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Abstract

Currently, the empirical literature on outdoor recreation demand lacks estimates of the

benefits of special forest products harvesting. This paper provides a recreation demand

analysis of non-commercial huckleberry and mushroom picking on the Gifford Pinchot

National Forest in southwesternWashington State (USA). Using available survey data and a two-

step structural equations model of harvesting and travel cost recreation demand, with a Murphy–

Topel (J. Bus. Econ. Stat. 3 (1985) 88) standard error correction, we estimate the consumer surplus

associated with special forest products harvesting. Per recreation visitor day consumer surplus is

estimated at $30.82 in 1996 dollars ($36.06 in 2003 dollars). Estimated values for the full range of

non-timber values are becoming increasingly important as public lands management agencies

expand their focus to include consideration of alternative forest uses.
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Introduction

Public forestlands provide a wide variety of beneficial uses, including numerous
opportunities for recreational activities (Loomis, 1993). To the extent possible,
quantifying these recreational benefits will facilitate resource allocation decisions.
Estimates of non-market economic values, often referred to as ‘‘non-timber values,’’ can
be important inputs for evaluating tradeoffs in forest management and policy.
Estimated values relating to non-timber uses of forested areas are becoming increasingly
important as public lands management agencies expand their planning focus to include
full consideration of alternative forest uses. The objective of this paper is to provide a
structural equations approach to modeling recreation demand of a common, but under-
investigated, recreational activity—special forest products harvesting.
The current empirical literature on outdoor recreation demand (see Rosenberger

and Loomis, 2001) lacks estimates of wild berry and mushroom harvesting. The
literature also lacks development of a structural equations approach (jointly
examining harvest and recreation demand) without relying on a full information
maximum likelihood (FIML) estimator (see Englin et al. (1997) for an example of
the structural equations FIML model). Outside of a recreation demand context,
Murphy and Topel (1985) develop the two-step correction method, but do not derive
corrections for count data models. Greene (2000) presents the Murphy–Topel
method, but also does not provide count data estimators.
Using an available data set, we develop a two-step structural equations model of

harvesting and travel cost recreation demand for both a Poisson and truncated
Poisson demand equation, using the Murphy–Topel (1985) standard error
correction. The application is to the estimation of the non-commercial value of
huckleberry and mushroom picking on the Gifford Pinchot National Forest in
southwestern Washington state (USA). Per recreation visitor day consumer surplus
is estimated at $30.82 in 1996 dollars ($36.06 in 2003 dollars). More generally, extending
the recreation demand method to incorporate a jointly determined demand determinant
provides a useful analytical tool for a wide variety of non-timber forest products and
recreational values including fishing, hunting, mountain biking, rock climbing, and
other skill and/or equipment intensive recreation activities.
The paper proceeds as follows. First we provide a brief background discussion on

the history and current importance of special forest products. The next section
provides a description of the survey data, its origination, limitations, and descriptive
statistics. We then describe the structural equations model and the two-step estimation
method. The following section then provides the empirical results and estimated
consumer surplus measures, and the last section provides some conclusions.

Background

Increasing awareness of environmental effects associated with timber harvesting
has created a need for various land management agencies to begin focusing attention
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on sustainable extraction of special forest products (SFPs).1 Intact forest areas
impact ecological health by providing environmental services such as CO2 storage,
conservation of biological diversity, and the maintenance of regional climatic zones
(Gram, 2001, p. 109). In addition to the ecological services provided by forests, there
is a wide range of products extracted from natural areas that have both market and
non-market values associated with their extraction. Special forest products are
materials harvested from forests that are non-timber in nature and include: wild
mushrooms and berries; ferns and medicinal plants; Christmas trees; and peat moss
(Hansis, 1998, p. 69).
A small number of previous studies have examined the value of special forest

products in the United States (Hansis, 1998; Anderson et al., 2000; Markstrom and
Donnelly, 1988), while a slightly larger literature has examined the value of SFPs
outside of the USA, mostly in South American countries (Arnold and Perez, 2001;
Simpson, 1999; Robinson et al., 2002; Godoy and Lubowski, 1992; Mattson and Li,
1994). One study in Finland measures the commercial value of wild berry harvesting
and the contribution to household income that harvesting activities generate
(Kangas, 2001). Kangas (2001) uses a Tobit model to estimate a value of FIM 4.8
million earned by wild berry harvesters in the Suomussalmi area of Finland.
Markstrom and Donnelly (1988) use the TCM to estimate the demand for Christmas
tree cutting in Colorado (USA). They estimate an average value of $9.37 per
standing Christmas tree, with an average consumer surplus estimate of $4.37.
Anderson et al. (2000) study the value of fern gathering on the San Bernardino
National Forest in California (USA), but focus on the characteristics and
motivations of harvesters. They collect detailed survey information, but do not
estimate any direct value from their data. Godoy and Lubowski (1992) compile
estimates of the value of caimans, elephants, game meat, flora, rattan, palms, and
wild camu camu from the literature on NTFPs from India, Zaire, the Amazon, Peru,
Brazil, and Mexico. Estimates range from $0.75 per hectare per year for caimans (in
US dollars) to $420 per hectare per year for the flora inventory of Iquitos, Peru.
Most of the Godoy and Lubowski values are derived from ethno-botanical surveys
and anthropological-based studies. In reviewing the literature concerning special
forest products, it is notable that only one study employs a recreation demand or
travel cost method (Markstrom and Donnelly, 1988) to derive value estimates, and
this was for Christmas tree cutting.

Data description

To estimate our models, we use a data set collected in 1996 from the Gifford
Pinchot-National Forest (GPNF) in southwestern Washington State (USA). Several
special forest products are routinely harvested on the GPNF, including wild
mushrooms, wild blackberries and huckleberries, and plants such as ferns. The
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1Special Forest Products (SFPs) are also called: non-timber forest products (NTFPs), non-wood forest

products, minor forest products, or wild harvested products (Hansis, 1998, p. 67).
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GPNF represents one of only a handful of premier wild berry and mushroom
harvesting locations in the United States, and both commercial and recreational
harvesting permits are issued to harvesters.2 Currently, each recreational harvester is
allowed three gallons of huckleberries and mushrooms free of charge per year. If
larger quantities are wanted, or if the harvester intends to sell the harvest, a
commercial permit is required which can be purchased from the ranger district
offices.3 Hansis (1998) collected information on the number of permits issued by the
GPNF for huckleberry and mushroom harvesting between 1992 and 1994; the
GPNF issued a total of 2620 personal mushroom harvesting permits and 8342
commercial mushroom permits. The GPNF issued 25,621 personal huckleberry
permits, as well as 73 commercial huckleberry permits.
The data used for this analysis come from a 1996 survey of special forest products

harvesting permit holders. The target population was individuals holding recrea-
tional use permits to harvest berries and mushrooms from the Packwood and
Randall districts in the Gifford Pinchot National Forest in Washington. The permits
were for personal use (non-commercial) only and were required for harvesting from
the area. The permits were available for no cost from the forest ranger district offices
by filling out a simple self-administered form including the applicant’s name and
address. For the mail survey, all the names and addresses obtained from the
recreational use permits issued in 1996 by the Packwood and Randall district offices
were used. This resulted in exactly 1000 surveys being mailed out. The self-
administered survey packet contained a map and a hand-signed cover letter.
Postcard reminders were mailed two weeks after the first mailing, and complete
packages were mailed again to non-respondents a month after the first mailing. This
resulted in 485 returned surveys (48.5%), with 462 usable responses (46.2%).
The survey collected information on the 1996 mushroom and berry harvest season

in the Packwood and Randall districts of the Gifford Pinchot National Forest. There
are approximately seven harvesting areas within the general area, but we have no
information on variations in site quality, or the number of trips to individual areas,
so we treat them as a single site. This is also consistent with the permitting process
and the fact that individuals will move across harvesting areas. Questions included
transportation type, type of special forest products gathered, quantity gathered,
number of trips taken, and a standard set of socio-demographic questions.
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2The Gifford Pinchot National Forest is one of the oldest National Forests in the United States.

Included as part of the Mount Rainier Forest Reserve in 1897, this area was set aside as the Columbia

National Forest in 1908. It was renamed the Gifford Pinchot National Forest in 1949. Located in

southwestern Washington State, the Forest contains 1,312,000 acres and includes the 110,000-acre Mount

St. Helens National Volcanic Monument established by Congress in 1982. Since the 1994 Northwest

Forest Plan was enacted, logging on the GPNF has declined to approximately 2 million board feet per year

down from the 350 million board fee of lumber during the mid-1980s (Gordon, 2002). This decrease in

logging has increased interest in special forest products harvesting on the GPNF.
3A commercial berry permit costs $25 and allows a harvest of 250 pounds of berries. There are four

commercial mushroom permits: a 2-day permit costs $25 and allows a maximum of 62.5 pounds; a 10-day

permit costs $40 and allows 100 pounds; a 20-day permit costs $60 and allows 150 pounds; and a biannual

permit costs $125 and allows 312.5 pounds of mushrooms to be harvested.
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The average annual household income in our sample was $42,390; the average age
was 55 years; the sample was evenly split between men and women; and 52% of the
sample held at least a bachelors degree. Ninty-one percent of the sample was white,
and 60% were employed full time. The mean distance traveled to harvest at the
Randall-Packwood area was 96 miles, and the mean number of trips per respondent
for the 1996 season was 1.58. The average respondent harvested 2.48 gallons of
berries and 2.48 gallons of mushrooms for the season. The average mushroom and
berry harvest is within the three gallons allowed per year for the recreational
harvester. However, the data contained individuals who harvested more than the
three gallons allowed by the recreational permit. For the berry harvesters 74% of the
sample harvested 3 or fewer gallons, while 23% of the sample harvested between 4
and 10 gallons of berries. 99% of the mushroom harvesters in the sample harvested
between 0 and 3 gallons of mushrooms, and only one harvested 6 gallons of
mushrooms.4 The majority of the harvesters were within the permit requirements
indicating that the sample consists mostly of recreational, not commercial,
harvesters. Descriptive statistics are provided in Table 1.

Methods

Numerous authors have estimated travel cost models and detailed the theoretical,
empirical, and econometric aspects of recreation demand modeling, including
various applications to forest management (Loomis, 1993). Bockstael et al. (1987)
develop the utility-theoretic aspects of recreation demand models; Hellerstein (1993)
and Hellerstein and Mendelsohn (1993) developed the econometric reasoning and
tools for count data and panel data estimators. Ovaskainen et al. (2001) provided
count data estimators for truncated and endogenously stratified data; and
Chakraborty and Keith (2000) presented a recent count data travel cost model
that is similar in design to the sampling methodology of the survey used in this study.
A variety of sources (Shaw, 1988; Creel and Loomis, 1990; Grogger and Carson,
1991; Englin and Shonkwiler, 1995; Cameron and Trivedi, 1986) discuss the issues
associated with truncated, and endogenously stratified count data. The reader is
referred to Ovaskainen et al. (2001) for a recent overview.
In considering the recreational demand for special forest products harvesting on

the GPNF, we can specify an individual’s general trip demand model as a function of
travel costs, household income, harvesting level or quality, and a set of
socioeconomic characteristics:

Visits ¼ f ðTC;TC�MUSH; MUSHDUM; INC; GENDER; AGE; HARVESTÞ;

ð1Þ
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4 In the survey, answers to the harvesting questions could be given in either pounds or gallons. All values

were converted to gallons using the following estimates provided by the Bureau of Land Management: 2 lb

mushrooms/1gallon of mushrooms, 5 lb of berries/1gallon of berries. This conversion is consistent with the

USFS recreational harvest permit units of 3 gallons of mushrooms and 3 gallons of berries allowed per

harvester per year. The conversion factors were found at: http://www.blm.gov/nhp/efoia/mt/2000/im/

00mtm, accessed 5/12/2003.
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where TC is the individual’s constructed travel cost measure, which serves as the
price proxy, TC�MUSH is an interaction term between travel cost and whether or
not the observation came from a mushroom harvester (with huckleberry-only
harvester as the reference case), INC is the household income variable, and
HARVEST is the combined quantity of mushrooms and berries harvested
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Table 1. Variable descriptions and descriptive statistics

Variable Description Mean Std.dev.

ONSITE Length of stay on site, measured in hours 14.84 27.49

ONEWAY How far from home to site, measured in hours 2.36 1.37

COMPDIST Calculated distance from home to site, using

center of home Zip Code area to site (latitude/

longitude) using USDA’s ZIPFIP Program

94.28 177.01

AGE Age in years 55.26 14.81

VISITS Total number of visits made to the Gifford

Pinchot in 1996 for harvesting mushrooms and

berries

1.63 1.37

GENDER Coded 1 if male, 0 if female 0.52 0.49

INC Household income in ranges from

[min.]$10,000–[max.]$100,000 or greater; in

increments of $10,000, median of range used

42,412 22,463

RACE Binary variable, coded 0 if non-white, 1 if white/

Caucasian

0.92 0.27

EDUC Binary variable, coded 1 if number of years in

school greater than 12, 0 else

0.53 0.49

EMPL Binary variable, coded 1 if employed fulltime, 0

else

0.61 0.48

MUSH Gallons of mushrooms gathered in 1996 season 2.48 15.02

BERRY Gallons of berries gathered in 1996 season 2.48 3.03

EXPEND Reported expenditures for camping or lodging,

gasoline, and equipment for the 1996 harvest

season

72.37 156.16

GRPSZ Harvesting group size 3.87 2.11

HARVEST Aggregate harvest variable,

HARVEST=MUSH+BERRY, measured as

total harvest for the season

4.96 14.99

MUSHDUM Coded 1 if harvested mushrooms, 0 else 0.18 0.38

TCMUSH Interaction term, TCMUSH=TC�MUSH 6.73 25.81

TC
TC ¼ ð0:31�2�COMPDISTÞ=GRPSZ

þ 0:33�ðINC=2000Þ�2�ONEWAY

55.92 51.24

Note: [N ¼ 392].
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per season.5 With this basic demand specification in mind, the rest of this section
discusses various issues in developing a more complete demand model.
First, as Hellerstein (1993) and others have shown, the number of trips taken is not

a continuous distribution. Trip data occur as positive integers. This results in linear
estimates of recreation demand being misspecified; they are inefficient and biased
indicators of true demand (Freeman, 1993). The non-negative integer nature of the
data results in a count data estimator such as Poisson or Negative Binomial being
the appropriate distribution. The Poisson distribution is defined as

PðYi ¼ yiÞ ¼
e�lilyi

i

yi!
; yi ¼ 0; 1; 2yT ; ð2Þ

where Y is the dependent variable (VISITS). The Poisson distribution defines the
probability of event occurrence (VISITS) for each individual i: The distribution is
defined over all observations from i ¼ 1yT : For notational simplicity, in what
follows the subscript i will be omitted. Typically a log-linear specification for l is
used, which can then be defined by letting, ln l ¼ b0X : Where X is the vector of
independent variables, in this case as we have defined in Eq. (1). This then implies
that the expected number of events per period is given by E yjX½ 	 ¼ Var yjX½ 	 ¼ l ¼
eb

0x (Greene, 2000, p. 880). If the mean and the variance are equal, then Poisson is an
appropriate distribution, but if the data are dispersed such that the mean and the
variance are not equal then the Negative Binomial distribution should be used
(Greene, 2000, p. 880). The Negative Binomial relaxes the assumption that the
expected value must equal the variance, but uses the same log-linear specification for l:
In addition to the choice between Negative Binomial and Poisson, there is also the

issue of truncation and endogenous stratification that can arise from the sample
selection process. A sample is truncated if it does not include non-users, and a
sample is endogenously stratified if the likelihood of certain persons being sampled
depends on the frequency of visits to the site (Englin and Shonkwiler, 1995, p. 104).
Our sampling involves all recreational permit holders and is not derived from an

on-site sample and should not be endogenously stratified. While the sample process
allows for zero trip response, in our usable sample set there are no observations of
zero, and we effectively observe yi ¼ y�i if y�i > 0: To account for possible
truncation in our data we estimate both the standard Poisson and the truncated
Poisson as given in Englin and Shonkwiler (1995). The reader is referred to
Ovaskainen et al. (2001) for a full exposition of truncation, endogenous
stratification, and over-dispersion of recreation trip data.
Another potential issue is the cost allocation for individuals for whom the trip to

the site was not the main purpose. In our sample, only special forest products permit
holders were surveyed and the question regarding number of trips taken to the
GPNF in 1996 specifically asks respondents to report the number of harvesting trips
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5This combined construction of HARVEST is used in order to develop the structural equations model,

and is reasonable because there are so few mushroom harvesters in our sample (only 17 reported collecting

any quantities of mushrooms); additionally, the per gallon prices of mushrooms and berries are in the

same order of magnitude, so the measurement error introduced by using this construction should be within

acceptable limits.
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taken. Thus, our entire sample is the target population and we do not need to reject
observations based on reported trip objectives.
To construct the individual travel cost (TC) variable the following method was

used:

TC ¼ ðð0:31�2�COMPDISTÞ=GRPSZÞ þ 0:33
INC

2000

� �
�2�ONEWAY; ð3Þ

where TC is the travel cost variable, and ONEWAY is the respondent’s self-reported
one-way distance from home (multiplied by two to get round trip distance),
COMPDIST is the ZIPFIP calculated distance from the respondent’s home zip code
to the harvesting site, and GRPSZ is the number of individuals in the harvesting
group.6 The survey did not ask for the wage rate, so income was divided by 2000
(40 h/week�50 weeks/year) to construct the wage rate. As is historically common in
TCM studies, one-third the wage rate was used to approximate the opportunity cost
of travel time. From the US Government Services Administration, the standard
mileage reimbursement rate for 1996 was $0.31 per mile.7

For exposition, in Eq. (1) we included HARVEST (seasonal quantity in gallons) in
the vector of regressors. However, the use of the level of harvest as an explanatory
variable in recreation demand is problematic, as it may not be an exogenous factor
of demand. If the individual chooses HARVEST internally or jointly with the total
trip decisions, then HARVEST may be endogenous to trip demand. Englin et al.
(1997) examine the demand for fishing trips taken by anglers, and point out that
anglers prefer to catch more fish to less and thus some estimate of expected fish catch
enters the demand for recreational fishing trips. Modeling the catch rate as an
exogenous demand factor will lead to biased and/or inefficient parameter estimates.
If catch rate is endogenous, then the problem must be modeled as one of joint
determination of catch and trip demand. This leads to a structural equations model
where catch and trip demand is estimated jointly (Englin et al., 1997, pp. 33–34).
Much like the problem of modeling the catch rate and its effect on trip demand, the
demand for recreational harvesting trips is likely to be jointly determined by the
harvest rate. In order to model special forest products harvesting on the Gifford
Pinchot, a structural equations approach must be used due to the potential
endogeneity of harvest to trip demand.
The structural equations approach then defines the following jointly determined

recreation demand model:

HARVEST ¼ f ONSITE; GRPSZ; EXPEND; MUSHDUM; RACE; EMPLð Þ;

ð4Þ
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6TC was based on the respondent’s reported trip distance. Missing responses on ONEWAY were

imputed using the mean sample value. COMPDIST used the respondent’s zip code and the latitude/

longitude of each of the sites to construct a distance traveled to the site. The program that computes these

distances uses a centric-road distance method for calculating the distance, which can introduce

measurement error, but the survey did not provide for self-reported distances from home to the

harvesting sites.
7See URL: http://www.gsa.gov; site accessed on 10/15/2002.
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VISITS ¼ f ðTC; TCMUSH; MUSHDUM; INC; GENDER; AGE; EXPHRVÞ;

ð5Þ

where (4) is the harvesting production function, and includes a measure of harvesting
effort or time spent (ONSITE), number of harvesters in the group (GRPSZ), trip
expenditures (EXPEND), if they are mushroom harvesters (MUSHDUM), a
dummy variable for white versus non-white harvesters (RACE), and employment
status (EMPL). Trip demand (5) is then modified from our basic specification (1) to
replace the harvest quantity (HARVEST) with the predicted or expected harvest
quantity (EXPHRV), which is an estimable, but unobservable variable.8

The two-step structural equations approach

Typically, an unobserved, but estimable variable is replaced by its predicted value
from an auxiliary regression or estimated jointly with the model. Two approaches
can be taken when modeling these types of endogenous variables problems. The first
is the FIML approach, and the second is the two-step method. Englin et al. (1997)
use the FIML joint estimation approach, but as Murphy and Topel (1985) discuss
the use of FIML is not always preferred. The use of FIML dictates strict
assumptions concerning the joint distribution of errors between the auxiliary
equation and the equation of interest. The conditions under which FIML leads to
consistent estimators are limited. In many cases the ability to appropriately define
the joint distribution is problematic, which dictates the use of a two-step estimator.
Additionally, FIML frequently has convergence problems. The two-step estimator
can be used under more general conditions because there is no need to determine a
joint-density function for the errors, and as long as each separate function is
estimable, does not have difficulty converging (Greene, 2002).
However, a two-step method fails to account for the unobserved regressors used to

calculate the second step parameters and standard errors. The imputed values
applied in the second step are thus measured with sampling error. If it is assumed
that the auxiliary (first step) model produces consistent estimates of both first step
parameters and their asymptotic covariance matrix, then the sampling error of the
imputed values vanishes in the limit. Thus, the second step parameters are
consistently estimated. Further, under fairly general conditions the estimated
limiting distribution of this error may be used to consistently estimate the variances
of the second step parameters (Murphy and Topel, 1985, p. 89).
To model the recreational trip demand associated with wild berry and mushroom

harvesting on the GPNF, it is necessary to jointly model harvest and trip demand, as
shown in Eqs. (4) and (5). Thus, following Murphy and Topel (1985), let Y ¼
VISITS; W ¼ HARVEST; and let:

F1ðW ;Z; q1Þ ¼ W ¼ f
CONSTANT; ONSITE; GRPSZ;

EXPEND; MUSHDUM; RACE; EMPL

 !
; ð6Þ
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8Eqs. (4) and (5) represent total special forest products harvesting trips taken to the GPNF for 1996.
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F2ðY ;X ;Z; q1; q2Þ ¼ Y ¼ f
CONSTANT; TC; TCMUSH; MUSHDUM

INC; GENDER; AGE; E½W jZ	

 !
:

ð7Þ

Eqs. (6) and (7) define the structural equations model. Let F1 be the auxiliary
model that predicts the harvest of wild berries and mushrooms, and let F2 be the
model that predicts the number of trips taken to the GPNF for recreational
harvesting, which includes the predicted harvest level. Then let W be the harvest and
let Y be the number of trips taken in 1996 to the Gifford Pinchot. Let Z be the vector
of independent variables associated with F1 and let y1 be the estimated parameters
from the auxiliary model. Then let X be the vector of independent variables for F2

and let y2 be the estimated parameters of the main equation. The marginal
distributions can both be estimated using maximum likelihood methods (Murphy
and Topel, 1985, pp. 94–95). Then y1 is estimated, yielding a prediction for W ; which
is then used in F2: After estimating y2; the variance–covariance matrix for the second
step must be corrected using the Murphy–Topel correction. This approach allows us
to treat HARVEST as endogenous and use the prediction for harvest in the second
step. The set of regressors used in the auxiliary equation are not contained within the
set of regressors for the main equation, thus differentiating this structural equations
approach from an instrumental variables method.
Then the models (F1; F2) in a log-linear/Poisson two-step estimator for harvest

and trips are defined, respectively, as

PðW ¼ wÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2

p
 !

eð1=2ðln w�Z0y1Þ=s2Þð1=wÞ; where l1 ¼ E½wjZ	 ¼ eZ0y1þs2=2;

ð8Þ

PðY ¼ yjy > 0Þ ¼
e�l2ly

2

½1� e�l2 	y!
; where l2 ¼ eX 0y2þgE½wjZ	 ¼ eX 0y2þgexpðZ0y1þs2=2Þ:

ð9Þ

Eqs. (8) and (9) define the marginal distributions of two random vectors Y and W :
Note that the conditional mean function for F2 contains the expected value of F1 in
the definition of the l2 (Greene, 2000, p. 435). Thus, the predicted number of trips is
defined by the expression:

E½yjX ;Z; y1; y2; g; jy > 0	 ¼
e�l2ly

2

½1� e�l2 	y!
: ð10Þ

As (10) shows, the predicted number of trips is jointly determined by the expected
amount of harvest. From the density functions, we form the log-likelihood functions
as

ln L1 ¼ �
n

2
lnð2pÞ �

n

2
ln s2 �

1

2

ln w � Z0y1½ 	
s2

� �
�
1

w
; ð11Þ
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ln L2 ¼ � eX 0y2þg expðZ0y1þs2=2Þ
� �

þ y ln eX 0y2þg expðZ0y1þs2=2Þ
� �

� ln y!� lnð1� e�e
X 0y2þg expðZ0y1þs2=2Þ

Þ: ð12Þ

After estimating L1 using MLE, the predicted harvest (l1) is inserted into L2 and
then the second model is estimated. The prediction for number of recreational trips
now contains the information from the first step, but also contains the error
associated with the prediction for harvest. Thus, the standard errors resulting from
the estimation of Eq. (12) must be corrected. Finally, let V1 be the variance–
covariance for the auxiliary model (Eqs. (9) and (11)) and let V2 be the variance–
covariance matrix for the main equation (Eqs. (10) and (12)). Then the corrected
variance–covariance matrix for the second step can be defined in terms of the
asymptotic distribution for the two-step MLE.
As long as the standard regularity conditions are met for (11) and (12), then the

second-step maximum likelihood estimator of y2 is consistent and asymptotically
normally distributed with an asymptotic covariance matrix defined by

V�
2 ¼ V2 þ V2½CV1C

0 � RV1C
0 � CV1R

0	V2; ð13Þ

where V1 is the asymptotic variance matrix of L1 (Eq. (11)), and V2 is the asymptotic
variance matrix of L2 given y1 (Eq. (12)). We can then define C and R as

C ¼ E
qln L2

qln y2

� �
qln L2

qy01

� �	 

;

R ¼ E
qln L2

qy2

� �
qln L1

qy01

� �	 

:

ð14Þ

The estimates for C and R can be obtained by summing the individual
observations on the cross products of the derivatives (Greene, 2000, p. 135). In
order to calculate V�

2 the partials and cross partials of L1 and L2 were taken,
yielding:

qln L1

qln y1
¼

1

s2
Z0ðln w � Z0y1Þ; ð15Þ

qln L1

qs2
¼ �

n

2s2
þ

1

2s4
ln w � Z0y1
� �0

ln w � Z0y1
� �

; ð16Þ

qln L2

qy2
¼ �l2X 0 þ y

1

l2

� �
l2X 0 �

1

ð1� e�l2Þ

� �
�e�l2
� �

�l2ð ÞX 0; ð17Þ

qln L2

qy1
¼ �l2Z0gl1 þ y

1

l2

� �
l2Z0gl1 �

1

ð1� e�l2Þ

� �
�e�l2
� �

�l2ð ÞZ0gl1: ð18Þ

With the estimates for C and R; the corrected variance–covariance matrix for the
second step model can be calculated. The Murphy–Topel Correction for the
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log-linear/truncated Poisson is thus:

R ¼
qln L2

qy2

	 

qln L1

qy1

	 

¼ X 0 �l2 þ y

1

l2

� �
l2 �

1

ð1� e�l2Þ

� �
�e�l2
� �

�l2ð Þ
	 

 �


 Z0 1

s2
ðln w � y1Þ

	 

 �
; ð19Þ

C ¼
qln L2

qy2

	 

qln L2

qy1

	 


¼ X 0 �l2 þ y
1

l2

� �
l2 �

1

ð1� e�l2Þ

� �
�e�l2
� �

�l2ð Þ
	 

 �


 Z0 gl1 �l2 þ y
1

l2

� �
l2 �

1

ð1� e�l2Þ

� �
�e�l2
� �

�l2ð Þ
� �	 

 �

: ð20Þ

We modify the above two-step method defined by Eqs. (6)–(20) to produce log-
linear/Poisson, log-linear/truncated Poisson (as detailed above), Poisson/Poisson,
and Poisson/truncated Poisson models.9 The models are presented in the next
section.

Results

Using the two-step derivations above, a total of eight models were created. Four
of the eight models are presented in this section. We evaluate four different versions
of the two-step models discussed above, each with a main (trips) and auxiliary
equation (harvest): the log-linear/Poisson model with TCMUSH (LL-PM); log-
linear/Poisson model without TCMUSH (LL-P); log-linear/truncated Poisson with
TCMUSH (LL-TPM) model; and the log-linear/truncated Poisson without the
TCMUSH variable (LL-TP).10 The four models are presented in Table 2. In this
section we examine the econometric results of our modeling.
The trip data in our sample have a mass centered around 1, with the frequency

falling off significantly as the trip count increases; and by examining the mean (1.63)
and the variance (1.61) of the variable VISITS the mean and variance do not exhibit
over-dispersion.11 This confirms the use of the Poisson count data model for
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9The details of these derivations are provided in a separate appendix, available upon request from the

authors.
10 In estimating the two-step models, a total of eight versions were estimated. Only the four models using

the log-linear harvest equation are presented here because of specification difficulties with the P-TP and P-

P models, as discussed later in this section.
11A truncated negative binomial model was run in order to examine the effect of relaxing the Poisson

assumption that the mean and variance of the dependent variable are equal. The parameter a; which tests

whether the variance is significantly different from the mean, was estimated at 0.366, with a t-statistic of

1.985 (significant at the 0.05 level). Per trip consumer surplus was calculated at $48.32, with a confidence

interval of $6.58. The variables EXPHRV, AGE, and INC were not statistically significant. However, TC,

and TCMUSH were significant (0.01 level). The truncated negative binomial model has difficulty

converging, and while several different algorithms and step-levels were tried, the LIMDEP likelihood
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examining trip demand. However, it is not so clear what distribution approximates
the HARVEST data. While the HARVEST data appear to be of a discrete nature,
the process of harvesting should yield a continuous distribution of harvest. Thus, the
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Table 2. Two-step estimation results (LHS=VISITS)

Independent variable Models

LL-PM LL-P LL-TPM LL-TP

CONSTANT 0.524��� 0.612��� 0.280 0.377�

(2.498) (3.047) (0.865) (1.289)

TC �0.002�� �0.003��� �0.016��� �0.018���

(�1.816) (�2.530) (�4.345) (�5.451)
TCMUSH �0.005� — �0.004 —

(�1.568) — (�0.745) —

MUSHDUM 0.660��� 0.462��� 0.879��� 0.744���

(4.339) (4.654) (3.948) (5.595)

INC 0.001 �0.003 0.049� 0.047�

(0.025) (�0.164) (1.511) (1.452)

GENDER �0.161�� �0.168�� �0.307��� �0.313���

(�1.934) (�2.029) (�2.428) (�2.482)
AGE 0.001 �0.003 0.022 0.017

(0.049) (�0.124) (0.510) (0.412)

EXPHRV 0.009� 0.010� 0.011�� 0.011��

(1.466) (1.628) (1.662) (1.673)

Pearson’s R2 0.404 0.394 0.454 0.454

Deviance-based R2 0.269 0.257 0.301 0.300

Log-likelihood �541.797 �543.225 �387.315 �387.599
w2 67.181 64.325 376.144 375.576

Akaike’s information

criteria

0.112 0.112 0.080 0.080

Per trip consumer surplus 422.542 313.948 62.353 57.139

95% confidence interval (190–655) (190–438) (48–77) (47–68)

Recreational visitor day

CS

227.939 169.358 33.636 30.823

Notes: [N ¼ 392], with t-statistics, using corrected standard errors, in parentheses. �, ��, ���, indicate
significance at the 0.10, 0.05, 0.01 levels, respectively. LL-PM=log-linear/Poisson with TCMUSH; LL-

P=log-linear/Poisson; LL-TPM=Log-linear/truncated Poisson with TCMUSH; LL-TP=Log-linear/

Truncated Poisson. Consumer Surplus values are in 1996 US Dollars.

(footnote continued)

procedure did not converge. Additionally, the w2 value was 15.08 compared with 375.58 for the LL-TP

model. The SFP data have a mean VISITS value of 1.63, and a variance of 1.61, indicating that the

Poisson assumption that the mean and the variance are the same is appropriate. Given the difficulty with

convergence for truncated negative binomial models, the statistical lack of significance on EXPHRV, a CS

measure higher than the LL-TP model, a w2 value of only 15.08, and the mean-variance of VISITS—the

truncated negative binomial distribution was rejected in favor of the Poisson.
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apparent count nature of the data may be due to measurement error. In looking at
the distribution of the HARVEST data, we find that the mean (4.96) and variance
(224.96) are significantly dispersed, suggesting that a Poisson model is not
appropriate for our harvest data. Examining the results of the auxiliary models,
we find the log-linear predicts an average harvest of 4.96 gallons of mushrooms and
berries while the Poisson predicts a value of 5.05 gallons; this compares with the
sample mean of 4.96 gallons of harvest. Both the log-linear and Poisson harvest
models are significant (0.01 level) and yield significant estimates of the coefficients;
however, the Poisson has inflated standard errors due to the over-dispersion of the
harvest data. For the log-linear model, the estimated coefficients for ONSITE,
GRPSZ, EXPEND, MUSHDUM and EMPL are significant (0.01 level), while the
RACE coefficient is statistically insignificant. The full results for the auxiliary
regression for the log-linear harvest model are presented in Table 3. Based on the
goodness-of-fit statistics, predicted harvest, the over-dispersion of the harvest data,
and the significance levels of the estimated coefficients, we reject the Poisson harvest
model in favor of the log-linear harvest model.12

Of the four models presented here, the log-linear/truncated Poisson (LL-TP) yields
the most conservative estimate of per trip consumer surplus (CS) at $57.14. In
comparison, the log-linear/Poisson (LL-P) yields a CS of $313.95. The difference
between the LL-P and the LL-TP is $256.81, well outside the 95% confidence
intervals for the regressions ($124.05 and $10.86, respectively). As these results
indicate, using the standard Poisson distribution in the recreation demand model
produces CS estimates considerably larger than those from the comparable
truncated Poisson model.
In terms of estimated coefficients, the results are consistent across the models. All

four models have estimated coefficients on travel costs (TC) that are negative and
significant at the 0.05 level or better. In all models, the estimated coefficient on
MUSHDUM is positive and significant (0.01 level), and the estimated coefficient on
GENDER is negative and significant (0.05 level). Finally, the estimated coefficient
on the predicted harvest EXPHRV is positive and significant (0.05 level) in all the
models.
In terms of goodness-of-fit statistics, for all four models the chi-squared values

from a likelihood ratio test indicate that the results are significant at the 0.01 level;
Pearson’s R2 values range from a low of 0.394 for the LL-P model to a high of 0.454
for the LL-TP model.
After examining the goodness-of-fit statistics, the predicted seasonal trips and

predicted harvest levels, the estimated consumer surplus values, and the significance
of the estimated coefficients based upon the corrected standard errors, our results
indicate that the log-linear/truncated Poisson (LL-TP) model provides the best fit to
our data and yields consistent and efficient estimates of consumer surplus. These
results are consistent with the data since our usable sample does not contain any zero
trip values.
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12The results of the four models using the Poisson auxiliary equation can be obtained from the authors

upon request.
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Thus, based on the LL-TP model we estimate a per trip consumer surplus value of
$57.14 from recreational harvesting trips to the Gifford Pinchot National forest in
1996 dollars. To convert our seasonal values to the more standard recreational
visitor day (RVD) values, we calculate

CSRVD ¼
CS

14:84

8

0
B@

1
CA ð21Þ

for each of our models, where 14.84 is the mean time in hours on site, and 8 hours
is the standard length of an RVD. Using the LL-TP model we estimate a
CSRVD of $30.82 in 1996 dollars, or $36.06 when adjusted for inflation to 2003
dollars.
In summary, the structural equations model provides an econometric correction of

the endogeneity stemming from the inclusion of the predicted harvest in the
recreation demand equation. The two-step procedure produces corrected standard
errors that improve the efficiency of the estimated coefficients.
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Table 3. Two-step estimation model results: auxiliary equation (LHS=HARVEST)

Variable Coefficient

ONE �0.013
(�0.064)

ONSITE 0.007���

(4.419)

GRPSZ 0.126���

(5.439)

EXPEND 0.001���

(2.447)

MUSHDUM 0.828���

(6.637)

RACE 0.027

(0.162)

EMPL 0.202��

(2.212)

R2 0.302

Adjusted R2 0.291

F-statistic 27.790���

Predicted harvest 4.962

Notes: [N ¼ 392], t-statistics in parentheses. �, ��, ���, indicate significance at the 0.10, 0.05, and 0.01

levels, respectively. For the Poisson harvest model (not presented here) the predicted harvest was 5.05

gallons.
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Discussion

Public forestlands provide a wide variety of beneficial uses, including numerous
opportunities for recreational activities. To the extent possible, quantifying these
recreational benefits will facilitate resource allocation decisions. Thus, estimates of
non-timber values can be important inputs for evaluating tradeoffs in forest
management policy. The current empirical literature lacks recreation demand
estimates of berry and mushroom harvesting in the Pacific Northwest (USA) and
elsewhere. In estimating the demand for non-commercial harvesting, the expected
harvest level must be explicitly modeled. As Englin et al. (1997) have shown, the
expected harvest can be endogenous to trip demand and failure to model trip
demand and harvest explicitly can lead to biased and/or inefficient demand
estimates.
In closing, to improve the efficiency of our estimates of the non-commercial wild

berry and mushroom harvest from the GPNF, this study uses a structural equations
approach with a Murphy–Topel standard error correction. From our preferred
model, we estimate an RVD consumer surplus of $30.82 for wild berry and
mushroom harvesting on the Gifford Pinchot National Forest in 1996 dollars, or
$36.06 when adjusted for inflation to 2003 dollars. By way of comparison with
previous Pacific Coast Area (USA) forest recreation demand studies (Rosenberger
and Loomis, 2001, p. 13), our estimated RVD value of $30.82 (1996$) falls between
the mean value for camping of $86.96 (1996$, with 4 observations) and the mean
value for picnicking of $53.52 (1996$, with 3 studies).
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