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Fire is a driving force in the North American landscape and predicting post-fire tree mortality is vital to
land management. Post-fire tree mortality can have substantial economic and social impacts, and natural
resource managers need reliable predictive methods to anticipate potential mortality following fire
events. Current fire mortality models are limited to a few species and regions, notably Pinus ponderosa
and Pseudotsuga mencziesii in the western United States. The efficacy of existing mortality models to pre-
dict fire-induced tree mortality is central to effective forest management. This study validated 54 logistic
regression mortality models from seven published articles and two sets of mortality guidelines from two
sources. Survival and a suite of fire injury metrics were monitored for 3654 trees representing 14 species
that burned in fires between 2002 and 2009 in the Pacific Northwest, USA. Tree species included Abies
amabilis, A. concolor, A. grandis, A. lasiocarpa, Calocedrus decurrens, Chamaecyparis lawsoniana,
C. nootkatensis, Thuja plicata, Pinus contorta, P. lambertiana, P. monticola, Picea engelmannii, Larix
occidentalis, and Tsuga heterophylla. Existing logistic models adequately described post-fire mortality of
A. concolor, A. lasiocarpa, C. decurrens, C. lawsoniana, L. occidentalis, P. engelmannii, P. contorta, and
P. lambertiana. We also evaluated predictive accuracy of two published mortality guidelines that apply
to species in the Pacific Northwest. In addition to validating existing models, we also developed new
logistic regression models and simplified mortality guidelines, or thresholds. We created new logistic
regression models for species with adequate sample size and which had no existing species-specific
model (A. amabilis, A. grandis, P. monticola, and T. heterophylla). Most recommended models contained
a crown scorch term and either a cambium injury term or a bark beetle infestation term. New post-
fire mortality thresholds were developed for A. amabilis, A. concolor, A. grandis, P. contorta, P. lambertiana,
P. monticola, P. engelmannii, L. occidentalis, and T. heterophylla. We were not able to validate or develop
acceptable logistic mortality models or thresholds for C. nootkatensis or T. plicata. Injury to cambium
and crown were both significant predictors in all but one set of new thresholds. The validation of existing
models and guidelines allows managers to determine which models will likely perform best and identi-
fies knowledge gaps where no adequate models exist to predict post-fire tree mortality. The new logistic
regression models and threshold guidelines provide improved accuracy, with simpler application for fire
and forest management.
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1. Introduction to plan prescribed burns and fuel treatments to meet mortality-

related objectives. In addition, predictions of expected levels of

Understanding post-fire tree mortality is essential, as wildland
and prescribed fires burn millions of forested hectares annually
(Bowman et al., 2009) and forests represent a major source of car-
bon storage, drive numerous ecosystem processes, and have eco-
nomic and social importance (Allen et al., 2015; Anderegg et al.,
2015). Land managers need to accurately predict tree mortality

* Corresponding author.
E-mail address: 1grayson@fs.fed.us (L.M. Grayson).

http://dx.doi.org/10.1016/j.foreco.2017.05.038
0378-1127/Published by Elsevier B.V.

tree mortality are important for planning post-fire management
activities, such as salvage and reforestation.

The majority of post-fire tree mortality models are empirical
and based on tree defenses (bark thickness) and fire injury (crown
scorch, stem char) (Woolley et al., 2012). Crown injury is often the
most important factor influencing post-fire tree mortality (Ryan,
1982b; Sieg et al., 2006) and is quantified by either percentage of
crown length scorched or, more commonly, by percentage of
crown volume scorched (Hood et al., 2010). Scorch height or char
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height, measured as total length or proportional to tree height, are
also used as measures of crown injury (Sieg et al., 2006; Thies et al.,
2006). These height variables relate to flame length, a measure of
fireline intensity, but do not describe the actual amount of crown
foliage or buds affected by fire. Cambium death caused by lethal
heating of the tree bole is another influential factor in tree mortal-
ity following fire. Heat exposure to trees with thin bark or long-
term smoldering of duff and large fuels around the base of trees
with thick bark can kill cambial tissue (Ryan and Frandsen, 1991;
Hood, 2010). Species-specific bark thickness equations as a func-
tion of tree diameter are most commonly used as a surrogate for
probability of cambium death (Ryan and Reinhardt, 1988). There
is a good relationship between bark char severity and cambium
status for species with thin bark, but not for species with thick bark
(Breece et al., 2008; Hood et al., 2008). Various methods have been
used to quantify cambium kill, from direct sampling of the cambial
tissue (Peterson and Arbaugh, 1989; Ryan and Frandsen, 1991;
Hood and Bentz, 2007) to indirect measures such as amount or
height of bark scorch or bark char severity (McHugh and Kolb,
2003; Thies et al., 2006).

Bark beetles can cause additional post-fire tree mortality by
infesting and killing trees weakened by fire that likely would have
survived otherwise (Hood and Bentz, 2007; Jenkins et al., 2014).
Secondary beetles, such as red turpentine beetles (Dendroctonus
valens LeConte) and ambrosia beetles (Trypodendron and Gnathotri-
chus spp.), are not typically considered “tree killers” (Hagle et al.,
2003), but they may interact with post-fire tree injuries or primary
bark beetles to cause additional mortality. For example, ambrosia
beetles typically infest dead or dying trees, therefore these beetles
can indicate fire-damaged tree is dying without contributing to its
death (Hood et al., 2010).

Numerous post-fire tree mortality models have been developed,
but model comparisons are challenging as their inputs vary widely,
validation is limited, and most datasets have small sample sizes
that cover small geographic areas (Woolley et al., 2012). Attempts
at model validation have been nearly non-existent or restricted to
a few species and geographic locations (but see Hood et al., 2007b;
Ganio and Progar, 2017), making confidence in the general applica-
bility of these models extremely limited. The mostly widely used
post-fire mortality model (Ryan and Amman (1994) is employed
in U.S. fire behavior and effects software programs such as the
First-Order Fire Effects Model (FOFEM; Reinhardt et al., 1997), Fire
and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS;
Reinhardt and Crookston, 2003), and BehavePlus (Reinhardt et al.,
1997; Reinhardt and Crookston, 2003; Andrews, 2014). However,
even it lacks strong empirical validation and is based on empirical
data from just 7 species (Hood et al., 2010). Though the mortality
models in FOFEM and other software programs were originally
developed from these limited data in the Northern Rockies, USA,
FOFEM is applied and used to predict post-fire mortality for 219
species throughout the USA, highlighting the need for model vali-
dation to other geographic regions and species. More than half of
post-fire mortality studies and subsequent models developed in
the western United States focus on Douglas-fir (Pseudotsuga men-
ziesii (Mirbel) Franco) and ponderosa pine (Pinus ponderosa P. &
C. Lawson) (Woolley et al., 2012). Further, many models were
developed from data collected in relatively dry regions, such as
the Rocky Mountains and the Sierra Nevada of California, in partic-
ular (Woolley et al., 2012). There is clearly a need to validate model
accuracy for additional species and other regions.

Forests in the Pacific Northwest, USA, are diverse, productive,
and increasingly fire-prone (Hessburg et al., 2015). Ponderosa pine
and Douglas-fir mortality models are available for this region
(Peterson and Arbaugh, 1989; Raymond and Peterson, 2005;
Thies et al., 2006; Prichard and Kennedy, 2012; Ganio and Progar,
2017), but virtually no research on post-fire mortality for other

species exists. Scott (2002) developed guidelines to predict post-
fire individual tree mortality for several species in eastern Wash-
ington and Oregon based on available literature at the time. How-
ever, these guidelines have not been validated and require several
steps to determine mortality risk, making interpretation compli-
cated. We collected data from 13 fires in Washington and Oregon
to assess the efficacy of previously published post-fire mortality
models for 14 species in the Pacific Northwest. A companion paper
presents similar results for ponderosa pine and Douglas-fir post-
fire tree mortality (Ganio and Progar, 2017). We developed new
models for those species for which current models are either inad-
equate or non-existent, and explored the feasibility of using sim-
pler thresholds to predict mortality in lieu of logistic regression
models. Our evaluations provide managers with clear guidance
on model performance in the Pacific Northwest to aid in selecting
models that best fit a particular land management need. Our vali-
dation exercise also extends the geographic relevance of several
existing mortality models and highlights the need for additional
validation of some models and where no adequate models exist
for some species.

2. Methods
2.1. Field sampling

Sampling methods are detailed in Ganio and Progar (2017) and
include the full dataset from all species and fires. Here, we present
data only from fires where species other than ponderosa pine and
Douglas-fir were assessed. Briefly, data was collected between
2002 and 2009 from 13 wildfires in Washington and Oregon
(Fig. S1; Table S1). Species included Abies amabilis (Dougl. ex Loud.)
Dougl. ex Forbes (ABAM; Pacific silver fir), Abies concolor (Gord. &
Glend.) Lindl. Ex Hildebr. (ABCO; white fir), Abies grandis (Douglas
ex D. Don) Lindl. (ABGR; grand fir), Abies lasiocarpa (Hook.) Nutt.
(ABLA; subalpine fir), Calocedrus decurrens (Torr.) Florin (CADE;
incense-cedar), Chamaecyparis lawsoniana (A. Murray bis) Parl.
(CHLA; Port Orford cedar), Chamaecyparis nootkatensis (D. Don)
Spach (CHNO; Alaska cedar), Larix occidentalis (Nutt.; LAOC; west-
ern larch), Picea engelmannii (Parry ex Engelm.; PIEN; Engelmann
spruce), Pinus contorta (Dougl. var. latifolia Engelm.; PICO; lodge-
pole pine), Pinus lambertiana (Douglas; PILA; sugar pine), Pinus
monticola (Douglas ex D. Don; PIMO3, western white pine), Thuja
plicata (Donn ex D. Don; THPL; western redcedar), and Tsuga
heterophylla (Raf.) Sarg. (TSHE; western hemlock). Species nomen-
clature follows the PLANTS Database (USDA; NRCS, 2017). To
ensure that tree survival could be evaluated for 3 years post-fire,
we sampled sites that burned as mixed-severity fires with a range
of fire-injured, live trees and with no planned post-fire manage-
ment activities.

Initial assessments of fire injury and tree condition were made
within one year of the fire. The first growing season following the
fire, we collected the following data on individual trees: species;
status (live/dead); diameter at breast height (DBH; 1.4 m above
ground); tree height (HT); pre-fire crown base height, assessed as
the lowest living branch (Precrown); post-fire crown base height
(Postcrown); beetle infestation (BTL; presence/absence by species,
where possible); distance to large woody debris (DWM) (Scott,
2002); bole scorch height (BSH); crown volume scorch (CVS); bole
char rating on each quadrant (Ryan, 1982a); cambium mortality on
each quadrant (CKR) (Hood et al., 2007a); ground char rating on
each quadrant (Ryan, 1982b); and dwarf mistletoe rating
(Hawksworth, 1977). See Table 1 for the list and description of
all attributes. Tree status (live/dead) and bark beetle infestations
were reassessed each year for a minimum of three years and up
to five years post-fire.
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Table 1
Variable description and abbreviation. See text for additional details.

Variable Description

code

CVsS Percent crown volume scorched (100%, 50%, etc.). Includes
crown kill and needle consumption

DBH Diameter at breast height (cm)

BT Bark thickness (cm; BT = bt * DBH; bt = bark thickness constant)

SH Crown scorch height (m)

CH Stem bark char height (m)

RCH Relative char height (m; CH/Tree height)

PCLS Percent crown length scorched (100%, 50%, etc.)

AB Presence of ambrosia beetles (presence = 1, absence =-1)

RTB Presence of red turpentine beetles (presence = 1, absence =-1)

CKR Cambium kill rating (number of cambium quadrants killed)

BTL Beetle presence/absence (presence = 1, absence = -1)

PBC Percent ground level bole char

DMR Dwarf mistletoe rating

Precrown  Pre-fire crown base fuel height (m)

CL Crown length (m)

CLS Crown length scorched (m)

BSH Maximum bole scorch height (m)

ABS Average bole scorch rating

AGC Average ground char rating

CR Crown ratio

IB Initial beetle: Year 1 attack status (presence = 1, absence = 0)

Season Season of fire ignition

SQ Site quality, pre-fire vigor, and growth rate

DWM Distance to large, downed woody material

RD Root disease presence in true firs

BP Relative distance to known infestation of pertinent beetles

2.2. Data analysis

Analyses were performed using R Studio v. 3.3.1 (R
Development Core Team, 2016). Statistical significance was evalu-
ated at o < 0.05 unless otherwise stated. We created an additional
code for bark beetles as presence or absence of primary beetles
(PRI), which included Dendroctonus ponderosae (Hopkins) and D.
rufipennis (Kirby). FOFEM v5 predicts post-fire mortality using
crown volume scorched and a bark thickness value (BT) based on
species and DBH. To validate the FOFEM v.5 equations we used
the species-specific bark thickness constants from Reinhardt
et al. (2009). Crown ratio (CR), crown length scorch (CLS), and per-
cent crown length scorch (PCLS) were calculated using tree height,
pre-fire crown base height, and post-fire crown base height. Most
tree mortality typically occurs within three years post-fire (Hood
et al., 2010; Ganio and Progar, 2017) and more trees in the dataset
were followed for 3 years than for 5 years. Thus, we used 3-year
post-fire mortality in both model validation and new model and
guideline development. We calculated basic descriptive statistics
by species and by species and status for DBH, CVS, and CKR, and
evaluated differences in means between live and dead trees with
nonparametric Wilcoxon rank-sum tests.

2.3. Model validation

There is no single approach to assess the efficacy of a logistic
regression, and several different methods exist that may or may
not be helpful depending on management objectives. Data were
not collected at the stand level, so we only considered individual
tree metrics. Contingency tables that evaluate hit rates are com-
mon, but accuracy varies by the decision criterion (or cutoff) cho-
sen. Trees with probability of mortality (Py,) values higher than the
chosen cutoff are predicted to die, and those with values lower
than the cutoff are predicted to survive. The decision criterion
allows continuous Py, values to be converted to binary values in
order to calculate true positive rate (TPR; trees predicted to die
and observed dead), true negative rate (TNR; trees predicted to live

and observed live), false positive rate (FPR; trees predicted to die
which survived), false negative rate (FNR; trees predicted to live
which died), and the total percent of trees correctly classified (%
C). Most studies report these accuracies using cutoff values at Py,
of 0.5 or 0.6 (Thies et al., 2006; Hood et al., 2007b, 2010; Ganio
and Progar, 2017). All hit rates are reported at P, =0.5 unless
otherwise noted.

Other common methods of assessing model efficacy are
Akaike’s information criterion (AIC) and the receiver operating
characteristic (ROC) curve. AIC assesses a model’s goodness of fit
to a particular dataset and penalizes for increasing model complex-
ity. It represents a balance in the distance between values pre-
dicted by the model and values observed in the dataset and how
many terms and observations are required for the model. AIC is
generally used in model development to select the best performing
model within a species. ROC evaluates the specificity and sensitiv-
ity of the model over the range of decision criteria (0-1). In
essence, AIC measures how well the model fits the data, while
ROC describes how well the model predicts the outcome. Area
under the ROC curve (AUC) is then taken as a measure of overall
accuracy. When the units are normalized, the AUC is equivalent
to the probability that the model will assign a higher score to a ran-
domly chosen positive observation than to a negative one. That is,
AUC is a measure of the chance that the model will predict a higher
probability of mortality for a tree that was observed dead than to a
tree that was observed alive. We followed the rating system for
AUC outlined by Hosmer and Lemeshow (2000). They report that
ROC values equal to 0.5 suggest no discrimination from a 50-50
chance, values between 0.7 and 0.8 are acceptable discrimination
(fair or adequate), values between 0.8 and 0.9 are excellent dis-
crimination, and values greater than 0.9 are considered outstand-
ing discrimination. Models with AUC values below 0.7 were
considered poor, and those below 0.6 considered very poor.

We validated all published post-fire mortality logistic regres-
sion models for which we had the required inputs available for
the species in our dataset (Tables 2 and S2). Seven species had only
the FOFEM 5 model available for validation which uses crown vol-
ume scorched and a species-specific bark thickness equations; for
those, we also tested how other models from similar species per-
formed. For example, the only available model for grand fir was
the FOFEM 5 model. We thus examined the ability of the white
fir models to predict the post-fire mortality of the grand fir data.
We evaluated model accuracy using the 0.25, 0.5, 0.75, and 0.9
decision criteria and also report the total correct and AUC (Robin
et al, 2011).

In addition to the available logistic regression models, we eval-
uated two other guidelines developed to predict post-fire mortality
in the Pacific Northwest. Scott (2002) developed a rating system for
several conifer species in the Blue and Wallowa Mountains of Ore-
gon. In Scott’s guidelines, each tree is assessed a score based on a
series of factors, including season of fire, site quality, fuel load,
and disease. Species-specific factors include age class, size class,
crown scorch, bole scorch (i.e., char), and duff consumption. The
final score is used to classify predicted mortality as low, moderate,
or high (decision classes vary for each tree category and assumes
that 50% of the trees classified as moderate will die). We evaluated
the guidelines, as written, into low, moderate, and high probability
of survival, as well as into a predicted dead or live category. This
was done by splitting the score for the moderate survival probabil-
ity in half. Those with a score higher than the middle score for
moderate survival were considered to be predicted to live, and
those with a score less than the middle value were considered to
be predicted to die (Scott, 2002); this allowed for a direct compar-
ison to observed data. We validated the Scott guidelines (Scott,
2002; Scott et al., 2003) for white fir, grand fir, subalpine fir, west-
ern larch, lodgepole pine, Engelmann spruce, and western white
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Source, species, and validation method of tree mortality equations assessed. For FOFEM v5 models, equation abbreviation is the four letter species code followed by the numeral 1

(e.g. ABCO 1, CADE 1, etc.). Full species names are listed in Table S3 and variable description in Table 1.

Species code Equation abbreviation Source Variables

All SPEC 1 FOFEM v5 Ryan and Amman (1994) DBH, CVS

Firs

ABCO ABCO 2 Mutch and Parsons (1998) DBH, CVS

ABCO ABCO 3 Stephens and Finney (2002) DBH, CVS

ABCO ABCO 4 Hood et al. (2010) DBH, PCLS, CKR, AB

ABCO ABCO 5 Hood et al. (2010) DBH, PCLS, AB

ABCO ABCO 6 Hood et al. (2010) DBH, PCLS, CKR

ABCO ABCO 7 Hood et al. (2010) DBH, PCLS

ABCO ABCO 8 Hood et al. (2010) PCLS

ABCO ABCO 9 Hood and Lutes (2017) PCLS

ABCO ABCO 10 Hood and Lutes (2017) DBH, PCLS, CKR, BTL

ABCO ABCO S Scott (2002), Scott et al. (2003) Season, SQ, DWM, DMR, RD, BP, CVS, ABS, SH, AGC
ABCO ABCO W Wagener (1961) CVS, CKR

ABGR ABGR S Scott (2002), Scott et al. (2003) Season, SQ, DWM, DMR, RD, BP, CVS, ABS, SH, AGC
ABLA ABLA 2 Hood and Lutes (2017) CVs

ABLA ABLA 3 Hood and Lutes (2017) CVS, CKR

ABLA ABLA S Scott (2002) Season, SQ, DWM, DMR, RD, BP, CVS, ABS, SH, AGC
“Cedars”

CADE CADE 2 Stephens and Finney (2002) DBH, CVS

CADE CADE 3 Stephens and Finney (2002) DBH, SH

CADE CADE 4 Regelbrugge and Conard (1993) DBH, CH

CADE CADE 5 Regelbrugge and Conard (1993) DBH, CH

CADE CADE 6 Regelbrugge and Conard (1993) RCH

CADE CADE 7 Regelbrugge and Conard (1993) RCH

CADE CADE 8 Hood et al. (2010) CVS, CKR

CADE CADE 9 Hood et al. (2010) CVs

CADE CADE 10 Hood et al. (2010) PCLS, CKR

CADE CADE 11 Hood et al. (2010) CVS

CADE CADE 12 Hood and Lutes (2017) PCLS

CADE CADE 13 Hood and Lutes (2017) PCLS, CKR

CADE CADE W Wagener (1961) CVS, CKR

Pines

PICO PICO 2 Hood and Lutes (2017) CVS, DBH

PICO PICO 3 Hood and Lutes (2017) DBH, CVS, CKR

PICO PICO S Scott (2002), Scott et al. (2003) Season, SQ, DWM, DMR, RD, BP, CVS, ABS, SH, AGC
PILA PILA 2 Mutch and Parsons (1998) CVs

PILA PILA 3 Stephens and Finney (2002) CVS

PILA PILA 4 Stephens and Finney (2002) DBH, SH

PILA PILA 5 Hood et al. (2010) PCLS, CKR, RTB

PILA PILA 6 Hood et al. (2010) PCLS, RTB

PILA PILA 7 Hood et al. (2010) PCLS, CKR

PILA PILA 8 Hood et al. (2010) PCLS

PILA PILA9 Hood and Lutes (2017) PCLS

PILA PILA 10 Hood and Lutes (2017) PCLS, CKR, BTL

PILA PILA 11 Nesmith et al. (2015) DBH, CVS, PBC

PILA PILA 12 Nesmith et al. (2015) DBH, CVS

PILA PILA W Wagener (1961) CVS, CKR

PIMO PIMO S Scott (2002) Season, SQ, DWM, DMR, RD, BP, CVS, ABS, SH, AGC, DBH
Spruce

PIEN PIEN 2 Hood and Lutes (2017) CVsS

PIEN PIEN 3 Hood and Lutes (2017) CVS, CKR

PIEN PIEN S Scott (2002) Season, SQ, DWM, DMR, RD, BP, CVS, ABS, SH, AGC
Larch

LAOC LAOC 2 Hood and Lutes (2017) DBH, CVS

LAOC LAOC 3 Hood and Lutes (2017) CVS, CKR

LAOC LAOC S Scott (2002) Season, SQ, DWM, DMR, RD, BP, CVS, ABS, SH, AGC

pine. Beetle pressure (i.e., relative distance of host species tree to

per tree as described

in Ryan and Noste (1985), where

the nearest known infestation) was evaluated by the presence of
primary beetles noted on any tree in the area (presence =3,
absence = 1, non-host = 0). We did not use the intermediate dis-
tance range for bark beetle pressure in the guidelines, as we lacked
more detailed data of bark beetle populations and locations. We
assessed the “pre-fire vigor, growth rate, and site quality” factor
by assigning a value of 1 to trees with both a crown ratio value
<0.4 and local basal area >23 m?/ha (Donald Scott, personal com-
munication) and a value of 0 to trees that did not meet both of
these criteria. Ground char rating was evaluated in four quadrants

unburned = 0, light = 1, moderate = 2, and heavy/deep = 3. Ratings
were averaged into one tree-level value and assigned the most clo-
sely matching description of the duff consumption factor in the
Scott guidelines.

Wagener (1961) developed criteria for predicting post-fire mor-
tality in California on 12 national forests and Yosemite National
Park using fire period (i.e., season), cambium injury, live crown,
and percent green foliage. Wagener's criteria also include optional
adjustments due to “influencing factors” such as low quality sites,
poor growth vigor, or fire season. We did not account for the
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optional adjustments, as we did not t have data for site quality or
growth vigor and in preliminary analysis, fire season did not affect
the decision criteria. We validated the Wagener criteria for white
fir, sugar pine, and incense-cedar.

2.4. New logistic regression models

We developed new, species-specific and grouped-species logis-
tic models through purposeful selection when either no other
species-specific models had been developed or model validation
showed poor predictive capacity of the data (Hosmer and
Lemeshow, 2000; Bursac et al., 2008). We tested for polynomial
relationship between crown damage and mortality by creating
square and cubic terms of CVS and PCLS and a square term for
CKR. We began with all variables available in the dataset where
the full range of data was well described: DMR, BTL, DBH, Pre-
crown, CL, CLS, PCLS, PCLS? PCLS? BSH, CVS, CVS?, CVS® ABS,
CKR, CKR?, AGC, RCH, and CR (Table 1). The range of data has a
major influence on modeling, making it unlikely that variables
with limited ranges can be appropriately used to predict mortal-
ity. For instance, if the data of a particular species only includes
CVS values from 0 to 30%, we cannot extrapolate to values higher
than 30%. Variables were first checked for univariate significance
to year 3 mortality via chi-square test for categorical variables
and via logistic regression for continuous variables using a signif-
icance level of p<0.25. We then checked for univariate signifi-
cance with all possible 2-factor interaction terms using the
same method.

We utilized distance correlation to check for multicollinearity
among the remaining variables (Székely et al., 2007; Székely and
Rizzo, 2016). We used logical associations along with a cutoff of
correlation coefficient < £0.3, a widely accepted mid-range value
for weak correlation, to assess whether two variables were related.
A major advantage of distance correlation to other correlation
methods is that a zero correlation here implies data independence;
therefore, only independent variables were used in model develop-
ment. We then developed logistic regression models of the form:

Pm = 1/[] + EXp(—(ﬂo + ﬁlxl +.o..F [;kxk))]

using the variables identified in the univariate analysis. A subse-
quent forward selection procedure removed variables that were
not significant in the multivariate model. Any variables that did
not significantly affect the AIC (AAIC <7; Burnham et al.,, 2011)
were removed, except for cases when removing a term changed
parameter estimates by >15%. This extra step allows for the inclu-
sion of unexpected covariates and confounding variables. After final
variable selection, we estimated coefficients using a 1000-replicate
bootstrap with 20% random sample replacement (Canty and Ripley,
2016). The difference between the median bootstrap value and the
bootstrap bias was used to estimate final coefficients. We sequen-
tially dropped variables from the full model that are more difficult
to predict before a fire (CKR and BTL) in order to examine variable
importance and weigh complexity against accuracy.

We used AUC as the primary selection criterion for each model.
Those that were similar in predictive accuracy were then ranked by
AIC. This rule selects the model which best balances goodness of fit
and model complexity. AIC was also used to determine if two mod-
els were equivalent in predictive accuracy, particularly where one
model was more complex than the other. Models with a difference
in AIC of less than 7 were considered equally supported by the data
(Burnham et al., 2011). To aid in comparing many equations at
once, we created a heatmap of each species and its equations for
TPR, TNR, and %C over a range of values, as well as AUC. Because
of the nature of a heatmap, AIC had to be normalized to a 0-1 scale,
AICPts, where:

(AIC — min(AIC))

AICPtS = X (AIC) — min(AIC)

min (AIC) is the minimum AIC for any model for each species and
max (AIC) is the maximum AIC for each species.

2.5. Developing threshold analyses

We explored the feasibility of using thresholds of post-fire mor-
tality through a combination of piecewise regression and visual
analyses of binned data using the same data used to develop
new logistic regression models, except BTL. Since marking for silvi-
cultural activities is typically done within a year post-fire, we used
year 1 post-fire beetle infestation status (initial beetle, IB) rather
than BTL. Thresholds can be easier to apply than logistic regression
models, often without loss in accuracy (Fowler et al., 2010). We
used histograms of the binned data to display the percent of trees
across the range of values. This ensured that threshold values were
clear points at which the behavior of the relationship between
mortality and the variable changed. After a target range was
selected by examining mortality response curves of the binned
data, a univariate logistic regression was run at each value in that
range. The value which yielded the model with the lowest residual
deviance was used as the initial breakpoint estimate. This value
and those near it were then evaluated to determine which break-
point most successfully predicted mortality. Because of the uncer-
tainty in evaluating crown volume scorch visually, CVS thresholds
were selected so that a +5% difference would not substantially
affect the mortality prediction. In those guidelines that include a
choice of two thresholds, both should be considered when predict-
ing survival. That is to say, if the guidelines are CVS > 50% or
CKR > 2, either may indicate mortality. However, it must fall below
both criteria to indicate survival (e.g., a tree with 40% CVS and
CKR = 3 will die, but a tree with 40% CVS and 2 CKR will survive).

3. Results and discussion

Every tree species except Alaska cedar exhibited a full range of
CVS and CKR (Tables 3 and S3, Figs. S2-4). In general, minimum
tree size was 12.7-18 cm DBH (Table S3). Incense-cedar had the
lowest ratio of dead to live trees with only 4 dead trees and 50 live
trees (Table 3). Western larch and Port Orford cedar displayed
roughly 15% mortality. All other species had 25-55% tree mortality.
Only Pacific silver fir, western larch, western redcedar, and western
hemlock showed a significant difference in DBH between live and
dead trees. Crown volume scorch was significantly different
between live and dead trees for all species except subalpine fir,
incense cedar, Port Orford cedar, Engelmann spruce, and western
redcedar. Cambium kill rating was significant for all species except
incense cedar, sugar pine, and western redcedar.

We report model validation results below for each species,
arranged by general species groupings, and followed by newly
developed models and thresholds. We developed new logistic
regression for Pacific silver fir, grand fir, western white pine, and
western hemlock. We lacked sufficient data to evaluate thresholds
for incense cedar, Port Orford cedar, Alaska cedar, and western red-
cedar, but report new thresholds for post-fire mortality for all
other species sampled.

3.1. Firs

3.1.1. Pacific silver fir

Pacific silver fir were monitored at four fires on four national
forests for a total of 111 trees (Tables S1 and S3). Although CVS
and CKR were higher for dead trees compared to live trees, and
DBH was lower (Table 3), there was still considerable overlap in
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Table 3

Range, median, mean, and standard error (SE) of crown volume scorch percent (CVS), diameter at breast height (DBH), and cambium kill rating (CKR) by species. Wilcoxon rank-

sum test p-values compare dead and live trees by variable; asterisks indicate significance:

* = p-value < 0.1, ** = p-value < 0.01, *** = p-value < 0.001. N = sample size. Percent of

live and dead trees attacked by primary bark beetles, ambrosia beetles (AMB), and red turpentine beetles (RTB). Primary bark beetles include mountain pine beetle for all pine
species; and spruce beetle for Engelmann spruce. Full species names are listed in Table S3.

Tree species N Live N Dead DBH (cm) CVS (%) CKR Bark Beetle Attack
Median Range Mean (SE) Median Range Mean (SE) Median Range Mean (SE) % Primary % RTB % AMB

Firs

ABAM 47 57.7 17.5-113 587 (41)" 0 0-40 7(1.7)" 3 0-4 26(02)" NA NA 13
64 47.5 18.5-111.8 52.3 (3) 0.5 0-95 124(28) 4 0-4 35(0.1) NA NA 14

ABCO 524 50.8 17.3-129.5 54.2 (0.9) 10 0-95 214(1.1) 1 0-4 1.2(0.1)" NA 0 25
396 41.1 12.7-2184 457 (1) 50 0-100 495 (16) 3 0-4 29(0.1) NA 0 40

ABGR 369 457 15.2-109.2 48.6 (1.1) 5 0-90 17.1(1.2)7 1 0-4 1.2(0.1)" NA NA 34
381 432 15.2-106.7 47.8 (1) 37.5 0-100 41.6(1.8) 3 0-4 25(0.1) NA NA 48

ABLA 12 31.8 22.9-99.1 404 (6) 10 0-95 263(94) 05 0-2 0.7 (02)" NA NA 50
21 30.5 17.8-83.8  342(33) 25 0-95 379(78) 3 0-4 27(03) NA NA 33

“Cedars”

CADE 50 53.3 14.5-1499 603 (45) O 80 142 (3) 1 0-4 5(0.2) NA NA 0
4 29.2 22.4-866 41.8(152) 53 92  495(242) 05 0-4 3(09) NA NA 25

CHLA 58 61 14-1524 599(38) 0 90 9.9 (24) 2 0-4 3(02)" NA NA 3
11 40.6 12.7-104.1 56.6 (10.2) 22 98  409(123) 4 3-4 3.7(0.1) NA NA 0

CHNO 13 31 20.3-622 324 (3.1) 0 20 28(1.6)" 3 0-4 2.8(03)" NA NA 0
13 25.7 18.5-48.8 289(23) O 5 0.6 (0.4) 4 3-4 8(0.1) NA NA 8

THPL 20 61.3 25.7-968 619(3.8) 1 88 6.6 (4.4) 3 1-4 8(02) NA NA 5
18 432 12.7-104.1 48.1(6.9) 34 99  425(94) 35 0-4 1(0.3) NA NA 6

Pines

PICO 41 24.1 14-50 28.2 (1.5) 0 0-50 82(23)" 2 0-4 702)" 15 10 5
89 295 13.5-56.6  29.9 (1) 5 0-95 193(28) 4 0-4 2(0.1) 49 8 6

PILA 144 71.1 17.8-179.6 75.5 (2.7) 11 0-95 21.7(2)7 1 0-4 3(01) 2 20 1
62 67.4 15.2-163.1 71.8 (4.6) 475 0-100 49.4 (4) 2 0-4 6(02) 50 53 21

PIMO 46 354 17.8-74.7  39.8 (2.3) 7.5 0-90 18.7(3.6)" 3 0-4 4(02)" 3 17 0
43 38.4 15.2-82 42 (2.7) 50 0-97 51.9(44) 4 1-4 5(0.1) 10 23 0

Spruce

PIEN 58 45.6 17.8-94 46.4 (2) 0-75 9.2 (2.2) 2 0-4 1.6 (0.2)" 17 5
153 46.7 13.5-91.4  47.1(1.3) 10 0-100 262 (27) 4 0-4 34(01) 5 1 17

Larch

LAOC 377 35.6 14-111.3  386(0.8)" 0 0-100 13.8(1.3)7 1 0-4 09(0.1)" NA 1 7
72 25.3 14.2-119.4 30.6(1.9) 40 0-100 453 (48) 3 0-4 27(02) NA 0 14

Hemlock

TSHE 198 47.6 14-112 50.7 (15)7 0 0-96 11.1(1.6)" 3 0-4 3(0.1)7 NA NA 23
370 40.6 12.7-132.1 463 (1.1) 30 0-99 389(19) 4 0-4 3.8 (0) NA NA 50

range for all variables (Figs. S2-S4). No species-specific model
exists for Pacific silver fir. We evaluated the predictive accuracy
of FOFEM 5 and of existing white fir equations to the Pacific silver
fir data (Table S2). None of these models performed exceptionally
well, with a maximum AUC of just 0.71 and most total correctly
classified (%C) values below 50% (Figs. 1 and 2). The FOFEM 5
model consistently predicted survival well (i.e., very high TNR),
but mortality poorly (i.e., very low TPR), across all cutoffs (Fig. 1).
Results were similar when white fir models were used, showing
that these models do not predict Pacific silver fir mortality accu-
rately (Fig. 2).

We developed two new mortality equations for Pacific silver fir:

ABAM 2 - Pm _ -l/( —2.1403+0.8810+ABS+0. 09568*CI(R2)))

ABAM 3 : Py, = 1/(1 +

The full model, ABAM 2, included ABS and CKR (AUC = 0.76;
Fig. 1). Dropping CKR from the model resulted in only a minor loss
(ABAM 3; AUC = 0.74) in accuracy (Fig. 1). We recommend that the
uncertainty in these models be considered when using them, and
that new models with more empirical backing should be
developed.

The Pacific silver fir threshold model performed better than any
of the logistic models (Table 5). Using a CKR = 4 as the predictor of

-1.7106+1. 2949*ABS)))

mortality yielded correct classification 71% of the time. TPR were
much improved from the logistic models, but the FPR was still
rather high at 28%.

3.1.2. White fir

White fir were measured at seven fires on four national forests
for a total of 920 trees (Tables S1 and S3). CVS tended to be higher
for dead trees (Table 3, Fig. S4). Tree status by CKR showed a clear
distinction with the majority of dead trees having CKR > 2 (Table 3,
Fig. S4). DBH did not differ between surviving and dead trees
(Table 3, Fig. S2). Ten models exist for white fir (Table S2). Most
of these performed at least moderately well, though all models
except ABCO 2 and ABCO 3 underpredicted mortality at all Py, deci-
sion criteria (Fig. 1). The more complex models, ABCO 4, ABCO 6,
and ABCO 10, with CKR and a beetle infestation (Scolytus ventralis,
LeConte), variable in addition to DBH and crown scorch were most
accurate. ABCO 10 had the highest accuracy, with an AUC of 0.81.
However, simpler models with only PCLS or CVS and DBH (ABCO
1, ABCO 3, ABCO 8, and ABCO 9) still had AUC values >0.75, indi-
cating crown scorch is the most important factor in predicting
post-fire white fir mortality.

Both Wagener's criteria and the Scott guidelines include white
fir (Table 4). The Scott guidelines performed poorly and overpre-
dicted mortality, with a %C of 47% and a 92% FPR. Wagener's crite-
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Fig. 1. Heat map showing TPR (true positive rate), TNR (true negative rate), and Correct (total percent mortality predicted correctly) by mortality model for various decision
criteria of P, indicated by the value immediately following the label (0.1, 0.25, 0.5, 0.75, and 0.9). AUC and AICPts shown for model in general. AICPts is a normalizing scale for
AIC among species. Darker color within species indicates a higher, and in all cases here, better value. Equation codes with asterisks are recommended models. Black lines
separate species. Equation codes are defined in Table S2 and full species names are listed in Table S3.
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Fig. 2. Heat map showing TPR (true positive rate), TNR (true negative rate), and Correct (total percent mortality predicted correctly) by mortality model for various decision
criteria of Py, indicated by the value immediately following the label (.1, 0.25, 0.5, 0.75, and 0.9). AUC and AICPts shown for model in general. AICPts is a normalizing scale for
AIC among species. Darker color within species indicates a higher, and in all cases here, better value. Equation codes with asterisks are recommended models. Black lines
separate species. First four letter code indicates the species’ data used. Second code with numerals indicates the equation validated. Equation codes with asterisks are
recommended models. Black lines separate species. Equation codes are defined in Table S2 and full species names are listed in Table S3.
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ria were more accurate, with a %C of 71% and a FPR of 42%. These
criteria also overpredict mortality, as did the Scott guidelines, but
to a much lesser extent. Our new guidelines of CVS > 70% or
CKR > 3 correctly classified 79% of trees with a FPR of 21% (Table 5).
This is 13% higher overall accuracy than the best logistic model at
Pn=0.5.

3.1.3. Grand fir

Grand fir mortality was monitored for 750 trees at four fires on
two national forests (Tables S1 and S3). CVS and CKR were higher
in trees that died compared to surviving trees, but DBH did not dif-
fer by status (Table 3, Figs. S2-54). No species-specific model exists
for grand fir. We validated the accuracy of FOFEM 5 and the white
fir equations to predict grand fir mortality (Table S2). The FOFEM 5
model for grand fir predicted survival better than mortality and
had a relatively low AUC value of 0.68 (Fig. 1). Three models, ABCO
4, ABCO 6, and ABCO 10, developed for white fir were fair candi-
dates to describe post-fire mortality of grand fir, with an AUC of
0.78,0.79, and 0.77, respectively (Fig. 2). Of these, ABCO 6 had both
the lowest AIC and the best TPR across multiple cutoffs, while
maintaining comparable %C.

We developed three new mortality models for grand fir:

ABGR 2 : Py,
— 1/(1 + e(—(—2‘3380+0.2094>:<CKR2+3‘657Oes*CVS3+0.1663*BSH+O.06420*I’recr0Wn)))

ABGR 3 : Py =1/(1 + e(—(—l.9565+0.2031*CKRZ+3.552096*CVS3+0.1853*BSH)))

includes CVS and CKR, indicates that it is not only a better candi-
date than the others, but also adequately predicts individual tree
survival. Because of the limited number of models available for
subalpine fir, we also validated the white fir models against the
subalpine fir data. Only one of these equations, ABCO 6, performed
adequately, with an AUC of 0.75 (Fig. 2), but it was not as accurate
as ABLA 3. Therefore, we do not recommend using white fir models
to predict subalpine fir post-fire tree mortality. Our sample size
was low for subalpine fir so additional validation is necessary to
fully evaluate the robustness of these existing models over a
broader range of injuries and sizes.

The Scott guidelines predicted all trees to die, giving a FPR of
100% and a 64% total correct rate (Table 4). There were not enough
trees in this dataset to create a reliable novel model or guideline
set. Thus, we recommend using ABLA 3 to predict individual sub-
alpine fir post-fire mortality in the Pacific Northwest.

3.1.5. Firs

Because of the similarities between white fir and grand fir, we
pooled the two into one group which we called “Firs”. Though
the white fir threshold guidelines are similar to those of grand
fir, they yielded sufficiently different results that they should be
considered separately. Combining them into one Firs category with
mortality predicted by CVS > 0.6 or CKR > 3 gives a %C of 77% and a
FPR of 24%. This is similar to that of grand fir, but slightly less accu-
rate than the guidelines for white fir, which can survive higher
levels of crown scorch.

A logistic analysis of Firs yielded an equation which improved
both white fir and grand fir classification, but at the expense of
additional terms. The best model utilizes six terms:

FIRS1:P. = -l/(-l + e(—(—l.Ol63+0.1887*CI(R2+3.7080€4*CVS3+O.1217*BSH+0.9390*BTL—1.6255*CR—0.01330*DBH)))
Pp =

ABGR 4 : Py,
-1/ + e(—(0.006416+3.718085*CVSB+0.19174*BSH—0.01007*Precrown)))

ABGR 2 had an AUC of 0.85, a %C of 76%, a FPR of 21%, and an AIC
of 723 while ABGR 3 had an AUC of 0.85, a %C of 76%, a FPR of 21%,
and an AIC of 716. The addition of more variables to ABGR 3
decreased AIC by less than 2. Thus, though ABGR 3 fits the data
best, the simpler ABGR 2 can be used with negligible loss in predic-
tive accuracy. ABGR 4 does not include a term for CKR, which
greatly reduces model accuracy (Fig. 1). ABGR 4 has an AUC of
0.76, a %C of just 53%, and a FPR of 91%.

The Scott guidelines did not perform well, overpredicting mor-
tality with a FPR of 93% and an overall %C of 54% (Table 4). We
developed a new threshold, with a %C of 76%, a FPR of 20%, and a
FNR of 28% when the tree has a CVS > 60% or a CKR > 3 (Table 5).
The new threshold performs similarly to the best logistic regres-
sion model, ABGR 2 (Table 5).

3.1.4. Subalpine fir

Subalpine fir mortality was measured on 33 trees at five fires on
four national forests (Tables S1 and S3). There was no difference in
DBH or CVS between live and dead trees, but dead trees had higher
CKR values than live trees (Table 3, Figs. S2-S4). In addition to the
FOFEM 5 model, two models from Hood and Lutes (2017) were
available to validate (Tables 2 and S2). ABLA 1 and ABLA 2 did
not perform well, with an AUC of 0.64 and 0.61, respectively
(Fig. 1). Each predicted total mortality and survival at a similar rate
for most cutoffs. However, the AUC of 0.88 for ABLA 3, which

This extra data collection yields a model with a %C of 79%, an
AIC of 1529, and an AUC of 0.86 (Fig. 1). These results are quite
good, but may or may not be worth the extra data collection and
computational expense compared to respective recommended
models for white fir and grand fir.

3.2. “Cedars”

3.2.1. Incense cedar

Incense cedar mortality was measured for 54 trees at five fires
on four national forests in Oregon (Tables S1 and S3). There was
no clear distinction in DBH, CVS, or DBH between live and dead
trees (Table 3, Figs. S2-S4). There were 13 logistic models available
to predict post-fire mortality for incense cedar (Tables 2 and S2). Of
these, CADE 4 from Regelbrugge and Conard (1993), which
includes only DBH and CH, performed best (AUC = 0.82; Fig. 1).
Upon inspection of the data at multiple cutoffs, it at first appears
that this may be a case of a model underpredicting mortality on
a dataset with few tree deaths. However, it predicted tree death
at lower cutoff, indicating that the model performs well. Wagener's
guidelines include incense cedar, but the Scott guidelines do not
(Table 2). Wagener’s criteria performed moderately well, with a
%C of 70% and a FPR of 28% (Table 4). With just four tree deaths,
the data were not well distributed enough to create new models
or threshold guidelines. Additional validation is necessary to assess
the robustness of these models over a full range of tree character-
istics and fire injury (Table 3).
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Model accuracy using Scott (2002), Scott et al. (2003) guidelines and Wagener (1961) criteria to predict probability of survival within 3 years post-fire in Oregon and Washington.
Full species names are listed in Table S3. TPR = true positive rate; FPR = false positive rate; TNR = true negative rate; FNR = false negative rate.

Code Dead Live Predicted Low Predicted Moderate Predicted High Predicted Dead Predicted Alive TPR% FPR% TNR% FNR% Correct%
Scott guidelines
ABLA S 21 12 32 1 33 0 100 100 0 0 64
ABCOS 396 524 801 102 17 878 42 100 92 8 0 46
ABGRS 381 369 661 80 8 723 27 99 93 7 1 52
PICO S 89 41 119 9 2 126 4 97 98 2 3 67
PIMOS 43 46 0 45 44 13 76 16 13 87 84 53
PIEN S 153 58 173 34 4 204 7 100 88 12 0 76
LAOC S 72 377 1 219 229 34 415 26 4 96 74 85
Wagener’s criteria
ABCOW 396 524 NA NA NA 568 352 88 42 58 12 71
CADEW 4 50 NA NA NA 16 38 50 28 72 50 70
PILAW 62 144 NA NA NA 111 95 71 47 53 29 59
Table 5

Post-fire mortality and survival thresholds and accuracy (observed compared to predicted) identified using piecewise regression. Thresholds with ‘or’ mean any listed criterion
can be used, while thresholds with ‘and’ mean all criteria must be met. Total correct (%C) values are compared against the best performing logistic regression model using a
decision criterion = 0.5 to determine mortality and survival from Figs. 1 and 2, with positive A %C values indicating improved performance over logistic regression models and
negative values indicating worse performance. TPR = true positive rate; FPR = false positive rate; TNR = true negative rate; FNR = false negative rate. Full species names are listed

in Table S3 and variable descriptions in Table 1.

Species  Mortality Survival Obs. Obs. Pred. Pred. TPR FPR TNR FNR %  Best logistic Best logistic A%
thresholds thresholds dead live dead alive % % % % C model % C C
Firs
ABAM CKR=4 CKR<3 64 47 58 53 70 28 72 30 71 ABAM 3 66 5
ABCO CVS > 70% CVS < 70% 396 524 424 496 79 21 79 21 79 ABCO 10 66 13
or CKR >3 and
CKR<2
ABGR CVS > 60% CVS < 60% 381 369 349 401 72 20 80 28 76 ABGR 2 76 0
or CKR >3 and
CKR <2
Pines
PICO CVS > 40% CVS < 40% 89 41 101 29 97 37 63 3 86 PICO3 73 13
or CKR >3 and
orB=1 CKR <2
and IB=0
PIEN CVS > 75% CVS<75% 153 58 144 67 84 26 74 16 82 PIEN 3 81 1
or CKR >3 and
CKR <2
PILA RCH > 0.3 RCH<0.3 62 144 55 151 55 15 85 45 76 PILA 10 80 -4
PILA CVS > 70% CVS <70% 62 144 30 176 37 5 95 63 79 PILA 10 80 -1
PIMO CKR =4 and CKR <3 43 46 30 59 63 7 93 37 79 PIMO 2 81 -2
CVS > 10% or CVS < 10%
PIMO CVS > 30% CVS < 30% 43 46 43 46 74 24 76 26 75 PIMO 2 81 -6
Larch
LAOC PCLS > 50% PCLS < 50% 72 377 63 386 65 4 96 35 91 LAOC3 86 5
or CKR=4 and
CKR<3
Hemlock
TSHE CVS > 20% CVS < 20% 370 198 438 130 93 48 52 7 79 TSHE 3 82 -3
or CKR=4 and
CKR<3

3.2.2. Port orford cedar

Port Orford cedar were measured at two fires in the Rogue
River-Siskiyou National Forest for a total of 69 trees (Tables S1
and S3). There was no difference in DBH or CVS between live and
dead trees, but CKR was higher in dead trees than live (Table 3,
Figs. S2-S4). There are no species-specific models for Port Orford
cedar. We validated the predictive accuracy of FOFEM 5 and the
incense cedar equations for post-fire Port Orford cedar mortality
(Table 2). The FOFEM 5 model for Port Orford cedar predicted very
high survival (Fig. 1). The percent of trees correctly predicted to die
only breeched 50% at a cutoff of P,, =0.10. TNR was consistently
high due to underpredicting mortality. Because only 16% of the
trees died, this near 100% prediction of trees living yielded high

total percent correct for most cutoffs despite poor mortality pre-
diction (Table 3). AUC was low at 0.62 (Fig. 1). Though three
incense cedar models appeared to predict post-fire mortality well,
this was due to the models underpredicting mortality on a dataset
skewed toward survival (Fig. 2). The high AUC values of over 0.85
were artificially inflated by consistent survival predictions on a
data set with only 16% mortality. CADE 5 had a fair AUC of 0.70,
and also showed good TPR and TNR across all cutoffs (Fig. 2). This
is the recommended model for Port Orford cedar, though its mod-
erate performance should be taken into account if used. Additional
validation with a more thorough dataset is necessary to confirm
the robustness of this model. There were not enough trees sampled
to adequately define new models or guidelines.
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3.2.3. Alaska cedar

Alaska cedar were not well represented within the dataset. Of
the 26 trees measured, all were from one fire in the Olympic
National Forest, and none exhibited crown volume scorch greater
than 20% (Tables S1 and S3). While CKR was higher for dead trees
than surviving trees, CVS was slightly lower for dead trees than live
(Table 3, Figs. S2-54); likely an artifact of the low sample size. DBH
was not significantly different between live trees and dead (Table 3,
Figs. S2-54). No species-specific mortality models exist for Alaska
cedar (Table 2). We validated the predictive accuracy of CHNO 1,
the FOFEM 5 model, and of the incense cedar equations in assess-
ing Alaska cedar mortality. CHNO 1 performed poorly, predicting
only 50% of tree mortality correctly (Fig. 1). The FPR was 92%,
and the AUC was 0.55. At first glance, three incense cedar models
appear to be excellent, with AUCs over 0.85 (Fig. 2). However, a clo-
ser inspection of the accuracy at various cutoffs revealed that the
models simply did not predict any tree mortality. Since both %C
and AUC are based on sensitivity and specificity, the consistent
100% TNR (and therefore 0% FPR) artificially inflates the %C and
AUC values. This examination indicated that the models were not
adequate descriptors of post-fire mortality in Alaska cedar. We
do not recommend using the FOFEM 5 model or any incense cedar
models to predict post-fire mortality of Alaska cedar, but, given the
small size and narrow range of our dataset, further validation is
needed to confirm this.

3.2.4. Western redcedar

Western redcedar mortality was sampled for 38 trees at two
fires in the Umpqua National Forest (Tables S1 and S3). There
was no clear distinction in DBH, CVS, or CKR between live and dead
trees (Table 3, Figs. S2-S4). Mortality was 47% for the 38 trees stud-
ied. No species-specific models exist for western redcedar (Table 2).
We validated the accuracy of FOFEM 5 (THPL1) and of the available
incense cedar equations in predicting post-fire western redcedar
mortality. FOFEM 5 was a fair performer with an AUC of 0.72 and
a %C of 71% (Fig. 1). In fact, THPL 1 had a %C of over 70% for all cut-
offs except P, = 0.1. This model may be adequate in some situa-
tions, provided the uncertainty in its predictions are taken into
account. Several of the 13 incense cedar equations showed a fair
to good AUC, but these are likely artifacts of very high TNR and
very low TPR (Fig. 2). THPL 1 is then the recommended model for
western redcedar. Additional validation with a larger dataset is
necessary to validate the robustness of this equation. We did not
have enough data to effectively develop new models or thresholds
for western redcedar.

3.3. Pines

3.3.1. Lodgepole pine

Lodgepole pine were studied at four fires on three national for-
ests for a total of 130 trees (Tables S1 and S3). Both CKR and CVS
were substantially higher in dead trees than in live trees (Table 3,
Figs. S2-S4). There was no difference in DBH. In addition to FOFEM
5 (PICO 1), two logistic models from Hood and Lutes (2017) were
available for validation. PICO 1 and PICO 2 utilized only DBH and
CVS and performed very poorly, with an AUC below 0.60 (Fig. 1).
PICO 3, which included a beetle term, was very accurate, producing
an AUC of 0.827 and reasonable hit rates for each cutoff. The lodge-
pole pine from three of the fires in the dataset had significant bee-
tle infestation, so it is somewhat expected that those models which
did not include a beetle component were not accurate. PICO 3 is
the recommended model for lodgepole pine.

The Scott guidelines include lodgepole pine. When the moder-
ate level was split, the guidelines have a %C of 67% (Table 4). Mor-
tality was greatly overpredicted with a FPR of 98%. New guidelines
we developed assume tree mortality if CVS > 40% or CKR > 3 or

IB =1 (Table 5). This gave a %C of 86% and a FPR of 37%. This has
a 13% higher total percent predicted correctly at Py, =0.5 than
the best logistic model (Table 5).

3.3.2. Sugar pine

Sugar pine were measured at five fires on three national forests
for a total of 206 trees (Tables S1 and S3). There was no difference
in DBH or CKR between live and dead trees, but CVS was higher in
dead trees than in live (Table 3, Figs. S2-S4). Twelve logistic mod-
els were validated for sugar pine (Table 2). Four models were rea-
sonably accurate (Fig. 1). At 0.87, PILA 10, which includes a CKR
and a BTL term, had the highest AUC by a wide margin (Table 2).
It additionally showed high %C at all cutoffs (Fig. 1). PILA 6 also
includes a beetle term, RTB, and had a high AUC of 0.77 (Table 2).
Univariate analysis demonstrated that BTL was strongly tied to
mortality, affecting model prediction more than any other term
we tested (data not shown). It is strongly recommended to use this
model when possible. The two strong models without beetle terms,
PILA 3 and PILA 2, have the same AUC of 0.754 and very similar AIC
(Fig. 1). However, PILA 3 displayed both better %C and lower FPR at
all cutoffs, and is the recommended model when beetle infestation
or cambium mortality data are not available.

Wagener’s criteria were available for sugar pine, but did not
perform well (Tables 2 and 4). They produced only 59% overall
accuracy by overpredicting mortality. Two different thresholds
stood out when developing new guidelines (Table 5). The first
assumes mortality if RCH > 0.3, yielding a %C of 76% and a FPR of
15%. The second performs slightly better overall, with a %C of
79% and a FPR of 5% when assuming mortality when CVS > 70%.
This is close to the overall accuracy at P, = 0.5 of the best logistic
model, PILA 10.

3.3.3. Western white pine

Western white pine mortality was studied for 89 trees at four
fires on three national forests in Oregon (Tables S1 and S3). Both
CVS and CKR were higher in dead trees than in live trees; DBH
was similar in both groups (Table 3, Figs. S2-S4). There are no
species-specific mortality models for western white pine; we vali-
dated the predictive accuracy of FOFEM 5 model (PIMO 1, Table 2).
PIMO 1 performed fairly, with an AUC of 0.72 and a %C only below
50% for P, =0.1 (Fig. 1). Though this is tolerable, we developed
new logistic models:

PIMO 2 : Py = 1/(1 + e(—(—3.6536+0.04311*CVS+0,2101*CKR2)))

PIMO 3 : Pm _ ]/(1 + e(—(—1.5130+0.04281*CVS)))

PIMO 2 had an AUC of 0.88 and a %C of 81% and is the recom-
mended logistic model for western white pine in the Pacific North-
west (Fig. 1). PIMO 3 has an AUC of 0.83 and a %C of 74%, and is
recommended when CKR is not available.

The Scott guidelines for western white pine significantly under-
predicted mortality at 87% (Table 4). This artificially inflated the %C
to a still low 53%. We thus developed new threshold guidelines for
western white pine (Table 5). Assuming trees with greater than
10% crown volume scorch and four cambium quadrants killed
would die, the new guidelines had a %C of 79%, and a FPR of just
6.5%. Alternatively, we can assume that any trees with greater than
30% CVS will die with a %C of 75% and a FPR of 24%. This represents
a 2% and 6% lower total percent correct, respectively, than the best
logistic model at P, = 0.5.
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3.4. Spruce

3.4.1. Engelmann spruce

Engelmann spruce were evaluated at four fires on two national
forests for a total of 211 trees (Tables S1 and S3). CKR was higher
for dead trees than for live (Table 3, Figs. S2-S4). There was no sig-
nificant difference in DBH or CVS between live and dead trees.
There were three logistic models available for Engelmann spruce:
the FOFEM 5 model (PIEN 1) and two equations from Hood and
Lutes (2017, Table 2). PIEN 1 and PIEN 2 models performed poorly,
with AUCs under 0.65 (Fig. 1). PIEN 3, which has a cambium mor-
tality term, accurately predicted post-fire Engelmann spruce mor-
tality and survival, with an AUC of 0.86 and %C greater than 75% for
all cutoffs under Py, = 0.9 (Table 2, Fig. 1). This is the recommended
logistic model for Engelmann spruce.

The Scott guidelines can be used for Engelmann spruce (Table 2).
Overall accuracy was artificially exaggerated by the high mortality
rate in the observed population coupled with the overestimation of
mortality by the guidelines. The %C was 76%, but the FPR was 88%
(Table 4). Our new guidelines predict mortality when CVS > 75% or
CKR > 3, giving a %C of 82% and a FPR of 26% (Table 5). This is 1%
better overall accuracy than the best logistic model at Py, = 0.5.

3.5. Larch

3.5.1. Western larch

Western larch mortality was measured for 449 trees at six fires
on five national forests (Tables S1 and S3). DBH was smaller in
dead trees than in live trees (Table 3). CVS and CKR were higher
in dead trees than in live trees. In addition to the FOFEM 5 model
(LAOC 1), two logistic models from Hood and Lutes (2017) were
available for validation (Table 2). LAOC 1 and LAOC 2, based on
DBH and CVS, performed similarly, with an AUC=0.74 (Fig. 1).
LAOC 1 had a higher AIC and a more even %C across cutoffs than
LAOC 2, and is therefore the recommended model when CKR is
not available. LAOC 3, which does have a CKR term, was quite accu-
rate in predicting post-fire mortality (Table 1, Fig. 1). The AUC of
0.84 is, however, deceptive. The model overpredicted survival
quite a bit, and the large proportion of larch that survived inflates
the accuracy measures. It did, however, still predict some mortality
at each cutoff and is the recommended model. Its tendency to
underpredict mortality should be considered if management objec-
tives involve removing all trees that will die.

The Scott guidelines also did fairly well predicting western larch
survival (Table 4). They produced a %C of 85%, a FPR of 4%, and a
FNR of 74%. This false negative rate was quite high, indicating that
the high percent of larch that survived may have skewed the over-
all classification accuracy. Our new guidelines with mortality pre-
dicted by PCLS > 50 or CKR = 4 yielded a %C of 91% a FPR of 4%, and
a FNR of 35% (Table 5). This is 5% higher overall accuracy than the
best logistic model at P, = 0.5.

3.6. Hemlock

3.6.1. Western hemlock

Western hemlock were studied at seven fires on four national
forests for a total of 568 trees (Tables S1 and S3). The DBH of dead
trees was smaller than that of live trees (Table 3). CVS and CKR
were higher in dead trees than in live trees. No species-specific
mortality equations exist for western hemlock (Table 2). We vali-
dated the accuracy of FOFEM 5 (TSHE 1) in predicting post-fire
western hemlock mortality. TSHE 1 produced an AUC of 0.72
(Fig. 1). As with western white pine and western redcedar, this
may be adequate in some situations, but the uncertainty of the
model must be taken into account if used. We therefore developed
new logistic models for western hemlock mortality of:

TSHE 2 : P
=1/(1+ e(—(—0.4045+0.2013*CKR2-1.9783*BTL—0.03004*DBH+O.02587*CVS—2.8540*CR)))

TSHE 3 : Py
=1/(1+ e(—(—].7316+0.1938*CKR2+1A7015*BTL—0.02957*DBH+0.02000*CVS)))

TSHE 4 - Pm — 1/(1 + e(—(].l131—0.01164*DBH+0.03556>:<CVS—1.2588*CR)))

New equation THSE 2 has an AUC of 0.86, %C of 82%, and FPR of
34% (Fig. 1). TSHE 3 has an AUC of 0.87, %C of 82%, and FPR of 32%.
Because the accuracy of TSHE 2 is so close to that of TSHE 3, we
used AIC to determine the recommended model. TSHE 3 has an
AIC of 481, while TSHE 2 has an AIC of 499. This 18 AAIC is large
enough to assume that the data are better described by TSHE 3
than TSHE 2, thus TSHE 3 is the recommended model. TSHE 4,
the model with no CKR or BTL terms, has an AUC of 0.76, a %C of
73%, and a rather high FPR of 49%.

Neither Wagener’s criteria nor the Scott guidelines were devel-
oped for western hemlock (Table 2). New thresholds show that
CVS > 20% or CKR =4 results in a %C of 79%, FNR of 7%, and FPR
of 48% (Table 5). Though this FPR is still high, we were unable to
lower it without lowering the overall classification accuracy. These
guidelines have an overall accuracy 3% lower than that of the best
logistic model at P, = 0.5.

3.7. Results summary

Choosing an appropriate post-fire tree mortality model relies
heavily on management objectives. Overall accuracy may be less
important than simplicity of data collection. In some cases over-
prediction of mortality (i.e., higher FPR) may be acceptable; in
other cases more conservative thresholds that minimize FPR and
leave standing dead trees is desired. The model that most ade-
quately describes the data may still over- or under-predict mortal-
ity more than another, less overall accurate model. Furthermore,
logistic regression models can be difficult to apply to individual
trees (e.g., continuous probabilities must be converted to binary
values) but useful for examining expected stand-level mortality
by species and size classes (Reinhardt et al., 2009; Hood et al.,
2010; Woolley et al., 2012).

ROC measures and total events correctly predicted (%C) are
based on TPR and FPR. When a dataset is highly skewed, either
because most of the trees survived or most did not, the values
for AUC and %C can be artificially inflated. For example, only four
of the 54 incense cedar died (Table 3). Thus, if a model predicts
all of the trees survive, the FPR (and its inverse, TNR) is very good,
simply because if none of the trees are predicted to die, there can
be no false positives. Those models that display such behavior
should be examined logically before any determination is made
as to efficacy.

Though FOFEM 5 predicts mortality for all tree species in the
USA, its accuracy has been validated for very few species. FOFEM
5 was not the recommended model for any of the 14 species we
tested. It performed very poorly (AUC < 0.6) for Pacific silver fir,
Alaska cedar, and lodgepole pine, and poorly (AUC < 0.7) for grand
fir, subalpine fir, Port Orford cedar, and Engelmann spruce. Besides
FOFEM 5, many other models have been developed with various
degrees of validation. Virtually no research has been done in the
Pacific Northwest for species other than Douglas-fir and ponderosa
pine. Our validation showed CADE 4 (Regelbrugge and Conard,
1993), ABCO 10, ABLA 3, LAOC 3, PICO 3, PIEN 3, and PILA 10
(Hood and Lutes, 2017) perform better than other models. All of
these models except CADE 4 have cambium Kkill and crown injury
terms.
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We developed new models for Pacific silver fir (ABAM 2, ABAM
3), grand fir (ABGR 2, ABGR 3, ABGR 4), the combined white and
grand fir group (FIRS 1), western white pine (PIMO 2, PIMO 3),
and western hemlock (TSHE 2, TSHE 3, TSHE 4). These species’
models are consisted with previous findings that crown injury
and cambium kill are the most important variables to predicting
tree mortality (Hood et al,, 2010; Ganio and Progar, 2017). Bark
beetle infestation status also played a large role in predictive accu-
racy for grand fir, the grand fir and white fir combined group (Firs),
and western hemlock. Because cambium injury and beetle infesta-
tion require post-fire monitoring and, in the case of cambium
injury, significant time to measure, we developed models without
those variables where possible (ABAM 3, ABGR 4, PIMO 3, TSHE 4).
The resulting equations relied on crown injury and bole scorch as
the main factors.

FOFEM 5 is not adequate for predicting western redcedar or
Alaska cedar mortality on an individual tree basis. There are no
species-specific models available for either (Table 2). We did not
have large enough or properly distributed samples to generate
new mortality models or threshold guidelines. Although Alaska
cedar is relatively uncommon in the Pacific Northwest, particularly
in commercially managed forests, western redcedar is both wide-
spread and valuable. Further research is needed to develop accu-
rate models that predict the post-fire mortality of western
redcedar.

The Scott guidelines yielded mixed results. They consistently
overpredicted mortality for the fire-sensitive true firs, lodgepole
pine, and Engelmann spruce, while they underpredicted mortality
for more fire-resistant species, western larch and western white
pine. The guidelines are unlikely to be acceptable for use in white
fir, subalpine fir, grand fir, white pine, lodgepole pine, or Engel-
mann spruce, but may be satisfactory for western larch. Wagener's
criteria generally performed better than the Scott guidelines,
although white fir and sugar pine both had high FPRs and incense
cedar had a high FNR (Table 4). Hood et al. (2010) found Wagener’s
criteria underpredicted mortality for these three species in North-
ern California, with high TNRs but TPRs below 65%. The data ranges
in this study and Hood et al. (2010) are similar for many species,
but this study includes a wider range of tree sizes, particularly
smaller-diameter trees, which may explain the discrepancy
between the two studies. Ambrosia beetle attack rates were lower
and mountain pine beetle was not a factor in the California study.
This highlights the impact that geographic region and range of data
can have on predictive accuracy.

The new thresholds we developed consistently outperform the
Scott guidelines and Wagener’s criteria in overall classification
accuracy and frequently in both mortality prediction and survival
prediction. We attempted to balance classification so that the
guidelines roughly predicted mortality and survival equally while
maximizing %C, but some sets were still skewed. For instance,
the western hemlock guidelines overpredict mortality with a FPR
of 48%, but a FNR of just 7%. This should be taken into consideration
when utilizing these guidelines. These new thresholds need further
validation to determine how well they will extrapolate to other
regions and fires.

4. Conclusions

This study validates existing post-fire mortality and thresholds
for 14 conifers. As many of these species have never been validated
before, this paper provides users with previously-unknown
expected accuracy of mortality equations and identifies areas
where additional data are needed. Models that included a beetle
component or a cambium injury term (e.g., CKR, BSH) were consis-

tently more accurate than those without. Though many manage-
ment decisions must be made in planning stages before a fire,
this increase in accuracy should be considered when deciding
which mortality prediction method to use for post-fire activities.
This is in agreement with other findings (Sieg et al., 2006; Hood
et al., 2010; Ganio and Progar, 2017). Logistic regressions may be
particularly helpful in meeting management objectives when used
pre-fire for prescribed fire planning and long-term successional
modeling (Keane et al., 2011). However, thresholds often exist that
are simpler and easier to apply to individual trees (Fowler et al.,
2010). The available Scott guidelines and Wagener’s criteria are
not generally adequate in classifying mortality and survival in
Washington and Oregon for these species. We therefore developed
thresholds that can be used to aid in ground assessments of indi-
vidual tree mortality after fire.

Fire is a driving force in the North American landscape and pre-
dicting post-fire tree mortality is vital to land management. How-
ever, most mortality models were developed for Douglas-fir and
ponderosa pine, and many are based on datasets from California.
These models are not necessarily applicable to other regions, and
many species lack empirically based mortality models. Addition-
ally, models made for a particular species may not adequately clas-
sify mortality in all geographic regions. We developed new models
for many tree species that previously lacked mortality equations,
but there were too few observations to fit models for western red-
cedar or Alaska yellow cedar. Burn season and fire types have been
shown to affect tree mortality (Harrington, 1987, 1993). Including
burn season did not improve model performance, though this may
be due to a limited range of burn seasons in our dataset. We could
not compare potential differences between fire type (e.g. pre-
scribed or wildfire), as all our data came from wildfires. Further
work is needed for these factors and for the many other species
lacking robust validation. The validation of existing models and
guidelines allows managers to determine which models will likely
perform best and identifies knowledge gaps where no adequate
models exist to predict post-fire tree mortality. The new logistic
regression models and threshold guidelines provide improved
accuracy, with simpler application to aid in fire and forest
management.
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