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1 | INTRODUCTION

In the Sierra Nevada mountain range of California and Nevada, mon-
tane meadows are considered to be among the most vulnerable eco-
systems to changing climate (Hauptfeld, Kershner, & Feifel, 2014).
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Abstract

Conservation of montane meadows is a high priority for land and water managers
given their critical role in buffering the effects of climate variability and their vulner-
ability to increasing temperatures and evaporative demands. Recent advances in
cloud computing have provided new opportunities to examine ecological responses
to climate variability over the past few decades and at large spatial scales. In this
study, we characterized the sensitivities (magnitude and direction of the slope) of
meadow vegetation responses to interannual variations in climate. We calculated
sensitivity as the regression slope between a 31-year (1985-2016) time series of
Landsat-derived vegetation indices characterizing late-season vegetation vigour and
water balance variables from the Basin Characterization Model. We identified April
1 snowpack as the climate variable the majority of meadows were most sensitive
to. We assessed how vegetation sensitivities to snowpack varied with hydrogeomor-
phic context (e.g., climate, geology, soils, watershed geometry, and land cover) across
the Sierra Nevada mountain range using factor analysis to reduce the dimensionality
of the hydrogeomorphic data and multiple linear regression to model sensitivity
responses. We found that meadow sensitivities to snowpack varied with long-term
average meadow climate, indicators of watershed subsurface water storage capacity,
and indicators of meadow vegetation composition. Alpine and subalpine meadows
with high average annual precipitation but limited catchment subsurface storage
exhibited the largest sensitivities. Our results provide a novel regional perspective
on spatial patterns of meadow sensitivities to climate variability and the landscape-
scale hydrogeomorphic factors that influence late-season water availability in

meadow ecosystems in the Sierra Nevada.
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Climate influences meadows directly through the timing and amount
of precipitation and evapotranspiration (ET), which modifies the posi-
tion of the water table, and indirectly through changes in vegetation,
which can alter meadow hydrology based on differential patterns of

water use among species (Darrouzet-Nardi, D'Antonio, & Dawson,
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2006). Due to the relatively shallow groundwater systems that sup-
port many meadows in the Sierra Nevada, decreases in spring snow-
pack and an earlier snowmelt may limit the availability of late-season
water, resulting in a loss of meadow area and a shift to upland/xeric
dominated ecosystems (Drexler, Knifong, Tuil, Flint, & Flint, 2013).
Meadows may also experience declines in surface and shallow ground-
water availability over longer time periods as warmer temperatures
and longer growing seasons lead to increased ET rates (Goulden &
Bales, 2014).

Numerous studies suggest that the response of individual
meadows to changing hydrology associated with climate and/or man-
agement activities depends on the hydrogeomorphology of the
meadow and the landscape setting (e.g., Loheide & Gorelick, 2007;
Lowry, Loheide, Moore, & Lundquist, 2011; Weixelman et al., 2011).
At the landscape scale, watersheds with deeper soils and greater vol-
umetric soil water storage capacity have the potential to sustain
meadow and watershed-scale ET rates later into the summer where
downslope transfers of water (i.e., interflow) supplement local sources
(Lundquist & Loheide, 2011). The geomorphology of a watershed can
also influence the relative importance of groundwater and surface
water flow. For example, Vivoni, Di Benedetto, Grimaldi, and Eltahir
(2008) showed that watersheds with a greater proportion of area at
higher elevations (i.e., characterized by a convex hypsometric curve)
produced more late-season runoff and had a greater groundwater
component than watersheds with a greater proportion of area at
lower elevations (i.e,, concave hypsometric curve). In the Sierra
Nevada, convex watersheds could have a similar response due to a
combination of more snow accumulation at higher elevations and
more potential for groundwater flow and storage, which may sustain
meadows later into the season, even if the groundwater system is
small. At the local scale, geology can influence the relative timing
and amount of groundwater and surface water inputs into montane
wetlands (Kitlasten & Fogg, 2015; Onda, Komatsu, Tsujimura, &
Fujihara, 2001). For example, permeable fractured volcanic and/or
metamorphic rocks (typical of the Cascades) can transmit and store
more water than impermeable crystalline intrusive rocks (typical of
the Sierra Nevada), resulting in differential long-term responses to cli-
mate change (Drexler et al., 2013). Meadow site characteristics such
as soil hydraulic properties, local climate, surface water availability
from direct snowmelt or streamflow, and hillslope factors that influ-
ence lateral groundwater flow further influence meadow hydrology
and vegetation characteristics (Loheide et al., 2009; Lowry, Deems,
Loheide, & Lundquist, 2010).

Although the influence of hydrogeomorphic (HGM) controls on
meadow responses to changing hydrology is well documented at local
scales, the influence of these controls—and the degree to which
existing spatial datasets sufficiently capture important variation in
these controls—is not well documented at landscape to regional
scales. Identifying generalizable patterns in meadow response to cli-
mate variability using landscape-scale predictors would allow man-
agers to better anticipate meadow trajectories and persistence in
response to climate variability and change. Landsat satellite imagery

has proven to be an effective and efficient data source for monitoring

key ecological attributes of meadows and riparian systems over exten-
sive areas and time periods (Ager & Owens, 2004; Cartwright &
Johnson, 2018; Cohen & Goward, 2004), including above-ground bio-
mass, which relates to vegetation structure, function and composition,
and vegetation water content. Recent advances in cloud computing
(Gorelick et al., 2017) now permit efficient application of algorithms
across the Landsat satellite image archive for long-term monitoring
of groundwater dependent ecosystems with respect to climate and
management (Dauwalter, Fesenmyer, Miller, & Porter, 2018; Hausner
et al,, 2018; Huntington et al., 2017).

In this context, our principal research objectives were to character-
ize (a) the magnitude and direction of meadow vegetation responses
to interannual variations in climate and water balance variables and
(2) how these responses vary in accordance with HGM contexts
(e.g., climate, geology, elevation, topographic position, soils, and
watershed geometry) across the Sierra Nevada. To accomplish these
objectives, we developed a 31-year time series (1985-2016) of paired
climate and Landsat data for 8,106 meadows in the study area and
analysed the sensitivity of late-season vegetation vigour to contempo-

rary variation in climate.

2 | METHODS

Our analysis involved several steps (Figure 1), including (1) meadow
delineation and filtering, (2) calculation of annual vegetation and water
balance metrics, (3) assessing sensitivities as the slope of the relation-
ship between vegetation and water balance metrics, (4) deriving a
suite of HGM predictor variables hypothesized to influence sensitivity,
(5) reducing the dimensionality of HGM predictor variables, and (6)
assessing the influence of HGM predictors on patterns of sensitivity.

2.1 | Study area

Our study area is focused on meadows of the Sierra Nevada Range of
California and Nevada, USA, but extends to meadows in portions of
adjacent ecoregions, namely, the Southern Cascades and Modoc
Plateau at the northern extent of the study area, as well as the
Northwestern Basin and Range, Mono, and Sierra Nevada Foothills
(Figure 2a; Cleland et al., 2007). We hereafter refer to the study area
as the Sierra Nevada, given that the vast majority of meadows occur in
this range. The Sierra Nevada extends approximately 650 km from
north to south, with elevations ranging from 305 m at its base in
California's Central Valley to 4,421 m at the peak of Mount Whitney.
The range is influenced by California's Mediterranean climate, with
mild summer temperatures and minimal summer precipitation. In
colder months, the western slope receives substantial precipitation;
most of which falls as snow above 1,800 m, whereas most of the east-
ern slope is subject to rain shadow effects and receives very little pre-
cipitation (Schoenherr, 2017). The western slope is dominantly
forested, but vegetation types range from shrub and chaparral in the
foothills to subalpine forest and alpine meadow communities at higher

elevations (Schoenherr, 2017; U.S. Geological Survey Gap Analysis
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FIGURE 1 Outline of methodological steps taken to analyse spatial patterns of meadow sensitivities to climate variability. See Sections 2.2-2.7

for details on each step

Program, 2011). Shrubland vegetation types adapted to drier condi-
tions are more common on the eastern side of the range. The Sierra
Nevada is primarily managed by the U.S. Forest Service (U.S.
Geological Survey Gap Analysis Program, 2011, 2012), where some
energy and mining development, agricultural land use, and biological
harvesting occur, with localized urban development in areas outside
the National Forest. Meadows are distributed throughout the study
area and throughout the area's elevation range, on both east and west
slopes, although they are most common in the central and southern
portions of the Sierra Nevada (Figure 2a).

2.2 | Meadow delineation and filtering

Our study sample initially included a subset of 8,106 meadow poly-
gons compiled by a variety of agencies and organizations working in
the Sierra Nevada (UC Davis Center for Watershed Sciences & USDA
Forest Service, 2017). Meadows in this dataset were identified and
boundaries were digitized from high-resolution (1 m) National Agricul-
ture Imagery Program imagery. We selected meadows that fully
contained at least five Landsat image pixels (totalling ~0.4 ha or
1.0 ac) in order to retain as many meadows as possible for analysis

while ensuring that (a) enough pixels were present to obtain

reasonable averaged vegetation condition metrics across the meadow
extent and (b) influence of cover types at the meadow periphery (e.g.,
conifer cover) was minimized when calculating meadow vegetation
metrics (Figure 2c). Finally, we delineated each meadow's watershed
(Kitlasten, Clark, & Evans, 2019). Digital elevation model raster cells
(30 m) intersected by the meadow polygons were used to define the
base of the watershed (i.e. “pour points”), and each meadow's
watershed was mapped using ESRI Spatial Analyst hydrology tools
and flow direction raster available as part of the National Hydrologic
Dataset Plus data model (McKay et al., 2012).

2.3 | Vegetation metrics

For each meadow, we computed a 31-year time series (water years of
1985-2016) of the spatially averaged normalized difference vegeta-
tion index (NDVI) and normalized difference water index (NDWI)
derived from all usable late summer (Aug-Sept) Landsat (5, 7, and 8)
30-m imagery (at-surface reflectance derived from the USGS
precollection top-of-atmosphere reflectance following Tasumi, Allen,
& Trezza, 2008) using the Google Earth Engine cloud computing plat-
form (Gorelick et al., 2017). These indices provide a measure of vege-

tation vigour (an indicator of biomass production; Anderson & Hanson,

85U8017 SUOLILLIOD BAeR.D 3edldde aup Aq pauienob aJe e YO ‘SN JO s3I0y ARiqiT8ulIuO AB|IAN L0 (SUONIPUOD-PUR-SLLIBYALIOD" A3 |IM A0 Ul UO//SANY) SUORIPUOD pUe SWLB | 8L 88S *[£202/20/52] U0 AriqITaulluO A8|IM ‘AIq1T]801ARS 158104 [EUOIEN AQ 8ZTZ 099/200T 0T/I0P/W00"A8| 1M ARIq Ul |UO//Sdny WOy pepeojumod ‘2 ‘6T0Z ‘26509E6T



ALBANO ET AL.

(b)

{
R ¥
° :? B’tfo; A ys
°
= 0 O % 2 \ i
¥ 09% ¢ % L4 % %
8 9 3° °e&°°°o° LR \ Californiff o0

Number of meadows

300

0 25 50\(’\‘-“'!00 150

10 100 1000
Meadow size (acres)

FIGURE 2 (a) Map of study area meadows included in the analysis and (b) distribution of meadow size (acres) and (c) filtering of meadows for
analysis based on core area. Meadows (outlines) fully containing a minimum of 5 Landsat pixels (shaded) were retained; meadows with no pixel
shading shown did not meet the minimum pixel number threshold and were excluded from analysis

1993) and vegetation water content (Gao, 1996), respectively. To
ensure sufficient quality and quantity of data for analyses, we filtered
these data to include only scenes with (a) 100% cloud- and shadow-
free pixels (identified using Fmask; Zhu & Woodcock, 2014) for a
given meadow, (b) only meadows with at least 300 scenes over the
course of the time series, and (c) only meadows with at least one
scene in both August and September in each of at least 30 years.
For each meadow and year, we calculated and spatially averaged
late-summer vegetation metrics that we expected to be highly sensi-
tive to prior hydroclimatic conditions, namely, mean September NDVI
and NDWI (Figure 3). All observations greater than two standard devi-
ations below the historical mean value for September were removed
prior to analysis in order to remove data influenced by snow cover
(following Soulard, Albano, Villarreal, & Walker, 2016).

We chose to focus on the end of growing season because spring
snowmelt provides the majority of groundwater recharge in this
region that is later discharged during summer and fall (Huntington &
Niswonger, 2012); therefore, comparing antecedent climate to late
summer and early fall is ideal for assessing the persistence of

baseflow conditions (McEvoy, Huntington, Abatzoglou, & Edwards,

2012), water availability, and associated meadow sensitivity. We
selected September because it represents the timing when water
table levels are at a minimum and because preliminary analyses indi-
cated higher average vegetation index sensitivities in September rela-

tive to August.

2.4 | Climate and water balance sensitivity analysis

To assess sensitivity of meadow vegetation to climate conditions, we
evaluated climate and water balance metrics from the California Basin
Characterization Model (BCM; Flint & Flint, 2014); a 270-m resolution
spatially downscaled version of the Parameter-elevation Relationships
on Independent Slopes Model (Daly et al., 2008). Monthly resolution
spatial means of multiple climate and water balance metrics for
meadows were calculated from BCM data using the R geoknife tool
(Read et al., 2015) and summarized by water year (Table 1). Multiyear
(2-5 year) sums were also calculated for snowpack and potential ET
metrics to assess lagged sensitivities of vegetation to cumulative-year

water availability and evaporative demand.
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recharge [RCH], runoff [RUN], and April 1 snowpack [PCK]) from the Basin Characterization Model. Error bars represent 95% confidence intervals

TABLE 1 Annual (by water year) climate and water balance metrics
from the California Basin Characterization Model to which late-sum-
mer meadow vegetation sensitivity was evaluated

Variable Description

Amount of water that evaporates
from the surface and is
transpired by plants

Actual evapotranspiration (ET)

Climatic water deficit Total evaporative demand that

exceeds available water

Potential ET? Total evaporative demand for
well-watered and stress-free

conditions

Precipitation Total precipitation (rain or snow)

Recharge Amount of water that penetrates
below the root zone
Runoff Amount of water that becomes

stream flow

Amount of water as snow water
equivalent on April 1

April 1 Snowpack?®

Summer/winter temperature Average temperature for winter

(Oct-Mar) and summer
(Apr-Sep)

Multiyear (2-5 years) sums were also calculated to assess lagged
responses.

We quantified meadow sensitivity to climate (and associated water
balance) as the slope of the relationship between BCM climate and
water balance metrics and vegetation indices in order to capture the
magnitude of changes in vegetation condition in response to climate.
Although slope alone does not fully capture how tightly vegetation
characteristics are coupled (correlated) with climate conditions, we

confirmed that there were no meadows in which the slope of the rela-
tionship between vegetation and climate was high despite the correla-
tion being low (Figure S1). We estimated nonparametric slopes for
each meadow from median-based linear models using the Siegel
repeated medians method with the “mblm” package in R (Komsta,
2013). Median-based slope estimates were similar to those from ordi-
nary least-squares regression models (r = .87-.96) but are far more
robust to outliers (Siegel, 1982). We then selected the BCM metric
with the highest mean slope across all meadows for both NDVI and
NDWI as the metric best able to detect a response of meadow vege-
tation to climate for the entire study area.

2.5 | Hydrogeomorphic variables

Initial results from the climate and water balance sensitivity analysis
indicated that on average, the largest sensitivities (i.e., slopes) of
meadow vegetation indices were driven by interannual variability in
April 1 snowpack (see Section 3.2; hereafter referred to simply as
snowpack). Given these results, in addition to the known importance
of snowpack to meadow structure and function (Arnold, Ghezzehei,
& Berhe, 2014; Lowry et al., 2010; Lowry et al., 2011) and climate pro-
jections indicating reductions in late-season snowpack in the coming
decades (Dettinger et al., 2018), we focused on the vegetation-
snowpack relationship as the response variable of interest in our
HGM context analysis. In order to understand the relative importance
of meadow HGM context in driving sensitivity of meadow vegetation
to snowpack variability, we modelled this sensitivity metric as a func-
tion of a suite of landscape variables using multiple regression. We

derived several HGM context attributes that have been hypothesized
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to influence meadow vegetation sensitivity to climate conditions at
both meadow and watershed scales (Table 2 and Figure S5). In addi-
tion, we included two management-related variables: the degree of
human modification (Theobald, 2013; Theobald et al., 2016) and the
fire regime departure classification (USDA Forest Service, 2011) for
each watershed. The human modification metric was summarized for
both meadows and watersheds. It provides a generalized characteriza-
tion of both the areal extent and intensity of five main types (and 11
subtypes) of human development, including residential and commer-
cial development, agriculture (including permitted livestock numbers),
energy production and mining, transportation and service corridors,
and biological harvesting; any of which may affect surface and/or
groundwater influences on the meadow due to diversion of water
and/or landscape alterations that affect natural hydrologic processes.
The fire return interval departure class identifies the difference
between current and presettlement fire frequencies. Locations within
the study area with decreased fire frequency may have higher tree
density, fuel loads, and water use and therefore may be less resilient

to fire and potentially drought.

2.6 | Factor analysis of hydrogeomorphic variables

We reduced the HGM variable set to a smaller number of “latent” var-
iables using factor analysis (FA; Thurstone, 1931) due to the large
number of relevant variables; many of which were closely related
(and correlated) to one another. This analysis is commonly used in
social science applications in which latent variables of interest cannot
be directly measured (e.g., depression) and are instead mathematically
inferred from other observed variables (e.g., questionnaire responses
regarding appetite and social engagement). Our aim in performing FA
in this context was not only dimension reduction to obtain a more
workable number of independent variables that are orthogonal (i.e.,
not strongly correlated) to each other but also to identify more mean-
ingful and information-rich representations of underlying drivers of
meadow sensitivity.

We used the “fa” function in the psych package for R (Revelle,
2018) to perform FA. We included only continuous numeric variables
in FA and determined the number of factors to retain based on the
Kaiser criterion (factors with eigenvalues >1; Kaiser, 1960). After
Manly (1994), we excluded variables with no factor loadings >0.4
and then reran the analysis based on this reduced variable set. Only
meadows with complete data for all HGM variables of interest could
be included in FA; those with missing values were excluded from sub-
sequent analyses. Assumptions critical to the suitability of the data for
FA were met (Kaiser-Meyer-Olkin Measure of sampling adequacy
>0.6, Bartlett's test of sphericity <0.05; Bartlett, 1937; Kaiser, 1981).
However, several observed variables did not meet assumptions of nor-
mality (variables with skewed distributions conducive to transforma-
tion were log-transformed, but several others were heavily skewed
and zero inflated). We therefore used the ordinary least squares FA
method to find the minimum residual solution, which produces solu-
tions very close to those of a maximum likelihood approach even

when assumptions regarding the distributions of observed variables

are violated (Revelle, 2018). We identified eight factors meeting the
Kaiser criterion and used a varimax rotation to ease interpretation of

factor loadings while preserving factor orthogonality.

2.7 | Hydrogeomorphic predictors of meadow
sensitivity

To assess the relative importance of latent HGM variables as predic-
tors of meadow sensitivity to climate, we fit multiple regression
models, using robust model selection and multimodel inferential tech-
niques (Burnham & Anderson, 2002). We used the slope-based snow-
pack sensitivity metric as our response variable (See section 3.2), after
excluding outlier estimates based on Rosner's generalized extreme
Studentized deviate test (Rosner, 1983). Predictor variables included
latent HGM variables extracted from the FA and two categorical var-
iables (HGM type and fire regime departure) that could not be inte-
grated into the FA. Additionally, where continuous variables that we
hypothesized to be strong drivers of sensitivity were excluded from
the FA because they did not meet selection criteria described above
(i.e., did not explain enough variability in the predictor space relative
to the top factors), we included them as individual predictors. We used
the MuMIn package for R (Bartdn, 2016) to fit all possible subsets of a
global model containing all categorical variables and linear and qua-
dratic terms for all continuous variables. We then dropped quadratic
terms and categorical variables that did not meet a significance thresh-
old of a = .05 in the model-averaged result, refit all subsets of the
remaining global model, and then computed model-averaged regres-
sion coefficients, unconditional standard errors, and cumulative Akaike
information criterion (AIC) weights of evidence (w+) as a measure of
variable importance (Burnham & Anderson, 2002). We determined
how well the final global model approximated the data by assessing
Nagelkerke's adjusted r?, a measure of variance explained after
adjusting for the number of model terms that is consistent with max-
imum likelihood model estimation (Nagelkerke, 1991), as well as the

difference between the global model AIC and that of a null model.

3 | RESULTS

3.1 | Meadow filtering

We identified 8,106 meadows out of 18,780 that fully contained at
least 5 Landsat pixels for inclusion in our analysis. After filtering out
meadows with insufficient quality or quantity of vegetation or climate
data (388), our sensitivity analysis included a total of 243,922
meadow-year observations on 7,718 meadows, which ranged from
1.9 to 5,176 acres, with a mean area of 29.2 acres (Figure 2b). After
removing meadows with missing HGM variable data (1,401) and out-
lier sensitivity estimates (seven for NDVI and 14 for NDWI), our
HGM context analysis included 6,303 meadows for NDWI sensitivity
and 6,310 meadows for NDVI sensitivity. Most meadows excluded
due to missing data were in the southern Sierra Nevada and were

missing soil available water capacity data.
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TABLE 2 Landscape attributes hypothesized to influence meadow vegetation sensitivity to climate conditions

Data source and resolution

Variable Description (if applicable) Scale
Landform Percent watershed classified as low (foot) slope or valley bottom (toe Theobald, Harrison-Atlas, w

slope), cool slope, steep slope Monahan, & Albano

Rationale: low slope and valley landforms promote lateral groundwater (2015; 30 m)

flow that supports meadow vegetation, whereas steep slopes

promote vertical flow. Cool slope aspects have longer duration snow

storage.
Basin hypsometry/ Integral of watershed hypsometric curve Calculated in GIS based on W

curvature Rationale: higher values of the integral of the hypsometric curve
associated with a watershed indicate more convex form and suggests
more water availability and more groundwater flow

30-m digital elevation
model (Strahler, 1952)

Meadow size/shape Acreage, perimeter:area ratio of meadow Calculated in GIS M
Rationale: small acreage or high perimeter to area ratio meadows may
be more sensitive to edge effects such as climate-induced upland
vegetation encroachment
Geology/ Geology: percent watershed composed of extrusive igneous or Clynne & Muffler (2010; W

1:50,000); Donnelly-
Nolan (2010; 1:50,000);
Elder & Reichert (2010;
1:4,000 to 1:250,000)

aquifer potential metamorphic rock, percent watershed composed of intrusive
igneous rock; Aquifer potential: percent watershed composed of
geological types with unconsolidated geologic deposits.

Rationale: watershed geologies with greater groundwater storage

capacity and transmission may be less sensitive to climate variability.

Soil Survey Staff (2016; M, W
1:12,000 to 1:63,360)

Soil Mean available water capacity, (root zone, i.e., depth to root-growth-

limiting soil horizon, and 0-150 cm)

Rationale: meadows/watersheds with greater soil available water
capacity have greater soil water storage and may be less sensitive to
climate variability

Hydro-geomorphic Meadow hydrogeomorphic type classification UC Davis & USDA Forest M
type Service (2017);
Weixelman et al. (2011)
Watershed Percent watershed with forest, herbaceous, barren cover; percent Safford, van de Water, & W
vegetation cover watershed with vegetation classified as dense; watershed average Clark (2013); USGS
annual maximum greenness (eMODIS-based NDVI) EROS eMODIS (250 m)
Rationale: watersheds with greater forest cover have greater
evapotranspiration (ET), which may confer high sensitivity, but high
forest cover also indicates the presence of deep soils and associated
potential water storage, as well as slower snowmelt, both of which
may reduce sensitivity
Fire regime departure Dominant direction of departure from historic fire return interval across Safford et al. (2013) W
watershed (more or less frequent fires)
Rationale: watersheds with decreased fire frequency may be more
sensitive to drought due to higher tree densities, fuel loading, and
associated ET rates
Historical climatology Mean annual precipitation, potential ET, April 1 snowpack (1985-2016) Flint & Flint (2014; 270 m) M, W
Rationale: long term climate influences meadow hydrologic regime and
associated vegetation types
Meadow greenness Mean late-season (Sept) NDVI (1986-2016) NASA Landsat 5, M
Rationale: long-term average greenness provides a generalized 7-8 (30 m)
indicator of meadow biomass production and also relates to
phenology and vegetation composition. Values greater than 0.6
typically indicate dense forest cover, while values in the 0.2-0.5
range indicate herbaceous and shrub cover.
Human Modification Mean degree of human modification Theobald et al. (2016; M, W

Rationale: May affect surface or groundwater influences to the
meadow due to diversion of water resources or landscape alterations
that alter natural hydrologic processes, resulting in increased or
decreased sensitivity

Abbreviations: M, meadow; W, watershed.

30 m); Theobald
(2013; 30 m)
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3.2 | Climate sensitivity

Overall, September NDWI displayed slightly higher average sensitivity
to climate variables than September NDVI (Figure 3), but spatial pat-
terns were similar (Figure 4). Vegetation indices were negatively related
to (in increasing order of magnitude) seasonal temperature, climatic
water deficit, and potential ET and were positively related to (in increas-
ing order of magnitude) actual ET, precipitation, recharge, runoff, and
April 1 snowpack (Figure 3). Temperature sensitivity was greater for
summer (Apr-Sep) temperatures than for winter (Oct-Mar) tempera-
tures. Although the NDVI-runoff relationship was not significantly dif-
ferent from that of the NDVI-snowpack relationship, April 1 snowpack
had the highest average slope for both NDWI and NDVI (Figure 3), indi-
cating that overall, this metric best captured sensitivity of meadow veg-
etation to climate. Sensitivity to snowpack also varied considerably
among meadows (Figure S2), making it useful for assessing potential
drivers of differences in sensitivity among meadows.

Spatial patterns of sensitivity were generally similar between the

two groups of climate and water balance variables, representing

atmospheric water demand (temperature, climatic water deficit, and
potential ET) and water availability (precipitation, recharge, runoff,
and April 1 snowpack; Figure 5). High sensitivities to April 1 snowpack
(shown in dark pink/red) were more frequent and of higher magnitude
than other variables, particularly at high elevations (Figure 5; see
Figures S2-S3). Sensitivities to recharge and runoff showed similar
patterns to snowpack and to each other, though higher sensitivities
to recharge (runoff) were apparent in downslope (upslope) regions
along the western slope of the Sierra Nevada. Of the evaporative
demand variables, potential ET showed the most widespread high
magnitude sensitivities, particularly in the San Joaquin basin north-
west of Fresno and in the upper watersheds of the central Sierra
Nevada, surrounding Lake Tahoe (Figures 4, 5). Although elevation
was not explicitly included as a predictor variable in the HGM context
analysis, in favour of more mechanistic variables such as historical cli-
matology, elevation provides a useful point of comparison to existing
watershed sensitivity studies and some climate sensitivities covaried
closely with elevation. Snowpack and runoff sensitivities were

generally low below 1,500- and 1,800-m elevation, respectively, and
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FIGURE 4 Mapped sensitivity metrics based on the slope of the relationship between September (a) NDWI and (b) NDVI and April 1 snowpack
from the Basin Characterization Model. Outliers were excluded for the purpose of optimizing scaling. Grey lines indicate HUC-6 basins
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FIGURE 5 Spatial distribution of sensitivity metrics estimated from slopes of relationships between NDWI and eight Basin Characterization
Model climate and water balance metrics. Higher magnitude slopes (either positive or negative) indicate higher sensitivity. Outliers were
excluded for the purpose of optimizing scaling. NDVI sensitivity metrics showed very similar spatial patterns and thus are not shown. Histograms
of the distributions for each metric can be found in Figure S2. Grey lines indicate HUC-6 basins. See Figure 4 for basin names

generally increased with elevation, with peak sensitivities occurring
around 2,700 m and lower sensitivities at higher elevations. Recharge
and potential ET sensitivities peaked around 2,200 m, with slightly
lower sensitivities at lower and higher elevations (Figure S3).
Comparisons among multiyear metrics for sensitivity to potential
ET and April 1 snowpack indicated that meadow NDVI was most sen-
sitive to same-year climate conditions, whereas NDW!I had high sensi-
tivities to both same-year and cumulative climatic conditions over
multiple years (Figure 3). Spatial patterns of NDWI sensitivities to mul-
tiyear cumulative snowpack (Figure S4) indicate that meadows in the
far southern Sierra Nevada and in the Plumas National Forest were

more sensitive to 5-year snowpack than to same-year snowpack.

3.3 | Hydrogeomorphic Factor Analysis

Many of the HGM context variables were highly correlated with each
other (i.e., r > .5; Figure 6a), justifying the use of FA. We identified
eight factors, or latent variables, that together explain 76.2% of the
variability among 25 retained observed variables. For ease of interpre-
tation, we named these factors according to the measured variables

that loaded most heavily on each (i.e., with loadings closest to *1;

Figure 6b). In order of proportion of the variance in measured vari-
ables explained, these factors included: “watershed forestedness,”

geology,”
water storage,” “human modification,

n o« » o«

“meadow climate,” “watershed

» o«

“meadow water storage,
meadow size,” and “aquifer
potential.” Variables that were dropped from FA because they did
not meet the loading threshold but were expected to be important
in explaining sensitivity and thus were included as additional predic-
tors in the regression analysis included 30-year mean meadow
September greenness, watershed basin curvature (hypsometric inte-
gral), and watershed percent valley bottom (percent area classified as
low slope and valley).

3.4 | Influence of hydrogeomorphic variables on
meadow sensitivity

We obtained similar but not identical regression model results for
NDVI and NDWI snowpack sensitivities; we therefore present both.
Our final global model of NDWI-based meadow sensitivity (Table 3a)
had an AIC value of 4,130 units below that of the null model and an
adjusted r? of 0.484, indicating that it approximated the data reason-

ably well. All continuous predictors as well as categorical departure
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J. % Conifer cover (M) L 0.2
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W.0-150 cmaws (M) ‘& Os9 00 -3
X.Max greenness (W) N & Vi r .y .
Y. 0-150 cm aws (W) \ TS9P 1
(b) Meadow Watershed
Watershed water Meadow water Human Meadow Aquifer
forestedness storage Geology climate storage modification size  potential
A. % Barren (W) -0.79 -0.16 -0.15 0.07 -0.06 -0.17 -0.11 -0.07
B. Mean PCK (M) -0.30 -0.16 -0.07 0.89 -0.22 -0.17 -0.11 0.00
C. % Intrusive igneous (W) -0.09 -0.11 -0.86 -0.02 -0.09 -0.13 -0.12 -0.43
E. Perimeter:area ratio (M) -0.02 -0.11 -0.13 0.11 -0.04 -013. ;g.7g§ -0.06
1. Mean PPT (M) 0.23 -0.03 0.04] 0.78 0.00 -0.02 -0.14 -0.06
K. Sept mean greenness (M) 0.39 0.00 -0.03 0.16 -0.08 0.05 -0.14 0.06
L. % High aquifer potential (W) 0.03 0.04 0.01 -0.04 0.01 0.09 0.06 0.99
M. Acreage (M) -0.07 0.08 0.05 -0.07 0.04 0.06 0.81 0.01
N. % Extrusive igneous/metamorphic (W) 0.07 0.09 0.05 0.07 0.06 0.10 -0.24
0. % Dense cover (W) [ 0.63 0.05 -0.07 -0.09 017 0.02 -0.09 0.00
P. Human modification (M) 0.11 0.13 0.09 -0.12 0.07 0.72 017 0.05
Q. Mean PET (M) 0.44 0.06 -0.12 -0.45 0.14 0.18 -0.05 -0.02
R. Human modification (W) 0.18 0.10 0.07 -0.08 Y 0.0 0.04 0.06
S. % Forest (W) 0.09 0.07 0.03 0.08 0.02 0.01 -0.04
T. % Clay soils (M) 0.19 0.44 0.36 -0.12 0.19 0.19 0.14 -0.01
U. Root zone aws (M) 0.13 0.86 0.02 -0.17 0.40 0.11 0.13 -0.02
V. Root zone aws (W) 021 034 0.07 -0.17 YA 0.12 0.05 -0.03
W. 0-150 cm aws (M) 0.32] 0.80/ 0.20 -0.01 0.22 0.20 0.16 0.12
X. Maximum greenness (W) 0.18 0.19 0.00 0.13 0.18 0.04 0.03
Y. 0-150 cm aws (W) 0.28 0.38 0.20 -0.12 0.74 0.25 0.10 0.09

FIGURE 6 (a) Correlations among all measured meadow (M) and watershed (W) scale hydrogeomorphic variables and (b) loadings of each
hydrogeomorphic variable on eight latent variables or factors (after excluding variables with no loadings >0.4; see Supporting Information for
details). See Table 2 for variable descriptions. PET, potential evapotranspiration; PCK, April 1 snowpack; PPT, precipitation; aws, soil available

water storage

from fire regime had AIC weights of evidence of 1.0 except aquifer
potential (w+ = 0.72). Our final global model of NDVI-based sensitivity
(Table 3b) had an AIC value of 3,613 units below that of the null model
and an adjusted r? of .439, indicating that it also approximated the
data reasonably well. Similarly, all predictor variables except aquifer
potential (w+ = 0.97) had AIC weights of evidence of 1.0.

As indicated by the magnitudes of the regression coefficients,
meadow climate and watershed forestedness showed the strongest
associations with snowpack sensitivity, with progressively smaller
magnitude responses to average meadow greenness, human modifica-
tion, watershed water storage, meadow water storage, geology, basin
curvature, meadow size, percent valley bottom, and fire regime depar-
ture (Table 3). Aquifer potential, percent cool slope, and HGM type
variables were not significant (i.e., 95% confidence limits around the

estimate included zero), and the latter, which was a categorical

variable, was dropped from the analysis. The relative magnitude of
coefficients and confidence limits of quadratic terms in the
NDVI-based sensitivity model differed slightly in some cases from
the NDWI-based model (Table 3), but overall patterns of all univariate
relationships were similar (Figure 7). The most sensitive meadows had
wetter climate, occurred in less forested watersheds, and had moder-
ate long-term average meadow greenness (Figures 7a,b,h and 8).
These meadows also had lower water storage capacity at both the
watershed and meadow scales (Figure 7d,e). Meadows in watersheds
with more extrusive igneous or metamorphic rock than intrusive igne-
ous rock (Figure 7f) that have more convex basin curvature (Figure 7i)
and with greater extent of valley bottom (foot slope) and low (toe
slope) landforms (Figure 7h) were less sensitive. Smaller meadows
with a low degree of human modification at the meadow and water-

shed scales tended to be more sensitive than those that have been
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TABLE 3 Summary of final inferential models for meadow vegetation sensitivity to climate based on the relationship between (a) NDWI and (b)

NDVI and snowpack

(a)
Intercept

Meadow climate

Watershed forestedness

Human modification

Watershed water storage

Average meadow greenness

Meadow water storage

Geology
Basin curvature
Meadow size

Watershed fire regime

Watershed % valley bottom
Aquifer potential

Percent cool slope

(b)

Intercept

Meadow climate

Watershed forestedness

Average meadow greenness

Human modification
Watershed water storage
Meadow water storage
Geology

Meadow size

Watershed % valley bottom

Watershed fire regime

Aquifer potential
Basin curvature

Percent cool slope

Note. Variables with confidence intervals that span zero are indicated by grey shading.

Term

X
X

More frequent
Less frequent
NA

X

X

X
X

More frequent
Less frequent
NA

X

X

X

Variable importance

1.00

1.00

1.00

1.00

1.00

1.00

1.00
1.00
1.00
1.00

0.97
0.72
0.28

1.00

1.00

1.00

1.00
1.00
1.00
1.00
1.00
0.99
0.99

0.97
0.62
0.32

Coefficient estimate

0.160
4.015
-0.231
-2.686
-0.453
-1.562
0.280
-1.480
0.197
1.218
-2.064
-0.802
-0.253
-0.648
-0.485
-0.347
-0.035
-0.036
-0.025
-0.287
0.124
0.010

0.109

3.062
-0.731
-2.383
-0.477

0.429
-1.688
-0.969
-0.907
-0.536
-0.473
-0.377
-0.273
-0.020
-0.008
-0.012

0.200
-0.080

0.017

Adjusted SE

0.003
0.094
0.087
0.138
0.096
0.091
0.086
0.089
0.093
0.098
0.085
0.093
0.092
0.092
0.096
0.091
0.021
0.004
0.004
0.110
0.107
0.051

0.003
0.074
0.069
0.111
0.076
0.079
0.068
0.071
0.069
0.070
0.073
0.071
0.083
0.016
0.003
0.004
0.078
0.087
0.048

95% Lower

CL 95% Upper CL
0.154 0.167
3.831 4.198
-0.400 -0.061
-2.957 -2.415
-0.641 -0.266
-1.741 -1.383

0.111 0.449
-1.655 -1.305

0.015 0.380

1.026 1.410
-2.231 -1.896
-0.985 -0.620
-0.434 -0.072
-0.827 -0.468
-0.673 -0.297
-0.526 -0.168
-0.075 0.005
-0.044 -0.028
-0.033 -0.016
-0.502 -0.071
-0.087 0.334
-0.090 0.111

0.104 0.115

2917 3.207
-0.866 -0.596
-2.599 -2.166
-0.627 -0.328

0.275 0.583
-1.822 -1.554
-1.108 -0.830
-1.042 -0.773
-0.673 -0.398
-0.616 -0.330
-0.516 -0.237
-0.435 -0.110
-0.052 0.012
-0.014 -0.001
-0.020 -0.005

0.047 0.353
-0.250 0.090
-0.077 0.112
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(a) Meadow 30-year mean April snowpack (mm) (b) Watershed 30-year mean maximum greenness (NDVI)
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FIGURE 7 Model-predicted univariate relationships of meadow sensitivity based on NDWI (blue) and NDVI (green) with and model covariates
when all other variables are held constant at their means, including latent attributes (factors; a-g) and additional continuous variables included in
final inferential models (h-j). NDWI- and NDVI-based relationships are shown in blue and green, respectively. Rug plots (top) show the approximate
distribution of original measured variables that loaded heavily on each factor as they relate to standardized factor score scales and are shaded
according to their loading (darker = higher loading; a-g). In the case of additional variables included individually or original measurement scales in the
case of additional variables included in inferential models (h-j), rug plots show original measurement scales as they relate to standardized plot scales
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FIGURE 8 Relations between average meadow sensitivity based on NDWI (blue) and NDVI (green) and the three strongest predictor variables
divided into three quantiles (tertiles), including long-term average meadow climate, watershed forestedness, and long-term average meadow
greenness (<0.45 = low greenness, >0.6 = high greenness). Error bars indicate 95% confidence limits

modified, and differences among fire regime departure classes were
minimal.

More specifically, NDWI-based sensitivity of meadow vegetation
to meadow climate (i.e, water availability) was mostly linear,
whereas NDVI-based sensitivity flattened and declined slightly at
the highest mean levels of precipitation (>2 m/year) and snowpack
(>1.25 m/year; Figure 7a). Both NDWI- and NDVI-based sensitivities
exhibited a threshold-like relationship with watershed forestedness,
in which sensitivity declined more sharply above approximately
25% watershed forest cover (Figure 7b). Meadows with intermediate
mean greenness (~0.5-0.6) had the highest sensitivity according to
both NDWI- and NDVI-based metrics (Figure 7h). Basin curvature
(convexness) had a weaker relationship with NDVI-based sensitivity
than with NDWI-based sensitivity (Figure 7i). All other relationships
were approximately linear and very similar across both sensitivity

metrics.

4 | DISCUSSION

4.1 | Climate sensitivity

Overall, meadow vegetation indices were most strongly related to
derived metrics of water surplus and availability, including recharge,
runoff, and snowpack (Figure 3). These indicate the added value of
the BCM water balance variables beyond that provided by a simple
measure of precipitation. We observed similar spatial patterns
between NDVI and NDWI sensitivities, but NDWI sensitivities tended
to be larger in magnitude (Figures 3, 4). Although NDVI and NDWI
tend to be highly correlated, they are distinct and complementary
measures of vegetation vigour: The former measures chlorophyll con-
tent, whereas the latter measures water within plant tissue (Gao,
1996). The fact that NDWI tended to be a more sensitive measure
may be indicative of the fact that at the end of the water year,
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vegetation experiencing water stress (indicated by NDWI) may still not
have begun to senesce (indicated by NDVI), even under water-
stressed conditions (Gu, Brown, Verdin, & Wardlow, 2007).

NDWI was also more sensitive to multiyear snowpack than was
NDVI, with some meadows even exhibiting higher sensitivities to
cumulative year snowpacks than to same-year snowpack. This primar-
ily occurred in the Kern River basin at the southernmost end of the
Sierra Nevada and in the Feather River basin, at the northernmost
end of the range. Although an analysis of HGM drivers related to mul-
tiyear sensitivities was outside the scope of this study, these two
basins are notable in that they both contain a relatively large number
of groundwater dependent ecosystems (Howard & Merrifield, 2010).
Kern has some of the highest elevations and can retain snowpack
for longer durations relative to other basins, whereas the Feather
has the highest precipitation and most groundwater relative to other
basins in the Sierra Nevada due to the presence of permeable volcanic
geologies (Null, Viers, & Mount, 2010). Either of these factors may
relate to the slower varying responses and higher groundwater depen-
dencies observed in these regions.

We selected the September vegetation-snowpack relationship as
our sensitivity metric given that this was the climate variable that most
meadows in our study were most sensitive to, because snowpack is an
important driver of meadow hydrology (Lowry et al., 2010), productiv-
ity, and nutrient fluxes (Arnold et al., 2014) and because April 1 snow-
pack is expected to be strongly affected by warming climate
(Dettinger et al., 2018). Meadows with high sensitivity are those with
late-season vegetation phenology (i.e., greenness and water content)
that synchronizes closely with April 1 snow water equivalent in the
same year, indicating a strong dependence on proximate snowmelt-
derived water sources, which may include direct snowmelt,
streamflow, or influxes from the surrounding hillslope (Lowry et al.,
2010). Conversely, meadows with low sensitivity in September may
lack significant annual snow cover (i.e., are at low elevations) or may
have groundwater inputs that vary on longer than interannual time-
scales, resulting in end-of-season vegetation vigour that is less sensi-
tive to interannual variations in snowpack. Indeed, many of the
meadows exhibiting low September sensitivity to snowpack were
located at lower elevations and in the northern portion of the study
region (Figure 4), where precipitation occurs more commonly as rain,
rather than snow, and where groundwater is influential over slower
(i.e., decadal) varying timescales (Drexler et al., 2013), suggesting that
multiyear lag effects may be more important than same-year precipita-
tion or snowpack. Variations in sensitivity could also be due to a num-
ber of other factors, including human modifications or unmeasured
landscape changes at the meadow or watershed scales that occurred
over the course of the study.

Actual ET and vegetation indices such as NDVI are expected to be
strongly and positively correlated, especially when vegetation indices
are integrated over the entire season (Goulden et al., 2012); however,
this relationship was quite weak relative to those with other water bal-
ance variables in our study (Figure 3). This may be attributed to the
fact that the BCM simulates actual ET based on available water stor-

age in the soil, including contributions from direct snowmelt (Flint,

Flint, Thorne, & Boynton, 2013), but is not accounting for deep
and/or shallow groundwater subsidies that allow vegetation to persist
late in the season as is the case for most meadow ecosystems in our
study. These results suggest that many of the meadows in this study
depend on these groundwater subsidies, and that estimates of climatic
water deficit and actual ET should be interpreted with caution in eco-
systems where plant water use is not limited to what is available in the
soil column. In the case of these systems, potential ET may provide a
closer estimate of plant water use as the groundwater subsidy allows
meadow vegetation productivity to more closely track atmospheric

water demands.

4.2 | Hydrogeomorphic context analysis

We found that long-term climate, watershed forestedness, and aver-
age meadow greenness (an indicator of overall productivity and com-
position) were the best predictors of spatial variability of meadow
sensitivity (Table 3 and Figure 7). Patterns associated with other pre-
dictor variables were more subtle; thus, we focus the bulk of our inter-
pretation of results and associated inferences on these three
predictors.

Meadow 30-year average climate, reflecting elevational, latitudinal,
and rain-shadow-based gradients of water supply and evaporative
demand, was the strongest predictor of sensitivity (Table 3 and
Figure 7a). NDVI sensitivity peaked at locations where 30-year aver-
age precipitation amounts were about 200 cm and then declined at
higher amounts, whereas NDWI increased linearly. The NDVI
response reflects the transition from water to energy limitations on
vegetation productivity at high elevations, similar to that observed
for forest vegetation by Trujillo, Molotch, Goulden, Kelly, and Bales
(2012). The more linear response of NDWI may be due to the fact that
it is simply a measure of vegetation water content and thus less influ-
enced by the energy limitations at high elevations that limit the photo-
synthetic response reflected by NDVI. Notably, snowpack sensitivity
responses in our study were consistently high above about 2,100 m
and peaked in the 2,500- to 2,700-m range (Figure S3). Projected
snowpack losses in the Sierra Nevada by the end of century are
expected to be greatest below 2,400 m (Dettinger et al., 2018), sug-
gesting that those meadows at the highest elevations, though sensi-
tive, may not be as vulnerable to changing climate due to reduced
exposure to changes in snowpack, albeit earlier snowmelt and warmer
temperatures will still result in increasing atmospheric water demands.

Watershed forestedness was the second strongest predictor of
meadow sensitivity (Table 3 and Figure 7b), with meadows in water-
sheds that had higher percent forest cover, higher tree densities, and
larger annual maximum greenness values consistently exhibiting lower
sensitivities to interannual snowpack variability across climatic gradi-
ents from dry to wet (Figure 8). In contrast, meadows located in more
barren watersheds characterized by granitic domes, shallow soils, and
sparse vegetation cover, as is typical in many regions of the Sierra
Nevada, exhibited higher sensitivities. Our interpretation of this result

is that, at the Sierra-wide scale of our analysis, watershed attributes
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related to enhanced subsurface water storage capacity that have
coevolved with (Jenny, 1941), and are potentially indicated by (sensu
Stewart, 2013; Thompson, Harman, Troch, Brooks, & Sivapalan,
2011), the presence of forest vegetation may mediate sensitivities to
interannual snowpack variability. In contrast, meadows occurring in
more barren watersheds with less subsurface storage are, perhaps,
more reliant on localized sources of snowmelt runoff and infiltration
and are, thus, more sensitive. Other watershed-scale variables that
suggest high watershed subsurface storage capacity and recharge—
meadows in more convex basins (Figure 7i), with higher values of soil
available water storage capacity (Figure 7d); extrusive igneous geo-
logic types (Figure 7f); and larger proportions of their watersheds com-
posed of low slope and valley landforms (Figure 7j) that promote
lateral flow—also exhibit lower climate sensitivities, but effect sizes
of these drivers were smaller (Table 3). The fact that the watershed
forestedness variable was a better predictor of sensitivity than other
watershed surface or subsurface attributes may in part be due to the
fact that vegetation cover is more completely and accurately observed
relative to the other subsurface and climate variables we used. Other
recent studies have similarly suggested that vegetation patterns can
provide useful insights into below-ground processes related to hydro-
logic partitioning (Hwang, Band, Vose, & Tague, 2012; Thompson
et al.,, 2011).

Long-term average meadow greenness was the third strongest
predictor of sensitivity, with sensitivity peaking at intermediate
(0.45-0.6) values of NDVI (Table 3 and Figure 7h). Sensitivity was con-
sistently higher at these intermediate values regardless of meadow cli-
mate or watershed forestedness (Figure 8). This metric was included
to provide an overall indication of site productivity and, to a limited
extent, vegetation composition. High values (>0.6) typically indicate
dense and/or forested vegetation cover, intermediate values (0.2-
0.6) indicate herbaceous or shrub cover, and low values (<0.2) indicate
barren vegetation types (Jensen, 2007). Given that this metric is based
on an average across the entire meadow site, the interpretation of
intermediate values as an indication of composition is not straightfor-
ward because they could result from a wide range of vegetation com-
positions. Despite this uncertainty, these results suggest that meadow
sensitivity tends to be lower in more barren and more densely vege-
tated meadows than in meadows with more mixed vegetation compo-
sition and intermediate levels of biomass production. This pattern
could potentially represent a gradient of water availability from xeric
to mesic to hydric. Intermediate values also may be an indicator of
mesic meadow types, which have been shown in other regions to
exhibit higher sensitivities to climate variability relative to more xeric
or hydric meadows (Debinski, Jakubauskas, & Kindscher, 2000;
Debinski, Caruthers, Cook, Crowley, & Wickham, 2013; Debinski,
Wickham, Kindscher, Caruthers, & Germino, 2010).

Other meadow-scale variables such as size, shape, and soil avail-
able water storage explained smaller amounts of variation in sensitiv-
ity among meadows (Table 3 and Figure 7e,g). These results suggest
that large meadows with small perimeter to area ratios are less sensi-
tive to climate variability. The direction of the response is consistent

with hypothesized responses, given that these meadows are likely to

be less susceptible to encroachment by upland species and have
greater capacity for water storage and buffering of high flow events
(Viers et al., 2013). However, sensitivity estimates for small meadows
with large perimeter to area ratios may be more influenced by
meadow-adjacent vegetation than larger meadows, which may have
contributed to this result.

Meadows (and watersheds) with more soil available water capacity
(Table 3 and Figure 7d,e) were less sensitive to snowpack variability,
which is also consistent with hypothesized responses. Available water
capacity increases with increasing soil depth, which can serve to
enhance connectivity with the water table and decreasing particle size,
which serves to store and hold more water later into the season
(Lowry & Loheide, 2010). This result suggests that despite the limita-
tions of the USDA SSURGO data (i.e., maximum soil depth is only
201 cm, relatively coarse mapping), these may still have some utility
in deciphering differences in meadow and/or watershed responses
to climate variability at a landscape scale.

Given the recent drought and associated tree mortality in the Sierra
Nevada (Tree Mortality Task Force, 2018), contemporary studies have
addressed the impacts of tree density reductions due to forest thinning
or fire on ET and surface water availability (Boisramé, Thompson,
Collins, & Stephens, 2017; Roche, Goulden, & Bales, 2018). We
included fire return interval departure—an indicator of tree density
relative to historic conditions and associated fuels loading and ET—to
assess how meadow sensitivity varies among departure classes.
Although this classification helped to explain some variance in our
model (as indicated by variable importance; Table 3), the effect sizes
were very small and, in most cases, not statistically significant. Sensitiv-
ity of meadows in watersheds with the majority of vegetation classified
as departed due to decreased fire frequency (suggesting increased tree
densities) relative to historical conditions was not detectably different
from those in watersheds in which fire frequency is consistent with his-
toric regimes. It is possible that any signal in these data may simply be
overwhelmed by the strong environmental gradients that exist across
the study area, as fire effects may differentially affect watershed-scale
ET rates across gradients of water availability (Roche et al., 2018).
Moreover, fire return interval departures do not explicitly account for
fire severity and thus may not necessarily be indicative of ET water use.

The human modification variable included in our analysis also cap-
tures large areas where substantial forest cover changes occurred due
to tree clearing (i.e., from timber harvest), as determined by changes in
vegetation classification from forest to grassland between time steps
in the National Land Cover Database in places that were not burned
(Theobald et al., 2016). Although this variable captures other types
of human modification related to urban, energy, and transportation
infrastructure, most of the areas in the Sierra Nevada exhibiting
human modification are associated with tree clearing (https://
disappearingwest.org/map/). Our results indicate moderate decreases
in sensitivity with increasing human modification (Figure 7c), which, if
this is a signal of increased water availability in more heavily logged
watersheds, would be consistent with the hypothesis that reduced
tree cover at the watershed scale increases water availability to

meadows. However, other studies have suggested that heavily logged
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or burned basins exhibited accelerated snowmelt and earlier runoff,
which might confer higher sensitivity (Coats, 2010; Stevens, 2017).
Given the complex hydrological interactions between forest cover, cli-
mate, and watershed processes, and wide variation in these conditions
across our study area, the interpretation of this result is not straight-
forward and any causal relations between loss of woody vegetation
and meadow sensitivity will require a more tightly controlled and
smaller scale study. Similarly, connecting other types of human modi-
fications represented in this dataset with meadow sensitivities will
require more tightly controlled studies to tease apart additional and
potentially opposing human influences such as roads, grazing, and
human development.

One of the objectives of our study was to evaluate how well
existing spatial datasets capture variation in HGM controls on
meadow sensitivity to climate. Our dataset consisted of a large sample
size of meadows across a highly heterogeneous landscape and our
analysis explained just under 50% of the variation in sensitivities of
late-season water availability to snowpack among meadows, suggest-
ing substantial unexplained variability. This unexplained variability is,
in part, driven by unmeasured local-scale factors related to groundwa-
ter flow patterns, variations in soils and vegetation, disturbance his-
tory, and localized elevational gradients. However, unexplained
variance could also be due to poorly measured variables, which are
inherent in coarse scale datasets, particularly those related to soils,
geology, and climate that are interpolated from sparse observations.
Despite this, robust patterns in vegetation sensitivities to snowpack
were observed in relation to (a) average climate (dry to wet), (b) dom-
inant watershed land cover (forested to barren), and (c) indicators of
meadow vegetation productivity and composition (long-term average
meadow greenness), in particular. Although meadow sensitivity
responses to variables related to topography and subsurface charac-
teristics (geology, soils) were consistent with our hypotheses in terms
of the direction of the response, the magnitudes were generally
weaker, suggesting more limited predictive value of these datasets at
the Sierra-wide scale relative to the former three variables.

Numerous studies have examined climate sensitivities of
streamflow in the Sierra Nevada (e.g., Maurer, Stewart, Bonfils, Duffy,
& Cayan, 2007; Stewart, Cayan, & Dettinger, 2005; Young et al.,
2009), but few have attempted to link these sensitivities to a large
suite of physical characteristics beyond elevation, latitude-longitude,
and aspect (Stewart, 2013). Stewart (2013) examined climate sensitiv-
ity of streamflow to watershed physical characteristics in the Sierra
Nevada and found that high-elevation, snowmelt-dominated basins
on the western Sierra Nevada slopes have historically exhibited the
greatest sensitivity to climate change. This paper also suggested that
watersheds with lower proportions of basaltic rock geologies and
low percentages of forested land cover tended to be more sensitive
but that these effects could not readily be teased apart from elevation
due to the covariance of many of these variables. Although results
from our analysis are generally consistent with this study, our analyti-
cal approach, which extracts latent variables that are orthogonal
(uncorrelated), avoids this issue of covariance, providing greater clarity

about the physical patterns that relate to sensitivity. Moreover, our

approach allowed us to quantify the independent contributions of
physical site and watershed characteristics relative to each other over
a much larger number of sites than has previously been accomplished
using streamflow records.

An important caveat is that our analysis may have missed some of
the most vulnerable meadows, as (>10,000) meadows that did not
reach our minimum size threshold and meadows that have already dis-
appeared due to land cover or climatic changes were not included.
Also, this analysis was based on climate sensitivity of meadow vegeta-
tion occurring within contemporary meadow footprints, so does not
explicitly account for meadows that have changed size over the course
of the 31-year study period, a pattern that is well-documented in this
region and is attributable to conifer encroachment (Lubetkin,
Westerling, & Kueppers, 2017). Finally, the climate sensitivity metrics
used in this analysis characterize one aspect of climate sensitivity of
vegetation relating to late-season water availability. Meadow vegeta-
tion that exhibited low climate sensitivity in this study may still be sen-
sitive to climate variability and change in other ways relating to, for
example, other aspects of phenology, species composition, or biomass
production, or because they are sensitive to longer varying climatic
changes, as opposed to interannual variability, as was studied here.
The data and methods developed as part of this study are well suited

to assess these alternate forms of climate sensitivity in the future.

5 | CONCLUSIONS

In this study, we demonstrate a transferrable approach for under-
standing and monitoring responses of meadow ecosystems to climate
variability using remote-sensing-based indicators and a water balance
model. Platforms such as Google Earth Engine (Gorelick et al., 2017)
and cloud-computing applications such as Climate Engine (http://
climateengine.org/; Huntington et al., 2017) have provided free access
to—and highly efficient processing of—climate and remotely sensed
information that can be used to quantify ecological sensitivities to cli-
mate and monitor other drivers of change ranging from site specific
(e.g., Hausner et al., 2018) to regional (as demonstrated in this study)
scales.

We found that late-season vegetation conditions in most meadows
were more sensitive to snowpack than to precipitation or evaporative
water demand. We also found that sensitivities covaried considerably
across the study extent, with long-term meadow climate, watershed
forestedness and other characteristics indicative of subsurface water
storage capacity, and with indicators of meadow vegetation composi-
tion and biomass. Overall, subalpine and alpine meadows—those that
have high average snowpack/precipitation amounts but low subsur-
face storage capacity—exhibited the largest sensitivities to annual
snowpack in our study. Numerous studies on fine-scale hydrologic
processes related to meadow structure and function in the Sierra
Nevada exist, but to our knowledge, this is the first study to address
meadow sensitivities to snowpack at a regional scale. Given that sim-
ilar climatic patterns and hydrological processes dictate meadow
structure and function in montane systems across the western United

States where the majority of precipitation occurs as snow during the
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winter season, the climate, watershed, and meadow-scale drivers we
identified could similarly influence variability in meadow climate sensi-
tivities in these regions.

Our results may be useful for considering and prioritizing the siting
of meadow conservation or restoration efforts, given the clearly impor-
tant role of landscape context in mediating climate sensitivities of
meadows. They further complement existing datasets characterizing
other aspects of meadow adaptive capacity (e.g., Maher et al., 2017).
Moreover, the datasets developed as part of this project can provide
valuable information to practitioners to better understand the broader
landscape context of a given meadow, how it compares to the larger
population of meadows in the region, and how it may respond to chang-
ing climate. For example, alpine and subalpine meadows occurring in
basins with little subsurface storage capacity are likely to be more
immediately vulnerable to changes in rain: snow partitioning and earlier
snowmelt associated with climate warming than meadows in water-
sheds with deeper soils and more storage. In these places, it will be par-
ticularly important for managers to consider management objectives
that are robust to a range of potential future conditions and that
account for the impacts of climate on project success (Stein, Glick,
Edelson, & Staut, 2014). Our results further highlight the major
environmental gradients along which meadow sensitivities vary,
providing a useful framework for isolating the influences of

management actions from those caused by natural variability.
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