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Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality
but fire-injured trees can also survive. Land managers use logistic regression models that incorporate
tree-injury variables to discriminate between fatally injured trees and those that will survive. We used
data from 4024 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and 3804 Douglas-fir (Pseudotsuga men-
ziesii (Mirb.) Franco) trees from 23 fires across Oregon and Washington to assess the discriminatory abil-
ity of 21 existing logistic regression models and a polychotomous key (Scott guidelines). We used insights
from the validation exercise to build newmodels for each tree species and to identify fire-injury variables
which consistently produce accurate mortality predictions. Only 8% of Ponderosa pine and 14% of
Douglas-fir died within 3 years after fire. The amount of crown volume consumed, the number of bole
quadrants with dead cambium and the presence of beetles were variables that classified most accurately,
but surviving trees in our sample displayed a wide range of fire injury making the accurate classification
of dead trees difficult. For ponderosa pine, our new model correctly classified 99% of live trees and 12% of
dead trees while the Malheur model (Thies et al., 2006) correctly classified 95% of live trees and 24% of
dead trees. The Scott guidelines accurately predicted at least 98% of live ponderosa pine trees but less
than 2% of dead ponderosa pine. For Douglas-fir the Scott guidelines accurately predicted at least 80%
of live trees and generally less than 10% of dead trees. Misclassification rates can be controlled by the
choice of decision criteria used in the models and managers are encouraged to consider costs of the
two types of misclassifications when choosing decision criteria for specific land management decisions.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The frequency and severity of wildfire in western landscapes is
of critical concern and management of the post-fire landscape will
be especially challenging. Many forested ecosystems rely on natu-
rally occurring fire, but fire suppression over the past 100 years led
to the accumulation of large fuel loads in some systems which
potentially increase wildfire severity (Schoennagel et al., 2004;
Peterson et al., 2005). There is concern that future warmer climates
may increase the frequency and the severity of forest fires and
change wildfire patterns and will have far reaching effects on
human populations (e.g., Chapin et al., 2008). Land managers and
policy makers face difficult decisions about the use of limited
resources and land management strategies in the face of forest fires
(Stephens et al., 2013). The post-fire landscape typically includes a
range of fire severity patches with many still-living trees that have
been injured by the fire. The fate of these still-living trees that may
die will influence decisions regarding timber salvage, future tree
stocking of fire disturbed landscapes, and wildlife conservation.
Therefore, predictions of post-fire tree mortality for a variety tree
species and forest types will continue to be important foundational
information for forest managers.

Injury to trees from wildfire and prescribed fire can produce
mortality that is not immediately apparent and environmental
stress before and after a fire may also contribute to tree mortality
in years after a fire (Hood and Bentz, 2007). Dozens of statistical
logistic regression models have been developed to predict post-
fire tree mortality from fire injury variables before tree mortality
is clearly apparent, (see Woolley et al., 2012 for a review) and some
are incorporated within larger fire behavior and effects computer
models used to support land management decisions (Reinhardt
et al., 1997; Hood et al., 2007b; Lutes, 2016).

A polychotomous field key, known as the Scott guidelines, was
developed (Scott et al., 2002) and refined (Scott and Schmitt, 2006)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2017.01.008&domain=pdf
http://dx.doi.org/10.1016/j.foreco.2017.01.008
mailto:lisa.ganio@oregonstate.edu
http://dx.doi.org/10.1016/j.foreco.2017.01.008
http://www.sciencedirect.com/science/journal/03781127
http://www.elsevier.com/locate/foreco


48 L.M. Ganio, R.A. Progar / Forest Ecology and Management 390 (2017) 47–67
to predict conifer mortality in northeastern Oregon. Trees receive a
numerical score based on pre-fire site condition and fire-injury
variables and a low, moderate or high probability of survival based
on the score. Different DBH (diameter at breast height) classes of
different tree species are scored differently. This method has been
used to classify tree survival on 24 fires to date (Don Scott, pers.
comm.).

Published logistic regression models have been tested on inde-
pendent data. The modification of the Ryan and Amman model
used in FOEFM (Lutes, 2016) was tested for 13 coniferous species
from 21 fires across the western US (Hood et al., 2007b). The Ryan
and Reinhardt model (Ryan and Reinhardt, 1988) was tested using
ponderosa pine (Pinus ponderosa Dougl. ex Laws) in 3 wildfires in
Montana (Finney, 1999). A model that included the presence of
Douglas-fir beetles was tested on Douglas-fir (Pseudotsuga men-
ziesii (Mirbel) Franco) in 3 wildfires in Montana and Wyoming
(Hood and Bentz, 2007). The Stephens and Finney model
(Stephens and Finney, 2002) was developed for ponderosa pine
in one prescription fire in California and later tested on the same
tree species for 2 wildfires (Hood et al., 2010). Sieg et al. (2006)
developed a model for ponderosa pine from fires that burned in
2000 in Arizona, Colorado, South Dakota and Montana and vali-
dated the results on a 2001 fire from South Dakota. The Malheur
model for ponderosa pine in eastern Oregon was validated on 10
prescribed and 7 wildfires in Oregon and Washington (Thies and
Westlind, 2012).

Recently, post-fire mortality and fire injury variables were col-
lected for 23 wildfires across Oregon and Washington, providing
an opportunity to test published models for Douglas-fir and pon-
derosa pine in this region. Our objectives are to (1) assess the abil-
ity of previously published logistic regression models to predict 3-
year post-fire mortality in Oregon and northern Washington state,
including the Malheur model and the Scott guidelines, (2) to iden-
tify a new model and suites of fire-injury variables that accurately
discriminate between live and dead trees in that region and (3)
suggest a management approach to post-fire tree mortality model-
ing in Oregon and Washington.
2. Statistical context and methods

2.1. Field sampling

Twenty-three wild and prescribed fires that occurred between
1999 and 2007 from southwest Oregon to northeastern Washing-
ton were identified by local USDA Forest Service Forest Health Pro-
tection offices in cooperation with USDA Forest Service National
Forest and District offices (Appendix A, Fig. 1). Fires were selected
when the burned perimeter included areas of mixed fire severity
with apparently fire-injured, but not dead, trees and no post-
burn management activities were planned for those areas.

Field crews were requested to sample at least 500 trees from
each fire if possible, from stands that were accessible from nearby
roads. Crews were instructed to choose the larger trees in the stand
for measurement if green needles and fire-injury were present.
Sampling transects began with a haphazardly selected initial tree
that met the selection criteria near the access road and subsequent
haphazardly selected trees that met the selection criteria were
sampled in a direction approximately perpendicular to the road
into the burned forest. Each tree was tagged and the azimuth
and distance to the next sampled tree was recorded for future relo-
cation. The length of transects was limited by the time it would
take to return to the road, typically about 20 min and the number
of transects and the number of trees sampled in each fire was lim-
ited by the area available to collect data.
2.2. Field measurements and methods

Initial assessments of tree condition and fire-injury variables
were completed during the summer of the year of the fire if the
burn occurred early-to-mid summer. If the fire occurred in late
summer or early fall, initial assessments and data collection
occurred in the following spring after bud-break, or during the fol-
lowing summer. For fires in ponderosa pine evaluated in the year
of the fire (usually prescribed burns), crown scorch was evaluated
the year of the burn and crown volume killed confirmed the fol-
lowing season. Variables were chosen to match, or calculate, vari-
ables collected in previous studies of post-fire mortality.

The following data were collected in the initial field assessment
for each tree.

� Tree species.
� Diameter at breast height (DBH) was measured to the nearest
0.25 cm on the uphill side of the tree at 1.37 m above mineral
soil.

� Dwarf mistletoe rating was recording using the 6-class dwarf
mistletoe rating system (Hawksworth, 1977).

� Percent of pre-fire crown volume that was killed relative to the
space occupied by the pre-fire crown volume to the nearest 5%
(Ryan, 1982).

� The distance from the ground to the following points on the
tree, were recorded using an Impulse 200 Laser hypsometer
(Laser Technologies, Englewood, CO). Measurements were
taken on the uphill side of the tree perpendicular to the slope
at a distance sufficient to obtain an accurate value.
– Top of tree – Tree height (m).
– Base of pre-fire tree crown (m).
– Base of post-fire tree crown (m).
– Upper limit of post-fire bole-blackening (scorch) – (m).

The following measurements were also made on four quadrants
of each tree, numbered in clockwise order beginning with the
downhill quadrant or with the south-facing quadrant on flat
ground.

� Cambium, close to the ground-line, was assessed as dead or
alive in each bole quadrant following Hood et al. (2007a). If nec-
essary, bark was removed to within 0.25–0.50 of the cambium
and a bark punch was drilled into the cambium.

� Bole scorch was scored as 0, 1, 2, or 3 in each quadrant of the
tree bole following Ryan (1982).

After the initial assessment, every year, for up to five years, each
tree was visually evaluated for mortality and evidence of bark bee-
tle or wood borer infestation. Trees were recorded as dead in each
year if no green foliage was visible or if the tree had fallen or bro-
ken off since the previous year. For ponderosa pine, the presence of
red turpentine beetle (Dendroctonus valens LeConte) pitch tubes on
the bole was recorded as well as infestation by western pine beetle
(Dendroctonus brevicomis LeConte), mountain pine beetle (Dendroc-
tonus ponderosae Hopkins). Ips spp. were determined by reddish
boring dust on surface and bark crevasses. Douglas-fir beetle (Den-
droctonus pseudotsugae Hopkins) infestation was determined by
evidence of reddish-brown boring dust found in bark crevices on
the lower portion of the tree’s bole or on the ground at its base
or presence of clear resin which has exuded from the upper level
of attacks-typically 30–35 feet off the ground. No bark was
removed from living trees to determine the success of the beetle
infestation to avoid injury that may be detrimental to its survival.
If the tree subsequently died, bark beetle galleries were examined
to determine the species present.



Fig. 1. Location of fires from which data were collected.
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2.3. Data analysis

2.3.1. Summary of field data by fire type and region
We omitted trees from the analysis if they were initially

recorded as dead or if any field measurements were missing. We
omitted all trees of a species from subsequent analysis if a fire
did not contain at least 50 trees of that species. Therefore, pon-
derosa pine from Biscuit, Shake Table or Tiller Complex fires and
Douglas-fir from Grapple, Hud2, Monument, Pearrygin or Sharps
Ridge fires were not included. The final dataset consisted of 3804
Douglas-fir and 4024 ponderosa pine trees.

For each tree species we graphed the proportion of dead trees
over time for each fire. We found substantial increases (more than
14 percentage points) in the proportion of dead trees for each year
until the 3rd year post-fire in all fires but increases of less than 3%
after year 3 for each species. The sample size also decreased in the
fourth and fifth year after fire because not all fires were visited for
5 years. For these reasons and because many previous models were
based on third year mortality, we used 3-year mortality for further
analysis.

We grouped all but one fire into three broad geographic regions
based on average annual rainfall (PRISM Climate Group, Oregon
State University, http://prism.oregonstate.edu, created (2010), veg-
etation zone (Franklin and Dryness, 1973). The Apple, Biscuit, Blos-
som, Bonanza, Davis Lake, Hermann Creek and Tiller Complex fires
were labeled as fires from southwest Oregon (SW.OR). The Fischer,
Hud2, Nile, Pearrygin and Squaw Creek fires were labeled as north-
ern Washington fires (N.WA). The B and B, Bull Springs, Columbia
Complex, Egley, Grapple, Monument, School, Shake Table, Sharps
Ridge and Sisters fires were labeled as the eastern Oregon group
(E.OR). The Griff fire burned in the Olympic Peninsula and was
summarized separately.

For each combination of region and fire type (wildfire or pre-
scribed), we combined all trees of each species from all the fires
in the region. Ponderosa pine was present in wild and prescribed
fires in northern Washington and in eastern Oregon. Douglas-fir
was present in wild and prescribed fires in northern Washington
and in wildfires in eastern and southwest Oregon. We graphically
summarized the distributions of the primary field measurements
bulleted below, by fire type and region, and for live and dead trees
to determine if analyses should be conducted separately by fire
type or region (Ganio et al., 2015). Graphical summaries are pre-
sented in Appendix A.

� Tree DBH in centimeters (DBH).
� The percent of crown volume scorched (CVSPERC).
� The maximum height of fire scorch (area blackened by fire) on
the tree bole in meters (BSHM).

� The percentage of the bole that was charred (CHAR).
� The bole scorch rating in each of 4 quadrants around the tree.
Rating was 0 for unburned, 1 for lightly charred, 2 for moder-
ately charred and 3 for deeply charred. The number of dead
cambium samples ranging from 0 to 4 (CKR).

� The presence (or absence) of Douglas-fir beetle (DFBAR3) on
Douglas-fir during the first through third year post-fire.

� The presence or absence of western pine beetle, mountain pine
beetle, red turpentine beetle or Ips sp. during the first through
third year post-fire (BEETLE3) on ponderosa pine.

http://prism.oregonstate.edu
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2.3.2. Validation of previously published logistic regression models
To address whether existing post-fire mortality models could be

used effectively in the regions covered by our fires, we applied 21
previously published models to our data (described in Appendix B).
For ponderosa pine we tested 5 prescription fire models, 6 wildfire
models and 3 models built from trees injured in both wild and pre-
scription fires. For Douglas-fir, we tested 2 wildfire models, 3 pre-
scription fire models and 3 models created from trees injured in
both wild and prescription fires. Because our estimates of crown
scorch are assumed to represent both scorch and crown kill we
only used models that did not distinguish between them.

We calculated the following fire-injury variables from our field
measurements to use as explanatory variables in the previously
published regression models.

� Pre-fire Crown height = (tree height) � (distance to the base of
pre-fire crown).

� Post-fire Crown height = (tree height) � (distance to the base of
post-fire tree crown).

� CKR: Cambium Kill Rating = total # of dead cambium samples
(0–4).

� Average Ground Char = Average of the 4 ground char ratings on
each tree when it was present.

� Crown length killed � (Pre-fire crown height) � (post-fire
crown height).

� Bole Scorch Rating = Average of the 4 bole scorch ratings for
quadrants with bole scorch present.

� RTB1 – The presence or absence (1/0) of red turpentine beetle
one year after fire.

We applied each published model to observations from the
same tree species and type of fire that were used to build the orig-
inal model. We combined data from wild and prescribed fire for
each species and applied each model to this larger set of trees.
We summarized the average discriminatory ability for each model
with the area under the receiver operating characteristic curve
(AUC) where values closer to 1 indicate better discriminatory abil-
ity (Saveland and Neuenschwander, 1990) and its 95% confidence
interval (Table 1).
Table 1
Summary of area under the receiver operating characteristic curve (AUC) for published log

Tree species Fire type of source population
(sample size in validation dataset)

Model source

PIPO Rx Burning Conklin and Geils (2008)
(1497) Harrington and Hawkswort

Saveland and Neuenschwan
Stephens and Finney (2002
Thies et al. (2006)

PIPO Wildfire Finney (1999)
(2528) Hood et al. (2010) (McNall

Hood et al. (2010) (Cone)
Keyser et al. (2006) (model
Keyser et al. (2006) (model
Regelbrugge and Conard (1

PIPO Both Hood et al. (2008)
(4025) McHugh and Kolb (2003) (

McHugh and Kolb (2003) (

PSME Rx Burning Bevins (1980)
(149) Kobziar et al. (2006)

Ryan and Reinhardt (1988)

PSME Wildfire Raymond and Peterson (20
(3493) Ryan and Amman (1994)

PSME Both Hood et al. (2008)
(3642)
Logistic regression models can be reported in different forms
which affect whether or not coefficients are reported as positive
or negative values. In this study, we always report values of coeffi-
cients corresponding to this form of the logistic regression:

Pm ¼ 1=½1þ expð�ðb0 þ b1X1 þ b2X2 þ � � � þ bpXpÞÞ�
where Pm is the probability of mortality and X1, X2, . . ., Xp are the
discriminatory variables in the model.

2.3.3. Validating the Scott guidelines
We automated the Scott guidelines using Mathematica

(Wolfram Research, 2016). Trees were classified separately based
on DBH and tree age as described by the guidelines. Ponderosa pine
P53.34 cm and Douglas-fir P50.80 cm; and P180 years old were
evaluated with different criteria than smaller and younger trees
(Scott et al., 2002; Scott and Schmitt, 2006).

2.3.4. Building new logistic regression models
Sampling variation implies that different samples of fire injured

trees lead to a different ‘‘best” models (Burnham et al., 2011) and
the more combinations of variables we investigate for a fixed sam-
ple size, the more likely we are to identify erroneous suites of vari-
ables as important (Flack and Chang, 1987). Therefore, we did not
investigate all possible combinations of variables for new models
but selected suites of potential variables based on the examination
of the distributions of the explanatory variables (Appendix A), the
discriminatory ability of suites of variables in previously published
models and our desire for a simple but broadly applicable model.

We identified suites of variables for newmodels in twoways and
followed the same strategy for each tree species. First, we included
the suites of variables used in each of the previously publishedmod-
els we tested. Some of these models contained complicated terms
(such as cubic or squared terms or interactions). In an effort to iden-
tify parsimonious models we also tested suites of variables with
related but simpler terms.We created simpler suites that contained
only main effects if we also tested previously published suites that
included interactions. We tested suites that contained only linear
terms if we tested previously published suites that contained
squared terms without linear terms. Ganio et al. (2015) noted that
istic regression models applied to data from corresponding tree species and fire types.

Tested on source population
subset of Oregon data

Tested on all trees of source
species in Oregon data

95% CI for AUC AUC 95% CI for AUC AUC

0.61–0.73 0.67 0.62–0.68 0.65
h (1990) 0.63–0.74 0.69 0.63–0.70 0.66
der (1990) 0.46–0.59 0.52 0.55–0.62 0.58
) 0.62–0.73 0.68 0.64–0.70 0.67

0.67–0.77 0.72 0.66–0.72 0.69

0.60–0.68 0.64 0.60–0.67 0.64
ey) 0.66–0.73 0.70 0.67–0.74 0.70

0.72–0.79 0.75 0.73–79 0.76
4) 0.62–0.70 0.66 0.59–0.66 0.62
2) 0.63–0.71 0.67 0.61–0.68 0.64
993) 0.61–0.69 0.65 0.58–0.65 0.62

0.75–0.80 0.77 0.75–0.80 0.77
model 1) 00.65–0.71 0.68 0.65–0.71 0.68
model 2) 0.64–0.71 0.68 0.64–0.71 0.68

0.53–0.92 0.72 0.60–0.65 0.62
0.41–0.77 0.59 0.58–0.64 0.61
0.57–0.88 0.72 0.76–0.80 0.78

05) 0.78–0.82 0.80 0.77–0.81 0.80
0.54–0.59 0.57 0.53–0.59 0.56
0.80–0.84 0.82 0.80–0.84 0.82
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variables whose distributions overlap for live and dead trees are not
good discriminators. Our plots indicated that this was the case for
themaximumheight of bole scorch (BSH) andwenoted thepoordis-
criminatory ability of previously published models tested with our
data. In an effort to reduce the number of models under considera-
tion we chose to not use this variable.

We assessed support for each newmodel with the change in the
AIC statistic (DAIC, Burnham et al., 2011) between the model in
question and the model with the lowest AIC statistic. We always
included a null model (no covariates) in the ranking. Models with
DAIC statistics between 0 and 2–7 are considered to be equally
well supported by the data (Burnham et al., 2011). We summarized
the predictive ability of each model using a 10-fold cross-validated
version of the AUC statistic and its 95% confidence interval (James
et al., 2013). Cross-validation estimation fits the model using 90%
of the data, estimates AUC with the withheld 10%, repeats this
for each 10% subset and estimates the cross-validated AUC statistic
from the multiple estimates from each subset. Cross-validation
reduces bias that occurs when assessing predictive ability using
data from which the model was built.

All analyses were carried out using PROC GENMOD and PROC
LOGISTIC in SAS� Version 9.4 for Windows (copyright � 2013,
SAS Institute Inc. SAS and all other SAS Institute Inc. product or ser-
vice names are registered trademarks or trademarks of SAS Insti-
tute Inc., Cary, NC, USA).
2.3.5. Classification rates for model evaluation
A tree is classified as dead if the predicted probability of death

from the regression model is greater than a predetermined deci-
sion criterion; we used a decision criterion of 0.5. We calculated
the overall correct classification rate as the percent of correctly
classified live and dead trees out of all classified trees and the over-
all error rate as the percent of incorrectly classified trees. We cal-
culated sensitivity (percent of dead trees correctly predicted to
be dead) and specificity (percent of live trees correctly predicted
to be alive). We also calculated the correct mortality prediction
rate as the percent of truly dead trees out of the total number of
trees predicted to be dead and the incorrect live prediction rate
as the percent of dead trees incorrectly predicted to be alive. The
two types of misclassification errors, dead trees predicted as live
(1-Sensitivity) or live trees predict as dead (1-Specificity), are
inversely related. As the decision criterion increases, for example
from 0.5 to 0.95, the number of live trees that are predicted to be
dead decreases but the number of dead trees that are predicted
to be alive increases. The decision criterion of 0.5 minimizes 1-
Sensitivity and maximizes 1-Specificity.

We calculated classification rates for the Scott guidelines two
ways. First, rates were obtained by classifying only those trees with
a low probability of survival as dead. Secondly, we also classified a
tree as dead if its score fell below the midpoint of the moderate
probability of survival class. We used the latter method since
Scott et al. (2002) assume that 50% of the moderate survival group
will ultimately die from fire injury.

We calculated classification rates for our best Douglas-fir and
best ponderosa pine logistic regression models and for the Malheur
model. We calculated classification rates for these models applied
to, prescription fire injured trees, wildfire injured trees, and all the
trees in our dataset.
3. Results

3.1. Summary of field data by fire type and region

Ponderosa pine was present in northern Washington wildfires
(688 trees) and prescribed fires (n = 719) and in eastern Oregon
wildfires (n = 1840) and prescribed fires (n = 777). Out of the total
4024 ponderosa pine in our dataset, only 334 (8%) were dead after
3 years. Douglas-fir was present in the Griff fire (n = 59), northern
Washington prescribed (n = 72) and wild fires (n = 149), eastern
Oregon (n = 919) and southwestern Oregon wild fires (n = 2605).
There are 3804 Douglas-fir trees in our sample and 535 (14%) were
dead after 3 years.

Visual comparisons of the distributions for each variable among
region and fire type did not indicate substantial differences, indi-
cating that the role of each variable in any model would not change
among regions (Ganio et al., 2015) for each tree species. Because of
this, and because the sample size was not large for any single
region for either species, we did not test models separately for each
region. The distributions of fire injury variables within each region
and fire type varied slightly (see Appendix A). Despite instructions
to choose trees with some fire injury and green needles, 8 live pon-
derosa pine, 30 live Douglas-fir and one dead Douglas-fir showed
no evidence of crown and bole injury. For ponderosa pine, 2411
live trees (65%) and 114 dead trees (5%) had no dead cambium
samples, while 1835 live Douglas-fir trees (56%) and 148 dead
Douglas-fir trees (28%) have no dead cambium samples.

3.2. Validation of previously published logistic regression models

The prediction of post-fire mortality for specific fire types using
previously developed models was not consistently better than pre-
diction for all trees regardless of the fire type for each species
(Table 1). The overlap in 95% confidence intervals for AUC calcu-
lated from the subsets and from all trees indicates similar average
discriminatory ability. The distribution summaries of fire injury
variables for live and dead trees in our dataset are similar for both
prescription and wild fire and thus models will discriminate
between live and dead trees to the same degree regardless of fire
type.

3.2.1. Ponderosa pine
Direct application of previously published models to trees from

wildfire or prescription fire resulted in a wide range of discrimina-
tory ability for ponderosa pine, from 52% to 77% (Table 1). The
Hood 2008 model provided the best discriminatory ability (0.75–
0.80) but models with similar suites of variables perform almost
as well (e.g. Table 1: Hood et al., 2010). The Saveland and
Neuenschwander (1990) model can do worse than random predic-
tion (AUC: (0.46–0.59)).

Models that included a measure of crown damage typically did
well (e.g. Table 1: Hood et al., 2008, 2010; Thies et al., 2006). Inter-
estingly, models with bole scorch height in them (Conklin and
Geils, 2008; Regelbrugge and Conard, 1993; Saveland et al., 1990)
do not discriminate well and models that used the height or length
of the crown that was scorched (e.g. Conklin and Geils, 2008;
Keyser et al., 2006) did not do as well as those that used the pro-
portion of crown volume that was damaged.

3.2.2. Douglas-fir
The most effective previously published model for Douglas-fir

(Table 1: Hood et al., 2008) had an average discriminatory ability
of more than 80% and both included percent of crown volume
scorched, cambium kill rating and some measure of the presence
of Douglas-fir beetle. Over all models, there was a wide range of
average discriminatory ability (AUC), from slightly above 50%
(Ryan and Amman, 1994) to over 80% (Hood et al., 2008). For some
models (e.g., Kobziar et al., 2006; Ryan and Amman, 1994) the
lower confidence limit indicates that the average discriminatory
ability can be only slightly better than a coin toss. Our sample size
of Douglas-fir from prescribed fire was small (149) so that the pre-
cision of the AUC from models originally created from prescription
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fires was poor but it increased when these models are applied to
our larger sample of Douglas-fir.

All Douglas-fir models used DBH or a transformation of DBH
(bark thickness in Reinhardt and Ryan, 1988; Ryan and
Reinhardt, 1988; Ryan and Amman, 1994) and all models used a
proportion of the crown volume that was damaged, except for
Bevins (1980) which used the maximum height of the crown that
was damaged. The discriminatory ability of the models using only
bark thickness (calculated from DBH) and percent crown volume
scorched (Ryan and Amman, 1994) was greatly improved when
the cambium kill rating was included in the model (Raymond
and Peterson, 2005).

3.3. New ponderosa pine logistic regression models

For both tree species, the ten-fold cross validated AUC and the
DAIC statistic ranked models similarly (Tables 2 and 3). While
DAIC ranks the support in the data for the model, we gave priority
to the 10-fold cross-validated AUC statistic since our ultimate goal
is correct classification. The best-supported new models for pon-
derosa pine (Models 1 and 2, Table 2) contains cambium kill rating,
the presence of beetles and squared terms for the percent of crown
volume scorched and have an average predictive ability of 80%.
Model 2 contains a linear term for percent crown volume scorched
but Model 1 does not. We tested Model 1 without the linear term
in contrast to standard statistical practice (linear terms when
higher order terms are also included), because it was the best suite
of variables suggested by previously published models. However,
the inclusion of the linear term allows curvature to be more
Table 2
Ten-fold cross-validated predictive ability (AUC), 95% confidence intervals and data sup
(cvsperc), the number of tree quadrants with dead cambium (ckr), presence of mountain
presence of red turpentine beetle 1 year post-fire (rtb1), the diameter at breast height i
maximum height of bole scorch as a proportion of tree height (bsp), bark thickness rating c
length scorched (clsperc), % of the bole circumference that is charred (char), bole char sev
100th percentile of the percent of crown length scorched (clsperc90, clsperc100 respective
indicator for 5th or 6th mistletoe rating (dmr4, dmr6 respectively).

Model ID Ponderosa pine model Predic
Variables in model 95% C

1 cvsperc2 ckr beetle3 0.76–
2 cvsperc cvsperc2 ckr beetle3 0.77–
3 cvsperc ckr beetle3 0.76–
4 cvsperc cvsperc2 ckr rtb1 0.75–
5 cvsperc2 ckr rtb1 0.76–
6 cvsperc ckr rtb1 0.75–
7 cvsperc ckr dbhcm rtb1 0.75–
8 cvsperc cvsperc2 ckr 0.74–
9 cvsperc ckr 0.74–
10 ckr beetle3 0.70–
11 cvsperc cvsperc2 beetle3 0.67–
12 ckr 0.65–
13 cvsperc beetle3 0.67–
14 nsp bsp 0.65–
15 cvsperc cvsperc2 0.63–
16 cvsperc cvsperc2 dbhcm * cvsperc 0.62–
17 cvsperc cvsperc2 dbhcm 0.61–
18 cvsperc cvsperc2 dbhcm dbhcm * cvsperc 0.62–
19 btf btf2 cvsprop 0.5–0
20 dbhcm clsperc char 0.64–
21 cvsperc chups 0.65–
22 cvsperc 0.64–
23 cvsperc dbhcm 0.64–
24 cvsperc dbhcm * cvsperc 0.64–
25 dbhcm clsperc dbhcm * clsperc 0.52–
26 dbhcm clsclass dmr 0.61–
27 clsperc90 claspec100 bcc2 dmr5 dmr6 0.62–
28 beetle3 0.56–
29 dbhcm bshm 0.61–
30 dbhcm 0.51–
31 null 0.47–
general than what is described by its exclusion. Therefore, we sug-
gest that Model 2 may be more appropriate since these models are
used for prediction for new data sets in which the curvature may
differ. The same model but without a squared percent crown vol-
ume scorch term (Model 3) was less well supported (DAIC = 15.61)
but provided similar average discriminatory ability. Estimates of
coefficients and 95% profile confidence intervals for model 2 are
provided in Table 4.

Average predictive ability for single variable models range from
55% for DBH (Model 30) to 69% for cambium kill rating (Model 12).
Single variable models predict, on average, as well as suites of mul-
tiple variables suggested by previous research. For example, Model
12 contains only cambium kill rating but discriminates on average
as well as Model 23 (percent crown volume scorched, DBH) and
Model 14 (the proportion of injured crown length and the bole
scorch proportion). For our fire-injured trees, single variable mod-
els do not discriminate well but they do no worse than other more
complex models.

The best-supported two-variable model (Table 2, Model 9) con-
tains cambium kill rating and percent crown volume scorched
(DAIC = 68.56) and has a relatively high average predictive ability
of 77%. When an indicator of beetle presence is added to this set
of variables the DAIC improves by approximately 35 units
(68.56–33.20) for presence of red turpentine beetles (Model 6)
and by approximately 51 units for the presence of beetles in the
first 3 years (Model 3) but the predictive ability for these 3 variable
models increases only slightly to 78% and 79% for presence of red
turpentine beetle and presence of beetles in the first 3 years
respectively. So while the presence of beetles increases the support
port (DAIC) for ponderosa pine regression models using, % crown volume scorched
pine beetle, red turpentine beetle or Ips. sp. beetles 1–3 years post-fire (beetle3), the
n centimeters (dbhcm), the proportion of the crown height with scorched needles,
alculated from dbh (0.0376 + 0.0584 * DBH (inches), cvsperc/100 (cvsprop), % of crown
erity rating (1–4) rating on the uphill side of tree (chups), indicator for the 90th and
ly), average bole scorch rating over 4 quadrants when bole scorch was present (bcc),

tive Ability Model support
I for 10-fold CV AUC 10-fold CV AUC Delta AIC

0.82 0.80 0.00
0.82 0.80 0.55
0.82 0.79 15.61
0.81 0.78 16.60
0.81 0.78 16.66
0.81 0.78 33.20
0.81 0.78 34.96
0.80 0.77 53.07
0.80 0.77 68.56
0.77 0.74 119.01
0.73 0.70 177.47
0.72 0.69 187.63
0.74 0.70 198.24
0.72 0.69 240.43
0.70 0.66 249.47
0.69 0.66 250.75
0.69 0.65 251.16
0.69 0.65 252.74
.71 0.69 259.57
0.71 0.67 266.50
0.71 0.68 266.56
0.71 0.67 270.92
0.70 0.67 272.70
0.70 0.67 272.90
0.69 0.66 280.63
0.68 0.64 287.23
0.69 0.65 308.29
0.63 0.59 325.52
0.67 0.64 344.64
0.58 0.55 416.42
0.52 0.50 419.22



Table 3
Ten-fold cross-validated predictive ability (AUC), 95% confidence intervals and data support (DAIC) for Douglas-fir regression models using % crown volume scorched (cvsperc),
diameter at breast height in centimeters (dbhcm), presence of Douglas-fir beetle 1–3 years post-fire (dfbar3), the number of tree quadrants with dead cambium (ckr), bark
thickness (btr).

Model ID Douglas-fir model Predictive Ability Model support
Variables in model 95% CI for 10-fold CV AUC 10-fold CV AUC Delta AIC within group

1 cvsperc cvsperc2 cvsperc3 ckr dbhcm dfbar3 dfbar3 * dbhcm 0.84–0.88 0.86 0.00
2 cvsperc cvsperc2 cvsperc3 ckr dbhcm dfbar3 0.84–0.88 0.86 13.29
3 cvsperc ckr dbhcm dfbar3 dfbar3 * dbhcm 0.84–0.88 0.86 26.64
4 cvsperc cvsperc2 ckr dfbar3 0.84–0.89 0.86 28.73
5 cvsperc cvsperc2 ckr dbhcm dfbar3 0.84–0.88 0.86 30.03
6 cvsperc ckr dfbar3 0.84–0.88 0.86 38.52
7 cvsperc ckr dbhcm dfbar3 0.84–0.87 0.86 39.71
8 cvsperc cvsperc2 ckr 0.81–0.85 0.83 150.63
9 cvsperc cvsperc2 ckr dbhcm 0.81–0.85 0.83 150.79
10 cvsperc ckr dbhcm 0.81–0.85 0.83 159.68
11 cvsperc ckr 0.81–0.85 0.83 159.70
12 cvsperc cvsperc2 dfbar3 0.79–0.83 0.83 287.73
13 cvsperc cvsperc2 dbhcm dfbar3 0.80–0.84 0.82 287.73
14 cvsperc cvsperc3 dfbar3 0.79–0.83 0.81 289.55
15 cvsperc dbhcm dfbar3 0.80–0.84 0.82 296.46
16 cvsperc dfbar3 0.79–0.83 0.81 298.07
17 cvsperc cvsperc2 dbhcm 0.77–0.81 0.79 405.67
18 btr cvsperc cvsper2 0.76–0.81 0.79 405.68
19 cvsperc cvsperc2 0.76–0.81 0.78 405.78
20 btr cvsperc 0.77–0.81 0.79 412.30
21 btr btr2 cvsperc 0.76–0.80 0.78 412.62
22 cvsperc 0.76–0.81 0.78 413.02
23 dbhcm cvsperc 0.49–0.84 0.66 413.14
24 cvsperc dbhcm 0.76–0.81 0.79 413.14
25 btr cvsperc 0.77–0.81 0.79 413.14
26 btr btr2 cvsperc 0.76–0.81 0.78 413.58
27 ckr dbhcm dfbar3 0.75–0.79 0.77 449.29
28 ckr dfbar3 0.73–0.78 0.75 449.98
29 ckr 0.67–0.73 0.70 637.06
30 ckr dbhcm 0.68–0.73 0.71 637.10
31 dfbar3 dbhcm 0.62–0.68 0.65 766.03
32 dfbar3 0.54–0.60 0.57 790.46
33 dbhcm cshft 0.6–0.65 0.62 900.13
34 dbhcm 0.54–0.59 0.56 954.47
35 null 0.47–0.52 0.50 977.07

Table 4
Estimated coefficients and 95% likelihood-profile confidence intervals (in square braces below estimates) in selected post-fire mortality logistic regression models. CVSperc is the
percent of the crown volume killed, CKR is the number (out of 4) cambium samples that were dead, BEETLE3 is an indicator variable (0/1) for the presence of mountain pine
beetle, red turpentine beetle and Ips in years 1–3, DFBAR3 is an indicator variable (0/1) for the presence of Douglas-fir beetle in years 1–3. A ‘‘–” indicates the variable was not
used in that model. Model number refers to Model ID in Tables 2 and 3 for reference.

Explanatory variable

Intercept CVSperc CVSperc2 CKR BEETLE3 DFBAR

Douglas-fir Recommended model with cambium
damage

�3.8824 0.0325 – 0.6757 – 2.2733

(Model 6) [4.11, �3.65] [0.030, 0.035] [0.59, 0.76] [1.87, 2.68]
Recommended model without
cambium damage

�2.927 0.0148 0.00021 – – 2.1282

(Model 12) [�3.12, �2.75] [0.003, 0.026] [0.0002, 0.00008] – – [1.75, 2.51]

Ponderosa pine Recommended model with cambium
damage

�3.2657 �0.0083 0.00031 0.6356 0.0664 –

(Model 2) [�3.53, �3.001] [�0.022, 0.005] [0.002, 0.0005] [0.54, 0.73] [0.38, 0.64]
Recommended best model without
cambium damage

�2.6016 �0.0102 0.00034 0.5652

(Model 11) [�2.83, �2.38] [�0.02, 0.0029] [0.0002, 0.0005] [0.44, 0.69]
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for the model, it produces only a slight change in average predic-
tive ability. The inclusion of DBH in models for ponderosa pine
did not improve the predictive ability or the support in the data.

3.4. New Douglas-fir logistic regression models

We identified a simple model that uses percent of crown vol-
ume scorched, cambium kill rating and the presence of Douglas-
fir beetle in the first 3 years (Table 3, Model 6) as the recom-
mended model for Douglas-fir. Eighteen of the 35 tested
Douglas-fir models had an average predictive ability (AUC) greater
than 80% but they varied widely in complexity. In a predictive set-
ting, simple models with good discrimination may be preferred
over complicated models (James et al., 2013). Therefore, we prefer
the simple model over more complex models with more terms or
interactions since the average discriminatory ability does not
increase with model complexity. Estimates of coefficients and
95% profile-likelihood confidence intervals are provided in Table 4.



Table 5
Classification table and prediction percentages from the Scott guidelines.

Overall correct
classification (%)

Overall error
rate (%)

Sensitivity (%) Specificity (%) Correct mortality
prediction rate (%)

Incorrect live
prediction
rate (%)

Number
observed dead

Number
observed alive

Total
number

Prediction
category

Ponderosa pine 3 year post fire mortality only trees with low probability of survival classed as dead
<53.34 cm DBH 0 0 0 Dead

262 2582 2844 Alive
90.8 9.2 0.0 100.0 – 9.2 262 2582 2844 Total
P53.34 cm DBH 0 0 0 Dead

126 1054 1180 Alive
89.3 10.7 0.0 100.0 – 10.7 126 1054 1180 Total

Ponderosa pine 3 year post fire mortality; trees scoring below midpoint of moderate survival classed as dead
<53.34 cm DBH 4 45 49 Dead

258 2537 2795 Alive
89.3 10.6 1.5 98.3 8.1 9.2 262 2582 2844 Total
>53.34 cm DBH 0 15 15 Dead

126 1039 1165 Alive
88.0 11.9 0 98.6 0 10.8 126 1054 1180 Total

Douglas-fir 3 year post-fire mortality; trees with low probability of survival classed as dead
<50.8 cm DBH 10 82 92 Dead

216 1595 1811 Alive
84.3 15.6 4.4 95.1 10.9 11.9 226 1677 1903 Total
P50.8 cm DBH 0 18 18 Dead

255 1628 1883 Alive
85.6 14.4 0.0 98.9 0.0 13.5 255 1646 1901 Total

Douglas-fir 3 year post fire mortality; trees scoring below midpoint of moderate survival classed as dead
<50.8 cm DBH 48 356 404 Dead

178 1321 1499 Alive
71.9 28.0 21.2 78.9 11.9 11.9 226 1677 1903 Total
P50.8 cm DBH 25 167 192 Dead

230 1479 1709 Alive
79.1 20.9 9.8 89.9 9.8 13.4 255 1646 1901 Total

Overall correct classification: (# Observed dead & predicted dead + # Observed alive & predicted alive)/Total # of trees.
Overall error rate: (# Observed dead & predicted alive + # Observed alive & predicted dead)/Total # of trees.
Sensitivity: (# Observed dead & predicted dead/Total # of dead trees); Specificity: (# Observed live & predicted live/Total # of live trees).
Correct mortality prediction rate: (# Observed dead & predicted dead/Total # of predicted dead trees); Incorrect Live prediction rate: (# Observed dead & predicted alive/Total # of predicted alive trees).
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In contrast to ponderosa pine, the best single-variable model
uses percent crown volume scorched, and not cambium kill rating
(Table 3, Model 22). Although the predictive ability of this model is
78% (95% CI [0.76–0.81]) it is not well supported (DAIC = 413.02);
it is ranked 22nd in our set of 35 models.

The 2-variable model with cambium kill rating and percent
crown volume scorched (Table 3, Model 11) has much greater sup-
port than any one-variable model (DAIC = 159.7) and the predic-
tive ability is 83%. The addition of DBH to this 2 variable model
(Model 9) does not increase the support in the data. However,
when a measure of the presence of Douglas-fir beetle in the first
three years is included (Model 6), support improves by 121 units
(159.7–38.52) and predictive ability increases to 86% [0.84, 0.88].
The addition of a squared term for percent crown volume scorched
to the 3-variable model of cambium kill rating, percent crown vol-
ume scorched and the presence of Douglas-fir beetle in the first
3 years improved the support (Model 4, DAIC = 28.73).

All of the previously published suites of variables for Douglas-fir
contained DBH or its transformation, bark thickness. We tested a
number of models that did not include DBH and two of the 8 best
supported models did not include DBH (Models 4 and 6). The addi-
tion of DBH to these two models did not improve the support for
the model (e.g. compare Model 4 with Model 5).

The best supported set of variables (Model 1) was originally
proposed by Hood et al. (2008) and includes cambium kill rating,
DBH, presence of Douglas-fir beetle, linear, quadratic and cubic
terms for percent crown volume scorched and allows the effect
of DBH to differ between the presence or absence of Douglas-fir
beetle. We included simpler variants of this set of variables in
our set of models to assess the degree to which the more compli-
cated model was warranted. The average predictive ability of the
nine best supported models have high, and identical predictive
ability of about 86% (95% CI is [0.84–0.88]) although the DAIC ran-
ged from 13.29 to 68.56. Since large DAIC values (>20) indicate the
potential for bias and models that fit well are not necessarily good
discriminators (Ganio et al., 2015), our results suggest that models
with some bias may still discriminate well. In particular, simple
models that don’t include DBH, the interaction of DBH with beetle
presence, or squared or cubic terms provide equivalent average
discrimination compared to those that do. For these reasons we
recommend using the simplest model with the highest predictive
ability.
Table 6
Ponderosa pine and Douglas-fir classification and prediction percentages from recommen

Overall correct
classification (%)

Overall
error rate
(%)

Sensitivity
(%)

Specificity
(%)

Correct mortality
prediction rate (%)

Ponderosa pine Malheur model (Thies et al., 2006) Wild and prescription fires

89.0 11.0 23.7 95.0 29.8

Ponderosa pine Model #1 Wild and prescription fires

92.0 8.0 12.3 99.2 58.6

Douglas-fir Model #6 Wild and prescription fires

88.7 11.3 35.5 97.5 69.6

Overall correct classification: (# Observed dead & predicted dead + # Observed alive & p
Overall error rate: (# Observed dead & predicted alive + # Observed alive & predicted d
Sensitivity: (# Observed dead & predicted dead/Total # of dead trees); Specificity: (# O
Correct mortality prediction rate: (# Observed dead & predicted dead/Total # of predicted
# of predicted alive trees).
3.5. Classification rates for Scott guidelines

In general, the Scott guidelines correctly classified live trees but
did poorly when classifying dead trees (Table 5). When only the
trees that fell into the lowest probability of survival category were
classified as dead, the Scott guidelines did not correctly classify any
dead trees but correctly classified all live trees. When the mid-
point of the ‘‘Moderate” class was used, 1.5% of dead trees
<53.34 cm DBH, were correctly predicted dead and 98.3% of live
trees <53.34 DBH were correctly predicted alive (Table 5). For pon-
derosa pine P53.34 cm DBH, no dead trees were correctly pre-
dicted as dead but 98.6% of live trees were correctly predicted as
live.

When the ‘‘Low” probability of tree survival was used as a cutoff
for Douglas-fir, the Scott guidelines accurately classified approxi-
mately 95% of live trees <50.8 cm DBH and correctly classified
4.4% of dead trees (Table 5). When the mid-point of the Moderate
class was used as a cutoff for 3-year mortality, 21.2% of dead trees
and 78.9 of live Douglas-fir <50.8 cm DBH were correctly classified.
For Douglas-fir P50.8 cm DBH, 9.8% of dead trees and 89.9% of live
trees were correctly classified.

3.6. Classification and error rates for recommended logistic regression
models

Comparison of the classification and error rates for our best
models (Table 6) and for the Malheur model applied to prescription
fire injured trees only, wildfire injured trees only and all injured
trees yield similar error rates. Therefore, we present and discuss
error rates for trees from both fire types combined.

3.6.1. Ponderosa pine
For ponderosa pine, the overall correct classification rates

(Table 6) are high and similar for the Malheur model (89%) and
our model (92%). Both models do well at correctly classifying live
trees (specificity) with the Malheur model doing slightly less well
(95%) than our model (99.2%). But both models do a poor job of cor-
rectly classifying dead trees (sensitivity is low) but the Malheur
model (23.7%) does slightly better than our model (12.3%). Of all
trees predicted to be dead, less than a third are truly dead under
the Malheur model (29.8%) and slightly more than half (58.6%)
are truly dead under our model. That is, predictions of dead trees
ded logistic regression models, using a decision criterion of 0.5, for all trees.

Incorrect live
prediction rate (%)

Number
observed
dead

Number
observed
alive

Total
number

Prediction
category

79 186 265 Predicted
dead

255 3504 3759 Predicted
alive

6.8 334 3690 4024 Total

41 29 70 Predicted
dead

293 3661 3954 Predicted
alive

7.4 334 3690 4024 Total

190 83 273 Predicted
dead

345 3186 3531 Predicted
alive

9.8 535 3269 3804 Total

redicted alive)/Total # of trees.
ead)/Total # of trees.
bserved live & predicted alive/Total # of live trees).
dead trees); Incorrect Live prediction rate: (# Observed dead & predicted alive/Total
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from our model are more likely to be correct than predictions from
the Malheur model. Of all trees predicted to be alive, 6.8% are actu-
ally dead under the Malheur model while 7.4% are mistakenly clas-
sified under our model.

3.6.2. Douglas-fir
Our model correctly classifies 88.7% of all trees; 97.5% of all live

trees are correctly classified but only 11.3% of dead Douglas-fir are
correctly classified (Table 6). Of all Douglas-fir predicted to be
dead, 69.9% are actually dead and 9.8% of Douglas-fir classified as
live by the model are actually dead. The general result for
Douglas-fir is similar to ponderosa pine; the models do best at cor-
rectly predicting live trees but do poorly when classifying dead
trees.

For both tree species, the overall high correct classification rates
are driven by the correct classification of live trees. These results
are in agreement with the visual examination of the distributions
of the explanatory variables (Appendix C) which show significant
overlap between dead and live trees. For managers seeking to
apply these models to correctly predict mortality and survival, it
is important to note that using AUC, without looking at the error
rates could lead one to believe that a model is a good discriminator
for both live and dead trees – but that might not be the case.
4. Discussion

4.1. Previous models

The previously published models predicting Douglas-fir and
ponderosa pine tree mortality are most accurate when they con-
tained measures of crown volume, cambium damage and the pres-
ence of beetles. For ponderosa pine, the top performing model
(Hood et al., 2010) outperformed the Malheur model (Thies et al.,
2006) even though the Malheur model was developed and tested
on fire-injured trees in the Pacific Northwest. The Malheur model
for ponderosa pine was previously validated on a sample of
10,109 fire-injured trees (Thies and Westlind, 2012) where 65%
of dead trees were correctly classified as dead and 80% of all trees
predicted to be dead were actually dead. The trees in our dataset
were larger in diameter than those from which the Malheur model
(Thies et al., 2006) was built and this may account for the differ-
ence in discrimination.

To our knowledge the Scott guidelines have not been widely
validated except for what we report here. The Scott guidelines
and our logistic regression models resulted in similar error rates
and classification ability. In general, the large proportion of live
trees in our dataset demonstrated a wide range of values for the
fire injury variables and there were live trees with significant
amounts of fire injury. This resulted in low error rates (<10%) when
classifying live trees but very large error rates (>80%) when classi-
fying dead trees. In general, the logistic regression models slightly
outperformed the Scott guidelines when classifying dead trees but
both models correctly classified live trees about 90% of the time.

4.2. Best new predictive models

The bests sets of predictive variables for new models were sim-
ilar to those in the best previously published models. For pon-
derosa pine, models that included percent of crown volume
scorched, cambium kill rating and the presences of beetles outper-
formed models without these variables and the model is improved
with the addition of a squared term for the percent of crown vol-
ume scorched, indicating curvature. For Douglas-fir, many new
models produced high and similar predictive ability. In addition,
some but not all, of the top models for Douglas-fir contained
DBH. The top two best supported Douglas-fir models contained
cubic terms for crown volume scorched, DBH and interaction
between DBH and the presence of beetles. However, much simpler
models, without interactions, DBH or cubic terms had the same
high predictive ability (86%) for Douglas-fir. Since predictive mod-
els are to be applied to new and independent samples of trees,
models with specialized curvature may be over-fit to our sample.
We resort to the principle of parsimony and recommend the sim-
ple models.

Our results corroborate previous research from other regions
where tree crown fire injury and cambium injury are consistently
useful in the prediction of post-fire tree mortality investigation
(Hood et al., 2008, 2010; Thies and Westlind, 2012). Many previ-
ously published models for ponderosa pine used DBH but this vari-
able did not add to the discriminatory ability for our data. Some
previously published Douglas-fir models used more than three
explanatory variables or relied on interactive terms (Hood et al.,
2008; Hood and Bentz, 2007). Our models with similar suites of
variables have the same discriminatory ability as simpler models
suggesting that interaction terms are not necessary for good dis-
crimination. For ponderosa pine, our recommended model is more
complex than a previously published model (Hood et al., 2008) in
that it incorporates linear and quadratic crown scorch terms to
model curvature more generally. For Douglas-fir, we recommend
a model that is simpler than previously published models (Hood
et al., 2008; Hood and Bentz, 2007) but which discriminates just
as well.

Measuring cambium damage is time-consuming and other
authors have considered models without this variable (e.g. Thies
et al., 2006). In our investigation, for both tree species, models
without cambium damage had much less model support and had
lower discriminatory abilities indicating a trade-off between
expense and accurate discrimination. Practitioners may want to
assess the reduction in measurement expense compared to the
increase in incorrect prediction rates. Depending on the situation,
the reduction in field costs may offset the increase in prediction
error (either correct mortality rate or incorrect prediction rate)
and thus make the use of a model without cambium damage
advantageous. For Douglas-fir, the Ryan and Reinhardt model
(Ryan and Reinhardt, 1988) does not use cambium damage (only
crown damage and DBH via the linear transformation to bark
thickness) and has been extensively used in management settings
(Lutes, 2016). Although this model was not highly ranked, it did
provide reasonable average discriminatory ability of 76–80%. But
models that include cambium damage can significantly improve
the discrimination.

4.3. Error rates

The error rates for the Scott guidelines and our logistic regres-
sion models were similar. In general, a large proportion of our live
trees demonstrated a wide range of fire injury and live trees had
significant amounts of fire injury. This resulted in low error rates
when classifying live trees but high error rates (>80%) when classi-
fying dead trees. In general, the logistic regression models slightly
outperformed the Scott guidelines when classifying dead trees but
both models correctly classified 90% of live trees and about 10% of
dead trees.

Hood et al. (2010) noted that statistical models should be used
in concert with other considerations for stand management,
emphasizing that error rates change as decision criteria change.
No matter what rule or model is used, the classification of a contin-
uous probability into individual (binary) tree mortality will always
incur the types of errors described in Table 6. Therefore, land
managers would be well-served to develop an understanding of
the trade-offs between specificity and sensitivity and the more
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practical trade-offs between the correct mortality prediction rate
and the correct survival prediction rate. For example, in salvage
operations, managers must assess the relative cost of predicting a
dead tree as live (resulting in a loss of revenue) versus predicting
a live tree as dead (resulting in salvage logging of live trees). On
the other hand, in a campground, mistakenly predicting a dead tree
as alive may be a significant safety risk and far outweigh the risk of
removing a potential live tree. In the first case, minimizing the
incorrect prediction of live trees may be most important while in
the second case, minimizing the incorrect prediction of dead trees
may be most important. While choosing a standard decision crite-
rion such as 0.5 is helpful to compare models, the application of the
model could include a choice of the decision criterion based on the
costs of the errors (Hand, 2009).
4.4. Ramifications of tree sampling protocol

The tree sampling protocol can affect the error rates and dis-
criminatory ability of the model. Hood et al. (2010) deliberately
selected a balanced sample of fire-injured trees along a range of
fire injury that included high and low levels of injury; Thies and
Westlind (2012) obtained an unbiased sample of trees from within
areas of moderate fire severity where tree crowns were not totally
consumed but where there was evidence of fire in the understory.
Sampling the entire distribution of fire injury allows the range of a
fire-injury variable for dead trees to extend beyond the range for
live trees and potentially separate the distributions of the variable
between live and dead trees resulting in a high proportion of accu-
rately predicted live or dead trees (Ganio et al., 2015). The discrep-
ancy between previously reported low error rates for the Malheur
model (Thies et al., 2006; Thies and Westlind, 2012) and the high
error rates from our data may be due to differences in sampling.
Since our sampling protocol did not prescribe that trees with little
and lethal fire injury be sampled, we are more likely to find the dis-
tributions of a discriminating variable to overlap between live and
dead trees increasing the likelihood that a dead tree is classified as
alive. Our sampling protocol was chosen to replicate the manage-
ment scenario where management personnel cannot identify trees
as clearly alive or dead. But a small proportion of our trees ulti-
mately died; 8.3% for ponderosa pine (compared to 88% in Hood
et al., 2010 and 16% in Thies and Westlind, 2012) and 14.3% for
Douglas-fir (compared to 39% in Hood et al., 2007b) and the range
of fire injury for trees which survive for 3 years is surprisingly
wide.

Individual tree selection was determined by field personnel. The
lack of specific criteria for transect or tree selection within a fire
suggest the possibility that field crews unknowingly biased the
sample toward live trees. The site selection criterion of no planned
post-burn activities could also have biased our samples toward live
trees if post-burn management is more likely in higher severity
fires. Cambium damage is a good indicator of potential tree mortal-
ity but our data suggest that within the region and fires that we
sampled, trees can live even with significant amounts of cambium
Table A1
Fire name, year of fire, fire location (latitude, longitude) and average annual rainfall for th

Fire Year Lati

Apple 2002 43.2
B & B Complex 2006 44.4
Biscuit 2002 42.3
Blossom 2006 42.7
Bonanza 2004 45.0
Bull Spring 2003 44.6
Clark 2003 44.0
damage. In practice, it is this middle range of external tree injury
where classification will be difficult and where a measure of signif-
icant internal damage (such as a cambium injury rating of 3) can
improve classification.

5. Conclusions

Our new models for Oregon and Washington and the validation
of existing models for Douglas-fir and ponderosa pine suggest that
the percent of the crown volume scorched and the cambium kill
rating are good predictors of post-fire tree mortality for both tree
species. The presence of beetles in year 3 improves the average
predictive ability and is present in our recommended model. For
Douglas-fir, models that included these variables had average pre-
dictive ability above 80% but for ponderosa pine, average predic-
tive ability is not above 80% suggesting that it can be more
difficult to identify dying ponderosa pine trees.

The two types of errors that can occur (i.e., falsely predicting a
dead tree will live and falsely predicting a live tree will die) come
with different costs to land managers that depend on the applica-
tion. Land managers using a model to predict mortality may wish
to change the decision criterion for a particular application from
the typical 50% to something higher in order to control the costliest
error in their application.

Since statistical models are subject to sampling variation the
estimated coefficients in logistic regression models can vary due
to the particular trees that were included in the sample. Models
may have different coefficients and still yield similarly accurate
classifications of post-fire mortality. A practical prudent approach
to the prediction of post-fire tree mortality could be to identify
multiple models that use similar variables and apply the models
to the trees needing classification. Trees for which there is some
disagreement among models may need closer examination and
trees for which multiple models provide the same classification
may be more likely to be accurately classified.
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Appendix A. Characterization of fires

See Tables A1 and A2.
e location of fire.

tude, longitude Annual average (inches)

5357, �122.69198 54.33
971418, �121.7626360 52.76
2976479, �123.6620449 105.91
794056, �123.9528139 96.46
01220, �121.992419 94.49
16541, �119.007998 21.65
47347, �122.698135 59.06
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Table A2
Summary of tree data by tree species and fire. Mean, minimum and maximum values of diameter at breast height (DBH), percent of crown volume scorched (%CVS, by volume),
proportion of needles that are scorched (NSP) and the proportion of the bole that is scorched (BSP).

Type Region Fire #
Trees

Mean
DBH

Min
DBH

Max
DBH

Mean %
CVS

Min %
CVS

Max %
CVS

Mean
NSP

Min
NSP

Max
NSP

Mean
BSP

Min
BSP

Max
BSP

Ponderosa pine
RX N WA Nile 273 33.1 15.7 82.0 50.0 5.0 98.0 0.36 0.00 1.00 0.21 0.01 0.75
RX E OR Sisters 784 55.2 13.0 109.2 31.5 0.0 95.0 0.29 0.00 1.00 0.14 0.00 0.78
RX N WA SquawCreek 446 37.2 15.5 60.5 44.9 0.0 95.0 0.39 0.00 1.00 0.21 0.01 0.57
WILD SW OR Biscuit 11 58.4 12.7 91.4 2.6 0.0 29.0 0.02 0.00 0.27 0.08 0.02 0.14
WILD E OR B&B 613 53.1 18.3 119.4 27.2 0.0 100.0 0.25 0.00 1.00 0.23 0.00 0.94
WILD E OR BullSpring 113 54.2 16.8 96.3 22.4 0.0 100.0 0.11 0.00 1.00 0.16 0.00 0.88
WILD E OR Columbia 174 55.2 17.8 114.3 15.5 0.0 99.0 0.15 0.00 1.00 0.18 0.00 0.61
WILD DavisLake 429 64.1 18.0 125.0 45.7 0.0 99.0 0.41 0.00 1.00 0.27 0.01 0.83
WILD E OR Egley 527 50.6 17.8 99.1 23.7 0.0 99.0 0.22 0.00 1.00 0.13 0.00 0.75
WILD N WA Fischer 118 40.2 21.3 71.9 37.5 0.0 90.0 0.30 0.00 0.82 0.25 0.02 0.72
WILD E OR Grapple 137 57.8 20.3 99.1 16.9 0.0 99.0 0.18 0.00 0.96 0.10 0.01 0.84
WILD N WA Hud2 216 44.1 17.5 115.3 14.0 0.0 95.0 0.13 0.00 0.94 0.15 0.01 0.54
WILD E OR Monument 433 40.6 20.3 114.3 11.5 0.0 95.0 0.10 0.00 1.00 0.12 0.00 1.00
WILD Pearrygin 356 43.7 19.3 77.0 48.3 0.0 95.0 0.42 0.00 0.96 0.25 0.03 0.67
WILD E OR School 466 39.2 18.8 106.2 16.5 0.0 95.0 0.16 0.00 0.95 0.14 0.00 1.00
WILD E OR ShakeTable 45 70.3 38.1 121.9 8.0 0.0 58.0 0.10 0.00 0.67 0.13 0.00 0.51
WILD SW OR TillerCo 20 51.1 21.6 125.0 25.6 0.0 83.0 0.25 0.00 0.83 0.05 0.00 0.13

Douglas-fir
RX N WA Nile 91 40.3 21.1 94.0 47.0 0.0 90.0 0.26 0.00 1.00 0.20 0.05 0.56
RX N WA SquawCreek 59 38.1 18.5 61.0 28.3 0.0 95.0 0.22 0.00 0.82 0.15 0.04 0.66
WILD SW OR Apple 273 70.7 12.7 170.2 13.9 0.0 93.0 0.14 0.00 0.94 0.16 0.00 0.94
WILD SW OR Biscuit 530 55.8 12.7 203.2 31.3 0.0 99.0 0.31 0.00 0.98 0.18 0.00 0.65
WILD SW OR Blossom 261 56.6 14.0 130.3 5.7 0.0 80.0 0.06 0.00 0.80 0.18 0.00 0.95
WILD E OR BnB 310 54.7 21.6 135.1 17.0 0.0 95.0 0.15 0.00 1.00 0.16 0.00 0.61
WILD Bonanza 101 42.5 22.9 110.2 24.4 0.0 100.0 0.22 0.00 1.00 0.17 0.00 0.40
WILD E OR BullSpring 77 40.9 15.5 102.9 37.6 0.0 100.0 0.24 0.00 1.00 0.19 0.00 1.05
WILD SWOR Clark 705 72.5 14.7 210.8 23.5 0.0 99.0 0.21 0.00 1.00 0.17 0.00 0.79
WILD E OR Columbia 234 51.8 15.2 137.2 27.0 0.0 99.0 0.26 0.00 1.00 0.15 0.00 0.66
WILD DavisLak 65 62.3 23.4 126.0 39.8 0.0 100.0 0.34 0.00 1.00 0.26 0.01 0.48
WILD N WA Fischer 72 46.3 28.4 80.0 40.0 0.0 90.0 0.28 0.00 0.88 0.30 0.00 0.89
WILD E OR Grapple 44 56.2 10.2 124.5 46.8 0.0 99.0 0.37 0.00 0.91 0.20 0.00 1.00
WILD Griff 59 53.7 26.9 110.0 4.2 0.0 99.0 0.11 0.00 1.00 0.09 0.01 0.43
WILD HermanCr 371 52.8 19.1 111.3 20.4 0.0 99.0 0.17 0.00 0.83 0.13 0.01 0.47
WILD N WA Hud2 8 57.9 34.3 79.5 15.1 0.0 80.0 0.14 0.00 0.56 0.21 0.12 0.27
WILD E OR Monument 11 42.9 30.5 96.5 12.3 0.0 40.0 0.20 0.00 0.69 0.19 0.07 0.36
WILD N WA Pearrygi 6 49.1 43.7 58.4 36.0 1.0 60.0 0.32 0.00 0.70 0.13 0.01 0.18
WILD E OR School 130 38.2 18.0 80.8 15.1 0.0 90.0 0.16 0.00 0.85 0.12 0.00 0.53
WILD E OR ShakeTable 173 58.3 15.2 137.2 26.9 0.0 95.0 0.27 0.00 1.00 0.20 0.00 0.75
WILD SW OR TillerCo 306 60.9 15.5 163.8 12.2 0.0 95.0 0.12 0.00 0.94 0.12 0.00 0.75

Table A1 (continued)

Fire Year Latitude, longitude Annual average (inches)

Columbia Complex 2007 46.277028, �117.756792 33.86
Davis Lake 2003 43.620914, �121.772224 38.58
Egley 2007 43.727393, �119.390993 20.08
Fischer 2004 47.580467157, �120.5646950 24.8
Grapple 2007 44.028851, �119.173970 23.23
Griff 2003 47.876519, �123.540838 58.27
Herman Creek 2003 45.684939, �121.784611 101.57
Hud2 2005 48.3854722, �119.2580028 12.6
Monument 2007 44.569175, �119.535190 14.96
Nile 2004 46.85748228, �121.004983264 27.95
Pearrygin Creek 2005 48.505384321, �120.1336373 15.75
School 2005 46.272495851, �117.6039655 20.47
Shake Table 2007 44.2963639, �119.2479639 21.65
Sisters 2006 44.3249278, �121.6176389 14.57
Squaw Creek 2005 48.103181971, �120.1175468 22.44
Tiller Complex 2009 43.10296367, �122.8549645 50.79
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Appendix B. Descriptions of previously published models

See Tables B1–B6.
Table B1
Descriptions of cited models used to test data from ponderosa pine prescription fires.

Model Yrs post fire Region #
Fires

#
Trees

Model Variable Calculation from our data

Conklin and
Geils (2008)

3 NM 6 1585 Pm = 1/[1 + exp(�(�4.4610 + 1.6827
(CLSperc90) + 3.5171(CLSperc100) + 0.2779
(BCC^2) + 0.8455(DMR5) + 2.3453(DMR6)))]

CLSperc90 Indicator variable (0/1) crown
scorch length of 90%

CLSperc100 Indicator variable (0/1) crown
scorch length of 100%

BCC Average bole scorch rating over 4
quadrants when bole scorch was
present

DMR5 Indicator variable (0/1) for dwarf
mistletoe rating = 5

DMR6 Indicator variable (0/1) for dwarf
mistletoe rating = 6

Harrington and
Hawksworth (1990)a

1 AZ 1 191 Pm = 1/[1 + exp(�(�4.91 � 0.10(DBHin)
+ 0.10(CLSclass) + 0.29(DMR))]

DBHin Diameter at breast height in inches
CLSclass Percent of crown length scorched,

classified into quartiles (0, 25, 50, 75,
100)

DMR Dwarf mistletoe rating
Saveland and

Neuenschwander
(1990)

1 ID 21 194 Pm = 1/[1 + exp(�2.33 + 0.37(DBHcm)
� 0.36(BSHm))]

DBHcm DBH (cm) in 5 cm classes
BSHm Max. crown scorch height (m)

Stephens and
Finney (2002)

3 CA 1 170 Pm = 1/[1 + exp(�(�3.155 � 0.0410(DBHcm)
+ 0.0550(CVSperc)))]

DBHcm Diameter at breast height (cm)
CVSperc Estimated crown volume scorch (%)

Thies et al. (2006) 4 NE OR 6 3415 Pm = 1/[1 + exp(�(�4.4635 + 3.3328(NSP)
+ 6.6203(BSP)))]

NSP Proportion of damaged crown length
based on scorched needles

BSP Maximum bole scorch height as a
proportion to tree height (same as
Regelbrugge and Conard, 1993)

Pm = probability of mortality.
a In the published article (Harrington and Hawksworth, 1990), the initial minus sign that precedes the linear predictor in the formula is missing. However, using that

published model gives an AUC statistic of <50%. This suggests that there is an error in the publication and for this analysis an initial minus sign was included.

Table B2
Descriptions of cited models used to test data from ponderosa pine wild fires.

Model Yrs post fire Region #
Fires

#
Trees

Model Variable Calculation from our data

Finney (1999) 4 MT 3 1750 Pm = 1/[1 + exp(6.411(BT) � 4.891
(BT^2) � 5.799(CVSprop))]

BT BT (in) = �0.0376 + 0.0584 * DBH (inches)
(Ryan, 1982)

CVSprop Crown volume killed (0–1)
Hood et al. (2010)

(Cone)
5 CA 1 (Cone) 926 Pm = 1/[1 + exp(�(�5.4174 + 0.000966

(CVSperc^2) + 0.8160(CKR) + 1.0483(RTB1)))]
CVSperc Crown volume killed (%)
CKR Number (out of 4) dead cambium

samples (Ryan, 1982)
RTB Presence (1) or absence (�1) of red

turpentine beetle in year 1
Hood et al. (2010)

(McNally)
5 CA 1 (McNally) 1079 Pm = 1/[1 + exp(�(�6.3501 + 0.0759

(CVSperc) + 0.2052(CKR) + 0.0455(DBHcm)
+ 1.1866(RTB1)))]

DBHcm Diameter at breast height (cm)
CVSperc Crown volume killed (%)
CKR Number (out of 4) dead cambium

samples (Ryan, 1982)
RTB1 Indicator variable (0/1) for presence

of red turpentine beetle in year 1
Keyser et al.

(2006)
(model4)

5 SD 1 721 Pm = 1/[1 + exp(�(�0.237 � 0.098(DBHcm)
+ 0.027(CLSperc) + 0.022(CHAR)))]

DBH Diameter at breast height (cm)
CLSperc Crown length killed (%)
CHAR Bole circumference charred (%).

Keyser et al.
(2006)
(model 2)

5 SD 1 721 Pm = 1/[1 + exp(�(�1.104 � 0.156(DBHcm)
+ 0.013(CLSperc) + 0.001(DBH * CLSperc)))]

DBHcm Diameter at breast height (cm)
CLSperc Crown length killed (%)
DBH * CLSperc Interaction of DBHcm an CLSperc

Regelbrugge and
Conard (1993)

2 CA 1 825 Pm = 1/[1 + exp(�(1.0205 � 0.0933(DBHcm)
+ 0.2858(BSHm)))]

DBHcm Diameter at breast height (cm)
BSHm Length from ground to highest

point of bole char (m)



Table B4
Descriptions of cited models used to test data from Douglas-fir prescription fires.

Model Yrs post
fire

Region #
Fires

#
Trees

Model Variable Definition

Bevins (1980) 1 MT 1 176 Pm = 1/[1 + exp(�0.1688 + 0.3174(DBHin)
� 0.09321(CSHft))]

DBHin Diameter at breast height (inches)
CSHft Max. crown height that was killed (ft)

Kobziar et al.
(2006)

1 CA 3 163 Pm = 1/[1 + exp(�(4.2076 � 0.2979(DBHcm)
+ 0.0359(TCD)))]

DBHcm Diameter at breast height (cm)
TCD Crown volume killed (%)

Ryan and Reinhardt
(1988)

3 PNW 43 1488 Pm = 1/[1 + exp(0.1344 + 0.9407(BT) � 0.0690(BT^2)
� 0.00542(CVSperc^2))]

BT BT (cm) = 0.065 * DBHcm (Monserud,
1979)

CVSperc Estimated crown (foliage and bud)
volume killed (%)

Table B5
Descriptions of cited models used to test data from Douglas-fir wild fires.

Model Yrs post
fire

Region #
Fires

#
Trees

Model Variable Definition

Raymond and
Peterson (2005)

2 OR 1 244 Pm = 1/[1 + exp(�(�1.540 � 0.079(DBHcm)
+ 0.062(CVSperc) + 1.348(CKR)))]

DBHcm Diameter at breast height (cm)
CVSperc Crown volume killed (%)
CKR Number (out of 4) dead cambium

samples (Ryan, 1982)
Ryan and Amman

(1994)
3 WY 4 125 Pm = 1/[1 + exp(�1.941 + 6.316(1�exp(�0.3937

(BT))) � 0.000535(CVSperc^2))]
BT BT (cm) = 0.065 * DBHcm (Monserud,

1979)
CVSperc Crown volume killed (%)

Table B6
Descriptions of cited models used to test data from Douglas-fir prescription and wild fires combined.

Model Yrs post
fire

Region #
Fires

#
Trees

Model Variable Definition

Hood et al.
(2008)

3 W USA 10 1409 Pm = 1/[1 + exp(�(�1.8912 + 0.07(CVSperc) + 0.0019(CVSperc^2)
+ 0.000018(CVSperc^3) + 0.5840(CKR) � 0.031(DBHcm)
� 0.7959(DFBAR3) + 0.0492(DBHcm * DFBAR3)))]

DBHcm Diameter at breast height (cm)
CVSperc Crown volume killed (%)
CKR Number (out of 4) dead

cambium samples (Ryan, 1982)
DFBAR3 Presence (1) or absence (�1) of

Douglas-fir beetle in years 1–3

Table B3
Descriptions of cited models used to test data from ponderosa pine prescription and wild fires combined.

Model Yrs post fire Region #
Fires

#
Trees

Model Variable Calculation from our data

Hood et al. (2008) 3 W
USA

13 4115 Pm = 1/[1 + exp(�(�4.1914
+ 0.000376(CVSperc^2) + 0.5130
(CKR) + 1.5873(BEETLE3)))]

CVSperc Crown volume killed (%)
CKR Number (out of 4) dead cambium

samples (Ryan, 1982)
BEETLE3 Presence (1) or absence (�1) of

mountain pine beetle, red turpentine
beetle and Ips in years 1–3

McHugh and Kolb (2003)
(model1)

3 AZ 3 1367 Pm = 1/[1 + exp(�(�9.7149
+ 0.0921(TCD) + 0.8082(CHUPS)))]

TCD Crown volume killed (%)
CHUPS Bole char severity rating (0–4) on uphill

side
McHugh and Kolb (2003)

(model2)
3 AZ 3 1367 Pm = 1/[1 + exp(�(�8.7456

+ 0.0128(DBHcm) + 0.0960(TCD)))]
DBHcm Diameter at breast height (cm)
TCD Crown volume killed (%)
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Appendix C. Distributions of fire injury variables by region for
live and dead trees

See Figs. C1–C12.
Fig. C2. Boxplots of percent of individual tree crown that was scorched in the fire for ponderosa pine fromwild or prescribed fire within geographic regions. N.WA is northern
Washington state, E.OR is eastern Oregon.

Fig. C1. Boxplots of diameter at breast height for ponderosa pine from wild or prescribed fire within geographic regions. N.WA is northern Washington state, E.OR is eastern
Oregon.



Fig. C3. Boxplots of percent of the maximum height of bole scorch as a proportion of tree height for ponderosa pine from wild or prescribed fire within geographic regions. N.
WA is northern Washington state, E.OR is eastern Oregon.

Fig. C4. Boxplots of the percent of the individual tree bole circumference that was charred in the fire for ponderosa pine from wild or prescribed fire within geographic
regions. N.WA is northern Washington state, E.OR is eastern Oregon.
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Fig. C6. Number of ponderosa pine trees with Mountain Pine beetle, Red Turpentine Beetle or Ips species present in 1–3 years post-fire from wild or prescribed fire within
geographic regions. N.WA is northern Washington state, E.OR is eastern Oregon.

Fig. C5. Number of ponderosa pine trees with 0, 1, 2, 3, or 4 dead cambium samples from wild or prescribed fire within geographic regions. N.WA is northern Washington
state, E.OR is eastern Oregon.
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Fig. C8. Boxplots of percent of individual tree crown that was scorched in the fire for Douglas-fir from wild or prescribed fire within geographic regions. N.WA: northern
Washington state, E.OR: eastern Oregon, SW.OR: southwestern Oregon, Griff: Griff fire in northwestern Washington.

Fig. C7. Boxplots of diameter at breast height for Douglas-fir from m wild or prescribed fire within geographic regions. N.WA is northern Washington state, E.OR is eastern
Oregon, SW.OR is southwestern Oregon and Griff is the Griff fire in northwestern Washington.
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Fig. C10. Boxplots of the percent of the individual tree bole circumference that was charred in the fire for Douglas-fir from wild or prescribed fire within geographic regions.
N.WA is northern Washington state, E.OR is eastern Oregon.

Fig. C9. Boxplots of percent of the maximum height of bole scorch as a proportion of tree height for Douglas-fir from wild or prescribed fire within geographic regions. N.WA
is northern Washington state, E.OR is eastern Oregon.
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Fig. C12. Number of Douglas-fir trees with presence or absence of Douglas-fir beetle in 1–3 years post-fire from wild or prescribed fire within geographic regions. N.WA is
northern Washington state, E.OR is eastern Oregon, SW.OR is southwestern Oregon and Griff is the Griff fire in northwestern Washington.

Fig. C11. Number of Douglas-fir trees with 0, 1, 2, 3, or 4 dead cambium samples from wild or prescribed fire within geographic regions. N.WA is northern Washington state,
E.OR is eastern Oregon, SW.OR is southwestern Oregon and Griff is the Griff fire in northwestern Washington.
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