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Appendix 1: Toxicity to mammals (continued) 
 

Organism Agent/Exposure Response 
MRID, Study 

Date, 
Classification 

Rats Fluazifop-P-butyl, 90 
days 

Dietary Conc: 0, 10, 100, 
2000 ppm 

M: Doses not specified. 
F; 0, 0.5, 5, 100 mg/kg/day 

NOAEL=0.5 mg/kg/day 
LOAEL=5 mg/kg/day based on 

decreased spleen weight and decreased 
hematological parameters in males. 

Dose related testicular weight decrement 
and cholesterol depression were also 
seen. 

2000 ppm : Slight increase in brain 
weights (2.9%) in female rats. 

MRID 
46158402, 
1985, 
Acceptable 

Rats, Wistar, 
60/sex/group. 
 
Interim 
sacrifice, 
10/group at 52 
weeks. 

Fluazifop-butyl, 94.8%, 
106 w (M) or 107 
weeks (F).  [See note 
below for clarification 
of study duration.] 

Dietary Conc.: 0, 2, 10, 
80, 250 ppm 

M: 0, 0.10, 0.51, 4.15, 
12.3 mg/kg/day 

F: 0, 0.13, 0.65, 5.2, 16.0 
mg/kg/day 

NOAEL =M/F 0.51/5.2 mg/kg/day 
10 ppm males, 80 ppm females 

LOAEL =M/F 4.15/16.0 mg/kg/day 
based on increased mortality and 
nephropathy exacerbated by respiratory 
stress, and in females possible 
increased basal and/or follicular/luteal 
cysts. 

 
No evidence of carcinogenicity. 

MRID 
41563703, 
(1985), 
Acceptable 

Note on MRID 41563703: In various sections of U.S. EPA/OPP/HED (2004d, 2011a) the duration of this 
study is given as 106 and 107 days.  These are clearly typographical errors.  While these errors are 
repeated at the start of the detailed discussion of this study in U.S. EPA/OPP/HED (2011a, Section 4.5.3.1, 
p. 24), the remainder of this section clearly indicates that the duration of the study was 106 weeks for 
males and 107 weeks for females, which are relatively standard durations for chronic studies in rats. 

 
See Section 3.1.5 for discussion. 
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Appendix 1: Toxicity to mammals (continued) 
 

A1 Table 3: Reproductive and Developmental Studies 
Data from U.S. EPA/OPP/HED 2010a, supplemented with information  

from U.S. EPA/OPP/HED 2004d (referenced here as HazID). 

Species Exposure Response 
MRID(s), 

(Year), 
Classification 

Developmental    
Rabbits (New 
Zealand White) 

Fluazifop-butyl 
Doses: 0, 10, 30, 90 

mg/kg/day. 

Maternal 
NOAEL=30 mg/kg/day 
LOAEL=90 mg/kg/day based on abortions.  
HazID: A nominal absolute liver (13%) and 

relative liver weight (9%) increase was 
seen at 90 mg/kg/day. 

 
Developmental 

 NOAEL=30 mg/kg/day 
LOAEL=90 mg/kg/day based on nominal 

increases in delayed ossification, total litter 
loss, abortions, small fetuses, cloudy eyes 
all above mean or range of historical 
controls. 

MRID 00088856, 
92067049, 
92067021,  
(1981), 
Acceptable 

Rabbits (New 
Zealand White) 

Fluazifop-P-butyl 
Doses: 0, 2, 10, 50 

mg/kg/day. 

Maternal 
NOAEL=10 mg/kg/day 
LOAEL=50 mg/kg/day based death, abortions 

and body weight loss.  HazID (p. 11)  
notes a decrease in appetite but food 
conversion efficiency is not discussed.  

 
Developmental 

NOAEL=10 mg/kg/day 
LOAEL=50 mg/kg/day based on increased 

incidence of 13th rib and delayed 
ossification in sternebrae 2. 

MRID 46082904, 
(1993), 
Acceptable 

Rats (Sprague 
Dawley) 

Fluazifop-butyl 
Doses: 0, 10, 50, 

and 200 
mg/kg/day 

 
Based on U.S. 

EPA/OPP 2011a, 
p. 68 

Maternal 
NOAEL = 200 mg/kg/day 
LOAEL = None. 
  

Developmental 
NOAEL=None 
LOAEL=10 mg/kg/day based on delayed 

ossification. 
 

Malformations 
 NOAEL = 50 mg/kg/day 
LOAEL = 200 mg/kg/day based on 

diaphragmatic hernias. 

MRIDs 00088857, 
92067047, (1981), 
Acceptable 

 
This study is 
the basis for 
the acute RfD 
derived by U.S. 
EPA/OPP/HED 
(2011a). 
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Appendix 1: Toxicity to mammals (continued) 
 

Species Exposure Response 
MRID(s), 

(Year), 
Classification 

Rats (Sprague 
Dawley) 

Fluazifop-butyl 
Doses: 0, 1.0, 5.0, 

10, 200 
mg/kg/day 

Maternal 
NOAEL=200 mg/kg/day. 
LOAEL=None based on maternal weight 

decrement partially explained by gravid 
urine weight decrement. 

 
Developmental 

NOAEL=1 mg/kg/day. 
LOAEL=5 mg/kg/day based on fetal weight 

decrement and increased incidence of 
small fetuses and delayed ossification. 

 
Malformations 

NOAEL= 10 mg/kg/day 
LOAEL=200 mg/kg/day based on increased 

incidence of diaphragmatic hernia. 
 

MRID 00088858, 
92067048, 
92967020 , 
(1981), 
Acceptable 

 

 

Rats (Wistar) Fluazifop-P-butyl 
Doses: 0, 0.5, 1.0, 

20, 300 
mg/kg/day. 

Maternal 
 NOAEL=20 mg/kg/day 
LOAEL= 300 mg/kg/day based on body 

weight gain decrement.  Body weight gain 
decreased by 19% and food conversion 
efficiency decreased 13% [HazID, p. 18]. 

 
Developmental 

 NOAEL=1.0 mg/kg/day 
LOAEL=20 mg/kg/day based on delayed 

ossification in skull bones, cervical arches 
and centrum in fetuses and litters and 
delayed ossification in the manus and pes. 

MRID 46158401 
(1991), 
Acceptable 

Rats (Wistar) Fluazifop-P-butyl 
Doses: 0, 2, 5 or 

100 mg/kg/day 

Maternal 
 NOAEL=100 mg/kg/day 
LOAEL= None based no maternal toxicity. 

 
Developmental 

 NOAEL=2.0 mg/kg/day 
LOAEL=5.0 mg/kg/day based on based on 

dose related delayed ossification in skull 
bones [occipital and parietal] in fetuses and 
litters. 

MRID 46082903,  
(1989), 
Acceptable 

 
This study is 
used for the 
occupational 
short-term (1-
30 days) 
assessment 
derived by U.S. 
EPA/OPP/HED 
(2011a). 

 
Rats (Wistar) Fluazifop-P-butyl 

Doses: 0, 2, 5 or 
100 mg/kg/day 

Maternal 
 NOAEL=100 mg/kg/day 
LOAEL= None based on no toxic effects 

 
Developmental 

NOAEL=2.0 mg/kg/day 
LOAEL=5.0 mg/kg/day based on delayed 

ossification in skull bones, sternebrae 
bipartite, sternebrae and calcenum 
unossifided in fetuses and litters. 

MRID 46082013, 
(1990), 
Acceptable 
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Appendix 1: Toxicity to mammals (continued) 
 

Species Exposure Response 
MRID(s), 

(Year), 
Classification 

Reproduction    
Rats, Wistar, 
 15 males and 30 

females per 
group. 

Fluazifop-butyl, 
94.8%, batch/lot 
P14 

Conc.: 0, 10, 80, 
250 ppm 

M: 0, 0.74, 5.8, 21.7 
mg/kg/day 

F: 0, 0.88, 7.1, 17.5 
mg/kg/day 

 
Durations: 
Parental: 100 days 
F1: 120 days 
F2: to weaning. 
 
Details taken from 

U.S. EPA/OPP/ 
HED 2004a, pp. 
40-41. 

Parental/Systemic 
 NOAEL = M/F 0.74/7.1 mg/kg/day 
LOAEL = M/F 5.8/ 21.7 mg/kg/day based on 

decreased spleen weights in males and 
increased absolute and relative liver and 
kidney weights and geriatric nephropathy 
in females. 

Working Note: The LOAEL for females 
should probably be 17.5 mg/kg bw/day. 

HazID (p. 13) notes that weight of P0 adult 
females was significantly increased (7%) 
at Week 14 in the high dose group.  The 
body weight increases in females may 
have been incidental or related to the 
significant absolute and relative 
increased kidney weight and slight 
increase in geriatric nephropathy found 
at termination at 250 ppm. 

 
Offspring 

NOAEL = 7.1 mg/kg/day 
LOAEL = 21.7 mg/kg/day based on pup 

viability in F1 and F2 pups during 
lactational days 1, 4, 11, 18 & 25 and 
decreased F2 pup weight on lactational 
day 25. 

HazID (p. 13) notes that weight of F1 adult 
females was significantly increased (10%) 
at Week 17. 

 
Reproductive 

 NOAEL = M/F 0.74/0.88mg/kg/day 
LOAEL = M/F 5.8/7.1 mg/kg/day based on 

decreased absolute and relative testes and 
epididymal weights in males and 
decreased pituitary and  uterine weights in 
females.  Sperm counts not available. 

 

MRID 00088859, 
92067050, 
(1981), 
Acceptable 

 
This study is 
the basis for 
the chronic RfD 
derived by U.S. 
EPA/OPP/HED 
(2011a). 

 
This study is 
also used in 
U.S. EPA/OPP/ 
EFED (2008, 
p. 74) but a 
NOAEL of 14.8 
ppm is cited.  
This appears to 
be the NOAEL in 
female rats 
corrected for 
a.e. [17.5 x 
0.854 = 
14.945.] 

 

Unclear Not detailed. Fertility and overall reproductive 
performance was not impaired in the 
reproduction toxicity studies; the parental 
and offspring NOAELs are 0.8 mg/kg bw 
per day, whereas the reproductive 
NOAEL is 7mg/kg bw per day. 

EFSA 2012, p. 7 
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Appendix 1: Toxicity to mammals (continued) 
 

Species Exposure Response 
MRID(s), 

(Year), 
Classification 

Rats Fluazifop-butyl, 
dosing not 
detailed. 

NOAEL (parental and offspring): 0.8 mg/kg 
bw/day. 

Reproductive NOAEL: 7 mg/kg bw/day  
Adverse effects specified as decreased testes 

and epididymis weight in parental 
generation, extended gestation period and 
reduced litter sizes. 

Offspring: Increased liver and kidney weight; 
decreased, spleen, , testes and uterine 
weights. 

Doses associated with LOAELs are not 
specified. 

EFSA 2012, p. 31 
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Appendix 1: Toxicity to mammals (continued) 
 

A1 Table 4: Skin Irritation and Sensitization Studies 
Source: U.S. EPA/OPP/HED 2011a unless otherwise specified. 

Species Exposure Response Reference 
Skin Irritation    
N.S. N.S. Non-irritating. EFSA 2012 , p. 30 
Rabbit Fluazifop-butyl 

PP009; 93.3%, 
79ILK8/056 

Mild erythema at 72 hours. 
Toxicity Category IV 

MRID 00088853, 
1979 

Rabbit Fluazifop-P-butyl 
PP005, 86.3%, 

CTL/P/856 
 

Slight irritation, cleared within 72 
hours. 

Toxicity Category IV 

MRID 00162441, 
1983 

Skin Sensitization    
N.S. N.S. Sensitizing 

Working Note: EFSA 2012 provides 
no documentation but this 
information is consistent with 
statements on the MSDSs for two 
Fusilade formulations.  See the 
discussion in Section 3.1.11.2. 

EFSA 2012 , p. 30 

Guinea pig N.S. Not a sensitizer. FAO/WHO 2000, p. 
16 

Guinea pig Fluazifop-butyl 
PP009; 99.6%, 

80/ILK026/349 

Not a skin sensitizer. MRID 00088854, 
1980 

Guinea pig Fluazifop-P-butyl 
PP005, 99.6%, 

80/ILK026/349 

Not a skin sensitizer. MRID 00162441, 
1983 
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Appendix 1: Toxicity to mammals (continued) 
 

A1 Table 5: Eye Irritation Studies 
Source: U.S. EPA/OPP/HED 2011a unless otherwise specified. 

Species Exposure Response Reference 
N.S. N.S. Non-irritating. EFSA 2012 , p. 30 
Rabbit  Fluazifop-butyl 

PP009; 93.3%, 
79/ILK9/068 

Non-irritating 
Toxicity Category IV 
EPA/OPP/HED (2011a, p. 59) 

MRID 00088855, 
1979 

Rabbit Fluazifop-P-butyl 
PP005, 86.3%, 

CTL/P/856 

Mild irritation, cleared within 3 
days. 

Toxicity Category IV 
EPA/OPP/HED (2011a, p. 59) 

MRID 00162441, 
1983 

 
 
A1 Table 6: Acute and Repeated Dose Dermal Toxicity 

Source: U.S. EPA/OPP/HED 2011a unless otherwise specified. 
Species Exposure Response Reference 

Acute    
Rats Fluazifop-P-butyl (NOS) LD50: >2110 mg/kg bw EFSA 2012 , p. 30 

FAO/WHO 2000, p. 
16 

Rabbits Fluazifop-butyl, PP009, 
97.2%, 2 mL/L 

Acute LD50 
>2000 mg/kg 
Toxicity Category III 

MRID 00162439, 
1983 

Rabbits Fluazifop-P-butyl, 
PP005, 93.7% and 
86.3% 

 

Acute LD50 
>2000 mg/kg 
Toxicity Category III 

MRID 00162440, 
1984 

Repeated Dose    
Rabbits, New Zealand 
White, 5 abraded and 
5 unabraded per sex 
per group. 

Fluazifop-butyl, 99.6%, 
Applied to the shaved 

skin for 6 hours/day, 
5 days/week over 
21-days.  

Doses: 0, 100, 500, 2000 
mg/kg/day. 

 

NOAEL = 100 mg/kg/day 
LOAEL = 500 mg/kg/day based on 

death in 1 male. 
2000 mg/kg/day: 4/10 males and 

5/10 females died or were 
sacrificed in extemis between 
Days 6 and 10.  Pathologic 
changes in kidney suggestive of 
kidney damage.  Several other 
clinical changes in animals that 
died or were sacrificed. 

No differences noted in dermal or 
systemic effects between 
abraded and unabraded groups. 

MRID 00093819,  
1980, Acceptable 

 
Summary from U.S. 

EPA/OPP/HED 
2004a. 
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Appendix 1: Toxicity to mammals (continued) 
 

 
A1 Table 7: Acute Inhalation Toxicity 

Source: U.S. EPA/OPP/HED 2004a unless otherwise specified. 
Species Exposure Response Reference 

Rats Fluazifop-P-butyl (NOS), 
nose only, 4 hours 

LD50: >5.2 mg/L EFSA 2012 , p. 30 
FAO/WHO 2000, p. 

16 
Rats Fluazifop-butyl 

PP009,  97%, 
79/ISK034/387 

LC50 > 2.3 mg/L x 4 h (particle size 
43% with <5 µm) 

LC50 > 4.37 mg/L x 4 h (particle 
size 83% with <10 µm) 

Toxicity Category III 

MRID 46082901, 
and 41563701, 
1979 

Rats Mixture of 24.6% fluazifop-
P-butyl and 7.0% 
fenoxyprop-P-ethyl 

Fluazifop-P-butyl, PP005,  
24.6%, CTL/P/3331 

LC50 > 1.7 mg/L x 4 h  
 
Information on fenoxyprop-P-ethyl 

from U.S. EPA/OPP/HED 
2004a, p. 21. 

Working Note: This study is used in 
U.S. EPA/OPP/HED (2011a) to 
classify fluazifop-P-butyl as 
Category III.  The above 1979 
inhalation study on fluazifop-
butyl is not cited in U.S. 
EPA/OPP/HED (2011a). 

MRID 41917904, 
1991 
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Appendix 1: Toxicity to mammals (continued) 
 

 
A1 Table 8: Toxicity Information from MSDSs of Fusilade Formulations 
 

Endpoint Fusilade DX[1] Fusilade II[1] 
Oral LD50 (rats) >5000 mg/kg bw 

(>1225 mg a.i./kg bw) 
>5000 mg/kg bw 

(>1225 mg a.i./kg bw) 
Dermal LD50 (rabbits) >2000 mg/kg bw 

(>490 mg a.i./kg bw) 
>2000 mg/kg bw 

(>490 mg a.i./kg bw) 
Inhalation LC50 (animal not 

available) 0.54 mg/L x 4 hours 0.54 mg/L x 4 hours 

Eye contact (rabbit) Slightly irritating Slightly irritating 
Skin contact (rabbit) Moderately irritating Moderately irritating 
Skin sensitization Repeated and/or prolonged 

contact may cause skin 
sensitization. 

Repeated and/or prolonged 
contact may cause skin 
sensitization. 

[1] MSDSs specify that doses are given in units of formulation.  Both formulations contain 
24.5% a.i.  The units in a.i. are given in parentheses. 
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Appendix 2: Toxicity to Birds 
 
A2 Table 1: Acute Oral/Gavage Toxicity to Birds ......................................................... 214 
A2 Table 2: Acute Dietary Toxicity to Birds .................................................................. 215 
A2 Table 3: Reproductive and Subchronic Toxicity to Birds......................................... 217 
 
Working Note: Unless otherwise indicated, study summaries 
are taken from ECOTOX and U.S. EPA/OPP/EFED 2008. Studies 
for which DERs were available are specified in the 
reference column with a standard Author(s), Year citation 
and the term Syngenta DER01 in brackets.   

 
Tables start on next page. 
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Appendix 2: Toxicity to Birds (continued) 
 

A2 Table 1: Acute Oral/Gavage Toxicity to Birds 
Agent 

Species Exposure Response Reference 

Fluazifop-butyl    
Mallard duck (Anas 
platyrhynchos), NOS 

Fluazifop-butyl, 93.4% purity, 
administered via gavage or 
capsule* with 14 day post-
dosing observation.. 
 
 

ECOTOX 
LD50 >5000 mg/kg bw 
NOEL = 5000 mg/kg bw 

EPA/OPP 
LD50 >4270 mg a.e./kg bw 
NOEL:  4270 mg a.e./kg bw 

MRID 00131457, 
1982, Acceptable 
U.S. EPA/OPP/ 
EFED 2008, , 
Table 3-7 and 
Appendix C. 
ECOTOX 2013 

Fluazifop-P-butyl    
Mallard duck (Anas 
platyrhynchos), 5 
males and 5 females 

P009 (Fluazifop-P-butyl), 97% 
purity, single gavage dose of 
17,280 mg/kg bw (15 mL) 
without carrier. 

No mortality but vomiting in 
“the majority” of the dosed 
animals.  Vomiting not 
observed in control animals.   

Ross et al. 1979 
[Syngenta 
DER01] 
 
EPA 
Classification: 
Invalid due to 
vomiting and 
uncertainty in 
retained dose. 

Mallard duck (Anas 
platyrhynchos), 16-
weeks-old., ≈ 1 kg at 
test initiation, 5M/5F 
per dose group. 

Fluazifop-P-butyl, 95.8% 
purity, administered via gavage 
or capsule* for 14 days. 
 
DER clarifies the dosing as a 
single gavage dose in corn oil  
with a 14 day observation 
period. 
 
Doses: 0, 500, 1000, 2000, 
3000, 4000 mg/kg bw. 
 
 

ECOTOX 
LD50 >3528 mg/kg bw 
NOEL = 3528 mg/kg bw 

 EPA/OPP 
LD50 >4301 mg a.e./kg bw 

NOEL:  3528 mg a.e./kg bw 
 
DER 

No mortality or signs of 
toxicity at any dose. No 
abnormalities on post-
mortem.   

DER verifies the NOAEL of 
3528 mg a.i./kg given 
above. 

DER (p. 7) provides 
individual body weights 
and food consumption. 

 

MRID 40829201 
in U.S. 
EPA/OPP/EFED 
2008, Table 3-7 
and Appendix C. 
Acceptable 
ECOTOX 2013 
 
Roberts 1985 
[Syngenta 
DER01] 

Mallard duck, NOS  Fluazifop-P-butyl, 0, 506, 1030, 
2010, 3030 or 3960 mg a.i./kg 
bodyweight 

LD50 >3960 mg a.i./kg bw 
NOEC: 3960 mg a.i./kg bw 
Above values correspond to: 

LD50 >3,382 mg a.e./kg bw 
NOEC: 3,382 mg a.i./kg bw 

 
 
 

FAO/WHO 2000 
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Appendix 2: Toxicity to Birds (continued) 
 

A2 Table 2: Acute Dietary Toxicity to Birds 
 

Agent 
Species Exposure Response Reference 

Fluazifop-butyl    
Mallard duck (Anas 
platyrhynchos), 15-
days-old, 10 
birds/dose (sexes not 
specified). 

Fluazifop-butyl, 99.6% purity, 
ad libitum in diet for 5 days 
with 3 day recovery period. 
 
Concentrations: 0, 6554, 8192, 
10,240, 12,800, 16,000, 20,000, 
and 25,000 ppm. 

ECOTOX 
LC50 >25,000 ppm 
NOEL = 6522 ppm 

EPA/OPP 
LC50 >21,348 ppm (a.e.) 

DER 
Dose-related decrease in 
body weight and food 
consumption.  Nearly 
total rejection of food in 
first 2 days.  Only the two 
lower dose groups 
consumed food at half of 
the control rate on Days 4 
and 5.  …test material is 
probably relatively non-
toxic… at two lower 
concentrations. 

Working Note: DER does 
not give body weights 
or food consumption. 

MRID 00087481, 
1980, Supplemental 
EPA/OPP/EFED 
2008, Appendix C. 
 
ECOTOX 2013 
 
Ross et al. 1980a 
[Syngenta DER01] 

Ring-necked pheasant 
(Phasianus colchicus), 
13 days old. 

Fluazifop-butyl (PP009), 99.6% 
purity, ad libitum in diet for 8 
days. 
 
 

LC50 = 18,500 ppm 
NOEL = 8192 ppm 
Above values correspond to: 

LC50 = 15,799 ppm (a.e.) 
NOEL = 6996 ppm (a.e.) 

 

ECOTOX 2013 

Ring-necked pheasant 
(Phasianus colchicus), 
13 days old, 10 
birds/dose (sexes not 
specified). 

Fluazifop-butyl, 99.6%, 8 days. 
Concentrations: 6554, 8192, 

10,240, 12,800, 16,000, 
20,000, and 25,000 ppm. 

5 day treatment and 3 day 
recovery period. 

Dieldrin as positive control. 

EPA/OPP 
LC50= 20,767 ppm a.i. 
(≈17,735 ppm a.e.) 
[reanalysis of reported 

LC50] 
DER 

LC50 = 18,500 (15,400 – 
22,200) ppm a.i. 

Food consumption in 
treated birds not 
significantly different 
from controls. 

Values for food 
consumption and body 
weights not given in 
DER. 

NOAEL not given in 
DER. 

MRID 00087482, 
1982, Acceptable 
 
Used by U.S. 
EPA/OPP/EFED 
(2008, Table 4-4, 
p. 73 and p. 192) 
for acute risk 
characterization.  
An LC50 of 20,769 
ppm is cited. 
 
Ross et al. 1980a 
[Syngenta DER01] 
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Appendix 2: Toxicity to Birds (continued) 
 

Agent 
Species Exposure Response Reference 

Fluazifop-P-butyl    
Bobwhite quail 
(Colinus virginianus), 
11-days-old 

Fluazifop-P-butyl, 95.8% 
purity, ad libitum in diet for 8 
days. 

ECOTOX 
LC50 >5230 ppm 
NOEL = 2980 ppm 

EPA/OPP 
LC50 >4,460 ppm (a.e.) 

NOAEL: 2,545 ppm (a.e.) 
 

MRID 40859401, 
1985, Acceptable 
EPA/OPP/EFED 
2008, Appendix C. 
ECOTOX 2013 
 

Bobwhite quail 
(Colinus virginianus), 
11-days-old 

Fluazifop-P-butyl, 89.09% 
purity, ad libitum in diet for 8 
days. 
 
Concentrations: 0, 440, 653, 
1090, 1820, 2980, or 5320 ppm 
diet (FAO/WHO 2000). 

ECOTOX 
LC50 >5230 ppm 
NOEL = 2980 ppm 

EPA/OPP 
LC50 >4,460 ppm (a.e.) 
 

MRID 40859401, 
1985, Acceptable 
EPA/OPP/EFED 
2008, Appendix C. 
ECOTOX 2013 
 
Also cited in 
FAO/WHO 2000 

Mallard duck (Anas 
platyrhynchos), 9-
days-old 

Fluazifop-butyl, 95% purity, ad 
libitum in diet for 8 days. 
 
Concentrations: 0, 412, 667, 
1140, 1880, 3080, or 4850 ppm 
diet (FAO/WHO 2000) 

ECOTOX 
LC50 >4850 ppm 
NOEL <1040 ppm 

EPA/OPP 
LC50 >4,142 ppm (a.e.) 

NOEAL: 4,142 ppm (a.e.) 

MRID 40851401, 
1985, Acceptable. 
EPA/OPP/EFED 
2008, Appendix C. 
 
ECOTOX 2013 
 
Also cited in 
FAO/WHO 2000 
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Appendix 2: Toxicity to Birds (continued) 
 

A2 Table 3: Reproductive and Subchronic Toxicity to Birds 
Agent 

Species Exposure Response Reference 

Fluazifop-butyl    
Mallard duck (Anas 
platyrhynchos), early 
life stage, 
A total of 39 male and 

91 female wild 
caught birds. 

Fluazifop-butyl, 99.6% purity, 
dietary administration for 23 
weeks. 

 
Concentrations: 0, 5, 50 ppm 

(FAO/WHO 2000 and DER) 
 
Food consumption as 

proportion of bw: 
Dose 
(ppm) Initial Final 

0 0.110 0.133 
5 0.105 0.139 

10 0.104 0.125 
Food consumption and body 

weights not statistically 
significantly different. 

Average of initial and final 
proportion of food for high 
dose is 0.1145. 

ECOTOX 
LOEC: >50 ppm 
NOEL: >50 ppm 

EPA 
NOAEL ≥43 ppm (a.e.) 
 

DER 
Some mortality in adults but 

not attributed to 
treatment. 

No statistically significant 
(p<0.05) differences in 
any parameters. 

 
Estimated NOAEL: 

4.9 mg a.e./kg bw [43 mg 
a.e./kg food x 0.1145 g 
food/g bw ≈ 4.9235 mg 
a.e./kg bw] 
 

MRID 00093801, 
1981, 
Supplemental. 
EPA/OPP/EFED 
2008, Appendix C. 
 
ECOTOX 2013 
 
Also cited in 
FAO/WHO 2000. 
 
Roberts et al. 

1981a 
[Syngenta 
DER01] 

DER indicates a 
Core 
Classification 

Bobwhite quail 
(Colinus virginianus), 
early life stage 

Fluazifop-butyl, 99.6% purity, 
dietary administration for 31 
weeks. 
 
Concentrations: 0, 5, 50 ppm 

(FAO/WHO 2000 and DER) 
 
Food consumption as 

proportion of bw: 
Dose 
(ppm) Initial Final 

0 0.0524 0.123 
5 0.0521 0.0991 

10 0.0582 0.0942 
Food consumption and body 

weights not statistically 
significantly different. 

Average of initial and final 
proportion of food for high 
dose is 0.0762. 

ECOTOX 
LOEC (repro) >50 ppm 
NOEL >50 ppm 

EPA 
NOAEL ≥43 ppm (a.e.) 

DER 
Some mortality in adults but 

not attributed to 
treatment. 

No statistically significant 
(p<0.05) differences in 
any parameters. 

Transient (1st 6 weeks) and 
statistically insignificant 
(p>0.05) decrease in eggs 
laid in 50 ppm group. 

 
Estimated NOAEL: 

3.3 mg a.e./kg bw [43 mg 
a.e./kg food x 0.0762 g 
food/g bw ≈ 3.2766 mg 
a.e./kg bw] 

 

MRID 00093802, 
1981, 
Supplemental. 
EPA/OPP/EFED 
2008, Appendix C. 
 
ECOTOX 2013 
 
Also cited in 
FAO/WHO 2000 
 
Roberts et al. 

1981b 
[Syngenta 
DER01] 

DER indicates a 
Core 
Classification 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

A3 Table 1: Standard Toxicity Studies in Bees 
Agent 

ROUTE 
Species 

Exposure Response Reference 

Fluazifop-butyl    
ORAL    
Honey bee (Apis 
mellifera), adult,  
10 bees/dose 

Fluazifop-butyl, technical 
grade, 48 hour observation 
period.  Toxicity values given 
for 24 hours. 
 
Doses: 0, 5, 10, 20, 50, and 100 

µg a.i./bee 
 
 

ECOTOX 
LD50 = 180 µg/bee 
NOEL <180 µg/bee 

EPA/OPP 
24-h LD50: 154 µg a.e./bee 
NOAEL: < 154 µg a.e./bee. 

DER 
No effects on bees at up to 
100 µg a.i./bee. 

MRID 
00093809,1979, 
Acceptable. 
 
ECOTOX 2013 
 
Smailes and 
Wilkinson 1979 
[Syngenta 
DER01] 

Honey bee (Apis 
mellifera), adult 
10 bees/dose 

Fluazifop-butyl formulation, 25 
EC, 48 hour observation 
period.  Toxicity values given 
for 24 hours. 
 
Doses: 0, 5, 10, 20, 50, 100, 

and 200 µg  a.i./bee 
 

ECOTOX 
LD50 >195 µg/bee 
NOEL = 100 µg/bee 

EPA/OPP 
24-h LD50: >166 µg a.e./bee 
Est. NOAEL:  85.4 µg 

a.e./bee. 
DER 

No effects on bees at up to 
100 µg a.i./bee. 

MRID 00093809, 
1979, 
Acceptable. 
 
ECOTOX 2013 
 
Smailes and 
Wilkinson 1979 
[Syngenta 
DER01] 

CONTACT    
Honey bee (Apis 
mellifera), adult 

Fluazifop-butyl, technical 
grade, topical. 48 hour 
observation period.  Toxicity 
values given for 24 hours. 
 
Doses: 0, 5, 10, 20, 50, 100, 

and 200 µg a.i./bee 
 

ECOTOX 
LD50 >240 µg/bee 
NOEL = 195 µg/bee 

EPA/OPP 
24-h LD50: >205 µg a.e./bee 

Est. NOAEL:  167 µg a.e./bee. 
DER 
No effect on bees at doses up to 

200 µg a.i./bee. 

MRID 00093809, 
1979, 
Acceptable. 
 
ECOTOX 2013 
 
Smailes and 
Wilkinson 1979 
[Syngenta 
DER01] 

Honey bee (Apis 
mellifera), adult 

Fluazifop-butyl formulation, 25 
EC, 48 hour observation 
period.  Toxicity values given 
for 24 hours. 
 
Doses: 0, 5, 10, 20, 50, 100, 

and 200 µg  a.i./bee 

ECOTOX 
LD50 >95 µg/bee 
NOEL = 95 µg/bee 

EPA/OPP 
24-h LD50: >81 µ a.e./bee 
NOAEL:  81µg a.e./bee.  

DER 
No effect on bees at doses 
up to 200 µg a.i./bee. 

Working Note: The summary 
in the DER is not 
consistent with the 
summary in U.S. 
EPA/OPP/EFED (2008).  
The DER does not give 
dose-response data. 

MRID 00093809, 
1979, 
Acceptable. 
 
ECOTOX 2013 
 
Smailes and 
Wilkinson 1979 
[Syngenta 
DER01] 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

Agent 
ROUTE 
Species 

Exposure Response Reference 

Honey bee (Apis 
mellifera), adult 

Fluazifop-butyl formulation, 
13.8 % a.i., topical application 
for 24 hours. 

ECOTOX 
LD50 = 63 µg/bee 
NOEL >200 µg/bee 

EPA/OPP 
24-h LD50: 54 µg a.e./bee 
 

See note at end of 
table. 

MRID 00162453, 
1984, 
Acceptable. 
 
ECOTOX 2013 

Fluazifop-P-butyl    
Oral    
Honey bee Fluazifop-P-butyl  LD50 >200 µg/bee EFSA 2012 
Honey bee Fusilade Max (EC 125 g/L) LD50: 382 µg a.e./bee EFSA 2012 
CONTACT    
Honey bee Fluazifop-P-butyl  LD50 >200 µg/bee EFSA 2012 
Honey bee Fusilade Max (EC 125 g/L) LD50: >100 µg a.e./bee EFSA 2012 
 
Working Note on MRID 00162453: The reported NOAEL of 200 µg/bee in ECOTOX does not 
make sense given the reported LD50 of 63 µg/bee. 
Link to ECOTOX at: 
http://www.ipmcenters.org/Ecotox/Details.cfm?RecordID=574 
A printout of this link is in the Scans directory with a file name of MRID 00162453 Honey Bee Assay. 
This study is not used in the current risk assessment. 

The formulation (13.8% a.i.) corresponds to Fusilade Max but not to a formulation that 
would be used in Forest Service programs and the LD50 of 62 µg/bee is not used in the 
current risk assessment. 

 
Note: Many of the above toxicity values have the same MRID number – i.e., 
MRID 00093809.  This is not unusual as registrants may include several 
studies in one submission. 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

A3 Table 2: Toxicity to Other Terrestrial Arthropods 
Species Exposure Response[1] Reference 

Chelicerata (e.g., 
spiders, mites) 

   

Arachnida, Araneae: 
Lycosidae 

Pardosa sp. (spider), 
adult 

YF7662 125g/L EC 
formulation, Soil, 6 d, 1875 g 
a.e./ha [≈1.67 lb a.e./acre]. 

40% mortality 
No impact on predation. 

EFSA 2012 

Acarina: Phytoseiidae 
Typhlodromus pyri 
(predatory mite), NOS 

Fusilade Max (EC 125 g/L), 
0.75, 1.5 and 3 L/ha. 

Mortality (LR50
[2]) 5.6 g a.s../ha 

[0.004 lb a.e./acre as 
discussed in Section 4.1.2.4.2] 

EFSA 2012, p. 70 

Typhlodromus pyri 
(predatory mite), 
nymphs 

Fusilade Max (EC 125 g/L), on 
leaves, duration given as “7 d + 
7d”. 

Dose 
(g a.e./ha) 

Mortality 
(%) 

15 12 
200 44 
375 60 

LR50 = 174 g a.s./ha [≈0.13 lb 
a.e./acre] 

 
Summary specifies an 8% 
adverse effect on reproduction 
at 15 g a.s./ha [≈0.011 lb 
a.e./acre]. 
 
See note on 
Typhlodromus pyri at 
end of table. 

EFSA 2012, p. 70 

Insects    
Coleoptera: Carabidae 
Poecilus cupreus 
(ground beetle) 

YF7662 125 g/L EC 
formulation, soil, 6 d, 1875 g 
a.e./ha. [≈1.67 lb a.e./acre] 

No mortality. 
12% adverse effect on 

predation. 

EFSA 2012 

Coleoptera: 
Coccinellidae 
Adalia bipunctata 
(ladybug) 

0.5 kg/ha fluazifop-P-butyl,  
Fusilade EC formulation.   
≈0.38 lb a.e./acre 

Classified as “harmless” based 
on the criteria of <30% 
mortality.   

Detailed responses not 
reported. 

Hautier et al. 
2005 

Coleoptera: Carabidae 
Bembidion lampros 
(carabid beetle) 

0.5 kg/ha fluazifop-P-butyl,  
Fusilade EC formulation.   
≈0.38 lb a.e./acre 

Classified as “harmless” based 
on the criteria of <30% 
mortality.   

Detailed responses not 
reported. 

Hautier et al. 
2005 

Diptera: Syrphidae 
Episyrphus balteatus 
(hoverfly), larva 

YF7662A 125 g/L, EC 
formulation, Seedling, larvae 
development,  20 d, , 375 g 
a.e./ha [0.33 lb a.e./acre] 

No mortality. 
3% adverse effect on 

reproduction. 

EFSA 2012 

Hymenoptera: 
Aphidiinae 

Aphidius rhopalosiphi 
(parasitic wasp), NOS 

Fusilade Max (EC 125 g/L) 
 

Mortality (LR50
[2]) 177 g a.s./ha 

[≈0.137 lb a.e./acre] 
EFSA 2012 

Aphidius rhopalosiphi 
(parasitic wasp), adult 

YF7662A 125 g/L EC 
formulation 
Seedling, 2 d + 15 d 

375 g a.s../ha [≈0.28 lb 
a.e./acre]: No mortality but 
a 25% adverse impact on 
parasitism.   

EFSA 2012 

Aphidius rhopalosiphi 
(parasitic wasp), adult 

Fusilade Max (EC125 g/L) Mortality (LR50
[2]) 375 g a.e./ha 

[0.33 lb a.e./acre] 
EFSA 2012 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

Species Exposure Response[1] Reference 
Neuroptera: 

Chrysopidae 
Chrysoperla carnea 
(lacewing), larvae 

Fusilade Max (EC 125 g/L) 
Leaves, larvae development,  
20 d, 1000 g a.e./ha (0.892 lb 
a.e./acre) 

19% mortality 
6% adverse effect on 

reproduction. 

EFSA 2012 

[1] Table A3-2 summarizes several studies from EFSA (2012).  The exposures are not 
described in detail.  The descriptions under the Exposure column are taken directly 
from the EFSA (2012) report, pp. 70-71. Commentary from other sections of EFSA (2012) 
is added to the above table. 

[2] LR50 is a European term for 50% lethal response. 
Note on Typhlodromus pyri studies: The in-field risk to non-target arthropods (Typhlodromus pyri and Aphidius 
rhopalosiphi) was assessed as high at the first tier according to the guidance SETAC (2001). Extended laboratory 
studies on T. pyri were submitted and the magnitude of effects (60%) was slightly above the recommended trigger 
(i.e.50%). However, the off-field risk was assessed as low and, based on the residue decline and the time of 
application, the experts concluded that recovery in the treated field area for the most sensitive species may occur 
within one year. (EFSA 2012, p. 12).  See Section 4.1.2.4.2 for additional discussion. 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

A3 Table 3: Field and Mesocosm Studies on Arthropods 
All studies are field studies unless otherwise specified. 

Order: Family 
Species 

Exposure Response Reference 

Coleoptera: 
Coccinellidae  

Mexican bean beetles 
(Epilachna 
varivestis) 

Fluazifop-butyl (Fusilade 
NOS), 0.56 kg a.i./ha (0.427 
lb a.e./acre) on soybeans and 
lima beans 

Reduced pupal wet weights 
(≈8%) for beetles feeding on 
soybean but not lima bean.  
Reduction in dry weights 
(≈5%) not significant. 

No substantial changes in 
reproduction.  An increase in 
egg production with 
treatment. 

Agnello et al. 
1986a 

Coleoptera: 
Chrysomelidae 

Bean Leaf Beetle 
(Cerotoma 
trifurcata)  

Fluazifop-butyl (Fusilade NOS) 
at 0.56 kg a.i./ha (0.427 lb 
a.e./acre) on soybeans beans 

Increase in beetle populations. Agnello et al. 
1986c 

Hymenoptera : Apidae  
Bumblebee (Bombus 
species NOS) 

Fluazifop-P-butyl (Fusilade 
Max) at 0.095 kg a.i./ha 
(≈0.072 lb a.e./acre) applied 
to wildflowers for grassy 
weed suppression. 

Observations of bumblebee 
populations over a 3 year 
period. 

Significant increase in 
bumblebee abundance 
correlated to increase in 
wildflower abundance. 

Blake et al. 
2011b 

Hymenoptera: 
Trichogrammatidae 

Parasitic wasp 
(Trichogramma 
pretiosum)  

Fluazifop (NOS) at 0.125 kg/ha 
to soybeans.  Cannot make 
a.e. conversion. 

No effect on number of eggs, 
larvae, and pupae. 

Very few details given. 

De Fretas Bueno 
et al. 2008 

Lepidoptera: 
Noctuidae 

Soybean looper 
(Pseudoplusia 
includens, a.k.a. 
Chrysodeixis 
includens) larvae 

Fluazifop-butyl (Fusilade NOS) 
at 0.56 kg a.i./ha (0.427 lb 
a.e./acre) on soybeans beans 

A modest (8%) but statistically 
significant decrease in larval 
longevity (13.8 days vs 15.0 
in controls).   

Authors suggest that the impact 
could be secondary to the 
effect of fluazifop-P-butyl on 
the soybeans. 

Agnello et al. 
1986b 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

Order: Family 
Species 

Exposure Response Reference 

Lepidoptera: 
Lycaenidae 

Puget Blue butterfly 
(Icaricia icarioides 
blackmorei), larvae 

Fusilade (24.5% a.i. NOS, 
consistent with Fusilade DX 
and Fusilade II)  

Applied at maximum labelled 
rate (sparse details) to lupine 
with and without a nonionic 
surfactant (Preference). 

Mesocosm study – i.e., insect 
and plants. 

Larvae observed every 2 days 
through pupation.  
Observations on adults 
shortly after emergence. 

 
Application rate is not 
explicitly stated. This 
is a U.S. publication and 
the maximum rate was 
presumably 0.32 lb 
a.e./acre. 

Earlier emergence of pupae in 
treatments with herbicide 
alone and herbicide with 
surfactant.   (Figure 2 of 
paper). 

 
Increases in survival with 

herbicide, surfactant, as well 
as herbicide with surfactant 
(Figure 1b of paper). 

Russell and 
Schultz 2010 

 
Working Note: 
This study 
does not 
demonstrate a 
d/r 
relationship. 

Lepidoptera: 
Noctuidae 

Corn Earworm 
(Heliothis zea), 
larvae 

Fluazifop-butyl (Fusilade NOS) 
at 0.56 kg a.i./ha (0.427 lb 
a.e./acre) on soybeans beans 

Initial but transient decrease in 
populations followed by 
increase.  Authors speculated 
that initial decrease could be 
a repellent affect.  

Agnello et al. 
1986c 

Lepidoptera: Pieridae 
Small Cabbage White 
butterfly (Pieris 
rapae) 

 

Fusilade (24.5% a.i. NOS, 
consistent with Fusilade DX 
and Fusilade II) Applied at 
maximum labelled rate 
(sparse details) to mustard 
plants with and without a 
nonionic surfactant 
(Preference). 

Mesocosm study – i.e., insect 
and plants. 

Larvae observed every 2 days 
through pupation.  
Observations on adults 
shortly after emergence. 

 
Application rate is not 
explicitly stated.  This 
is a U.S. publication and 
the maximum rate was 
presumably 0.32 lb 
a.e./acre. 

Increase in survival with 
surfactant alone but a 21% 
decrease in survival 
herbicide and surfactant 
(p<0.001). 

 
Reduction in wing surface area 

(≈10%) and pupal weights 
(≈6%) in herbicide with 
surfactant group (Table 1 of 
paper).  Authors suggest a 
possible secondary effect due 
to impact on plant. 

Russell and 
Schultz 2010 

 
Working Note: 
This study 
does not 
demonstrate a 
d/r 
relationship. 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

Order: Family 
Species 

Exposure Response Reference 

Lepidoptera: 
Rhopalocera 
suborder 

Butterflies, mixed, , 
populations 

Fluazifop-P-butyl (Fusilade 
Max) at 0.125 kg a.i./ha 
(≈0.092 lb a.e./acre) applied 
to wildflowers for grassy 
weed suppression with and 
without ground scarification. 

Observations on butterflies and 
wildflowers over a two year 
period, four times per year 
between May and September. 

Significant increase in butterfly 
abundance, species richness, 
and diversity with herbicide 
and scarification. 

A slight and statistically 
insignificant decrease in 
abundance with herbicide and 
no scarification. 

The effects on butterflies 
appear to be secondary to 
effects on wildflowers. 

Blake et al. 
2011a 

Mixed soil 
macroarthropods 

Fluazifop-butyl (NOS), 0.56 kg 
a.i./ha (≈0.42 lb a.e./acre) 

No effects reported. 
Working Note: Very few 
details on fluazifop-
butyl exposures or 
effects.  The paper 
focuses on other 
herbicides. 

House et al. 1987 
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Appendix 3: Toxicity to Terrestrial Invertebrates (continued) 
 

 
A3 Table 4: Studies on Earthworms 

Species Exposure Response Reference 
Eisenia foetida Fluazifop-butyl, 14 days LC50: > 1000 mg a.s./kg soil 

(dry weight) 
Working Note: Notation 
appears to indicate a 
corrected value of >500 
mg a.s./kg soil. 

EFSA 2012 

Eisenia foetida Metabolite X  
(5-trifluoromethyl-2-pyridone), 
14-days 

LC50: > 1000 mg a.s./kg soil 
(dry weight) 

EFSA 2012 

Eisenia foetida Field study with fluazifop-butyl 
(as a 25% w/v EC formulation) 
at rates up to 5 kg a.s./ha (3.8 lb 
a.e./acre). 

No adverse effects EFSA 2012 
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Appendix 4: Toxicity to Terrestrial Plants 
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Unless otherwise specified, all application rates are in units of a.i. rather than a.e.   Most entries 

follow metric units (kg/ha) because metric units are used extensively in the open literature.  
Conversions to English units are handled in the dose-response assessment (Section 4.3.2.5). 

 
A4 Table 1: Monocots Greenhouse Toxicity Studies, Pre-Emergence 

Form Exposure Species[1] Response Reference 
Fluazifop-butyl     
Fluazifop-butyl 0.1 kg/ha Corn, sorghum, 

and shattercane 
About 50% to 90% growth 

reduction. 
Buhler and 
Burnside 1984b 

Fluazifop-butyl 0.3 kg/ha Corn, sorghum, 
and shattercane 

100% growth reduction Buhler and 
Burnside 1984b 

Fluazifop-butyl 0.035 kg/ha. Goosegrass, 
crabgrass, and 
giant foxtail. 

73% to 95% control [Table 2 in 
paper]. 

Derr et al. 
1985c 

Fluazifop-P-
butyl 

    

Fluazifop-P-
butyl 

Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

 Orchard grass  
(Dactylis 
glomerata) 

Significant toxicity based on 
emergence (decrease), visual 
damage, the biomass. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Red fescue 
(Festuca rubra) 

Significant toxicity based on 
emergence (decrease), visual 
damage, the biomass. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Fusilade Max 
10.4 (a.s.) at 1 m 
(2.77% drift) 

Barnyard grass 
(Echinochloa crus-
galli) 

37.1 g a.e./ha: 50% inhibition of 
emergence 

EFSA 2012 

Fluazifop-P-
butyl 

Fusilade 
(212g/L) and 
Fusilade Forte 
(128 g/L) at 
≈0.84 kg/ha 

Austrostipa 
elegantissima  and 
Ehrharta calycina  

No emergence when planted on 
surface or with seeds planted at 
10 mm and 20 mm. 

See Appendix B of paper. 
 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade 
(212g/L) and 
Fusilade Forte 
(128 g/L) at 
≈0.84 kg/ha 

 Anigozanthos 
manglesii and 
Conostylis 
candicans 
[Haemodoraceae] 

No significant effects.   
See Appendix B of paper. 

Rokich et al. 
2009 

[1] All species are members of the Poaceae family unless otherwise specified in brackets []. 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

A4 Table 2: Dicots Greenhouse Toxicity Studies – Pre-Emergence 
Form Exposure Species Response Reference 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Yarrow (Achillea 
millefolium) 

No signs of phytotoxicity or effect 
on biomass. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Knapweed 
(Centaurea 
nigra) 

No signs of phytotoxicity or effect 
on biomass. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Bedstraw 
(Galium verum) 

No signs of phytotoxicity or effect 
on biomass. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Oxeye daisy 
(Leucanthemum 
vulgare) 

No signs of phytotoxicity or effect 
on biomass. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Birdfoot 
deervetch (Lotus 
corniculatus) 

NOAEC: Significant increase in 
biomass. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Buckhorn 
plantain  
(Plantago 
lanceolata) 

No signs of phytotoxicity or effect 
on biomass. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Sorrel (Rumex 
acetosa) 

NOAEC: Dose-related increase in 
emergence. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Red campion 
(Silene dioica) 

No signs of phytotoxicity or effect 
on biomass. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Red clover 
(Trifolium 
pratense) 

Weak (<5%) response and only at 
the highest rate based on 
chlorosis and necrosis of leaves. 

Blake et al. 
2012 

Fluazifop-P-butyl Fusilade 
(212g/L) and 
Fusilade Forte 
(128 g/L) at 
≈0.84 kg/ha 

Banksia 
menziesii, 
Hardenbergia 
comptoniana, 
Kunzea ericifolia 

No statistically significant 
herbicide impact on emergence 
or radicle length when planted at 
depths of 0 (surface), 10 mm, 
and 20 mm.  See Appendix B of 
paper. 

Rokich et al. 
2009 

Fluazifop-P-butyl Fusilade 
(212g/L) and 
Fusilade Forte 
(128 g/L) at 
≈0.84 kg/ha 

Eucalyptus 
gomphocephala 

No emergence at 20 mm depth 
with Fusilade Forte with greater 
emergence relative to control 
with Fusilade.   

No substantial effects on 
emergence for surface seeds or 
seeds planted at 10 mm. 

See Appendix B of paper. 

Rokich et al. 
2009 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

A4 Table 3: Monocots Greenhouse Toxicity Studies, Post-Emergence 
All species are members of the Poaceae family unless otherwise indicated in []. 

Form Exposure Species Response Reference [1] 
Fluazifop 
(NOS) 

    

Fluazifop NOS. Foliar Foxtail ED50 (shoot dry matter): 0.04 
kg/ha 

Beckie and 
Morrison 1993 

Fluazifop –P     
Fluazifop-P Foliar spray, 14-

28 g/ha. 
Yellow foxtail 24 to 78 % control by 21 DAT 

(Table 1).  No substantial 
enhanced control with adjuvants 
(petroleum oil, soybean oil, or 
methylated seed oil. 

Bohannan and 
Jordan 1995 

Fluazifop-P Foliar spray Ryegrass ED50: 19.8 g a.i./ha Leys et al. 
1988 

Fluazifop-P Foliar spray Wild oats ED50: 35.2 g a.i./ha  
Fluazifop-P Foliar spray Paradoxa grass ED50: 32.5 g a.i./ha  
Fluazifop-P Foliar spray Barley grass ED50: 24.7 g a.i./ha  
Fluazifop-P Foliar spray Great brome ED50: 32.1 g a.i./ha  
Fluazifop –
butyl 

    

Fluazifop-butyl Foliar spray, 
0.125 and 1.0 
kg/ha 

Quackgrass Substantial and dose-related 
inhibition of growth.  

Chandrasena  
and Sagar 
1986a 

Fluazifop-butyl Foliar, 0.15 
lb/ac 

Colonial bentgrass, 
ryegrass, bluegrass 

High levels of visual damage by 
15 weeks after application. 

Cisar and 
Jagschitz 1984a 

Fluazifop-butyl Foliar, 0.15 
lb/ac 

Red fescue Little visual damage by 15 weeks 
after application. 

Cisar and 
Jagschitz 1984a 

Fluazifop-butyl Postemergence 
at 0.035 and 
0.070  kg/ha. 

Goosegrass, 
crabgrass, and giant 
foxtail.. 

Nearly 100% control of 
goosegrass.  57% to 100% 
control of other grasses 
depending on timing of 
application. 

Derr et al. 
1985c 

Fluazifop-butyl Foliar, 0.25 and 
1 kg/ha 

13 species of 
Gramineae 

Complete kill Haga et al. 
1987 

Fluazifop-butyl Foliar, 0.25 and 
1 kg/ha 

2 species of 
Gramineae: 
Imperata cylindrica 
and Miscanthus 
sinensis. 

Moderate damage at lower rate 
and severe damage (9/10) at 
higher rate. 

Haga et al. 
1987 

Fluazifop-butyl Foliar, 0.25 and 
1 kg/ha 

2 species of 
Cyperaceae 

Minimal damage (1/10) Haga et al. 
1987 

Fluazifop-butyl Foliar, 0.25 and 
1 kg/ha 

Commelina 
communis 
(Cyperaceae) 

Minimal damage (1/10) Haga et al. 
1987 

Fluazifop-butyl Foliar, 0.25 and 
1 kg/ha 

Allium cepa 
(Liliaceae), onion 

Minimal damage (1/10) Haga et al. 
1987 

Fluazifop-butyl Foliar, 0.25 and 
1 kg/ha 

Colocasia 
esculenta 
(Araceae) 

Minimal damage (1/10) Haga et al. 
1987 

Fluazifop-butyl Foliar, 0.084, to 
0.84 kg/ha 

Bermudagrass, 
Quackgrass, and 
wirestem muhly. 

Dose-related increase in control 
based on visual observations at 
28 DAT.  Substantial inhibition 
of shoot regrowth. 

Hicks and 
Jordan 1984 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

Form Exposure Species Response Reference [1] 
Fluazifop-butyl Foliar: 0.038, 

0.066, 0.094, or 
0.188 kg/ha 

African couchgrass Reduction in dry shoot (≈40-60%) 
and dry rhizomes (≈66-78%) 
weights at higher doses. 

Only transient and mild effects at 
lowest dose. 

Kabanyoro 
2001 

Fluazifop –P-
butyl 

    

Fluazifop-P-
butyl 

Fusilade Max: 0. 
0.09375, 0.1875, 
and 0.75 kg/ha 

Orchard grass  
(Dactylis 
glomerata) 

Severe and progressive damage 
(chorosis) from Day 3 to Day 
21 at all doses. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Red fescue 
(Festuca rubra) 

No temporal relationship but 
chlorosis, leaf curl and leaf 
necrosis at high dose. 

 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Two Fusilade 
formulations at 
0.42, 0.84, 1.69, 
and 3.4 kg/ha 

Austrostipa 
elegantissima, 3-4 
months old 

Dose-related decrease in plant 
height (max of ≈50%) and dose-
related decrease in visual 
damage. 

See Appendix D of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade Forte 
formulations at 
1.69 kg/ha 

Austrostipa 
elegantissima, 4-5 
months old 

Reduction in plant height (≈33%) 
following foliar and soil 
application. 

See Appendix E of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Two Fusilade 
formulations at 
0.42, 0.84, 1.69, 
and 3.4 kg/ha 

Avena fatua 3-4 
months old 

Dose-related but modest decrease 
in plant height (max of ≈12%). 

See Appendix D of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade Forte 
formulations at 
1.69 kg/ha 

Avena fatua 4-5 
months old 

Severe visual damage and reduced 
plant height (max ≈38%) 
following foliar and soil 
application. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Two Fusilade 
formulations at 
0.42, 0.84, 1.69, 
and 3.4 kg/ha 

Anigozanthos 
manglesii 
[Haemodoraceae], 
3-4 months old 

Reduced plant height (max of 
≈40%) but not dose-related.   

See Appendix D of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade Forte 
formulations at 
1.69 kg/ha 

Anigozanthos 
manglesii 
[Haemodoraceae], 
5-6 months old 

Modest reduction in height (20% 
max) following foliar and soil 
application. 

See Appendix E of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Two Fusilade 
formulations at 
0.42, 0.84, 1.69, 
and 3.4 kg/ha 

Sowerbaea 
laxiflora and 
Thysanotus 
manglesianus 
[Anthericacae] 
3-4 months old 

No adverse effects. 
See Appendix D of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade Forte 
formulations at 
1.69 kg/ha 

Sowerbaea 
laxiflora 
[Anthericacae] 
4-5 months old 

Severe visual damage and reduced 
plant height (max ≈34%) 
following foliar and soil 
application. 

See Appendix E of paper. 

Rokich et al. 
2009 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

Form Exposure Species Response Reference [1] 
Fluazifop-P-
butyl 

Fusilade Forte 
formulations at 
1.69 kg/ha 

Thysanotus 
manglesianus 
[Anthericacae] 
4-5 months old 

No effect on plant height.  Visual 
damage (leaf burn with some 
drop) following soil but not 
foliar application. 

See Appendix E of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade Max, 
Foliar 

Corn (Zea mays)  9.1 g a.e./ha: 50% inhibition of 
growth 

 

EFSA 2011 

Fusilade Max 
Blank 

    

Fusilade Max 
Blank 

Fusilade Max 
with no a.i.: 
0.90375, 0.1875, 
and 0.75 kg/ha 

 Orchard grass  
(Dactylis 
glomerata) 

Blank cause some toxicity but 
mild compared to control. 

Blake et al. 
2012 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

A4 Table 4: Dicots Greenhouse Toxicity Studies – Post-Emergence 
Form Exposure Species Response Reference 

Fluazifop (NOS)     
Fluazifop (RS) 0.28 kg/ha,  

foliar, 
greenhouse 

Collards, 
cucumber, okra, 
Snapbean, and 
tomato. 

No effect  Boucounis et al. 
1998 

Fluazifop (RS) 0.56 kg/ha,  
foliar, 
greenhouse 

Collard and 
tomato. 

No effect Boucounis et al. 
1998 

Fluazifop (RS) 0.56 kg/ha,  
foliar, 
greenhouse 

Cucumber 34% reduction in stem length Boucounis et al. 
1998 

Fluazifop (RS) 0.56 kg/ha,  
foliar, 
greenhouse 

Okra 8% reduction in fresh weight 
(p<0.05) 

Boucounis et al. 
1998 

Fluazifop (RS) 0.56 kg/ha,  
foliar, 
greenhouse 

Snapbean Stem diameter reduced by 10% 
(p<0.05) 

Boucounis et al. 
1998 

Fluazifop-P     
Fluazifop-P Foliar: 0.42, 

0.84, and 1.68 
kg/ha 

Lamb’s ear Some damage (scored 11-23) over 
a 3 to 11 week period.   

Talbert et al. 
1996 

Fluazifop-butyl     
Fluazifop-butyl 6 kg/ha, 

greenhouse 
Soybean 6 kg/ha: only a 4% reduction in 

growth.  See entries for dicots 
above for contrast. 

Buhler and 
Burnside 1984b 

Fluazifop-butyl Foliar, 0.25 and 
1 kg/ha 

14 species from 9 
families 

No damage Haga et al. 
1987 

Fluazifop-butyl Foliar: 210 g/ha Vernonia 
galamensis 

No damage Posenberg 1997 

Fluazifop-P-
butyl 

    

Fluazifop-P-
butyl 

Yarrow (Achillea 
millefolium) 

Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

No effects.  Blake et al. 
2012 

Fluazifop-P-
butyl 

Knapweed 
(Centaurea 
nigra) 

Fusilade Max: 0. 
09375, 0.1875, 
and 0.75 kg/ha 

No effects. Blake et al. 
2012 

Fluazifop-P-
butyl 

Bedstraw 
(Galium verum) 

Fusilade Max: 0. 
09375, 0.1875, 
and 0.75 kg/ha 

Dose-related but transient 
chlorosis and damage to the 
growing points at Day 3.  
Damage only at highest dose on 
days 7-21. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Oxeye daisy 
(Leucanthemum 
vulgare) 

Fusilade Max: 0. 
09375, 0.1875, 
and 0.75 kg/ha 

Visible damage only at highest 
dose and only on Day 3. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Birdfoot 
deervetch (Lotus 
corniculatus) 

Fusilade Max: 0. 
09375, 0.1875, 
and 0.75 kg/ha 

Visible damage (leaf 
curl/distortion, chlorosis and 
damage to growing points) only 
at highest dose and only on 
Days 3 and 7. 

Blake et al. 
2012 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

Form Exposure Species Response Reference 
Fluazifop-P-
butyl 

Buckhorn 
plantain  
(Plantago 
lanceolata) 

Fusilade Max: 
0.09375, 0.1875, 
and 0.75 kg/ha 

Damage (leaf curl/distortion, 
chlorosis, reduced vigor and leaf 
necrosis) on Days 3 to 21.  
Damage most severe on Day 3. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Sorrel (Rumex 
acetosa) 

Fusilade Max: 0. 
09375, 0.1875, 
and 0.75 kg/ha 

Damage (leaf curl/distortion, 
chlorosis, reduced vigor and leaf 
necrosis) on Days 3 to 21.  
Phytotoxicity scores elevated 
from Day 3 to Day 21. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Red campion 
(Silene dioica) 

Fusilade Max: 0. 
09375, 0.1875, 
and 0.75 kg/ha 

No temporal relationship but signs 
of chlorosis, leaf curl and leaf 
necrosis marked at highest dose. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Red clover 
(Trifolium 
pratense) 

Fusilade Max: 0. 
09375, 0.1875, 
and 0.75 kg/ha 

Visible damage (chlorosis) 
substantial but declining from 
Day 3 to Day 21.  Damage 
significantly different from 
controls on Days 7 and 17 at all 
doses.  No significant 
difference, however, at lowest 
rate on Days 3 and 21. 

Blake et al. 
2012 

Fluazifop-P-
butyl 

Two Fusilade 
formulations at 
0.42, 0.84, 1.69, 
and 3.4 kg/ha 

Acacia 
lasiocarpa and 
Banksia 
menziesii, 3-4 
months old 

No adverse effects. Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade Forte 
formulations at 
1.69 kg/ha 

Acacia 
lasiocarpa 
(shrub), 4-5 
months old 

No effect following foliar 
exposure.  Soil exposures 
caused visual leaf damage. 

See Appendix E of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Two Fusilade 
formulations at 
0.42, 0.84, 1.69, 
and 3.4 kg/ha 

Eucalyptus 
gomphocephala 
(Tuart tree), 3-4 
months old 

Dose-related decrease in plant 
height (max ≈35%) and modest 
visual damage (leaf burn) 

See Appendix D of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Two Fusilade 
formulations at 
0.42, 0.84, 1.69, 
and 3.4 kg/ha 

Euphorbia 
terracina, 3-4 
months old 

No effect on height but visual 
signs of damage (leaf burn and 
drop). 

See Appendix D of paper. 

Rokich et al. 
2009 

Fluazifop-P-
butyl 

Fusilade Forte 
formulations at 
1.69 kg/ha 

Eucalyptus 
gomphocephala 
and Euphorbia 
terracina, 4-5 
months old 

No effects following foliar or soil 
exposure. 

Rokich et al. 
2009 

Fusilade Max 
Blank 

    

Fusilade Max 
Blank 

Bedstraw 
(Galium verum) 

Adjuvants at rates 
comparable to 
studies with a.i. 

High dose blank caused 
progressive damage from Day 3 
to Day 7 but not damage 
thereafter. 

Blake et al. 
2012 

Fusilade Max 
Blank 

Buckhorn 
plantain  
(Plantago 
lanceolata) 

Adjuvants at rates 
comparable to 
studies with a.i. 

Formulation and blank about 
equally toxic at low dose.  
Formulation much more toxic at 
high dose. 

Blake et al. 
2012 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

Form Exposure Species Response Reference 
Fusilade Max 
Blank 

Sorrel (Rumex 
acetosa) 

Adjuvants at rates 
comparable to 
studies with a.i. 

High dose blank caused about 
damage about half as severe as 
the high dose formulation. 

Blake et al. 
2012 

Fusilade Max 
Blank 

Red campion 
(Silene dioica) 

Adjuvants at rates 
comparable to 
studies with a.i. 

High dose blank was about equally 
toxic to high dose formulation 
on Day 3 but the blank was less 
toxic on Day 7. 

Blake et al. 
2012 

Fusilade Max 
Blank 

Red clover 
(Trifolium 
pratense) 

Adjuvants  at 
rates comparable 
to studies with 
a.i. 

High dose blank less toxic than 
high dose formulation on Days 
3, 7, and 21 and equitoxic on 
Day 14. 

Blake et al. 
2012 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

A4 Table 5: Ferns Greenhouse Toxicity Studies, Post-Emergence 
Form Exposure Species Response Reference 

Fluazifop-butyl Foliar, 0.25 and 1 
kg/ha 

Pteridophyte: 
Pteridium 
aqulinum, 
Osmunda 
japonica, and 
Equisetum 
arvenuse 

No damage Haga et al. 1987 

 
 
A4 Table 6: Field Studies with Fluazifop  

Target Weed 
Species[2] Non-target Crop[2] 

 Form[1]: 
Application 

Rate [3] 

Observations 
[No report of 

nontarget/crop damage 
unless otherwise stated.] 

Reference 

Bermudagrass 
[M] and several 
dicots 

Onion [M] f-b: Unclear About 50% control for 
Bermuda grass and about 
26% control for broadleaf 
weeds [Table 1].   

Abdel-Aai and 
El-Haroun 
1990 

Barnyard grass Mungbean flz: 0.75 to 
1 kg/ha 

About 55.3 to 66.4% control.   Balyan and 
Malik 1991 

Mixed Four legumes f-b: 0.25 
kg/ha 

No effect on monocot or 
dicot weeds. 

Belander and 
Winch 1985 

Mixed Wildflowers f-P-b:  
Fusilade 
Max,  0.125 
kg/ha 

Increase in wildflower 
abundance and species 
richness.  Also positive 
impact on butterfly 
abundance. 

Blake et al. 
2011a 

Mixed Wildflower f-P-b:  
Fusilade 
Max,  
≈0.094 
kg/ha 

Significant increase in 
wildflower cover.  Also 
positive impact on number 
of bumblebees. 

Blake et al. 
2011b 

Mixed  Festuca ovina, 
Sheep fescue [M - 
Poaceae] 

f-P-b:  
Fusilade 
2000, 1.12 
kg/ha 

Minor decrement in crop 
quality (score of 3.5 vs 3.9 
in weeded control). 

Calkins et al. 
1996 
0=dead 
5=excellent 

Mixed Miniature dwarf 
bearded iris [M - 
Iridaceae] 

f-P-b:  
Fusilade 
2000, 1.12 
kg/ha 

Relatively severe damage to 
crop (score of 1.7 vs 3.5 in 
weeded control) 

Calkins et al. 
1996 
0=dead 
5=excellent 

Mixed After dark daylily 
[M- Xanthor-
rhoeaceae] 

f-P-b:  
Fusilade 
2000, 1.12 
kg/ha 

Relatively pronounced 
damage to crop (score of 2.6 
vs 3.3 in weeded control) 

Calkins et al. 
1996 
0=dead 
5=excellent 

Mixed Young love daylily 
[M- Xanthor-

rhoeaceae] 

f-P-b:  
Fusilade 
2000, 1.12 
kg/ha 

No adverse effect on crop 
(score of 3.8 vs 3 in weeded 
control). 

Calkins et al. 
1996 
0=dead 
5=excellent 

Mixed Plantain lily (Hosta 
lancifolia) [M- 
Asparagaceae]  

f-P-b:  
Fusilade 
2000, 1.12 
kg/ha 

No adverse effect on crop 
(score of 3.2 vs 3.4 in 
weeded control). 

Calkins et al. 
1996 
0=dead 
5=excellent 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

Target Weed 
Species[2] Non-target Crop[2] 

 Form[1]: 
Application 

Rate [3] 

Observations 
[No report of 

nontarget/crop damage 
unless otherwise stated.] 

Reference 

Mixed Siberian iris [M- 
Iridaceae] 

f-P-b:  
Fusilade 
2000, 1.12 
kg/ha 

No substantial adverse effect 
on crop (score of 3.7 vs 3.5 
in weeded control). 

Calkins et al. 
1996 
0=dead 
5=excellent 

Mixed grassy 
weeds 

Corn [M - Poaceae] flz: 1 to 
13.4 g/ha 

Visual signs of injury to corn 
with slight decrease in yield 
at 8 g/ha and higher in 
applications to 70- to 80-cm 
corn. 

Chernicky and 
Slife 1986 

NS Bentgrass and 
bluegrass [M -
Poaceae] 

f-b: 0.125 
lb/ac with 
COC 1% 

Some injury over 11 week 
observation period.  Most 
pronounced with bentgrass 

Cisar and 
Jagschitz 
1984a 

Smooth crabgrass Bentgrass and 
bluegrass, and red 
fescue [M- 
Poaceae] 

f-b: 0.0375 
and 0.075 
lb/ac with 
COC 1% 

Moderate (36-60% control 
with minimal injury to 
lawns. 

Cisar and 
Jagschitz 
1984b 

Quackgrass Strawberries f-b: 1.6 kg 
a.i./ha x 5 

Eradication of quackgrass.  
No damage to strawberries. 

Clay et al. 
1990 

Quackgrass Strawberries f-b: 0.25 kg 
a.i./ha x 2 

Poor (50%) control. Doohan et al. 
1986 

Crabgrass Strawberries f-b: 0.30 kg 
a.i./ha x 2 

Good (>90%) control. Doohan et al. 
1986 

Large crabgrass None f-b: 0.56 kg 
a.i./ha 

Significant reduction (36%) 
in crabgrass dry weight 

Ennis and 
Ashley 1984 

Crabgrass, 
goosegrass, and 
pigweed [D] 

Baby’s Breath  f-p-b: 0.28 
kg/ha 

Efficacy to grasses not 
quantified.  No effect on 
crop. 

Gilreath 1987 

African 
couchgrass 

Cotton f-b: 0.138, 
0.162, 0.188 
kg/ha 

Good (79-96%) control at 35 
DAT.  No remarkable dose-
response relationship. 

Kabanyoro 
2001 

Barley grass and 
Great brome 

None flz-P: 63, 
94, and 125 
a.i./ha 

Ap. Rate % Control  
63 38.2-48.5 
94 55.7-75 

125 61.5-72.8 
 

Beys et al. 
1998 

Mixed 
broadleaves and 
grasses 

Alfalfa f-b: 0.25 
and 0.5 
kg/ha 

Seed yields of alfalfa lower at 
0.5 kg/ha in the year 
following treatment.  This 
data is not in Table 4 of 
paper.  

Alfalfa tolerance 
characterized in paper as 
“excellent”. 

Grass control 67% at lower 
rate and 89% at higher rate. 

Malik and 
Waddington 
1990 

N.S. Daylily [M- 
Xanthorrhoeaceae 
], Phlox, Red Hot 
Poker [M- 
Xanthorrhoeaceae
], yarrow  

f-p-b: 0.19 
lb a.i./acre 
as Fusilade 

No visual signs of damage. Skroch et al. 
1990 
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Appendix 4: Toxicity to Terrestrial Plants (continued) 

Target Weed 
Species[2] Non-target Crop[2] 

 Form[1]: 
Application 

Rate [3] 

Observations 
[No report of 

nontarget/crop damage 
unless otherwise stated.] 

Reference 

Green foxtail,  
large crabgrass, 
yellow foxtail, 
giant foxtail, 
and Japanese 
millet 

None flz: 0.07 to 
0.28 kg/ha 

Generally dose-related 
control but variable among 
years (Table 1).   

Differences in sensitivity: 
green foxtail > large 
crabgrass > yellow foxtail > 
giant foxtail >Japanese 
millet. 

Smeda and 
Putnam 1990 

N.S Rice [M - Poaceae] f-b: 0.11 
and 0.22 kg 
a.e./ha over 
4 years 

A modest (9 to 16%) 
reduction in rice yield in 3rd 
year at lower rate and 2nd 
and 3rd year at higher rate.   
No effect on seed 
germination or weights. 

Street and 
Snipes 1987 

Large crabgrass 
and goosegrass 

Gaillardia plumme 
(Gaillardia 
pulchella ?) 

flz-P: 0.84 
and 1.68 
kg/ha. 

Transient and slight injury 
(leaf curl) to crop with 
recovery by 21 DAT.  
Excellent control (NOS) of 
weeds).  Injury confirmed 
with container experiment 
without weeds. 

Talbert et al. 
1995 

Green foxtail, 
wild oat 

Flax flz-P: 0.125 
kg/ha. 

Significant (p<0.05) and 
substantial reduction in 
weed biomass.  Significant 
increase in crop biomass on 
1 of 2 years.  No effects on 
crop. 

Wall 1994 

Perennial ryegrass  Yellow rattle flz-P-b 
(Fusilade 
250EW): 
0.125 kg/ha 

Over a 2 year period, no 
impact on species richness.   
Reduction in grasses but 
only in Year 1.  Increase in 
dicots but not yellow rattle. 

Westbury et al. 
2008 

[1] Abbreviations used in table: 
f-b: fluazifop-butyl 
f-P-b: fluazifop-P-butyl 
flz: fluazifop (not otherwise specified) 
flz-P: fluazifop-P 

[2] Unless otherwise specified, all target weeds are monocots [M] and all nontarget crops are 
dicots [D].  Monocots are also designated with the family to which the monocot belongs.. 

[3] Application rates as reported in publication. 
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Appendix 5: Toxicity to Fish. 
 
A5 Table 1: Acute Toxicity to Freshwater Fish.......................................................................... 238 
A5 Table 2: Acute Toxicity to Saltwater Fish ............................................................................ 241 
A5 Table 3: Early Life Stage (Chronic) Toxicity to Fish ........................................................... 242 
 
Data taken from ECOTOX and U.S. EPA/OPP/EFED 2008 unless otherwise 
specified.  ECOTOX gives values in a.i.  The EFED risk assessment 
gives values in a.e. using a conversion factor of 0.854 a.e./a.i.  
The EFED risk assessment does not report NOAEC values for acute 
exposures.  NOAEC’s reported in ECOTOX are converted to units of a.e. 
Studies for which DERs were available are specified in the 
reference column with a standard Author(s), Year citation and 
the term Syngenta DER01 in brackets. 

 
A5 Table 1: Acute Toxicity to Freshwater Fish 

Chemical Form 
Species 

Exposure Response Reference 

Fluazifop-butyl    
Nile tilapia 
(Oreochromis 
niloticus), >2-week-
old fingerling, approx. 
1 inch 

Fluazifop-butyl, 100% purity, 
in static system for 48 hours. 
 
Solvent = 2-propanone 
(acetone) 

LC50 = 0.29 ppm  (a.i.) 
Equiv. to 0.25 ppm (a.e.)  
 
This study is not 
discussed in U.S. 
EPA/OPP/EFED (2008).  
Nonetheless, the report 
LC50 is very close to the 
LC50 of 0.32 ppm (a.e.) 
for MRID 00093808. 

Tejada et al. 1994 
 
(Also cited in 
ECOTOX 2013) 

Fathead minnow 
(Pimephales 
promelas), <24-hours-
old. 
15 fish/dose. 

Fluazifop-butyl, 90.2% purity 
for 96 hours in static system. 
 
Nominal Concentrations: 0, 

0.098, 0.16, 0.27, 0.45, and 
0.75 mg a.i./L. 

ECOTOX 
LC50 = 0.37 ppm (a.i.) 
NOEL = 0.27 ppm (a.i.) 

EFED 
LC50 = 0.32 ppm (a.e.) 

NOAEC = 0.23 ppm (a.e.) 
DER 

NOAEC based on 1/15 
mortality in mid-dose group 
after 96-hours.   
Slope: 10.65 
LC50 = 0.37 ppm (a.i.) with 

95% confidence interval 
of 0.32-0.44 ppm (a.i.) 

The LC50 of 0.32 ppm (a.e.) 
is used in U.S. 
EPA/OPP/EFED (2008, Table 
4-1, pp. 58-59) for 
calculating RQs for 
freshwater fish. 

MRID 00093808, 
1981, 
Supplemental 
 
ECOTOX 2013 
 
Wilson et al. 
1981 [Syngenta 
DER01] 
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Appendix 5: Toxicity to fish (continued) 

Chemical Form 
Species 

Exposure Response Reference 

Bluegill (Lepomis 
macrochirus), 4.13 g. 
20 fish/dose 

Fluazifop-butyl, 98.6% purity 
for 96 hours in flow-through 
system. 
 
Nominal Concentrations: 0.36, 
0.77, 1.07, and 1.6 mg a.i./L. 

ECOTOX 
LC50 = 0.53 ppm 
NOEL = 0.36 ppm 

EFED 
LC50 = : 0.45 ppm (a.e.) 

NOEL = 0.31 ppm (a.e.) 
DER 

LC50 = 0.53 ppm (a.i.) with 
95% confidence interval 
of 0.36-0.77 mg a.i./L. 

No signs of toxicity at 0.36 
mg a.i./L.  At higher 
concentrations, signs of 
toxicity included … loss 
of balance, quiescence, 
and sane spiraling. 

Working Note: NOAEC 
based on both lack 
of mortality and 
lack of overt signs 
of toxicity.  After 
96 hours, all fish 
at the 0.77 mg/L 
concentration and 
above were dead. 

MRID 00087485, 
1981, Acceptable 
 
ECOTOX 2013 
 
Hill et al. 1981 
[Syngenta 
DER01] 

Carp (Cyprinus 
carpio) 

Fluazifop-butyl (NOS), 96 
hours 

LC50 = 1.31 ppm  [≈1.12 ppm 
(a.e.)] 

 

FAO/WHO 2000 
EFSA 2012 

Rainbow trout 
(Oncorhynchus 
mykiss), NOS 
 

Fluazifop-butyl, 93.7% purity 
for 96 hours in flow-through 
system. 
 
Test concentrations: 
1.3-1.54 ppm 

ECOTOX 
LC50 = 1.41 ppm 
NOEL = 0.8 ppm 

EFED 
LC50 = 1.2 ppm (a.e.) 
Slope: 15.2 

NOEL = 0.68 ppm (a.e.) 
 

MRID 00131458, 
1983, 
Supplemental 
 
ECOTOX 2013 
 
Also cited in 
FAO/WHO 2000 
EFSA 2012 

Fluazifop Acid    
Rainbow trout 
(Oncorhynchus 
mykiss), 6.2 g 
 

Fluazifop-butyl, 98% purity for 
96 hours in static system. 
 
Test concentrations: 
108-127 ppm 
 

ECOTOX 
LC50 = 117 ppm 
NOEL = 96 ppm 

EFED 
LC50 = 99.9 ppm (a.e.)  

NOEL = 82.0 ppm (a.e.) 

MRID 00087483, 
1981, Acceptable 
 
ECOTOX 2013 
 
EFSA 2012 
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Appendix 5: Toxicity to fish (continued) 

Chemical Form 
Species 

Exposure Response Reference 

Formulations    
Bluegill (Lepomis 
macrochirus), 3.31 g 

Fluazifop-butyl, 25.8% 
formulation for 96 hours in 
flow-through system. 
 
Test concentrations: 
2.32-3.07 ppm 
(2320-3070 µg/L) 

ECOTOX 
LC50 = 2.67 ppm 
NOEL = 1.51 ppm 

EFED 
LC50 = : 2.28 ppm (a.e.) 

NOEL = 1.29 ppm (a.e.) 
 

MRID 00087486, 
1981, Acceptable 
 
ECOTOX 2013 
 
 

Rainbow trout 
(Oncorhynchus 
mykiss), 2.2 g 
 

Fluazifop-butyl, 25.8% 
formulation for 96 hours in 
flow-through system. 
 
Test concentrations: 
4.4-5.4 ppm 
(4400-5400 µg/L) 

ECOTOX 
LC50 = 4.9 ppm 
NOEL = 0.4 ppm 

EFED 
LC50 = 4.2 ppm (a.e.) 

NOEL = 0.34 ppm (a.e.) 
 

MRID 00087484, 
1981, Acceptable 
 
ECOTOX 2013 

Rainbow trout 
(Oncorhynchus 
mykiss) 

Fusilade Max (EC 125 g/L) 1.6 mg a.i./L 
[≈1.37 a.e./L] 

EFSA 2012 

Metabolite X    
Rainbow trout 
(Oncorhynchus 
mykiss) 

Purity not specified 
 

LC50 = 240 ppm (nominal) 
 

EFSA 2012 

 
Note on MRID 00087483: This study is cited in U.S. EPA/OPP/EFED (2008) and 

ECOTOX as being conducted with Fluazifop-butyl, 98% purity.  This is an 
error.  EFSA (2012) indicates that this study was conducted on fluazifop 
acid and this has been confirmed by Syngenta (Henry 2014).    
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Appendix 5: Toxicity to fish (continued) 

A5 Table 2: Acute Toxicity to Saltwater Fish 
Species Exposure Response Reference 

Sheepshead minnow 
(Cyprinodon 
variegatus), 0.37 g 

Fluazifop-butyl (25EC 
formulation), 25.4% a.i. for 96 
hours in flow-through system. 
 
Test concentration: 
9-13 ppm 

ECOTOX 
LC50 = 11 ppm 
NOEL = 3 ppm 

EFED 
LC50 =  9.4 ppm (a.e.) 
Slope = 13.2 

NOEL = 2.56 ppm (a.e.) 

Accession No.[1]: 
ACC070630, 
1981, Acceptable  
 
ECOTOX 2013 

Sheepshead minnow 
(Cyprinodon 
variegatus), 0.57 g 
20 fish/group 

Fluazifop-butyl (Fusilade 4E 
formulation), 46.8% a.i. for 
96 hours in flow-through 
system.  

 
Nominal Concentrations: 1.7, 3, 

5.5, 9.8, 15.7, and 25.7 mg/L. 
 
 

ECOTOX 
LC50 = 8.04 ppm 
NOEL = not reported. 

EFED 
LC50 = 6.86 ppm (a.e.) 
Slope: 10.1 

DER 
LC50 = 8.1 ppm formulation 

Working Note: 
Correcting for the 
formulation to a.e. 
conversion, the 
correct LC50 is: 
LC50 = 3.24 ppm (a.e.) 

 

MRID 00152173, 
1985, Acceptable 
 
ECOTOX 2013 
 
Hill et al. 1985 
[Syngenta 
DER01] 

Sheepshead minnow 
(Cyprinodon 
variegatus), 0.57 g 
20 fish/group 

Blank Formulation of Fusilade 
4E formulation, no a.i., for 96 
hours in flow-through 
system. 

 
Fusilade blank: 1.7, 9.6, and 

29.8 mg/L. 

DER 
LC50 = 10.4 ppm 
formulation 

The formulation blank caused 
no mortality at lowest 
concentration, 40% 
mortality at mid 
concentration, and 100% 
mortality at highest 
concentration. 

Comparison of the results for 
Fusilade 4E and the 
Fusilade blank indicated 
the solvent used in the 
formulation was a major 
contributing factor to the 
toxicity determined in the 
study (DER, p. 5). 

 

Hill et al. 1985 
[Syngenta 
DER01] 

Note on MRID 00152173:  The summary given in ECOTOX and the summary given in the DER appear to express 
concentrations as formulation and not as a.i.  Based on the DER, there clearly were problems with solubility and 
the measured concentrations were much lower than the nominal concentrations. 
The DER notes the following: Because of the solubility problem experienced with the 
technical material, this study will be considered as acceptable in 
fulfilling the EEB requirement for an LC50 on the technical even though the 
formulation was utilized. Registration of different formulations will 
require submission of additional data. 
 

[1] Accession numbers were used by the U.S. EPA prior to adopting MRID numbers. 
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Appendix 5: Toxicity to fish (continued) 

A5 Table 3: Early Life Stage (Chronic) Toxicity to Fish 
Species Exposure Response Reference 

Fluazifop-butyl    
Fathead minnow 
(Pimephales 
promelas), 0.37g 
60 embryos per 

replicate, 2 
replicates/dose. 

Fluazifop-butyl, 90.2% purity 
for 30 days in flow-through 
system. 

Mean measured concentrations: 
3.3, 24.3, 51.2, 103, and 238 
µg a.i./L with 38.7 µg/L 
solvent control.  Solvent not 
specified in DER.   

ECOTOX 
NOEC = 0.238 ppm (a.i.) 
LOEC: >0.238 ppm (a.i.) 

EFED 
NOEC = >0.203 ppm (a.e.) 

DER 
DER gives classification of 

Core. 
At highest dose, decrease in 

mean body weights (≈6% 
and 18% in replicates) with 
respect to untreated 
control.  This effect not 
noted in solvent control 
(15% increase and ≈9.3 % 
decrease in replicates). 

No effects at lower 
concentrations. 

MRID 00093808, 
1981, 
Supplemental 
ECOTOX 2013 
 
Wilson et al. 
1981 [Syngenta 
DER01] 

Fluazifop-P-butyl    
Fathead minnow 
(Pimephales 
promelas) 

Fluazifop-P-butyl, 28 days, 
flow-through, early life stage 

NOEC: 0.077 mg/L 
NOEC based on hatching, 
survival, and growth. 

EFSA 2012 
FAO/WHO 2000 

Fluazifop-P Acid    
Fathead minnow 
(Pimephales 
promelas) 

Fluazifop-P acid, no details of 
study given. 

NOEC: 1.46 mg/L 
NOEC based on hatching, 
survival, and growth. 
 

EFSA 2012 
 

 
General Working Note: None of the early life stage studies appear to 
have observed adverse effects at the highest concentration tested.  
Such effects (if noted) would probably be reported in the summaries 
from U.S. EPA/OPP/EFED (2008), EFSA 2012, and FAO/WHO 2000. 

 
Working Note on MRID 00093808: This early life stage NOEC is virtually identical to 
the NOAEC from the fry LC50 study (MRID 00093808, 1981).  Note that the MRID numbers 
are identical and both acute and chronic studies were summarized in the same DER.  
The NOEC of 0.203 ppm (a.e.) is used in U.S. EPA/OPP/EFED (2008, Table 4-2, 
pp. 70-71) for calculating chronic RQs for freshwater fish. 

A handwritten note on the DER indicates that raw data was available and these data 
support the NOAEC of 0.238 ppm (a.i.). 
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Appendix 6: Toxicity to Aquatic Invertebrates. 
 
A6 Table 1: Acute Toxicity to Freshwater Aquatic invertebrates .............................................. 243 
A6 Table 2: Acute Toxicity to Saltwater Aquatic invertebrates ................................................. 246 
A6 Table 3: Chronic Toxicity to Aquatic invertebrates .............................................................. 248 
 
Data taken from ECOTOX and U.S. EPA/OPP/EFED 2008 unless otherwise 
specified.  ECOTOX gives values in a.i.  The EFED risk assessment 
gives values in a.e. using a conversion factor of 0.854 a.e./a.i.  
The EFED risk assessment does not report NOAEC values for acute 
exposures.  NOAEC’s reported in ECOTOX are converted to units of a.e. 
Studies for which DERs were available are specified in the 
reference column with a standard Author(s), Year citation and 
the term Syngenta DER01 in brackets. 

 
A6 Table 1: Acute Toxicity to Freshwater Aquatic invertebrates 

Form  
Species 

Exposure Response Reference 

Fluazifop-butyl    
Water flea (Daphnia 
magna), <24-hours-
old 

Fluazifop-butyl, 97.8% purity, 
for 48 hours in static system. 
 

ECOTOX 
EC50 = 281.2 ppm  (a.i.) 
NOEL = 97 ppm  

EFED 2008, p. 190 
EC50 = 240 ppm (a.e.) 

NOAEC: 82.8 ppm (a.e.) 

MRID 00087490, 
1981, Acceptable 
 
ECOTOX 2013 

Fluazifop-P-butyl    
Water flea (Daphnia 
magna), <24-hours-
old 

Fluazifop-P-butyl (RS 1:1 
enantiomer, RS11), 11% a.i., 
for 48 hours in static system. 
 

ECOTOX 
EC50 = 553.9 ppm  
NOEL = 192 ppm 

EFED 
EC50 = 473 ppm (a.e.) 

NOAEC: 162 ppm (a.e.) 

MRID 00162452, 
1983, 
Supplemental 
 
ECOTOX 2013 
 

Water flea (Daphnia 
magna), <24-hours-
old 

Fluazifop-P-butyl (RS 1:7 
enantiomer, RS71), 71% purity, 
for 48 hours in static system. 
 

ECOTOX 
EC50 = 545.6 ppm) 
NOEL = 298 ppm  

EFED 
EC50 = 466 ppm (a.e.) 

NOAEC: 254 ppm (a.e.) 

MRID 00162452, 
1983, 
Supplemental 
 
ECOTOX 2013 

Water flea (Daphnia 
magna), <24-hours-
old 

Fluazifop-P -butyl (RS 1:14 
enantiomer, RS14), 14% purity, 
for 48 hours in static system. 
 

ECOTOX 
EC50 = 412.4 ppm  
NOEL = 162 ppm  

EFED 
EC50 = 352 ppm (a.e.) 

NOAEC: 138 ppm (a.e.) 

MRID 00162452, 
1983, 
Supplemental 
 
ECOTOX 2013 
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Appendix 6: Toxicity to Aquatic Invertebrates (continued) 

Form  
Species 

Exposure Response Reference 

Water flea (Daphnia 
magna) 

Fluazifop-P-butyl (NOS) EC50 > 1 mg/L FAO/WHO 2000 

Water flea (Daphnia 
magna) 

Fluazifop-P-butyl (NOS) EC50 > 0.62 mg/L EFSA 2012 

Water flea (Daphnia 
magna), 12-hours-old 

Fluazifop-P-butyl (PP009), 
94.8% a.i., 48 hours, static 
 
DER: Two separate assays at 
concentrations up to 10 mg/L 
(Test 1) and 12.3 mg/L (Test 2). 
 

ECOTOX 
EC50 >10 ppm 
NOEL = 10 ppm 

EFED 
48-h EC50: 8.5 ppm (a.e.) 

DER 
No effects observed at any 

concentration.   

MRID 00087488, 
1979, Acceptable 
 
ECOTOX 2013 
 
Getty et al. 1979 
[Syngenta 
DER01] 

Biomphalaria 
alexandrina (snail) 
Egyptian snail, vector 

for Schistosoma 
mansoni, cause of 
schistosomiasis. 

Fluazifop-P-butyl, methods for 
toxicity studies not fully 
described. 
Working Note: Paper 
focuses on impact of 
compound on pathogen.  

LC50: 17.6 mg/L 
LC5: 1.76 mg/L 
Decreased glycogen content of 
soft tissues (NOS). 
Cannot determine if the 
concentrations are 
formulation, a.i., or 
a.e.  Not used 
quantitatively. 

Tantawy 2002 
 

Formulations     
Water flea (Daphnia 
magna), 12-hours-old 

Fluazifop-butyl (PP009), 24% 
formulation, for 48 hours in 
static system. 
 
 

ECOTOX 
EC50 = 6.02 ppm  
NOEL = 1.25 ppm  

EPA 
EC50 = 5.14 ppm (a.e.) 

NOEL = 1.07 ppm (a.e.) 
The LC50 of 5.14 ppm (a.e.) 
is used in U.S. 
EPA/OPP/EFED (2008, Table 
4-1, pp. 58-59) is cited 
but not used for RQs.  
The lower value for the 
Pacific oyster is used. 

MRID 00087489, 
1980, Acceptable 
 
 
ECOTOX 2013 

Water flea (Daphnia 
magna), 12-hours-old 

Fluazifop-butyl (PP009), 25 
EC, 25% a.i., for 48 hours in 
static system. 
 
 

ECOTOX 
EC50 = 6.5 ppm  
NOEL = Not reported 

EPA 
EC50 = 5.5 ppm (a.e.) 

DER 
The DER does not detail the 

results of  the formulation 
assay. 

MRID 00087488, 
1979, Acceptable 
 
ECOTOX 2013 
 
Getty et al. 1979 
[Syngenta 
DER01] 

Daphnia magna Fusilade Max (EC 125 g/L), 48 
hours, static 

EC50 = 2.1 mg a.i./L 
EC50 ≈1.79 mg a.e./L 

 

EFSA 2012 

Mayfly (Cloeon 
dipterum), nymph, 9.3 
mm 

Fluazifop-butyl (Fusilade, 
Hydrate), purity not reported, 
for 3, 6, 24, and 48 hours. 

LD50 >40 ppm  
 

Nishiuchi and 
Asano 1979 
 
(Cited in 
ECOTOX 2013) 

Fluazifop acid    
Daphnia magna Fluazifop acid (NOS), static LC50 = 240 mg a.e./L 

 
EFSA 2012 
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Appendix 6: Toxicity to Aquatic Invertebrates (continued) 

Form  
Species 

Exposure Response Reference 

Compound X    
Daphnia magna Compound X (NOS) LC50 = 681 mg/L 

 
EFSA 2012 

Note on MRID 00162452:  The summaries in ECOTOX and U.S. EPA/OPP/EFED (2008) indicate that the test 
material was fluazifop-butyl. Two DERs are available in the DER01 from Syngenta: Jealotts Hill Research 
Station 1983 and Hamer and Hill (1983). Both indicate that the test material was fluazifop acid and not 
fluazifop-butyl.  This ambiguity does not substantially impact the current assessment because these studies are 
not used quantitatively. 
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Appendix 6: Toxicity to Aquatic Invertebrates (continued) 

A6 Table 2: Acute Toxicity to Saltwater Aquatic invertebrates 
Form  

Species Exposure Response Reference 

Fluazifop-butyl    
Pacific oyster 
(Crassostrea gigas), 
embryo 

Fluazifop-butyl (PP009), 98.6% 
purity, for 48 hours in flow-
through system. 
 
Test concentration: 
91-105 ppb 
 

ECOTOX 
LC50 = 0.097 ppm 
NOEL = 0.056 ppm 

EFED 
LC50 = 0.083 ppm (a.e.) 

NOAEC = 0.048 ppm (a.e.) 
 
The LC50 of 0.083 ppm/ 
83 ppb (a.e.) is used in 
U.S. EPA/OPP/EFED (2008, 
Table 4-1, physical pp. 
70-71) for deriving RQs 
for freshwater mollusks 
which are presumed to be 
more sensitive than 
daphnids.  Note that this 
presumption is supported 
by the Tantawy 2002 study 
in Egyptian snails. 

MRID 00131460, 
1982, Acceptable 
 
ECOTOX 2013 

Opossum shrimp 
(Americamysis bahia), 
6- to 8-days-old 

Fluazifop-butyl (PP009), 98.6% 
purity, for 96 hours in flow-
through system. 
 
 

ECOTOX 
LC50 = 0.216 ppm 
NOEL = 0.048 ppm 

EFED 
LC50 = 0.184 ppm (a.e.) 

NOAEC = 0.041 ppm (a.e.) 

MRID 00093806, 
1980, Acceptable 
 
ECOTOX 2013 

Fluazifop-P-butyl    
Opossum shrimp 
(Americamysis bahia; 
a.k.a. Mysidopsis 
bahia) 

Fluazifop-P-butyl, 92.2% purity 
for 96 hours in a flow-through 
system. 
 

ECOTOX 
LC50 = 0.51 ppm 
NOEL = 0.20 ppm 

EFED 
LC50 = 0.44 ppm (a.e.) 
NOAEC = 0.17 ppm (a.e.) 

MRID 42543201, 
1991, Acceptable 
 
ECOTOX 2013 
 
 

Opossum shrimp 
(Americamysis bahia; 
a.k.a. Mysidopsis 
bahia), 6-8 days old, 
10 per exposure level 

Fluazifop-P-butyl, PP009, 
98.6% 
 
Measured Concentrations: 45.5, 

85.2, 170, 361, 775 ppb a.i. 

EFED 
96-hr LC50 = 0.216 ppm (a.i.) 
96-hr LC50 = 0.184 ppm (a.e.) 
Slope: 4.6 

DER 
Consistent with summary 

from EFED.  EFED did 
recalculate the LC50 values. 

MRID 00093805, 
1980, Acceptable 
 
Hollister et al. 

1980/1981 
[Syngenta 
DER01]  
Covers only 
shrimp assay 
and not the 
fiddler crab 
assay with the 
same MRID 
number. 

Opossum shrimp 
(Americamysis bahia; 
a.k.a. Mysidopsis 
bahia), NOS 

Fluazifop-P-butyl, NOS LC50 = 0.54 mg a.i./L 
≈0.46 mg a.e./L 

 

EFSA 2013 
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Appendix 6: Toxicity to Aquatic Invertebrates (continued) 

Form  
Species Exposure Response Reference 

American or Virginia 
oyster (Crassostrea 
virginica), NOS 

Fluazifop-P-butyl, 90% purity 
for 96 hours in a flow-through 
system. 
 

ECOTOX 
EC50 = 0.47 ppm 
NOEL = 0.17 ppm 

EFED 
LC50 = 0.40 ppm (a.e.) 

NOAEC = 0.15 ppm (a.e.) 
 

MRID 41900601, 
1991, 
Supplemental 
 
ECOTOX 2013 

American or Virginia 
oyster (Crassostrea 
virginica) 

Fluazifop-P-butyl (NOS), flow-
through 

LC50 = 0.53 mg a.i./L 
≈0.45 mg a.e./L 

EFSA 2012 

Formulations     
Fiddler crab (Uca 
pugilator), 1.5 g 

Fluazifop-butyl (PP009), 25.4% 
a.i. for 96-hours in static 
system. 
 

ECOTOX 
LC50 = 4.1 ppm 
NOEL = 2.54 ppm  

EFED 
LC50 = 3.5 ppm (a.e.) 

NOAEC = 2.1 ppm (a.e.) 
 

MRID 00093806, 
1980, 
Supplemental 
 
ECOTOX 2013 

Pink shrimp (Penaeus 
duorarum), 0.21 g 

Fluazifop-butyl (PP009), 25.4% 
a.i. for 96-hours in flow-
through system. 
 

ECOTOX 
LC50 = 6 ppm 
NOEL = 3 ppm 

EFED 
LC50 = 5.1 ppm (a.e.) 

NOAEC = 2.6 ppm (a.e.) 

MRID 00093804, 
1980, Acceptable 
 
ECOTOX 2013 
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Appendix 6: Toxicity to Aquatic Invertebrates (continued) 

A6 Table 3: Chronic Toxicity to Aquatic invertebrates 
Species Exposure Response Reference 

Freshwater    
Water flea (Daphnia 
magna), NOS 

Fluazifop-butyl, 
97.2% purity, for 21 
days in flow-through 
 
Nominal Conc.: 0, 0.1, 
0.33, 1.0, and 3.0 
mg/L. 
 
Measured 
Concentrations: 0, 0.1, 
0.25, 0.64, and 2.0 
mg/L. 
 

ECOTOX 
Effects on growth, reproduction, and 

14-day survival were statistically 
significant: 
LOEC = 250 µg/L (growth) 
LOEC = 640 µg/L (reproduction 
and 14-day survival) 
NOEL = 100 µg/L (growth) 

 
EFED 

21-day NOAEC 0.0854 ppm (a.e.) 
21-day LOAEC 0.213 ppm (a.e.) 

DER 
The DER is consistent with the 
summary in EFED. 

The NOAEC of 0.0854 ppm (a.e.) is 
used in U.S. EPA/OPP/EFED (2008, 
Table 4-2, physical pp. 70-71) 
for calculating chronic RQs for 
freshwater invertebrates. 

MRID 00093807, 
1981, 
Supplemental 

 
ECOTOX 2013 
 
Edwards et al. 

1981 [Syngenta 
DER01] 

 
The DER 
(prepared in 
1991) notes that a 
new study will be 
required.  A new 
study, however, 
has not been 
identified. 
 

Water flea (Daphnia 
magna), NOS 

Fluazifop-butyl 
(NOS), 21-days  

Effect Concentration: 0.25 mg a.i./L  
(≈ 0.21 mg a.e./L) 

Working Note: This is virtually 
identical to the LOAEL from MRID 
00093807 and may be from the 
same study. 

FAO/WHO 2000 

Saltwater    
Opossum shrimp 
(Americamysis bahia; 
a.k.a. Mysidopsis 
bahia), NOS 

Fluazifop-butyl 
(PP009), 98.6% purity, 
for 28 days in flow-
through system in life 
cycle study. 
 
Test concentration: 
56.2-111.9 ppb 

ECOTOX 
LC50 = 77.7 ppb [≈66.4 ppb a.e.] 
NOEL = 17.4 ppb 

 
EFED 

NOEL = 0.0148 ppm (a.e.), 
reported as 14.8 ppb (a.e.)  
 

The NOAEC of 14.8 ppb (a.e.) is 
used in U.S. EPA/OPP/EFED (2008, 
Table 4-2, physical pp. 70-71) 
for calculating chronic RQs for 
saltwater invertebrates. 

 

MRID 00093805, 
1981, 
Supplemental 
 
ECOTOX 2013 

Mysidopsis bahia 
Opossum shrimp 

Fluazifop-butyl 
(NOS), 28 day flow-
through 

Reproduction NOEC: 0.0477 mg a.i./L 
≈ 0.041 mg a.e./L. 

EFSA (2012) 
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Appendix 7: Toxicity to Aquatic Plants. 
 
A7 Table 1: Toxicity to Algae .................................................................................................... 249 
A7 Table 2: Toxicity to Aquatic Macrophytes ........................................................................... 251 
 
Working Note: See Section 4.1.3.4 for discussion of mesocosm study by Perschbacher et 
al. 1997. 

 
A7 Table 1: Toxicity to Algae 

Form  
Species 

Exposure Response Reference 

Fluazifop-butyl    
Plankton sp., NOS Fusilade, 100% purity, in 

mesocosm study under lentic 
conditions for 24 and 48 hours. 
 
Application rates: 
0.0010, 0.010, or 0.10 a.i. kg/ha 

No consistent of systematic 
effect on mean morning oxygen 
levels.  Few details. 
 
Working Note: ECOTOX record 

indicates that the effects were 
not significant at all 
concentrations.  This is 
consistent with paper. 

Perschbacher et 
al. 1997 
(Cited in 
ECOTOX 2013) 

Fluazifop-P-butyl    
Green algae 
(Pseudokirchneriella 
subcapitata), NOS 

Fluazifop-P-butyl, 81.3% 
purity, in static system for 4 
days. 

Endpoint: population abundance 
EC50 >1.8 ppm (>1.54 ppm a.e.) 
NOEL = 0.88 ppm  (0.75 ppm 

a.e.) 
 
Note: The NOEL of 0.88 ppm is 

given only in ECOTOX 
2013) 

ECOTOX 2013 
 
Also cited by 
FAO/WHO 2000, p. 18 
and EFSA 2012, p. 65 

Diatom (Navicula 
pelliculosa) 

Fluazifop-P-butyl (NOS) Biomass: 
72-h EC50: 0.51 mg a.i./L 

(≈0.44 mg a.e./L) 
Growth rate: 

72-h EC50: 1.4 mg a.i./L 
(1.20 mg a.e./L) 

FAO/WHO 
2000, p. 18 and 
EFSA 2012, p. 
65 

Fluazifop Acid    
Green algae 
(Pseudokirchneriella 
subcapitata), NOS 

Fluazifop acid  (NOS), 96 hour 
static 

Cell density: 
EC50: >46.8 mg/L (>40.0 mg 

a.e./L) 

EFSA 2012, p. 
65 

Compound X    
Green algae 
(Pseudokirchneriella 
subcapitata), NOS 

Compound X  (NOS), 72 hour 
static 

Biomass: 
EC50: 340 mg/L 

Growth rate: 
EC50: 860 mg/L 

EFSA 2012, p. 
65 

Fusilade Max    
Green algae 
(Pseudokirchneriella 
subcapitata), NOS 

Fusilade Max (EC125 g/L), 72 
hour static 

Biomass: 
EC50: 0.024 mg a.i./L (≈0.020 

mg a.e./L) 
Growth rate: 

EC50: 0.088 mg a.i./L (≈0.075 
mg a.e./L) 

EFSA 2012, p. 
66 
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Appendix 7: Toxicity to Aquatic Plants (continued) 

Form  
Species 

Exposure Response Reference 

Green algae 
(Pseudokirchneriella 
subcapitata), NOS 

Fusilade Max, 72 hour static, 
assay with sediment. 

Biomass: 
EC50: 0.15 mg a.i./L (≈0.128 

mg a.e./L) 
Growth rate: 

EC50: >0.16 mg a.i./L 
(>≈0.137 mg a.e./L) 

EFSA 2012, p. 
66 

Diatom (Navicula 
pelliculosa) 

Fusilade Max, 72 hour static Biomass: 
EC50: 0.22 mg a.i./L (≈0.188 

mg a.e./L) 
Growth rate: 

EC50: 1.46 mg a.i./L 
(≈1.25 mg a.e./L) 

EFSA 2012, 
p. 66 

Chinese 53% EC 
formulation 

   

Chlorella pyrenoidosa 
(green alga) 

53% EC formulation EC50: 15.6 mg/L (13.3 mg 
a.e./L) 

Ma 2002;  
Ma et al. 2001 

Chlorella pyrenoidosa 
(green alga) 

53% EC formulation  EC50: 15.74 mg/L (13.4 mg 
a.e./L) 

Ma et al. 2002a 

Chlorella vulgaris 
(green alga) 

53% EC formulation EC50: 21.7 mg/L (18.5 mg 
a.e./L) 

Ma et al. 2002b 

Raphidocelis 
subcapitata (green 
alga) 

53% EC formulation EC50: 1.05 mg/L (0.89 mg 
a.e./L) 

Ma et al. 2006 

Scenedesmus obliquus 
(green alga) 

53% EC formulation EC50: 26.7 mg/L (22.8 mg 
a.e./L) 

Ma 2002 

Scenedesmus 
quadricauda (green 
alga) 

53% EC formulation EC50: 18.3 mg/L (15.6 mg 
a.e./L 

Ma et al. 2004 

Unspecified 
formulation 

   

Green algae 
(Dunaliella 
bioculata), [no cell 
wall] 

Fluazifop-butyl, unspecified 
formulation.  

1, 10, and 100 µM (0.00327, 
0.0327, 0.327 mg a.e./L) 
 
Solvent:0.1 M sulfinyl bis 
(methane) 

NOEC: 0.0327 mg a.e./L 
(population growth) 

LOEC: 0.327 mg a.e./L (60% 
reduction in population 
growth, some cell lysis, and 
slow movement) 

 

Felix et al. 1988 
(Cited in 
ECOTOX 2013) 
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Appendix 7: Toxicity to Aquatic Plants (continued) 

A7 Table 2: Toxicity to Aquatic Macrophytes 
Form 

Species 
Exposure Response Reference 

Fluazifop-P-butyl    
Common duckweed 
(Lemna gibba) 

Fluazifop-P-butyl (NOS), 14 
days 

EC50 (growth inhibition): >1.4 
mg/L (>1.2 mg a.e./L) 

FAO/WHO 2000, 
p. 18 

EFSA 2012, p. 66 
Lesser duckweed 
(Lemna paucicostata), 
4- to 5-days-old, 
bilobed colony, 
exponential growth 
phase 

Fluazifop-P-butyl (analytical 
grade) for 7 days. Purity not 
reported, exposure type not 
reported. 
 
Solvent: acetone 
Solvent control used 

Effect measurement: 
population growth rate. 
 
NOAEC: 1.0 mM (327 mg 
a.e./L).  No impact on growth. 
(Table 2 of paper) 
 

Michel et al. 
2004 

(Also cited in 
ECOTOX 2013) 

Fusilade Max    
Common duckweed 
(Lemna gibba) 

Fusilade Max (EC 125 g/L), 7 
day static 

EC50: >13.6 mg a.i./L (>≈11.6 
mg a.e./L) 

 
Based on yield and growth. 

FAO/WHO 2000, 
p. 18 

EFSA 2012, p. 66 
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Appendix 8: GLEAMS-Driver, Single Application 
 

One Application 
    Table 1: Effective Offsite Application Rate (lb/acre) 

Site Clay Loam Sand 
Dry and Warm Location 1.35E-07 

(0 - 0.00008) 
0 

(0 - 1.17E-06) 
0 

(0 - 0) 
Dry and Temperate 

Location 
1.58E-06 

(0 - 0.00129) 
0 

(0 - 1.54E-06) 
0 

(0 - 0) 
Dry and Cold Location 0.00071 

(0 - 0.0063) 
0 

(0 - 0.000098) 
0 

(0 - 0) 
Average Rainfall and 

Warm Location 
0.00062 

(0.000049 - 0.0161) 
1.99E-05 

(6.50E-07 - 0.00156) 
0 

(0 - 6.10E-07) 
Average Rainfall and 
Temperate Location 

0.0026 
(0.000143 - 0.0236) 

0.000112 
(3.30E-06 - 0.00289) 

0 
(0 - 6.50E-07) 

Average Rainfall and Cool 
Location 

0.00245 
(0.000089 - 0.0173) 

0.00009 
(1.54E-06 - 0.00261) 

0 
(0 - 7.40E-08) 

Wet and Warm Location 0.0068 
(0.0005 - 0.037) 

0.00063 
(5.30E-06 - 0.0057) 

2.51E-09 
(0 - 2.39E-06) 

Wet and Temperate 
Location 

0.0039 
(0.000213 - 0.0241) 

0.000209 
(2.56E-06 - 0.0035) 

0 
(0 - 1.11E-06) 

Wet and Cool Location 0.0057 
(0.00071 - 0.0304) 

0.00039 
(5.20E-06 - 0.0046) 

0 
(0 - 1.34E-06) 

  Average of Central Values: 0.000898 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 0.037 
  Summary of Values: 0.0009 (0 - 0.037) 
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Appendix 8: GLEAMS-Driver, Single Application (continued) 

One Application 
    Table 2: Concentration in Top 12 Inches of Soil (ppm) 

Site Clay Loam Sand 
Dry and Warm Location 0.173 

(0.172 - 0.174) 
0.158 

(0.157 - 0.159) 
0.158 

(0.157 - 0.159) 
Dry and Temperate 

Location 
0.175 

(0.174 - 0.178) 
0.16 

(0.159 - 0.162) 
0.16 

(0.159 - 0.162) 
Dry and Cold Location 0.245 

(0.224 - 0.264) 
0.223 

(0.203 - 0.242) 
0.221 

(0.199 - 0.24) 
Average Rainfall and 

Warm Location 
0.172 

(0.171 - 0.173) 
0.158 

(0.156 - 0.158) 
0.158 

(0.156 - 0.158) 
Average Rainfall and 
Temperate Location 

0.175 
(0.174 - 0.176) 

0.159 
(0.158 - 0.16) 

0.159 
(0.158 - 0.16) 

Average Rainfall and Cool 
Location 

0.176 
(0.175 - 0.181) 

0.16 
(0.159 - 0.163) 

0.16 
(0.159 - 0.16) 

Wet and Warm Location 0.172 
(0.167 - 0.174) 

0.157 
(0.154 - 0.159) 

0.157 
(0.146 - 0.159) 

Wet and Temperate 
Location 

0.175 
(0.173 - 0.175) 

0.159 
(0.158 - 0.16) 

0.159 
(0.152 - 0.16) 

Wet and Cool Location 0.175 
(0.175 - 0.176) 

0.16 
(0.16 - 0.161) 

0.16 
(0.16 - 0.161) 

  Average of Central Values: 0.1713 
  25th Percentile of Lower 

Bounds: 
0.1575 

  Maximum Value: 0.264 
  Summary of Values: 0.171 (0.1575 - 0.264) 
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Appendix 8: GLEAMS-Driver, Single Application (continued) 

One Application 
    Table 3: Concentration in Top 36 Inches of Soil (ppm) 

Site Clay Loam Sand 
Dry and Warm Location 0.058 

(0.057 - 0.058) 
0.053 

(0.052 - 0.053) 
0.053 

(0.052 - 0.053) 
Dry and Temperate 

Location 
0.058 

(0.058 - 0.059) 
0.053 

(0.053 - 0.054) 
0.053 

(0.053 - 0.054) 
Dry and Cold Location 0.082 

(0.075 - 0.088) 
0.075 

(0.068 - 0.081) 
0.074 

(0.068 - 0.08) 
Average Rainfall and 

Warm Location 
0.057 

(0.057 - 0.058) 
0.053 

(0.052 - 0.053) 
0.053 

(0.052 - 0.053) 
Average Rainfall and 
Temperate Location 

0.058 
(0.058 - 0.059) 

0.053 
(0.053 - 0.054) 

0.053 
(0.053 - 0.054) 

Average Rainfall and Cool 
Location 

0.06 
(0.059 - 0.062) 

0.055 
(0.053 - 0.057) 

0.054 
(0.053 - 0.055) 

Wet and Warm Location 0.057 
(0.056 - 0.058) 

0.053 
(0.052 - 0.053) 

0.053 
(0.052 - 0.053) 

Wet and Temperate 
Location 

0.058 
(0.058 - 0.06) 

0.053 
(0.053 - 0.054) 

0.053 
(0.053 - 0.053) 

Wet and Cool Location 0.06 
(0.058 - 0.067) 

0.054 
(0.053 - 0.058) 

0.053 
(0.053 - 0.054) 

  Average of Central Values: 0.0574 
  25th Percentile of Lower 

Bounds: 
0.053 

  Maximum Value: 0.088 
  Summary of Values: 0.057 (0.053 - 0.088) 
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Appendix 8: GLEAMS-Driver, Single Application (continued) 

One Application 
    Table 4: Maximum Penetration into Soil Column (inches) 

Site Clay Loam Sand 
Dry and Warm Location 12 

(8 - 30) 
12 

(4 - 30) 
12 

(4 - 36) 
Dry and Temperate 

Location 
24 

(8 - 36) 
18 

(8 - 36) 
30 

(8 - 36) 
Dry and Cold Location 36 

(24 - 36) 
36 

(24 - 36) 
36 

(30 - 36) 
Average Rainfall and 

Warm Location 
36 

(36 - 36) 
36 

(36 - 36) 
36 

(36 - 36) 
Average Rainfall and 
Temperate Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Average Rainfall and Cool 
Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Warm Location 36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Temperate 
Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Cool Location 36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

  Average of Central Values: 32 
  25th Percentile of Lower 

Bounds: 
24 

  Maximum Value: 36 
  Summary of Values: 32 (24 - 36) 
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Appendix 8: GLEAMS-Driver, Single Application (continued) 

One Application 
    Table 5: Stream, Maximum Peak Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.0005 

(0 - 0.3) 
0 

(0 - 0.005) 
0 

(0 - 0.04) 
Dry and Temperate 

Location 
0.004 

(0 - 5.1) 
0 

(0 - 0.016) 
0 

(0 - 0.4) 
Dry and Cold Location 2.34 

(0 - 18.7) 
0.0004 
(0 - 0.7) 

0.4 
(0 - 13.2) 

Average Rainfall and 
Warm Location 

1.54 
(0.15 - 20.4) 

0.3 
(0.011 - 3.4) 

4.8 
(0.4 - 36) 

Average Rainfall and 
Temperate Location 

4.4 
(0.4 - 24.3) 

1.49 
(0.06 - 12.5) 

13.9 
(1.59 - 77) 

Average Rainfall and Cool 
Location 

5.7 
(0.9 - 26.6) 

2.29 
(0.17 - 10.8) 

13.4 
(2.22 - 69) 

Wet and Warm Location 10.8 
(2.89 - 42) 

6 
(0.7 - 24.9) 

38 
(6.1 - 100) 

Wet and Temperate 
Location 

8 
(1.94 - 31) 

4.6 
(0.9 - 30) 

30.6 
(5.1 - 104) 

Wet and Cool Location 26.9 
(15.9 - 43) 

34 
(19.7 - 63) 

83 
(54 - 135) 

  Average of Central Values: 10.8 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 135 
  Summary of Values: 10.8 (0 - 135) 

 
  

256 
 



Appendix 8: GLEAMS-Driver, Single Application (continued) 

One Application 
    Table 6: Stream, Annual Average Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 1.3E-06 

(0 - 0.0009) 
0 

(0 - 0.000013) 
0 

(0 - 0.00018) 
Dry and Temperate 

Location 
0.000021 
(0 - 0.014) 

0 
(0 - 0.00005) 

0 
(0 - 0.002) 

Dry and Cold Location 0.007 
(0 - 0.06) 

1.6E-06 
(0 - 0.0025) 

0.0024 
(0 - 0.12) 

Average Rainfall and 
Warm Location 

0.012 
(0.0011 - 0.08) 

0.006 
(0.0001 - 0.09) 

0.1 
(0.007 - 0.5) 

Average Rainfall and 
Temperate Location 

0.05 
(0.003 - 0.19) 

0.03 
(0.0007 - 0.4) 

0.3 
(0.03 - 1.72) 

Average Rainfall and Cool 
Location 

0.08 
(0.008 - 0.3) 

0.09 
(0.0024 - 0.5) 

0.6 
(0.12 - 1.84) 

Wet and Warm Location 0.22 
(0.06 - 0.8) 

0.31 
(0.031 - 1.4) 

1.5 
(0.29 - 2.6) 

Wet and Temperate 
Location 

0.3 
(0.07 - 0.8) 

0.4 
(0.08 - 1.33) 

1.24 
(0.29 - 3) 

Wet and Cool Location 2.67 
(1.31 - 3.5) 

3 
(2.07 - 3.9) 

3.5 
(2.78 - 4.9) 

  Average of Central Values: 0.534 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 4.9 
  Summary of Values: 0.53 (0 - 4.9) 
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Appendix 8: GLEAMS-Driver, Single Application (continued) 

One Application 
    Table 7: Pond, Maximum Peak Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.00015 

(0 - 0.09) 
0 

(0 - 0.0014) 
0 

(0 - 0.031) 
Dry and Temperate 

Location 
0.0018 

(0 - 1.44) 
0 

(0 - 0.01) 
0 

(0 - 0.4) 
Dry and Cold Location 0.8 

(0 - 6.6) 
0.00014 
(0 - 0.31) 

0.21 
(0 - 10) 

Average Rainfall and 
Warm Location 

1.28 
(0.12 - 17.2) 

0.7 
(0.013 - 9.3) 

11.3 
(0.7 - 68) 

Average Rainfall and 
Temperate Location 

4.2 
(0.5 - 23.7) 

2.37 
(0.11 - 34) 

30.6 
(3.3 - 183) 

Average Rainfall and Cool 
Location 

7 
(0.9 - 22.3) 

6.6 
(0.19 - 39) 

39 
(7.5 - 155) 

Wet and Warm Location 12.4 
(2.85 - 43) 

18.3 
(1.94 - 82) 

97 
(18.3 - 203) 

Wet and Temperate 
Location 

9.2 
(2.29 - 25.7) 

9.2 
(2.01 - 61) 

64 
(8.4 - 231) 

Wet and Cool Location 52 
(27.8 - 77) 

61 
(39 - 89) 

102 
(67 - 184) 

  Average of Central Values: 19.6 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 231 
  Summary of Values: 19.6 (0 - 231) 
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Appendix 8: GLEAMS-Driver, Single Application (continued) 

One Application 
    Table 8: Pond, Annual Average Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.000026 

(0 - 0.029) 
0 

(0 - 0.0004) 
0 

(0 - 0.009) 
Dry and Temperate 

Location 
0.0005 
(0 - 0.4) 

0 
(0 - 0.0029) 

0 
(0 - 0.13) 

Dry and Cold Location 0.23 
(0 - 1.92) 

0.00004 
(0 - 0.09) 

0.06 
(0 - 2.89) 

Average Rainfall and 
Warm Location 

0.5 
(0.05 - 6) 

0.28 
(0.006 - 4.7) 

4.5 
(0.3 - 29.6) 

Average Rainfall and 
Temperate Location 

1.95 
(0.17 - 9.1) 

1.42 
(0.04 - 18.9) 

14.7 
(1.78 - 83) 

Average Rainfall and Cool 
Location 

3.2 
(0.4 - 10.4) 

3.12 
(0.1 - 18.7) 

19.2 
(4.4 - 63) 

Wet and Warm Location 4.6 
(1.28 - 13.2) 

6.4 
(0.9 - 25.8) 

33 
(6.1 - 66) 

Wet and Temperate 
Location 

4.3 
(1.05 - 9.4) 

4.5 
(0.9 - 23) 

22.7 
(2.8 - 77) 

Wet and Cool Location 27.4 
(15.4 - 45) 

30.2 
(13.6 - 44) 

19.7 
(10 - 41) 

  Average of Central Values: 7.48 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 83 
  Summary of Values: 7.48 (0 - 83) 

 
 

259 
 



 

Appendix 9: GLEAMS-Driver, Two Applications 
 
Two Applications 
    Table 1: Effective Offsite Application Rate (lb/acre) 

Site Clay Loam Sand 
Dry and Warm Location 3.20E-07 

(0 - 0.000183) 
0 

(0 - 2.89E-06) 
0 

(0 - 0) 
Dry and Temperate 

Location 
3.80E-06 

(0 - 0.00267) 
0 

(0 - 3.90E-06) 
0 

(0 - 0) 
Dry and Cold Location 0.00143 

(0 - 0.0128) 
0 

(0 - 0.000198) 
0 

(0 - 0) 
Average Rainfall and 

Warm Location 
0.00137 

(0.000124 - 0.0215) 
0.000056 

(1.57E-06 - 0.00258) 
8.00E-10 

(0 - 7.00E-07) 
Average Rainfall and 
Temperate Location 

0.0048 
(0.00048 - 0.0261) 

0.000277 
(7.40E-06 - 0.005) 

0 
(0 - 6.50E-07) 

Average Rainfall and Cool 
Location 

0.0042 
(0.00035 - 0.033) 

0.000183 
(3.40E-06 - 0.0054) 

0 
(0 - 4.00E-07) 

Wet and Warm Location 0.0111 
(0.00103 - 0.059) 

0.00079 
(0.000022 - 0.0088) 

6.70E-09 
(0 - 2.54E-06) 

Wet and Temperate 
Location 

0.0084 
(0.00082 - 0.033) 

0.00055 
(7.20E-06 - 0.0041) 

0 
(0 - 1.11E-06) 

Wet and Cool Location 0.0149 
(0.0031 - 0.058) 

0.00121 
(2.48E-05 - 0.0097) 

0 
(0 - 2.74E-06) 

  Average of Central Values: 0.001825 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 0.059 
  Summary of Values: 0.00182 (0 - 0.059) 
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Appendix 9: GLEAMS-Driver, Two Applications (continued) 

Two Applications 
    Table 2: Concentration in Top 12 Inches of Soil (ppm) 

Site Clay Loam Sand 
Dry and Warm Location 0.304 

(0.289 - 0.315) 
0.278 

(0.264 - 0.288) 
0.278 

(0.263 - 0.288) 
Dry and Temperate 

Location 
0.33 

(0.32 - 0.37) 
0.299 

(0.291 - 0.34) 
0.299 

(0.29 - 0.34) 
Dry and Cold Location 0.49 

(0.44 - 0.53) 
0.44 

(0.4 - 0.48) 
0.44 

(0.4 - 0.48) 
Average Rainfall and 

Warm Location 
0.289 

(0.265 - 0.34) 
0.264 

(0.243 - 0.313) 
0.263 

(0.236 - 0.311) 
Average Rainfall and 
Temperate Location 

0.32 
(0.311 - 0.33) 

0.292 
(0.281 - 0.302) 

0.291 
(0.26 - 0.301) 

Average Rainfall and Cool 
Location 

0.34 
(0.33 - 0.35) 

0.308 
(0.298 - 0.32) 

0.305 
(0.276 - 0.312) 

Wet and Warm Location 0.281 
(0.259 - 0.295) 

0.252 
(0.216 - 0.268) 

0.233 
(0.174 - 0.264) 

Wet and Temperate 
Location 

0.32 
(0.308 - 0.33) 

0.294 
(0.264 - 0.304) 

0.283 
(0.22 - 0.303) 

Wet and Cool Location 0.35 
(0.34 - 0.39) 

0.315 
(0.311 - 0.36) 

0.315 
(0.306 - 0.36) 

  Average of Central Values: 0.3138 
  25th Percentile of Lower 

Bounds: 
0.2615 

  Maximum Value: 0.53 
  Summary of Values: 0.314 (0.2615 - 0.53) 
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Appendix 9: GLEAMS-Driver, Two Applications (continued) 

Two Applications 
    Table 3: Concentration in Top 36 Inches of Soil (ppm) 

Site Clay Loam Sand 
Dry and Warm Location 0.101 

(0.096 - 0.105) 
0.093 

(0.088 - 0.096) 
0.093 

(0.088 - 0.096) 
Dry and Temperate 

Location 
0.109 

(0.106 - 0.124) 
0.1 

(0.097 - 0.115) 
0.1 

(0.097 - 0.115) 
Dry and Cold Location 0.163 

(0.147 - 0.175) 
0.148 

(0.134 - 0.161) 
0.148 

(0.134 - 0.159) 
Average Rainfall and 

Warm Location 
0.096 

(0.089 - 0.113) 
0.088 

(0.082 - 0.104) 
0.088 

(0.082 - 0.104) 
Average Rainfall and 
Temperate Location 

0.108 
(0.104 - 0.112) 

0.099 
(0.095 - 0.102) 

0.098 
(0.095 - 0.101) 

Average Rainfall and Cool 
Location 

0.115 
(0.11 - 0.122) 

0.105 
(0.101 - 0.111) 

0.103 
(0.101 - 0.107) 

Wet and Warm Location 0.097 
(0.09 - 0.102) 

0.089 
(0.083 - 0.093) 

0.088 
(0.08 - 0.093) 

Wet and Temperate 
Location 

0.109 
(0.107 - 0.113) 

0.1 
(0.097 - 0.102) 

0.099 
(0.097 - 0.102) 

Wet and Cool Location 0.118 
(0.114 - 0.132) 

0.106 
(0.104 - 0.119) 

0.105 
(0.104 - 0.119) 

  Average of Central Values: 0.1061 
  25th Percentile of Lower 

Bounds: 
0.0895 

  Maximum Value: 0.175 
  Summary of Values: 0.106 (0.0895 - 0.175) 
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Appendix 9: GLEAMS-Driver, Two Applications (continued) 

Two Applications 
    Table 4: Maximum Penetration into Soil Column (inches) 

Site Clay Loam Sand 
Dry and Warm Location 18 

(8 - 36) 
12 

(8 - 36) 
18 

(8 - 36) 
Dry and Temperate 

Location 
24 

(8 - 36) 
18 

(8 - 36) 
30 

(8 - 36) 
Dry and Cold Location 36 

(24 - 36) 
36 

(24 - 36) 
36 

(30 - 36) 
Average Rainfall and 

Warm Location 
36 

(36 - 36) 
36 

(36 - 36) 
36 

(36 - 36) 
Average Rainfall and 
Temperate Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Average Rainfall and Cool 
Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Warm Location 36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Temperate 
Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Cool Location 36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

  Average of Central Values: 32.4 
  25th Percentile of Lower 

Bounds: 
24 

  Maximum Value: 36 
  Summary of Values: 32.4 (24 - 36) 
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Appendix 9: GLEAMS-Driver, Two Applications (continued) 

Two Applications 
    Table 5: Stream, Maximum Peak Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.0013 

(0 - 0.7) 
0 

(0 - 0.011) 
0 

(0 - 0.09) 
Dry and Temperate 

Location 
0.01 

(0 - 8.7) 
0 

(0 - 0.04) 
0 

(0 - 1.18) 
Dry and Cold Location 4.7 

(0 - 38) 
0.0008 
(0 - 1.4) 

0.8 
(0 - 26.6) 

Average Rainfall and 
Warm Location 

4.3 
(0.4 - 25.3) 

1 
(0.05 - 6.7) 

11.6 
(1 - 69) 

Average Rainfall and 
Temperate Location 

8.9 
(1.09 - 36) 

2.61 
(0.27 - 21.2) 

25 
(2.58 - 115) 

Average Rainfall and Cool 
Location 

9.1 
(2.03 - 37) 

4.5 
(0.4 - 19.6) 

23.9 
(4.7 - 121) 

Wet and Warm Location 15.6 
(5.1 - 42) 

7.5 
(1.25 - 38) 

51 
(11.4 - 152) 

Wet and Temperate 
Location 

13.2 
(4.7 - 33) 

8.1 
(2.69 - 42) 

46 
(8.9 - 176) 

Wet and Cool Location 54 
(33 - 85) 

70 
(40 - 129) 

170 
(111 - 270) 

  Average of Central Values: 19.7 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 270 
  Summary of Values: 19.7 (0 - 270) 
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Appendix 9: GLEAMS-Driver, Two Applications (continued) 

Two Applications 
    Table 6: Stream, Annual Average Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.000004 

(0 - 0.0021) 
0 

(0 - 0.00003) 
0 

(0 - 0.0004) 
Dry and Temperate 

Location 
0.00005 
(0 - 0.03) 

0 
(0 - 0.00011) 

0 
(0 - 0.006) 

Dry and Cold Location 0.014 
(0 - 0.12) 

3.1E-06 
(0 - 0.005) 

0.005 
(0 - 0.24) 

Average Rainfall and 
Warm Location 

0.04 
(0.003 - 0.11) 

0.018 
(0.0004 - 0.23) 

0.25 
(0.02 - 1.17) 

Average Rainfall and 
Temperate Location 

0.08 
(0.012 - 0.4) 

0.07 
(0.0024 - 0.8) 

0.7 
(0.07 - 2.97) 

Average Rainfall and Cool 
Location 

0.14 
(0.021 - 0.6) 

0.17 
(0.012 - 0.9) 

1.09 
(0.24 - 3.6) 

Wet and Warm Location 0.4 
(0.09 - 1.28) 

0.5 
(0.06 - 2.22) 

2.39 
(0.5 - 4.5) 

Wet and Temperate 
Location 

0.7 
(0.17 - 1.41) 

0.8 
(0.18 - 2.12) 

2.21 
(0.5 - 5.3) 

Wet and Cool Location 5.5 
(2.82 - 7.1) 

6.2 
(4.4 - 7.9) 

7.2 
(5.7 - 9.9) 

  Average of Central Values: 1.05 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 9.9 
  Summary of Values: 1.05 (0 - 9.9) 
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Appendix 9: GLEAMS-Driver, Two Applications (continued) 

Two Applications 
    Table 7: Pond, Maximum Peak Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.0004 

(0 - 0.21) 
0 

(0 - 0.005) 
0 

(0 - 0.08) 
Dry and Temperate 

Location 
0.004 

(0 - 2.99) 
0 

(0 - 0.021) 
0 

(0 - 1) 
Dry and Cold Location 1.52 

(0 - 13.4) 
0.00028 
(0 - 0.6) 

0.4 
(0 - 20.1) 

Average Rainfall and 
Warm Location 

3.5 
(0.4 - 28.2) 

1.86 
(0.07 - 22) 

26.6 
(2.36 - 152) 

Average Rainfall and 
Temperate Location 

8.1 
(1.42 - 34) 

4.8 
(0.3 - 63) 

55 
(6.1 - 340) 

Average Rainfall and Cool 
Location 

12.5 
(2.29 - 45) 

12.1 
(0.9 - 76) 

72 
(15.2 - 288) 

Wet and Warm Location 18.4 
(5.7 - 72) 

23.3 
(2.2 - 139) 

156 
(40 - 301) 

Wet and Temperate 
Location 

17 
(6.2 - 38) 

16.4 
(4 - 97) 

106 
(14.3 - 410) 

Wet and Cool Location 107 
(58 - 158) 

125 
(79 - 201) 

211 
(138 - 370) 

  Average of Central Values: 36.2 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 410 
  Summary of Values: 36.2 (0 - 410) 
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Appendix 9: GLEAMS-Driver, Two Applications (continued) 

Two Applications 
    Table 8: Pond, Annual Average Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.00008 

(0 - 0.07) 
0 

(0 - 0.0012) 
0 

(0 - 0.024) 
Dry and Temperate 

Location 
0.0011 
(0 - 0.9) 

0 
(0 - 0.007) 

0 
(0 - 0.3) 

Dry and Cold Location 0.5 
(0 - 3.9) 

0.00008 
(0 - 0.18) 

0.13 
(0 - 5.8) 

Average Rainfall and 
Warm Location 

1.45 
(0.16 - 9.5) 

0.8 
(0.023 - 11.6) 

11.2 
(1.06 - 68) 

Average Rainfall and 
Temperate Location 

4 
(0.7 - 15.5) 

2.75 
(0.12 - 34) 

30.3 
(3.6 - 160) 

Average Rainfall and Cool 
Location 

5 
(0.9 - 19.1) 

6.1 
(0.4 - 34) 

35 
(8.6 - 122) 

Wet and Warm Location 7.1 
(2.44 - 22.5) 

9.5 
(1.09 - 44) 

55 
(13.5 - 101) 

Wet and Temperate 
Location 

7.7 
(2.99 - 15.6) 

7.4 
(1.88 - 36) 

37 
(4.6 - 125) 

Wet and Cool Location 56 
(31.2 - 92) 

62 
(27.9 - 95) 

40 
(20.2 - 84) 

  Average of Central Values: 14 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 160 
  Summary of Values: 14 (0 - 160) 
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Appendix 10: GLEAMS-Driver, Three Applications 
 
Three Applications 
    Table 1: Effective Offsite Application Rate (lb/acre) 

Site Clay Loam Sand 
Dry and Warm Location 6.20E-07 

(0 - 0.000307) 
0 

(0 - 5.80E-06) 
0 

(0 - 0) 
Dry and Temperate 

Location 
6.20E-06 

(0 - 0.00267) 
0 

(0 - 0.000006) 
0 

(0 - 0) 
Dry and Cold Location 0.00217 

(0 - 0.0195) 
0 

(0 - 0.00036) 
0 

(0 - 0) 
Average Rainfall and 

Warm Location 
0.00273 

(0.000256 - 0.0262) 
0.000153 

(5.20E-06 - 0.0032) 
8.40E-10 

(0 - 1.34E-06) 
Average Rainfall and 
Temperate Location 

0.0063 
(0.00087 - 0.0309) 

0.0004 
(1.07E-05 - 0.005) 

7.80E-10 
(0 - 6.50E-07) 

Average Rainfall and Cool 
Location 

0.0051 
(0.00058 - 0.039) 

0.00033 
(5.70E-06 - 0.0057) 

0 
(0 - 5.80E-07) 

Wet and Warm Location 0.0123 
(0.00114 - 0.059) 

0.00098 
(3.13E-05 - 0.0088) 

1.84E-08 
(0 - 0.000004) 

Wet and Temperate 
Location 

0.0094 
(0.00171 - 0.05) 

0.00065 
(1.09E-05 - 0.0048) 

0 
(0 - 1.11E-06) 

Wet and Cool Location 0.0248 
(0.0044 - 0.073) 

0.00219 
(0.000056 - 0.0116) 

8.80E-10 
(0 - 3.50E-06) 

  Average of Central Values: 0.0025 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 0.073 
  Summary of Values: 0.0025 (0 - 0.073) 
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Appendix 10: GLEAMS-Driver, Three Applications (continued) 

Three Applications 
    Table 2: Concentration in Top 12 Inches of Soil (ppm) 

Site Clay Loam Sand 
Dry and Warm Location 0.39 

(0.35 - 0.43) 
0.35 

(0.32 - 0.4) 
0.35 

(0.32 - 0.4) 
Dry and Temperate 

Location 
0.45 

(0.42 - 0.5) 
0.41 

(0.39 - 0.46) 
0.41 

(0.38 - 0.46) 
Dry and Cold Location 0.72 

(0.65 - 0.77) 
0.65 

(0.59 - 0.71) 
0.64 

(0.58 - 0.7) 
Average Rainfall and 

Warm Location 
0.35 

(0.316 - 0.41) 
0.32 

(0.285 - 0.37) 
0.314 

(0.272 - 0.37) 
Average Rainfall and 
Temperate Location 

0.43 
(0.39 - 0.45) 

0.38 
(0.34 - 0.41) 

0.37 
(0.316 - 0.4) 

Average Rainfall and Cool 
Location 

0.47 
(0.45 - 0.5) 

0.43 
(0.4 - 0.45) 

0.42 
(0.36 - 0.44) 

Wet and Warm Location 0.35 
(0.302 - 0.39) 

0.311 
(0.256 - 0.35) 

0.28 
(0.216 - 0.33) 

Wet and Temperate 
Location 

0.45 
(0.42 - 0.48) 

0.4 
(0.35 - 0.44) 

0.38 
(0.283 - 0.43) 

Wet and Cool Location 0.46 
(0.36 - 0.5) 

0.4 
(0.313 - 0.45) 

0.315 
(0.309 - 0.41) 

  Average of Central Values: 0.415 
  25th Percentile of Lower 

Bounds: 
0.311 

  Maximum Value: 0.77 
  Summary of Values: 0.41 (0.311 - 0.77) 
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Appendix 10: GLEAMS-Driver, Three Applications (continued) 

Three Applications 
    Table 3: Concentration in Top 36 Inches of Soil (ppm) 

Site Clay Loam Sand 
Dry and Warm Location 0.129 

(0.116 - 0.144) 
0.118 

(0.106 - 0.133) 
0.118 

(0.106 - 0.132) 
Dry and Temperate 

Location 
0.149 

(0.141 - 0.167) 
0.136 

(0.129 - 0.154) 
0.136 

(0.128 - 0.153) 
Dry and Cold Location 0.239 

(0.216 - 0.258) 
0.218 

(0.196 - 0.236) 
0.217 

(0.196 - 0.234) 
Average Rainfall and 

Warm Location 
0.118 

(0.105 - 0.136) 
0.107 

(0.095 - 0.124) 
0.106 

(0.096 - 0.124) 
Average Rainfall and 
Temperate Location 

0.143 
(0.132 - 0.152) 

0.13 
(0.121 - 0.14) 

0.13 
(0.121 - 0.139) 

Average Rainfall and Cool 
Location 

0.16 
(0.152 - 0.173) 

0.145 
(0.137 - 0.157) 

0.143 
(0.137 - 0.153) 

Wet and Warm Location 0.124 
(0.109 - 0.136) 

0.114 
(0.1 - 0.125) 

0.111 
(0.095 - 0.121) 

Wet and Temperate 
Location 

0.152 
(0.144 - 0.161) 

0.139 
(0.132 - 0.147) 

0.137 
(0.131 - 0.145) 

Wet and Cool Location 0.169 
(0.165 - 0.188) 

0.153 
(0.148 - 0.165) 

0.148 
(0.114 - 0.162) 

  Average of Central Values: 0.144 
  25th Percentile of Lower 

Bounds: 
0.1075 

  Maximum Value: 0.258 
  Summary of Values: 0.144 (0.1075 - 0.258) 
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Appendix 10: GLEAMS-Driver, Three Applications (continued) 

Three Applications 
    Table 4: Maximum Penetration into Soil Column (inches) 

Site Clay Loam Sand 
Dry and Warm Location 18 

(8 - 36) 
12 

(8 - 36) 
18 

(8 - 36) 
Dry and Temperate 

Location 
24 

(8 - 36) 
18 

(8 - 36) 
30 

(8 - 36) 
Dry and Cold Location 36 

(24 - 36) 
36 

(24 - 36) 
36 

(30 - 36) 
Average Rainfall and 

Warm Location 
36 

(36 - 36) 
36 

(36 - 36) 
36 

(36 - 36) 
Average Rainfall and 
Temperate Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Average Rainfall and Cool 
Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Warm Location 36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Temperate 
Location 

36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

Wet and Cool Location 36 
(36 - 36) 

36 
(36 - 36) 

36 
(36 - 36) 

  Average of Central Values: 32.4 
  25th Percentile of Lower 

Bounds: 
24 

  Maximum Value: 36 
  Summary of Values: 32.4 (24 - 36) 
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Appendix 10: GLEAMS-Driver, Three Applications (continued) 

Three Applications 
    Table 5: Stream, Maximum Peak Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.0023 

(0 - 1.23) 
0 

(0 - 0.023) 
0 

(0 - 0.2) 
Dry and Temperate 

Location 
0.018 

(0 - 8.7) 
0 

(0 - 0.05) 
0 

(0 - 2.05) 
Dry and Cold Location 7.1 

(0 - 57) 
0.0013 

(0 - 2.15) 
1.2 

(0 - 40) 
Average Rainfall and 

Warm Location 
5.7 

(0.7 - 28.4) 
1.66 

(0.12 - 10.3) 
19 

(1.9 - 99) 
Average Rainfall and 
Temperate Location 

10.2 
(2.38 - 40) 

3.12 
(0.5 - 27.9) 

32 
(3.6 - 163) 

Average Rainfall and Cool 
Location 

11 
(2.98 - 43) 

6.6 
(1.06 - 27.7) 

34 
(6.9 - 133) 

Wet and Warm Location 17.7 
(6.5 - 48) 

9.3 
(1.43 - 56) 

67 
(18.6 - 176) 

Wet and Temperate 
Location 

17 
(6.8 - 38) 

12.2 
(3.7 - 48) 

57 
(12.3 - 236) 

Wet and Cool Location 73 
(46 - 118) 

102 
(61 - 185) 

231 
(157 - 360) 

  Average of Central Values: 26.6 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 360 
  Summary of Values: 26.6 (0 - 360) 
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Appendix 10: GLEAMS-Driver, Three Applications (continued) 

Three Applications 
    Table 6: Stream, Annual Average Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.000007 

(0 - 0.004) 
0 

(0 - 0.00007) 
0 

(0 - 0.0013) 
Dry and Temperate 

Location 
0.00008 
(0 - 0.03) 

0 
(0 - 0.00018) 

0 
(0 - 0.011) 

Dry and Cold Location 0.021 
(0 - 0.18) 

0.000005 
(0 - 0.008) 

0.008 
(0 - 0.4) 

Average Rainfall and 
Warm Location 

0.06 
(0.009 - 0.18) 

0.032 
(0.0009 - 0.4) 

0.4 
(0.04 - 1.83) 

Average Rainfall and 
Temperate Location 

0.12 
(0.03 - 0.5) 

0.1 
(0.005 - 1.1) 

0.9 
(0.12 - 3.5) 

Average Rainfall and Cool 
Location 

0.2 
(0.04 - 0.9) 

0.25 
(0.019 - 1.35) 

1.63 
(0.4 - 4.6) 

Wet and Warm Location 0.5 
(0.16 - 1.9) 

0.7 
(0.08 - 3.3) 

3.13 
(1 - 6.8) 

Wet and Temperate 
Location 

1 
(0.3 - 1.99) 

1.14 
(0.29 - 2.96) 

3.05 
(0.9 - 7.3) 

Wet and Cool Location 8.2 
(4.1 - 10.9) 

9.4 
(6.5 - 11.4) 

10.6 
(8.5 - 13.5) 

  Average of Central Values: 1.53 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 13.5 
  Summary of Values: 1.53 (0 - 13.5) 
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Appendix 10: GLEAMS-Driver, Three Applications (continued) 

Three Applications 
    Table 7: Pond, Maximum Peak Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.0007 

(0 - 0.4) 
0 

(0 - 0.009) 
0 

(0 - 0.23) 
Dry and Temperate 

Location 
0.008 

(0 - 2.99) 
0 

(0 - 0.04) 
0 

(0 - 1.71) 
Dry and Cold Location 2.23 

(0 - 20.4) 
0.0005 
(0 - 1) 

0.7 
(0 - 30.4) 

Average Rainfall and 
Warm Location 

6.6 
(1.22 - 29.5) 

3.4 
(0.15 - 39) 

45 
(3 - 288) 

Average Rainfall and 
Temperate Location 

12 
(3.7 - 41) 

6.4 
(0.9 - 103) 

76 
(9.3 - 420) 

Average Rainfall and Cool 
Location 

16.1 
(4.1 - 56) 

18.3 
(1.3 - 110) 

105 
(23.4 - 350) 

Wet and Warm Location 23.7 
(9.4 - 103) 

33 
(3.8 - 202) 

206 
(56 - 470) 

Wet and Temperate 
Location 

22.8 
(10.8 - 55) 

22.2 
(6.2 - 109) 

130 
(18.5 - 450) 

Wet and Cool Location 161 
(88 - 249) 

190 
(118 - 273) 

284 
(199 - 440) 

  Average of Central Values: 50.5 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 470 
  Summary of Values: 50.5 (0 - 470) 
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Appendix 10: GLEAMS-Driver, Three Applications (continued) 

Three Applications 
    Table 8: Pond, Annual Average Concentration in Surface Water (µg/L or ppb)  

Site Clay Loam Sand 
Dry and Warm Location 0.00016 

(0 - 0.09) 
0 

(0 - 0.0022) 
0 

(0 - 0.08) 
Dry and Temperate 

Location 
0.0019 
(0 - 0.9) 

0 
(0 - 0.013) 

0 
(0 - 0.6) 

Dry and Cold Location 0.7 
(0 - 5.9) 

0.00012 
(0 - 0.28) 

0.2 
(0 - 8.8) 

Average Rainfall and 
Warm Location 

2.59 
(0.4 - 10.1) 

1.35 
(0.05 - 20.1) 

19.2 
(1.63 - 118) 

Average Rainfall and 
Temperate Location 

5.6 
(1.59 - 19.8) 

3.7 
(0.29 - 50) 

40 
(5.5 - 195) 

Average Rainfall and Cool 
Location 

8.2 
(1.68 - 28) 

8.7 
(0.6 - 52) 

54 
(12.9 - 171) 

Wet and Warm Location 9.9 
(4.3 - 33) 

11.9 
(1.53 - 66) 

73 
(22.2 - 142) 

Wet and Temperate 
Location 

10.8 
(5 - 21.5) 

10.3 
(2.83 - 39) 

48 
(6.9 - 147) 

Wet and Cool Location 87 
(47 - 143) 

97 
(45 - 146) 

64 
(30 - 141) 

  Average of Central Values: 20.6 
  25th Percentile of Lower 

Bounds: 
0 

  Maximum Value: 195 
  Summary of Values: 20.6 (0 - 195) 
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