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Influence of topography and fuels on fire refugia probability
under varying fire weather conditions in forests of the Pacific
Northwest, USA
Garrett W. Meigs, Christopher J. Dunn, Sean A. Parks, and Meg A. Krawchuk

Abstract: Fire refugia — locations that burn less severely or less frequently than surrounding areas — support late-successional
and old-growth forest structure and function. This study investigates the influence of topography and fuels on the probability of
forest fire refugia under varying fire weather conditions. We focused on recent large fires in Oregon and Washington, United
States (n = 39 fires > 400 ha, 2004–2014). Our objectives were to (1) map fire refugia as a component of the burn severity gradient,
(2) quantify the predictability of fire refugia as a function of prefire fuels and topography under moderate and high fire weather
conditions, and (3) map the conditional probability of fire refugia to illustrate their spatial patterns in old-growth forests. Fire
refugia exhibited higher predictability under relatively moderate fire weather conditions. Prefire live fuels were strong predic-
tors of fire refugia, with higher refugia probability in forests with higher prefire biomass. In addition, fire refugia probability was
higher in topographic settings with relatively northern aspects, steep catchment slopes, and concave topographic positions.
Conditional probability maps revealed consistently higher fire refugia probability under moderate versus high fire weather
scenarios. Results from this study inform conservation planning by determining late-successional forests most likely to persist
as fire refugia despite increasing regional fire activity.

Key words: biological legacies, burn severity, fire refugia, late-successional forests, Pacific Northwest.

Résumé : Les refuges de feu (endroits où la forêt brûle moins sévèrement ou moins fréquemment que dans le territoire
environnant) maintiennent la structure et la fonction des forêts en fin de succession et des forêts anciennes. Cette étude examine
l’influence de la topographie et des combustibles sur la probabilité de la présence d’un refuge de feu en tenant compte de
différentes conditions météorologiques propices aux incendies. Nous avons mis l’accent sur les grands feux récents dans les États
de l’Oregon et de Washington, aux États-Unis (n = 39 feux > 400 ha, 2004–2014). Nos objectifs consistaient à (1) cartographier
les refuges de feu en tant que composantes d’un gradient de sévérité du feu, (2) quantifier la prévisibilité des refuges de feu en
fonction des combustibles présents avant que survienne un feu et de la topographie en tenant compte de conditions mé-
téorologiques modérément et très propices aux incendies et (3) cartographier la probabilité conditionnelle de la présence des
refuges de feu pour illustrer leur configuration spatiale dans les forêts anciennes. Les refuges de feu étaient plus prévisibles
lorsque les conditions météorologiques propices aux incendies étaient relativement modérées. Les combustibles vivants
présents avant que survienne un feu étaient de bons prédicteurs de la présence des refuges de feu et la probabilité de la présence
d’un refuge de feu était plus élevée dans les forêts contenant une plus grande biomasse avant que survienne un feu. De plus, la
probabilité de la présence d’un refuge de feu était plus élevée dans des contextes topographiques caractérisés par des expositions
relativement septentrionales, des dénivelés de bassin abrupts et des positions topographiques concaves. Les cartes de probabilité
conditionnelle révèlent que la probabilité de la présence des refuges de feu est constamment plus élevée avec les scénarios de
conditions météorologiques modérément plutôt que très favorables aux incendies. Les résultats de cette étude contribuent à la
planification de la conservation en déterminant les forêts en fin de succession qui ont le plus de chances de persister en tant que
refuges de feu malgré l’augmentation régionale des incendies. [Traduit par la Rédaction]

Mots-clés : legs biologiques, sévérité du feu, refuges de feu, forêts en fin de succession, Pacific Northwest.

Introduction
The spatiotemporal patterns of wildfires have important impli-

cations for biodiversity conservation throughout the world. In
forest ecosystems of western North America, following decades
of fire exclusion, wildfire activity has recently increased in asso-
ciation with climate and land-use change (Barbero et al. 2015;
Abatzoglou and Williams 2016), fueling stakeholder concerns

about potential impacts on threatened and endangered species
(Davis et al. 2016). Fire refugia — locations that burn less severely
or less frequently than surrounding areas (Krawchuk et al.
2016) — are a key component of forest disturbance mosaics, par-
ticularly in regions supporting substantial late-successional and
old-growth (hereafter “old”) forests (Spies et al. 2018). Given the
projected increasing likelihood of large fires (Davis et al. 2017),
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some old forests that historically functioned as fire refugia may
become more vulnerable to stand-replacing fire. Concurrently,
fire refugia may persist because of numerous protective factors,
including complex terrain, vegetation resistance associated with
old trees, stochastic weather patterns, and varying intensity of fire
suppression efforts. Quantifying and disentangling these interac-
tive drivers of fire behavior and effects are urgent research prior-
ities because understanding the probability and predictability of
fire refugia is integral for effective management of old-growth
forest function and persistence.

Although fuels, topography, and weather interact to influence
fire behavior and associated refugia, some fire regimes are domi-
nated by bottom-up, endogenous drivers such as fuels and topog-
raphy, whereas other fire regimes are dominated by top-down,
exogenous drivers such as climate and weather (Pyne et al. 1996).
Fuel components, including ground, surface, ladder, and canopy
fuels, are a function of vegetation composition and structure,
which also influence fire spread, fire effects, and postfire re-
sponses (Parks et al. 2018b; Zald and Dunn 2018). For example, tree
size and species are strong predictors of fire-induced mortality
and postfire structural complexity, particularly in forests with
mixed-severity fire effects, fire-tolerant species, and large, long-
lived trees (Kane et al. 2015; Dunn and Bailey 2016). Although
weather is more difficult than fuels to estimate at a fine spatial
scale, recent studies have quantified fire weather in a spatially
explicit fashion, leveraging interpolation methods to assign daily
fire weather within fire perimeters (e.g., Parks 2014; Parks et al.
2018b; Zald and Dunn 2018). Topography also plays a key role
across landscape gradients, wherein fire refugia are associated
with topographic features such as valley bottoms with high mois-
ture, cold-air pooling, or dense vegetation in some cases (Leonard
et al. 2014; Krawchuk et al. 2016; Wilkin et al. 2016) and steep
terrain at headwaters with limited fuel in other cases (Rogeau
et al. 2018). Such examples illustrate how topography also influ-
ences vegetation (fuels) and local fire weather, underscoring the
multiway interactions among these factors. Because topographi-
cally mediated fire refugia may be more stable and predictable
than stochastic fire refugia associated with fire weather and man-
agement activities (Meddens et al. 2018a), topography may pro-
vide functional anchor points for forest conservation initiatives.

Recent studies have mapped fire refugia patterns and quanti-
fied drivers with large geospatial databases and innovative quan-
titative approaches. Mapping studies have typically employed
Landsat imagery to identify fire refugia within recent fire events
as locations including both unburned and low-severity fire effects
where fire resulted in low mortality to dominant trees (e.g.,
Krawchuk et al. 2016; Meddens et al. 2016; Haire et al. 2017; Meigs
and Krawchuk 2018; Collins et al. 2019; Walker et al. 2019;
Chapman et al. 2020). Functionally, these remote sensing ap-
proaches identify fire refugia as locations exhibiting minimal
spectral change relative to the broader burn mosaic. Though spec-
trally similar, such locations may have highly variable prefire fuel
conditions, which translate into very different outcomes in terms
of fire effects or severity (e.g., differing vegetation mortality in
nonforest versus young forest versus old forest; Meigs and
Krawchuk 2018; Zald and Dunn 2018; Lesmeister et al. 2019). Here,
we leverage pre- and postfire Landsat imagery to quantify fire
refugia as part of the overall burn severity mosaic. Although these
recent fire refugia represent only one characterization of refugia,
which can also include climate refugia over longer time scales
(Meddens et al. 2018b), contemporary fire refugia are directly ap-
plicable to forest policy and management. Indeed, land managers
often utilize Landsat-based burn severity maps as a primary tool to
assess fire effects, implement postfire management activities, and
assess conservation outcomes (Morgan et al. 2014; Davis et al.
2016; Meigs and Krawchuk 2018; Harvey et al. 2019).

Mapping recent spatiotemporal patterns of fire can inform re-
gional perspectives on both historical and contemporary fire ef-

fects (e.g., Reilly et al. 2017), but stakeholders, including land
managers, also require information on specific drivers of fire refu-
gia and maps of fire refugia probability under different combina-
tions of fuels, topography, and weather. Prior studies have used
machine-learning algorithms such as boosted regression tree
(BRT) models to assess the probability of fire refugia (Krawchuk
et al. 2016; Rogeau et al. 2018), high-severity fire (Parks et al. 2018b),
or drought refugia (Cartwright 2018). In this study, we employ BRT
modeling to quantify fire refugia probability as a function of to-
pography and prefire live fuels under varying fire weather condi-
tions. In addition to quantitatively assessing the key predictors of
fire refugia, it is important to evaluate the spatial patterns of
predicted refugia across fire-prone landscapes containing hetero-
geneous forest conditions, including old forests embedded in a
matrix of younger forests (Spies et al. 2018; Zald and Dunn 2018).
Here, we advance an approach to map the spatial patterns of fire
refugia probability across numerous heterogeneous fire events un-
der scenarios representing relatively moderate or high fire
weather conditions, and we highlight implications for old-forest
management.

Contemporary conservation policies and wildfire activity in the
US Pacific Northwest (Oregon and Washington, hereafter “PNW”)
make it an ideal location to study and characterize fire refugia in
old forests. By definition, old forests develop in locations rela-
tively protected from stand-replacing disturbance, and fire refu-
gia represent an important factor for forest succession in fire-
prone regions. In western Oregon, Washington, and Northern
California, old forests occupy a small portion of their historical
extent because of widespread timber harvest, underscoring the
significance of their unique structural features, including large,
old trees and complex forest architecture, which provide habitat
for threatened and endangered flora and fauna (Davis et al. 2016).
In the PNW, old-forest habitats have been the focus of intensive
public interest and conservation planning, most notably with the
implementation of the Northwest Forest Plan (NWFP) (Spies et al.
2018; Stephens et al. 2019). Despite a general cessation of old-forest
harvest on federal land since 1994, these forests have recently
experienced widespread fire activity (Davis et al. 2017; Reilly et al.
2017), underscoring the urgency of understanding factors condu-
cive to old-forest persistence (i.e., as fire refugia). The few studies
that have explicitly assessed old-forest fire refugia in the PNW
suggest that refugia are associated with specific topographic and
vegetation (fuel) conditions (Camp et al. 1997; Kolden et al. 2017;
Meigs and Krawchuk 2018; Lesmeister et al. 2019). Despite con-
cerns about fire effects on late-successional forest habitats, spe-
cies, and ecosystem services (Camp et al. 1997; Davis et al. 2016),
fire refugia in old forests have not been mapped and evaluated
across numerous large fire events in the PNW region.

Recent large fires in forests spanning variable forest composi-
tion, structure, and age, coupled with new geospatial data sets
and computational tools, enable novel assessments of fire effects
and probability of fire refugia in the PNW. This study assesses fire
events in the West Cascades ecoregion, which contains a substan-
tial amount of old forests and is located centrally within the PNW
region. Our specific objectives were as follows:

1. Map fire refugia as a component of the overall burn severity
gradient in recent large fire events using Landsat-based esti-
mates of fire-induced tree mortality.

2. Quantify the predictability of fire refugia as a function of pre-
fire fuels and topography under moderate and high fire
weather conditions to better understand the enduring topo-
graphic drivers of fire refugia.

3. Derive maps of the conditional probability of fire refugia to
illustrate spatial patterns of likely refugia in old forests under
moderate and high fire weather scenarios.

Meigs et al. 637
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Methods

Study area
This study focuses on the West Cascades ecoregion and its im-

mediate surroundings (10 km buffer) in the Cascade mountain
range of the US PNW (Fig. 1; Olson and Dinerstein 2002). Precipi-
tation and temperature vary across the study area, but a consis-
tent climatic feature is relatively high winter precipitation and
low summer precipitation conducive to natural disturbances, es-
pecially fire (Littell et al. 2010; Meigs et al. 2015). The West Cas-
cades are typified by rugged terrain, soils derived from volcanic
parent material, and productive conifer forests, including mature
and old forests. Tree species composition varies within different
forest types from low-elevation Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.)
Sarg.) up to mid-elevation Pacific silver fir (Abies amabilis Douglas
ex J. Forbes) and, at higher elevations, subalpine fir (Abies lasiocarpa
(Hook.) Nutt.), mountain hemlock (Tsuga mertensiana (Bong.)
Carrière), and lodgepole pine (Pinus contorta Douglas ex Loudon)
(Franklin and Dyrness 1973). In southern and eastern portions
of the ecoregion and adjoining areas, fire-tolerant tree species are
more prevalent, including ponderosa pine (Pinus ponderosa Doug-
las ex P. Lawson & C. Lawson), sugar pine (Pinus lambertiana Doug-
las), grand fir (Abies grandis (Douglas ex D. Don) Lindl.), and incense
cedar (Calocedrus decurrens (Torr.) Florin), as well as some impor-
tant hardwood species (Dunn and Bailey 2016). Historical fire re-
gimes were variable, including a combination of infrequent,
stand-replacing fire and relatively frequent, nonlethal surface
fire, with more frequent fire in southern and eastern parts of the

study area (Weisberg and Swanson 2003; Tepley et al. 2013; Davis
et al. 2017; Metlen et al. 2018; Spies et al. 2018).

West Cascades forests and surrounding areas are centrally located
within the range of the northern spotted owl (Strix occidentalis caurina
(Merriam, 1898)), which defines the geographic scope of the NWFP
and underscores the sociopolitical importance of old-forest con-
servation within the ecoregion (Fig. 1; Davis et al. 2016). In general,
these forests are managed by US federal agencies for multiple
resource objectives or by private industrial landowners for timber
production. Like many landscapes in western North America,
West Cascades forests have experienced important land-use
changes, including logging, grazing, fire exclusion, and associated
fuel accumulations (Hessburg et al. 2016). Fire extent has in-
creased in recent decades in conjunction with climate change,
particularly in the southern and eastern portions of the study area
(Reilly et al. 2017), where the West Cascades ecoregion blends with
floristic elements of the Klamath Mountains and East Cascades
ecoregions, respectively (Fig. 1).

Geospatial data acquisition and preparation

Sample fires and sample points for data analysis
We conducted geospatial and statistical analyses across all for-

est conditions within the West Cascades ecoregion and adjacent
areas to map recent fire effects and quantify predictors of fire
refugia (objectives 1 and 2), and we focused on old forests to illus-
trate spatial patterns of fire refugia (objective 3). We identified old
forests using existing maps of areas containing forest equivalent
to or exceeding an old-growth structural index of 200 years (OGSI-

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2019-0406.

Fig. 1. Map of the study area in the Pacific Northwest, United States, and fires included in statistical analysis (n = 39). Fire perimeters are from
the Monitoring Trends in Burn Severity (MTBS) program (https://mtbs.gov). The West Cascades ecoregion is based on Olson and Dinerstein
(2002) plus a 10 km buffer. Forest areas are based on analysis by the Gap Analysis Project (GAP; https://gapanalysis.usgs.gov). The yellow arrow
indicates the location of an example fire event: the 2009 Boze Fire in the Umpqua River Basin. Fires are listed in Supplementary Table S1.1

The inset map shows terrain from Esri’s world terrain base map (service layer credits: Esri, U.S. Geological Survey (USGS), and the National
Oceanic and Atmospheric Administration (NOAA)). NWFP, Northwest Forest Plan. [Color online.]
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200) based on gradient nearest neighbor (GNN) imputation
(Ohmann et al. 2012). We acquired fire perimeters from the Mon-
itoringTrendsinBurnSeverity (MTBS)program(https://www.mtbs.
gov; Eidenshink et al. 2007), selecting all large fires (>400 ha) that
occurred between 2004 and 2014 in the West Cascades ecoregion,
including an adjacent 10 km buffer to account for transitional
forests within the boundary of the NWFP (Fig. 1). We selected this
time period to coincide with MODIS satellite imagery and associ-
ated fire weather data used for analyses. We also excluded por-
tions of fires that burned more than once during the Landsat era
(i.e., since 1984). These basic criteria yielded 39 large fires, which
collectively burned approximately 100 000 ha of forest within the
study area (Fig. 1).

We extracted spatial data (Table 1) and developed statistical
models based on a 5% random sample of the total area within the
selected fires, which are a subset of the sample points analyzed by
Parks et al. (2018b) across the western US. We built statistical
models combining points from all forest types to enable interpre-
tation and mapping across the range of conditions represented in
the study area. We subsequently assessed old-forest fire refugia
within a subset of locations that were late-successional or old-
growth forests before recent fires (detailed in the next section).
We sampled locations identified as forest by three ancillary vege-
tation maps: the Landsat time series stacks – vegetation change
tracker (Huang et al. 2010) and Existing Vegetation Cover and
Environmental Site Potential from LANDFIRE (Rollins 2009; Parks
et al. 2018b). We excluded points ≤100 m from fire perimeters to
reduce potential edge effects (Stevens-Rumann et al. 2016). These
processing steps yielded a large, representative sample for statis-
tical modeling (n = 46 103).

Burn severity mapping and development of fire refugia response
variable

Our response variable for statistical analyses was the binary
occurrence of fire refugia (refugia or nonrefugia) within the study
fires previously described, resulting in a sample of 10 696 refugia
and 35 407 nonrefugia points. We also mapped refugia locations
as one of five classes across the full gradient of burn severity to
provide the full ecological context of the study fires (objective 1).

We created these burn severity maps by combining Landsat imagery,
plot-based tree mortality, and maps of prefire forest conditions
following the workflow described in fig. 1 of Meigs and Krawchuk
(2018). Specifically, we estimated fire-induced change with the
relative differenced normalized burn ratio (RdNBR; Miller and
Thode 2007) derived from pre- and postfire NBR, which we in turn
developed from Landsat time series using the LandTrendr algo-
rithm (Kennedy et al. 2010). In essence, LandTrendr segmentation
identifies vegetation disturbance and recovery by distilling poten-
tially noisy annual time series into a simplified set of segments
and vertices to capture the salient features of spectral trajectories
while omitting most false changes (Kennedy et al. 2010; Meigs
et al. 2015). In this study, we used LandTrendr processing to com-
pile annual time series of the NBR, which combines near-infrared
and mid-infrared wavelengths of the Landsat TM/ETM+ sensor
(Miller and Thode 2007). These NBR time series were centered
around the Landsat imagery median date (generally 1 August) at
the pixel scale, thereby reducing seasonal variability associated
with phenology and sun angles. This process resulted in consis-
tent annual mosaics of NBR covering the full study area. We then
computed RdNBR using 2-year intervals to ensure consistent pre-
and postfire coverage for all pixels within each fire event (Meigs
et al. 2016). RdNBR captures the relative change in dominant veg-
etation and is appropriate for assessing fire effects across numer-
ous events spanning heterogeneous prefire conditions (Miller and
Thode 2007; Cansler and McKenzie 2014), especially in the forest
types within our study region (Meigs and Krawchuk 2018).

To classify fire refugia and other burn severity classes, we first
clipped regional RdNBR mosaics within the MTBS fire perimeters
for the 39 study fires. We then applied a regression equation
developed by Reilly et al. (2017) that relates RdNBR to relative tree
mortality, estimated using forest inventory plots across the PNW
study region:

(1) y � 134.87 � 259.38x � 567.68x2

where y is continuous RdNBR and x is the percent basal area (BA)
mortality based on the change in live tree BA before and after fire

Table 1. Predictor and stratification variables for boosted regression tree (BRT) analysis.

Variable Description (units) Source

Live fuel
EVI Prefire vegetation greenness from Landsat imagery (spectral vegetation index scaled

from 0 to 1000)
Parks et al. 2018b

Biomass Prefire biomass based on GNN imputation mapping (kg·ha−1) Ohmann et al. 2012

Topography
Catchment area Extent of hydrological catchment (m2) 30 m DEM
Catchment flow path Length of hydrologic flow path (m), which is related to watershed area and complexity 30 m DEM
Catchment slope Mean slope of hydrological catchment (rad), which captures more general slope steepness

than local slope
30 m DEM

Local aspect Direction of slope at local scale (rad), which influences fuel moisture and wind patterns 30 m DEM
Local slope Steepness of slope at local scale (°), which influences fire spread and fuel preheating 30 m DEM
Relative position Relative topographic position (0–10); lower to higher elevation within 500 m radius,

which captures the landscape position of a given site
30 m DEM

TCI �6–20; increases with potential for cold-air pooling, which influences fuel moisture and
vegetation composition and structure

30 m DEM

SWI �1–12; a metric of hydrologic pooling that increases with potential soil wetness, which
influences fuel moisture and vegetation composition and structure

30 m DEM

Fire weather
ERC Integrates fuel moisture and potential energy release at flaming front of a fire Preisler et al. 2016;

Jolly and Freeborn 2017;
Parks et al. 2018b

Note: The response variable for all BRT modeling is a binary (refugia or nonrefugia) classification of burn severity based on Landsat satellite mapping (see Methods).
EVI, enhanced vegetation index; TCI, topographic convergence index; SWI, SAGA wetness index; ERC, energy release component; GNN, gradient nearest neighbor;
DEM, digital elevation model. DEM is a subset of the US National Elevation Dataset (acquired from the US LANDFIRE program: https://www.landfire.gov/
NationalProductDescriptions7.php).
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at 304 inventory locations. We defined fire refugia as locations
with very low RdNBR values equivalent to ≤10% tree BA mortality
(RdNBR ≤ 166). Although negative RdNBR can be associated with
enhanced greenness (Miller and Thode 2007), only 54 (0.12%) of our
sample points had RdNBR values less than −150 (Kane et al. 2015);
a parallel analysis excluding these sample points did not affect
our analysis (results not shown). We defined the remaining
burned pixels as nonrefugia and applied the same thresholds as
Meigs and Krawchuk (2018) to evaluate the abundance of low
(10%–25% BA mortality; RdNBR = 166–235), moderate (25%–75% BA
mortality; RdNBR = 235–648), high (75%–90% BA mortality;
RdNBR = 648–828), and very high (>90% BA mortality; RdNBR ≥
828) severities. These classes are symmetrical between the low and
high ends of the burn severity gradient and provide a more nu-
anced ecological context than frameworks with fewer severity
classes. Given the challenges inherent in remote sensing of fire
effects at the low end of the burn severity spectrum (Meddens
et al. 2016), we assumed that locations with ≤10% tree mortality
within 1 year of burning included both lightly burned and un-
burned areas.

Following these computations, we assessed the absolute and
relative abundance of mapped fire refugia and other burn severity
classes across the study fires (objective 1). We summarized these
maps of estimated fire effects for the portions of burned areas that
were old and other forests prior to the study period using OGSI-
200 maps (old-growth structural index equivalent of 200 years;
Ohmann et al. 2012). We also compared burn severity distribu-
tions between different fire weather conditions (described in the
next section). Finally, we illustrated spatial patterns of recent fire
effects in an example fire in the southern portion of the study
area: the 2009 Boze Fire in the Umpqua River Basin (Fig. 1).

Predictor and stratification variables: fuels, topography, and weather
We developed a statistical modeling framework to quantify the

influence of prefire fuels and topography on fire refugia predict-
ability under moderate and high fire weather conditions (objec-
tive 2) (Table 1). We used two variables to assess prefire fuel
conditions. First, we utilized Landsat imagery from 2002 to com-
pute the enhanced vegetation index (EVI), which is an indicator of
total live vegetation biomass (i.e., a key indicator of live fuels) and
a strong predictor of Landsat-based severity (Parks et al. 2018a,
2018b). Second, we used maps of estimated live biomass from 2002
based on GNN maps, which integrate data from federal forest
inventory plots (n ≈ 17 000), spatial predictors, and Landsat time
series to impute numerous plot-level attributes for forested loca-
tions across the PNW (Ohmann et al. 2012; https://lemma.forestry.
oregonstate.edu/data). For both live-fuel variables, we used maps
representing the year 2002 to ensure that they predated the ear-
liest fires in our study period.

To assess potential topographic drivers of fire refugia, we com-
puted eight variables based on digital elevation models (30 m
resolution) after Krawchuk et al. (2016): (i) catchment area (in
square metres), (ii) catchment flow path length (in metres),
(iii) catchment slope (in radians), (iv) local aspect (in radians),
(v) local slope (in degrees), (vi) relative topographic position (0–10,
lower to higher elevation within a 500 m radius reflecting concave
to convex terrain), (vii) topographic convergence index (TCI; �6–
20, a metric of cold-air drainage that increases with potential for
cold-air pooling), and (viii) SAGA wetness index (SWI; �1–12, a
metric of hydrologic pooling that increases with potential soil
wetness). These eight variables capture distinct elements of local-
or watershed-scale topography that account for processes (e.g.,
solar insolation and cold-air pooling) influencing fuel moisture
and fire behavior (Table 1; Supplementary Fig. S11). Correlation
among all predictor variables was generally low (r < |0.4|), with the
exception of the slope, wetness, and convergence indices (Supple-
mentary Fig. S11). All topographic metrics were calculated using

the raster (Hijmans et al. 2019) and RSAGA (Brenning et al. 2016)
packages in the R statistical environment (R Core Team 2019).

Recognizing that fire weather is a dominant driver of fire be-
havior and effects (Pyne et al. 1996), we developed separate statis-
tical models for two categories of daily fire weather (moderate and
high). We estimated daily fire weather using energy release com-
ponent (ERC) on a percentile scale. This metric represents the fuel
moisture and potential energy release of a spreading fire and is
commonly used in fire management (Table 1) (Schlobohm and
Brain 2002; Parks et al. 2018b). To match a given location with its
associated daily ERC value, we assigned day of burn to each pixel
by leveraging daily fire progression maps based on MODIS hot-
spot fire detection (Parks 2014). We then extracted ERC percentiles
for each burned pixel from existing daily ERC maps, which are
described in detail by Preisler et al. (2016) and Jolly and Freeborn
(2017). For this study, we converted absolute ERC values to percen-
tile values within an empirically estimated fire season for the
West Cascades ecoregion over a 25-year period (1990–2014) (Parks
et al. 2018b). Finally, we divided the sample data into two roughly
equivalent bins according to ERC percentiles ≤90% (low or mod-
erate fire weather, n = 22 427 (49% of data set)) and >90% (high or
extreme fire weather, n = 23 676 (51% of data set)).

Statistical analyses: BRT model implementation and assessment
We modeled the probability of fire refugia (objective 2) using

BRT, a machine-learning approach that can accommodate com-
plex, nonlinear relationships (Elith et al. 2008). For two initial
model runs, we contrasted fire refugia predictability under mod-
erate and high fire weather using all eight topographic variables
(hereafter “TOPO” models) (Table 1). For two additional model
runs, we included the eight topographic variables plus the two
prefire live-fuel variables (hereafter “TOPO+FUELS” models)
(Table 1). We parameterized each of the four BRT model runs
after Krawchuk et al. (2016) using random subsets of the data to
obtain at least 1000 trees (learning rate = 0.001, tree complexity =
5, bag fraction = 0.5). We evaluated model performance based on
the area under the curve of the receiver operating characteristic
(hereafter “AUC”) and fivefold cross-validated correlation based
on sample pixels. The AUC provides a synthetic metric of a model’s
ability to predict the presence and absence of refugia. An ideal,
fully predictive model would have an AUC value of 1.0, whereas a
model with no predictive ability (i.e., random) would have a value
of 0.5. We interpreted values of >0.6–0.7 as fair, >0.7–0.8 as
good, >0.8–0.9 as very good, and >0.9 as excellent (Krawchuk et al.
2016). We also interpreted model results by assessing the relative
importance and partial-dependence plots of predictor variables.
Variables with higher relative importance are more influential
drivers of fire refugia probability, and the partial-dependence
plots show the distribution-wide association between each predic-
tor variable and fire refugia probability after accounting for the
other predictors in a given model run. We conducted BRT model-
ing using the gbm (Greenwell et al. 2019) and dismo (Hijmans et al.
2017) packages in R.

Spatial predictions of fire refugia probability
Based on these four model runs (TOPO or TOPO+FUELS under

moderate or high fire weather conditions), we created conditional
fire refugia probability maps to assess spatial patterns of pre-
dicted fire refugia (objective 3). These maps display refugia prob-
ability on a scale from 0 to 1 at 30 m resolution and are based on
the combined influence of the predictor variables in a given sta-
tistical model. Because they are derived directly from the statisti-
cal models, these maps represent reference scenarios in which an
entire area is assumed to burn under either moderate or high fire
weather, but it is important to recognize that the actual fire
weather that generated the burn mosaic for any individual
fire varies within this range across both space and time. We com-
pared maps of statistically modeled fire refugia probability under
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moderate and high fire weather scenarios by differencing those
maps and evaluating the locations associated with low and high
fire refugia probability for each model run. In addition, we illus-
trated landscape patterns of our spatial predictions within a focal
fire event: the 2009 Boze Fire in the Umpqua River Basin. Finally,
we assessed old-forest fire refugia probability by focusing on spa-
tial predictions within the same OGSI-200 maps used for summa-
rizing fire refugia and burn severity distributions in objective 1
(Ohmann et al. 2012).

Results

Fire refugia and burn severity across recent large fires in
the West Cascades

Large fires occurred primarily in the southern and eastern por-
tions of the study area between 2004 and 2014 (Fig. 1). The 39 fires
in our study area encompassed 102 154 ha, ranging in individual
extent from 591 to 18 008 ha (Supplementary Table S11). Of these
fires, 28% occurred in old forests (28 655 ha) and the remaining
72% occurred in other forests (Fig. 2). Fire refugia accounted for
8 331 ha of burned old forests and 18 933 ha of other forests,
representing 29% and 26% of each forest type, respectively (Fig. 2).

The overall distribution of severity classes was similar between
the moderate and high fire weather classes, although the high fire
weather class had a larger percentage of very high severity than
the moderate fire weather class (34% versus 20%) (Fig. 3). Fire refu-
gia were a substantial component of locations that experienced
both moderate and high fire weather in old and other forests.
Under moderate fire weather, fire refugia represented 32% and
25% of old and other forests, respectively (Fig. 3). Under high fire
weather, fire refugia occupied a smaller portion of the area within
fire perimeters, representing 22% and 20% of old and other forests,
respectively (Fig. 3).

The Boze Fire, which burned approximately 4 000 ha in 2009 in
the Umpqua National Forest, provided an illustrative example of
prefire biomass, topography, and fire effects in a medium-large
fire that occurred under relatively high fire weather conditions
(68% of sample points within fire perimeter). Prefire biomass var-
ied substantially within the fire perimeter, primarily because of
recent timber harvest, with dark green areas in Fig. 4a representing
generally old forests (i.e., exceeding the estimated 200-year-old
threshold of the OGSI-200 map). Aspect mapped at 30 m resolu-
tion within the fire perimeter indicated important topographic
features, including north-facing slopes, ridgetops, and valley bot-
toms (Fig. 4b). Finally, burn severity patterns illustrated relatively

large patches of stand-replacing fire (Fig. 4c), presumably driven
mainly by fire weather.

Predictability of fire refugia as a function of prefire fuels
and topography under different fire weather conditions

In the TOPO and TOPO+FUELS statistical model runs, the abun-
dance of refugia (percentage of response variable) was 26% and
20% under the moderate and high fire weather conditions, respec-
tively (Table 2). Overall model performance was best (i.e., higher
predictability of fire refugia) when including estimates of prefire
live-fuel abundance with topography variables (TOPO+FUELS),
yielding AUC values of 0.75 and 0.69 under moderate and high fire
weather, respectively (Table 2). Although topography alone did
not produce a model with as strong predictive power, yielding
AUC values of 0.65 and 0.63 for the TOPO models under moderate
and high fire weather, respectively (Table 2), the locations identi-
fied as topographic fire refugia may play a particularly important
role for persistent and predictable old forests.

In terms of specific predictor variables, all four models exhib-
ited similar relative importance of predictor variables under both
moderate and high fire weather conditions (Table 3). For the
TOPO+FUELS models, prefire EVI and prefire biomass exhibited
the highest relative influence on the probability of fire refugia,
and both variables were generally positively associated with fire
refugia probability (Fig. 5). For the TOPO models, the three vari-
ables with the highest relative importance were local aspect,
catchment slope, and relative topographic position (Table 3).
These three variables were also the topographic variables with the
highest relative importance in the TOPO+FUELS models (Table 3).
Across all model runs, northern aspects were positively associated
with fire refugia probability, and southern aspects were nega-
tively associated with fire refugia probability (Fig. 4; Supplemen-
tary Fig. S21). Steeper catchment slopes were positively associated
with fire refugia probability, as were terrain locations quantified
as very low relative position (i.e., concavities within the context of
a 500 m radius surface) (Fig. 4; Supplementary Fig. S21). The rela-
tive importance of particular topographic variables varied some-
what among model runs; for example, catchment slope was more
important than relative position under moderate fire weather and
vice versa under high fire weather (Table 3). Finally, the BRT mod-
els illustrated interactions of predictor and stratification vari-
ables, with topography exhibiting a smaller influence on fire
refugia probability during high fire weather (Table 3; Fig. 6).

Fig. 2. Burn severity and fire refugia extent across selected fires in
the West Cascades study region (n = 31). Classification is based on
Landsat change detection (relative differenced normalized burn
ratio (RdNBR)) and regional forest inventory plots; severity classes
correspond to estimated tree basal area (BA) mortality: refugia ≤ 10%,
low = 10%–25%, moderate = 25%–75%, high = 75%–90%, and very
high ≥ 90% (Meigs and Krawchuk 2018). [Color online.]

Fig. 3. Burn severity and refugia relative abundance across forested
sample points used for statistical analysis by fire weather class.
Moderate fire weather includes points that burned with energy
release component (ERC) ≤ 0.9, and high fire weather includes
points that burned with ERC > 0.9. Burn severity and fire refugia
classification is described in the caption of Fig. 2. [Color online.]
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Maps of fire refugia probability in all forests and old forests
under moderate and high fire weather scenarios

The spatial predictions of fire refugia probability revealed sys-
tematic landscape-scale differences between moderate and high
fire weather scenarios (i.e., if a given fire were to occur entirely
under either moderate or high fire weather). For the TOPO+FUELS
models, mean refugia probability across all mapped fires was
higher under moderate fire weather conditions (0.72) than under
high fire weather conditions (0.67), despite substantial variability
(Table 4).

Within the example fire event (Boze Fire), mapped fire refugia
probability was consistently higher under moderate fire weather
than under high fire weather scenarios (Fig. 6). Predicted fire refu-
gia spatial patterns were associated with topographic features,
including aspect, ridges, and valley bottoms, particularly in the
moderate fire weather scenario (Figs. 4b and 6a). Specific locations
with lower fire refugia probability were especially evident in the
difference map (Fig. 6c), and some of these locations were associ-
ated with low prefire biomass (regeneration in past timber har-
vest patches, nonforest areas; Fig. 4a).

As illustrated by the Boze Fire, old-forest fire refugia with rela-
tively high prefire biomass represented only a portion of the mod-
eled landscapes (Figs. 4 and 6). Fire refugia that actually resulted
from the Boze Fire were relatively patchy and discontinuous
(dark-blue areas in Fig. 4c), whereas the conditional probability of

fire refugia under the two fire weather scenarios varied at rela-
tively fine spatial scales associated with the underlying topogra-
phy and prefire live fuels (Fig. 6). As with all other forested areas
(Figs. 6a–6c), old-forest fire refugia probability was both higher
and more variable under moderate fire weather conditions
(Figs. 6d–6f).

Discussion

Influence of topography and fuels on forest fire refugia
under variable fire weather

In this study, we developed spatially explicit methods to quan-
tify the occurrence, drivers, and conditional probability of fire
refugia as a function of fuels, topography, and fire weather in
forests of the US PNW. We developed statistical models and maps
across all lands within fire perimeters and subsequently high-
lighted spatial patterns of fire refugia probability in old forests.
We found that fire refugia predictability is related to multiple
metrics of prefire live fuels and topography and that fire refugia
probability is lower under higher fire weather conditions. Specif-
ically, we determined that high-biomass forests on northwest-
facing slopes have the highest refugial capacity, even when
burning during periods of relatively high fire weather. In addi-
tion, the fundamental relationships between fire refugia proba-
bility and the topographic predictor variables assessed here were

Fig. 4. Landscape-scale maps of example predictor variables and response variable for one fire event: the Boze Fire. (a) Prefire biomass (2002)
based on gradient nearest neighbor (GNN) imputation modeling. Black areas indicate nonforest conditions. (b) Aspect (direction of slope)
based on digital elevation model. Blue and red represent northerly and southerly aspects, respectively. (c) Burn severity and fire refugia
classification is described in the caption of Fig. 2. Green areas indicate nonforest conditions. Fire location is indicated by the yellow arrow in
Fig. 1. [Color online.]

Table 2. BRT model metrics and performance.

Metric

TOPO TOPO+FUELS

Moderate fire
weather

High fire
weather

Moderate fire
weather

High fire
weather

Sample size (number of pixels) 22 427 23 676 22 427 23 676
Refugia (%) 26 20 26 20
Number of regression trees 4 050 4 800 9 450 8 600
AUC 0.65 0.63 0.75 0.69
Cross-validated correlation 0.24 0.21 0.4 0.31

Note: TOPO, eight topography variables; TOPO+FUELS, eight topography variables plus two metrics
of prefire live fuel; AUC, area under the curve of the receiver operating characteristic.
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relatively consistent across fire weather scenarios. Because fire
refugia predictability and probability both were lower under high
fire weather, our findings suggest that the abundance and stabil-
ity of fire refugia may decline as wildfire activity increases with
projected climate change (Barbero et al. 2015). Moreover, because
the likelihood of large wildfires is also projected to increase with
climate change within the study area (Davis et al. 2017), more of
the landscape will experience fire. However, despite recent large
fire years, many PNW forests are still in a fire deficit relative to
historical fire regimes (Haugo et al. 2019). Low-severity fire has
been a substantial component of contemporary fire in the PNW
region (Reilly et al. 2017), indicating a high potential for fire refu-
gia to persist despite increasing fire extent.

Our findings are generally consistent with recent spatially ex-
plicit BRT analyses of fire refugia, fire effects, and refugia from
other disturbances in western North America. The top three top-
ographic variables in our study — aspect, catchment slope, and
relative position — were also important predictor variables with
similar partial-dependence relationships in an analysis of large
fires in the Western Cordillera of Canada, which is relatively
colder and more topographically rugged than the West Cascades
(Krawchuk et al. 2016). Our study applies the same general analyt-
ical approach and variables as Krawchuk et al. (2016), providing
models and maps applicable to research and management in the
PNW. Another BRT analysis in Canada utilized historical land-
scape photographs to delineate fire refugia as forest patches that
survived large fires in headwater drainages and near upper tree
line, highlighting the refugial capacity of high-elevation sites
close to nonfuel conditions (Rogeau et al. 2018). In another recent
burn severity assessment using the same sampling scheme and
some of the same data and methods as our study, Parks et al.
(2018b) found that prefire live fuels (EVI) were a strong predictor of
high-severity fire probability in the West Cascades and across the
western US (Parks et al. 2018b). Finally, a recent analysis close to
our study area determined that topographically shaded slopes,
low-biomass forests, and low soil bulk density were associated
with refugia from drought and insect outbreaks (Cartwright 2018).
Collectively, these studies demonstrate the value of integrating mul-
tiple variables representing fuels or vegetation, topography or land-
scape context, and weather or climate to quantify refugia

probability or persistence, as well as the importance of geo-
graphic variation among study regions.

Despite similarities among analyses and regions, there are im-
portant distinctions between the relatively temperate, moist for-
ests in the West Cascades and forests in colder or drier ecosystem
types. For example, our finding that prefire EVI (i.e., live fuel) is
positively associated with fire refugia is consistent with findings
from the 2013 Douglas Complex Fire, which burned to the west of
our study area in the PNW (Zald and Dunn 2018; Lesmeister et al.
2019). In contrast, our results differ from observations of lower
burn severity (i.e., tree mortality) in young forest stands with
lower prefire fuels following the 2006 Tripod Complex Fire in the
northern PNW (Lyons-Tinsley and Peterson 2012). Our findings
also contrast with an assessment of numerous fires in the south-
western US that found that low-severity fire was more likely in
locations with lower prefire EVI, particularly in cooler or wetter
years (Parks et al. 2018a). Consequently, further research is war-
ranted on the influence of prefire fuels on burn severity and fire
refugia, particularly studies that contrast the relatively warm,
moist PNW with drier, less productive forests.

Within the US PNW, prior field-based studies that explicitly
focused on fire refugia in older forests showed how refugial con-
ditions are associated with particular topographic settings at a
plot scale, including locations with northerly aspects, stream con-
fluences, and highly dissected terrain (Camp et al. 1997; Kolden
et al. 2017). These fire refugia, located within the federally pro-
tected Swauk late-successional reserve in Washington, exhibited
characteristic vegetation composition and structure, including
fire-intolerant species, old trees, multilayered canopies, and
downed coarse wood (Camp et al. 1997). Although these fire refu-
gia sites were relatively buffered from prior stand-replacing fire,
they also contained abundant fuel for a recent large fire, the Ta-
ble Mountain Fire of 2012, which resulted in marginally higher
overstory tree mortality in refugial sites than in nonrefugial sites
(Kolden et al. 2017). At the same time, non-stand-replacing fire was
abundant in mixed-conifer forests within that fire event (Meigs
and Krawchuk 2018), likely supporting the retention of large, live
trees, large deadwood, and other old-forest elements. Such non-
stand-replacing fire effects are a fundamental driver of old-forest
structural development pathways in the study region (Tepley et al.
2013).

After accounting for prefire live fuels, three topographic variables
were consistently important across all four statistical models: aspect,
catchment slope, and relative position. The positive association
between fire refugia probability and northerly aspects is intuitive
because north-facing aspects are generally cooler and retain mois-
ture longer into the fire season, supporting higher fuel moisture
and large, fire-resistant trees compared with south-facing aspects.
In contrast, the positive association between fire refugia and
catchment-scale slope is less intuitive given the expectation of
faster spread rates and higher burn severity when fire spreads up
steep slopes (Pyne et al. 1996). However, the catchment slope vari-
able may also be capturing terrain ruggedness and associated fuel
breaks at a landscape scale (e.g., rocky ridges, cliffs, and outcrops).
Finally, the negative association between fire refugia probability
and relative topographic position highlights the refugial role of
convergent valley bottoms; cold-air pooling; and riparian forest
composition, structure, and moisture (Leonard et al. 2014). We
recognize that these topographic conditions interact with vegeta-
tion (fuel) type and abundance, as well as weather dynamics,
which underscores the value of integrating multiple metrics of
fuels, topography, and weather, as well as their interactions. We
also note that although topography alone did not produce the
strongest predictive models, the variability that topography does
explain could be very important for identifying enduring, persis-
tent fire refugia for old-forest habitats.

Table 3. Relative importance of predictor variables in BRT analysis
across four model scenarios.

Moderate fire weather High fire weather

Variable
Relative
influence Variable

Relative
influence

TOPO
Catchment slope 36.3 Relative position 27.2
Local aspect 23.3 Catchment slope 21.5
Relative position 12.0 Local aspect 18.0
SWI 10.2 SWI 11.3
Local slope 7.9 Local slope 6.4
Catchment area 4.0 Catchment flow path 5.5
Catchment flow path 3.5 TCI 5.4
TCI 2.8 Catchment area 4.9

TOPO+FUELS
EVI (prefire live fuel) 32.2 EVI (prefire live fuel) 22.5
Biomass (prefire live fuel) 20.2 Biomass (prefire live fuel) 17.0
Local aspect 16.8 Relative position 13.8
Catchment slope 10.2 Catchment slope 10.1
Relative position 6.4 Local aspect 10.0
Local slope 5.8 SWI 7.6
SWI 3.7 TCI 7.2
TCI 2.2 Local slope 6.9
Catchment area 1.3 Catchment area 2.8
Catchment flow path 1.2 Catchment flow path 2.2

Note: Variables and units are defined in Table 1.
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Uncertainties and future research
The topic of fire refugia has been gaining interest in research

and management arenas, especially in the context of climate
change, but many uncertainties remain regarding the different
ways that refugia have been conceived, defined, and measured
across spatial, temporal, and taxonomic scales (Meddens et al.
2018b). Each objective of this study — mapping of recent fire refugia
and burn severity, statistical modeling of refugia predictability, and
spatial predictions of fire refugia conditional probability — depends
on key assumptions and could be improved for future assess-
ments. Quantifying burn severity with satellite imagery presents
multiple challenges, including spatial variability (e.g., subpixel
fire effects), temporal variability (e.g., delayed tree mortality), and
the inherent disconnect between remote and ground-based met-
rics of burn severity (Morgan et al. 2014; Dunn and Bailey 2016;
Harvey et al. 2019). Nevertheless, Landsat-based RdNBR mapping
is valuable as a relative indicator of fire-induced change across
numerous fire events spanning heterogeneous conditions, partic-
ularly when interpreted in the context of field-measured fire ef-
fects such as tree mortality (Reilly et al. 2017; Chapman et al. 2020).
We recognize that the fire refugia threshold of 10% BA mortality is
subjective, and future studies could test other refugia thresholds
or leverage additional spectral information in Landsat imagery
(Meddens et al. 2016; Collins et al. 2019), as well as finer-resolution
satellite and aerial imagery (Walker et al. 2019; Chapman et al.
2020). Future studies could also integrate field observations to
distinguish low-severity from truly unburned refugia (Meddens
et al. 2016) and quantify the distinctive composition and structure

in old forests, particularly in the West Cascades where large, fire-
resistant Douglas-fir trees are prevalent.

As with any statistical analysis, BRT modeling requires making
assumptions and decisions about specific variables and model
parameters. For example, fuel and fire weather metrics are diffi-
cult to characterize consistently at the fine spatial and temporal
scales at which they influence fire behavior and effects, as de-
scribed in detail by Parks et al. (2018b). Also, many other predictor
variables could be incorporated to assess fire refugia, including
fire weather indices other than ERC (e.g., burning index, temper-
ature, precipitation, and wind speed and direction), climatic con-
ditions (i.e., drought), fire season, and spatial variables that
capture the landscape context of refugia (e.g., forest patch size,
edge effects, and distance to roads, ridges, and other known fuel
breaks). Additionally, BRT is a very powerful machine-learning
approach, but it also is prone to overfitting, and nonlinear partial-
dependence plots can hinder model interpretation and spatial
prediction, especially when sample size is low at the margins of
fitted functions (Supplementary Fig. S31). In particular, the spatial
predictions of conditional probability (Fig. 6) represent unique
combinations of interacting variables, and it is challenging to
discern direct relationships between mapped fire refugia proba-
bility and specific predictors. Finally, although spatial predictions
are one of the most powerful outputs from BRT modeling, we
caution against overinterpreting the specific values of conditional
fire refugia probability (Table 4; Fig. 6), suggesting that the rela-
tive difference among models and fire weather scenarios is more
informative.

Fig. 5. Partial-dependence plots for the top eight predictor variables of TOPO+FUELS models under moderate (blue solid line) and high (red dashed
line) fire weather conditions. The y axes indicate logit probability of fire refugia after accounting for interactions among predictor variables. All
variables and units are defined in Table 1. Relative importance values are shown in Table 3. Relationships are similar for TOPO models (see
Supplementary Figs. S2 and S31). EVI, enhanced vegetation index; SWI, SAGA wetness index; TCI, topographic convergence index. [Color online.]
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Implications for fire refugia monitoring and management
This study provides methods and results that are directly appli-

cable to forest monitoring and management efforts in the PNW
and other fire-prone regions. The fire refugia and burn severity
maps illustrate the landscape mosaic of fire effects within recent
large fires. Although the prevalence of large fires in the southern
and eastern portions of the greater West Cascades ecoregion was
not surprising given the subregional variation in forest composi-

tion, historical fire regimes, and lightning ignitions, the low rela-
tive abundance of stand-replacing fire across the study area shows
how low-severity fire refugia can occur throughout much of the
PNW. The role of bottom-up, endogenous drivers of fire behavior —
including the intrinsic fire resistance of old Douglas-fir trees in this
study region (Dunn and Bailey 2016) and the cool, moist microcli-
mates supported by old forests and associated topography — is a key
factor that supports fire managers using wildfire to meet resource
objectives under moderate fire weather conditions. In fact, wild-
fires burning under moderate conditions could potentially en-
hance the refugial capacity of old forests by effectively thinning
smaller trees, less fire-tolerant trees, and ladder fuels, similar to
the ecological effects of prescribed fire (North et al. 2012; Walker
et al. 2018).

At the same time, most of the northern and western portions of
our study area have not burned for decades to centuries. These
cooler and moister forests represent a broader scale of fire refugia
associated with fire frequency rather than severity, reflecting top-
down, exogenous drivers of fire behavior. Because wind-driven
fire events in these cooler, wetter Douglas-fir dominated forests
historically resulted in very large patches of stand-replacing fire
(Halofsky et al. 2018), mitigation of anthropogenic ignitions and
rapid mobilization of firefighting resources could continue to
play essential roles in protecting old forests that are vulnerable to

Fig. 6. Landscape-scale maps of refugia probability for an example fire event: the Boze Fire. Refugia conditional probability under (a and d)
moderate and (b and e) high fire weather (ERC) and (c and f) the difference between fire weather conditions. Values indicate the probability
that a given location (30 m pixel) will experience very low burn severity if it burns under a given fire weather scenario. Results are shown for
the TOPO+FUELS model with eight topography variables plus prefire biomass and prefire reflectance (EVI). Fire location is indicated by the
yellow arrow in Fig. 1. Insets (black squares in panels a–c) indicate location of zoom maps (panels d–f) showing spatial patterns of refugia
probability within old forests. Mapped areas in panels d–f exceed the threshold of old-growth structural index ≥ 200 (see Methods), whereas
less structurally complex forests are masked out as black areas. [Color online.]

Table 4. Summary statistics of mapped fire refugia conditional prob-
ability across four model runs.

Statistic

TOPO TOPO+FUELS

Moderate fire
weather

High fire
weather

Moderate fire
weather

High fire
weather

Minimum 0.40 0.28 0.27 0.16
Maximum 0.66 0.75 0.88 0.81
Mean 0.54 0.59 0.72 0.67
SD 0.02 0.02 0.02 0.05

Note: Statistics are based on spatial distribution of modeled fire refugia prob-
ability across all fire perimeters combined throughout the study region. Values
(minimum, maximum, mean, and SD (standard deviation)) represent the condi-
tional probability of fire refugia, assuming that all pixels burn under a given fire
weather scenario.
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fire under extreme fire weather conditions. The residual old for-
ests in much of the study region typically occur in patches sur-
rounded by younger forests regenerating from timber harvest
(Franklin and Dyrness 1973), underscoring how the spatial pat-
terns of land ownership and management intensity have strong
effects on fire spread, burn severity (Zald and Dunn 2018), and
associated fire refugia capacity.

Moving forward, our statistical modeling and mapping ap-
proaches could be expanded and enhanced to address the broader
range of forest conditions and management applications through-
out the PNW and other regions. Old-forest persistence and spotted
owl conservation are timely issues with complicated trade-offs
among fire exclusion, restoration thinning, and increasing fire
activity, especially in the more fire-prone portions of the study
area (Davis et al. 2016; Spies et al. 2018; Lesmeister et al. 2019;
Stephens et al. 2019). Spatial predictions of fire refugia probability
could help land managers identify specific locations for forest
restoration or habitat conservation, depending on management
objectives and policy constraints (Wilkin et al. 2016). Another key
application of this research is that all refugia are not equivalent.
Persistent fire refugia represent a critical subset of old forests, and
our study demonstrates that some persistent fire refugia can be
predicted based on enduring topographic features. Although
these old forests have persisted for centuries in a relatively fire-
prone region, we have entered a new era of anthropogenically
dominated landscapes that are projected to experience increasing
fire activity (Barbero et al. 2015; Davis et al. 2017). As such, land-
scape and regional maps of locations most likely to persist as fire
refugia — particularly in old-forest environments critical to the
survival of threatened and endangered species — will support
adaptive management, forest plan revisions, and ongoing conser-
vation initiatives.
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