
United States
Department of
Agriculture

Forest
Service

COPPER RIVER DELTA EXISTING VEGETATION MAP PROJECT

December 2013

RSAC-10075-RPT1

Abstract

An existing vegetation map was prepared in a collaborative effort between the Chugach National Forest, Alaska Regional Office (Region 10), Ducks Unlimited, and the Remote Sensing Applications Center (RSAC). This map was designed to be consistent with the standards established in the Existing Vegetation Classification and Technical Guide (Nelson and others, in press) and to provide baseline information to support project planning and management of the Copper River Delta. The final map comprises 15 land cover types, including 11 vegetation classes and 4 non-vegetated classes. Geospatial data, including remotely sensed imagery, a digital surface model, and ancillary data were assembled. A semi-automated image segmentation process was used to develop the modeling units (mapping polygons), which represented relatively homogeneous areas of land cover to be classified. Land cover class determinations were made for field visited reference sites and subsequently used to develop predictive random forest classification models. Photo interpretation was then used to evaluate individual map models and manually edit interim maps. This process utilized various Forest Service Enterprise software packages and the most contemporary mapping methods. Once the final map was produced, an accuracy assessment was conducted to reveal individual class confusion and provide additional insight into the reliability of the final map for resource applications. Overall accuracy of the final vegetation map was 82 percent.

Keywords

Copper River Delta, Chugach National Forest, Alaska, vegetation map, classification

Authors

Gabriel Bellante is a remote sensing specialist working at the Remote Sensing Applications Center (RSAC) and employed by RedCastle Resources in Salt Lake City, Utah.

Wendy Goetz is the vegetation mapping group leader and a remote sensing specialist working at RSAC and employed by RedCastle Resources.

Paul Maus is a contract leader and principal of RedCastle Resources working at RSAC.

Robert Develice is the forest ecologist for the Chugach National Forest in Anchorage, Alaska.

Mark Riley is the regional remote sensing coordinator for Region 10 in Juneau, Alaska.

Kevin Megown is the program leader for the Resource Mapping, Inventory, & Monitoring Program at RSAC.

Acknowledgements

The authors would like to thank Tim Joyce (supervisory natural resources specialist), Erin Cooper (wildlife biologist), and Kate Mohatt (ecologist) of the Chugach National Forest, in addition to Barb Schrader (regional ecologist), Connie Hubbard (inventory and monitoring coordinator), and Erik Johnson (geographic and resource information systems group leader) of the Alaska Regional Office, for their support and knowledge that was instrumental to the development of the Copper River Delta map. We would like to acknowledge Charles Werstak (biological scientist) who assisted in data preparation and data collection efforts for the project. We would like to also thank Dan Fehringer of Ducks Unlimited and Mike Duffy of Biological Consulting for their expertise of the Copper River Delta flora and organization of the reference data collection.

Bellante, G.; Goetz, W.; Maus, P.; Develice, R.; Riley, M.; Megown, K. 2013. Copper River Delta existing vegetation map project. RSAC-10075-RPT1. Salt Lake City, UT: U.S. Department of Agriculture, Forest Service, Remote Sensing Applications Center. 23 p.

Table of Contents

Abstract	ii
Acknowledgements	ii
Introduction	1
Project Area	1
Methods	1
Geospatial Data Acquisition	1
Image Segmentation	2
Reference Data Collection	3
Classification	4
Draft Map Review and Revision	6
Final Map Production	6
Accuracy Assessment	6
Procedures	8
Results	8
Conclusion	11
References	13
Appendix A: Landcover Mapping Field Form	14
Appendix B: Key to Identify Vegetation Dominance	15

Introduction

Maps of existing vegetation support resource managers by informing project-level planning efforts with vegetation data that can be used in numerous applications. Land managers of the Copper River Delta require vegetation maps for monitoring and evaluating wildlife habitat used by moose, dusky Canada geese, trumpeter swans, and other species of interest. In addition, vegetation maps are needed for other applications, including land management planning, ecosystem assessment, inventory, silviculture, rare and sensitive species monitoring, invasive species modeling, recreation management, and climate change analyses.

Authority and funding for the Copper River Delta Mapping Project was provided by the Chugach National Forest and the Alaska Regional Office. The Remote Sensing Applications Center (RSAC) produced an existing vegetation map using the most contemporary mapping methods and current data available. The final map product will provide project managers with a vegetation map, at a scale and accuracy previously unachieved, to inform planning and decisions pertinent to the Copper River Delta.

Project Area

The Copper River Delta project area is located in Southcentral Alaska and encompasses over 1.1 million acres of the Chugach National Forest (figure 1). Elevation of the project area ranges from sea level to over 3,000 ft. The delta contains coastal rain forest, verdant wetlands, and snowcapped peaks. This landscape, being at the interface of marine and terrestrial environments, provides critical habitat for migratory birds along the Pacific Flyway, large mammals such as moose and bear, and numerous anadromous fisheries.

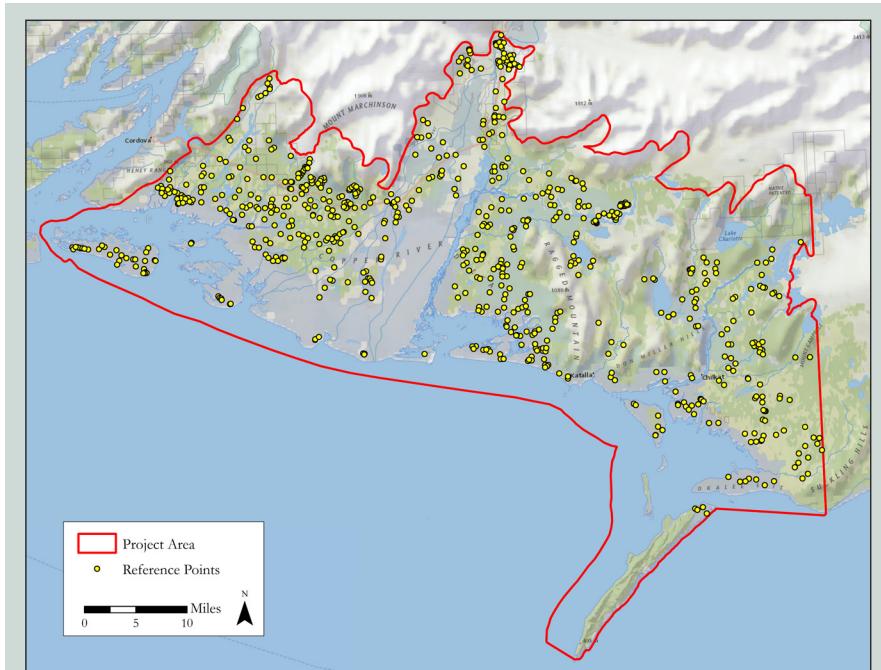


Figure 1—Copper River Delta mapping project area and the locations of the field-collected reference sites.

Methods

The mapping phases for this project included geospatial data acquisition, image segmentation, reference data collection, classification, draft map review and revision, final map development, and accuracy assessment. Topographic and ancillary data were used in conjunction with imagery to develop the modeling units (mapping polygons) and the classification models that ultimately produced the final land cover map.

Geospatial Data Acquisition

This project involved assembling remotely sensed imagery from multiple sensors. Each image sensor has a unique set of qualities that, along with the imaging geometry, determines the spectral, spatial, and radiometric resolutions of the data that is collected. Expert knowledge determined the appropriate data layers to be used at each stage of the mapping process to ensure the highest quality of interim

products. For example, the 60 cm resource imagery lacked the spectral integrity for modeling purposes, but was instrumental in the generation of the mapping polygons and for reviewing draft maps.

Kayak Island was processed separately from the rest of the project area, hereinafter referred to as the 'mainland', because the abundance and availability of cloud-free imagery was disparate between the two regions. The data available for Kayak Island included Quickbird 2 and Landsat 5 Thematic Mapper (TM) imagery, while the remaining project area utilized Level 1A SPOT 5 imagery (from the Statewide Digital Mapping Initiative project, University of Alaska, Fairbanks), Landsat 5 TM satellite imagery, and high resolution (60 cm) aerial imagery. Multiple sources of imagery were used to maximize the range of data used in the computational models to capitalize on the unique information strengths afforded the different sensors.

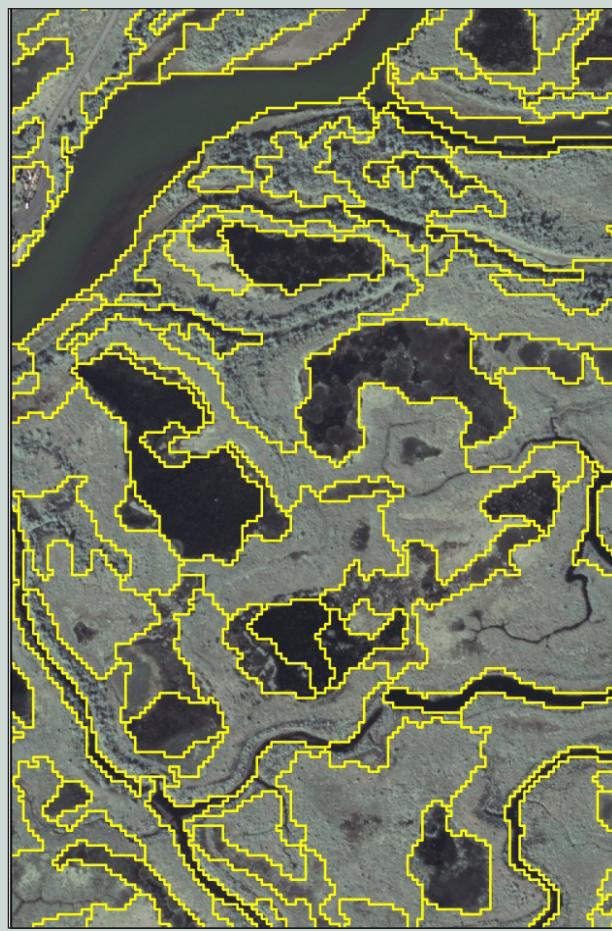
Utilization of imagery acquired throughout the growing season also captured the phenological variations in vegetation to better distinguish between vegetation types.

The SPOT and Landsat imagery was processed to remove clouds which obscure ground objects. Multiple images from each sensor were mosaicked together to patch areas of cloud or aggregate adjacent image swaths to cover the entire study area. Spectral indices such as the Normalized Difference Vegetation Index (NDVI), the Tasseled Cap transformation, and Principle Component Analysis (PCA) were produced from the mosaicked images.

Elevation data for the entire study area was derived from a 20 m digital surface model (DSM) acquired by the SPOT 5 High Resolution Stereoscopic (HRS) imaging instrument. Topographic derivatives including slope, aspect, heat load, and hillshade were produced. These biophysical variables depict environmental parameters that can help distinguish land cover types in the mapping process.

All data layers were co-registered and projected to UTM, NAD83, Zone 6 North. The data were resampled to 5 m to maintain consistency in spatial resolution across all data layers. A complete list of geospatial data used in the project can be found in table 1.

Image Segmentation


The goal of image segmentation is to develop homogenous mapping polygons to serve as the elemental modeling entities for the classification process. A multi-resolution image segmentation was performed using a combination of raw spectral bands, spectral derivatives, and DSM elevation data in the Trimble eCognition software suite (figure 2).

Most polygons for the mainland were derived using 60 cm resource imagery. SPOT 5 imagery was used to segment areas of the mainland obscured by clouds. A combination of Quickbird 2 and Landsat 5 TM imagery was used to segment Kayak Island. The 60 cm resource imagery and the Quickbird 2

Table 1—List of spectral, topographic and ancillary data layers used in the mapping process

Spectral Data		Data Source
Resource Imagery: Blue, Green, Red, Near Infrared (NIR)		60 cm Resource Imagery (Aug-Sep 2010)
SPOT 5 Pansharpened Bands: Blue, Green, Red, NIR		5 m Pansharpened SPOT 5 Imagery (June 2009-Aug 2011)
SPOT 5 Derivatives: NDVI, Principle Components 1 & 2, Tasseled Cap Transformation		
Landsat 5 Raw Bands: Blue, Green, Red, NIR, NIR2, Middle Infrared (MIR)		30 m Landsat 5 TM Image (Path 65/Row18-09/02/2010)
Landsat 5 Derivatives: NDVI, Principle Components 1 &2, Tasseled Cap Transformation		
Quickbird 2 Raw Bands: Blue, Green, Red, NIR		2.4 m Quickbird 2 Imagery (08/27/2005)
Quickbird 2 Derivatives: NDVI, Principle Components 1 &2		
Topographic Data		Data Source
Elevation		
Aspect (8-direction)		
Aspect (Cosine Transformation)		
Aspect (Sin Transformation)		
Slope (Degrees)		
Focal Division		20 m Digital Surface Model
Heatload		
Hillshade		
Slope Position		
Solar Index		
Ancillary Data		Data Source
Geology		10 m Geology Data
Ecological Unit Inventory		10 m Ecological Unit Inventory Data

Note: The image acquisition dates are shown in parentheses.

Figure 2—Example of the segments generated using Trimble eCognition software. This is a snapshot of the 60 cm resource imagery from a Copper River access point on Alaganik Slough (left) and overlaid with segments (right).

imagery were resampled to 5 m to make data processing more efficient and avoid over-segmenting the complex Copper River Delta landscape.

A quarter-acre filter was used to limit the polygon size to ≥ 0.25 acres. This step eliminated segments too small to accurately model. Most segments were less than 5 acres in size and the median segment size was 1.85 acres. Many segments in the Gulf of Alaska and the Copper River were merged to create a single water polygon that encompassed most of the water within the Copper River Delta project boundary. This dramatically decreased the total number of segments and lessened computer processing times without losing meaningful delineations.

Reference Data Collection

Vegetation data was collected for preselected reference sites by the Chugach National Forest, Alaska Regional Office, RSAC, and Ducks Unlimited. A total of 479 sites were visited on the ground or observed up close from a helicopter during the summer of 2010. These sites were located in relatively homogenous areas based on an unsupervised spectral stratification of the SPOT 5 imagery using the ISODATA clustering algorithm. Each reference site was a single segment that was evaluated to determine the land cover label.

An ocular estimate of absolute canopy cover was collected for individual plant species contained within each reference

site. These estimates were made from a ‘birds-eye’ perspective to mimic the perspective of a remote sensing instrument from above, discounting vegetation that is overtopped. Total absolute cover for each site equaled 100 percent. Field information was recorded (see appendix A) and a dominance type was determined using a dichotomous key (see appendix B). The dichotomous key, developed specifically for the Copper River Delta mapping project, contained discrete decision rules based on absolute and relative cover percentages that determined a mutually exclusive dominance type. Only mapping polygons containing >10 percent vegetation cover were considered vegetated and assigned a vegetation dominance type. Those reference sites containing less than 10

percent vegetation cover were assigned a non-vegetated land cover class. Because of accessibility and time constraints, limited field data collection occurred on Kayak Island.

Additional sites were photo interpreted to supplement the reference dataset. The photo interpreted sites were assigned a land cover type without specific species canopy cover information. These sites were placed in areas that had limited field access, such as Kayak Island, or in land cover classes that lacked sufficient samples.

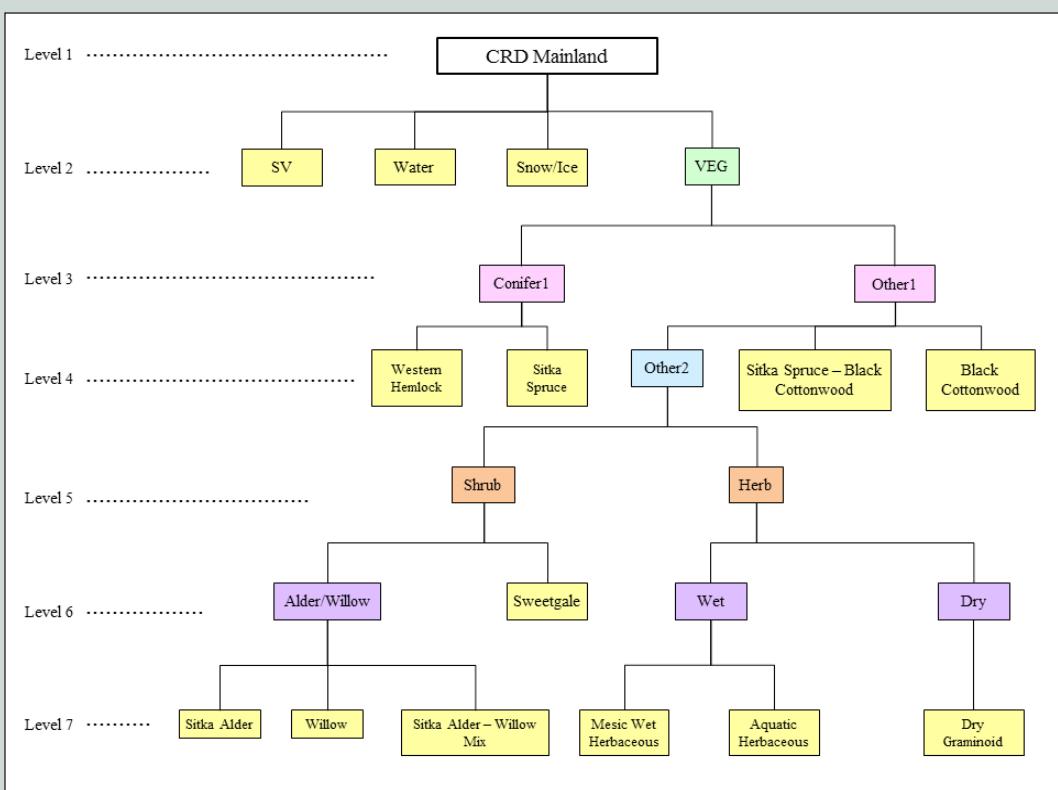
All reference data were reviewed for accuracy and quality using the 60 cm resource imagery. Ultimately, several

dominance types were merged or eliminated due to their limited occurrence on the landscape (table 2).

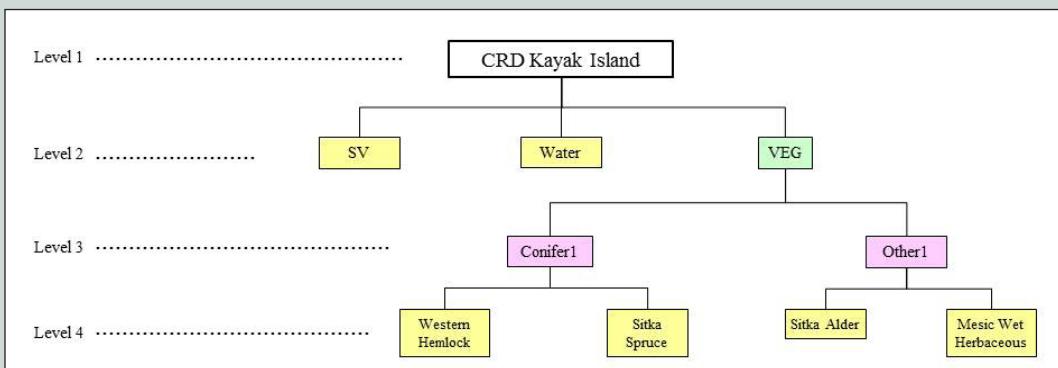
Classification

Random forest was used to assign land cover classes to the mapping polygons. Random forest is an ensemble classifier that uses the plurality of class predictions from a multitude of decision trees for class assignment (Breiman, 2001; Cutler and others 2007).

Initially, a separability analysis was performed to indicate which classes were most distinguishable. This informed a mapping hierarchy that grouped classes based on data similarity


(figure 3). The most discernible classes were mapped first, while classes that were more difficult to separate were grouped together and subsequently modeled further down the hierarchy.

The model outputs were iteratively evaluated using photo interpretation at each stage of the hierarchy to avoid unnecessary confusion that would reduce map accuracy. This enabled editing at grosser levels to reduce confusion and improve overall accuracy. The first level of the mapping hierarchy separated vegetation from the non-vegetated classes (snow/ice, sparse/unvegetated, and water). Vegetation was subsequently further divided until all


Table 2—List of the final map classes and the associated dominance types

Dominance Type (DT)	Determination	Final Map Classes
Western Hemlock	MERGED	Western Hemlock
Mountain Hemlock	MERGED	
Sitka Spruce	OK	Sitka Spruce
Sitka Spruce – Dwarf Tree	OUT	
Black Cottonwood	OK	Black Cottonwood
Sitka Spruce – Black Cottonwood	OK	Sitka Spruce – Black Cottonwood
Sitka Alder	OK	Sitka Alder
Willow	OK	Willow
Sitka Alder – Willow Mix	OK	Sitka Alder – Willow Mix
Sweetgale	OK	Sweetgale
Crowberry	OUT	
Dry Graminoid	OK	Dry Graminoid
Wet Graminoid	MERGED	
Mesic Graminoid	MERGED	
Wet Forb	MERGED	Mesic Wet Herbaceous
Mesic Forb	MERGED	
Dry Forb	OUT	
Aquatic Herbaceous	OK	Aquatic Herbaceous
Sparse/Unvegetated	OK	Sparse/Unvegetated
Water	OK	Water
Snow/Ice	OK	Snow/Ice
Developed	OK	Developed

Note: Dominance types were determined to be 'OK', 'OUT', or 'MERGED'. Dominance types determined to be: 'OK' were unchanged and represented by a single map class; 'OUT' were not mapped and their corresponding reference sites were not used in the classification; or 'MERGED' were combined into a single map class. The unclassified dominance types found in the dichotomous key were excluded from this list because they were eliminated from the final map class list and did not commonly occur.

Figure 3—Illustration of the mapping hierarchy that was used for the Copper River Delta mainland modeling process, excluding the developed class. Note that final map classes are shown in yellow boxes.

Figure 4—Illustration of the mapping hierarchy that was used for the Copper River Delta Kayak Island modeling process. Note that final map classes are shown in yellow boxes. Fewer dominance types were found on Kayak Island, therefore the classification hierarchy was comparatively simpler than the mainland.

classes were mapped. Additional reference sites were added at each hierarchical level to improve modeling results by both increasing the spatial distribution and total amount of training data.

The process of rerunning random forest models at each level of the mapping hierarchy optimized results. This iterative method of model

improvement was especially important at higher levels of the modeling hierarchy. By mapping the broad vegetation classes first, obvious lifeform errors could be corrected early in the modeling process since misclassification at higher levels of the hierarchy persist throughout the classification. The developed class was added to the map manually since the project area contained little permanent infrastructure.

Kayak Island was modeled separately from the rest of the Copper River Delta (figure 4). This was done because the data available to each area were disparate and because Kayak Island lacked the vegetation diversity found elsewhere in the project area.

The draft version of the Copper River Delta land cover map was developed by aggregating the classification results from the interim hierarchical map outputs.

Draft Map Review and Revision

A draft map was provided to local and regional experts for review. This was an opportunity for resource specialists to assess the map and provide critical feedback. Once comments were received, suggested changes were incorporated into the map. Areas of misclassification were either corrected by remodeling with additional reference sites or by incorporating manual edits directly into the map.

Final Map Production

Once recommended changes and manual edits were incorporated, the final land cover map was assembled. The final map contained 15 land cover classes: 4 forest, 4 shrub, 3 herbaceous, and 4 non-vegetated classes (figure 5). Of the total 1,179,356 acres, (table 3)

32 percent was mapped as water and 69 percent was mapped as land. Of the mapped land area, 28 percent was forest, 41 percent shrubland, 16 percent herbaceous, and 15 percent was mapped as other, which included sparse/unvegetated, snow/ice, and developed areas.

Accuracy Assessment

An accuracy assessment was conducted to validate the final map and reveal details of individual class confusion. Photo interpretation was used to collect the accuracy assessment data. A stratified random sample, using the draft land cover map, was performed to select 452 accuracy assessment sites (figure 6). This ensured that an adequate number

of samples (32 per class) were collected in each map class. This however did not guarantee a balanced sample because sites were selected from a draft version of the map, which was edited further before being finalized. In addition, the developed class was not evaluated because of its limited spatial extent and the snow/ice class was merged with the sparse/unvegetated class for accuracy assessment purposes only.

A caveat exists when using photo interpreted data for validation purposes because there is an increased level of uncertainty associated with these data as compared to using data that has been ground verified. Given that the accuracy assessment protocol treats these data as truth, inherent error in photo interpretation must be considered when evaluating the results.

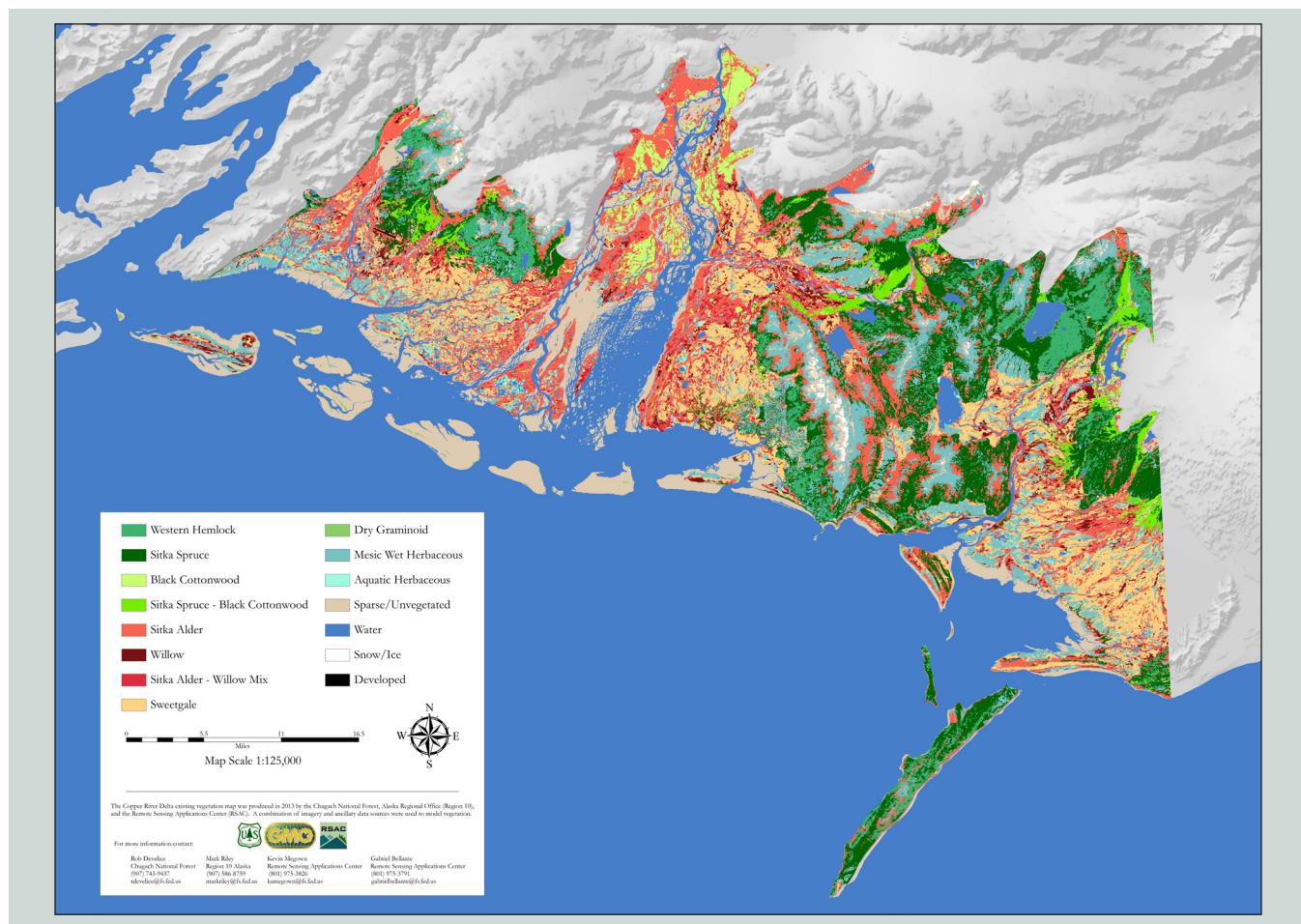


Figure 5—Final Copper River Delta vegetation map.

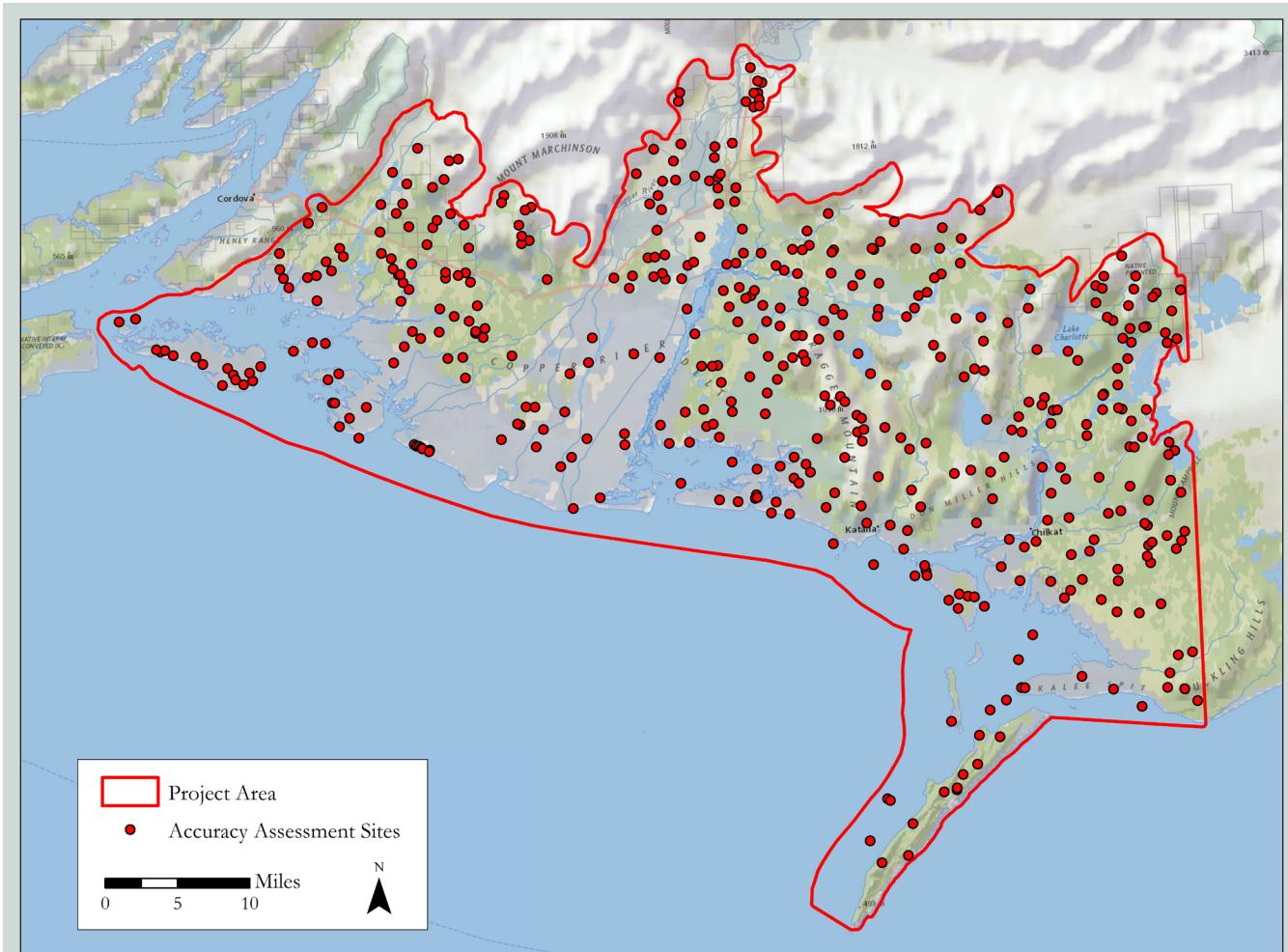


Figure 6—Copper River Delta mapping project area and the locations of the accuracy assessment sites.

Table 3—Total acreages for the different land cover type classes mapped for the Copper River Delta

Lifeform	Area (ac)	% Area	% Land Area	Map Class	Area (ac)	% Area	% Land Area
Forest	222,395	19%	28%	Western Hemlock	48,572	4.12%	6.08%
				Sitka Spruce	129,969	11.02%	16.28%
				Black Cottonwood	23,149	1.96%	2.90%
				Sitka Spruce - Black Cottonwood	20,705	1.76%	2.59%
Shrub	323,190	27%	41%	Sitka Alder	174,395	14.79%	21.84%
				Willow	20,578	1.74%	2.58%
				Sitka Alder - Willow Mix	21,759	1.84%	2.73%
				Sweetgale	106,458	9.03%	13.33%
Herbaceous	129,281	11%	16%	Dry Graminoid	1,201	0.10%	0.15%
				Mesic Wet Herbaceous	115,653	9.81%	14.49%
				Aquatic Herbaceous	12,427	1.05%	1.56%
Other	504,490	43%	15%	Sparse/Unvegetated	119,704	10.15%	14.99%
				Water	380,953	32.30%	N/A
				Snow/Ice	3,467	0.29%	0.43%
				Developed	366	0.03%	0.05%
Total	1,179,356	100%	100%	Total	1,179,356	100.00%	100.00%

Procedures

Each accuracy assessment site was assigned a map class using the dichotomous key (appendix B). The dichotomous key contained discrete rules that distinguished map classes by using specific cover thresholds.

Determining a land cover type was sometimes difficult, especially when the vegetation cover approached the thresholds that distinguish one class from another. To address this issue an optional field was included that allowed photo interpreters to make a second map class call if necessary. The second call was used in conjunction with the primary class designation to produce a 'fuzzy' accuracy assessment which considered both the first and second calls correct.

The water class required additional processing because during the segmentation a single polygon containing much of the water class was produced. This segment was very large and included a portion of the Gulf of Alaska and the Copper River. The random sites that fell within this area were buffered out 100 m to provide a reasonable area to assess. Otherwise, all other accuracy assessment sites were evaluated using the original mapping polygons.

Once photo interpretation of the accuracy assessment sites was completed, the sites were intersected with the final Copper River Delta map to obtain the associated map class labels. The map labels for the accuracy assessment sites were then cross-referenced with the photo interpretation calls to produce the error matrices (tables 4, 5 and 6).

Results

Overall accuracy for the final Copper River Delta map product was 82 percent for the 1st call error matrix (table 4) and 87 percent for the fuzzy error matrix (table 5). The map achieved a 91 percent overall accuracy

at the lifeform level using the 1st call assessment data (table 6). Of the 452 accuracy assessment sites, the photo interpreters made second calls on 112 of them. Only 24 of these sites contributed to improving the accuracy of the map when using the fuzzy method, meaning that the second call agreed with the map while the primary call disagreed.

The overall accuracy measures the proportion of sites classified correctly to the total number of sites assessed multiplied by an area-weight factor. Individual class accuracies can also be computed. There are two ways to analyze individual class accuracy: 1) producer's accuracy, which is the proportion of sites correctly mapped for that class to the total number of sites of that class as determined by the reference data, i.e. the column total; and 2) user's accuracy, which is the proportion of sites correctly mapped for that class to the total number of sites assigned that particular class, i.e. the row total (Congalton 1991).

Producer's accuracy provides a measure of omission error that describes the probability that an area on the ground is mapped correctly. User's accuracy provides a measure of commission error that describes the probability that a mapped class actually represents what is on the ground. For example, the western hemlock class has a high producer's accuracy (88 percent), but has a low user's accuracy (45 percent). This indicates that western hemlock was over-mapped, mainly because areas of sitka spruce were being mapped as western hemlock (table 4). Studying the error matrices can provide insight not only into the reliability of an individual map class but also into how and where confusion occurs.

Classes with low accuracies may still provide important spatial information regarding vegetation assemblages of interest. Correct interpretation of the error matrices allows a user to apply expert knowledge of known plant

associations in order to discriminate between errors caused by completely erroneous classifications and those that were logical confusions. For example, a site misclassified as willow when the reference data indicate it was sweetgale, does not mean that the site does not contain willow. Local ecology informs us that willow is commonly found to mix with sweetgale. Therefore, depending on the user's needs, there may be valuable information contained within those classes that have low accuracy. These confusions are common when you apply discrete decision rules, like that of the dichotomous key, to a continuous landscape that contains transition zones and coexistence of species found in different map classes. Therefore, although critical thinking may be necessary to tease out meaningful information, individual class accuracy numbers do not tell the whole story.

Overall map accuracy is dependent on the distribution of the accuracy assessment sites. Since a stratified sampling design was implemented to adequately sample each cover type the distribution of assessment sites did not correspond to the relative proportions of the cover types found across the study area. This meant that overall accuracy could be disproportionately influenced by rarer class accuracies because each class had approximately the same number of observations. To account for this, overall area-weighted accuracies were calculated by taking the proportion of correctly classified accuracy assessment sites for each class (the individual class user's accuracies) and multiplying them by the proportion of the total area that class occupies on the final map (the area weight factor) (table 7 and 8). The overall area-weighted accuracies were 82 percent and 87 percent for the first call and the fuzzy assessments, respectively. Although there are caveats associated with each accuracy measure, this method accounts for the relative proportions of the individual classes on the final map.

Table 4—Error matrix for the final Copper River Delta map when using the first call only

First Call Accuracy Assessment		Reference Data												User's Accuracy			
		Sitka Spruce	1	37	0	3	1	0	0	0	0	0	0	0	31	45%	
Map Data		Black Cottonwood	0	0	30	0	0	0	0	1	0	0	0	0	0	31	97%
Sitka Spruce–Black Cottonwood	0	11	0	13	8	0	0	1	0	0	0	0	0	0	0	33	39%
Sitka Alder	0	1	0	0	25	1	4	3	0	1	0	0	0	0	35	71%	
Willow	0	0	0	0	2	9	0	8	0	7	0	0	0	0	26	35%	
Sitka Alder–Willow Mix	0	1	0	0	6	0	16	7	0	0	0	0	0	0	30	53%	
Sweetgale	0	0	0	0	0	1	0	38	0	3	0	0	0	0	42	90%	
Dry Graminoid	0	0	0	0	0	1	0	0	0	29	1	0	0	0	31	94%	
Mesic Wet Herbageous	0	0	0	0	1	1	1	3	30	0	1	0	0	38	79%		
Aquatic Herbageous	1	0	0	0	0	0	0	0	0	3	21	0	0	25	83%		
Sparse/ Unvegetated	0	0	0	0	0	0	1	0	1	3	0	48	0	53	91%		
Water	0	0	0	0	0	0	0	0	0	0	0	3	0	32	35	91%	
Column Total	16	65	32	16	44	12	22	59	33	48	24	49	32	452			
Producer's Accuracy	88%	57%	94%	81%	57%	75%	73%	64%	88%	63%	87%	98%	100%				
Overall Area-Weighted Accuracy	82%																

Table 5—Error matrix for the final Copper River Delta map when using the first and second cell (when available)

Fuzzy Assessment		Reference Data										Map Data		
		Western Hemlock	Sitka Spruce	Black Cottonwood	Sitka Spruce-Cottonwood	Sitka Alder-Willow	Sitka Alder-Willow Mix	Sweetgale	Dry Graminoid	Mesic Wet Herbaceous	Aquatic Herbaceous	Unvegetated/Sparse	Water	User's Accuracy
Western Hemlock	17	12	2	0	0	0	0	0	0	0	0	0	31	55%
Sitka Spruce	0	39	0	3	0	0	0	0	0	0	0	0	42	93%
Black Cottonwood	0	0	30	0	0	0	0	1	0	0	0	0	31	97%
Sitka Spruce-Black Cottonwood	0	7	0	18	7	0	0	1	0	0	0	0	33	55%
Sitka Alder	0	1	0	0	28	1	2	2	0	1	0	0	35	80%
Willow	0	0	0	0	2	12	0	6	0	6	0	0	26	46%
Sitka Alder-Willow Mix	0	1	0	0	4	0	18	7	0	0	0	0	30	60%
Sweetgale	0	0	0	0	0	1	0	38	0	3	0	0	42	90%
Dry Graminoid	0	0	0	0	1	0	0	0	30	0	0	0	31	97%
Mesic Wet Herbaceous	0	0	0	0	1	1	1	0	3	31	0	1	0	38
Aquatic Herbaceous	1	0	0	0	0	0	0	0	0	2	22	0	0	25
Sparse/Unvegetated	0	0	0	0	0	0	1	0	1	1	0	50	0	53
Water	0	0	0	0	0	0	0	0	0	0	2	0	33	35
Column Total	18	60	32	21	43	15	22	55	34	44	24	51	33	452
Producer's Accuracy	94%	65%	94%	86%	65%	80%	82%	69%	88%	70%	91%	98%	100%	
Overall Area-Weighted Accuracy	87%													

Table 6—Error matrix, at the lifeform level, for the final Copper River Delta map when using the first call only

First Call Map Group Accuracy Assessment	Reference Data						Area Weight Factor
	Forest	Shrub	Herb	Other	Row Total	User's Accuracy	
Forest	126	11	0	0	137	92%	.1886 17.35
Shrub	2	120	11	0	133	90%	.2740 24.72
Herb	1	5	87	1	94	92%	.1096 10.14
Other	0	1	7	80	88	91%	.4274 38.85
Column Total	129	137	105	81	452		
Producer's Accuracy	98%	88%	83%	99%			
Overall Area-Weighted Accuracy	91%						

Conclusion

The final Copper River Delta land cover map has an overall accuracy of 82 percent. Due to the level of class complexity and the accuracies achieved, the information depicted on the Copper River Delta map exceeds that of the National Land Cover Dataset (NLCD) and Landfire products. Additionally, the map's precision and finer spatial resolution exceeds prior mapping efforts.

Although this map achieved relatively high accuracies, there were data limitations and other factors that made this project challenging. Low sun angles, even in summer, in northern latitudes increase shadows and limits the amount of light energy reflected from earth objects for detection by remote

sensors. The climate of Southcentral Alaska makes obtaining cloud-free imagery difficult, especially when data acquisition has seasonal constraints and imaging sensors have infrequent revisit schedules. Additionally, full-coverage, cloud-free, high resolution data (10 m or finer) is extremely challenging to obtain because these sensors have a relatively narrow swath width. Even though this product utilized 30 m Landsat data, a more resolute product was achieved because of the concomitant usage of higher resolution data (e.g. 60 cm resource imagery and 5 m pancharpened SPOT 5 data) and rigorous manual editing.

This final map product provides a reasonable depiction of existing vegetation within the Copper River

Delta for the 2009–2010 timeframe that can be used to assist resource specialists and land managers in project-level planning. This product was made possible through a collaborative team effort that took dedicated work over a span of several years and developed methods that would contribute to a more efficient workflow for future mapping efforts for the Chugach National Forest. Upon completion of the final map, Interferometric Synthetic Aperture Radar (IfSAR) data was obtained for the complete Copper River Delta project area. Future work may include investigations using the 5 m IfSAR data to develop a canopy height model that could be useful to resource managers.

Table 7— Individual area weighted class contributions to overall map accuracy using the first call assessment

First Call			
Map Class	Area Weight Factor	User's Accuracy	Weighted User's Accuracy Contribution
Western Hemlock	0.0412	45%	0.019
Sitka Spruce	0.1102	88%	0.097
Black Cottonwood	0.0196	97%	0.019
Sitka Spruce - Black Cottonwood	0.0176	39%	0.007
Sitka Alder	0.1479	71%	0.106
Willow	0.0174	35%	0.006
Sitka Alder - Willow Mix	0.0184	53%	0.010
Sweetgale	0.0903	90%	0.082
Dry Graminoid	0.0010	94%	0.001
Mesic Wet Herbaceous	0.0981	79%	0.077
Aquatic Herbaceous	0.0105	83%	0.009
Sparse/Unvegetated	0.1044	91%	0.095
Water	0.3230	91%	0.295
Overall Area-Weighted Accuracies			0.821*100 = 82%

Table 8— Individual area weighted class contributions to overall map accuracy using the fuzzy assessment

Fuzzy			
Map Class	Area Weight Factor	User's Accuracy	Weighted User's Accuracy Contribution
Western Hemlock	0.0412	55%	0.023
Sitka Spruce	0.1102	93%	0.102
Black Cottonwood	0.0196	97%	0.019
Sitka Spruce - Black Cottonwood	0.0176	55%	0.010
Sitka Alder	0.1479	80%	0.118
Willow	0.0174	46%	0.008
Sitka Alder - Willow Mix	0.0184	60%	0.011
Sweetgale	0.0903	90%	0.082
Dry Graminoid	0.0010	97%	0.001
Mesic Wet Herbaceous	0.0981	82%	0.080
Aquatic Herbaceous	0.0105	88%	0.009
Sparse/Unvegetated	0.1044	94%	0.098
Water	0.3230	94%	0.305
Overall Area-Weighted Accuracies			0.866*100 = 87%

References

Boggs, K. 2000. Classification of community types, successional sequences, and landscapes of the Copper River Delta, Alaska. Gen. Tech. Rep. PNW-GTR-469. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 244 p.

Breiman, L. 2001. Random Forests. *Machine Learning*. 45: 5–32.

Congalton, R. 1991. A review of assessing the accuracy of classifications of remotely sensed data. *Remote Sensing of Environment*. 37: 35–46.

Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. 2007. Random forests for classification in ecology. *Ecology*. 88(11): 2783–2792.

Nelson, M.L.; Brewer, C.K.; Solem, S., eds. [In press]. Existing Vegetation Classification, Mapping, and Inventory Technical Guide. Gen. Tech. Rep. WO-67, Version 2.0. Washington, DC: U.S. Department of Agriculture Forest Service, Ecosystem Management Coordination Staff.

For additional information, contact:

Kevin Megown, RMIM Program Leader
Resource Mapping, Inventory, & Monitoring
Remote Sensing Applications Center
2222 West 2300 South
Salt Lake City, UT 84119

phone: (801) 975-3750
e-mail: mailroom_wo_rsac@fs.fed.us

This publication can be downloaded from the RSAC Web site: <http://fsweb.rsac.fs.fed.us>

Non-Discrimination Policy

The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.)

To File an Employment Complaint

If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html.

To File a Program Complaint

If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. You may also write a letter containing all of the information requested in the form. Send your completed complaint form or letter to us by mail at U.S. Department of Agriculture, Director, Office of Adjudication, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, by fax (202) 690-7442 or email at program.intake@usda.gov.

Persons with Disabilities

Individuals who are deaf, hard of hearing or have speech disabilities and you wish to file either an EEO or program complaint please contact USDA through the Federal Relay Service at (800) 877-8339 or (800) 845-6136 (in Spanish).

Persons with disabilities who wish to file a program complaint, please see information above on how to contact us by mail directly or by email. If you require alternative means of communication for program information (e.g., Braille, large print, audiotape, etc.) please contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

Appendix A: Landcover Mapping Field Form

Field form that was used during 2010 field campaign in which reference sites were either collected on the ground or from a helicopter.

Copper River Delta Landcover Mapping Field Form				
Site Number	/ /	Obs. Date: / /	1 2 3 4	Obs. Level
Nav. / Veg.				Obs. Time: : Hr Min
Photo - Session	LAT (GPS) Photo# s	Decimal Degrees	LONG (GPS)	Decimal Degrees

%Slope : _____ Aspect _____ Landcover Class: _____

NOTES: _____
(disturbance, water, life, human activity, storm lines, mosaic/pattern, peat, permafrost, other interesting observations)

%Cov	Height	TREES subtotal % cover
		<i>Picea sitchensis</i>
		<i>Tsuga heterophylla / mert.</i>
		<i>Chamaecyparis nootkatensis</i>
		<i>Thuja plicata</i>
		<i>Pinus contorta</i>
		<i>Populus balsamifera</i>
		<i>Alnus Rubra</i>

		SHRUB subtotal % cover
		<i>Alnus</i> spp .
		<i>Rubus spectabilis / parviflorus</i>
		<i>Oplopanax horridus</i>
		<i>Sambucus racemosa</i>
		<i>Menziesia ferruginea</i>
		<i>Vaccinium</i> spp.
		<i>Salix</i> spp.
		<i>Cladothamnus pyroliflorus</i>
		<i>Rosa nutkana</i>
		<i>Myrica gale</i>
		<i>Andromeda polifolia</i>
		<i>Cornus stolonifera</i>

%Cov	HERBACEOUS
	FORB subtotal % cover
	<i>Epilobium angustifolium</i>
	<i>Equisetum</i> spp.
	<i>Atherium filix-femina</i>
	<i>Fern</i> spp.
	<i>Lysichiton americanus</i>

%Cov	HERBACEOUS (con't)
	Graminoids
	Wet Graminoids subtotal % cover
	<i>Carex lyngbyei</i>
	<i>Carex</i> spp.
	<i>Eleocharis</i> spp.

	Mesic/Dry Graminoids subtotal %
	Calamagrostis c. anadensis
	Leymus mollis
	Carex spp.
	Grass spp.

%Cov	
	AQUATIC / OTHER subtotal % cover
	<i>Equisetum palustre/fluviatile</i>
	<i>Myriophyllum</i> spp.
	<i>Menyanthes trifoliata</i>
	<i>Nuphar polysep</i> alum
	<i>Potentilla palustris</i>
	Non-vascular Subtotal % Cover
	Moss D Sphagnum / Other
	Lichen

%Cov	
NON -VEGETATED subtotal % cover	
Clear/Turbid Water	(circle one)
Mud/Silt/Sand	(circle one)
Gravel/Rock	(circle one)
Litter	

14 | RSAC-10075-RPT1 Appendix A

Appendix B: Key to Identify Vegetation Dominance

Dichotomous key used to classify the dominance type of terrestrial polygons. Note that the Snow/Ice class was an added class to the map after field data collection and the Developed class was manually edited in, therefore the dichotomous key did not include them.

Dichotomous Key to Copper River Delta Dominance Types v. 7/13/10¹

Instructions

1. Use this key for identifying vegetation dominance types on the Copper River Delta.
2. Locate a representative portion of the site in question. The vegetation and environment within the site should be relatively homogeneous.
3. Estimate the canopy cover for all indicators. The indicators are those species, species groups, taxonomic aggregates, or life form groups used in the key.
4. While in the plot, use the key literally to identify the community type. Start with the “Key to Life Form Groups,” couplet number 1.

Key to Life Form Groups

1. Dwarf trees, typically less than 25 feet tall, with a cover of at least 10 percent and peat soils present; **caution:** seedling and sapling trees are not dwarf trees **Sitka Spruce dwarf tree d.t.**
Picea sitchensis/Sphagnum (Sitka spruce/peat moss) c.t.
1. Dwarf trees with a cover of less than 10 percent and peat soils absent 2
2. Tree species with a combined cover of at least 25 percent or *Populus trichocarpa* (black cottonwood) with a cover of at least 10 percent **Tree Dominance Types**
2. Trees with a cover of less than 25 percent and *Populus trichocarpa* (black cottonwood) with a cover of less than 10 percent 3
3. Erect or decumbent shrubs with a combined cover of at least 25 percent **Shrub Dominance Types**
3. Erect or decumbent shrubs with a combined cover of less than 25 percent 4
4. Herbaceous species with a combined cover of at least 15 percent

¹ Derived from Boggs (2000, see his “Key to Community Types”) as described in the Copper River Delta vegetation mapping study plan (v. 3.26.09, see Table 2 of that document) and as summarized in the classification key to dominance types (v. 4/14/10). Two alternatives leading to the Sitka Alder and the Willow dominance types are included (one derived from Boggs 2000—the other from interest in splitting-out a Mixed Sitka Alder-Willow dominance type).

.....**Herbaceous Dominance Types**

4. Herbaceous species absent or present with a combined cover of less than 15 percent **Sparse/Unvegetated d.t.**

Mudflats, Sand dunes, or Beaches, Rock, Gravel, Snow/Ice, Bare Ground

Key to Tree Dominance Types

Trees species with a combined cover of at least 25 percent or *Populus trichocarpa* (black cottonwood) with a cover of at least 10 percent.

1. *Tsuga heterophylla* (western hemlock) with at least 50 percent of the total tree cover **Western Hemlock d.t.**

Tsuga heterophylla/Echinopanax horridum (western hemlock/devil's club) c.t.

Tsuga heterophylla/Vaccinium ovalifolium (western hemlock/tall blueberry) c.t.

Tsuga heterophylla/Vaccinium ovalifolium-Echinopanax horridum (western hemlock/tall blueberry-devil's club) c.t.

Tsuga heterophylla/Vaccinium ovalifolium/Lysichiton americanum (western hemlock/tall blueberry/yellow skunk cabbage) c.t.

Unclassified *Tsuga heterophylla* (western hemlock) communities

1. *Tsuga heterophylla* (western hemlock) with less than 50 percent of the total tree cover. 2

2. *Picea sitchensis* (Sitka spruce) with at least 50 percent of the total tree cover **Sitka Spruce d.t.**

Picea sitchensis/bryophyte (Sitka spruce/bryophyte) c.t.

Picea sitchensis/Alnus crispa (Sitka spruce/Sitka alder) c.t.

Picea sitchensis/Echinopanax horridum (Sitka spruce/devil's club) c.t.

Picea sitchensis/Rubus spectabilis (Sitka spruce/salmonberry) c.t.

Picea sitchensis/Vaccinium ovalifolium (Sitka spruce/tall blueberry) c.t.

Picea sitchensis/Vaccinium ovalifolium-Echinopanax horridum (Sitka spruce/tall blueberry-devil's club) c.t.

Picea sitchensis/Vaccinium ovalifolium/Lysichiton americanum (Sitka spruce/tall blueberry/yellow skunk-cabbage) c.t.

Unclassified *Picea sitchensis* (Sitka spruce) communities

2. *Picea sitchensis* (Sitka spruce) with less than 50 percent of the total tree cover 3

3. *Populus trichocarpa* (black cottonwood) with at least 50 percent of the total tree cover 4
3. *Populus trichocarpa* (black cottonwood) with less than 50 percent of the total tree cover; *Tsuga mertensiana* (mountain hemlock) the dominant tree species **Unclassified Mountain Hemlock d.t.**
4. *Picea sitchensis* (Sitka spruce) with at least 10 percent cover **Sitka Spruce-Black Cottonwood d.t.**
- Populus trichocarpa-Picea sitchensis* (black cottonwood-Sitka spruce) c.t.
4. *Picea sitchensis* (Sitka spruce) with less than 10 percent cover **Black Cottonwood d.t.**
- Populus trichocarpa*/young (black cottonwood/young) c.t.
- Populus trichocarpa/Alnus crispa* (black cottonwood/Sitka alder) c.t.
- Populus trichocarpa/Aruncus sylvester* (black cottonwood/goatsbeard) c.t.
- Unclassified *Populus trichocarpa* (black cottonwood) communities

Key to Shrub Dominance Types

Erect or decumbent shrubs with a combined cover of at least 25 percent.

1. *Alnus crispa* subsp. *sinuata* (Sitka alder) with at least 25 percent cover or *Salix* (willow) species (excluding prostrate willows less than 1 foot tall), individually or combined, with at least 25 percent cover 2
1. *Alnus crispa* subsp. *sinuata* (Sitka alder) with less than 25 percent cover and *Salix* (willow) species (excluding prostrate willows less than 1 foot tall), individually or combined, with less than 25 percent cover 3
2. *Alnus crispa* subsp. *sinuata* (Sitka alder) with greater than 75 percent of the combined cover of Sitka alder and *Salix* (willow) species (excluding prostrate willows less than 1 foot tall) **Sitka Alder d.t.**
2. *Salix* (willow) species (excluding prostrate willows less than 1 foot tall) with greater than 75 percent of the combined cover of willow and *Alnus crispa* subsp. *sinuata* (Sitka alder) **Willow d.t.**
2. Not as above **Mixed Sitka Alder-Willow d.t.**
3. *Myrica gale* (sweetgale) with at least 25 percent cover **Sweetgale d.t.**
- Myrica gale/Carex livida* (sweetgale/pale sedge) c.t.
- Myrica gale/Carex lyngbyaei* (sweetgale/Lyngby's sedge) c.t.

- Myrica gale/Carex pluriflora* (sweetgale/several-flowered sedge) c.t.
- Myrica gale/Carex sitchensis* (sweetgale/Sitka sedge) c.t.
- Myrica gale/Empetrum nigrum* (sweetgale/crowberry) c.t.
- Myrica gale/Epilobium angustifolium* (sweetgale/fireweed) c.t.
- Myrica gale/Equisetum variegatum* (sweetgale/northern horsetail) c.t.
- Unclassified *Myrica gale* (sweetgale) communities
3. *Myrica gale* (sweetgale) with less than 25 percent cover 4
4. Dwarf ericaceous shrubs (*Empetrum nigrum* [crowberry], *Vaccinium uliginosum* [bog blueberry], *Andromeda polifolia* [bog rosemary], *Vaccinium vitis-idaea* [mountain cranberry], *Oxycoccus microcarpus* [cranberry]), individually or combined, with at least 25 percent cover; typically on peat soils. **Crowberry d.t.**
- Empetrum nigrum-Carex pluriflora* (crowberry-several flowered sedge) c.t.
- Vaccinium uliginosum/Empetrum nigrum* (bog blueberry/crowberry) c.t.
- Unclassified Dwarf Shrub communities
4. Dwarf ericaceous shrubs (*Empetrum nigrum* [crowberry], *Vaccinium uliginosum* [bog blueberry], *Andromeda polifolia* [bog rosemary], *Vaccinium vitis-idaea* [mountain cranberry], *Oxycoccus microcarpus* [cranberry]), individually or combined, with less than 25 percent cover **Unclassified Shrub d.t.**

Key to Herbaceous Dominance Types

1. Emergent or terrestrial herbaceous vegetation with at least 15 percent cover 2
1. Emergent or terrestrial vegetation with less than 15 percent cover; aquatic vegetation, submerged or floating in water, with at least 15 percent cover **Aquatic Herb d.t.**
- Callitricha hermaphroditica* (water starwort) c.t.
- Callitricha heterophylla* (different-leaved water starwort) c.t.
- Callitricha verna* (spring water starwort) c.t.
- Chara* (chara) species c.t.
- Myriophyllum spicatum* (spiked water milfoil) c.t.
- Nuphar polysepalum* (lily-pad) c.t.
- Potamogeton filiformis* (slender-leaved pondweed) c.t.
- Potamogeton gramineus* (grass-leaved pondweed) c.t.
- Potamogeton natans* (pondweed) c.t.

Potamogeton pectinatus (fennel-leaved pondweed) c.t.

Potamogeton perfoliatus (pondweed) c.t.

Ranunculus trichophyllum (white water crowfoot) c.t.

Subularia aquatica (awlwort) c.t.

Utricularia vulgaris (bladderwort) c.t.

Zannichellia palustris (horned pondweed) c.t.

Unclassified aquatic herb communities

2. Individual graminoid species with the greatest canopy cover, or *Carex* (sedge) species and *Lathyrus palustris* (vetchling) codominating the site 3
2. Individual graminoid species without the greatest canopy cover, and *Carex* (sedge) species and *Lathyrus palustris* (vetchling) not codominating the site 6
3. Wet site species (sedge [*Carex*], spike rush [*Eleocharis*], pendant grass [*Arctophila fulva*], cottongrass [*Eriophorum*], alkaligrass [*Puccinellia*], etc.) with the greatest canopy cover or *Carex* (sedge) species and *Lathyrus palustris* (vetchling) codominating the site **Wet Graminoid d.t.**

Arctophila fulva (pendent grass) c.t.

Carex chordorrhiza (creeping sedge) c.t.

Carex glareosa c.t.

Carex limosa (livid sedge) c.t.

Carex lyngbyaei (Lyngby's sedge) c.t.

Carex lyngbyaei-Lathyrus palustris (Lyngby's sedge-vetchling) c.t.

Carex lyngbyaei-mixed herb (Lyngby's sedge-mixed herb) c.t.

Carex lyngbyaei-Ranunculus cymbalaria (Lyngby's sedge-seaside buttercup) c.t.

Carex pluriflora-Carex lyngbyaei (several-flowered sedge-Lyngby's sedge) c.t.

Carex rostrata (beaked sedge) c.t.

Carex saxatilis (russet sedge) c.t.

Carex sitchensis (Sitka sedge) c.t.

Carex sitchensis/Sphagnum (Sitka sedge/peat moss) c.t.

Eleocharis palustris (common spike-rush) c.t.

Eriophorum angustifolium (tall cottongrass) c.t.

Eriophorum russeolum (russet cottongrass) c.t.

Glyceria pauciflora c.t.

Juncus alpinus (northern rush) c.t.

Juncus arcticus c.t.

Puccinellia nutkaensis (dwarf alkaligrass) c.t.

Unclassified wet graminoid communities

3. Wet site species (sedge [*Carex*], spike rush [*Eleocharis*], pendant grass [*Arctophila fulva*], cottongrass [*Eriophorum*], alkaligrass [*Puccinellia*], etc.) without the greatest canopy cover and *Carex* (sedge) species and *Lathyrus palustris* (vetchling) not codominating the site 4

4. *Calamagrostis canadensis* (bluejoint) with at least 25 percent cover, and with the greatest cover in the tallest layer **Mesic Graminoid d.t.**

Calamagrostis canadensis (bluejoint) c.t.

Calamagrostis canadensis/Lathyrus palustris (bluejoint/vetchling) c.t.

Calamagrostis canadensis/Potentilla palustris (bluejoint/marsh fivefinger) c.t.

Hierochloe odorata (vanilla grass) c.t.

Unclassified mesic graminoid communities

4. *Calamagrostis canadensis* (bluejoint) with less than 25 percent cover, or without the greatest cover in the tallest layer 5

5. *Deschampsia caespitosa* (tufted hairgrass) or *Deschampsia beringensis* (Bering hairgrass), individually or combined, or *Elymus arenarius* (beach rye) with the greatest cover **Dry Graminoid d.t.**

Deschampsia beringensis (Bering hairgrass) c.t.

Elymus arenarius (beach rye) c.t.

Elymus arenarius/Achillea borealis (beach rye/yarrow) c.t.

Poa eminens (large flower speargrass) c.t.

5. *Deschampsia caespitosa* (tufted hairgrass) or *Deschampsia beringensis* (Bering hairgrass), individually or combined, or *Elymus arenarius* (beach rye) without the greatest cover **Unclassified Graminoid d.t.**

6. Wet site species (bur reed [<i>Sparganium</i>], marestail [<i>Hippuris</i>], swamp horsetail [<i>Equisetum fluviatile</i>], marsh fivefinger [<i>Potentilla palustris</i>], buckbean [<i>Menyanthes trifoliata</i>], Pacific silverweed [<i>Potentilla egedii</i>], etc.) with the greatest cover	Wet Forb d.t.
<i>Equisetum fluviatile</i> (swamp horsetail) c.t.	
<i>Equisetum palustre</i> (marsh horsetail) c.t.	
<i>Hippuris vulgaris</i> (common marestail) c.t.	
<i>Hippuris tetraphylla</i> (four-leaf marestail) c.t.	
<i>Honckenya peploides</i> (seabeach sandwort) c.t.	
<i>Lysimachia thyrsiflora</i> (tufted loosestrife) c.t.	
<i>Menyanthes trifoliata</i> (buckbean) c.t.	
<i>Potentilla egedii</i> (Pacific silverweed) c.t.	
<i>Potentilla palustris</i> (marsh fivefinger) c.t.	
<i>Ranunculus cymbalaria</i> (seaside buttercup) c.t.	
<i>Sparganium</i> species (bur reed) c.t.	
<i>Triglochin maritimum</i> (seaside arrow-grass) c.t.	
<i>Triglochin palustre</i> (marsh arrow-grass) c.t.	
Unclassified wet forb communities	
6. Wet site species (bur reed [<i>Sparganium</i>], marestail [<i>Hippuris</i>], swamp horsetail [<i>Equisetum fluviatile</i>], marsh fivefinger [<i>Potentilla palustris</i>], buckbean [<i>Menyanthes trifoliata</i>], Pacific silverweed [<i>Potentilla egedii</i>], etc.) without the greatest cover	7
7. Dry site species (horsetail [<i>Equisetum variegatum</i>], beach pea [<i>Lathyrus maritimus</i>], etc.) with the greatest cover	Dry Forb d.t.
<i>Epilobium latifolium</i> (river beauty) c.t.	
<i>Equisetum variegatum</i> (horsetail) c.t.	
<i>Lathyrus maritimus</i> (beach pea) c.t.	
Unclassified dry forb communities	
7. Dry site species (horsetail [<i>Equisetum variegatum</i>], beach pea [<i>Lathyrus maritimus</i>], etc.) without the greatest cover	8

8. Mesic site species (beach strawberry [*Fragaria chiloensis*], nootka lupine [*Lupinus nootkatensis*], fireweed [*Epilobium angustifolium*], etc.) with the greatest cover **Mesic Forb d.t.**

Athyrium filix-femina (lady-fern) c.t.

Epilobium adenocaulon (northern willow-herb) c.t.

Epilobium angustifolium (fireweed) c.t.

Equisetum arvense (horsetail) c.t.

Fauria crista-galli (deer cabbage) c.t.

Fragaria chiloensis (beach strawberry) c.t.

Hedysarum alpinum (alpine sweet-vetch) c.t.

Iris setosa (wild iris) c.t.

Lupinus nootkatensis (nootka lupine) c.t.

8. Mesic site species (beach strawberry [*Fragaria chiloensis*], nootka lupine [*Lupinus nootkatensis*], fireweed [*Epilobium angustifolium*], etc.) without the greatest cover **Unclassified Forb d.t.**

Key to Alternative Sitka Alder and Willow Dominance Types

Sitka Alder and Willow dominance type alternative A

1. *Alnus crispa* subsp. *sinuata* (Sitka alder) with at least 25 percent cover, and with a greater cover than the combined cover of all *Salix* (willow) species (excluding prostrate willows less than 1 foot tall) **Sitka Alder d.t.**

Alnus crispa/Calamagrostis canadensis (Sitka alder/bluejoint) c.t.

Alnus crispa/Equisetum arvense (Sitka alder/meadow horsetail) c.t.

Alnus crispa/Rubus spectabilis (Sitka alder/salmonberry) c.t.

Alnus crispa/Salix (Sitka alder/willow) c.t.

Rubus spectabilis-Echinopanax horridum (salmonberry-devil's club) c.t.

Unclassified *Alnus crispa* (Sitka alder) communities

1. *Alnus crispa* subsp. *sinuata* (Sitka alder) with less than 25 percent cover, or with less cover than the combined cover of all *Salix* (willow) species (excluding prostrate willows less than 1 foot tall) 2

2. *Salix* (willow) species, individually or combined, with at least 25 percent cover ... **Willow d.t.**

Salix alaxensis (feltleaf willow) c.t.

Salix arctica/Carex lyngbyaei (arctic willow-Lyngby's sedge) c.t.

Salix barclayi/Carex pluriflora (Barclay willow/several-flowered sedge) c.t.

Salix barclayi/Carex sitchensis (Barclay willow/Sitka sedge) c.t.

Salix barclayi/Equisetum variegatum (Barclay willow/northern horsetail) c.t.

Salix barclayi/Lupinus nootkatensis (Barclay willow/nootka lupine) c.t.

Salix barclayi/mixed herb (Barclay willow/mixed herb) c.t.

Salix commutata (undergreen willow) c.t.

Salix hookeriana (Hooker willow) c.t.

Salix setchelliana (setchell willow) c.t.

Salix sitchensis (Sitka willow) c.t.

Unclassified *Salix* (willow) communities

2. *Salix* (willow) species, individually or combined, with less than 25 percent cover 3