

Intermountain Climate Assessment Workshop

May 22-24, 2018

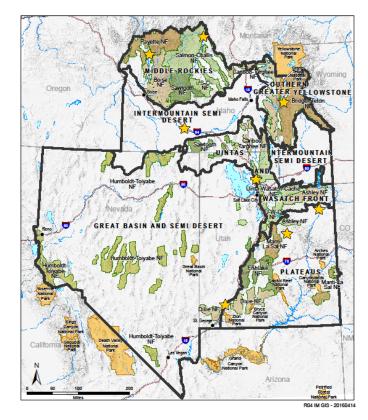
Main location: Ogden, UT

Virtual locations:

Ashley National Forest (NF), Vernal, UT

Bridger-Teton NF, Jackson, WY

Dixie NF, Cedar City, UT

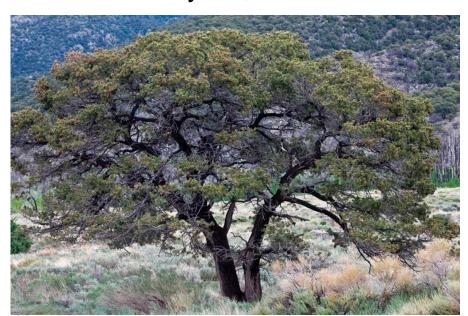

Manti-La Sal NF, Price, UT

Payette NF, McCall, ID

Salmon-Challis NF, Salmon, ID

Sawtooth NF, Twin Falls, ID

More info at: www.fs.usda.gov/goto/cc



Housekeeping Special Announcements Safety

on Forest Vegetation
Intermountain Region – Climate Assessment Workshop
May 22, 2018

Jessica Halofsky, PhD & Dave Peterson, PhD

Univ. Washington, School of Environmental and Forest Sciences

Effects of Climatic Variability and Change on Forest Vegetation

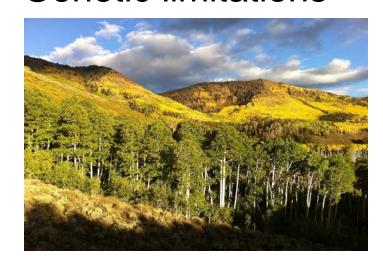
Intermountain Region – Climate Assessment Workshop May 22, 2018

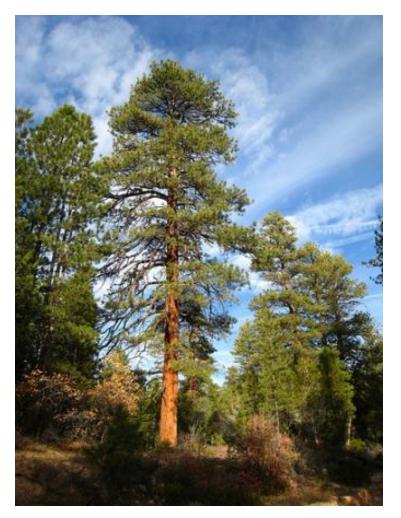
Contributors

Pat Behrens, Bob Keane, Dave Tart, Stan Kitchen, Wayne Padgett, Mary Manning

Plant species respond to:

- Energy constraints
- Water constraints
 - o temperatures = evapotranspiration
 - \circ ↑ $CO_2 = \uparrow$ water use efficiency?
- Disturbance regimes





Individual plant effects

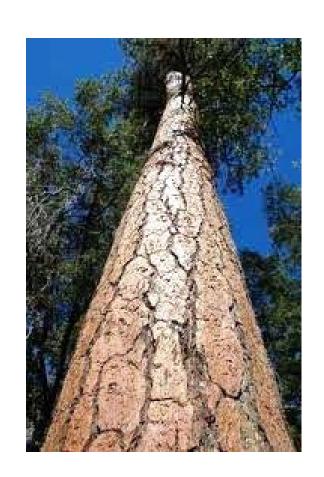
Productivity
Seedling establishment
Mortality
Phenology
Genetic limitations

Tree species assessment

Vulnerability assessment is based on:

- Ecological characteristics
- Disturbance interactions
- Current vs. historical conditions
- Potential climate change responses

High-elevation forests


- Less snow and longer growing seasons = increased growth?
- Some species may move to higher elevations, assuming suitable substrate and regeneration.
- Increasing susceptibility to fire, insects, and drought.

Mesic mixed conifer forests

- Growth rates likely to decrease with less water availability.
- Late-seral forests will be increasingly susceptible to wildfire.
- Increased wildfire will favor some species (e.g., ponderosa pine, Douglas-fir).

Dry mixed conifer forests

- Many drought tolerant species will be able to cope with drier soils and increased wildfire.
- Some species sprout vigorously after fire (e.g., Gambel oak, mt. mahogany).
- Pinyon pines are killed by intense fire.

Lodgepole pine forests

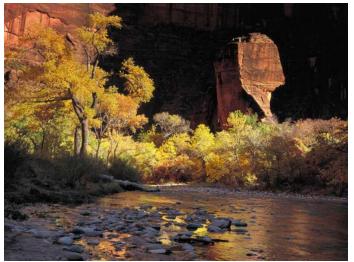
- Number of fires will likely increase and fire return intervals will decrease.
- More frequent fire regime could change fuel dynamics.
- Mature and older forest will likely decrease.

Aspen forests

- Aspen is expected to maintain dominance because of its ability to sprout after fire.
- Productivity is expected to be lower.

Riparian forests

- Species tolerant of seasonal drought will dominate.
- Hardwood regeneration could become less common.
- Forests associated with small water sources (e.g., springs) will be more susceptible than forests near large water sources (e.g., rivers).



Riparian forests

- Species tolerant of seasonal drought will dominate.
- Hardwood regeneration could become less common.
- Forests associated with small water sources (e.g., springs) will be more susceptible than forests near large water sources (e.g., rivers).

Adaptation Options

Strategy 1 — Increase resilience of mixed conifer forests to higher fire frequency

Tactic 1 — Manage forest densities by removing smaller trees to reduce ladder fuels

Tactic 2 — Reduce surface fuels to decrease the intensity and severity of wildfires

Adaptation Options

Strategy 2 — Reduce existing stressors

Tactic 1 — Implement early detection/rapid response to eradicate or control invasive species (esp. cheatgrass)

Tactic 2 — Remove competing vegetation (e.g., juniper) and control ungulate browsing to allow for regeneration

Adaptation Options


Strategy 3 — Increase landscape heterogeneity

Tactic 1 — Enhance diversity of forest structure and age classes at all spatial scales

Tactic 2 — Use geospatial information to identify optimal patterns of forest and fuel structure to reduce wildfire spread.

Summary

- Effects of climate change on forest vegetation will be driven primarily by vegetation <u>responses to</u> <u>altered disturbance regimes</u>, and secondarily through <u>shifts in regeneration</u>, <u>growth</u>, and <u>mortality</u>.
- Adaptation will focus primarily on management practices that <u>increase resilience to disturbance</u> (wildfire, insects), <u>reduce existing stressors</u>, and <u>increase landscape heterogeneity</u>.

Effects of Climate Change on Rangeland Vegetation

Intermountain Region – Climate Assessment Workshop May 22, 2018

Matt Reeves, PhD

Research Ecologist RMRS-USDA Forest Service

Partners for the non-forest section

Wayne G. Padgett,
Matthew C. Reeves,
Stanley G. Kitchen,
David L. Tart,
Jeanne C. Chambers,
Cheri Howell,
Mary E. Manning,
John G. Proctor

DWIGHT D. EISENHOWER

© Lifehack Quotes

Plans are nothing; planning is everything.

- Dwight D. Eisenhower -

Overview of Topic – Why is it important

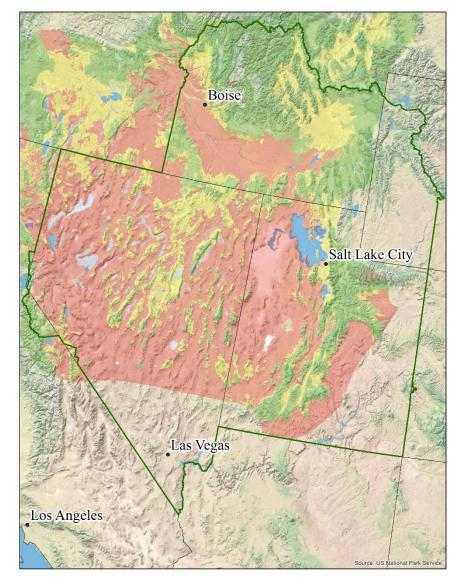
- Increasing Variability
- Ecological Impact
 - Uncharacteristic Fire Regimes
 - Drought more recovery periods
 - Entering uncharted territory
- Economic Impact
 - Think of stakeholders
 - Less support for public land?
 - Opportunity to develop FS lands as "grassbanks"

Table 7.2—Vulnerability ratings for sensitivity and adaptive capacity of non-forest cover types in the IAP region, based on published literature and expert evaluations by a team of scientists.

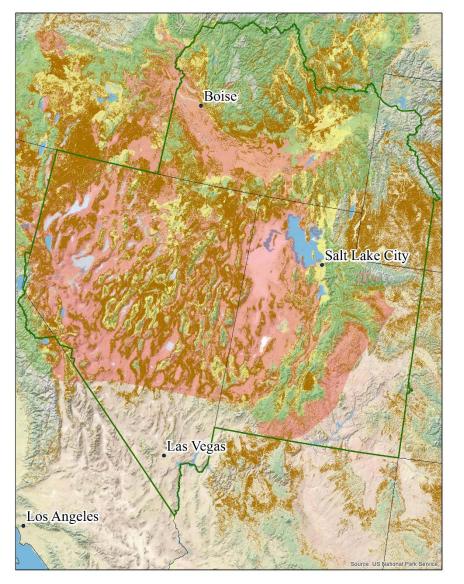
	Sensitivity rating	Sensitivity score	Adaptive capacity rating	Adaptive capacity score	Combined score	Vulnerability
Alpine	Н	5	L	5	10	Very High
Dry big sagebrush shrublands	Н	5	L	5	10	Very High
Low-elevation riparian	Н	5	L-M	4	9	High-Very High
Subalpine forb communities	Н	5	M	3	8	High
Persistent pinyon-juniper woodlands	Н	5	М	3	8	High
High-elevation riparian	M-H	4	L-M	4	8	High
Mountain-mahogany woodlands	М	3	L-M	4	7	Moderate-High
Mountain big sagebrush shrublands	М	3	L-M	4	7	Moderate-High
Mountain grasslands	М	3	L-M	4	7	Moderate-High
Salt desert shrublands	М	3	L-M	4	7	Moderate-High
Mid-elevation riparian	M-H	4	M	3	7	Moderate-High
Blackbrush	L-M	2	L	5	7	Moderate-High
Dwarf sagebrush shrublands	M-H	4	M-H	2	6	Moderate
Sprouting sagebrush	М	3	M	3	6	Moderate
Oak-maple woodlands	L-M	2	M	3	5	Low-Moderate
Mountain shrublands	L-M	2	M-H	2	4	Low-Moderate

Vulnerability of Vegetation Types

Alpine forb & grass communities

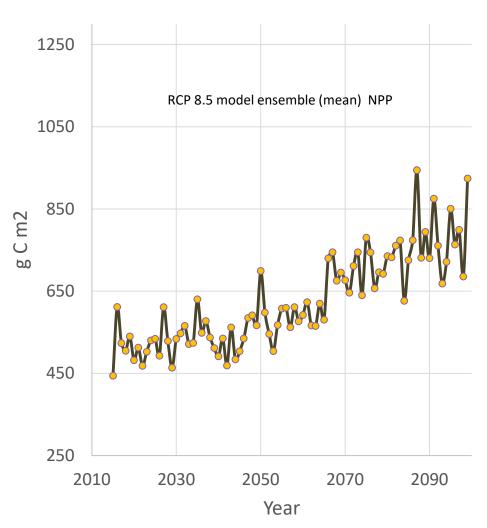

Vulnerability of Vegetation Types

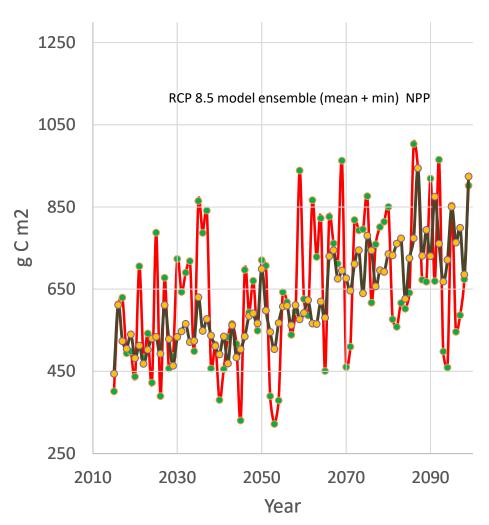
- Alpine forb & grass communities
- Sagebrush systems (especially Wyoming big sagebrush communities)
 - Non-sprouters
 - Cheatgrass, especially in low resistance/resilience areas
 - Uncharacteristic fire regimes



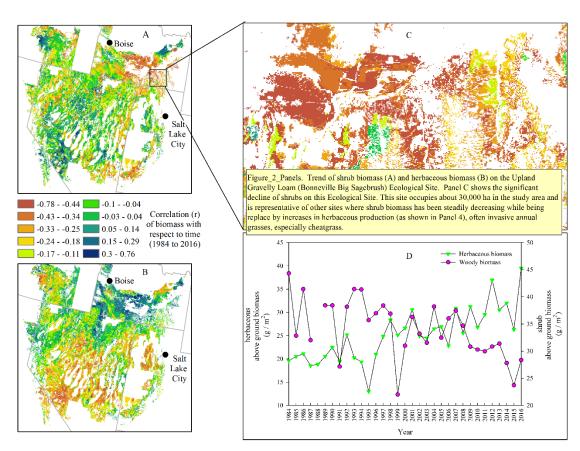
Using knowledge from today to prepare for the future

Relatively warmer and drier sites are more vulnerable (low resilience + low resistance




Much of our sagebrush occurs in warm/dry sites

Is new thinking required?



Adaptation Strategies & Tactics

- Learn from the past
 - New data and tools available!!!

Adaptation Strategies & Tactics

- Learn from the past
 - New data and tools available!!!
- Consult adaptation library for starters
 - Developed during IAP & NRAP events for <u>managers</u>
- We already know what to do (for the most part)
- Drought & wildfire & recovery = longer, more uncertain
 - Communicate these ideas to stakeholders!!
- Communication...now
 - Open dialogue
 - Revise allotment management plans (AMPs) to account for variability
 - Expand your sphere of contacts

DWIGHT D. EISENHOWER

© Lifehack Quotes

Plans are nothing; planning is everything.

- Dwight D. Eisenhower -

Summary & Major Results

- Weave the concept of risk management into discussions
- Learn how to be more flexible
- Speak the language
- Get help.... It's a marathon not a sprint....you can't do it by yourself

Weblinks & Additional Resources

- http://adaptationpartners.org/library.php
- Rangeland story maps: Drought
- SPI Explorer or similar tools
 - https://cals.arizona.edu/climate/index.htm
- Communication: http://guide.cred.columbia.edu/

Matt Reeves
Research Ecologist
Missoula, MT
mreeves@fs.fed.us
406 546 5875

Effect of Climate Change on Terrestrial Animals

Intermountain Region – Climate Assessment Workshop May 22, 2018

Megan Friggens, PhD
Rocky Mountain Research Station
– USDA Forest Service

Chapter 9: Effects of Climate Change on Terrestrial Animals

Megan M. Friggens, Mary I. Williams, Karen E. Bagne, Tosha T. Wixom, and Samuel A. Cushman

I. Climate change impacts to habitats

Review potential terrestrial species responses and ecological impacts for major habitats within R4

II. Species' vulnerability assessments

Quantify exposure, sensitivity and adaptive capacity for 3 birds, 7 mammals, 3 amphibians, 1 reptile using SAVS

GTR-375, Part 2, p264-315

Wildlife Habitats

Forest types, p267-273 Woodland types, p273-276 Non-forest types, p276-282

Forest types	Woodland types	Non-forest types
Alpine pine	Pinyon-juniper woodland	Sagebrush
Sub-alpine spruce fir	Mountain mahogany woodland	Mountain shrubland
Lodgepole pine		Mountain grassland/
Mixed conifer	Maple/oak	Montane meadows
Aspen		Salt-desert shrubland
Ponderosa pine		Tall forb
Riparian forests		Alpine
·		Riparian Wetlands

Species Vulnerability

Summaries, p282-293 SAVS Scores, p314-316

Selection Criteria:

Management concern
Present within Forests
Representative of habitats
Data available

- 1. American Pika
- 2. Bighorn Sheep (Desert & Sierra Nevada)
- 3. Boreal Toad
- 4. Canada Lynx
- 5. Columbia Spotted Frog
- 6. Fisher
- 7. Great Basin Spadefoot
- 8. Greater Sage-grouse
- 9. Northern Idaho Ground Squirrel
- 10. Prairie Rattlesnake
- 11. Three-toed Woodpecker
- 12. Townsend's Big-eared Bat
- 13. Utah Prairie Dog
- 14. Western Yellow-billed Cuckoo
- 15. Wolverine

General Results: Habitat

- Loss, shift, expansion of habitats
- Changes in structure and composition
- Loss of critical habitat elements
- Change in timing of resources
- Change in disturbances
- Change in snow cover

General Results: Wildlife

Increased vulnerability

- Loss of habitat
 - High elevation habitats
 - Open water, Wetlands
- Reliance on snowpack
- Timing mismatches
- Negative impacts from fire
- Increase in disease
- Increased issues with barriers

Decreased vulnerability

- High mobility
- Extended breeding season
- Habitat increases
- Increased winter foraging
- Reduced fish predation

Example Strategies

Vulnerability	Possible Actions
Invasive species	Apply chemical or mechanical treatments, bio-control, reduce vectors
Fire	Fuel treatments, wildland fire use and planning, fuel breaks
Disease	Monitor at-risk populations, reduce carrier species, vaccinate, maintain dispersed resources
Snowpack	Focus conservation on areas where snow accumulates, snow fences, thinning, landscape level planning
Water	Build or enhance artificial water sources, remove dams, regulate withdrawals, fence livestock
Dispersal ability	Translocation, create corridors, enhance dispersal habitats, regulate road use
Food fluctuations	Food supplementation during critical periods, restore habitats, predator or competitor removal, hunting or trapping regulation

Chapter 9: Effects of Climate Change on Terrestrial Animals......264
Chapter 14: Adapting to the Effects of Climate Change.....404

Megan Friggens
Research Ecologist
Albuquerque, NM
meganfriggens@fs.fed.us
505-724-3679

DIALOGUE AND Q&A

GROUP EXERCISE

BREAK TIME

