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Abstract

Conservation of montane meadows is a high priority for land and water managers

given their critical role in buffering the effects of climate variability and their vulner-

ability to increasing temperatures and evaporative demands. Recent advances in

cloud computing have provided new opportunities to examine ecological responses

to climate variability over the past few decades and at large spatial scales. In this

study, we characterized the sensitivities (magnitude and direction of the slope) of

meadow vegetation responses to interannual variations in climate. We calculated

sensitivity as the regression slope between a 31‐year (1985–2016) time series of

Landsat‐derived vegetation indices characterizing late‐season vegetation vigour and

water balance variables from the Basin Characterization Model. We identified April

1 snowpack as the climate variable the majority of meadows were most sensitive

to. We assessed how vegetation sensitivities to snowpack varied with hydrogeomor-

phic context (e.g., climate, geology, soils, watershed geometry, and land cover) across

the Sierra Nevada mountain range using factor analysis to reduce the dimensionality

of the hydrogeomorphic data and multiple linear regression to model sensitivity

responses. We found that meadow sensitivities to snowpack varied with long‐term

average meadow climate, indicators of watershed subsurface water storage capacity,

and indicators of meadow vegetation composition. Alpine and subalpine meadows

with high average annual precipitation but limited catchment subsurface storage

exhibited the largest sensitivities. Our results provide a novel regional perspective

on spatial patterns of meadow sensitivities to climate variability and the landscape‐

scale hydrogeomorphic factors that influence late‐season water availability in

meadow ecosystems in the Sierra Nevada.
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1 | INTRODUCTION

In the Sierra Nevada mountain range of California and Nevada, mon-

tane meadows are considered to be among the most vulnerable eco-

systems to changing climate (Hauptfeld, Kershner, & Feifel, 2014).
wileyonlinelibrary.com/journa
Climate influences meadows directly through the timing and amount

of precipitation and evapotranspiration (ET), which modifies the posi-

tion of the water table, and indirectly through changes in vegetation,

which can alter meadow hydrology based on differential patterns of

water use among species (Darrouzet‐Nardi, D'Antonio, & Dawson,
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2006). Due to the relatively shallow groundwater systems that sup-

port many meadows in the Sierra Nevada, decreases in spring snow-

pack and an earlier snowmelt may limit the availability of late‐season

water, resulting in a loss of meadow area and a shift to upland/xeric

dominated ecosystems (Drexler, Knifong, Tuil, Flint, & Flint, 2013).

Meadows may also experience declines in surface and shallow ground-

water availability over longer time periods as warmer temperatures

and longer growing seasons lead to increased ET rates (Goulden &

Bales, 2014).

Numerous studies suggest that the response of individual

meadows to changing hydrology associated with climate and/or man-

agement activities depends on the hydrogeomorphology of the

meadow and the landscape setting (e.g., Loheide & Gorelick, 2007;

Lowry, Loheide, Moore, & Lundquist, 2011; Weixelman et al., 2011).

At the landscape scale, watersheds with deeper soils and greater vol-

umetric soil water storage capacity have the potential to sustain

meadow and watershed‐scale ET rates later into the summer where

downslope transfers of water (i.e., interflow) supplement local sources

(Lundquist & Loheide, 2011). The geomorphology of a watershed can

also influence the relative importance of groundwater and surface

water flow. For example, Vivoni, Di Benedetto, Grimaldi, and Eltahir

(2008) showed that watersheds with a greater proportion of area at

higher elevations (i.e., characterized by a convex hypsometric curve)

produced more late‐season runoff and had a greater groundwater

component than watersheds with a greater proportion of area at

lower elevations (i.e., concave hypsometric curve). In the Sierra

Nevada, convex watersheds could have a similar response due to a

combination of more snow accumulation at higher elevations and

more potential for groundwater flow and storage, which may sustain

meadows later into the season, even if the groundwater system is

small. At the local scale, geology can influence the relative timing

and amount of groundwater and surface water inputs into montane

wetlands (Kitlasten & Fogg, 2015; Onda, Komatsu, Tsujimura, &

Fujihara, 2001). For example, permeable fractured volcanic and/or

metamorphic rocks (typical of the Cascades) can transmit and store

more water than impermeable crystalline intrusive rocks (typical of

the Sierra Nevada), resulting in differential long‐term responses to cli-

mate change (Drexler et al., 2013). Meadow site characteristics such

as soil hydraulic properties, local climate, surface water availability

from direct snowmelt or streamflow, and hillslope factors that influ-

ence lateral groundwater flow further influence meadow hydrology

and vegetation characteristics (Loheide et al., 2009; Lowry, Deems,

Loheide, & Lundquist, 2010).

Although the influence of hydrogeomorphic (HGM) controls on

meadow responses to changing hydrology is well documented at local

scales, the influence of these controls—and the degree to which

existing spatial datasets sufficiently capture important variation in

these controls—is not well documented at landscape to regional

scales. Identifying generalizable patterns in meadow response to cli-

mate variability using landscape‐scale predictors would allow man-

agers to better anticipate meadow trajectories and persistence in

response to climate variability and change. Landsat satellite imagery

has proven to be an effective and efficient data source for monitoring
key ecological attributes of meadows and riparian systems over exten-

sive areas and time periods (Ager & Owens, 2004; Cartwright &

Johnson, 2018; Cohen & Goward, 2004), including above‐ground bio-

mass, which relates to vegetation structure, function and composition,

and vegetation water content. Recent advances in cloud computing

(Gorelick et al., 2017) now permit efficient application of algorithms

across the Landsat satellite image archive for long‐term monitoring

of groundwater dependent ecosystems with respect to climate and

management (Dauwalter, Fesenmyer, Miller, & Porter, 2018; Hausner

et al., 2018; Huntington et al., 2017).

In this context, our principal research objectives were to character-

ize (a) the magnitude and direction of meadow vegetation responses

to interannual variations in climate and water balance variables and

(2) how these responses vary in accordance with HGM contexts

(e.g., climate, geology, elevation, topographic position, soils, and

watershed geometry) across the Sierra Nevada. To accomplish these

objectives, we developed a 31‐year time series (1985–2016) of paired

climate and Landsat data for 8,106 meadows in the study area and

analysed the sensitivity of late‐season vegetation vigour to contempo-

rary variation in climate.
2 | METHODS

Our analysis involved several steps (Figure 1), including (1) meadow

delineation and filtering, (2) calculation of annual vegetation and water

balance metrics, (3) assessing sensitivities as the slope of the relation-

ship between vegetation and water balance metrics, (4) deriving a

suite of HGM predictor variables hypothesized to influence sensitivity,

(5) reducing the dimensionality of HGM predictor variables, and (6)

assessing the influence of HGM predictors on patterns of sensitivity.
2.1 | Study area

Our study area is focused on meadows of the Sierra Nevada Range of

California and Nevada, USA, but extends to meadows in portions of

adjacent ecoregions, namely, the Southern Cascades and Modoc

Plateau at the northern extent of the study area, as well as the

Northwestern Basin and Range, Mono, and Sierra Nevada Foothills

(Figure 2a; Cleland et al., 2007). We hereafter refer to the study area

as the Sierra Nevada, given that the vast majority of meadows occur in

this range. The Sierra Nevada extends approximately 650 km from

north to south, with elevations ranging from 305 m at its base in

California's Central Valley to 4,421 m at the peak of Mount Whitney.

The range is influenced by California's Mediterranean climate, with

mild summer temperatures and minimal summer precipitation. In

colder months, the western slope receives substantial precipitation;

most of which falls as snow above 1,800 m, whereas most of the east-

ern slope is subject to rain shadow effects and receives very little pre-

cipitation (Schoenherr, 2017). The western slope is dominantly

forested, but vegetation types range from shrub and chaparral in the

foothills to subalpine forest and alpine meadow communities at higher

elevations (Schoenherr, 2017; U.S. Geological Survey Gap Analysis
m
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FIGURE 1 Outline of methodological steps taken to analyse spatial patterns of meadow sensitivities to climate variability. See Sections 2.2–2.7
for details on each step
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Program, 2011). Shrubland vegetation types adapted to drier condi-

tions are more common on the eastern side of the range. The Sierra

Nevada is primarily managed by the U.S. Forest Service (U.S.

Geological Survey Gap Analysis Program, 2011, 2012), where some

energy and mining development, agricultural land use, and biological

harvesting occur, with localized urban development in areas outside

the National Forest. Meadows are distributed throughout the study

area and throughout the area's elevation range, on both east and west

slopes, although they are most common in the central and southern

portions of the Sierra Nevada (Figure 2a).
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2.2 | Meadow delineation and filtering

Our study sample initially included a subset of 8,106 meadow poly-

gons compiled by a variety of agencies and organizations working in

the Sierra Nevada (UC Davis Center for Watershed Sciences & USDA

Forest Service, 2017). Meadows in this dataset were identified and

boundaries were digitized from high‐resolution (1 m) National Agricul-

ture Imagery Program imagery. We selected meadows that fully

contained at least five Landsat image pixels (totalling ~0.4 ha or

1.0 ac) in order to retain as many meadows as possible for analysis

while ensuring that (a) enough pixels were present to obtain
reasonable averaged vegetation condition metrics across the meadow

extent and (b) influence of cover types at the meadow periphery (e.g.,

conifer cover) was minimized when calculating meadow vegetation

metrics (Figure 2c). Finally, we delineated each meadow's watershed

(Kitlasten, Clark, & Evans, 2019). Digital elevation model raster cells

(30 m) intersected by the meadow polygons were used to define the

base of the watershed (i.e. “pour points”), and each meadow's

watershed was mapped using ESRI Spatial Analyst hydrology tools

and flow direction raster available as part of the National Hydrologic

Dataset Plus data model (McKay et al., 2012).
2.3 | Vegetation metrics

For each meadow, we computed a 31‐year time series (water years of

1985–2016) of the spatially averaged normalized difference vegeta-

tion index (NDVI) and normalized difference water index (NDWI)

derived from all usable late summer (Aug–Sept) Landsat (5, 7, and 8)

30‐m imagery (at‐surface reflectance derived from the USGS

precollection top‐of‐atmosphere reflectance following Tasumi, Allen,

& Trezza, 2008) using the Google Earth Engine cloud computing plat-

form (Gorelick et al., 2017). These indices provide a measure of vege-

tation vigour (an indicator of biomass production; Anderson & Hanson,
m
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FIGURE 2 (a) Map of study area meadows included in the analysis and (b) distribution of meadow size (acres) and (c) filtering of meadows for
analysis based on core area. Meadows (outlines) fully containing a minimum of 5 Landsat pixels (shaded) were retained; meadows with no pixel

shading shown did not meet the minimum pixel number threshold and were excluded from analysis
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1993) and vegetation water content (Gao, 1996), respectively. To

ensure sufficient quality and quantity of data for analyses, we filtered

these data to include only scenes with (a) 100% cloud‐ and shadow‐

free pixels (identified using Fmask; Zhu & Woodcock, 2014) for a

given meadow, (b) only meadows with at least 300 scenes over the

course of the time series, and (c) only meadows with at least one

scene in both August and September in each of at least 30 years.

For each meadow and year, we calculated and spatially averaged

late‐summer vegetation metrics that we expected to be highly sensi-

tive to prior hydroclimatic conditions, namely, mean September NDVI

and NDWI (Figure 3). All observations greater than two standard devi-

ations below the historical mean value for September were removed

prior to analysis in order to remove data influenced by snow cover

(following Soulard, Albano, Villarreal, & Walker, 2016).

We chose to focus on the end of growing season because spring

snowmelt provides the majority of groundwater recharge in this

region that is later discharged during summer and fall (Huntington &

Niswonger, 2012); therefore, comparing antecedent climate to late

summer and early fall is ideal for assessing the persistence of

baseflow conditions (McEvoy, Huntington, Abatzoglou, & Edwards,
2012), water availability, and associated meadow sensitivity. We

selected September because it represents the timing when water

table levels are at a minimum and because preliminary analyses indi-

cated higher average vegetation index sensitivities in September rela-

tive to August.
2.4 | Climate and water balance sensitivity analysis

To assess sensitivity of meadow vegetation to climate conditions, we

evaluated climate and water balance metrics from the California Basin

Characterization Model (BCM; Flint & Flint, 2014); a 270‐m resolution

spatially downscaled version of the Parameter‐elevation Relationships

on Independent Slopes Model (Daly et al., 2008). Monthly resolution

spatial means of multiple climate and water balance metrics for

meadows were calculated from BCM data using the R geoknife tool

(Read et al., 2015) and summarized by water year (Table 1). Multiyear

(2–5 year) sums were also calculated for snowpack and potential ET

metrics to assess lagged sensitivities of vegetation to cumulative‐year

water availability and evaporative demand.
m
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FIGURE 3 Comparison of potential sensitivity metrics based on the slope of the relationship between September vegetation indices (NDVI and
NDWI) and water balance metrics (climatic water deficit [CWD], potential and actual evapotranspiration [PET and AET], precipitation [PPT],
recharge [RCH], runoff [RUN], and April 1 snowpack [PCK]) from the Basin Characterization Model. Error bars represent 95% confidence intervals

TABLE 1 Annual (by water year) climate and water balance metrics
from the California Basin Characterization Model to which late‐sum-
mer meadow vegetation sensitivity was evaluated

Variable Description

Actual evapotranspiration (ET) Amount of water that evaporates

from the surface and is

transpired by plants

Climatic water deficit Total evaporative demand that

exceeds available water

Potential ETa Total evaporative demand for

well‐watered and stress‐free
conditions

Precipitation Total precipitation (rain or snow)

Recharge Amount of water that penetrates

below the root zone

Runoff Amount of water that becomes

stream flow

April 1 Snowpacka Amount of water as snow water

equivalent on April 1

Summer/winter temperature Average temperature for winter

(Oct–Mar) and summer

(Apr–Sep)

aMultiyear (2–5 years) sums were also calculated to assess lagged

responses.
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We quantified meadow sensitivity to climate (and associated water

balance) as the slope of the relationship between BCM climate and

water balance metrics and vegetation indices in order to capture the

magnitude of changes in vegetation condition in response to climate.

Although slope alone does not fully capture how tightly vegetation

characteristics are coupled (correlated) with climate conditions, we
confirmed that there were no meadows in which the slope of the rela-

tionship between vegetation and climate was high despite the correla-

tion being low (Figure S1). We estimated nonparametric slopes for

each meadow from median‐based linear models using the Siegel

repeated medians method with the “mblm” package in R (Komsta,

2013). Median‐based slope estimates were similar to those from ordi-

nary least‐squares regression models (r = .87–.96) but are far more

robust to outliers (Siegel, 1982). We then selected the BCM metric

with the highest mean slope across all meadows for both NDVI and

NDWI as the metric best able to detect a response of meadow vege-

tation to climate for the entire study area.
2.5 | Hydrogeomorphic variables

Initial results from the climate and water balance sensitivity analysis

indicated that on average, the largest sensitivities (i.e., slopes) of

meadow vegetation indices were driven by interannual variability in

April 1 snowpack (see Section 3.2; hereafter referred to simply as

snowpack). Given these results, in addition to the known importance

of snowpack to meadow structure and function (Arnold, Ghezzehei,

& Berhe, 2014; Lowry et al., 2010; Lowry et al., 2011) and climate pro-

jections indicating reductions in late‐season snowpack in the coming

decades (Dettinger et al., 2018), we focused on the vegetation–

snowpack relationship as the response variable of interest in our

HGM context analysis. In order to understand the relative importance

of meadow HGM context in driving sensitivity of meadow vegetation

to snowpack variability, we modelled this sensitivity metric as a func-

tion of a suite of landscape variables using multiple regression. We

derived several HGM context attributes that have been hypothesized
m
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to influence meadow vegetation sensitivity to climate conditions at

both meadow and watershed scales (Table 2 and Figure S5). In addi-

tion, we included two management‐related variables: the degree of

human modification (Theobald, 2013; Theobald et al., 2016) and the

fire regime departure classification (USDA Forest Service, 2011) for

each watershed. The human modification metric was summarized for

both meadows and watersheds. It provides a generalized characteriza-

tion of both the areal extent and intensity of five main types (and 11

subtypes) of human development, including residential and commer-

cial development, agriculture (including permitted livestock numbers),

energy production and mining, transportation and service corridors,

and biological harvesting; any of which may affect surface and/or

groundwater influences on the meadow due to diversion of water

and/or landscape alterations that affect natural hydrologic processes.

The fire return interval departure class identifies the difference

between current and presettlement fire frequencies. Locations within

the study area with decreased fire frequency may have higher tree

density, fuel loads, and water use and therefore may be less resilient

to fire and potentially drought.

2.6 | Factor analysis of hydrogeomorphic variables

We reduced the HGM variable set to a smaller number of “latent” var-

iables using factor analysis (FA; Thurstone, 1931) due to the large

number of relevant variables; many of which were closely related

(and correlated) to one another. This analysis is commonly used in

social science applications in which latent variables of interest cannot

be directly measured (e.g., depression) and are instead mathematically

inferred from other observed variables (e.g., questionnaire responses

regarding appetite and social engagement). Our aim in performing FA

in this context was not only dimension reduction to obtain a more

workable number of independent variables that are orthogonal (i.e.,

not strongly correlated) to each other but also to identify more mean-

ingful and information‐rich representations of underlying drivers of

meadow sensitivity.

We used the “fa” function in the psych package for R (Revelle,

2018) to perform FA. We included only continuous numeric variables

in FA and determined the number of factors to retain based on the

Kaiser criterion (factors with eigenvalues >1; Kaiser, 1960). After

Manly (1994), we excluded variables with no factor loadings >0.4

and then reran the analysis based on this reduced variable set. Only

meadows with complete data for all HGM variables of interest could

be included in FA; those with missing values were excluded from sub-

sequent analyses. Assumptions critical to the suitability of the data for

FA were met (Kaiser‐Meyer‐Olkin Measure of sampling adequacy

>0.6, Bartlett's test of sphericity <0.05; Bartlett, 1937; Kaiser, 1981).

However, several observed variables did not meet assumptions of nor-

mality (variables with skewed distributions conducive to transforma-

tion were log‐transformed, but several others were heavily skewed

and zero inflated). We therefore used the ordinary least squares FA

method to find the minimum residual solution, which produces solu-

tions very close to those of a maximum likelihood approach even

when assumptions regarding the distributions of observed variables
are violated (Revelle, 2018). We identified eight factors meeting the

Kaiser criterion and used a varimax rotation to ease interpretation of

factor loadings while preserving factor orthogonality.
2.7 | Hydrogeomorphic predictors of meadow
sensitivity

To assess the relative importance of latent HGM variables as predic-

tors of meadow sensitivity to climate, we fit multiple regression

models, using robust model selection and multimodel inferential tech-

niques (Burnham & Anderson, 2002). We used the slope‐based snow-

pack sensitivity metric as our response variable (See section 3.2), after

excluding outlier estimates based on Rosner's generalized extreme

Studentized deviate test (Rosner, 1983). Predictor variables included

latent HGM variables extracted from the FA and two categorical var-

iables (HGM type and fire regime departure) that could not be inte-

grated into the FA. Additionally, where continuous variables that we

hypothesized to be strong drivers of sensitivity were excluded from

the FA because they did not meet selection criteria described above

(i.e., did not explain enough variability in the predictor space relative

to the top factors), we included them as individual predictors. We used

the MuMIn package for R (Bartón, 2016) to fit all possible subsets of a

global model containing all categorical variables and linear and qua-

dratic terms for all continuous variables. We then dropped quadratic

terms and categorical variables that did not meet a significance thresh-

old of α = .05 in the model‐averaged result, refit all subsets of the

remaining global model, and then computed model‐averaged regres-

sion coefficients, unconditional standard errors, and cumulative Akaike

information criterion (AIC) weights of evidence (w+) as a measure of

variable importance (Burnham & Anderson, 2002). We determined

how well the final global model approximated the data by assessing

Nagelkerke's adjusted r2, a measure of variance explained after

adjusting for the number of model terms that is consistent with max-

imum likelihood model estimation (Nagelkerke, 1991), as well as the

difference between the global model AIC and that of a null model.
3 | RESULTS

3.1 | Meadow filtering

We identified 8,106 meadows out of 18,780 that fully contained at

least 5 Landsat pixels for inclusion in our analysis. After filtering out

meadows with insufficient quality or quantity of vegetation or climate

data (388), our sensitivity analysis included a total of 243,922

meadow‐year observations on 7,718 meadows, which ranged from

1.9 to 5,176 acres, with a mean area of 29.2 acres (Figure 2b). After

removing meadows with missing HGM variable data (1,401) and out-

lier sensitivity estimates (seven for NDVI and 14 for NDWI), our

HGM context analysis included 6,303 meadows for NDWI sensitivity

and 6,310 meadows for NDVI sensitivity. Most meadows excluded

due to missing data were in the southern Sierra Nevada and were

missing soil available water capacity data.
m
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TABLE 2 Landscape attributes hypothesized to influence meadow vegetation sensitivity to climate conditions

Variable Description
Data source and resolution
(if applicable) Scale

Landform Percent watershed classified as low (foot) slope or valley bottom (toe

slope), cool slope, steep slope

Theobald, Harrison‐Atlas,
Monahan, & Albano

(2015; 30 m)

W

Rationale: low slope and valley landforms promote lateral groundwater

flow that supports meadow vegetation, whereas steep slopes

promote vertical flow. Cool slope aspects have longer duration snow

storage.

Basin hypsometry/

curvature

Integral of watershed hypsometric curve Calculated in GIS based on

30‐m digital elevation

model (Strahler, 1952)

W

Rationale: higher values of the integral of the hypsometric curve

associated with a watershed indicate more convex form and suggests

more water availability and more groundwater flow

Meadow size/shape Acreage, perimeter:area ratio of meadow Calculated in GIS M

Rationale: small acreage or high perimeter to area ratio meadows may

be more sensitive to edge effects such as climate‐induced upland

vegetation encroachment

Geology/

aquifer potential

Geology: percent watershed composed of extrusive igneous or

metamorphic rock, percent watershed composed of intrusive

igneous rock; Aquifer potential: percent watershed composed of

geological types with unconsolidated geologic deposits.

Clynne & Muffler (2010;

1:50,000); Donnelly‐
Nolan (2010; 1:50,000);

Elder & Reichert (2010;

1:4,000 to 1:250,000)

W

Rationale: watershed geologies with greater groundwater storage

capacity and transmission may be less sensitive to climate variability.

Soil Mean available water capacity, (root zone, i.e., depth to root‐growth‐
limiting soil horizon, and 0–150 cm)

Soil Survey Staff (2016;

1:12,000 to 1:63,360)

M, W

Rationale: meadows/watersheds with greater soil available water

capacity have greater soil water storage and may be less sensitive to

climate variability

Hydro‐geomorphic

type

Meadow hydrogeomorphic type classification UC Davis & USDA Forest

Service (2017);

Weixelman et al. (2011)

M

Watershed

vegetation cover

Percent watershed with forest, herbaceous, barren cover; percent

watershed with vegetation classified as dense; watershed average

annual maximum greenness (eMODIS‐based NDVI)

Safford, van de Water, &

Clark (2013); USGS

EROS eMODIS (250 m)

W

Rationale: watersheds with greater forest cover have greater

evapotranspiration (ET), which may confer high sensitivity, but high

forest cover also indicates the presence of deep soils and associated

potential water storage, as well as slower snowmelt, both of which

may reduce sensitivity

Fire regime departure Dominant direction of departure from historic fire return interval across

watershed (more or less frequent fires)

Safford et al. (2013) W

Rationale: watersheds with decreased fire frequency may be more

sensitive to drought due to higher tree densities, fuel loading, and

associated ET rates

Historical climatology Mean annual precipitation, potential ET, April 1 snowpack (1985–2016) Flint & Flint (2014; 270 m) M, W

Rationale: long term climate influences meadow hydrologic regime and

associated vegetation types

Meadow greenness Mean late‐season (Sept) NDVI (1986–2016) NASA Landsat 5,

7–8 (30 m)

M

Rationale: long‐term average greenness provides a generalized

indicator of meadow biomass production and also relates to

phenology and vegetation composition. Values greater than 0.6

typically indicate dense forest cover, while values in the 0.2–0.5
range indicate herbaceous and shrub cover.

Human Modification Mean degree of human modification Theobald et al. (2016;

30 m); Theobald

(2013; 30 m)

M, W

Rationale: May affect surface or groundwater influences to the

meadow due to diversion of water resources or landscape alterations

that alter natural hydrologic processes, resulting in increased or

decreased sensitivity

Abbreviations: M, meadow; W, watershed.
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3.2 | Climate sensitivity

Overall, September NDWI displayed slightly higher average sensitivity

to climate variables than September NDVI (Figure 3), but spatial pat-

terns were similar (Figure 4). Vegetation indices were negatively related

to (in increasing order of magnitude) seasonal temperature, climatic

water deficit, and potential ET andwere positively related to (in increas-

ing order of magnitude) actual ET, precipitation, recharge, runoff, and

April 1 snowpack (Figure 3). Temperature sensitivity was greater for

summer (Apr–Sep) temperatures than for winter (Oct–Mar) tempera-

tures. Although the NDVI–runoff relationship was not significantly dif-

ferent from that of the NDVI–snowpack relationship, April 1 snowpack

had the highest average slope for both NDWI and NDVI (Figure 3), indi-

cating that overall, this metric best captured sensitivity of meadow veg-

etation to climate. Sensitivity to snowpack also varied considerably

among meadows (Figure S2), making it useful for assessing potential

drivers of differences in sensitivity among meadows.

Spatial patterns of sensitivity were generally similar between the

two groups of climate and water balance variables, representing
FIGURE 4 Mapped sensitivity metrics based on the slope of the relations
from the Basin Characterization Model. Outliers were excluded for the pu
atmospheric water demand (temperature, climatic water deficit, and

potential ET) and water availability (precipitation, recharge, runoff,

and April 1 snowpack; Figure 5). High sensitivities to April 1 snowpack

(shown in dark pink/red) were more frequent and of higher magnitude

than other variables, particularly at high elevations (Figure 5; see

Figures S2–S3). Sensitivities to recharge and runoff showed similar

patterns to snowpack and to each other, though higher sensitivities

to recharge (runoff) were apparent in downslope (upslope) regions

along the western slope of the Sierra Nevada. Of the evaporative

demand variables, potential ET showed the most widespread high

magnitude sensitivities, particularly in the San Joaquin basin north-

west of Fresno and in the upper watersheds of the central Sierra

Nevada, surrounding Lake Tahoe (Figures 4, 5). Although elevation

was not explicitly included as a predictor variable in the HGM context

analysis, in favour of more mechanistic variables such as historical cli-

matology, elevation provides a useful point of comparison to existing

watershed sensitivity studies and some climate sensitivities covaried

closely with elevation. Snowpack and runoff sensitivities were

generally low below 1,500‐ and 1,800‐m elevation, respectively, and
hip between September (a) NDWI and (b) NDVI and April 1 snowpack
rpose of optimizing scaling. Grey lines indicate HUC‐6 basins

 O
nline L

ibrary on [23/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 5 Spatial distribution of sensitivity metrics estimated from slopes of relationships between NDWI and eight Basin Characterization
Model climate and water balance metrics. Higher magnitude slopes (either positive or negative) indicate higher sensitivity. Outliers were
excluded for the purpose of optimizing scaling. NDVI sensitivity metrics showed very similar spatial patterns and thus are not shown. Histograms
of the distributions for each metric can be found in Figure S2. Grey lines indicate HUC‐6 basins. See Figure 4 for basin names
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generally increased with elevation, with peak sensitivities occurring

around 2,700 m and lower sensitivities at higher elevations. Recharge

and potential ET sensitivities peaked around 2,200 m, with slightly

lower sensitivities at lower and higher elevations (Figure S3).

Comparisons among multiyear metrics for sensitivity to potential

ET and April 1 snowpack indicated that meadow NDVI was most sen-

sitive to same‐year climate conditions, whereas NDWI had high sensi-

tivities to both same‐year and cumulative climatic conditions over

multiple years (Figure 3). Spatial patterns of NDWI sensitivities to mul-

tiyear cumulative snowpack (Figure S4) indicate that meadows in the

far southern Sierra Nevada and in the Plumas National Forest were

more sensitive to 5‐year snowpack than to same‐year snowpack.
f use; O
A
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3.3 | Hydrogeomorphic Factor Analysis

Many of the HGM context variables were highly correlated with each

other (i.e., r > .5; Figure 6a), justifying the use of FA. We identified

eight factors, or latent variables, that together explain 76.2% of the

variability among 25 retained observed variables. For ease of interpre-

tation, we named these factors according to the measured variables

that loaded most heavily on each (i.e., with loadings closest to ±1;
Figure 6b). In order of proportion of the variance in measured vari-

ables explained, these factors included: “watershed forestedness,”

“meadow water storage,” “geology,” “meadow climate,” “watershed

water storage,” “human modification,” “meadow size,” and “aquifer

potential.” Variables that were dropped from FA because they did

not meet the loading threshold but were expected to be important

in explaining sensitivity and thus were included as additional predic-

tors in the regression analysis included 30‐year mean meadow

September greenness, watershed basin curvature (hypsometric inte-

gral), and watershed percent valley bottom (percent area classified as

low slope and valley).
3.4 | Influence of hydrogeomorphic variables on
meadow sensitivity

We obtained similar but not identical regression model results for

NDVI and NDWI snowpack sensitivities; we therefore present both.

Our final global model of NDWI‐based meadow sensitivity (Table 3a)

had an AIC value of 4,130 units below that of the null model and an

adjusted r2 of 0.484, indicating that it approximated the data reason-

ably well. All continuous predictors as well as categorical departure
m
m
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FIGURE 6 (a) Correlations among all measured meadow (M) and watershed (W) scale hydrogeomorphic variables and (b) loadings of each
hydrogeomorphic variable on eight latent variables or factors (after excluding variables with no loadings >0.4; see Supporting Information for
details). See Table 2 for variable descriptions. PET, potential evapotranspiration; PCK, April 1 snowpack; PPT, precipitation; aws, soil available
water storage
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from fire regime had AIC weights of evidence of 1.0 except aquifer

potential (w+ = 0.72). Our final global model of NDVI‐based sensitivity

(Table 3b) had an AIC value of 3,613 units below that of the null model

and an adjusted r2 of .439, indicating that it also approximated the

data reasonably well. Similarly, all predictor variables except aquifer

potential (w+ = 0.97) had AIC weights of evidence of 1.0.

As indicated by the magnitudes of the regression coefficients,

meadow climate and watershed forestedness showed the strongest

associations with snowpack sensitivity, with progressively smaller

magnitude responses to average meadow greenness, human modifica-

tion, watershed water storage, meadow water storage, geology, basin

curvature, meadow size, percent valley bottom, and fire regime depar-

ture (Table 3). Aquifer potential, percent cool slope, and HGM type

variables were not significant (i.e., 95% confidence limits around the

estimate included zero), and the latter, which was a categorical
variable, was dropped from the analysis. The relative magnitude of

coefficients and confidence limits of quadratic terms in the

NDVI‐based sensitivity model differed slightly in some cases from

the NDWI‐based model (Table 3), but overall patterns of all univariate

relationships were similar (Figure 7). The most sensitive meadows had

wetter climate, occurred in less forested watersheds, and had moder-

ate long‐term average meadow greenness (Figures 7a,b,h and 8).

These meadows also had lower water storage capacity at both the

watershed and meadow scales (Figure 7d,e). Meadows in watersheds

with more extrusive igneous or metamorphic rock than intrusive igne-

ous rock (Figure 7f) that have more convex basin curvature (Figure 7i)

and with greater extent of valley bottom (foot slope) and low (toe

slope) landforms (Figure 7h) were less sensitive. Smaller meadows

with a low degree of human modification at the meadow and water-

shed scales tended to be more sensitive than those that have been
m
m
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TABLE 3 Summary of final inferential models for meadow vegetation sensitivity to climate based on the relationship between (a) NDWI and (b)
NDVI and snowpack

(a) Term Variable importance Coefficient estimate Adjusted SE
95% Lower
CL 95% Upper CL

Intercept 0.160 0.003 0.154 0.167

Meadow climate x 1.00 4.015 0.094 3.831 4.198

x2 −0.231 0.087 −0.400 −0.061

Watershed forestedness x 1.00 −2.686 0.138 −2.957 −2.415

x2 −0.453 0.096 −0.641 −0.266

Human modification x 1.00 −1.562 0.091 −1.741 −1.383

x2 0.280 0.086 0.111 0.449

Watershed water storage x 1.00 −1.480 0.089 −1.655 −1.305

x2 0.197 0.093 0.015 0.380

Average meadow greenness x 1.00 1.218 0.098 1.026 1.410

x2 −2.064 0.085 −2.231 −1.896

Meadow water storage x 1.00 −0.802 0.093 −0.985 −0.620

x2 −0.253 0.092 −0.434 −0.072

Geology x 1.00 −0.648 0.092 −0.827 −0.468

Basin curvature x 1.00 −0.485 0.096 −0.673 −0.297

Meadow size x 1.00 −0.347 0.091 −0.526 −0.168

Watershed fire regime More frequent 1.00 −0.035 0.021 −0.075 0.005

Less frequent −0.036 0.004 −0.044 −0.028

NA −0.025 0.004 −0.033 −0.016

Watershed % valley bottom x 0.97 −0.287 0.110 −0.502 −0.071

Aquifer potential x 0.72 0.124 0.107 −0.087 0.334

Percent cool slope x 0.28 0.010 0.051 −0.090 0.111

(b)

Intercept 0.109 0.003 0.104 0.115

Meadow climate x 1.00 3.062 0.074 2.917 3.207

x2 −0.731 0.069 −0.866 −0.596

Watershed forestedness x 1.00 −2.383 0.111 −2.599 −2.166

x2 −0.477 0.076 −0.627 −0.328

Average meadow greenness x 1.00 0.429 0.079 0.275 0.583

x2 −1.688 0.068 −1.822 −1.554

Human modification x 1.00 −0.969 0.071 −1.108 −0.830

Watershed water storage x 1.00 −0.907 0.069 −1.042 −0.773

Meadow water storage x 1.00 −0.536 0.070 −0.673 −0.398

Geology x 1.00 −0.473 0.073 −0.616 −0.330

Meadow size x 1.00 −0.377 0.071 −0.516 −0.237

Watershed % valley bottom x 0.99 −0.273 0.083 −0.435 −0.110

Watershed fire regime More frequent 0.99 −0.020 0.016 −0.052 0.012

Less frequent −0.008 0.003 −0.014 −0.001

NA −0.012 0.004 −0.020 −0.005

Aquifer potential x 0.97 0.200 0.078 0.047 0.353

Basin curvature x 0.62 −0.080 0.087 −0.250 0.090

Percent cool slope x 0.32 0.017 0.048 −0.077 0.112

Note. Variables with confidence intervals that span zero are indicated by grey shading.
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FIGURE 7 Model‐predicted univariate relationships of meadow sensitivity based on NDWI (blue) and NDVI (green) with and model covariates
when all other variables are held constant at their means, including latent attributes (factors; a–g) and additional continuous variables included in
final inferential models (h–j). NDWI‐ and NDVI‐based relationships are shown in blue and green, respectively. Rug plots (top) show the approximate
distribution of original measured variables that loaded heavily on each factor as they relate to standardized factor score scales and are shaded
according to their loading (darker = higher loading; a–g). In the case of additional variables included individually or original measurement scales in the
case of additional variables included in inferential models (h–j), rug plots show original measurement scales as they relate to standardized plot scales
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FIGURE 8 Relations between average meadow sensitivity based on NDWI (blue) and NDVI (green) and the three strongest predictor variables
divided into three quantiles (tertiles), including long‐term average meadow climate, watershed forestedness, and long‐term average meadow
greenness (<0.45 = low greenness, >0.6 = high greenness). Error bars indicate 95% confidence limits
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modified, and differences among fire regime departure classes were

minimal.

More specifically, NDWI‐based sensitivity of meadow vegetation

to meadow climate (i.e., water availability) was mostly linear,

whereas NDVI‐based sensitivity flattened and declined slightly at

the highest mean levels of precipitation (>2 m/year) and snowpack

(>1.25 m/year; Figure 7a). Both NDWI‐ and NDVI‐based sensitivities

exhibited a threshold‐like relationship with watershed forestedness,

in which sensitivity declined more sharply above approximately

25% watershed forest cover (Figure 7b). Meadows with intermediate

mean greenness (~0.5–0.6) had the highest sensitivity according to

both NDWI‐ and NDVI‐based metrics (Figure 7h). Basin curvature

(convexness) had a weaker relationship with NDVI‐based sensitivity

than with NDWI‐based sensitivity (Figure 7i). All other relationships

were approximately linear and very similar across both sensitivity

metrics.
4 | DISCUSSION

4.1 | Climate sensitivity

Overall, meadow vegetation indices were most strongly related to

derived metrics of water surplus and availability, including recharge,

runoff, and snowpack (Figure 3). These indicate the added value of

the BCM water balance variables beyond that provided by a simple

measure of precipitation. We observed similar spatial patterns

between NDVI and NDWI sensitivities, but NDWI sensitivities tended

to be larger in magnitude (Figures 3, 4). Although NDVI and NDWI

tend to be highly correlated, they are distinct and complementary

measures of vegetation vigour: The former measures chlorophyll con-

tent, whereas the latter measures water within plant tissue (Gao,

1996). The fact that NDWI tended to be a more sensitive measure

may be indicative of the fact that at the end of the water year,
m
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vegetation experiencing water stress (indicated by NDWI) may still not

have begun to senesce (indicated by NDVI), even under water‐

stressed conditions (Gu, Brown, Verdin, & Wardlow, 2007).

NDWI was also more sensitive to multiyear snowpack than was

NDVI, with some meadows even exhibiting higher sensitivities to

cumulative year snowpacks than to same‐year snowpack. This primar-

ily occurred in the Kern River basin at the southernmost end of the

Sierra Nevada and in the Feather River basin, at the northernmost

end of the range. Although an analysis of HGM drivers related to mul-

tiyear sensitivities was outside the scope of this study, these two

basins are notable in that they both contain a relatively large number

of groundwater dependent ecosystems (Howard & Merrifield, 2010).

Kern has some of the highest elevations and can retain snowpack

for longer durations relative to other basins, whereas the Feather

has the highest precipitation and most groundwater relative to other

basins in the Sierra Nevada due to the presence of permeable volcanic

geologies (Null, Viers, & Mount, 2010). Either of these factors may

relate to the slower varying responses and higher groundwater depen-

dencies observed in these regions.

We selected the September vegetation–snowpack relationship as

our sensitivity metric given that this was the climate variable that most

meadows in our study were most sensitive to, because snowpack is an

important driver of meadow hydrology (Lowry et al., 2010), productiv-

ity, and nutrient fluxes (Arnold et al., 2014) and because April 1 snow-

pack is expected to be strongly affected by warming climate

(Dettinger et al., 2018). Meadows with high sensitivity are those with

late‐season vegetation phenology (i.e., greenness and water content)

that synchronizes closely with April 1 snow water equivalent in the

same year, indicating a strong dependence on proximate snowmelt‐

derived water sources, which may include direct snowmelt,

streamflow, or influxes from the surrounding hillslope (Lowry et al.,

2010). Conversely, meadows with low sensitivity in September may

lack significant annual snow cover (i.e., are at low elevations) or may

have groundwater inputs that vary on longer than interannual time-

scales, resulting in end‐of‐season vegetation vigour that is less sensi-

tive to interannual variations in snowpack. Indeed, many of the

meadows exhibiting low September sensitivity to snowpack were

located at lower elevations and in the northern portion of the study

region (Figure 4), where precipitation occurs more commonly as rain,

rather than snow, and where groundwater is influential over slower

(i.e., decadal) varying timescales (Drexler et al., 2013), suggesting that

multiyear lag effects may be more important than same‐year precipita-

tion or snowpack. Variations in sensitivity could also be due to a num-

ber of other factors, including human modifications or unmeasured

landscape changes at the meadow or watershed scales that occurred

over the course of the study.

Actual ET and vegetation indices such as NDVI are expected to be

strongly and positively correlated, especially when vegetation indices

are integrated over the entire season (Goulden et al., 2012); however,

this relationship was quite weak relative to those with other water bal-

ance variables in our study (Figure 3). This may be attributed to the

fact that the BCM simulates actual ET based on available water stor-

age in the soil, including contributions from direct snowmelt (Flint,
Flint, Thorne, & Boynton, 2013), but is not accounting for deep

and/or shallow groundwater subsidies that allow vegetation to persist

late in the season as is the case for most meadow ecosystems in our

study. These results suggest that many of the meadows in this study

depend on these groundwater subsidies, and that estimates of climatic

water deficit and actual ET should be interpreted with caution in eco-

systems where plant water use is not limited to what is available in the

soil column. In the case of these systems, potential ET may provide a

closer estimate of plant water use as the groundwater subsidy allows

meadow vegetation productivity to more closely track atmospheric

water demands.
4.2 | Hydrogeomorphic context analysis

We found that long‐term climate, watershed forestedness, and aver-

age meadow greenness (an indicator of overall productivity and com-

position) were the best predictors of spatial variability of meadow

sensitivity (Table 3 and Figure 7). Patterns associated with other pre-

dictor variables were more subtle; thus, we focus the bulk of our inter-

pretation of results and associated inferences on these three

predictors.

Meadow 30‐year average climate, reflecting elevational, latitudinal,

and rain‐shadow‐based gradients of water supply and evaporative

demand, was the strongest predictor of sensitivity (Table 3 and

Figure 7a). NDVI sensitivity peaked at locations where 30‐year aver-

age precipitation amounts were about 200 cm and then declined at

higher amounts, whereas NDWI increased linearly. The NDVI

response reflects the transition from water to energy limitations on

vegetation productivity at high elevations, similar to that observed

for forest vegetation by Trujillo, Molotch, Goulden, Kelly, and Bales

(2012). The more linear response of NDWI may be due to the fact that

it is simply a measure of vegetation water content and thus less influ-

enced by the energy limitations at high elevations that limit the photo-

synthetic response reflected by NDVI. Notably, snowpack sensitivity

responses in our study were consistently high above about 2,100 m

and peaked in the 2,500‐ to 2,700‐m range (Figure S3). Projected

snowpack losses in the Sierra Nevada by the end of century are

expected to be greatest below 2,400 m (Dettinger et al., 2018), sug-

gesting that those meadows at the highest elevations, though sensi-

tive, may not be as vulnerable to changing climate due to reduced

exposure to changes in snowpack, albeit earlier snowmelt and warmer

temperatures will still result in increasing atmospheric water demands.

Watershed forestedness was the second strongest predictor of

meadow sensitivity (Table 3 and Figure 7b), with meadows in water-

sheds that had higher percent forest cover, higher tree densities, and

larger annual maximum greenness values consistently exhibiting lower

sensitivities to interannual snowpack variability across climatic gradi-

ents from dry to wet (Figure 8). In contrast, meadows located in more

barren watersheds characterized by granitic domes, shallow soils, and

sparse vegetation cover, as is typical in many regions of the Sierra

Nevada, exhibited higher sensitivities. Our interpretation of this result

is that, at the Sierra‐wide scale of our analysis, watershed attributes
m
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related to enhanced subsurface water storage capacity that have

coevolved with (Jenny, 1941), and are potentially indicated by (sensu

Stewart, 2013; Thompson, Harman, Troch, Brooks, & Sivapalan,

2011), the presence of forest vegetation may mediate sensitivities to

interannual snowpack variability. In contrast, meadows occurring in

more barren watersheds with less subsurface storage are, perhaps,

more reliant on localized sources of snowmelt runoff and infiltration

and are, thus, more sensitive. Other watershed‐scale variables that

suggest high watershed subsurface storage capacity and recharge—

meadows in more convex basins (Figure 7i), with higher values of soil

available water storage capacity (Figure 7d); extrusive igneous geo-

logic types (Figure 7f); and larger proportions of their watersheds com-

posed of low slope and valley landforms (Figure 7j) that promote

lateral flow—also exhibit lower climate sensitivities, but effect sizes

of these drivers were smaller (Table 3). The fact that the watershed

forestedness variable was a better predictor of sensitivity than other

watershed surface or subsurface attributes may in part be due to the

fact that vegetation cover is more completely and accurately observed

relative to the other subsurface and climate variables we used. Other

recent studies have similarly suggested that vegetation patterns can

provide useful insights into below‐ground processes related to hydro-

logic partitioning (Hwang, Band, Vose, & Tague, 2012; Thompson

et al., 2011).

Long‐term average meadow greenness was the third strongest

predictor of sensitivity, with sensitivity peaking at intermediate

(0.45–0.6) values of NDVI (Table 3 and Figure 7h). Sensitivity was con-

sistently higher at these intermediate values regardless of meadow cli-

mate or watershed forestedness (Figure 8). This metric was included

to provide an overall indication of site productivity and, to a limited

extent, vegetation composition. High values (>0.6) typically indicate

dense and/or forested vegetation cover, intermediate values (0.2–

0.6) indicate herbaceous or shrub cover, and low values (<0.2) indicate

barren vegetation types (Jensen, 2007). Given that this metric is based

on an average across the entire meadow site, the interpretation of

intermediate values as an indication of composition is not straightfor-

ward because they could result from a wide range of vegetation com-

positions. Despite this uncertainty, these results suggest that meadow

sensitivity tends to be lower in more barren and more densely vege-

tated meadows than in meadows with more mixed vegetation compo-

sition and intermediate levels of biomass production. This pattern

could potentially represent a gradient of water availability from xeric

to mesic to hydric. Intermediate values also may be an indicator of

mesic meadow types, which have been shown in other regions to

exhibit higher sensitivities to climate variability relative to more xeric

or hydric meadows (Debinski, Jakubauskas, & Kindscher, 2000;

Debinski, Caruthers, Cook, Crowley, & Wickham, 2013; Debinski,

Wickham, Kindscher, Caruthers, & Germino, 2010).

Other meadow‐scale variables such as size, shape, and soil avail-

able water storage explained smaller amounts of variation in sensitiv-

ity among meadows (Table 3 and Figure 7e,g). These results suggest

that large meadows with small perimeter to area ratios are less sensi-

tive to climate variability. The direction of the response is consistent

with hypothesized responses, given that these meadows are likely to
be less susceptible to encroachment by upland species and have

greater capacity for water storage and buffering of high flow events

(Viers et al., 2013). However, sensitivity estimates for small meadows

with large perimeter to area ratios may be more influenced by

meadow‐adjacent vegetation than larger meadows, which may have

contributed to this result.

Meadows (and watersheds) with more soil available water capacity

(Table 3 and Figure 7d,e) were less sensitive to snowpack variability,

which is also consistent with hypothesized responses. Available water

capacity increases with increasing soil depth, which can serve to

enhance connectivity with the water table and decreasing particle size,

which serves to store and hold more water later into the season

(Lowry & Loheide, 2010). This result suggests that despite the limita-

tions of the USDA SSURGO data (i.e., maximum soil depth is only

201 cm, relatively coarse mapping), these may still have some utility

in deciphering differences in meadow and/or watershed responses

to climate variability at a landscape scale.

Given the recent drought and associated tree mortality in the Sierra

Nevada (Tree Mortality Task Force, 2018), contemporary studies have

addressed the impacts of tree density reductions due to forest thinning

or fire on ET and surface water availability (Boisramé, Thompson,

Collins, & Stephens, 2017; Roche, Goulden, & Bales, 2018). We

included fire return interval departure—an indicator of tree density

relative to historic conditions and associated fuels loading and ET—to

assess how meadow sensitivity varies among departure classes.

Although this classification helped to explain some variance in our

model (as indicated by variable importance; Table 3), the effect sizes

were very small and, in most cases, not statistically significant. Sensitiv-

ity of meadows in watersheds with the majority of vegetation classified

as departed due to decreased fire frequency (suggesting increased tree

densities) relative to historical conditions was not detectably different

from those in watersheds in which fire frequency is consistent with his-

toric regimes. It is possible that any signal in these data may simply be

overwhelmed by the strong environmental gradients that exist across

the study area, as fire effects may differentially affect watershed‐scale

ET rates across gradients of water availability (Roche et al., 2018).

Moreover, fire return interval departures do not explicitly account for

fire severity and thus may not necessarily be indicative of ET water use.

The human modification variable included in our analysis also cap-

tures large areas where substantial forest cover changes occurred due

to tree clearing (i.e., from timber harvest), as determined by changes in

vegetation classification from forest to grassland between time steps

in the National Land Cover Database in places that were not burned

(Theobald et al., 2016). Although this variable captures other types

of human modification related to urban, energy, and transportation

infrastructure, most of the areas in the Sierra Nevada exhibiting

human modification are associated with tree clearing (https://

disappearingwest.org/map/). Our results indicate moderate decreases

in sensitivity with increasing human modification (Figure 7c), which, if

this is a signal of increased water availability in more heavily logged

watersheds, would be consistent with the hypothesis that reduced

tree cover at the watershed scale increases water availability to

meadows. However, other studies have suggested that heavily logged
m
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or burned basins exhibited accelerated snowmelt and earlier runoff,

which might confer higher sensitivity (Coats, 2010; Stevens, 2017).

Given the complex hydrological interactions between forest cover, cli-

mate, and watershed processes, and wide variation in these conditions

across our study area, the interpretation of this result is not straight-

forward and any causal relations between loss of woody vegetation

and meadow sensitivity will require a more tightly controlled and

smaller scale study. Similarly, connecting other types of human modi-

fications represented in this dataset with meadow sensitivities will

require more tightly controlled studies to tease apart additional and

potentially opposing human influences such as roads, grazing, and

human development.

One of the objectives of our study was to evaluate how well

existing spatial datasets capture variation in HGM controls on

meadow sensitivity to climate. Our dataset consisted of a large sample

size of meadows across a highly heterogeneous landscape and our

analysis explained just under 50% of the variation in sensitivities of

late‐season water availability to snowpack among meadows, suggest-

ing substantial unexplained variability. This unexplained variability is,

in part, driven by unmeasured local‐scale factors related to groundwa-

ter flow patterns, variations in soils and vegetation, disturbance his-

tory, and localized elevational gradients. However, unexplained

variance could also be due to poorly measured variables, which are

inherent in coarse scale datasets, particularly those related to soils,

geology, and climate that are interpolated from sparse observations.

Despite this, robust patterns in vegetation sensitivities to snowpack

were observed in relation to (a) average climate (dry to wet), (b) dom-

inant watershed land cover (forested to barren), and (c) indicators of

meadow vegetation productivity and composition (long‐term average

meadow greenness), in particular. Although meadow sensitivity

responses to variables related to topography and subsurface charac-

teristics (geology, soils) were consistent with our hypotheses in terms

of the direction of the response, the magnitudes were generally

weaker, suggesting more limited predictive value of these datasets at

the Sierra‐wide scale relative to the former three variables.

Numerous studies have examined climate sensitivities of

streamflow in the Sierra Nevada (e.g., Maurer, Stewart, Bonfils, Duffy,

& Cayan, 2007; Stewart, Cayan, & Dettinger, 2005; Young et al.,

2009), but few have attempted to link these sensitivities to a large

suite of physical characteristics beyond elevation, latitude–longitude,

and aspect (Stewart, 2013). Stewart (2013) examined climate sensitiv-

ity of streamflow to watershed physical characteristics in the Sierra

Nevada and found that high‐elevation, snowmelt‐dominated basins

on the western Sierra Nevada slopes have historically exhibited the

greatest sensitivity to climate change. This paper also suggested that

watersheds with lower proportions of basaltic rock geologies and

low percentages of forested land cover tended to be more sensitive

but that these effects could not readily be teased apart from elevation

due to the covariance of many of these variables. Although results

from our analysis are generally consistent with this study, our analyti-

cal approach, which extracts latent variables that are orthogonal

(uncorrelated), avoids this issue of covariance, providing greater clarity

about the physical patterns that relate to sensitivity. Moreover, our
approach allowed us to quantify the independent contributions of

physical site and watershed characteristics relative to each other over

a much larger number of sites than has previously been accomplished

using streamflow records.

An important caveat is that our analysis may have missed some of

the most vulnerable meadows, as (>10,000) meadows that did not

reach our minimum size threshold and meadows that have already dis-

appeared due to land cover or climatic changes were not included.

Also, this analysis was based on climate sensitivity of meadow vegeta-

tion occurring within contemporary meadow footprints, so does not

explicitly account for meadows that have changed size over the course

of the 31‐year study period, a pattern that is well‐documented in this

region and is attributable to conifer encroachment (Lubetkin,

Westerling, & Kueppers, 2017). Finally, the climate sensitivity metrics

used in this analysis characterize one aspect of climate sensitivity of

vegetation relating to late‐season water availability. Meadow vegeta-

tion that exhibited low climate sensitivity in this study may still be sen-

sitive to climate variability and change in other ways relating to, for

example, other aspects of phenology, species composition, or biomass

production, or because they are sensitive to longer varying climatic

changes, as opposed to interannual variability, as was studied here.

The data and methods developed as part of this study are well suited

to assess these alternate forms of climate sensitivity in the future.
5 | CONCLUSIONS

In this study, we demonstrate a transferrable approach for under-

standing and monitoring responses of meadow ecosystems to climate

variability using remote‐sensing‐based indicators and a water balance

model. Platforms such as Google Earth Engine (Gorelick et al., 2017)

and cloud‐computing applications such as Climate Engine (http://

climateengine.org/; Huntington et al., 2017) have provided free access

to—and highly efficient processing of—climate and remotely sensed

information that can be used to quantify ecological sensitivities to cli-

mate and monitor other drivers of change ranging from site specific

(e.g., Hausner et al., 2018) to regional (as demonstrated in this study)

scales.

We found that late‐season vegetation conditions in most meadows

were more sensitive to snowpack than to precipitation or evaporative

water demand. We also found that sensitivities covaried considerably

across the study extent, with long‐term meadow climate, watershed

forestedness and other characteristics indicative of subsurface water

storage capacity, and with indicators of meadow vegetation composi-

tion and biomass. Overall, subalpine and alpine meadows—those that

have high average snowpack/precipitation amounts but low subsur-

face storage capacity—exhibited the largest sensitivities to annual

snowpack in our study. Numerous studies on fine‐scale hydrologic

processes related to meadow structure and function in the Sierra

Nevada exist, but to our knowledge, this is the first study to address

meadow sensitivities to snowpack at a regional scale. Given that sim-

ilar climatic patterns and hydrological processes dictate meadow

structure and function in montane systems across the western United

States where the majority of precipitation occurs as snow during the
m
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winter season, the climate, watershed, and meadow‐scale drivers we

identified could similarly influence variability in meadow climate sensi-

tivities in these regions.

Our results may be useful for considering and prioritizing the siting

of meadow conservation or restoration efforts, given the clearly impor-

tant role of landscape context in mediating climate sensitivities of

meadows. They further complement existing datasets characterizing

other aspects of meadow adaptive capacity (e.g., Maher et al., 2017).

Moreover, the datasets developed as part of this project can provide

valuable information to practitioners to better understand the broader

landscape context of a given meadow, how it compares to the larger

population of meadows in the region, and how it may respond to chang-

ing climate. For example, alpine and subalpine meadows occurring in

basins with little subsurface storage capacity are likely to be more

immediately vulnerable to changes in rain: snow partitioning and earlier

snowmelt associated with climate warming than meadows in water-

sheds with deeper soils and more storage. In these places, it will be par-

ticularly important for managers to consider management objectives

that are robust to a range of potential future conditions and that

account for the impacts of climate on project success (Stein, Glick,

Edelson, & Staut, 2014). Our results further highlight the major

environmental gradients along which meadow sensitivities vary,

providing a useful framework for isolating the influences of

management actions from those caused by natural variability.
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