

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis

Upper Granite Creek Watershed Mines, Wallowa-Whitman National Forest, Oregon

Prepared for

USDA Forest Service 1220 SW 3rd Avenue Portland, Oregon 97204

Prepared by

Terraphase Engineering Inc. 610 SW Broadway, Suite 405 Portland, Oregon 97205

February 7, 2025

Project Number 0031.005.002

This is a draft document and the information contained herein is subject to change. It should not be relied upon; consult the final document

File: rpt-EECA-0031-004-002-DFCR

Contents

Acı	ronym	is and A	bbreviations	ix				
Sig	natur	es		xi				
Exe	ecutiv	e Summ	ary	xiii				
	Monumental Mine							
	Upper-Upper Monumental Mine							
	Upper Monumental Mine							
		xv						
	Gran	ite Cree	ek Aquatic Station 03	xv				
	Cap	Martin I	Mine	xv				
	Sher	idan Mi	ne	xvi				
	Granite Creek #7 Mine							
	Granite Creek #6 Mine							
	Tillic	um Min	e	xvi				
	Gran	ite Cree	ek #5 Mine	xvii				
	Golden Fraction Mine							
	Central Mine							
	Reco	mmend	led Removal Action Summary	xvii				
1	Introduction							
	1.1	Site M	lines					
	1.2	2 EE/CA Purpose and Organizational Structure						
2	Site Characterization							
	2.1	Local (Climate	2				
	2.2							
	2.3							
	2.4	Mine (Descriptions	4				
		2.4.1	Monumental Mine	4				
		2.4.2	Granite Creek Aquatic Station 03	5				
		2.4.3	Cap Martin Mine	5				
		2.4.4	Sheridan Mine	6				
		2.4.5	Granite Creek #6 Mine	6				
		2.4.6	Granite Creek #7 Mine	6				
		2.4.7	Tillicum Mine	6				
		2.4.8	Granite Creek #5 Mine	6				
		2.4.9	Golden Fraction Mine	7				

		2.4.10	Central Mine	/	
	2.5	Operational History			
	2.6	Previous Investigations			
		2.6.1	Environmental Impact Statement – 2002	8	
		2.6.2	Site Inspection – 2004	9	
		2.6.3	Risk Assessment – 2006	9	
		2.6.4	Additional Abbreviated Preliminary Assessments – 2006	10	
		2.6.5	EE/CA Data Gap Investigation – 2007	11	
		2.6.6	Supplemental Data Gap Investigation at the Monumental Mine – 2009	11	
		2.6.7	Wetland Delineation Report – 2011	11	
		2.6.8	Human Health and Ecological Risk Assessment – 2011	12	
		2.6.9	Non-Time-Critical Removal Action EE/CA – 2011	12	
		2.6.10	Supplemental Sampling Investigation – 2024	12	
		2.6.11	Previous Cleanup Response Actions	13	
	2.7	Chemicals of Potential Concern		13	
		2.7.1	Soil	13	
		2.7.2	Sediment	15	
		2.7.3	Surface Water	15	
		2.7.4	Groundwater	16	
		2.7.5	Air	16	
	2.8 Risk Evaluation		valuationvaluationvaluationvaluationvaluationvaluationvaluationvaluation	16	
		2.8.1	Human Health	16	
		2.8.2	Ecological	17	
3	Potential Applicable or Relevant and Appropriate Requirements				
		3.1.1	Chemical-Specific ARARs		
		3.1.2	Action-Specific ARARs	19	
		3.1.3	Location-Specific ARARs	20	
4	Rem	Removal Action Goals and Objectives			
	4.1	·			
	4.2				
	4.3	·			
5	Iden [.]	Identification and Analysis of Removal Action Alternatives			
•	5.1	•			
	5.2				
	٥.٢	5.2.1	Monumental Mine		
		5.2.2	Granite Creek Aquatic Station 03		
		5.2.3	Cap Martin Mine		
		5.2.5			

		5.2.4	Granite Creek #6 Mine	27	
		5.2.5	Tillicum Mine	28	
		5.2.6	Granite Creek #5 Mine	28	
		5.2.7	Golden Fraction Mine	28	
		5.2.8	Central Mine	28	
	5.3	Alterna	tive 3: Excavation and On-site Disposal	29	
	5.4	Alternative 4: Excavation and Off-site Disposal			
	5.5	Analysis of Selected Removal Action Alternatives			
		5.5.1	Effectiveness	30	
		5.5.2	Implementability	32	
		5.5.3	Cost	34	
	5.6	Compa	rative Analysis of Removal Action Alternatives	34	
6	Recommended Removal Action Alternative				
	6.1	Monun	nental Mine	36	
		6.1.1	Upper-Upper Monumental Mine	36	
		6.1.2	Upper Monumental Mine	36	
		6.1.3	Lower Monumental Mine	37	
	6.2	Granite	e Creek Aquatic Station 03	37	
	6.3	Cap Ma	artin Mine	38	
	6.4	Sheridan Mine			
	6.5	Granite Creek #7 Mine			
	6.6	Granite Creek #6 Mine			
	6.7	Tillicum Mine			
	6.8	e Creek #5 Mine	39		
	6.9	Fraction Mine	39		
	6.10	Centra	l Mine	39	
	6.11	Summa	ary of Recommended Removal Action Alternative	40	
	6.12	Recom	mended Removal Action Cost	41	
7	References				

Tables

- 1 Summary of Soil Analytical Results
- 2 Summary of Sediment Analytical Results
- 3 Summary of Surface Water Analytical Results
- 4 Chemical-Specific Potential Applicable or Relevant and Appropriate Requirements
- 5 Location-Specific Potential Applicable or Relevant and Appropriate Requirements
- 6 Action-Specific Potential Applicable or Relevant and Appropriate Requirements
- 7 Cost Estimate for Alternative 2 Onsite Containment
- 8 Cost Estimate for Alternative 3 Excavation and Disposal in Onsite Repository
- 9 Cost Estimate for Alternative 4 Excavation and Offsite Disposal
- 10 Cost Estimate for Recommended Alternative
- 11 Recommended Removal Action Summary

Figures

- 1 Site Location
- 2 Site Layout
- 3 Upper-Upper Monumental Mine
- 4 Upper Monumental Mine
- 5 Lower Monumental Mine
- 6 Granite Creek Aquatic Station 03
- 7 Cap Martin Mine
- 8 Sheridan Mine
- 9 Granite Creek #6 Mine
- 10 Granite Creek #7 Mine
- 11 Tillicum Mine
- 12 Granite Creek #5 Mine
- 13 Golden Fraction Mine
- 14 Central Mine
- 15 Background Soil and Surface Water Sampling Locations

Appendices

- A Wetland Delineation Report
- B Supplemental Site Investigation Report
- C Human Health and Ecological Risk Assessment

Acronyms and Abbreviations

ABA acid-base accounting
ABP acid-base potential

ARAR applicable or relevant and appropriate requirement

ARD acid rock drainage

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CES Cascade Earth Sciences

COPCs contaminant of potential concern

cy cubic yards

EA Engineering, Science, and Technology, Inc

EC engineering control

EE/CA engineering evaluation/cost analysis

FS Forest Service Road (prefix)

IC institutional control

LiDAR light detection and ranging mg/kg milligram per kilogram mg/L milligram per liter

NCP National Oil and Hazardous Substances Pollution Contingency Plan

ODEQ Oregon Department of Environmental Quality

ppm parts per million

PRG preliminary removal goal
RAOs removal action objectives

RCRA Resource Conservation Recovery Act

RG removal goal

Site Upper Granite Creek Watershed Mines

SPLP synthetic precipitation leaching procedure

tCaCO3/kt tons of calcium carbonate to neutralize a kiloton of waste

TCLP toxicity characteristic leaching procedure

Terraphase Engineering Inc.
UCL upper confidence limit

UCLM 95 percent upper confidence limit on the mean

USDA United States Department of Agriculture

USEPA United States Environmental Protection Agency

XRF x-ray fluorescence

THIS PAGE INTENTIONALLY LEFT BLANK

Signatures

DRAFT		
Don Malkemus, RG	Date	
Associate Hydrogeologist		
DRAFT		
James Farrow, RG	Date	
Principal Hydrogeologist		
DRAFT		
Kevin Long, Principal Consultant	Date	

Executive Summary

Terraphase Engineering Inc. (Terraphase) has prepared an engineering evaluation/cost analysis (EE/CA) for the Upper Granite Creek Watershed Mines (the "Site"; Figure 1) in the Wallowa-Whitman National Forest. The Site consists of the following nine abandoned gold mines along Granite Creek between Forest Service Road (FS) 7345 and its headwaters:

- 1. Monumental Mine (divided into Upper-Upper 5. Golden Fraction Mine Monumental Mine, Upper Monumental Mine, 6. Central Mine and Lower Monumental Mine)
- 2. Cap Martin Mine
- 3. Tillicum Mine
- 4. Sheridan Mine

- 7. Granite Creek #5 Mine
- 8. Granite Creek #6 Mine
- 9. Granite Creek #7 Mine

The purpose of the EE/CA is to develop alternatives for the removal action, make comparative analysis between the alternatives (including cost), and recommend a preferred alternative based on the comparative analysis of the alternatives. The goal of the preferred alternative is to minimize or eliminate any release or threat of release of a hazardous substance into the environment or impact on public health and welfare.

Site characterization occurred between 2003 and 2024 and involved collection of soil, sediment, porewater, plant tissue, and surface water samples; the identification of ecological species; wetland delineation; surveying; test pit excavation; mapping; and x-ray fluorescence measurement. Human health and ecological risk assessments were prepared by Cascade Earth Sciences (CES) in 2006 (updated in 2011) based on the sample data, observed Site conditions, and ecological observations. The main driver for risk at the Site is arsenic-contaminated tailings and waste rock piles. The highest contaminant concentrations were detected in samples from Monumental Mine, particularly in tailings piles at the former mill and crusher. Surface water in adit seeps and ponds in proximity to the mines were above ecological screening criteria; however, surface water samples in Granite Creek were generally less than these criteria. Updated preliminary removal goals of 190 and 110 milligrams per kilogram (mg/kg) for arsenic in soil/waste rock and tailings, respectively, were calculated based on conservative assumptions regarding potential exposure of human health receptors at the Site and information obtained through additional sampling and analysis to determine the relative bioavailability of arsenic in these media at the Site. These preliminary removal goals are proposed as removal goals (RGs).

Four removal action alternatives were evaluated for effectiveness, implementability, and cost:

- Alternative 1 No Action: Under this alternative, no remedial action, monitoring, or maintenance would be performed.
- Alternative 2 On-site Containment: Under this alternative, waste rock and tailings above RGs would be graded and covered with clean soil sourced from the Site.
- Alternative 3- Excavation and On-site Disposal: Under this alternative, waste rock and tailings above RGs would be excavated and placed in a repository constructed on Site.

• Alternative 4- Excavation and Off-site Disposal: Under this alternative, waste rock and tailings above RGs would be excavated and hauled to an off-site sanitary landfill.

Taking into consideration the evaluation criteria presented in this EE/CA, the recommended removal action alternative for the Site is a combination of Alternatives 1, 2, 3, and 4. The Site mines, and the features at each mine, have individual attributes such that a single remedy would not be appropriate for the entire Site. The rationale for selecting an alternative for each mine is presented below.

Monumental Mine

The recommended removal action at Monumental Mine is a combination of Alternatives 1, 2, 3, and 4, as described below.

Upper-Upper Monumental Mine

Alternative 1 is recommended for waste rock piles at the Upper-Upper Monumental Mine with 95 percent upper confidence limit (UCL) on the mean (UCLM) below RGs.

Alternative 2 is recommended for waste rock piles with UCLMs above RGs. Piles can be moved using a bulldozer into trenches and covered with local clean borrow material. The cover material would be placed on the partially open shaft to prevent a trespasser or recreator from falling. Access to this area would require minimal road improvement.

Upper Monumental Mine

Alternative 2 is recommended for waste rock pile B. The shaft has sufficient capacity to accept the waste rock pile. Cover material can be supplied from the Upper-Upper Monumental Mine area and the unnamed road adjacent to the pile would require minimal improvement for equipment access.

A combination of Alternatives 2 and 3 is recommended for waste rock pile A. The steep slope of the waste rock pile will not likely allow recontouring of the entire pile without significant grubbing of the surrounding forest. It is recommended that the over-steepened portion of the pile be pushed with a bulldozer downslope to FS 7345 and taken to an on-site repository. Approximately half of the pile could then be spread and contoured to the existing topography. During the removal action, efforts would be made to maximize the volume of soil left in place, graded, and covered, and minimize the volume of soil transported to the on-site repository.

Alternative 4 is recommended for tailings piles A, B, and C. A vacuum truck should be used to remove the fine tailings without disturbing the historical structures and minimize creating dust in this particularly fine material with high arsenic concentration. The contents of the vacuum truck will be transferred to a highway-rated truck with appropriate hazardous waste placards and a lined, covered bin at a staging area near the intersection of FS 7345 and FS 73 for transport to a Subtitle C landfill. After removing tailings to the extent practicable, clean cover soil will be placed in the excavated areas to provide an exposure barrier from remnant tailings. No road improvements would be necessary except a vacuum truck with sufficient hose length could park on FS 7345. Tailings pile C could be accessed from the unnamed access road that transects Lower Monumental Mine.

The wetlands near the tailings piles B and C will be restored following the removal of hazardous substances in accordance with the 1994 United States Environmental Protection Agency guidance document *Considering Wetlands at CERCLA Sites*. If needed, clean organic fill may be imported from off Site for placement in the new wetland system. Wetland plants will be obtained either off Site or from a local borrow area pending United States Department of Agriculture Forest Service approval.

Lower Monumental Mine

Alternative 4 is recommended for tailings pile A. Similar to the Upper Monumental Mine, a vacuum truck could be used to remove the fine tailings without disturbing the historical crusher structure. The contents of the vacuum truck will be transferred to a highway-rated truck with appropriate hazardous waste placards and a lined, covered bin at a staging area near the intersection of FS 7345 and FS 73 for transport to a Subtitle C landfill. Some road improvement would be necessary to allow a vacuum truck to drive on the unnamed road. Removing tailings would help reduce the capacity for this material to leach chemicals of potential concern and migrate to Cap Martin Creek and nearby wetlands.

Alternative 2 is recommended for waste rock piles A and B. The area surrounding the waste rock piles is relatively flat and would support grading. The over-steepened northeastern portion of waste rock pile A could be regraded to the north—northwest, and across tailings pile A to the northeast, taking care not to bury or obscure the historically significant crusher. A portion of waste rock pile A could be placed in the open adit to prevent access to this physical hazard. Waste rock pile B could be placed in the area in front of adit 3 and the rest appropriately graded downslope. Cover material could be sourced from the area to the east of the unnamed access road or to the south of waste rock pile A. Capping the waste rock piles would be protective of human health, cost effective, and less difficult to implement than Alternatives 3 and 4.

Granite Creek Aquatic Station 03

Alternative 1 is recommended for Granite Creek Aquatic Station 03 waste rock pile A due to low arsenic concentrations indicative of background conditions.

Alternative 2 is recommended for Granite Creek Aquatic Station 03 waste rock pile B. Minimal road improvement would be necessary along FS 720 to allow for a bulldozer or excavator to regrade and pull the waste rock pile away from Granite Creek and cover it with material from waste rock pile A or another local cover source. Alternative 2 would be protective of human health, reduce risk to ecological receptors, be cost effective, and relatively easy to implement.

Cap Martin Mine

Alternative 1 is recommended for the Cap Martin Mine. Only waste rock pile C at this mine had a UCLM (243.5 mg/kg) above the arsenic RG of 190 mg/kg. At this waste rock pile, only three of the eight sample locations had concentrations above the arsenic RG (maximum concentration of 365.8 mg/kg). Cap Martin Mine is in a remote area of the Site, with difficult access through small trees and brush by foot and no access by road or trail. It is unlikely that a trespasser or recreator would discover Cap Martin Mine, and even more unlikely that they would spend time in the area of waste rock pile C with elevated

arsenic concentrations. Implementing Alternatives 2, 3, or 4 would necessitate constructing a new road down a steep and densely vegetated portion of national forest. These alternatives would be expensive and provide only marginal benefit for the protection of human health.

Sheridan Mine

Alternative 1 is recommended for the Sheridan Mine. All samples collected at this mine had arsenic concentrations well below the RG. The mine is in a remote portion of the Site and is difficult to access.

Granite Creek #7 Mine

Alternative 1 is recommended for Granite Creek #7 Mine. Of the seven analytical samples collected at this mine, only one exceeded the RG with a concentration of 220 mg/kg. Calculated UCLMs for the waste rock piles were below RGs. The mine is in a remote area of the Site that would be difficult to access.

Granite Creek #6 Mine

Alternative 1 is recommended for Granite Creek #6 Mine. Two samples collected from waste rock pile A exceeded RGs (maximum concentration 504 mg/kg). However, the waste rock pile is relatively small, and the mine is in a remote portion of the Site with difficult access. This mine was difficult to locate with a map and GPS device and offers no historically significant features that trespassers or recreators would be interested in. To implement Alternatives 2, 3, or 4, it would be necessary to construct a new road along Granite Creek that would likely cause unwanted turbidity and undercut the uphill slopes.

Tillicum Mine

Alternative 1 is recommended for Tillicum Mine. Only waste rock pile A had a calculated arsenic UCLM (357.7 mg/kg) above the RG of 190 mg/kg. This pile is downhill from FS 280, between the road and Granite Creek. Human health exposure to the waste rock pile is likely minimal as it would require descending a steep hill from the road. Soil downslope of waste rock pile A had similar arsenic concentrations to the pile, which indicates that erosion of the pile to Granite Creek is ongoing; however, pool and riffle samples collected in 2003 adjacent to the pile did not have measurable arsenic concentrations. The concentration of total arsenic in the 2024 Granite Creek surface water sample collected downstream of Tillicum Mine was slightly less than the upstream sample. These data suggest that even though material from the waste rock pile is eroding into Granite Creek, it is not having a significant effect on downstream water quality. Implementing Alternatives 2, 3, or 4 at Tillicum Mine would require improving approximately 0.75 miles of FS 280, including a portion across privately held land, which would be labor and capital intensive.

Granite Creek #5 Mine

Alternative 1 is recommended for the Granite Creek #5 Mine. The calculated arsenic UCLM for waste rock pile A is 293.2 mg/kg, which exceeds the RG. However, six of the eight x-ray fluorescence measurement or analytical sample locations had arsenic concentrations below the RG. Furthermore, the sample collected downslope of the waste rock pile, between the pile and Granite Creek, had an arsenic concentration less than half of the minimum concentration of waste rock pile A samples. The concentration of total arsenic in the 2024 Granite Creek surface water sample collected downstream of the Granite Creek #5 Mine was slightly less than the upstream sample, suggesting Granite Creek #5 Mine does not significantly contribute to contaminant loading in Granite Creek. Implementing Alternatives 2, 3, or 4 at the Granite Creek #5 Mine would require improving approximately 0.4 miles of FS 280, including a portion across privately held land.

Golden Fraction Mine

Alternative 1 is recommended for Golden Fraction Mine. Waste rock pile A had arsenic concentrations above the RG (calculated UCLM of 332 mg/kg). However, this waste rock pile is located high up a steep hillside from the most likely access point of a trespasser or recreator, and it is unlikely that there is an associated human health risk. This waste rock pile is relatively small and implementation of Alternatives 2, 3, or 4 would require constructing an access road across a very steep hillside, which may not be feasible. In 2011, CES collected a sample from the area of a trench within waste rock pile C that had an arsenic concentration of 1,340 mg/kg. Terraphase measured arsenic concentrations at four locations in this area and collected a sample from the trench and was unable to reproduce this result (maximum concentration 102 mg/kg when not including the CES sample). It is possible that this sample was collected from a different area or it represents an anomalous result unrepresentative of the bulk of the pile. In either case, this waste rock pile does not represent a significant human health risk and does not warrant removal action.

Central Mine

Alternative 2 is recommended for Central Mine waste rock pile A, which had a calculated arsenic UCLM of 239.5 mg/kg, slightly above the RG. This waste rock pile is easily accessible along FS 280, just west of its intersection with FS 280, which has parking at nearby FS 73. Waste rock pile A would be pulled up from the Granite Creek floodplain and placed in the open space at the adit and contoured into the adjacent hillside. Cover material is available downslope of FS 280, though it would need to be tested prior to application. Although there is higher likelihood of trespassers and recreators, no action is needed at waste rock piles B, C, or D as they had calculated UCLMs below the RG.

Recommended Removal Action Summary

The recommended removal action for the Site includes a combination of Alternatives 1, 2, 3, and 4, as summarized above. Combined estimated costs for the recommended removal action are \$1,218,259, as summarized in Table 10.

Introduction

In accordance with United States Department of Agriculture (USDA) Forest Service Contract BPA Call No. 1240BE24A0015/1240BD24F0080, Terraphase Engineering Inc. (Terraphase) has prepared this engineering evaluation/cost analysis (EE/CA) for the nine Upper Granite Creek Watershed Mines (the "Site"; Figure 1) in the Wallowa Whitman National Forest in accordance with:

- Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup authorities (42 USC § 9604[a] and 7 CFR § 2.60[a][39]) and Federal Executive Order 12580;1
- The provisions of National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 CFR § 300.415(b)(4)(i);² and
- The United States Environmental Protection Agency's (USEPA) Guidance on Conducting Non-Time-Critical Removal Actions under CERCLA (1993).

Cascade Earth Sciences (CES) prepared an EE/CA for the Site in 2011 based on data collected between July 2003 and September 2009 (CES 2011a). This EE/CA updates that report with additional field and laboratory data.

Site Mines 1.1

The Site consists of the following nine abandoned gold mines, most along Granite Creek between Forest Service Road (FS) 7345 and its headwaters, approximately 5 to 8 aerial miles north of Granite, Oregon (Figure 2):

- 1. Monumental Mine (divided into Upper-Upper 5. Golden Fraction Mine Monumental Mine, Upper Monumental Mine, 6. and Lower Monumental Mine)
- 2. Cap Martin Mine
- 3. Tillicum Mine
- 4. Sheridan Mine

- Central Mine
- 7. Granite Creek #5 Mine
- 8. Granite Creek #6 Mine
- 9. Granite Creek #7 Mine

The mines are managed by the USDA Forest Service under CERCLA authorities.

² "Removal action." 40 CFR § 300.415, https://www.ecfr.gov/current/title-40/chapter-I/subchapter-J/part-300/subpart-E/section-300.415.

^{1 &}quot;Response authorities," 42 USC § 9604, https://www.govinfo.gov/content/pkg/USCODE-2023title42/pdf/USCODE-2023-title42-chap103-subchapI-sec9604.pdf.

[&]quot;Chief, Forest Service." 7 CFR § 2.60, https://www.ecfr.gov/current/title-7/subtitle-A/part-2/subpart-J/section-2.60

[&]quot;Superfund implementation," Executive Order 12580, https://www.archives.gov/federalregister/codification/executive-order/12580.html.

1.2 EE/CA Purpose and Organizational Structure

The NCP authorizes and describes two processes for responding to releases: (1) a removal action process, and (2) a remedial action process (see 40 CFR §§ 300.400–300.440). Based on environmental investigations at the Site, USDA Forest Service determined that site conditions warranted additional response to address the release or threatened release of hazardous substances and that a non-time-critical removal action is appropriate at the Site as specified in 40 CFR § 300.415(b). The purpose of the EE/CA is to develop alternatives for the removal action; make comparative analysis between the alternatives, including cost; and recommend a preferred alternative based on the comparative analysis of the alternatives. The goal of the preferred alternative is to minimize or eliminate any release or threat of release of a hazardous substance into the environment or impact on public health and welfare.

The EE/CA evaluates risks that mine-related contamination poses to (primarily) human and (secondarily) ecological health, the extent that remedial action is necessary to mitigate identified risks, and the best course of action to pursue if remedial action is necessary.

This EE/CA report is organized by the following topical headings, which also represent the overall objectives of the EE/CA:

- Characterize the nature and extent of contamination at the Site (Section 2);
- Identify applicable or relevant and appropriate requirements (ARARs; Section 3);
- Develop removal action objectives (RAOs) and removal goals (RGs; Section 4);
- Identify and analyze potential removal action alternatives (Sections 5.1–5.4);
- Conduct a comparative evaluation of the removal action alternatives (Section 5.5); and
- Recommend a removal action alternative (Section 6).

2 Site Characterization

This section describes the local climate, nearest surface water, and regional geology and hydrogeology of the Site and surrounding area; setting, operational history, and previous investigations of the Site; chemicals of potential concern (COPCs); and a summary of the human health and ecological risk assessments.

2.1 Local Climate

The Wallowa-Whitman National Forest has an alpine climate with cool nights and generally sunny days in the summer and early fall. Average minimum and maximum temperatures range from a low of 11 to 31 degrees Fahrenheit in January to a high of 39 to 79 degrees Fahrenheit in July. Average precipitation

³ "Subpart E—Hazardous Substance Response," 40 CFR §§ 300.400–300.440, https://www.ecfr.gov/current/title-40/chapter-l/subchapter-J/part-300#subpart-E.

and snow depth are 24 and 168 inches, respectively. ⁴ There are likely differences in snowpack and temperature with elevation across the Site.

2.2 Surface Water

The Site mines, except Monumental Mine, are located along Granite Creek. Monumental Mine is located at the headwaters of Cap Martin Creek (previously identified as an unnamed tributary), which joins Granite Creek between the Sheridan and Granite Creek #6 and #7 Mines. Granite Creek empties into the North Fork John Day River approximately 13 miles downstream of Central Mine, the furthest downstream of the nine mines. The Granite Creek watershed encompasses 94,480 acres primarily in the boundaries of the Wallowa-Whitman National Forest (40,624 acres) and the Umatilla Nation Forest (49,539 acres), with the remainder held as private land (USDA Forest Service 2016). The runoff-streamflow regime is dominated by spring snowmelt with peaks occurring in May and June and water levels dropping in the summer (USDA Forest Service 2016). Several wetlands are present at and near the Site. Wetland delineation conducted at Monumental Mine as part of the 2011 EE/CA identified wetlands in the areas of the settling ponds, and downstream near Cap Martin Creek (CES 2011b). The wetland delineation report is included as Appendix A.

2.3 Geology and Hydrogeology

The Granite Creek Mines are located within the Elkhorn Mountains area of the Blue Mountains geomorphic province. The lode mines of the Granite Mining District lie along the southwestern edge of the Bald Mountain Batholith, a large granodiorite body with an outcrop area of more than 170 square miles. The principal lode mines occur in a northeast-trending belt of veins and mineralized shear zones about 2 miles wide and 5 miles long (Engineering, Science, and Technology, Inc. [EA] 2004). Within the district, the veins occur primarily in older Argillite of the Elkhorn Ridge Argillite. However, eight of the nine mines target veins within the Bald Mountain Batholith and only one (Central) occurs within the Elkhorn Ridge Argillite.

The Bald Mountain Batholith is of Lower Cretaceous and Upper Jurassic age. It primarily consists of granodiorite and tonalite, with small amounts of norite and quart monzonite (Ferns, Brooks, and Ducette 1982). Dikes and sills of similar compositions occur along the borders of the batholith.

Shallow groundwater at the Site discharges to seeps and springs, which contribute flow to Granite Creek. Shallow groundwater previously encountered at some of the mines likely does not form a laterally continuous aquifer in the study area due to the presence of igneous intrusions and shallow bedrock. Deep, regional groundwater is likely present in cracks and fissures within the intrusive rocks that may discharge along faults or fissures; however, no local study of deeper groundwater has been conducted.

⁴ Measured at the Granite, Oregon, weather station; https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?or3430.

2.4 Mine Descriptions

The following subsections describe each mine, based on summaries provided in the previous EE/CA (CES 2011a) and field observations. All waste rock/tailings volumes and distances are considered approximate and are based on measurements completed in the field and their relationship to LiDAR-derived digital elevation model topographic contours. The mines are described from east to west, upstream to downstream of Granite Creek. The details on the figures associated with the mines are from field observations. During the investigation, features identified in the previous EE/CA were geolocated and the maps were updated accordingly so that the mapped features better represent features visible in the LiDAR imagery and observed in the field. Photographs of the mines are included in Appendix A of the Terraphase *Supplemental Site Investigation Report* (Terraphase 2024), which is included as Appendix B to this EE/CA report.

2.4.1 Monumental Mine

Monumental Mine is situated on moderate to steep hillsides near the headwaters of Cap Martin Creek. The largest of the nine mines, Monumental Mine is approximately 12 acres and is split into the following three areas (Figures 3-5):

- 1. Upper-Upper Monumental Mine
- 2. Upper Monumental Mine
- 3. Lower Monumental Mine

The mine consists of over 4,000 feet of underground workings reaching 700 feet below ground surface (EA 2004). The upper-upper mine area was not previously mapped or investigated.

2.4.1.1 Upper-Upper Monumental Mine

The upper-upper mine area consists of 9 shafts, 3 trenches, and 10 waste rock piles (Figure 3). Shafts 2 and 3 are partially open and present physical hazards to humans and terrestrial wildlife. A total of 500 cubic yards (cy) of waste material is scattered in numerous piles throughout the area, with piles ranging in size from 5 to 395 cy. Features resembling a shaft or trench identified by LiDAR but not observed during the field investigation are shown on Figure 3 as a "potential" shaft or trench.

2.4.1.2 Upper Monumental Mine

Upper Monumental Mine includes several distinct areas:

- The upper shaft area is located just downhill from an unnamed former roadway that connects to FS 7345 and consists of a partially open shaft and an associated 60 cy waste rock pile (WRB; Figure 4).
- The upper adit area has an open adit and associated 7,905 cy waste rock pile (WRA; Figure 4). A
 seep was observed flowing from the adit and infiltrating into the eastern section of the waste rock
 pile.

⁵ https://oceanservice.noaa.gov/facts/lidar.html

• The former mill area includes the remains of a 20-stamp, dry crusher mill, flotation table, chlorination plant, and stone conduit (chlorination flue). Though referenced in previous documents, the location of the former chlorination plant is unknown. A layer of pink-colored concentrations/tailings (TLA, 125 cy; Figure 4) extends 80 feet from the former flotation table to the edge of a steep slope above FS 7345 to the northwest.

A spring which forms the first observable water of Cap Martin Creek discharges below the upper waste rock area. The spring flows across FS 7345 and into a series of settling ponds, all of which are connected by surface water flow. The settling ponds have developed into a small wetland system. Two tailing piles (TLB and TLC, 305 and 10 cy, respectively; Figure 4) are present at and surrounding the settling ponds. A potential trench and waste rock pile are present below the lower settling pond. These features were observed in the field and in LiDAR imagery. X-ray fluorescence (XRF) measurements of these features did not show arsenic concentrations above background and no further evaluation of the potential trench and waste rock pile was conducted.

2.4.1.3 Lower Monumental Mine

Lower Monumental Mine is accessible via an unnamed road that spurs from FS 7345 and contains one open adit, one collapsed adit, two waste rock piles, a former crusher, and tailings associated with the former crusher. The open adit is adjacent to a large waste rock pile (WRA, 5,560 cy; Figure 5). The collapsed adit is adjacent to a smaller waste rock pile, approximately 170 cy (WRB). The crusher and tailings pile (TLA, 180 cy) are adjacent to the north of the WRA waste rock pile. The lower settling pond is south of the open adit. Water was observed seeping from the open adit through a constructed ditch to the lower settling pond. No outlet for the lower settling pond was observed but seeps were observed at the base of the waste rock pile A. A series of parallel cuts in the hillslope are present to the south of waste rock pile A. Collapsed cabins are adjacent to the open adit and downslope from the tailings pile and an intact cabin is present near the waste rock pile B.

2.4.2 Granite Creek Aquatic Station 03

Although not identified as a mine site, CES evaluated and recommended remedial action for waste rock adjacent to its Aquatic Station 03 (Figure 6). Terraphase mapped two waste rock piles in this area (WRA and WRB at 15 and 80 cy, respectively). Both piles are close to Granite Creek. No adits, shafts, or structure were observed in the immediate area of these waste rock piles. These waste rock piles are the furthest upstream features sampled along Granite Creek.

2.4.3 Cap Martin Mine

Cap Martin Mine, approximately 1,500 feet downstream of Granite Creek Aquatic Station 03, consists of six collapsed adits (Figure 7). Mining activity, including evidence of placer mining, occurred on both sides of Granite Creek. Collapsed cabins and one standing cabin are on the north side of Granite Creek. Two waste rock piles associated with adits are south of Granite Creek (WRA and WRB at 370 and 10 cy, respectively) and a single large waste rock pile (WRC, 735 cy) is north of Granite Creek, near the other four adits. Placer spoils were observed near an intermittent stream and along Granite Creek (Figure 7). A small wetland area was observed to the west of the placer spoils.

2.4.4 Sheridan Mine

Sheridan Mine is located 0.25 miles downstream of Cap Martin Mine on moderately steep slopes on the south side of Granite Creek (Figure 8). Mining targeted veinlets with pyrite, chalcopyrite, and tetrahedrite in a series of short adits (Ferns, Brooks, and Ducette 1982). The mine consists of four adits and three waste rock piles (WRA, WRB, and WRC at 65, 30, and 5 cy, respectively). A small wetland was observed to the west of waste rock pile B. Placer deposits are along the southern bank of Granite Creek and adjacent to a tributary west of the mine that flows into Granite Creek from the south. Previous mapping identified a collapsed cabin, though Terraphase was unable to locate this feature.

2.4.5 Granite Creek #6 Mine

Granite Creek #6 Mine is approximately 100 feet northeast of Sheridan Mine on the northeast side of Granite Creek (Figure 9). The mine consists of one open adit with an associated waste rock pile (WRA, 45 cy) and a "wet trench" with a larger pile of material likely generated from the creation of the trench (WTP, 140 cy). The open adit represents a potential physical hazard.

2.4.6 Granite Creek #7 Mine

Granite Creek #7 Mine is approximately 100 feet upstream (north) of Granite Creek #6 Mine on the north side of the confluence between Cap Martin Creek and Granite Creek. The mine consists of two collapsed adits and associated waste rock piles (WRA and WRB at 195 and 125 cy, respectively). There is a trench north of the adits that CES mapped as a "canal" (2011a; Figure 10).

2.4.7 Tillicum Mine

Tillicum Mine, 0.25 miles downstream of the Sheridan Mine on moderately steep slopes along the north bank of Granite Creek, is accessible by FS 280 (Figure 11). Underground workings were over 400 feet accessed from five or more adits across several narrow shear zones targeting small quartz veins (Brooks and others 1982). Two primary veins and associated adits are about 50 feet apart (EA 2004). These were the only adits observed (Figure 11). The upper adit is directly uphill of the lower adit. Waste rock piles are adjacent to both adits (WRB, 145 cy and WRC, 210 cy) and a third waste rock pile is between FS 280 and Granite Creek (WRA, 205 cy). Ruins are present below the upper adit and adjacent to WRC.

2.4.8 Granite Creek #5 Mine

Granite Creek #5 Mine is approximately 0.3 miles downstream of Tillicum Mine (Figure 12). Brooks et al. (1982) mapped a mine as "name unknown" in the approximate location of Granite Creek #5 Mine and stated it targeted a shear zone with small quartz veins. The mine consists of one collapsed adit, a waste rock pile that encompasses the ridges on either side of the adit entrance, a portion of FS 280, an area between FS 280 and Granite Creek (WRA, 285 cy), and a small waste rock pile that appeared distinct to the east of WRA (WRB, 10 cy). EA identified a seep emerging from the hillside approximately 150 feet east of the adit (EA 2004); however, Terraphase did not observe this feature. Based on its location, EA did not think that the seep was associated with the Granite Creek #5 Mine.

2.4.9 Golden Fraction Mine

Golden Fraction Mine is approximately 1,600 feet downstream of Granite Creek #5 Mine (Figure 13). Brooks et al. (1982) mapped a mine as "Eddy Group" in the approximate location of Golden Fraction Mine and stated it had five short adits targeting two parallel shear zones with quartz lenses and pyrite stringers in argillite, metagabbro, and quartz diorite. The mine has three collapsed adits, each with an associated waste rock pile (WRA, WRB, and WRD at 295, 145, and 1,105 cy, respectively) and a trench surrounded by waste rock (WRC, 295 cy). A cabin was previously mapped by EA but Terraphase could not locate it. The mine is accessed by FS 280, and a portion of WRD is over the road. A spring was observed at the lower adit that created a small marshy area uphill of FS 280.

2.4.10 Central Mine

Central Mine is located approximately 800 feet downstream of Golden Fraction Mine to the northwest of where Granite Creek flows under FS Road 73 (Figure 14). It is the only Site mine known to target the Permian Elkhorn Ridge Argillite (unless Golden Fraction Mine is the referenced "Eddy Group Mine"). The mine is described as targeting two parallel shear zones 90 feet apart and consisting of more than 500 feet of workings in three adits (Brooks et al. 1982). However, five collapsed adits, one potential collapsed adit, and four waste rock piles (WRA, WRB, WRC, and WRD at 80, 25, 105, and 25 cy, respectively) were observed during the 2024 Site visit. The mine is accessible from either FS 73 or FS 280, which separates Adit 1 from waste rock pile WRA. A trench was observed running east—west below FS 280.

2.5 Operational History

Mining in the Granite Creek area began as early as the 1860s and continued until World War II when it was curtailed. Monumental Mine was discovered in 1870 and operated until 1928, with at least 11 different claims targeting during this time span (EA 2004). Mining was primarily conducted by following quartz veins within granodiorite of the Cretaceous Bald Mountain Batholith, though the Central Mine targeted shear zones within Permian Elkhorn Ridge Argillite (Brooks et al 1982; Ferns, Brooks, and Ducette 1982). Ore minerals in the Monumental Mine included pyrite, arsenopyrite, sphalerite, galena, and tetrahedrite (Ferns, Brooks, and Ducette 1982). Hand dredging was common before the 1880s when it was replaced by lode mining using large-scale mining equipment and chemical extraction methods. Dredging began again in the 1920s using large-scale dredging equipment (EA 2004).

Initial dredge and placer mining was replaced in the late 1880s, when lode mining became the most profitable form of mining because of the advent of large-scale drilling and crushing equipment and chemical extraction methods to extract the gold from its alloys. Use of fluid amalgamation processes is evident at the Monumental Mine. In the 1920s, dredging for gold in the rivers again became profitable using large-scale dredging equipment (EA 2004). Numerous dredge tailings piles are still visible along these creeks. Hydraulic mining methods involved sluices and sorting the tailings by hand. Rows of hand-piled rocks remain along the shoreline and within Granite Creek at many of the Site mines. Limited historical gold production information for four of the nine named mines is provided below.

- Monumental Mine. Gold was discovered in 1870 by Harvey Robbins, Isaac Nail, and Isaac Klopp and the mine operated intermittently until 1928. Between 1875 and 1906, several new claims were established and several of the original claims were relocated. The mine consisted of two tunnels, two shafts, several raises, and a stoop that daylights to the surface near one of the shafts, all totaling approximately 4,000 feet (EA 2004).
 - In 1875, a ton of the ore, with a value of \$1,500, was shipped to San Francisco to attract investors. With the added capital, a 20-stamp mill was constructed on the mine site. The Monumental Gold and Silver Mining Company operated both the mine and the mill in the late 1880s. In 1902, the mill included a chlorination plant. The total output through 1928 has been estimated at \$100,000 (EA 2004).
- **Cap Martin Mine.** Gold was discovered by Cap Martin. The mine consisted of three adits totaling approximately 300 feet (Ferns, Brooks, and Ducette 1982).
- **Tillicum Mine.** Gold production was reported to be minimal, and development occurred in approximately 400 feet of five or more adits, two of which were the primary adits (Brooks et al. 1982; EA 2004)
- **Central Mine.** It is not known when the mine was established but production was reported to be very minimal, and development consisted of approximately 500 feet in three adits (Brooks et al. 1982).

2.6 Previous Investigations

Previous site assessment and risk evaluations performed for the Site are summarized in the following subsections.

2.6.1 Environmental Impact Statement - 2002

In 2002, the USDA Forest Service completed a *Draft Environmental Impact Statement, Granite Area Mining Projects*, which included the Upper Granite Creek Watershed. The report noted that the Columbia River bull trout and Mid-Columbia steelhead had been observed in the Granite Creek Watershed and were listed as threatened under the Federal Endangered Species Act. In addition, several of the streams within the watershed were on the state of Oregon 303(d) list of impaired waters, as described by the Clean Water Act.⁶

The USDA Forest Service also conducted *Abbreviated Preliminary Assessments* on both Monumental and Tillicum Mines using an XRF device to field analyze samples to determine whether the potential existed for a release of hazardous contaminants to the environment (2003a, 2003b). Summaries of these abbreviated preliminary assessments are provided below as presented in the EA's 2004 *Site Inspection* report.

⁶ https://www.epa.gov/tmdl

- **Monumental Mine.** Three samples from the waste rock piles and two from the tailings ponds were analyzed. The results indicated that arsenic, lead, and mercury exceeded USEPA Region 9 preliminary removal goals (PRGs).
- **Tillicum Mine.** One waste rock sample was collected and analyzed; results exceeded USEPA Region 9 PRGs for arsenic and lead.

2.6.2 Site Inspection - 2004

In 2003, EA conducted a site inspection at the Monumental, Cap Martin, Sheridan, Tillicum, and Central Mines to determine if waste material posed an immediate or potential threat to human health and the environment, and to collect data to assess the necessity of further action. Tasks performed during the inspection included background research and file review, on- and off-site reconnaissance, and collection and analysis of soil, waste rock, surface water, pore water, sediment, plant tissue, and benthic macroinvertebrate samples (EA 2004). Results of the site inspection indicated the following:

- Metals from the Site were not notably impacting surface water, pore water, or sediments in Granite Creek.
- Lead, manganese, arsenic, and selenium were detected at levels above the comparison criteria in surface water samples collected from the seeps and upper settling pond at Monumental Mine.
- There did not appear to be significant benthic habitat impairment or decreased benthic macroinvertebrate diversity and abundance along Granite Creek.
- Arsenic was identified above screening levels and background concentrations at the five mines
 evaluated. Antimony, cadmium, lead, mercury, silver, and zinc were detected above screening levels
 and background concentrations in samples from at least one mine.
- Bull trout (Salvelinus confluents), listed as threatened under the Endangered Species Act, were observed in small numbers throughout the study area. Two small trout (either west slope cutthroat or redband trout) were observed at locations along Granite Creek. Both species are federally listed as "species of concern" and identified as vulnerable by the Oregon Fish and Wildlife Commission.

EA recommended the completion of an EE/CA based on the results of the site inspection. Sample locations from the site inspection are included on Figures 3 through 14.

2.6.3 Risk Assessment - 2006

CES prepared a *Human Health and Ecological Risk Assessment* (Risk Assessment) in 2006 for the five mines assessed during the site investigation (Monumental, Cap Martin, Tillicum, Sheridan, and Central Mines). The following potential risks were described.

Human Health Risks:

- Current and future potential receptors were identified as hunters, hikers, and campers.
- Arsenic and lead were identified as the soil/waste rock, sediment, and surface water noncarcinogenic COPCs.

- No unacceptable non-carcinogenic health effects were anticipated under both the central tendency exposure and reasonable maximum exposure conditions.
- Arsenic was the only carcinogenic COPC identified at the mines.
- Carcinogenic risks were predicted from exposure to arsenic-impacted surface water and soil/waste rock under both the central tendency and the reasonable maximum exposure conditions at each of the mines.
- The Monumental Mine had the highest arsenic concentrations and represented the highest level of human health risk.
- No carcinogenic risks were predicted from exposure to sediment.

Ecological Risks:

- Ecological impacts were predicted for immobile species, primarily plants and terrestrial invertebrates, due to COPCs in soil and waste rock.
- Ecological impacts were also predicted for aquatic life and wildlife exposed to COPCs in surface water and pore water. However, the lack of background data in 2006 made it more difficult to predict the potential for impacts.
- Benthic invertebrates and wildlife appeared to have the potential to be impacted by total arsenic, cadmium, and zinc, which were present at elevated concentrations at nearly all sediment sample locations.
- The Monumental and Tillicum Mines had more locations with elevated COPC concentrations in soil/waste rock than the other mines and therefore represent the highest level of ecological risk.
- Ecological "hot spots" are generally defined as concentrations greater than 10 times the ecological risk-based screening concentration. Multiple ecological hot spots were identified at each mine.

A cleanup concentration of 143 milligrams/kilogram (mg/kg) for arsenic was calculated as part of the risk assessment. CES recommended an EE/CA be prepared, and a data gap investigation be conducted. Following the 2006 risk assessment, the USDA Forest Service added four additional mines to the Site (GC-5, GC-6, GC-7, and the Golden Fraction Mine).

2.6.4 Additional Abbreviated Preliminary Assessments - 2006

In August 2006, the USDA Forest Service conducted abbreviated preliminary assessments on the Golden Fraction, Central, Cap Martin, Granite Creek #5, Granite Creek #6, and Granite Creek #7 Mines (USDA Forest Service 2006a–2006f). The assessments included the collection of in situ soil samples using an XRF device; cataloging mine features, location, and access; and recommendations for further action. The Upper Central and Granite Creek #6 Mines were ranked low priority for further assessment (USDA Forest Service 2006b, 2006e). The Golden Fraction, Cap Martin, Granite Creek #5, and Granite Creek #7 Mines were ranked as high priority for further assessment (USDA Forest Service 2006a, 2006c, 2006d, 2006f).

2.6.5 EE/CA Data Gap Investigation - 2007

In June 2007, CES conducted a data gap investigation to fill the data gaps identified in its 2006 risk assessment. The objective of the investigation was to:

- Verify previously identified hazardous substances, mining features, and waste volumes at the Central, Sheridan, Tillicum, Cap Martin, and Monumental Mines;
- Inspect the new mines (Granite Creek #5, Granite Creek #6, Granite Creek #7, and the Golden Fraction Mines) and collect waste rock, soil, and water samples;
- Collect three background sediment, surface water, and pore water samples from Granite Creek, and four streambank/floodplain sediment samples;
- Collect background soil samples within the upper Granite Creek Watershed;
- Assess each mine for alternatives for the EE/CA (i.e., access, repository locations, etc.); and
- Develop human health and ecological risk assessment updates based on the new data collected.

2.6.6 Supplemental Data Gap Investigation at the Monumental Mine - 2009

In September 2009, CES completed an additional data gap investigation at Monumental Mine, which included the following activities:

- Adit and spring sampling to characterize the quality and flow rate for potential water diversion during and after the removal action;
- Additional topographic survey of waste rock piles, tailings, and pertinent features for accurate volume estimation;
- Detailed field screening of waste rock and tailings with an XRF to guide additional sampling and analysis activities;
- Collection of waste rock and tailings samples for laboratory analysis for total metals, synthetic
 precipitation leaching procedure (SPLP), and toxicity characteristic leaching procedure (TCLP)
 metals; and
- A wetland delineation of the upper and middle settling ponds for possible mitigation activities.

2.6.7 Wetland Delineation Report - 2011

The results of the 2009 wetland delineation were described in CES' 2011 Wetland Delineation Report. The report describes the delineation of one approximately 0.08-acre wetland at the Monumental Mine. Proposed remedial activity would potentially include the removal of tailings within the wetland and potential destruction of a 0.04-acre portion of the wetland. CES recommended that this potential wetland destruction be mitigated by restoration or creation of 0.04 to 0.06 acres of wetland to compensate for potential wetland removal. The wetland delineation was included as Appendix B to CES' 2011 EE/CA and is included as Appendix A to this report.

2.6.8 Human Health and Ecological Risk Assessment - 2011

CES conducted an update of its 2006 risk assessment to include additional data collected at the original five mines and data from Golden Fraction Mine and Granite Creek #5 through 7 Mines (CES 2011c). The 2011 risk assessment had similar conclusions to the 2006 assessment—notably that arsenic was the only COPC with human-health risk for ingestion and dermal contact above the standard of 1x10⁻⁶, and that arsenic, cadmium, and zinc had elevated concentrations in sediments that could be indicative of minerelated impact to ecological receptors. The 2011 risk assessment report was included as Appendix C to CES' 2011 EE/CA and is included as Appendix C to this report.

2.6.9 Non-Time-Critical Removal Action EE/CA - 2011

In 2011, CES prepared an EE/CA for completing a non-time-critical removal action related to hazardous substances at the Site. The EE/CA presented alternatives, made comparative analysis between the alternatives, and recommended a preferred alternative based upon the comparative analysis of the alternatives with the goal of "minimizing or eliminate any release or threat of release of a hazardous substance into the environment or impact on public health and welfare." The proposed removal action aimed to achieve cleanup of site-related hazardous substances to acceptable levels of risk to humans and the environment.

Four alternatives were evaluated and compared as potential removal actions:

- Alternative 1: No Action (\$0)
- Alternative 2: On-site Containment (\$499,000)
- Alternative 3: Excavation and On-site Containment/Disposal in Repository (\$903,000)
- Alternative 4: Excavation and Off-site Disposal (\$6,155,000)

A combination of Alternatives 1, 2, and 3 were recommended by CES as the most appropriate, effective, and cost-effective alternatives. The total cost to implement this recommended blended alternative was \$691,000. Most of the cost was related to removal action at Monumental Mine.

On-site waste rock contouring with the surrounding terrain, covering with unimpacted soil, and revegetation was recommended for the Golden Fraction (Middle)/Central Mines and Upper Granite Creek Near Station GC-03 due to elevated arsenic concentrations approaching or exceeding the calculated cleanup level, and accessibility of the Central Mine to the public.

No action was recommended for the Golden Fraction, Cap Martin, Sheridan, Tillicum, Granite Creek #5, Granite Creek #6, and Granite Creek #7 Mines due to concentrations of arsenic in waste rock piles at or well below the cleanup level, and limited access to the public.

2.6.10 Supplemental Sampling Investigation - 2024

In October 2024, Terraphase collected additional XRF and analytical data, as described in the *Supplemental Site Investigation Report* provided as Appendix B. Each mine feature was mapped (Figures 3 through 14) as part of the investigation. Waste rock pile volumes were recalculated based on updated mapping using a LiDAR-derived digital elevation model. PRGs of 190 and 110 mg/kg for waste rock and

tailings, respectively, were calculated for arsenic based on an updated human health risk calculation using the results of in-vitro bioavailability sampling. Ninety-five percent upper confidence limits (UCLs) on the mean (UCLMs) were calculated for each waste rock and tailings pile. Figures 3 through 14 shade each waste rock pile based on a comparison between calculated UCLMs and the updated arsenic PRG.

2.6.11 Previous Cleanup Response Actions

To date there have been no actions to control or treat site-related contaminants. The 2011 EE/CA was never formally accepted.

2.7 Chemicals of Potential Concern

Based on the environmental investigations conducted to date, COPCs for the Site are the metals antimony, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, selenium, silver, thallium, vanadium, and zinc. These metals exceed one or more screening criteria in at least one medium (soil, sediment, surface water; Tables 1 through 3). Arsenic is considered the main driver for human health risk (Section 2.8), and the primary COPC for the Site. The presence of metals above screening criteria is either due to naturally elevated background concentrations or the concentration of these metals during processing of mine-related waste rock and tailings. Background soil samples collected during investigations in 2003 and 2007 indicated concentrations of arsenic, barium, cadmium, chromium, copper, manganese, mercury, nickel, selenium, thallium, vanadium, and zinc above one or more screening criteria. Regional background concentrations for antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, manganese, mercury, nickel, selenium, vanadium, and zinc also exceed one or more screening criteria (Oregon Department of Environmental Quality [ODEQ] 2019). The following subsections provide a description of the extent and potential transport mechanisms of COPCs in soil, sediment, surface water, pore water, groundwater, and air at the Site.

2.7.1 Soil

COPCs are present in soil above site-specific and regional background concentrations in waste rock piles, tailings piles, and in soil adjacent to the piles. COPCs that exceed local and regional background concentrations in one or more sample at each Site mine are as follows (Table 1):

- Monumental Mine: antimony, arsenic, cadmium, copper, lead, mercury, selenium, silver, and zinc
- Cap Martin Mine: antimony, arsenic, cadmium, lead, silver, and zinc
- Sheridan Mine: antimony, arsenic, and silver
- Granite Creek #6 Mine: arsenic
- Granite Creek #7 Mine: antimony, arsenic, cadmium, and silver
- Tillicum Mine: antimony, arsenic, cadmium, lead, selenium, silver, and zinc
- Granite Creek # 5 Mine: antimony, arsenic, cadmium, lead, silver, and zinc
- Golden Fraction Mine: antimony, arsenic, cadmium, lead, selenium, silver, and zinc
- Central Mine: antimony, arsenic, cadmium, lead, selenium, silver, and zinc

The highest concentrations of COPCs are in Monumental Mine waste rock and tailings piles. The highest detected concentration of arsenic (excluding XRF measurements) was 14,000 mg/kg in a sample from Upper Monumental Mine waste rock pile B, which is several orders of magnitude higher than the highest local background arsenic concentration (43.5 mg/kg).

Soil can be transported by erosion of the waste rock and tailings piles by precipitation or wind. Incidental transport can also occur by erosion caused by animals walking along the piles and by uprooting soil by the root systems of falling trees. Erosion is likely most pronounced via surface water runoff in periods of high precipitation and snowmelt. However, samples collected immediately downslope of waste rock piles in native soil generally had much lower arsenic concentrations than the associated waste rock pile. Samples collected by Terraphase, labeled "-DS," were collected within 10 feet of the edge of a waste rock pile with the same sample nomenclature. For example, sample UMM-WRA-1-DS (arsenic concentration 37.5 mg/kg) was collected within 10 feet of Upper Monumental Mine waste rock pile A, close to sample UMM-WRA-1 (arsenic concentration 1,300 mg/kg). This suggests that surficial erosion of the piles is relatively minor and that the piles are stable.⁷

COPCs can also leach from soil and enter shallow groundwater or surface water. Acid-base accounting (ABA) was analyzed on 28 waste rock, tailings, and soil samples. The acid-base potential (ABP) is the result of the acid neutralizing potential minus the acid generating potential. A negative ABP indicates that the acid generating potential is greater than the acid neutralizing potential; thus, the material has the potential to produce acid rock drainage (ARD). ABP's ranged from -20 (Lower Monumental Mine crusher) to 98 (Upper Monumental Mine waste rock pile) tons of calcium carbonate to neutralize a kiloton of waste (tCaCO3/Kt). Generally, ABP values below -20 tCaCO3/Kt indicate a strong potential for ARD and values above +20 tCaCO3/Kt indicate that material is unlikely to form ARD. Most of the sample results were between -20 and 20 tCaCO3/Kt, which indicates an uncertain result. The most negative ABP, and therefore the most likely sample to produce ARD, was collected at the Lower Monumental Mine tailings pile A, near the former crusher. Other samples collected from tailings piles also had negative ABP values. Samples collected from the Upper and Lower Monumental Mine tailings piles had the lowest pH (3.1–4.6), which is consistent with a higher propensity for ARD.

Thirty waste rock, tailings, and soil samples were submitted for TCLP and SPLP analyses for the eight Resource Conservation Recovery Act regulated constituents (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). There are no applicable standards for SPLP; however, the results can be compared to Resource Conservation Recovery Act TCLP disposal limits. No waste rock samples had TCLP or SPLP extracts exceeding the TCLP limits. However, samples collected from Upper Monumental Mine tailings pile A had TCLP and SPLP arsenic results with concentrations of 15.6 and 9.4 milligrams per liter (mg/L), respectively, and a sample collected from Upper Monumental Mine tailings pile B contained a

⁷ One notable exception is at Tillicum Mine's waste rock pile A (Figure 11), which is on a steep slope close to Granite Creek. The arsenic UCLM based on XRF measurements at sample location TL-WRA-1 was 175.2 parts per million (ppm; duplicate measurement UCLM for this sample was 182.5 ppm). Samples collected downslope of this sample location, closer to Granite Creek, had XRF-derived arsenic UCLMs of 185.7 (sample location TL-WRA-1-DS) and 187.2 (sample location TL-WRA-1-DS-2) ppm. Laboratory analytical arsenic concentration from sample location TL-WRA-1-DS-2 was 267 mg/kg, which is higher than the associated waste rock sample. The difference for this waste rock pile is likely the proximity to Granite Creek.

TCLP arsenic result at a concentration of 8.5 mg/L. The USEPA TCLP regulatory threshold for arsenic is 5.0 mg/L. The exceedances of TCLP thresholds for tailings but not waste rock are consistent with the ABA results, suggesting that tailings are more likely to contribute contaminant loading to surface water than waste rock.

2.7.2 Sediment

Contribution of COPCs from the Site in Granite Creek sediment were evaluated relative to sediment samples collected upstream (Table 2). Arsenic, lead, silver, and zinc concentrations increase from upstream to downstream sediment sample locations, which shows the cumulative effect of the Site mines. However, sediment COPC concentrations are much less than soil COPC concentrations. The highest sediment sample arsenic concentration collected by CES from Granite Creek upstream of the confluence with Lucas Gulch was 127 mg/kg. The highest arsenic concentration in sediment samples collected by Terraphase was 35.2 mg/kg in the furthest downstream sample. Samples collected from Lucas Gulch had arsenic concentrations up to 303 mg/kg; however, these concentrations reflect contribution from other sources (East Eddie group and Ajax Magnolia Mine Complex). A UCLM for arsenic of 27.1 mg/kg was calculated for Granite Creek sediment samples upstream of Lucas Gulch after removing the 127 mg/kg outlier. This value is similar to background soil arsenic concentrations.

Sediment with elevated COPCs is derived from down-slope erosion of waste rock piles and tailings from the Site mines. Once deposited as sediment, COPCs migrate with flowing surface water. Deposition of sediment is expected in areas protected by rocks and trees, and in sand bars and other stream depositional features in areas of lower velocity water. The low concentrations of arsenic in sediment supports the lack of significant erosion from and stability of the waste rock piles.

2.7.3 Surface Water

Similar to sediment, COPCs in surface water generally increase with distance from upstream to downstream of the Site (Table 3). Concentrations of antimony, arsenic, lead, and zinc are higher in downstream samples relative to upstream samples. However, nearly all Granite Creek surface water sample concentrations were below the most conservative screening levels. Samples collected from Lucas Gulch, further downstream from the Site, had detections of mercury above screening levels, though this is due to the contribution of other sources. Surface water quality is likely worse during high precipitation events and snowmelt, as these conditions would be expected to increase turbidity and COPCs within suspended solids.

Surface water samples have also been collected from adit seeps, springs, and ponds. Samples were collected at Monumental Mine (springs, adit seeps, settling ponds), Granite Creek #5 Mine (seep/spring), Golden Fraction Mine (adit seep), and Cap Martin Mine (adit seep). Table 3 summarizes the data and highlights concentrations exceeding ecological screening criteria. Concentrations of arsenic in surface water from these samples are between one and three orders of magnitude higher than concentrations in the furthest upstream Granite Creek samples. Samples from surface water features at Upper and Lower Monumental Mines have the highest COPC concentrations. The surface water bodies present in these areas drain through Cap Martin Gulch and enter Granite Creek between Sheridan and Granite Creek #6/#7 Mines. Arsenic concentrations in Granite Creek surface water have the largest

increase between samples upstream and downstream of the confluence of Cap Martin Creek and Granite Creek. This suggests that the highest contribution of contaminant loading to surface water is from Monumental Mine and the adit seeps and springs that flow across Monumental Mine waste rock piles and tailings. However, as discussed above, detections of COPCs in surface water samples within Granite Creek itself have been generally below ecological screening levels, suggesting that the relative contribution of flow from mine-related springs and seeps is not significant.

2.7.4 Groundwater

Shallow groundwater at the Site would be expected to discharge to Granite Creek via springs and seeps, and COPCs in groundwater would therefore be expected to be accounted for in surface water data. No drinking water wells are present at the Site. The closest well is more than 4 miles away in the town of Granite, Oregon, and is several hundred feet deep (CES 2011a). The drinking water pathway is considered incomplete, and the lack of groundwater data is not considered significant for the purposes of the EE/CA.

2.7.5 Air

No air samples were collected as part of environmental investigations at the Site. COPCs could be present in dust from waste rock piles and tailings, particularly if disturbed by humans or animals. However, no visible dust was observed during site investigation activities, and remedial action addressing COPCs in soil would address COPCs in dust; therefore, the lack of COPC data in air is not considered significant for the purposes of the EE/CA.

2.8 Risk Evaluation

As discussed in Section 2.7, human health and ecological risk assessments were completed for the Site in 2006 and updated in 2011 (CES 2006, 2011c). The 2011 risk assessment is included as Appendix C. The following subsections summarize the results of the risk assessment.

2.8.1 Human Health

The following human health exposure pathways were identified for the Site:

- Dermal contact of soil/waste rock
- Incidental ingestion of soil/waste rock
- Inhalation of soil/waste rock (dust)
- Dermal contact with sediment
- Incidental ingestion of sediment
- Dermal contact with surface water
- Incidental ingestion of surface water

These pathways were considered complete for hikers, campers, and hunters—the recreator or trespasser receptors (CES 2011c).

CES compared media-specific cumulative cancer risks and hazard indices to a cumulative cancer risk of 1×10^{-6} and noncancer HI of 1, respectively, to help determine whether remedial action is warranted for a particular media at a particular area of the Site. These risk management goals are equivalent to those used by ODEQ for risk assessment decision making (ODEQ 2020).

CES estimated that potential receptor exposure to arsenic in soil at the Site could result in noncancer hazard indices greater than 1. Similarly, CES estimated that potential receptor exposure to arsenic in soil at the Site could result in cumulative cancer risk greater than 1×10^{-6} .

CES conducted a hot spot evaluation and determined that no hot spots were present at the Site with consideration for human health exposure. Hot spots were identified by CES as those locations exhibiting cumulative cancer risks greater than 1x10⁻⁴ in accordance with ODEQ guidance (2010). Arsenic concentrations in soil greater than 14,330 mg/kg would result in cancer risk estimates greater than this threshold. Since the 2011 risk assessment update, Terraphase measured arsenic concentrations using XRF that exceeded this threshold at Monumental Mine (Appendix B, Table 1).

CES calculated a PRG for arsenic of 143 mg/kg. Terraphase developed updated PRGs in the 2024 *Sampling and Analysis Plan* for antimony, arsenic, beryllium, cadmium, cobalt, copper, mercury, nickel, selenium, silver, and vanadium (Table 1). Only arsenic concentrations exceeded Terraphase PRGs. Using relative bioavailability data generated via the 2024 sampling, Terraphase recalculated arsenic PRGs of 190 and 110 mg/kg for soil/waste rock and tailings, respectively (Appendix B).

2.8.2 Ecological

Ecological receptors at the Site include birds, mammals, plants, amphibians, reptiles, and invertebrates that inhabit upland terrestrial areas, the on-site wetland areas, and within or adjacent to Granite Creek and its tributaries. Cap Martin Creek supports a native population of redband trout. Middle Columbia River Steelhead have summer spawning and rearing habitat near the confluence of Granite Creek and Cap Martin Creek, and Bull Trout have been observed in Granite Creek as far upstream as the Cap Martin Mine (CES 2011a).

Plants roots may absorb contaminants from upland or wetland soil or surface water. Animals may be exposed to contaminants in shallow (surface) soils and surface water via direct contact and incidental or intentional ingestion. Animals may also consume mercury and lead that readily accumulate in the tissues of plants and animals.

COPCs with unacceptable risk ratios for ecological receptors included antimony, arsenic, iron, lead, manganese, mercury, silver, vanadium, and zinc for soil/waste rock; arsenic, cadmium, selenium, and zinc for sediment; and barium for surface water/pore water. Additional COPCs were retained for risk evaluation due to bioaccumulation potential, a lack of screening criteria to calculate risk ratios, or elevated reporting limits.

Based on COPCs with concentrations greater than 10 times the screening criteria or background concentrations, CES identified ecological hot spots in soil/waste rock at Monumental Mine, Cap Martin Mine, Golden Fraction Mine, Tillicum Mine, Granite Creek #7 Mine, and Granite Creek Aquatic Station 03; in surface water at Monumental Mine springs and settling ponds; at the Cap Martin Mine adit seep;

in Granite Creek water samples collected near the Sheridan, Tillicum, Central, and Cap Martin Mines; and in Granite Creek porewater near the Tillicum and Central Mines.

Predicted risk from soil/waste rock to ecological receptors were primarily due to arsenic but antimony, lead, mercury, silver, and zinc also contributed to total risk. Plants, immobile invertebrates, and individual birds or small mammals living on or adjacent to waste rock piles were considered at risk; however, population level impacts were not expected considering the relatively small footprint of waste rock piles compared to the home-ranges of identified species.

No PRGs were calculated based on ecological risk; however, remedial action taken to reduce human health risk will also reduce ecological risk.

3 Potential Applicable or Relevant and Appropriate Requirements

ARARs include standards, requirements, criteria, or limitations under federal or more stringent state environmental law (CERCLA § 121(d)(2)(A)) that should be considered at the Site. To be adopted as an ARAR, the requirement is either "applicable" to conditions at the Site or if not applicable the requirement is both "relevant" and "appropriate" based on Site conditions. Applicable requirements are defined by 40 CFR § 300.5 as those requirements "that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance found at a CERCLA site." That is, they are laws and regulations that would be enforceable at a particular site even if a CERCLA response action was not occurring. Relevant and appropriate requirements are defined as those requirements "that, while not 'applicable' to a hazardous substance, pollutant, contaminant, remedial action location, or other circumstance at a CERCLA site, address problems or situations sufficiently similar to those encountered at the CERCLA site that their uses are well suited to the particular site." In addition to being applicable or relevant and appropriate, ARARs must be substantive, rather than administrative, and promulgated. It is necessary to identify ARARs prior to evaluating and selecting a cleanup action since circumstances may arise where non-time-critical removal action is expected to be the first and final action at the Site and therefore, the selected removal action must satisfy all adopted ARARs.

ARARs are classified into the three following categories:

- **Chemical-specific** ARARs that address specific hazardous substances and are typically health or risk-based numerical values that cleanups must achieve.
- **Location-specific** ARARs that place restrictions on the concentration of hazardous substances or the conduct of activities solely because the response actions occur in the specific location.

⁸ https://www.epa.gov/superfund/applicable-or-relevant-and-appropriate-requirements-arars

⁹ "Definitions." 40 CFR § 300.5, https://www.ecfr.gov/current/title-40/chapter-I/subchapter-J/part-300/subpart-A/section-300.5.

• **Action-specific** ARARs are typically technology or activity-based requirements or limitations on actions taken with respect to specific hazardous substances.

Other factors "to be considered" are non-promulgated criteria, advisories, guidance, and proposed standards issued by federal or state governments. These factors are not enforceable and a response action is not required to attain them; however, these factors may be appropriate in shaping or guiding the development or implementation of a response action in certain circumstances; for example, where ARARs do not provide sufficient direction.

Tables 4 through 6 evaluate ARARs for applicability to the Site. Potential ARARs are grouped as federal or state of Oregon potential ARARs; no specific local potential ARARs were identified. Potential ARARs are identified by a statutory or regulatory citation, followed by a brief explanation of the potential ARAR, and whether the potential ARAR is (1) "potentially applicable," (2) "potentially relevant and appropriate," or (3) "to be considered." In accordance with § 121(e) of CERCLA, no permits are required for an on-site removal action. However, as discussed above, substantive requirements, which a permit might otherwise address, must be met to the extent practicable. Key ARARs are discussed below.

3.1.1 Chemical-Specific ARARs

ODEQ allows for the calculation of risk-based cleanup levels for human and ecological receptors. As discussed in Section 2.9, human health PRGs were calculated for the Site. However, although ecological risk assessments were completed, no ecological cleanup levels have been calculated, therefore the following ARARs are considered for the evaluation of ecological risk:

- National recommended water quality criteria (Section 304(a) of the Clean Water Act [33 USC § 1314])¹⁰
- Oregon water quality standards (OAR 340-41, Table 20)¹¹
- Federal freshwater sediment standards, threshold effects level and probably effects level, as outlined in the National Oceanic and Atmospheric Administration 2008 Screening Quick Reference Tables¹²

3.1.2 Action-Specific ARARs-

The solid waste disposal ARARs establish the performance standards for proper handling and disposal of solid waste; outline responsibilities of various entities and stakeholders; and outline requirements for solid waste handling facility location, design, construction, operation, and closure. All substantive requirements for closure and post-closure of non-municipal landfills (OAR 340-95) are potential ARARs,

¹² https://repository.library.noaa.gov/view/noaa/9327

¹⁰ "Information and guidelines," 33 USC § 1314, https://uscode.house.gov/USC-prelim-title33-section1314.

¹¹ "Water Quality Standards: Beneficial Uses, Policies, and Criteria for Oregon," OAR 340-41, https://secure.sos.state.or.us/oard/340-41.

particularly if a repository is constructed. 13 Additional requirements would be triggered if the repository were to store hazardous waste (ORS 466). 14 Hazardous waste transportation requirements are also potential ARARs.

3.1.3 Location-Specific ARARs

Portions of the Northwest Forest Plan are potentially key ARARs for assessing Site removal action alternatives. ¹⁵ The Northwest Forest Plan includes standards and guidelines that are potentially relevant and appropriate to actions at the Site, including activities within or that affect riparian management areas. These standards and guidelines control the design, construction, and use of temporary and permanent roads and other modifications within riparian reserves. In addition, the standards control solid waste and mine waste facilities within riparian reserves.

The following ecological ARARs are considered key in planning and executing the removal action:

- Endangered Species Act of 1973 (16 USC §§ 1531(h)-1543)¹⁶
- Section 404 of the Clean Water Act (33 CFR 330) and Executive Order Number 11990 Protection of Wetlands (40 CFR § 6.302(a) and Appendix A)¹⁷
- Executive Order Number 119988 Floodplain Management (40 CFR § 6.302(g) and Appendix A)
- Oregon Wildlife Diversity Program and Plant Protection (OAR 635- 100)¹⁸

Key potential historic and cultural ARARs, which may be applicable during removal action, at and around historic mine infrastructure are:

- National Historic Preservation Act (16 USC § 470)¹⁹
- Historic Site, Buildings, Objects, and Antiquities Act (16 USC §§ 461-467)²⁰

¹³ "Solid Waste: Land Disposal Sites Other Than Municipal Solid Waste Landfills," OAR 340-95, https://secure.sos.state.or.us/oard/340-95.

¹⁴ "Chapter 466—Hazardous Waste and Hazardous Materials II," OAR 466, https://www.oregonlegislature.gov/bills_laws/ors/ors466.html.

¹⁵ https://www.fs.usda.gov/detail/r5/landmanagement/planning/,

¹⁶ "Endangered Species," 16 USC §§ 1531(h)-1543, https://uscode.house.gov/title16/chapter35.

¹⁷ "Part 330--Nationwide Permit Program," 33 CFR 330, https://www.ecfr.gov/current/title-33/chapter-II/part-330 ""Responsible official requirements," 40 CFR § 6.302, https://www.ecfr.gov/current/title-33/chapter-II/part-330 "Subchapter-A/part-6/subpart-C/section-6.302.

¹⁸ "Wildlife Management Plans: Wildlife Diversity Plan," OAR 635-100, https://oregon.public.law/rules/oar chapter 635 division 100.

¹⁹ "Short title; Congressional finding and declaration of policy," 16 USC § 470, https://uscode.house.gov/USC-2007-title16-section470.

²⁰ "Chapter 1A—Historic Sites, Buildings, Objects, and Antiquities," 16 USC §§ 461-467, https://uscode.house.gov/USC-2000-title16-chapter1A.

Archeological and Historic Preservation Act (16 USC § 469)²¹

4 Removal Action Goals and Objectives

RAOs are specific goals for protection of human health and the environment that identify response actions to adequately address human health and ecological risks. RAOs for the Site are:

- Protection of human health by minimizing exposure and hazards to receptors.
- Reduction of possible mobilization of hazardous substances.
- Compliance with ARARs.

4.1 RG Selection

RGs are selected with consideration for the risk-based PRGs discussed in Section 2.9, ARAR-specific PRGs noted in Section 3, and background concentrations for naturally occurring COPCs. The calculated PRGs are considered the most appropriate RGs as they represent a more realistic exposure scenario than generic ARAR-specific PRGs and incorporate background metals concentrations in their calculation. PRGs are listed in Table 1. For arsenic, the PRGs of 190 and 110 mg/kg are selected as RGs for soil/waste rock and tailings, respectively. The difference between these media is the results of bioavailability testing and is likely due to differences in grain size and processing mechanism between waste rock and tailings. As arsenic is the only contributor for human health risk, and the primary driver for ecological risk, removal action that reduces exposure of arsenic to below the RGs will achieve the RAOs. As there are no surface water or sediment risks to human health, no RGs are considered for these media.

4.2 Scope of the Removal Action

The scope of the removal action is to remove or cover tailings or waste rock piles exceeding RGs to the extent practicable and to mitigate Site physical hazards.

4.3 Removal Action Schedule

It is highly recommended that the removal action be implemented within a few years of completion and approval of this EE/CA. If the removal action is done in phases, the most time-sensitive action would be removal of tailings piles from the Upper and Lower Monumental Mines as tailings are more bioavailable than waste rock. The tailings are in areas of historical significance and would be expected to attract more recreational visitors. The tailings are at or near Cap Martin Creek, which provides contaminant load to Granite Creek.

²¹ "Preservation of historical and archeological data threatened by dam construction or alterations of terrain," 16 USC § 469, https://uscode.house.gov/USC-1999-title16-section469.

5 Identification and Analysis of Removal Action Alternatives

The purpose of this section is to present the removal action alternatives proposed to achieve the RAOs identified in Section 4. The selected removal action must meet the RAOs and comply with ARARs. The identified potential remedial technologies and process options were preliminarily screened according to their overall applicability (technical implementability). The purpose of this screening effort is to evaluate the available technologies and process options and to eliminate those not applicable to the Site. The following potential remedial technologies were evaluated through a preliminary screening, as follows:

- **No Action.** No action leaves contaminated materials in their current condition and assumes no further remedial activities will occur. No monitoring is associated with this approach.
 - **Preliminary Screening Evaluation.** Consistent with the NCP and CERCLA guidance, a no action alternative is retained for further evaluation as a baseline for comparison to other remedial alternatives developed.
- Institutional Controls (ICs). ICs restrict access to or control the use of the Site (e.g., zoning, deed restrictions, environmental easements, or access restrictions). Enforcement of ICs can require periodic inspections and patrols, training for USDA Forest Service personnel required to access the restricted areas, maintaining physical barriers (e.g., signage, gates, and fencing), and potentially legal action against trespassers.
 - Preliminary Screening Evaluation. ICs at the Site could include land use controls or physical barriers. Establishing restricted legal use of the Site is not likely to achieve a reduction in human health risk without security or other enforcement to ensure the legal restrictions are adhered to. Given the remote nature of the Site, this is not feasible and trespassers would still be able to access the waste rock piles and other Site features with elevated COPCs. Adding physical barriers around areas with elevated COPCs could temporarily reduce exposure to trespassers but would require frequent maintenance against vandalism. Placing barriers over open holes and shafts could reduce the potential for falling in these features. None of these ICs would reduce the risk of COPCs to ecological receptors. Of the ICs, barricading open holes and shafts was retained as a common item.
- Engineering Controls (ECs). ECs refer to physical modifications or installations designed to mitigate or eliminate exposure to hazardous substances, reduce risks to human health and the environment, or manage contaminant migration. Containment is a type of EC used to reduce the mobility of and exposure to COPCs in soils. These goals are accomplished by creating a barrier that prevents direct exposure and transport of surface soil through erosion. ECs do not reduce the volume or toxicity of the hazardous material. Containment barriers could consist of imported topsoil, asphalt/concrete, local soil, geotextile fabrics, or an engineered clay cap.
 - Other potential engineering controls that could work in parallel with containment include regrading, installing piping to reroute surface water runoff, consolidating waste rock piles, revegetating after capping, and using waste rock to block access to physical hazards.

Preliminary Screening Evaluation. The primary risk drivers for arsenic are dermal contact and ingestion. If implemented appropriately, containment using a surface cap would reduce these risks and help achieve RAOs. Of the potential caps, using soil or rock obtained from unimpacted areas proximal to the Site mines or from a nearby quarry is the most feasible from a cost and implementability standpoint. On-site containment is retained for further evaluation. Other ECs are also retained, as suitable, for a particular mine site.

• Treatment. According to the Federal Remediation Technologies Roundtable Remediation Technologies Screening Matrix and Reference Guide 4.0, ²² potentially applicable treatment technologies for metals in soil include in-situ solidification/stabilization or ex-situ physical or chemical treatment. Available ex-situ physical/chemical treatment technologies for metals in soil include chemical extraction, chemical reduction/oxidation, separation, soil washing followed by precipitation, and solidification/stabilization. Another possible treatment technology would require off-site reprocessing of the waste rock at an operating mill or smelter.

Preliminary Screening Evaluation. The large quantity of soil above RGs, combined with the steep embankments, difficult access, and the absence of suitable areas to install treatment equipment, make in-situ and ex-situ treatment options less favorable and more costly compared to other available technologies; therefore, treatment technologies have not been retained for further evaluation.

• Excavation and Disposal in an On-site Repository. Excavation and disposal in an on-site repository would involve removing tailings and waste rock piles with concentration above RGs and placing the piles at a designated repository at or near the Site. Excavated areas are backfilled with clean soil, returned to original grade, if necessary, and revegetated or otherwise stabilized to prevent erosion. A repository would need to be prepared by grubbing and scraping vegetation, digging to a depth that would ensure a stable slope once filled, covering with clean soil, and revegetating. The presence of an on-site repository would require maintenance and inspection, and potential liability as it would retain the hazardous substances on forest service property in perpetuity.

Preliminary Screening Evaluation. Excavating soil above RGs is a feasible remedial strategy although site-specific conditions, such as the presence of steep slopes, existing structures and retaining walls, and sensitive ecological receptors at the Site would require special consideration to comply with ARARs. It would eliminate on-site exposure to COPCs and reduce contaminant loading to Cap Martin and Granite Creeks. Construction of an on-site repository is possible in the relatively flat area at the crest of the hill at Upper-Upper Monumental Mine. This option is retained for further evaluation.

• Excavation and Disposal in an Off-site Repository. Excavation and off-site disposal involve removal of contaminated soil and subsequent off-site disposal in a landfill licensed to accept the waste. Excavated areas are backfilled with clean soil, returned to original grade, if necessary, and revegetated or otherwise stabilized to prevent erosion. Excavated soil would be stockpiled at an on-site staging area for waste characterization or would be characterized in situ to facilitate direct loading of soil into trucks. Excavated soil would be transported off Site to an appropriate disposal

²² http://www.frtr.gov/matrix2/top_page.html

facility. Some soil failed the TCLP hazardous waste criteria, and it may be necessary to dispose this soil at a Subtitle C facility.

Preliminary Screening Evaluation. Excavation of soil at the Site is implementable although site-specific conditions, such as the presence of steep slopes, existing structures and retaining walls, and sensitive ecological receptors at the Site would require special consideration to comply with ARARs. Off-site disposal would have less long-term liability and would achieve RAOs. However, if disposal at a Subtitle C facility would be required for all waste rock and tailing piles, the cost could be prohibitive. Excavation and off-site disposal are retained for further evaluation.

Remedial alternatives were developed using the remedial technologies retained following the initial screening. Each alternative is described in the following subsections. Cost estimate details for each alternative are provided in Tables 7 through 9. The costs were estimated using order-of-magnitude unit cost provided by a local remedial contractor, as well as methodologies prescribed by USEPA in cost estimating guidance for CERCLA sites (USEPA 2000).

5.1 Alternative 1: No Action

Consistent with the NCP and CERCLA guidance, a no action alternative is considered as a baseline for comparison. Under this alternative, no remedial action, monitoring, or maintenance would be performed. This alternative would not include a mechanism to prevent future exposure to contaminants and would fail to achieve the RAOs for the Site. If no action is taken, arsenic and other COPCs would continue to pose an unacceptable risk to human and ecological receptors for tailings and waste rock piles above RGs. The Sheridan and Granite Creek #7 Mines do not have waste rock piles above RGs; therefore, no action is appropriate for these mines and they are not discussed in sections outlining other alternatives. No action may also be appropriate in cases in which the benefit of the removal action is outweighed by the environmental damage that the removal action would cause.

5.2 Alternative 2: On-site Containment and Other ECs

On-site containment would consist of covering tailings and waste rock piles exceeding RGs with a minimum of 1 foot of clean soil. The lower 6 inches would be machine compacted, and the upper 6 inches would be loosely applied to better promote root development. Prior to placement, piles with slopes greater than a three to one horizontal to vertical ratio would be regraded to the extent practicable. All covered waste material would be revegetated to the satisfaction of the USDA Forest Service. CES proposed revegetation using weed-free WoodStraw mulch, a seed mix based on USDA Forest Service consultation, and a fertilizer consisting of 16 percent total nitrogen, 16 percent available phosphoric acid, 16 percent total water-soluble potash, and 5 percent sulfur applied at the rate of 400 pounds per acre (CES 2011a). However, the final revegetation protocol should be specified in the remedial design documents. During regrading and application of soil cover, berms, channels, or ditches for conveying stormwater and snowmelt should be constructed at the upgradient side of the piles to reduce erosion. Individual grading and water conveyance ECs are described for each Site mine in the following subsections.

For Site mines at which a local source of suitable clean cover soil cannot be identified, cover soil can be obtained from the location of the on-site repository discussed in Alternative 3 (Section 5.3). CES completed test pits at the Upper Granite Creek Saddle, 1 mile east of Monumental Mine on FS 7345. The test pits found ash and loam in the upper 2.5 feet below ground surface, underlain by weathered granite. The presence of vegetation within the proposed borrow area suggested that it would allow for revegetation after use as cover soil (CES 2011a). A closer potential repository and cover soil borrow location is the area adjacent to and southeast of Upper-Upper Monumental Mine. This area has relatively shallow topography closer to the Site and is accessible by road; however, additional engineering evaluation would be necessary to assess the suitability of soils in this area during the remedial design.

Roads would require improvement to facilitate haul trucks and construction equipment, notably FS 7345 (for access to potential repository, Monumental Mine, Cap Martin Mine, and Granite Creek Aquatic Station 03 waste rock piles) and FS 280 (for access to Central, Golden Fraction, Granite Creek #5, and Tillicum Mines). Additional specific road improvements are discussed for each mine in the following subsections. After completion of the removal action, any temporary access roads would be decommissioned at USDA Forest Service's discretion to limit unauthorized vehicles. Decommissioning may consist of ripping the roads, revegetating, and recontouring for drainage, and blocking using large boulders, trees, or tank ditches.

During construction, water will be applied to prevent fugitive dust emissions. The remedial contractor could potentially withdraw water for this purpose from Site surface water features, with USDA Forest Service's permission.

5.2.1 Monumental Mine

The following subsections describe on-site containment at Monumental Mine areas.

5.2.1.1 Upper-Upper Monumental Mine

Waste rock piles A, D, and F at Upper-Upper Monumental Mine (395, 10, and 10 cy, respectively) exceed RGs. Waste rock piles B, C, and E (5, 5, and 5 cy, respectively) are below RGs, and waste rock piles G, H, I, and J (10, 25, 5, and 15 cy, respectively) have not been evaluated. Prior to implementation of the removal action, waste rock piles with no data should be assessed using an XRF device. Waste rock piles can be accessed via the unnamed roadway that connects to FS 7245 approximately 0.1 miles north of the area. The obstructions currently present at the road would need to be removed and the road graded to allow for a haul truck. Under Alternative 2, where practicable, piles can be spread to adjacent shafts and trenches, particularly those that are open or partially open and represent physical hazards. Any remaining waste rock should be graded and all waste rock covered using clean cover soil from the shallow topographic area to the southeast or from the borrow area at Granite Creek Saddle.

5.2.1.2 Upper Monumental Mine

All tailings and waste rock piles at Upper Monumental Mine exceed RGs. Under Alternative 2, Waste rock pile B (60 cy) can be pushed into the adjacent shaft, which will accommodate its volume, and graded to match surrounding topography after placement of cover material. Cover material could be obtained from the Upper-Upper Monumental Mine area or from the Granite Creek Saddle. Access to waste rock pile B would require improvement of approximately 0.25 miles of an unnamed road that splits from the Upper-Upper Monumental Mine's unnamed road close to FS 7345.

Waste rock pile A (7,905 cy) is the largest waste rock pile at the Site and is situated on a steep, heavily vegetated slope, which would make grading difficult. The thick forest adjacent to the pile would preclude the use of local cover material and require hauling from the Upper-Upper Monumental Mine area or from the Granite Creek Saddle. Grading at this pile would require the removal of several trees. A portion of waste rock pile A could be placed in the open adit to prevent passageway to this physical hazard and the rest graded and covered. The adit seep would be redirected around the side of the waste rock pile using a pipe or drainage ditch. The low flow of the seep would be expected to infiltrate into the native soil. Access to waste rock pile A would require improvement of approximately 0.25 miles of FS 025 as well as FS 7345.

On-site containment at the former mill site (tailings pile A, 125 cy) would require scraping the thin tailings into a well-graded pile and covering with local borrow material, potentially from material on the eastern side of the clearing that had much lower arsenic concentrations. Care would need to be taken to remove tailings from around the flotation table to maintain the integrity of this historical feature, which may necessitate the use of hand tools, vacuum devices, and engineering controls to avoid exposure to dust and fine particles. The work may be completed using a small excavator, which may be able to access the area from FS 025 or through one of the drainages from FS 7345.

Tailings pile B (305 cy) includes tailings at and surrounding the upper settling pond. Covering this material would necessitate redirecting the flow of Cap Martin Creek to the north and adding berms to ensure it did not recapture its existing drainage and remove the cover material. Grading would be required to allow for access downslope from FS 7345. Cover material may be identified in the immediate surrounding area or sourced from the Upper-Upper Monumental Mine area or from the Granite Creek Saddle.

Tailings pile C (10 cy) is at and surrounding the middle settling pond. Covering this material would necessitate redirecting the flow of Cap Martin Creek to the south and adding berms to ensure it did not erode the cover material. Access would be difficult but the small areal extent of the tailings pond could allow for the use of hand carried materials. Access is likely easiest from the unnamed roadway that leads to the Lower Monumental Mine.

5.2.1.3 Lower Monumental Mine

Lower Monumental Mine waste rock pile A (5,560 cubic yards) and tailings pile A are in a relatively flat area. Under Alternative 2, the over-steepened northeastern portion of waste rock pile A could be regraded to the north–northwest and across tailings pile A (180 cy) to the northeast, taking care not to bury or obscure the historically significant crusher. A portion of waste rock pile A could be placed in the

open adit to prevent passageway to this physical hazard. Waste rock pile B (170 cubic yards) could be placed in the area in front of adit 3 and the rest appropriately graded downslope. Cover material could be sourced from the area to the east of the unnamed access road or to the south of waste rock pile A. Accessing this area would require improvement of approximately 0.25 miles of the unnamed road.

The seep emanating from adit 1 would be redirected via a pipe under the unnamed access road to the lower settling pond. The flow of Cap Martin Creek from the lower settling pond would be directed via rock-lined drainage ditch around the lower waste rock pile so it does not contact or erode the regraded, covered pile. Details of the water management would be included in the remedial design documents.

Preliminary XRF measurements of the "potential waste rock pile" depicted on Figure 5 indicated arsenic concentrations similar to background; however, additional evaluation of this feature should be conducted during remedial design.

5.2.2 Granite Creek Aquatic Station 03

Waste rock pile A (15 cy) is below RGs and requires no action. Waste rock pile B (80 cy), approximately 70 feet upstream of the intersection between Granite Creek and FS 720, has an arsenic UCLM above the RG. Under Alternative 2, the pile would be graded away from Granite Creek to the northeast. Waste rock pile A, which had arsenic concentrations similar to Site background, could potentially be used as a local cover source or material could be sourced from the Upper-Upper Monumental Mine area or the Granite Creek Saddle. Removal action at the waste rock pile would necessitate the improvement of approximately 0.3 miles of FS 720, in addition to FS 7345.

5.2.3 Cap Martin Mine

Waste rock piles A and B (370 and 10 cy, respectively) are less than RGs and would require no action. Under Alternative 2, waste rock pile C (735 cy) would be regraded and covered with local borrow material. The depression that separates the east and western portions of waste rock pile C, where adits 4, 5, and 6 are located, could be filled with material from the northernmost portion of the western half of the pile that forms a steep mound. Most of the pile is vegetated and would require tree removal prior to containment. Cover material would be identified in the immediate area and likely require additional tree removal. Access to Cap Martin Mine would require the installation of a new road. Although closer to FS 7345, it would be easier to build a road on the less steep slopes to the north of FS 720. This would require improvement of approximately 0.75 miles of FS 720, as well creating an approximately 0.25-mile new road.

5.2.4 Granite Creek #6 Mine

The wet trench pile (140 cy) is below RGs and requires no action. Waste rock pile A (45 cy) is above PRGs and Alternative 2 would involve regrading the over-steepened portion into the open adit. The pile is extensively vegetated and would require grubbing and scraping prior to regrading and capping. Cover material could be from the adjacent and larger wet trench pile, which had arsenic concentrations at or below background. Access to the Granite Creek #6 Mine would require building a new road, 0.3 miles along Granite Creek from Tillicum Mine on FS 280. If a road is built to access Cap Martin Mine, it may be

easier to construct a road west along Granite Creek from Cap Martin Mine, although either scenario would require extensive regrading, grubbing, and scraping.

5.2.5 Tillicum Mine

Waste rock piles B and C (145 and 210 cy, respectively) are below RGs and would require no action. Waste rock pile A (205 cy), between FS 280 and Granite Creek, is above RGs. Under Alternative 2, waste rock pile A would be partially graded and pulled into the concave portion of the hillside downslope of adit 2. Most of the pile may fit within this area and the rest would be regraded to match the surrounding contours. No local cover material is available due to the steep slopes adjacent to the mine and Alternative 2 would likely require sourcing from the Upper-Upper Monumental Mine area, the Granite Creek Saddle, or other closer borrow area. Action at Tillicum Mine would require improvement of 0.75 miles of FS 280.

5.2.6 Granite Creek #5 Mine

Waste rock pile B (10 cy) is below RGs and would require no action. Waste rock pile A (285 cy) is above RGs. Under Alternative 2, waste rock pile A would be regraded to fill the collapsed adit. Waste rock downhill from FS 280 would be pulled away from Granite Creek and graded into the existing hillside. No local cover material is likely available due to the steep slopes adjacent to the mine and Alternative 2 would likely require sourcing from Upper Upper-Monumental Mine area or from the Granite Creek Saddle or other closer borrow area. Action at the Granite Creek #5 Mine would require improvement of 0.4 miles of FS 280.

5.2.7 Golden Fraction Mine

No action is necessary at waste rock piles B, C, or D (145, 295, and 1,105 cy, respectively) based on calculated UCLMs for these features. Under Alternative 2, waste rock pile A (295 cy) would be recontoured into the concave depression downslope of collapsed adit 3 and covered with clean borrow material. No immediately local cover material is likely available due to the steep slopes adjacent to the mine and this alternative would likely require sourcing from the Upper-Upper Monumental Mine area, from the Granite Creek Saddle, or other closer borrow area to be identified during remedial design. Access to this waste rock pile would be difficult due to the steep terrain and would likely require construction of a temporary road uphill to the pile from FS 280 as building a road from FS 7345 would likely put the road at risk of being undercut.

5.2.8 Central Mine

Waste rock piles B, C, and D (25, 105, and 25 cy, respectively) are less than RGs and would require no action. Under Alternative 2, material from waste rock pile A (80 cy) would be pulled up the slope away from Granite Creek into the concave topography at adit 1 and graded into the surrounding hillside. It is possible that a local source of cover material could be excavated from the hillside between FS 280 and Granite Creek. Waste rock pile A is densely vegetated and would require grubbing and scraping prior to regrading and cover. Access to this mine is from FS 280, close to where it meets FS 73, and would

require minimal improvement. In the previous EE/CA, CES suggested removing a transite pipe identified at the mine by EA that may contain asbestos as part of the removal action. If the pipe is encountered during construction, it should be excavated, tested for asbestos, and removed from the Site.

5.3 Alternative 3: Excavation and On-site Disposal

Under this alternative, all waste material exceeding the RGs of 190 and 110 mg/kg total arsenic for waste rock and tailings, respectively, would be excavated and disposed in an on-site repository. CES proposed a repository be constructed at the proposed cover soil borrow area at the Granite Creek Saddle (2011a). Another potential location for a repository would be near the Upper-Upper Monumental Mine to the southeast of the mapped area. The repository would be excavated to a sufficient depth to allow for placement of material and for creation of a cap. The aerial extent of the repository will be dependent upon the volume of soil placed in the repository. ABA and TCLP results suggest that tailings have the possibility to leach contaminants and waste rock does not. Once material is mixed, additional TCLP and ABA testing could be completed to facilitate decision making. The necessity of lining or otherwise preventing toxic leachate should be evaluated during the remedial design. The repository will be constructed such that it does not exceed a three to one horizontal to vertical slope ratio to prevent erosion. Material placed in the repository would be compacted in 6-inch lifts. The repository would be capped with 1 foot of clean excavated borrow material stockpiled during its construction. The bottom 6 inches of the cap would be compacted and the upper 6 inches placed loosely to help develop root formation. The cap would be vegetated to USDA Forest Service specifications. Similar to the contained piles, berms and channels will be constructed to prevent stormwater and precipitation run-on.

In either location, the repository would be constructed beyond accessible roadways and require partial road construction/improvement. After the repository is constructed, the access road would be blocked to prevent unauthorized access.

Details regarding waste rock piles necessitating action, waste rock volumes, roadway improvements, stormwater controls, and other necessary controls are consistent with protocols outlined in Alternative 2 per mine site. Tailings at the Upper and Lower Monumental Mines would be removed using a vacuum truck to minimize disturbance to historically significant structures due to the relative thin nature of these materials, their fine grain size, and their high arsenic concentrations. A vacuum truck parked on FS 7345 could remove tailings from Upper Monumental Mine tailings piles A and B, and a vacuum truck parked on the unnamed road accessing Lower Monumental Mine could remove Upper and Lower Monumental Mine tailings pile C and A, respectively.

Excavated material would be based on visual observations and XRF measurements. Laboratory analytical samples of the underlying material would be taken to verify material above RGs had been removed. After excavation, the exposed surfaces would be graded, covered with clean soil, and revegetated to match the surroundings.

5.4 Alternative 4: Excavation and Off-site Disposal

Under this alternative, all waste material exceeding the RGs of 190 and 110 mg/kg total arsenic for waste rock and tailings, respectively, would be excavated and disposed of off Site. Procedures for this alternative would be the same as Alternative 3; however, instead of requiring the creation of a repository, material would be loaded directly from the respective mine into haul trucks. Due to the TCLP results, tailings would need to be transported as hazardous waste to Chemical Waste Management of the Northwest in Arlington, Oregon, a Subtitle C facility. Waste rock could either be transported to the USDA Forest Service repository planned at FS 7350 or to the Baker City Landfill approximately 4 and 55 miles from the intersection between FS 73 and FS 7345, respectively. Material transported to a municipal landfill would be temporarily stockpiled at a staging area to the west of the intersection between FS 73 and FS 7345, and then transferred to trucks more suitable for highway travel.

5.5 Analysis of Selected Removal Action Alternatives

Pursuant to the NCP, each alternative described above was analyzed using the following evaluation criteria: effectiveness, implementability, and cost. The effectiveness of each alternative was evaluated by each alternative's protectiveness of human health and the environment; attainment of ARARs; reduction of toxicity, mobility, or volume through treatment; long-term effectiveness and permanence; and short-term effectiveness. The implementability criterion addresses the technical feasibility of implementing the response (including availability of services and materials), the administrative feasibility, and Oregon State and community acceptance. Projected costs were calculated using direct capital costs, indirect capital costs, and annual post-removal Site control costs. Consistent with guidance, the costs presented are estimated using current costs of labor and materials, and actual costs are expected to range from 30 percent below to 50 percent above the costs presented. The projected costs presented for the EE/CA removal action alternatives are estimates only for the sole purpose of comparing alternatives and should not be considered design-level cost estimates. Details that formed the basis for the removal action alternative cost projections are provided in Tables 7 through 9.

5.5.1 Effectiveness

The following subsections evaluate an alternative's ability to meet the RAOs as identified in Section 4; in particular, its ability to achieve the criteria of protectiveness of human health and the environment and to attain ARARs. Other factors that affect the overall protectiveness of a removal action include preference for treatment to reduce contaminant toxicity, mobility, or volume for principal threats, short-term effectiveness, and long-term effectiveness/permanence. Details regarding the effectiveness evaluation criteria are presented in the following subsections.

5.5.1.1 Overall Protection of Human Health and the Environment

Under Alternative 1, the Site would remain as it currently exists and no active efforts to minimize contaminated areas or migration pathways would be made. Therefore, COPCs in soil would continue to pose an unacceptable risk to human health and the environment.

Alternative 2 would cover all tailings and waste rock piles exceeding RGs with clean cover, which would be effective in preventing direct contact to human receptors and improve conditions for some ecological receptors. The alternative would also involve regrading, which would reduce erosion, and rerouting surface water features flowing through tailings and waste rock piles, which would reduce contaminant load to streams. However, leaving the piles in place with a permeable cap would still allow infiltration, leaching, and migration of COPCs to surface water bodies. This is particularly problematic for tailings, which have a higher propensity for ARD and leaching.

Alternative 3 would involve removing all soil above RGs and placing it in an on-site repository. This would provide a high level of protection to human health and the environment. Some environmental receptors (burrowing mammals and invertebrates, plants) would still have some exposure if living at the repository, though population level species would be expected to be protected. The repository would be constructed far from streams and contaminant load from leaching would be less than under Alternative 2.

Alternative 4 would involve removing all soil above RGs and transporting it offsite. This would provide a high level of protection to human health and the environment. Material with high toxicity and propensity for ARD and leaching would be transported to a Subtitle C landfill. The remaining soil would be transported to an off-site repository or landfill, which would be expected to provide the highest level of protection to human health and the environment.

5.5.1.2 Compliance with ARARs

Alternative 1 does not comply with ARARs.

Alternative 2 partially complies with ARARs. Leaving tailings in areas with the potential to leach into Cap Martin Creek is potentially against ARARs protective of ecological environments, including the Clean Water and Endangered Species Acts.

Alternatives 3 and 4 comply with ARARs.

5.5.1.3 Reduction of Toxicity, Mobility, or Volume through Treatment

None of the alternatives evaluated reduce the toxicity, mobility, or volume of contamination through treatment. The COPCs are not biodegradable and will continue to pose an unacceptable risk to human health and the environment, though Alternative 4 would place the material in a permitted landfill, which may have treatment requirements (solidification) prior to placement.

5.5.1.4 Short-Term Effectiveness

Alternative 1 has poor short-term effectiveness because potential risk from COPCs at the Site is not reduced. The length of time until protection is achieved is indefinite under this alternative.

Alternative 2 through 4 offer equal short-term effectiveness as each would be completed in a relatively short period of time (less than 2 years), and would minimize exposure to COPCs immediately after implementation.

Short-term air quality impacts to the immediate environment may occur during excavation of contaminated soil. These short-term risks could be mitigated through appropriate dust control procedures.

A small increase in short-term risk to human health would be encountered during the excavation and transport phase of this work due to the truck trips required. These impacts could be mitigated through a transportation plan for the waste materials.

Impacts associated with construction activities are considered short term and should not significantly impact human health.

5.5.1.5 Long-Term Effectiveness

Alternative 1 does not provide long-term effectiveness or a permanent remedy for COPCs at the Site.

Alternative 2 provides a high level of long-term effectiveness for waste rock piles, particularly if cap inspection and maintenance is conducted on a regular schedule. Alternative 2 has a moderate level of long-term effectiveness for tailings, which would be expected to continue to leach and impair surface water bodies.

Alternative 3 provides a high level of long-term effectiveness, provided the repository cap is inspected and maintained at a regular interval and that the remedial design includes a mechanism to reduce the ability of tailings placed in the repository to leach and adversely affect downstream surface water bodies.

Alternative 4 provides the highest level of long-term effectiveness in that it does not rely on inspection or maintenance and material removed would be off Site in perpetuity.

5.5.2 Implementability

This section provides an evaluation of the technical and administrative feasibility of implementing an alternative and the materials and services that would be required for its implementation.

5.5.2.1 Technical Feasibility

Technical Implementation Considerations

Alternative 1 is simple to implement, as no action is taken.

Alternatives 2, 3, and 4 are technically feasible, though implementation would be difficult due to the remote nature of the Site, the steep slopes surrounding some of the waste rock piles, the presence of vegetation, the lack of access roads, and the relatively short season in which actions can be implemented (i.e., between June snowmelt and October precipitation). All three alternatives would require a geotechnical engineer to provide feedback on necessary road improvements and the extent to which steep waste rock piles could be safely accessed. The technical feasibility of these options is higher at Site mines located on or near existing roadways and lower for Site mines without road access.

Alternative 2 would be simpler to implement if clean cover material were available close to a particular mine and pile, and more complicated to implement if the nearest cover material was sourced from the proposed upland area.

Implementation of Alternative 3 would require additional analysis of the need for impermeable lining at the bottom of the repository, as well as mechanisms for trapping and treating leachate, and would require additional logistics if needed.

Alternative 4 would require additional logistics to transfer waste material from off-road dumps to highway-approved dumps, which would likely require additional workforce to complete in a reasonable amount of time.

Availability of Services and Materials

No services or materials for Alternative 1 are required.

It is likely that a contractor and engineering design team would be available to implement Alternatives 2, 3, and 4. However, the remote nature of the Site could be logistically challenging and would likely reduce the work week to provide time to travel to and from the Site.

The capacity of an appropriately licensed off-site waste facility to accommodate the anticipated soil excavation volumes is anticipated if Alternative 4 is selected.

5.5.2.2 Administrative Feasibility

This section provides an evaluation of the activities needed for coordination with other offices and agencies. Under CERCLA, federal, state, and local permits are not required for on-site CERCLA response actions; however, the substantive requirements of all permits that would otherwise be required must be met (40 CFR § 300.400(e)). Construction of an on-site repository would need to follow the substantive requirements of OAR 340-95, which describes solid waste disposal sites other than municipal solid waste landfills. Additional requirements would be triggered if hazardous wastes were planned to be stored in the repository (ORS 466).

Community Acceptance

It is likely that the public would not support Alternative 1 for the entire Site as it provides no protection for human health or the environment. The public may support Alternative 1 for Site mines that are especially remote and which would cause environmental damage if a removal action were to be implemented.

The public would likely support Alternatives 2 through 4, depending on the extent of environmental degradation caused by the removal action. Community acceptance will be determined following the community review and comment period after completion of the EE/CA. These comments will be addressed prior to finalizing the EE/CA and issuance of the action memorandum.

5.5.3 Cost

Evaluation of costs consists of developing conservative, order-of-magnitude estimates based on the description of work items developed for each removal action alternative. A similar set of assumptions is used for the alternatives, so that the *relative* difference in cost between alternatives is represented.

Tables 7 through 9 detail costs for Alternatives 2 through 4. Estimated costs (net present value) are presented below:

5.6 Comparative Analysis of Removal Action Alternatives

The effectiveness of the retained alternatives was evaluated based on advantages in each of the evaluation criteria outlined in Section 5.3, as well as the removal action goals and objectives. The following table summarizes the comparison.

		Со	mparison of Alt	ternatives		
Criterion	Alterna	ntive	Alternative 1: No Action	Alternative 2: On- site Containment	Alternative 3: Excavation and On-site Disposal	Alternative 4: Excavation and Off-site Disposal
		HH?	No	Yes	Yes	Yes
	Protective of:	Env?	No	Mostly – Leaching to Surface water bodies, species level risk at piles	Mostly; species level risk at repository	Yes
Effectiveness	Complies with	ARARs?	No	Yes- though leaching not 100% supportive of Clean Water and Endangered Species Acts	Yes	Yes
	Reduces Toxicit or Volume thro Treatment	•	No	No	No	No
		Short Term	No	Yes	Yes	Yes
	Effectiveness Duration	Long Term	No	Yes, except possible leaching; requires inspection and maintenance of multiple caps	Yes; requires inspection and maintenance of repository.	Yes
Implementability	Feasibility	Tech.	High	Moderate - Implementation logistically and technically difficult, particularly at Site mines without existing road access	Moderate; implementation logistically and technically difficult, particularly at Site mines without existing road access	Moderate; implementation logistically and technically difficult, particularly at Site mines without existing road access
		Admin	Low	High	Moderate (repository construction)	High
	Acceptance	Communit	Not expected	Yes	Yes	Yes
Cost			\$0	\$1,125K	\$1,783K	3,250K

Note: Env = environment; HH = human health

6 Recommended Removal Action Alternative

Taking into consideration the evaluation criteria presented in this EE/CA, the recommended removal action alternative for the Site is a combination of Alternatives 1, 2, 3, and 4. The Site mines, and the features at each mine, have individual attributes such that a single remedy would not be appropriate for the entire Site. The rationale for selecting an alternative for each mine is presented in this section.

6.1 Monumental Mine

The recommended removal action at Monumental Mine is a combination of Alternatives 1, 2, 3, and 4, as described below.

6.1.1 Upper-Upper Monumental Mine

Alternative 1 is recommended for waste rock piles at the Upper-Upper Monumental Mine with UCLMs below RGs.

Alternative 2 is recommended for waste rock piles with UCLMs above RGs. Piles can be moved using a bulldozer into trenches and covered with local clean borrow material. The cover material would be placed on the partially open shaft to prevent a trespasser or recreator from falling. Access to this area would require minimal road improvement.

6.1.2 Upper Monumental Mine

Alternative 2 is recommended for waste rock pile B. The shaft has sufficient capacity to accept the waste rock pile. Cover material can be supplied from the Upper-Upper Monumental Mine area and the unnamed road adjacent to the pile would require minimal improvement for equipment access.

A combination of Alternatives 2 and 3 is recommended for waste rock pile A. The steep slope of the waste rock pile will not likely allow recontouring of the entire pile without significant grubbing of the surrounding forest. It is recommended that the over-steepened portion of the pile be pushed with a bulldozer downslope to FS 7345 and taken to an on-site repository. Approximately half of the pile could then be spread and contoured to the existing topography. During the removal action, efforts would be made to maximize the volume of soil left in place, graded, and covered, and minimize the volume of soil transported to the on-site repository

Alternative 4 is recommended for tailings piles A, B, and C. A vacuum truck should be used to remove the fine tailings without disturbing the historical structures and minimize creating dust in this particularly fine material with high arsenic concentration. The contents of the vacuum truck will be transferred to a highway-rated truck with appropriate hazardous waste placards and a lined, covered bin at a staging area near the intersection of FS 7345 and FS 73 for transport to a Subtitle C landfill. After removing tailings, to the extent practicable, clean cover soil will be placed in the excavated areas to provide an exposure barrier from remnant tailings. No road improvements would be necessary except

for accessing the repository, as a vacuum truck with sufficient hose length could park on FS 7345. Tailings pile C could be accessed from the unnamed access road that transects Lower Monumental Mine.

The wetlands near the tailings piles B and C will be restored following the removal of hazardous substances in accordance with the 1994 USEPA guidance document *Considering Wetlands at CERCLA Sites*. If needed, clean organic fill may be imported from off Site for placement in the new wetland system. Wetland plants will be obtained either off Site or from a local borrow area pending USDA Forest Service approval.

6.1.3 Lower Monumental Mine

Alternative 4 is recommended for tailings pile A. Similar to the Upper Monumental Mine, a vacuum truck could be utilized to remove the fine tailings without disturbing the historical crusher structure. The contents of the vacuum truck will be transferred to a highway-rated truck with appropriate hazardous waste placards and a lined, covered bin at a staging area near the intersection of FS 7345 and FS 73 for transport to a Subtitle C landfill. Some road improvement would be necessary to allow a vacuum truck to drive on the unnamed road. Removing tailings would help reduce the capacity for this material to leach COPCs and migrate to Cap Martin Creek and nearby wetlands.

Alternative 2 is recommended for waste rock piles A and B. The area surrounding the waste rock piles is relatively flat and would support grading. The over-steepened northeastern portion of waste rock pile A could be regraded to the north—northwest and across tailings pile A to the northeast, taking care not to bury or obscure the historically significant crusher. A portion of waste rock pile A could be placed in the open adit to prevent passageway to this physical hazard. Waste rock pile B could be placed in the area in front of adit 3 and the rest appropriately graded downslope. Cover material could be sourced from the area to the east of the unnamed access road or to the south of waste rock pile A. Capping the waste rock piles would be protective of human health, cost effective, and less difficult to implement than Alternatives 3 and 4. Construction of water diversion features would be conducted as outlined in Section 5.2.1.3.

6.2 Granite Creek Aquatic Station 03

Alternative 1 is recommended for Granite Creek Aquatic Station 03 waste rock pile A due to low arsenic concentrations indicative of background conditions.

Alternative 2 is recommended for Granite Creek Aquatic Station 03 waste rock pile B. Minimal road improvement would be necessary along FS 720 to allow for a bulldozer or excavator to regrade and pull the waste rock pile away from Granite Creek and cover it with material from waste rock pile A or other local cover source. Alternative 2 would be protective of human health, reduce risk to ecological receptors, be cost effective, and relatively easy to implement.

6.3 Cap Martin Mine

Alternative 1 is recommended for the Cap Martin Mine. Only waste rock pile C at this mine had a UCLM (243.5 mg/kg) above the arsenic RG of 190 mg/kg. At this waste rock pile, only three of eight sample locations had concentrations above the arsenic RG (maximum concentration of 365.8 mg/kg). Cap Martin Mine is in a remote area of the Site, with difficult access through small trees and brush by foot and no access by road or trail. It is unlikely that a trespasser or recreator would discover Cap Martin Mine, and even more unlikely that they would spend time in the area of waste rock pile C with elevated arsenic concentrations. Implementing Alternatives 2, 3, or 4 would necessitate constructing a new road down a steep and densely vegetated portion of national forest. These alternatives would be expensive and provide only marginal benefit for the protection of human health.

6.4 Sheridan Mine

Alternative 1 is recommended for the Sheridan Mine. All samples collected at this mine had arsenic concentrations well below the RG. The mine is in a remote portion of the Site and is difficult to access.

6.5 Granite Creek #7 Mine

Alternative 1 is recommended for Granite Creek #7 Mine. Of the seven analytical samples collected at this mine, only one exceeded the RG with a concentration of 220 mg/kg. Calculated UCLMs for the waste rock piles were below RGs. The mine is in a remote area of the Site that would be difficult to access.

6.6 Granite Creek #6 Mine

Alternative 1 is recommended for Granite Creek #6 Mine. Two samples collected from waste rock pile A exceeded RGs (maximum concentration 504 mg/kg). However, the waste rock pile is relatively small, and the mine is in a remote portion of the Site with difficult access. This mine was difficult to locate with a map and GPS device and offers no historically significant features that trespassers or recreators would be interested in. To implement Alternatives 2, 3, or 4, it would be necessary to construct a new road along Granite Creek that would likely cause unwanted turbidity and undercut the uphill slopes.

6.7 Tillicum Mine

Alternative 1 is recommended for the Tillicum Mine. Only waste rock pile A had a calculated arsenic UCLM (357.7 mg/kg) above the RG of 190 mg/kg. This pile is downhill from FS 280, between the road and Granite Creek. Human health exposure to the waste rock pile is likely minimal as it would require descending a steep hill from the road. Soil downslope of waste rock pile A had similar arsenic concentrations to the pile, which indicates that erosion of the pile to Granite Creek is ongoing; however, pool and riffle samples collected in 2003 adjacent to the pile did not have measurable arsenic concentrations. The concentration of total arsenic in the 2024 Granite Creek surface water sample collected downstream of Tillicum Mine was slightly less than the upstream sample. These data suggest that even though material from the waste rock pile is eroding into Granite Creek, it is not having a

significant effect on downstream water quality. Implementing Alternatives 2, 3, or 4 at Tillicum Mine would require improving approximately 0.75 miles of FS 280, including a portion across privately held land, which would be labor and capital intensive.

6.8 Granite Creek #5 Mine

Alternative 1 is recommended for the Granite Creek #5 Mine. Calculated arsenic UCLM for waste rock pile A is 293.2 mg/kg, which exceeds the RG. However, six of the eight XRF measurement or analytical sample locations had arsenic concentrations below the RG. Furthermore, the sample collected downslope of the waste rock pile, between the pile and Granite Creek, had an arsenic concentration less than half of the minimum concentration of waste rock pile A samples. The concentration of total arsenic in the 2024 Granite Creek surface water sample collected downstream of the Granite Creek #5 Mine was slightly less than the upstream sample, suggesting Granite Creek #5 Mine does not significantly contribute to contaminant loading in Granite Creek. Implementing Alternatives 2, 3, or 4 at the Granite Creek #5 Mine would require improving approximately 0.4 miles of FS 280, including a portion across privately held land.

6.9 Golden Fraction Mine

Alternative 1 is recommended for Golden Fraction Mine. Waste rock pile A had arsenic concentrations above the RG (calculated UCLM of 332 mg/kg). However, this waste rock pile is located high up a steep hillside from the most likely access point of a trespasser or recreator, and it is unlikely that there is an associated human health risk. This waste rock pile is relatively small and implementation of Alternatives 2, 3, or 4 would require constructing an access road across a very steep hillside, which may not be feasible. In 2011, CES collected a sample from the area of a trench within waste rock pile C that had an arsenic concentration of 1,340 mg/kg. Terraphase measured arsenic concentrations at four locations in this area and collected a sample from the trench and was unable to reproduce this result (maximum concentration 102 mg/kg when not including the CES sample). It is possible that this sample was collected from a different area or it represents an anomalous result unrepresentative of the bulk of the pile. In either case, this waste rock pile does not represent a significant human health risk and does not warrant remedial action.

6.10 Central Mine

Alternative 2 is recommended for Central Mine waste rock pile A, which had a calculated arsenic UCLM of 239.5 mg/kg, slightly above the RG. This waste rock pile is easily accessible along FS 280, just west of its intersection with FS 280, which has parking at nearby FS 73. Waste rock pile A would be pulled up from the Granite Creek floodplain and placed in the open space at the adit and contoured into the adjacent hillside. Cover material is available downslope of FS 280, though it would need to be tested prior to application. Although there is higher likelihood of trespassers and recreators, no action is needed at waste rock piles B, C, or D as they had calculated UCLMs below the RG.

6.11 Summary of Recommended Removal Action Alternative

The following table provides a summary of the recommended removal action alternative by Site mine. This information, including the total waste rock volume associated with each alternative, is also provided as Table 11.

Re	ecommended Removal Action A	Alternatives
Mine	Feature	Recommended Removal Action Alternative
	Waste rock piles A, D, and F (395, 10, and 10 cy)	Alternative 2
Upper-Upper Monumental Mine	Waste rock piles B, C, and E (5, 5, and 5 cy)	Alternative 1
	Waste rock piles G, H, I and J (10, 25, 5, and 15 cy)	To be determined (requires characterization)
	Waste rock pile A (7,905 cy)	Alternatives 2 and 3
Upper Monumental Mine	Waste rock pile B (60 cy)	Alternative 2
	Tailings piles A, B, and C (125, 305, and 10 cy)	Alternative 4
Lower Monumental Mine	Waste rock piles A and B (5,560 and 170 cy)	Alternative 2
	Tailings pile A (180 cy)	Alternative 4
Constitution Constitution Charlier Constitution Constitut	Waste rock pile A (15 cy)	Alternative 1
Granite Creek Aquatic Station 03	Waste rock pile B (80 cy)	Alternative 2
Cap Martin Mine	All features	Alternative 1
Sheridan Mine	All features	Alternative 1
Granite Creek #7 Mine	All features	Alternative 1
Granite Creek #6 Mine	All features	Alternative 1
Tillicum Mine	All features	Alternative 1
Granite Creek # 5 Mine	All features	Alternative 1
Golden Fraction Mine	All features	Alternative 1
	Waste rock pile A (80 cy)	Alternative 2
Central Mine	Waste rock piles B, C, and D (25, 105, and 25 cy)	Alternative 1

6.12 Recommended Removal Action Cost

The recommended removal action includes a combination of Alternatives 1, 2, 3, and 4 as summarized above. Combined estimated costs for the recommended removal action are \$1,218,259, as summarized in Table 10.

7 References

- Brooks, Howard C., M.L. Ferns, and E.D. Mullen. 1982. *Geology and Gold Deposits Map of the Granite Quadrangle, Grant County, Oregon, 1982*.
- Cascade Earth Sciences (CES). 2006. *Human Health and Ecological Risk Assessment, Granite Creek Mines, Wallowa-Whitman National Forest*. Cascade Earth Sciences. Spokane, Washington.
- ——. 2007. Field Operation Plan, Data Gap Investigation of the Upper Granite Creek Watershed, Grant County, Oregon. Cascade Earth Sciences. Spokane, Washington.
- ——. 2009. Scope of Work and Cost Estimate Data Gap Investigation: Monumental Mine. Cascade Earth Sciences. Spokane, Washington.
- ———. 2011a. Non-Time-Critical Removal Action, Engineering Evaluation/ Cost Analysis, Upper Granite Creek, Grant County, Oregon, Wallowa-Whitman National Forest. May.
- ———. 2011b. Wetland Delineation Report, Monumental Mine Data Gap Assessment, Grant County, Oregon. May.
- ———. 2011c. Human Health and Ecological Risk Assessment, Upper Granite Creek Mines, Wallowa-Whitman National Forest. May.
- EA Engineering, Science, and Technology, Inc. (EA). 2004. *Site Inspection, Granite Creek Mines, Wallowa-Whitman National Forest, Oregon*. January.
- Ferns, M.L, H.C Brooks, and J. Ducette. 1982. *Geology and Mineral Resources Map of the Mt. Ireland Quadrangle, Baker and Grant Counties, Oregon*.
- Oregon Department of Environmental Quality. 2010. Human Health Risk Assessment Guidance. October.
- Oregon Department of Environmental Quality. 2019. Clean Fill Determinations. February.
- Terraphase Engineering Inc. (Terraphase). 2024. *Sampling and Analysis Plan, Upper Granite Creek Watershed Mines, Wallowa-Whitman National Forest, Oregon.* September 20.
- United States Department of Agriculture (USDA) Forest Service. 2002. DRAFT Environmental Impact Statement, Granite Area Mining Projects. June
- ——— 2003a. Abbreviated Preliminary Assessment, Monumental. February
- --- 2003b. Abbreviated Preliminary Assessment, Tillicum February
- ——— 2006a. Abbreviated Preliminary Assessment, Golden Fraction. August.
- ———. 2006b. Abbreviated Preliminary Assessment, Upper Central Mine. August.

——. 2006c. Abbreviated Preliminary Assessment, Cap Martin Complex. August.
——. 2006c. Abbreviated Preliminary Assessment, Granite Creek Mine #5. August.
——. 2006d. Abbreviated Preliminary Assessment, Granite Creek Mine #6. August.
——. 2006c. Abbreviated Preliminary Assessment, Granite Creek Mine #7. August.
——. 2016. Final Environmental Impact Statement, Granite Creek Watershed Mining Project. March.
United States Environmental Protection Agency (USEPA). 1993. Guidance on Conducting Non-Time-Critical Removal Actions Under CERCLA. Washington, DC: Office of Solid Waste and Emergency Response. PB93-963402. EPA 540-R-63-057. August.
——. 1994. Considering Wetlands at CERCLA Sites. May.

———. 2000. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study. July.

THIS PAGE INTENTIONALLY LEFT BLANK

Tables

- 1 Summary of Soil Analytical Results
- 2 Summary of Sediment Analytical Results
- 3 Summary of Surface Water Analytical Results
- 4 Chemical-Specific Potential Applicable or Relevant and Appropriate Requirements
- 5 Location-Specific Potential Applicable or Relevant and Appropriate Requirements
- 6 Action-Specific Potential Applicable or Relevant and Appropriate Requirements
- 7 Cost Estimate for Alternative 2 Onsite Containment
- 8 Cost Estimate for Alternative 3 Excavation and Disposal in Onsite Repository
- 9 Cost Estimate for Alternative 4 Excavation and Offsite Disposal
- 10 Cost Estimate for Recommended Alternative
- 11 Recommended Removal Action Summary

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
	PR	G for SAP				4895	82				24468	9113			3681	489424		
	Tai	lings PRG					110											
	Waste	Rock/Soil PRG					190											
ODEC	Q Blue Mou	ntain Region Clear	n Fill			1.3	14			950	2.6	0.69		190		120		21
		Plant Direct Toxic				11	18			110	2.5	32			13	70		120
ODE	Q Eco RBC	Inverts Direct Toxi	city			78	6.8			330	40	140				80		1700
	ODEQ	Eco RBC Bird					15			630		0.29		23	76	14		11
	ODEQ Ec	o RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
(ODEQ Excav	ation Worker RCB					420				19000	9700				390000		800
		BG-SSS-19	0.5	7/19/2003	24400	0.84 J	4.5	NA	NA	288	1.2	0.43 J	1830	31.3	11.3	30.7	24600	8.4
	EA	BG-SSS-34	0.5	7/15/2003	26400	ND (0.38)	3.4	NA	NA	187	0.72	0.35 J	1130	5.7	5.5	8.9	10800	3.8
	LA	BG-SSS-35	0.5	7/15/2003	31200	ND (0.4)	5.5	NA	NA	268	1	0.54	2110	6.2	6.7	15.4	12400	5.9
		BG-SSS-36	0.5	7/15/2003	19400	ND (0.33)	11.4	NA	NA	319	0.55	ND (0.026)	2080	27.4	10.2	11	17700	6.3
		BGS-01	0.5 - 1	6/26/2007	NA	ND (0.2)	6.2	NA	NA	NA	0.6 J	1.1	NA	12	NA	8	22900	8.04
Background		BGS-02	0.5 - 1	6/26/2007	NA	ND (0.2)	7.8	NA	NA	NA	0.6 J	1.45	NA	7	NA	10	13600	5.98
		BGS-03	0.5 - 1	6/26/2007	NA	0.2 J	5.4	NA	NA	NA	0.4 J	0.39	NA	11	NA	8	20300	4.58
	CES	BGS-04	0.5 - 1	6/26/2007	NA	ND (0.2)	9	NA	NA	NA	0.8 J	2.03	NA	15	NA	24	16800	7.62
		BGS-05	0.5 - 1	6/26/2007	NA	0.3 J	11.8	NA	NA	NA	0.9 J	1.85	NA	7	NA	31	13400	7.92
		BGS-06	0.5 - 1	6/27/2007	NA	0.2 J	15.3	NA	NA	NA	0.4 J	0.51	NA	15	NA	5	29800	4.86
		BGS-07 BGS-08	0.5 - 1 0.5 - 1	6/27/2007 6/27/2007	NA NA	ND (0.2) 0.3 J	5 43.5	NA NA	NA NA	NA NA	0.6 J 0.4 J	1.01 1.11	NA NA	12 70	NA NA	30 67	13600 35300	5.93 7.3
		TA-SUS-22	1.5	7/15/2003	12500	0.68 J	6.3	NA NA	NA NA	155	0.4 J	ND (0.03)	1940	5.2	8 8	3.3	16300	2.8
		WP-SUS-20	4	7/15/2003	15600	0.88 J	10.1	NA NA	NA NA	180	0.383	ND (0.03)	2850	8.4	9.1	5.5	19700	3.6
	EA	WP-SUS-21	2.5	7/15/2003	10400	2 J	198	NA NA	NA	177	0.48	14.1	6320	5.5	7.4	43.5	20700	44.1
		WP-SUS-39	2	7/15/2003	14900	0.61 J	17.5	NA NA	NA	167	0.44	ND (0.025)	905	9.7	9.6	11	19600	4.2
		CM-WR1-1	0.5	6/21/2007	NA	0.3 J	19.6	NA	NA	NA	ND (0.2)	0.17 J	NA	11	NA	4 J	20500	5.71
Cap Martin		CM-WR2-1	0.5	6/21/2007	NA	ND (0.2)	9.7	NA	NA	NA	ND (0.2)	0.33	NA	9	NA	3 J	15500	4.26
	CES	CM-WR2-2	0.5	6/21/2007	NA	ND (0.2)	26.5	NA	NA	NA	ND (0.2)	0.2 J	NA	11	NA	4 J	12400	4.68
		CM-WR3-1	0.5	6/21/2007	NA	0.9 J	<u>131</u>	NA	NA	NA	0.7 J	0.27 J	NA	3 J	NA	3	16800	12.9
		CM-WR4-1	0.5	6/21/2007	NA	ND (1)	<u>257</u>	NA	NA	NA	0.3 J	8.48	NA	6	NA	12	28800	105
	TEI	CM-WRC-4	0.5 - 1	10/3/2024	NA	NA	<u>292 (0.42)</u>	33.1 (1.9)	650 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TA-SUS-33	1.5	7/10/2003	11100	1.3 J	27.4	NA	NA	124	0.2 J	0.36 J	1380	9.8	7.2	12.6	16900	9.9
	EA	WP-SSS-31	0.5	7/10/2003	11100	5.9 J	<u>295</u>	NA	NA	223	0.28 J	3.4	2110	10.4	8.5	56.2	31400	358
		WP-SUS-31	4.5	7/10/2003	10900	2.3 J	<u>150</u>	NA	NA	179	0.29 J	2.2	2270	8.4	8.1	30.6	26500	53
Central		WP-SUS-32	4	7/10/2003	17600	1.8 J	<u>106</u>	NA	NA	225	0.3 J	1.1	1900	13.3	9.9	16.3	28200	22.9
		CEM-WRA-2	0.5 - 1	10/5/2024	NA	NA	<u>299 (8.3)</u>	44.5 (2)	794 (5)	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	CEM-WRA-4-DS	0.5 - 1	10/2/2024	NA	NA	32.6 (0.4)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		CEM-WRB-1	0.5 - 1	10/5/2024	NA	NA	<u>151 (8.6)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		CEM-WRC-1	0.5 - 1	10/5/2024	NA	NA	<u>110 (8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Terraphase Engineering Inc.
Page 1 of 9

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				1
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
	PR	G for SAP	, ,			4895	82				24468	9113			3681	489424		
	Tai	lings PRG					110											
	Waste	Rock/Soil PRG					190											
ODEQ	Blue Mou	ntain Region Clea	n Fill			1.3	14			950	2.6	0.69		190		120		21
ODE	Q Eco RBC	Plant Direct Toxic	ity			11	18			110	2.5	32			13	70		120
ODEC	Q Eco RBC	Inverts Direct Toxi	city			78	6.8			330	40	140				80		1700
	ODEQ	Eco RBC Bird					15			630		0.29		23	76	14		11
	ODEQ Ec	o RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
0	DEQ Excav	ation Worker RCB	3				420			-	19000	9700				390000		800
		GF-WR-01	1	6/25/2007	NA	0.6 J	28.7	NA	NA	NA	0.3 J	1	NA	20	NA	12	26300	14.8
	CES	GF-WR-2	0.5	6/25/2007	NA	30 J	<u>1340</u>	NA	NA	NA	ND (0.2)	1.36	NA	6	NA	114	97300	2430
	CLS	GF-WR2-1	0.5	6/21/2007	NA	3.1	<u>141</u>	NA	NA	NA	0.3 J	4.07	NA	12	NA	22	30500	143
Golden Fraction		GF-WR-3	0.5	6/25/2007	NA	1.5	<u>89</u>	NA	NA	NA	0.3 J	0.85	NA	18	NA	15	35600	4.89
Golden Haction		GF-DR-1	0.5 - 1	10/5/2024	NA	NA	58.3 (8.4)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GF-WRA-1	0.5 - 1	10/5/2024	NA	NA	<u>332 (7.8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	161	GF-WRD-4-DS	0.5 - 1	10/5/2024	NA	NA	55.2 (8.5)	12.3 (2)	137 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GF-WRD-6	0.5 - 1	10/5/2024	NA	NA	66.6 (7.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	CES	GC5-WR-01	0.5	6/26/2007	NA	1.4	<u>155</u>	NA	NA	NA	0.3 J	3.35	NA	13	NA	34	27300	35.8
	020	GC5-WR-02	0.5	6/26/2007	NA	2.4	<u>170</u>	NA	NA	NA	0.4 J	4.77	NA	18	NA	61	30600	88.5
Granite Creek #5		GC5-WRA-3	0.5 - 1	10/4/2024	NA	NA	<u>421 (8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GC5-WRA-4	0.5 - 1	10/4/2024	NA	NA	<u>160 (7.8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC5-WRA-4-DS	0.5 - 1	10/4/2024	NA	NA	81.3 (7.9)	10.4 (1.9)	221 (5)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC6-WR-01	0.5	6/24/2007	NA	ND (0.2)	9.3	NA	NA	NA	ND (0.2)	0.21	NA	9	NA	14	20700	1.49
	CES	GC6-WR-02	0.5	6/24/2007	NA	ND (0.2)	6.6	NA	NA	NA	0.3 J	0.24	NA	10	NA	6	21400	3.37
Granite Creek #6		GC6-WR-03	0.5	6/24/2007	NA	ND (0.2)	1.7	NA	NA	NA	ND (0.2)	0.29 J	NA	ND (1)	NA	4 J	2650	0.85
	TEI	GC6-WRA-1	0.5 - 1	10/4/2024	NA	NA	<u>257 (8.5)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC6-WRA-2	0.5 - 1	10/4/2024	NA	NA	<u>504 (8.5)</u>	29.3 (2)	759 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC7-WR-01	0.5	6/24/2007	NA	19	<u>185</u>	NA	NA	NA	0.4 J	1.84	NA	6	NA	120	22600	81.7
	CES	GC7-WR-02	0.5	6/24/2007	NA	2.5	<u>142</u>	NA	NA	NA	0.6 J	0.5	NA	7	NA	17	28500	19
Granite Creek 7		GC7-WR-03	0.5	6/24/2007	NA	7.6	<u>220</u>	NA	NA	NA	0.6 J	0.76	NA	3	NA	66	25100	17.1
		GC7-WR-04	0.5	6/24/2007	NA	0.4 J	22.9	NA	NA	NA	0.3 J	0.27 J	NA	9	NA	9	22500	4.94
	TEI	GC7-WRA-3	0.5 - 1	10/4/2024	NA	NA	26.9 (8.5)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC7-WRB-1	0.5 - 1	10/4/2024	NA	NA	7.43 (0.43)	NA	NA	NA	NA	NA	NA	NA -	NA	NA 	NA	NA
Granite Creek Aq. St. 3	CES	GC3-WR-01	0.5	6/24/2007	NA	7.2	<u>337</u>	NA	NA	NA	0.3 J	7.97	NA	7	NA	57	29900	152

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
	PR	G for SAP	, ,			4895	82				24468	9113			3681	489424		
	Та	ilings PRG					110											
	Waste	Rock/Soil PRG					190											
ODE		ıntain Region Cleai	n Fill			1.3	14			950	2.6	0.69		190		120		21
		Plant Direct Toxic				11	18			110	2.5	32			13	70		120
		Inverts Direct Toxi				78	6.8			330	40	140				80		1700
		Eco RBC Bird	•				15			630		0.29		23	76	14		11
		o RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
	ODEQ Exca	vation Worker RCB					420				19000	9700				390000		800
		ML-SSS-38	0.5	7/9/2003	1110	78.3	<u>4470</u>	NA	NA	51.7	0.033 J	0.22 J	308 J	2.3	0.6 J	26.6	16500	856
	EA	WP-SSS-15	0.5	7/9/2003	3740	5 J	<u>573</u>	NA	NA	149	0.25 J	1.4	5570	3.5	6.4	14.6	18900	12.4
		WP-SUS-15	4	7/9/2003	4800	5.3 J	<u>544</u>	NA	NA	176	0.25 J	1.1	7180	4.4	6.6	18.2	20900	25
		MMDGA-T-46	3.5	9/30/2009	NA	NA	<u>3340</u>	NA	NA	NA	NA	NA	NA	NA	NA	152	NA	627
		MMDGA-WR-18	3.5	9/29/2009	NA	NA	<u>2700</u>	NA	NA	NA	NA	NA	NA	NA	NA	45	NA	589
		MMDGA-WR-19	3	9/29/2009	NA	NA	<u>223</u>	NA	NA	NA	NA	NA	NA	NA	NA	9.4	NA	16.1
	CES	MMDGA-WR-20	3	9/29/2009	NA	NA	<u>4610</u>	NA	NA	NA	NA	NA	NA	NA	NA	220	NA	3210
	CLS	MMDGA-WR-21		9/29/2009	NA	NA	<u>258</u>	NA	NA	NA	NA	NA	NA	NA	NA	13.9	NA	12
Lwr Mon'tl		MMDGA-WR-24		9/29/2009	NA	NA	<u>8150</u>	NA	NA	NA	NA	NA	NA	NA	NA	48	NA	712
LWI WIOH CI		MMDGA-WR-25		9/29/2009	NA	NA	<u>9360</u>	NA	NA	NA	NA	NA	NA	NA	NA	60.5	NA	453
		MMDGA-WR-26		9/29/2009	NA	NA	<u>5690</u>	NA	NA	NA	NA	NA	NA	NA	NA	135	NA	578
		LMM-WRA-3		10/3/2024	NA	NA	<u>125 (0.44)</u>	16.6 (2)	328 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRA-3-DS	0.5 - 1	10/3/2024	NA	NA	21.6 (0.44)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRA-4	0.5 - 1	10/3/2024	NA	NA	<u>2290 (8.8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI		0.5 - 1	10/3/2024	NA	NA	<u>2570 (8.5)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRB-1	0.5 - 1	10/3/2024	NA	NA	1090 (0.42)	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA
		LNANA WADD 2 DC		10/3/2024	NA	NA	<u>802 (0.42)</u>	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
		LMM-WRB-3-DS	0.5 - 1	10/3/2024	NA 17500	NA 0.04 I	29.1 (0.41)	NA NA	NA NA	NA 260	NA O.F.F	NA ND (0.027)	NA 1030	NA 8.6	NA 10.5	NA 10.2	NA 20600	NA 10.4
	EA	TA-SUS-25 WP-SUS-23		7/14/2003 7/14/2003	17500 11900	0.94 J 6	26 81.8	NA NA	NA NA	269 188	0.55 0.48	ND (0.027) 0.63	1930 2920	8.6 6.7	10.5 8.6	10.2 30.5	20600 20100	10.4 15.6
Sheridan	CES	SM-WR2-1		6/21/2007	NA	ND (0.2)	16.8	NA NA	NA NA	NA	ND (0.2)	0.83 0.23 J	NA	9	NA	30.3 7	20700	11.1
Sheriaan	CLS	SH-WRB-2	0.5 - 1	10/4/2024	NA	NA	80.8 (0.39)	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	, NA	NA	NA NA
	TEI	SH-WRC-1	0.5 - 1	10/4/2024	NA	NA	14.4 (0.44)	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
		TA-SSS-30		7/12/2003	11600	1.6 J	58.6	NA	NA	201	0.2 J	6.2	3480	8.8	8.8	10.4	22900	40.9
		WP-SSS-27	0.8	7/12/2003	9660	2.4 J	88	NA	NA	177	0.2 J	3.4	2600	5.9	8.2	27.5	20000	375
	EA	WP-SSS-28		7/12/2003	3550	1.3 J	183	NA	NA	32.8	0.43 J	2.8	26500	1.4	4.7	14.4	19300	52.2
		WP-SUS-26		7/12/2003	8350	1.7 J	<u>156</u>	NA	NA	138	0.29 J	7.5	3120	4.3	6.7	32.3	23800	120
Tillicum		WP-SUS-27		7/12/2003	11700	1.8 J	35.7	NA	NA	206	0.21 J	1.9	1830	6.8	8.2	15.2	21300	27.8
	CES	TILL-WR-01		6/26/2007	NA	5.5	<u>371</u>	NA	NA	NA	0.7 J	15.6	NA	2 J	NA	27	24600	184
		TL-WRA-1-DS-2		10/4/2024	NA	NA	<u>267 (0.44)</u>	14.4 (1.9)	550 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	TL-WRA-3		10/4/2024	NA	NA	<u>454 (0.42)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TL-WRB-4	0.5 - 1	10/4/2024	NA	NA	<u>194 (0.42)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

		1	Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
7.0.		G for SAP	(10.080)	Dute		4895	82				24468	9113			3681	489424		
		ilings PRG					110											
		Rock/Soil PRG					190											
ODE		ıntain Region Clear	n Fill			1.3	14			950	2.6	0.69		190		120		21
		Plant Direct Toxic				11	18			110	2.5	32			13	70		120
	•	Inverts Direct Toxic				78	6.8			330	40	140				80		1700
OD.		Eco RBC Bird	City				15			630		0.29		23	76	14		11
		o RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
		vation Worker RCB					420				19000	9700				390000		800
•	DDLQ LXCa	ML-SSS-12	0.7	7/9/2003	13300	4 J	73	NA	NA	322	0.32 J	0.65	3050	8.4	10.4	14.2	32000	27.5
		ML-SSS-12 ML-SSS-16	0.7	7/10/2003	6180	368	7500	NA NA	NA NA	129	0.32 J	8.1	1610	7.7	1.6 J	80	16300	1350
		WP-SSS-13	1	7/9/2003	4220	11.6	<u>860</u>	NA NA	NA NA	189	0.23 J	ND (0.064)	523 J	3.6	3.6 J	12.5	21500	31.3
	EA	WP-SSS-14	0.7	7/10/2003	3190	2.5 J	616	NA NA	NA NA	69.8	0.087 J	8.5	5980	2.3	5 J	7.4	13600	15
		WP-SSS-17	1	7/9/2003	10600	241	<u>11400</u>	NA	NA NA	73.2	0.20 J	23.4	3610	2.1	2.7 J	698	16300	2120
		WP-SUS-14	3.5	7/10/2003	4680	5.8 J	355	NA	NA NA	166	0.23 J	0.52	10100	3.3	6.4	8	18800	36.9
		MMDGA-T-13	1	9/29/2009	NA	NA	10200	NA	NA	NA	NA	NA	NA	NA	NA	58.4	NA	1200
		MMDGA-T-34	0.25	9/30/2009	NA	NA	1900	NA	NA	NA	NA	NA	NA	NA	NA	119	NA	478
		MMDGA-T-34	2	9/30/2009	NA	NA	9610	NA	NA	NA	NA	NA	NA	NA	NA	440	NA	2340
		MMDGA-T-35	1	9/30/2009	NA	NA	4770	NA	NA	NA	NA	NA	NA	NA	NA	247	NA	1240
		MMDGA-T-37	0.25	9/30/2009	NA	NA	1360	NA	NA	NA	NA	NA	NA	NA	NA	128	NA	334
	CES	MMDGA-T-40	2	9/30/2009	NA	NA	<u>6310</u>	NA	NA	NA	NA	NA	NA	NA	NA	460	NA	1140
	CES	MMDGA-T-41	2	9/30/2009	NA	NA	<u>8750</u>	NA	NA	NA	NA	NA	NA	NA	NA	700	NA	1680
		MMDGA-T-9	1	9/29/2009	NA	NA	<u>2440</u>	NA	NA	NA	NA	NA	NA	NA	NA	75.3	NA	549
Upr Mon'tl		MMDGA-WR-2	4	9/28/2009	NA	NA	<u>164</u>	NA	NA	NA	NA	NA	NA	NA	NA	15.2	NA	11.3
		MMDGA-WR-28	0.5	9/29/2009	NA	NA	<u>740</u>	NA	NA	NA	NA	NA	NA	NA	NA	8.1	NA	10.4
		MMDGA-WR-3	4	9/28/2009	NA	NA	<u>2240</u>	NA	NA	NA	NA	NA	NA	NA	NA	70.6	NA	479
		MMDGA-WR-5	1	9/28/2009	NA	NA	<u>2920</u>	NA	NA	NA	NA	NA	NA	NA	NA	51.1	NA	231
		UMM-TLA-6	0.5 - 1	10/2/2024	NA	NA	<u>3270 (8.1)</u>	1350 (2)	5560 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	589 (0.81)
		UMM-TLB-1	0.5 - 1	10/2/2024	NA	NA	<u>6130 (11)</u>	1840 (2)	4420 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	1710 (1.1)
		UMM-TLB-4	0.5 - 1	10/2/2024	NA	NA	<u>1540 (8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-TLC-1	0.5 - 1	10/2/2024	NA	NA	<u>5290 (9.9)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-TLC-2	0.5 - 1	10/2/2024	NA	NA	<u>4980 (10)</u>	NA (a)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	UMM-WRA-1	0.5 - 1	10/2/2024	NA	NA	<u>1300 (8.4)</u>	12.7 (2)	1590 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-1-DS	0.5 - 1	10/2/2024	NA	NA	37.5 (0.41)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-3		10/2/2024	NA NA	NA	1210 (0.45)		NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA
		UMM-WRB-1	0.5 - 1	10/2/2024	NA NA	NA	14000 (41)	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	5210 (4.1)
		UMM-WRB-2 UMM-WRB-2-DS	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	NA NA	NA NA	1800 (8.2) 79.2 (0.45)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	+	UUMM-WRA-2	0.5 - 1	10/2/2024	NA NA	NA NA	1940 (8.8)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		JOIVIIVI-VVRA-Z		10/2/2024	NA NA	NA NA	1710 (9.1)	176 (1.9)	3440 (4.9)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		UUMM-WRA-3		10/2/2024	NA NA	NA NA	1470 (8)	162 (2)	3280 (5)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Upr Upr Mon'tl	TEI	UUMM-WRA-3-DS		10/2/2024	NA NA	NA NA	16 (0.44)	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		UUMM-WRD-1	0.5 - 1	10/2/2024	NA	NA	269 (0.45)	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA
		UUMM-WRF-1		10/2/2024	NA	NA	<u>715 (0.44)</u>	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
		OCIVIIVI VVIII 'I	0.5 1	10/2/2024	147	14/7	<u>/ 4 / (0.77)</u>	INA	14/7	147		14/7	14/7	IVA	14/7	1477	11/7	11/7

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Metals						
			Depth	Sample		Lead. Total											
AOI	Company	Location	(ft bgs)	Date	Lead, IVBA	IVBA	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
7.5.	,	G for SAP	(10 083)	Dute					2153	244668		61175	61145			61218	
		lings PRG															
		Rock/Soil PRG															
ODE		Intain Region Clear	n Fill					1800	1.4	92		0.93	0.51			400	160
	•	Plant Direct Toxic						220	34	38		0.52	560		0.05	60	160
	-	Inverts Direct Toxi						450	0.05	280		4.1					120
		Eco RBC Bird	city					1300	0.013	20		0.71	2.6		4.5	4.7	46
		o RBC Mammal						1400	1.7	10		0.63	14		0.42	280	79
		vation Worker RCB	\					230000	2900	190000			49000				
	JDEQ EXCUT	BG-SSS-19	0.5	7/19/2003	NA	NA	2630	837	0.14	23.4	1570	0.76	0.26 J	806	0.97	47.8	105
		BG-SSS-34	0.5	7/15/2003	NA	NA	880	429	0.032 J	5.2	848	0.61	0.28 J	1220	ND (0.28)	24.9	50.2
	EA	BG-SSS-35	0.5	7/15/2003	NA	NA	1560	156	0.035 J	5.6	1140	0.42 J	0.62 J	1450	ND (0.29)	26.5	43.2
		BG-SSS-36	0.5	7/15/2003	NA	NA	4930	610	0.027 J	23.4	3920	0.24 J	0.48 J	1180	ND (0.24)	47.2	61.3
		BGS-01	0.5 - 1	6/26/2007	NA	NA	NA	716	0.06 J	7	NA	0.37	0.29	NA	NA	NA	71
Background		BGS-02	0.5 - 1	6/26/2007	NA	NA	NA	668	ND (0.04)	6	NA	0.28 J	0.51	NA	NA	NA	61
Background		BGS-03	0.5 - 1	6/26/2007	NA	NA	NA	644	0.05 J	8	NA	0.15 J	0.2	NA	NA	NA	71
	CES	BGS-04		6/26/2007	NA	NA	NA	848	0.06 J	23	NA	0.36	0.63	NA	NA	NA	126
	CLS	BGS-05		6/26/2007	NA	NA	NA	319	0.06 J	10	NA	0.77	0.58	NA	NA	NA	44
		BGS-06		6/27/2007	NA	NA	NA	644	ND (0.04)	7	NA	0.24 J	0.32	NA	NA	NA	88
		BGS-07		6/27/2007	NA	NA	NA	606	0.07 J	13	NA	0.39	0.23	NA	NA	NA	60
		BGS-08		6/27/2007	NA	NA	NA	1060	0.08 J	70	NA	0.38	0.53	NA	NA	NA	145
		TA-SUS-22	1.5	7/15/2003	NA	NA	5180	408	0.058	3.8 J	3720	0.24 J	0.28 J	982	ND (0.28)	40.6	41.8
	EA	WP-SUS-20	4	7/15/2003	NA	NA	5320	270	0.026 J	4.3	4080	ND (0.31)	0.63 J	1100	ND (0.25)	52.2	48.6
		WP-SUS-21	2.5	7/15/2003	NA	NA	2980	504	0.3	4.1	3240	0.4 J	4.2	122 J	0.45 J	33.9	495
		WP-SUS-39 CM-WR1-1	0.5	7/15/2003 6/21/2007	NA NA	NA NA	4560 NA	321 312	0.064 0.06 J	4.8 3 J	3560 NA	0.4 J 0.3	0.79 J 0.14	1060 NA	ND (0.23) NA	52.2 NA	50.5
Cap Martin		CM-WR1-1 CM-WR2-1	0.5	6/21/2007	NA NA	NA NA	NA NA	234	ND (0.04)	3 J	NA NA	0.3 0.23 J	0.14 0.08 J	NA NA	NA NA	NA NA	39 34
	CES	CM-WR2-2	0.5	6/21/2007	NA NA	NA NA	NA NA	198	0.07 J	4 J	NA NA	0.23 J	0.083	NA NA	NA NA	NA NA	25
	CLS	CM-WR3-1	0.5	6/21/2007	NA NA	NA	NA NA	69.4	0.07 J	2.J	NA NA	0.58	0.13	NA NA	NA NA	NA NA	50
		CM-WR4-1	0.5	6/21/2007	NA NA	NA	NA	657	0.06 J	5 J	NA	0.46	1.42	NA	NA	NA	330
	TEI	CM-WRC-4	0.5 - 1	10/3/2024		10.3 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TA-SUS-33	1.5	7/10/2003	NA	NA	4650	378	0.12	6.9	2750	0.52	ND (0.21)	805	0.34 J	44.2	63.2
		WP-SSS-31	0.5	7/10/2003	NA	NA	4860	1260	0.27	9.6	2840	1.6	2.7	787	3.3	96.1	203
	EA	WP-SUS-31	4.5	7/10/2003	NA	NA	3450	833	0.19	8	1770	1	1.9	425 J	2.5	59.4	137
Control		WP-SUS-32	4	7/10/2003	NA	NA	6300	697	0.12	9.7	4030	1	0.28 J	1040	1.3	73.7	96.2
Central		CEM-WRA-2	0.5 - 1	10/5/2024	21.9 (0.2)	78.5 (0.5)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	CEM-WRA-4-DS	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	l 'EI	CEM-WRB-1	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		CEM-WRC-1	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Metals						
			Depth	Sample		Lead, Total											
AOI	Company	Location	(ft bgs)	Date	Lead. IVBA	IVBA	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
	<u> </u>	G for SAP	(10.080)						2153	244668		61175	61145			61218	
		lings PRG															
		Rock/Soil PRG															
ODEO	Blue Mou	ntain Region Clea	n Fill					1800	1.4	92		0.93	0.51			400	160
		Plant Direct Toxic						220	34	38		0.52	560		0.05	60	160
		Inverts Direct Toxi						450	0.05	280		4.1					120
	ODEQ	Eco RBC Bird	•					1300	0.013	20		0.71	2.6		4.5	4.7	46
	ODEQ Ec	o RBC Mammal						1400	1.7	10		0.63	14		0.42	280	79
0	DEQ Excav	ation Worker RCB						230000	2900	190000			49000				
		GF-WR-01	1	6/25/2007	NA	NA	NA	692	NDH (0.04)	6	NA	0.23 J	0.58	NA	NA	NA	191
	CES	GF-WR-2	0.5	6/25/2007	NA	NA	NA	97.5	2.61	1	NA	3.26	52	NA	NA	NA	305
	CES	GF-WR2-1	0.5	6/21/2007	NA	NA	NA	718	0.19 J	7	NA	0.39	7.95	NA	NA	NA	201
Golden Fraction		GF-WR-3	0.5	6/25/2007	NA	NA	NA	544	NDH (0.04)	8	NA	0.34	0.64	NA	NA	NA	94
Golden Fraction		GF-DR-1	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GF-WRA-1	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1 1 1	GF-WRD-4-DS	0.5 - 1	10/5/2024	8.94 (0.2)	25.6 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GF-WRD-6	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	CES	GC5-WR-01	0.5	6/26/2007	NA	NA	NA	821	0.08 JH	8	NA	0.4	1.2	NA	NA	NA	221
	CLS	GC5-WR-02	0.5	6/26/2007	NA	NA	NA	929	0.07 JH	8	NA	0.55	5.05	NA	NA	NA	250
Granite Creek #5		GC5-WRA-3	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GC5-WRA-4	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC5-WRA-4-DS	0.5 - 1	10/4/2024	26.4 (0.19)	70.4 (0.5)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC6-WR-01	0.5	6/24/2007	NA	NA	NA	497	1.21 H	4 J	NA	0.25 J	0.08 J	NA	NA	NA	59
	CES	GC6-WR-02	0.5	6/24/2007	NA	NA	NA	367	0.09 JH	4 J	NA	0.26 J	0.09 J	NA	NA	NA	62
Granite Creek #6		GC6-WR-03	0.5	6/24/2007	NA	NA	NA	25.3	NDH (0.05)	ND (1)	NA	0.17 J	0.08 J	NA	NA	NA	4 J
	TEI	GC6-WRA-1	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1.51	GC6-WRA-2	0.5 - 1	10/4/2024	150 (0.2)	360 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC7-WR-01	0.5	6/24/2007	NA	NA	NA	661	0.24 H	5 J	NA	0.35	20.4	NA	NA	NA	134
	CES	GC7-WR-02	0.5	6/24/2007	NA	NA	NA	593	0.24	5	NA	0.4	1.79	NA	NA	NA	84
Granite Creek 7		GC7-WR-03	0.5	6/24/2007	NA	NA	NA	608	0.42	0.4	NA	0.45	4.08	NA	NA	NA	83
Granite Creek /		GC7-WR-04	0.5	6/24/2007	NA	NA	NA	443	NDH (0.04)	4 J	NA	0.26	0.34	NA	NA	NA	61
	TEI	GC7-WRA-3	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC7-WRB-1	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Granite Creek Aq. St. 3	CES	GC3-WR-01	0.5	6/24/2007	NA	NA	NA	1070	0.29 H	4 J	NA	0.27 J	19.1	NA	NA	NA	377

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Metals						
			Depth	Sample		Lead, Total											
AOI	Company	Location	(ft bgs)	Date	Lead, IVBA	IVBA		Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
AOI		G for SAP	(it bgs)	Date					2153	244668		61175	61145			61218	
		ilings PRG															
		Rock/Soil PRG															
ODE			. F:II					1800	1.4	92		0.93	0.51			400	160
		untain Region Clear						-		_							
		C Plant Direct Toxic	•					220	34	38		0.52	560		0.05	60	160
ODE		Inverts Direct Toxi	city					450	0.05	280		4.1					120
		Eco RBC Bird						1300	0.013	20		0.71	2.6		4.5	4.7	46
		o RBC Mammal						1400	1.7	10		0.63	14		0.42	280	79
	ODEQ Exca	vation Worker RCB		T.				230000	2900	190000			49000				
		ML-SSS-38	0.5	7/9/2003	NA	NA	212 J	30.9	0.37	2.2 J	836	0.86	48	193 J	ND (0.46)	5.1 J	65
	EA	WP-SSS-15	0.5	7/9/2003	NA	NA	3690	757	0.14	4.8	2010	0.9	7.1	385 J	1.5	24.7	107
		WP-SUS-15	4	7/9/2003	NA	NA	4940	776	0.33	6	2730	0.99	6.4	478	1.8	30.3	130
		MMDGA-T-46	3.5	9/30/2009	NA	NA	NA	208	95	NA	NA	NA	54.9	NA	NA	NA	1500
		MMDGA-WR-18	3.5	9/29/2009	NA	NA	NA	51.1	0.42	NA	NA	NA	48.8	NA	NA	NA	152
		MMDGA-WR-19	3	9/29/2009	NA	NA	NA	277	0.17 J	NA	NA	NA	1.14	NA	NA	NA	63
	CES	MMDGA-WR-20	3	9/29/2009	NA	NA	NA	185	1.28	NA	NA	NA	343	NA	NA	NA	1140
		MMDGA-WR-21	1	9/29/2009	NA	NA	NA	784	0.36	NA	NA	NA	2.6	NA	NA	NA	132
Lwr Mon'tl		MMDGA-WR-24	0.5	9/29/2009	NA	NA	NA	342	2.99	NA	NA	NA	21.9	NA	NA	NA	78
		MMDGA-WR-25	0.5	9/29/2009	NA	NA	NA	207	0.53	NA	NA	NA	9.47	NA	NA	NA	69
		MMDGA-WR-26	0.5	9/29/2009	NA	NA	NA	713	0.84	NA	NA	NA	40	NA	NA	NA	2030
		LMM-WRA-3	0.5 - 1	10/3/2024	10.8 (0.2)	32 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRA-3-DS	0.5 - 1	10/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRA-4	0.5 - 1	10/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI		0.5 - 1	10/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRB-1	0.5 - 1	10/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		1141414155 2 50	0.5 - 1	10/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRB-3-DS	0.5 - 1	10/3/2024	NA	NA	NA COALO	NA	NA	NA 5.3	NA 1000	NA 0.24 i	NA	NA 1222	NA ND (0.26)	NA 50.5	NA
	EA	TA-SUS-25	1.5	7/14/2003	NA NA	NA	6310	444	0.048	5.3	4900	0.24 J	1.4	1330	ND (0.26)	58.5	66.9
Charidan	CEC	WP-SUS-23	3.5	7/14/2003	NA NA	NA	5200	782	0.36	5.2	3320	0.48	32.5	676	0.76 J	50.8	87.8
Sheridan	CES	SM-WR2-1 SH-WRB-2	0.5 0.5 - 1	6/21/2007 10/4/2024	NA NA	NA NA	NA NA	278 NA	0.15 J NA	5 J NA	NA NA	0.25 J NA	0.16 NA	NA NA	NA NA	NA NA	67 NA
	TEI	SH-WRB-2 SH-WRC-1		10/4/2024		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	+		0.5 - 1 0.4	7/12/2003	NA NA				NA 0.12		NA 2400			927			
		TA-SSS-30	0.4	7/12/2003	NA NA	NA NA	6290 4330	579 556	0.12 0.38	5.7 4.3	3490 2610	0.45 J 0.84	0.29 J 1.8	590	0.98 J 1.8	51.6 36.5	297 322
	EA	WP-SSS-27		7/12/2003	NA NA	NA NA	4330 1740			4.3		0.84			1.8	36.5 11.7	
	EA	WP-SSS-28 WP-SUS-26	0.8	7/12/2003	NA NA	NA NA	3220	890 660	0.21	3.9 J	1410 1980		1.2 2.2	38.5 J 271 J	2.3	34.5	183 356
Tillicum		WP-SUS-26 WP-SUS-27	4.5	7/12/2003	NA NA	NA NA	5880	603	0.1 0.029 J	5.2	3820	0.95	ND (0.24)	947	1.6	51.8	
Timicum	CES	TILL-WR-01	0	6/26/2007	NA NA	NA NA	NA	1020	0.029 J 0.46 H	4 J	3820 NA	0.95	3.34	NA	NA	NA	157 525
	CLS	TL-WRA-1-DS-2	0.5 - 1			218 (0.49)	NA NA	NA	NA	NA	NA NA	NA	3.34 NA	NA NA	NA NA	NA NA	NA
	TEI	TL-WRA-3	0.5 - 1	10/4/2024	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	'''	TL-WRB-4	0.5 - 1	10/4/2024		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		IL-VVKB-4	0.5 - 1	10/4/2024	AVI	NA	INA	INA	NA	INA	NA	INA	IVA	INA	INA	NA	INA

Table 1
Summary of Soil Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Metals						
			Depth	Sample		Lead, Total											
AOI	Company	Location	(ft bgs)	Date	Lead, IVBA	IVBA	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
	<u> </u>	G for SAP	(11.000)						2153	244668		61175	61145			61218	
		ilings PRG															
		Rock/Soil PRG															
ODEO		untain Region Clear	n Fill					1800	1.4	92		0.93	0.51			400	160
		C Plant Direct Toxic						220	34	38		0.52	560		0.05	60	160
		Inverts Direct Toxi	•					450	0.05	280		4.1					120
	•	Eco RBC Bird						1300	0.013	200		0.71	2.6		4.5	4.7	46
		o RBC Mammal						1400	1.7	10		0.63	14		0.42	280	79
0	-	vation Worker RCB						230000	2900	190000			49000				
		ML-SSS-12	0.7	7/9/2003	NA	NA	5730	730	56	7.3	4270	1.1	1.8	1080	2.5	66.2	211
		ML-SSS-16	0.5	7/10/2003	NA	NA	678	100	3.1	2.5 J	2550	1.6	156	370 J	1.1 J	15.6	432
		WP-SSS-13	1	7/9/2003	NA	NA	2270	115	0.5	2.6 J	2950	0.83	21.2	557	0.57 J	26.1	55
	EA	WP-SSS-14	0.7	7/10/2003	NA	NA	2450	691	0.51	4.7	1650	0.7	1.5	ND (23.6)	1.2	15	857
		WP-SSS-17	1	7/9/2003	NA	NA	3200	321	784	3.2 J	3480	0.75	319	3240	1.6	14.9	2410
		WP-SUS-14	3.5	7/10/2003	NA	NA	4100	511	0.61	4.6	2920	0.61	11.6	516	1.7	25.4	107
		MMDGA-T-13	1	9/29/2009	NA	NA	NA	381	8	NA	NA	NA	35	NA	NA	NA	674
		MMDGA-T-34	0.25	9/30/2009	NA	NA	NA	398	190	NA	NA	NA	85	NA	NA	NA	816
		MMDGA-T-34	2	9/30/2009	NA	NA	NA	400	770	NA	NA	NA	229	NA	NA	NA	3490
		MMDGA-T-35	1	9/30/2009	NA	NA	NA	281	270	NA	NA	NA	144	NA	NA	NA	1760
		MMDGA-T-37	0.25	9/30/2009	NA	NA	NA	781	101	NA	NA	NA	51.1	NA	NA	NA	764
	CES	MMDGA-T-40	2	9/30/2009	NA	NA	NA	565	254	NA	NA	NA	214	NA	NA	NA	3030
		MMDGA-T-41	2	9/30/2009	NA	NA	NA	575	222	NA	NA	NA	303	NA	NA	NA	4900
		MMDGA-T-9	1	9/29/2009	NA	NA	NA	246	12	NA	NA	NA	80.1	NA	NA	NA	294
Upr Mon'tl		MMDGA-WR-2	4	9/28/2009	NA	NA	NA	1200	0.88	NA	NA	NA	0.82	NA	NA	NA	116
		MMDGA-WR-28	0.5	9/29/2009	NA	NA	NA	197	0.15 J	NA	NA	NA	2.58	NA	NA	NA	52
		MMDGA-WR-3 MMDGA-WR-5	4	9/28/2009 9/28/2009	NA NA	NA NA	NA NA	865 313	1.09 0.4	NA NA	NA NA	NA NA	48.1 39.8	NA NA	NA NA	NA NA	248
	-		0.5 - 1	10/2/2024			NA NA	NA	9.23 (0.19)	NA NA	NA NA	NA NA	39.8 NA	NA NA	NA NA	NA NA	NA
		UMM-TLA-6 UMM-TLB-1	0.5 - 1	10/2/2024	69.2 (0.2) 241 (0.2)	1110 (0.49) 840 (0.49)	NA NA	NA NA	387 (11)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		UMM-TLB-4	0.5 - 1	10/2/2024	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		UMM-TLC-1	0.5 - 1	10/2/2024	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		UMM-TLC-2	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	UMM-WRA-1	0.5 - 1	10/2/2024	66 (0.2)	249 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-1-DS	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-3	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-1	0.5 - 1	10/2/2024	NA	NA	NA	NA	0.663 (0.098)	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-2	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-2-DS	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRA-2	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRA-3	0.5 - 1	10/2/2024		340 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Upr Upr Mon'tl	TEI		0.5 - 1	10/2/2024		340 (0.5)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
, .		UUMM-WRA-3-DS		10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
		UUMM-WRD-1	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
		UUMM-WRF-1	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1

Summary of Soil Notes Analytical Results

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis

Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
	P	RG for SAP				4895	82				24468	9113			3681	489424		
	Т	ailings PRG					110						-		-		-	
	Waste	Rock/Soil PRG					190						1		-		1	
	ODEQ Blue Mo	ountain Region Clear	Fill			1.3	14			950	2.6	0.69	1	190	1	120	1	21
	ODEQ Eco RE	C Plant Direct Toxic	ity			11	18			110	2.5	32	-		13	70	-	120
	ODEQ Eco RB	C Inverts Direct Toxio	city			78	6.8			330	40	140				80	-	1700
	ODE	Q Eco RBC Bird					15			630		0.29	-	23	76	14	-	11
	ODEQ I	co RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
	ODEQ Exc	avation Worker RCB					420				19000	9700				390000		800

Note:

- 1. All concentrations reported in mg/kg (ppm); detection limits in parentheses.
- 2. ODEQ does not provide a Eco Soil RBC for aluminum, but states that it is toxic if soil has a pH < 5.5.
- 3. Iron is a narrative criterion.
- 4. Underlined concentrations exceed the PRG for SAP.
- 5. Double underlined concentrations for results from Tailings exceed the Tailings PRG.
- 6. Double underlined concentrations for results from Waste Rock/Soil exceed the Waste Rock/Soil PRG.
- 7. Italicized concentrations exceed the ODEQ Blue Mountain Region Clean Fill.
- 8. Grey shaded concentrations exceed one or more of the ODEQ Eco RBC (i.e., plant, inverts, bird, or mammal).
- 9. Boldfaced concentrations exceed the ODEQ Excavation Worker RCB.
- CES Cascade Earth Scienes
- EA EA Engineering, Science, and Technology, Inc.
- Eco Ecological
- J Estimated Concentration
- H Storage and Preservation Times were Not Met
- Mon'tl Monumental
- ND Not Detected
- NA Not Analyzed
- ODEQ Oregon Department of Environmental Quality
- PRG Preliminary Remediation Goal
- RBC Risk-Based Concentration
- SAP Sampling and Analysis Plan
- St Station
- TEI Terraphase Engineering Inc.

Table 2
Summary of Sediment Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

									Me	tals					
			Sample								Chromium				
AOI	Company	Location	Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
	PRG fo	r SAP			4895	82		24468	9113			3681	489424		
	Tailing	s PRG				110									
ODEQ B	lue Mounta	in Region Clean	Fill		1.3	14	950	2.6	0.69		190		120		21
	ODEQ Eco	RBC FW			3	6			0.6		37		36		35
USEPA R4 Eco	SV FW Non-	Narcotic Mode	of Action	25000	2	9.8	20		1		43.4	50	31.6	20000	35.8
USEPA R4 Eco SV	FW Aquatic I	Non-Narcotic Mo	de of Action												
USEPA R4 Eco SV	FW Wildlife														
		ST-PSD-03	7/15/2003	4360	1.2 J	13.8	76.3	0.32 J	ND (0.053)	2050	45.6	6.4	2.5	40000	4.4
		ST-PSD-04 ST-PSD-05	7/15/2003 7/14/2003	6260 6670	1.5 J ND (0.39)	19.5 18.7	127 126	0.38 J 0.27 J	ND (0.053) ND (0.062)	1650 1820	5.2 7	6.3 5.7	3.1 2.4 J	11600 14500	4.9 6.4
		ST-PSD-05	7/14/2003	9210	ND (0.33)	18.6	170	0.27 J	ND (0.065)	2130	8.1	8.2	3	18800	4.9
		ST-PSD-07	7/12/2003	6980	ND (0.36)	21.9	127	0.3 J	ND (0.057)	2040	11.5	5.7	10.6	19100	5.3
		ST-PSD-08	7/12/2003	11700	ND (0.55)	25.9	217	0.47 J	ND (0.086)	2990	10.7	9.6	7.8	24600	6.7
		ST-PSD-09	7/11/2003	3990	ND (0.42)	9.6	52.3	0.11 J	0.069 J	1240	2.3	1.9 J	1.5 J	5650	2.2
		ST-PSD-10	7/10/2003	6680	0.74 J	22.5	109	0.29 J	0.12 J	1710	9	5.1 J	12.2	16100	8
		ST-PSD-53	7/19/2003	10200	2 J	<u>130</u>	139	0.24 J	0.96	2180	10.4	6.9	18.1	21600	38.2
	EA	ST-PSD-54	7/17/2003	8910	5.1 J	<u>303</u>	144	0.26 J	2.8	2740	10.9	6.5	28	18900	148
		ST-RSD-03 ST-RSD-04	7/15/2003 7/15/2003	3820 5940	ND (0.4) ND (0.41)	17.4 44.2	68.2 92.5	0.2 J 0.23 J	ND (0.062) 0.074 J	1430 2070	12.9 6.1	3.7 J 4.7 J	1.3 J 2.1 J	15400 12400	4.1 6.3
		ST-RSD-04	7/13/2003	6030	ND (0.41)	23	105	0.23 J 0.24 J	ND (0.063)	1950	9.7	4.7 J	2.13	15200	3.8
		ST-RSD-06	7/14/2003	4640	0.92 J	9.3	92.1	0.32 J	ND (0.059)	1900	24.9	6	2.4 J	29900	4.4
		ST-RSD-07	7/12/2003	9650	ND (0.42)	19.3	174	0.39 J	ND (0.066)	2330	10.1	8	3.5	22000	4.3
		ST-RSD-08	7/12/2003	8350	ND (0.4)	14.8	158	0.39 J	ND (0.063)	2310	15.3	8.2	7.7	25300	5.7
		ST-RSD-09	7/11/2003	6190	0.56 J	57.9	101	0.27 J	0.62	1820	10	5.2	7.7	16900	52.4
Granite Creek		ST-RSD-10	7/10/2003	6850	1 J	29	116	0.36 J	ND (0.068)	2300	24.3	7.9	8.9	33700	9.5
		ST-RSD-53	7/19/2003	9670	2.3 J	<u>126</u>	127	0.25 J	1.2	2230	9.9	6.2	18.6	19000	44.3
		ST-RSD-54 GC-ABS-01	7/17/2003 6/26/2007	7770 NA	5.1 <i>J</i> 1.2	<u>246</u> 27.9	126 NA	0.21 J 0.2 J	1.8 0.44	1750 NA	8.3 25	6.4 NA	30 4 J	18300 36000	121 12.5
		GC-ABS-01	6/26/2007	NA NA	1.2	<u>127</u>	NA NA	ND (0.2)	0.44	NA NA	12	NA NA	7	26600	45.3
		GC-ABS-03	6/26/2007	NA	0.7 J	25	NA	ND (0.2)	0.85	NA	42	NA NA	3 J	54600	15.1
	CES	GC-ABS-04	6/27/2007	NA	1.7	67.4	NA	0.3 J	1.49	NA	18	NA	10	29400	45.8
		GC-SS-01	6/25/2007	NA	ND (0.2)	7.5	NA	0.3 J	0.22 J	NA	9	NA	3 J	9320	1.89
		GC-SS-02	6/25/2007	NA	0.3 J	6.3	NA	0.6 J	0.12 J	NA	9	NA	2 J	13700	2.04
		GC-SS-03	6/25/2007	NA	0.3 J	36.5	NA	0.8 J	0.17 J	NA	10	NA	3 J	16600	2.63
		CS-SD-1	10/5/2024	NA	0.26 (0.13)	5.8 (1.3)	NA	NA	0.234 (0.053)	NA	7.81 (0.53)	NA	NA	NA	4.12 (0.13)
		CS-SD-2	10/3/2024	NA	0.038 J (0.054)		NA	NA NA	0.038 (0.022)	NA	2.49 (0.22)	NA	NA NA	NA	0.927 (0.054)
		CS-SD-3 CS-SD-4	10/3/2024 10/3/2024	NA NA	0.069 (0.063) 0.892 (0.058)	11.7 (0.63) 32.7 (0.58)	NA NA	NA NA	0.062 (0.025) 1.09 (0.023)	NA NA	4.9 (0.25) 9.05 (0.23)	NA NA	NA NA	NA NA	1.53 (0.063) 25.6 (0.058)
	TEI	CS-SD-4 CS-SD-5	10/3/2024	NA NA	0.892 (0.038)	14.1 (0.51)	NA	NA NA	0.169 (0.023)	NA	5.03 (0.23)	NA NA	NA NA	NA NA	2.79 (0.051)
		CS-SD-6	10/4/2024	NA	0.147 (0.045)	16.6 (0.45)	NA	NA NA	0.146 (0.018)	NA	4.76 (0.18)	NA	NA NA	NA	2.74 (0.045)
		CS-SD-7	10/4/2024	NA	0.355 (0.048)	24.2 (0.48)	NA	NA	0.538 (0.019)	NA	10.6 (0.19)	NA	NA	NA	12.1 (0.048)
		CS-SD-7 (DUP)	10/4/2024	NA	0.334 (0.054)	24.3 (0.54)	NA	NA	0.446 (0.022)	NA	9.1 (0.22)	NA	NA	NA	12.8 (0.054)
		CS-SD-8	10/5/2024	NA	0.406 (0.058)	35.2 (0.58)	NA	NA	0.316 (0.023)	NA	9.13 (0.23)	NA	NA	NA	10.7 (0.058)

Table 2
Summary of Sediment Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

				Metis										
			Sample											
AOI	Company	Location	Date	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
PRG for SAP						2153	244668		61175	61145			61218	
Tailings PRG														
ODEQ Blue Mountain Region Clean Fill					1800	1.4	92		0.93	0.51			400	160
ODEQ Eco RBC FW					1100	0.2	18			4.5				123
USEPA R4 Eco SV FW Non-Narcotic Mode of Action					460		22.7		0.72	1				121
USEPA R4 Eco SV FW Aquatic Non-Narcotic Mode of Action						0.18								
USEPA R4 Eco SV FW Wildlife Non-Narcotic Mode of Action						0.17			0.8					
	EA	ST-PSD-03 ST-PSD-04	7/15/2003 7/15/2003	1520 3330	162 159	ND (0.019) ND (0.02)	5.5 4.3	950 2020	0.88 0.34 J	0.22 J 0.58 J	ND (41.6) ND (41.9)	1.8 ND (0.25)	154 28.5	23 43.7
		ST-PSD-04	7/13/2003	3530	187	ND (0.02)	4.5 3.2 J	2190	0.5 J	0.58 J 0.64 J	ND (41.9) ND (48.9)	ND (0.23) ND (0.29)	36.6	41.9
		ST-PSD-06	7/14/2003	5550	343	0.027 J	4.4	3000	0.57	0.54 J	ND (50.9)	0.5 J	45.3	63.3
		ST-PSD-07	7/12/2003	3080	202	0.087	3.6 J	2100	0.4 J	0.83 J	ND (44.8)	0.3 J	57.5	62.6
Granite Creek		ST-PSD-08	7/12/2003	6100	342	0.12	5.7 J	3870	0.73	0.63 J	ND (68)	0.44 J	61.9	94.2
		ST-PSD-09	7/11/2003	1370	100	ND (0.019)	1.1 J	762	0.29 J	ND (0.1)	230 J	ND (0.31)	13	20.7
		ST-PSD-10	7/10/2003	2840	177	0.07	3.2 J	2000	0.63	0.49 J	79.7 J	ND (0.33)	46	50.2
		ST-PSD-53	7/19/2003	4790	364	0.11	6.2	2840	0.44 J	1.8	ND (45.2)	0.69 J	52.1	150
		ST-PSD-54	7/17/2003	3460	611	0.32	7.6	2400	0.8	7.9	70.2 J	ND (0.67)	43	186
		ST-RSD-03	7/15/2003	1600	171	ND (0.019)	2.2 J	1070	0.43 J	ND (0.094)	96.8 J	ND (0.29)	50.2	21.8
		ST-RSD-04 ST-RSD-05	7/15/2003 7/14/2003	3390 2600	203 169	ND (0.021) ND (0.023)	2.7 J 3.1 J	1320 1630	0.35 J 0.41 J	0.86 J ND (0.094)	120 J 76 J	ND (0.31) ND (0.29)	29.5 45.9	34 38.7
		ST-RSD-05	7/14/2003	2220	156	0.037 J	4.3	1420	0.413	0.24 J	ND (46.8)	1.1	113	35.6
		ST-RSD-07	7/12/2003	5160	277	0.05	4.4	3500	0.37 J	1.9	ND (52.2)	0.59 J	58.5	57.7
		ST-RSD-08	7/12/2003	5210	283	0.058	4.8	3330	0.34 J	0.73 J	ND (49.8)	0.69 J	76.2	58.1
		ST-RSD-09	7/11/2003	3130	177	0.031 J	3.2 J	1920	0.4 J	1	ND (44.1)	0.51 J	51.2	75.1
		ST-RSD-10	7/10/2003	3490	193	0.034 J	5.2	2410	0.58	0.92 J	ND (53.2)	1.4	117	64.9
		ST-RSD-53	7/19/2003	4030	360	0.12	6.5	2550	0.42 J	4.9	45.9	0.73 J	45.9	148
		ST-RSD-54	7/17/2003	3380	560	0.12	7.3	2340	0.63	6.3	79.5 J	0.76 J	38.3	151
		GC-ABS-01	6/26/2007	NA	243	0.23	3 J	NA	0.28 J	1.15	NA	NA	NA	77
		GC-ABS-02	6/26/2007	NA	376	0.12 J	4 J	NA NA	0.28 J	3.27 0.68	NA	NA NA	NA	99
	CES	GC-ABS-03 GC-ABS-04	6/26/2007 6/27/2007	NA NA	320 414	0.09 J ND (0.05)	3 J 5	NA NA	0.38 0.64	2.4	NA NA	NA NA	NA NA	84 120
		GC-SS-01	6/25/2007	NA NA	165	0.07 J		NA NA	0.31	0.12	NA NA	NA NA	NA NA	25
		GC-SS-02	6/25/2007	NA NA	213	ND (0.04)	ND (1)	NA NA	0.09 J	0.05 J	NA NA	NA NA	NA NA	36
		GC-SS-03	6/25/2007	NA	298	0.1 JH	ND (1)	NA	0.15 J	0.13	NA	NA	NA	36
	TEI	CS-SD-1	10/5/2024	NA	NA	0.031 J (0.053)		NA	NA	0.282 (0.053)	NA	NA	NA	45 (1.3)
		CS-SD-2	10/3/2024	NA	NA	ND (0.024)	NA	NA	NA	0.043 (0.022)	NA	NA	NA	16.9 (0.54)
		CS-SD-3	10/3/2024	NA	NA	0.923 (0.027)	NA	NA	NA	0.112 (0.025)	NA	NA	NA	29.7 (0.63)
		CS-SD-4	10/3/2024	NA	NA	0.011 J (0.029)		NA	NA	0.961 (0.023)	NA	NA	NA	47.2 (0.58)
		CS-SD-5	10/4/2024	NA	NA	0.056 (0.025)	NA	NA	NA NA	0.582 (0.02)	NA	NA	NA	32.7 (0.51)
		CS-SD-6	10/4/2024	NA NA	NA NA	0.033 (0.021)	NA NA	NA NA	NA NA	0.2 (0.018)	NA NA	NA NA	NA NA	37.1 (0.45)
		CS-SD-7 (DUP)	10/4/2024 10/4/2024	NA NA	NA NA	0.097 (0.023) 0.099 (0.024)	NA NA	NA NA	NA NA	1.1 (0.019) 1.62 (0.022)	NA NA	NA NA	NA NA	168 (0.48) 102 (0.54)
		CS-SD-7 (DOP)	10/4/2024	NA NA	NA NA	0.099 (0.024)	NA NA	NA NA	NA NA	1.02 (0.022)	NA NA	NA NA	NA NA	102 (0.54)
	ı	C3-3D-0	10/3/2024	INA	INA	0.030 (0.020)	INA	INA	IVA	1.20 (0.023)	IVA	INA	INA	103 (0.36)

Summary of Sediment Notes Analytical Results

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis

Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

					Metals										
AOI	Company	Location	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium (total)	Cobalt	Copper	Iron	Lead
PRG for SAP			4895	82		24468	9113			3681	489424				
	Tailings PRG					110									
ODEQ E	Blue Mountai	n Region Clean	Fill		1.3	14	950	2.6	0.69		190		120		21
	ODEQ Eco	RBC FW			3	6			0.6		37		36		35
USEPA R4 Eco	USEPA R4 Eco SV FW Non-Narcotic Mode of Action		of Action	25000	2	9.8	20		1		43.4	50	31.6	20000	35.8
USEPA R4 Eco S	USEPA R4 Eco SV FW Aquatic Non-Narcotic Mode of Action														
USEPA R4 Eco S	V FW Wildlife N	Non-Narcotic Mo	de of Action												

Note:

- 1. All concentrations reported in mg/kg (ppm); detection limits in parentheses.
- 2. Underlined concentrations exceed the PRG for SAP.
- 3. Double underlined concentrations exceed the Tailings PRG.
- 4. Boldfaced concentrations exceed the ODEQ Blue Mountain Region Clean Fill.
- 5. Italicized concentrations exceed the ODEQ Eco RBC FW.
- 6. Grey shaded concentrations exceed the USEPA R4 Eco SV FW Non-Narcotic Mode of Action.
- 7. Blue shaded concentrations exceed the USEPA R4 Eco SV FW Aquatic Non-Narcotic Mode of Action.
- 8. Red colored concentrations exceed the USEPA R4 Eco SV FW Wildlife Non-Narcotic Mode of Action.
- CES = Cascade Earth Scienes
- EA = EA Engineering, Science, and Technology, Inc.
- Eco = Ecological
- FW = Freshwater
- ND = Not Detected
- NA = Not Analyzed
 J = Estimated Concentration
- ODEQ = Oregon Department of Environmental Quality
- PRG = Preliminary Remediation Goal
- RBC = Risk-Based Concentration
- SAP = Sampling and Analysis Plan
- SV = Screening Value
- TEI = Terraphase Engineering Inc.

USEPA R4 = United States Environmental Protection Agency Region 4

Table 3
Summary of Surface Water Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

				Physical Properties					Metals				
			Sample										
AOI	Company	Location	Date	Hardness (total)	Aluminum	Antimony	Arsenic	Barium	Cadmium	Calcium	Chromium (total)	Copper	Iron
Eco RBC	FW Aquation	Chronic Exposure			0.32	0.19	0.15	0.22	0.000094	120	11	0.0014	1
Eco RB	C FW Aquati	c Acute Exposure			0.69	0.9	0.34	2	0.00049		16	0.0023	
Eco RBC	FW Wildlife	Chronic Exposure											
Eco RB0	C FW Wildlif	e Acute Exposure											
Can Martin	CES	CM-AS-01	6/21/2007	NA	NA	ND (0.0004)	ND (0.0005)	NA	ND (0.0001)	9.8	ND (0.01)	ND (0.0005)	0.65
Cap Martin	CES	CM-AS-02	6/21/2007	NA	NA	ND (0.0004)	0.0013	NA	0.0001 J	9.9	ND (0.01)	ND (0.0005)	2.03
		ST-SFW-03	7/15/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0349 J	ND (0.0006)	5.56	ND (0.0014)	ND (0.0024)	ND (0.0333)
		ST-SFW-04	7/15/2003	NA	0.126 J	ND (0.0047)	ND (0.0048)	0.0415 J	ND (0.0006)	7.06	ND (0.0014)	ND (0.0024)	0.0941 J
		ST-SFW-05	7/13/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0385 J	ND (0.0006)	7.13	ND (0.0014)	ND (0.0024)	ND (0.0333)
		ST-SFW-06	7/13/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0456 J	ND (0.0006)	8.45	ND (0.0014)	ND (0.0024)	ND (0.0333)
	EA	ST-SFW-07	7/12/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0455 J	ND (0.0012)	8.7	ND (0.0019)	ND (0.0033)	ND (0.0667)
	LA	ST-SFW-08	7/12/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0485 J	ND (0.0006)	9.01	ND (0.0014)	ND (0.0024)	ND (0.0333)
		ST-SFW-09	7/11/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0509 J	ND (0.0012)	9.69	ND (0.0019)	ND (0.0033)	ND (0.0667)
		ST-SFW-10	7/10/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0529 J	ND (0.0012)	9.91	ND (0.0019)	ND (0.0033)	ND (0.0667)
		ST-SFW-53	7/17/2003	NA	0.0793 J	ND (0.0047)	0.0131	0.055 J	ND (0.0006)	15.3	ND (0.0014)	ND (0.0024)	ND (0.0168)
		ST-SFW-54	7/17/2003	NA	0.0264 J	ND (0.0038)	0.0096 J	0.051 J	ND (0.0003)	15.9	0.00074 J	ND (0.0014)	0.0323 J
Granite Creek		GC-SW-01	6/25/2007	NA	NA	ND (0.0004)	0.0006 J	NA	ND (0.0001)	4.5	ND (0.01)	ND (0.0005)	0.03 J
Granite Creek	CES	GC-SW-02	6/25/2007	NA	NA	ND (0.0004)	ND (0.0005)	NA	ND (0.0001)	4.5	ND (0.01)	ND (0.0005)	0.04 J
		GC-SW-03	6/5/2007	NA	NA	ND (0.0004)	0.0006 J	NA	ND (0.0001)	4.7	ND (0.01)	ND (0.0005)	0.1
		CS-SW-1	10/5/2024	18.1 (0.09)	NA	0.000036 J (0.00005)	0.00036 J (0.0005)	NA	ND (0.00002)	5.59 (0.02)	0.00011 J (0.0002)	NA	NA
		CS-SW-2	10/3/2024	19.7 (0.09)	NA	0.000025 J (0.00005)	0.00067 (0.0005)	NA	ND (0.00002)	6.07 (0.02)	0.00011 J (0.0002)	NA	NA
		CS-SW-2 (DUP)	10/3/2024	19.3 (0.09)	NA	0.000031 J (0.00005)	0.00061 (0.0005)	NA	ND (0.00002)	5.92 (0.02)	0.00011 J (0.0002)	NA	NA
		CS-SW-3	10/3/2024	21 (0.09)	NA	0.000038 J (0.00005)	0.00087 (0.0005)	NA	ND (0.00002)	6.49 (0.02)	0.00012 J (0.0002)	NA	NA
	TEI	CS-SW-4	10/3/2024	27.5 (0.09)	NA	0.000036 J (0.00005)	0.00092 (0.0005)	NA	ND (0.00002)	8.41 (0.02)	0.00014 J (0.0002)	NA	NA
		CS-SW-5	10/4/2024	31.8 (0.09)	NA	0.000098 (0.00005)	0.00178 (0.0005)	NA	0.00001 J (0.00002)	9.55 (0.02)	0.00011 J (0.0002)	NA	NA
		CS-SW-6	10/4/2024	32.3 (0.09)	NA	0.000076 (0.00005)	0.00204 (0.0005)	NA	ND (0.00002)	9.71 (0.02)	0.00011 J (0.0002)	NA	NA
		CS-SW-7	10/4/2024	36.3 (0.09)	NA	0.000104 (0.00005)	0.00199 (0.0005)	NA	0.000019 J (0.00002)	10.9 (0.02)	0.00009 J (0.0002)	NA	NA
		CS-SW-8	10/5/2024	36.7 (0.09)	NA	0.000108 (0.00005)	0.00221 (0.0005)	NA	0.00002 J (0.00002)	10.9 (0.02)	0.00011 J (0.0002)	NA	NA
Granite Creek #5	CES	GC5-AS-01	6/24/2007	NA	NA	0.0009 J	0.0046	NA	<u>0.0007</u>	22.7	ND (0.01)	<u>0.0038</u>	1.74
Golden Fraction	CES	GF-AS-01	6/25/2007	NA	NA	0.0007 J	0.0119	NA	ND (0.0001)	28.2	ND (0.01)	0.0007 J	1.87
	EA	SP-SFW-19	7/19/2003	NA	ND (0.0631)	ND (0.005)	0.0214	0.0995 J	ND (0.0012)	22.6	ND (0.0019)	ND (0.0033)	ND (0.0667)
Lwr Mon'tl		MMDGA-AS-01	9/28/2009	NA	NA	NA	0.0218	NA	NA	NA	NA	NA	0.13
LWI WIOII (I	CES	MMDGA-SP-02	9/28/2009	NA	NA	NA	0.0199	NA	NA	NA	NA	NA	0.06
		MMDGA-SW-02		NA	NA	NA	0.0242	NA	NA	NA	NA	NA	ND (0.02)
	EA	SP-SFW-18	7/9/2003	NA	ND (0.0631)	ND (0.005)	0.0818	0.0677 J	ND (0.0012)	17.4	ND (0.0019)	ND (0.0033)	ND (0.0667)
	EA	SP-SFW-51	7/10/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0756 J	ND (0.0012)	17.8	ND (0.0019)	ND (0.0033)	ND (0.0667)
Upr Mon'tl	CES	MMDGA-AS-02	9/28/2009	NA	NA	NA	0.0272	NA	NA	NA	NA	NA	0.33
	CES	MMDGA-SP-01	9/28/2009	NA	NA	NA	0.105	NA	NA	NA	NA	NA	5.61
	CES	MMDGA-SW-01	9/28/2009	NA	NA	NA	0.051	NA	NA	NA	NA	NA	4.22

Table 3
Summary of Surface Water Analytical Results
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

								Metals				
AOI	Company	Location	Sample Date	Lead	Magnesium	Manganese	Mercury	Potassium	Selenium	Silver	Sodium	Zinc
Eco RBC	FW Aquatio	Chronic Exposure)	0.00054	82	0.093	0.000012	53	0.0046	0.0001	680	0.036
Eco RB	C FW Aquati	c Acute Exposure		0.014		1.7	0.0014		0.02	0.0003		0.036
Eco RBC	FW Wildlife	Chronic Exposure	2				0.0000013					
Eco RB0	C FW Wildlif	e Acute Exposure					0.000012					
		CM-AS-01	6/21/2007	0.0001 J	2	0.021 J	0.00000095	NA	ND (0.0001)	ND (0.00005)	NA	1.31
Cap Martin	CES	CM-AS-02	6/21/2007	0.0001 J	2.1	0.026 J	0.00000574	NA	ND (0.0001)	ND (0.00005)	NA	ND (0.01)
		ST-SFW-03	7/15/2003	ND (0.0013)	0.998 J	ND (0.0007)	ND (0.0001)	1.21 J	ND (0.0034)	ND (0.0022)	2.81 J	0.002 J
		ST-SFW-04	7/15/2003	ND (0.0013)	1.32 J	0.0057 J	ND (0.0001)	1.75 J	ND (0.0034)	ND (0.0022)	3.16 J	0.0026 J
		ST-SFW-05	7/13/2003	ND (0.0013)	1.33 J	0.00088 J	ND (0.0001)	2.34 J	ND (0.0034)	ND (0.0022)	3.26 J	0.0025 J
		ST-SFW-06	7/13/2003	ND (0.0013)	1.72 J	0.00072 J	ND (0.0001)	1.99 J	ND (0.0034)	ND (0.0022)	3.22 J	0.0023 J
	F.A.	ST-SFW-07	7/12/2003	0.0017 J	1.76 J	ND (0.0019)	ND (0.0001)	1.59 J	ND (0.0017)	ND (0.0029)	3.16 J	0.0029 J
	EA	ST-SFW-08	7/12/2003	ND (0.0013)	1.82 J	0.0011 J	ND (0.0001)	2.67 J	ND (0.0034)	ND (0.0022)	3.42 J	0.003 J
		ST-SFW-09	7/11/2003	ND (0.0015)	2.01 J	ND (0.0019)	ND (0.0001)	1.62 J	ND (0.0017)	ND (0.0029)	3.24 J	0.0033 J
		ST-SFW-10	7/10/2003	ND (0.0015)	2.07 J	ND (0.0019)	ND (0.0001)	1.63 J	ND (0.0017)	ND (0.0029)	3.14 J	0.0035 J
		ST-SFW-53	7/17/2003	ND (0.0013)	3.54 J	0.0103 J	0.0002 J	1.87 J	ND (0.0017)	ND (0.0022)	3.38 J	0.0031 J
		ST-SFW-54	7/17/2003	ND (0.0013)	4.04 J	0.0067 J	0.0001 J	2.49 J	ND (0.0017)	ND (0.0009)	3.65 J	ND (0.0057)
Constitution Constitu		GC-SW-01	6/25/2007	0.0001 J	0.7 J	ND (0.005)	ND (0.000001)	NA	ND (0.0001)	ND (0.00005)	NA	ND (0.01)
Granite Creek	CES	GC-SW-02	6/25/2007	ND (0.0001)	0.8 J	ND (0.005)	0.0000048	NA	ND (0.0001)	ND (0.00005)	NA	0.01 J
		GC-SW-03	6/5/2007	0.0001 J	0.9 J	ND (0.005)	0.0000048	NA	ND (0.0001)	ND (0.00005)	NA	0.01 J
		CS-SW-1	10/5/2024	0.000013 J (0.00002)	0.996 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)
		CS-SW-2	10/3/2024	0.000012 J (0.00002)	1.11 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)
		CS-SW-2 (DUP)	10/3/2024	0.000007 J (0.00002)	1.09 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)
		CS-SW-3	10/3/2024	0.000012 J (0.00002)	1.17 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)
	TEI	CS-SW-4	10/3/2024	ND (0.00002)	1.59 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)
		CS-SW-5	10/4/2024	0.000018 J (0.00002)	1.93 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0018 J (0.002)
		CS-SW-6	10/4/2024	0.000013 J (0.00002)	1.96 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0007 J (0.002)
		CS-SW-7	10/4/2024	0.000022 (0.00002)	2.2 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0008 J (0.002)
		CS-SW-8	10/5/2024	0.000084 (0.00002)	2.31 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0008 J (0.002)
Granite Creek #5	CES	GC5-AS-01	6/24/2007	0.009	4.9	0.01 J	0.000141	NA	0.0005 J	0.00009 J	NA	0.02 J
Golden Fraction	CES	GF-AS-01	6/25/2007	0.0002 J	6.7	0.374	0.0000194	NA	ND (0.0001)	ND (0.00005)	NA	ND (0.01)
	EA	SP-SFW-19	7/19/2003	0.0023 J	7.15	0.0067 J	ND (0.0001)	2.72 J	0.0026 J	ND (0.0029)	3.31 J	0.0156 J
Lwr Mon'tl		MMDGA-AS-01	9/28/2009	ND (0.0001)	NA	NA	NA	NA	NA	NA	NA	0.004 J
LWI WIOTI LI	CES	MMDGA-SP-02	9/28/2009	ND (0.0001)	NA	NA	NA	NA	NA	NA	NA	0.004 J
		MMDGA-SW-02	9/28/2009	0.0003 J	NA	NA	NA	NA	NA	NA	NA	0.009 J
	EA	SP-SFW-18	7/9/2003	ND (0.0015)	4.66 J	0.0029 J	ND (0.000001)	2.44 J	ND (0.0017)	ND (0.0029)	2.94 J	0.0276
	EA	SP-SFW-51	7/10/2003	0.0021 J	4.53 J	0.0554	ND (0.000001)	1.61 J	ND (0.0017)	ND (0.0029)	2.63 J	0.005 J
Upr Mon'tl	CES	MMDGA-AS-02	9/28/2009	0.0004 J	NA	NA	NA	NA	NA	NA	NA	0.014
	CES	MMDGA-SP-01	9/28/2009	<u>0.0294</u>	NA	NA	NA	NA	NA	NA	NA	<u>0.12</u>
	CES	MMDGA-SW-01	9/28/2009	0.0118	NA	NA	NA	NA	NA	NA	NA	0.028

Summary of Surface Water Analytical Results

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

				Physical Properties		Metals							
AOI	Company	Location	Sample Date	Hardness (total)	Aluminum	Antimony	Arsenic	Barium	Cadmium	Calcium	Chromium (total)	Copper	Iron
		Chronic Exposure	1		0.32	0.19	0.15	0.22	0.000094	120	11	0.0014	1
Eco F	RBC FW Aquati	c Acute Exposure			0.69	0.9	0.34	2	0.00049		16	0.0023	
Eco RI	BC FW Wildlife	Chronic Exposure)										
Eco F	RBC FW Wildlif	e Acute Exposure											

Note:

- 1. All concentrations reported in mg/L; detection limits in parentheses.
- 2. Only compounds with at least one detection are shown.
- 3. The numbers presented for Chromium (total) are the criteria established by ODEQ for Chromium VI.
- 4. Grey-shaded concentrations exceed the Eco RBC FW Aquatic Chronic Exposure.
- 5. Underlined concentrations exceed the Eco RBC FW Aquatic Acute Exposure.
- 6. Boldfaced concentrations exceed the Eco RBC FW Wildlife Chronic Exposure.
- 7. Italicized concentrations exceed the Eco RBC FW Wildlife Acute Exposure.

CES = Cascade Earth Scienes

EA = EA Engineering, Science, and Technology, Inc.

Eco = Ecological

FW = Freshwater

ND = Not Detected

NA = Not Analyzed

J = Estimated Concentration Mon'tl = Monumental

ODEQ =Oregon Department of Environmental Quality

RBC = Risk-Based Concentration

TEI = Terraphase Engineering Inc.

Table 4 Chemical-Specific Potential Applicable or Relevant and Appropriate Requirements

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines
Wallowa Whitman National Forest, Oregon

Standard, Requirement Criteria, or Limitation	Citation	Description	Applicable/Relevant and Appropriate?
FEDERAL			
Safe Drinking Water Act	42 USC § 300		
National Primary Drinking Water Regulations	40 CFR 141	Establishes health-based standards (primary maximum contaminant levels) for public water systems.	Not an ARAR; surface water and groundwater are not used as drinking water in the area surrounding the Site.
National Secondary Drinking Water Regulations	40 CFR 143, Subpart A	Establishes aesthetic standards (secondary maximum contaminant levels) for public water systems.	Not an ARAR; these are not enforceable standards and are outside scope of removal action.
Clean Water Act	33 USC §§ 1251-1387		
National Ambient Water Quality Criteria	40 CFR 131	Establishes water quality standards based on toxicity to aquatic organisms and human health.	Not an ARAR; the State of Oregon has been delegated this program (see State of Oregon ARARs).
Clean Air Act	42 USC § 7409		
National Primary and Secondary Ambient Air Quality Standards	40 CFR 50	Establishes air quality levels that protect public health.	Not an ARAR; only "major" sources are subject to requirements related to National Ambient Air Quality Standards, defer to State (see State of Oregon ARARs).
Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites		RSLs are tools for evaluating and cleaning up contaminated sites. They are risk-based concentrations that are intended to assist risk assessors and others in initial screening-level evaluations of environmental measurements. The RSLs contained in the 2024 Table are generic; they are calculated without site specific information. However, they may be re-calculated using site specific data. RSLs should be viewed as Agency guidelines, not legally enforceable standards. They are used for site "screening" and as initial cleanup goals, if applicable.	Potentially Relevant and Appropriate Requirement
Resource Conservation and Recovery Act	42 USC § 6905		
Lists of Hazardous Wastes	40 (FR 761 Supports (and I)	Characterizes and defines solid wastes which are subject to regulation as hazardous wastes under 40 CFR Parts 262-265 and Parts 124, 270, and 271.	Not an ARAR; mine waste is not a listed hazardous waste, Bevill exempt. Even if Toxicity Characteristic Leaching Procedure testing confirmed a characteristic waste (Subpart C), it is still exempt. Parts of the RCRA regulations may be potentially relevant and appropriate, however, and are discussed under action-specific requirements.
STATE OF OREGON			
Hazardous Substance Remedial Action Rules	OAR 340-177-0040	Establishes ODEQ guidelines and requirements for assessing human and ecological risk assessments from contamination according to ODEQ risk guidelines and levels. Also specifies the use of risk-based cleanup concentrations and the use of background concentrations.	Potentially Applicable Requirement
Hazardous Substance Occupational Exposure	OAR 437 Division 2 Subdivision 7	Establishes Oregon-Occupational Safety and Health Administration Permissible Exposure Limits. Oregon-Occupational Safety and Health Administration exposure limits mirror the federal chemical specific limits (refer to National Institute for Occupational Safety and Health Pocket Guide to Chemical Hazards for details on individual chemicals).	Potentially Applicable Requirement
Numeric Soil Cleanup Levels for Motor Fuel and Heating Oil	OAR 340-122-305 through 360	Establishes cleanup standards for contamination of soil by motor fuel and heating oil.	To Be Considered
Oregon Soil Cleanup Rules for Simple Sites		Establishes ODEQ rules for streamlined cleanup processes and cleanup standards at simple sites.	To Be Considered
Oregon Water Pollution Control Statutes		Address effluent standards, permit requirements for discharges to US waters and minimum Federal water quality criteria. Applicable to the protection of surface water during removal activities.	Potentially Relevant and Appropriate Requirement
Groundwater Quality Protection Program	OAR Chapter 340 Division 40	Establishes the mandatory minimum groundwater quality protection requirements for federal and state agencies, cities, industries, and citizens.	Potentially Relevant and Appropriate Requirement
State of Oregon is authorized by the USEPA to implement the Clean Water Act in Oregon	ORS 468B.050 OAR Chapter 340 Division 41, Table 20	Establishes acceptable contaminant levels for ingestion of aquatic organisms and for intake by aquatic organisms in surface water.	Potentially Applicable Requirement
Oregon Air Pollution Laws	ORS 468A.005- ORS 468A.085	Provides a state program with laws governing air pollution control, abatement, and prevention.	Potentially Relevant and Appropriate Requirement, during Removal Action.

Chemical-Specific Potential Applicable or Relevant and Appropriate Requirements

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis Upper Granite Creek Watershed Mines

Wallowa Whitman National Forest, Oregon

Standard, Requirement Criteria, or Limitation	Citation	Description	Applicable/Relevant and Appropriate?
STATE OF OREGON (continued)			
Ambient Air Quality Standards and PSD Increments	·	Establish concentrations, exposure time, and frequency of occurrence of an air contaminant in the ambient air that must not be exceeded.	Potentially Relevant and Appropriate Requirement, during Removal Action.
Asbestos Removal		Establishes ODEQ requirements for licensing and certification for asbestos workers. All workers who handle asbestos-containing materials must meet certain training and certification requirements.	Potentially Applicable Requirement

Note:

ARAR = Applicable/Relevant and Appropriate Requirement

CFR = The Code of Federal Regulations

OAR = Oregon Administrative Rules

ODEQ = Oregon Department of Environmental Quality

ORS = Oregon Revised Statutes

RSL = Regional Screening Level

USC = United States Code

USEPA = United States Environmental Protection Agency

Table 5 Location-Specific Potential Applicable or Relevant and Appropriate Requirements Non Time Critical Removal Action Engineering Evaluation (Cost Applysis

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines, Wallowa - Whitman National Forest, Oregon

Standard, Requirement Criteria, or Limitation	Citation	Description	Applicable/Relevant and Appropriate?
FEDERAL			
Resource Conservation and Recovery Act	42 USC § 6905		
Hazardous and Solid	40 CFR 264.18	Location standards and restrictions for hazardous waste treatment, storage, and disposal facilities.	Potentially Relevant and Appropriate Requirement
Waste Regulations	40 CFR § 257.3-1 through 257.3-4	Location standards and restrictions for municipal solid waste facilities.	Potentially Relevant and Appropriate Requirement
National Historic Preservation Act	16 USC § 470; 36 CFR 800; 40 CFR 6.301(b)	Requires Federal Agencies to take into account the effect of any Federally assisted undertaking or licensing on any property with historic, architectural, archeological, or cultural value that is included in or eligible for inclusion in the National Register of Historic Places.	Potentially Applicable Requirement
Archeological and Historic Preservation Act	16 USC § 469; 40 CFR 6.301(c)	Establishes procedures to provide for preservation of significant scientific, prehistoric, historic, and archeological data that might be destroyed through alteration of terrain as a result of a Federal construction project or a Federally licensed activity or program.	Potentially Relevant and Appropriate Requirement
The Archaeological Resources Protection Act of 1979	43 CFR 7	Regulates requirements for authorized removal of archaeological resources from public or tribal lands.	Potentially Relevant and Appropriate Requirement
Executive Order 11593	16 USC § 469; 40 CFR § 6.301(c)	Provides for the inventory and nomination of historical and archeological sites.	Potentially Relevant and Appropriate Requirement
Federal Land Policy and Management Act of 1976	43 USC 1701	Provides for multiple use and inventory, protection, and planning for cultural resources on public lands.	Potentially Relevant and Appropriate Requirement
Native American Graves Protection and Repatriation Act	25 USC 3001-3013; 43 CFR 10	Regulations that pertain to the identification, protection, and appropriate disposition of human remains, funerary objects, sacred objects, or objects of cultural patrimony.	Potentially Relevant and Appropriate Requirement
Federal Land Policy and Management Act of 1976	43 USC 1701	Provides for multiple use and inventory, protection, and planning for cultural resources on public lands.	Potentially Relevant and Appropriate Requirement
Protection of Wetlands Executive Order No. 11990	40 CFR Part 6, Appendix A; 40 CFR 6.302(a)	Avoid adverse impacts associated with the destruction or loss of wetlands and avoid support of new construction in wetlands if a practicable alternative exists.	Potentially Relevant and Appropriate Requirement
Dredge and Fill Regulations	33 USC § 1344, 33 CFR 323.1 et. seq.	Prohibits discharge of dredged or fill material into waters of the United States without a permit	Potentially Relevant and Appropriate Requirement
Fish and Wildlife Coordination Act	16 USC Chapter 49, §§ 2901-2912; 40 CFR 6.302(g)	Requires consultation when Federal department or agency proposes or authorizes any modification of any stream or other water body to assure adequate protection of fish and wildlife resources.	Potentially Relevant and Appropriate Requirement
Floodplain Management Executive Order No. 11988	40 CFR Part 6, Appendix A; 40 CFR 6.302(b)	Requires Federal agencies to evaluate the potential effects of actions they may take in a floodplain to avoid the adverse impacts associated with direct and indirect development of a floodplain to the extent possible.	Potentially Applicable Requirement
Endangered Species Act	16 USC §§ 1531-1543; 40 CFR 6.302 (h); 50 CFR Part 402	Activities may not jeopardize the continued existence of any threatened or endangered species or destroy or adversely modify a critical habitat.	Potentially Applicable Requirement
Migratory Bird Treaty Act	16 USC §§ 703 et seq.	Establishes federal responsibility for the protection of the international migratory bird resource and requires continued consultation with the USFWS during remedial design and remedial construction to ensure that the cleanup of the site does not unnecessarily impact migratory birds.	Potentially Applicable Requirement

Table 5 Location-Specific Potential Applicable or Relevant and Appropriate Requirements Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis

Upper Granite Creek Watershed Mines, Wallowa-Whitman National Forest, Oregon

Standard, Requirement Criteria, or Limitation	Citation	Description	Applicable/Relevant and Appropriate?		
FEDERAL (continued)					
Bald Eagle Protection Act		Requires continued consultation with the USFWS during remedial design and remedial construction to ensure that any cleanup of the site does not unnecessarily adversely affect the bald or golden eagle.	Potentially Applicable Requirement		
STATE OF OREGON					
Plants: Wildflowers and Endangered, Threatened and Candidate Species	OAR 603 Division 73	Provides for protection of certain plants, wildflowers, and shrubs; guidelines on the listing, reclassification, and delisting of plant species as threatened or endangered.	Potentially Applicable Requirement		
Wildlife Diversity Program	OAR 635 Division 100	Provides rules for maintaining Oregon's wildlife diversity by protecting and enhancing populations and habitats of native wildlife at self-sustaining levels throughout geographic ranges.	Potentially Relevant and Appropriate Requirement		

Note:

ARAR = Applicable/Relevant and Appropriate Requirement

CFR = The Code of Federal Regulations

OAR = Oregon Administrative Rules

USC = United States Code

USFWS = United States Fish and Wildlife Service

Table 6 Action-Specific Potential Applicable or Relevant and Appropriate Requirements Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis

Upper Granite Creek Watershed Mines, Wallowa Whitman National Forest, Oregon

Standard, Requirement Criteria, or Limitation	Citation	Description	Applicable/Relevant and Appropriate?
FEDERAL			
Clean Water Act	33 USC § 1342		
National Pollutant Discharge Elimination System	40 CFR § 122.26	In general, Part 122 provides permit requirements for the discharge of pollutants from any point source into waters of the United States. Part 122.26 requires permits for storm-water discharges.	Potentially Relevant and Appropriate Requirement.
Surface Mining Control and Reclamation Act	30 USC §§ 1201-1328	Performance standards for surface mining activities.	Potentially Relevant and Appropriate Requirement
Hazardous Materials Transportation Act	49 USC §§ 1801-1813 49 CFR 10, and 171-177	Regulates transportation of hazardous materials.	Potentially Applicable Requirement, if any hazardous materials are transported offsite.
Resource Conservation and Recovery Act	42 USC § 6905		
Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal (TSD) Facilities	40 CFR § 264.13.14	Requirements for proper handling, treatment, storage, and disposal of hazardous wastes.	Potentially Relevant and Appropriate Requirement
Land Disposal Restrictions (LDRs)	40 CFR 268	LDRs place specific restrictions (concentration levels or treatment) on RCRA hazardous wastes prior to their placement in a land disposal unit. Relevant and appropriate LDR requirements will be met if any material accumulations are treated <i>ex situ</i> .	Potentially Relevant and Appropriate Requirement
Disposal of Solid Waste	RCRA 42 U.S.C. § 6901 et seq ; 40 CFR 257	Facility or practices in floodplains will not restrict flow of basic flood, reduce the temporary water storage capacity of the floodplain or otherwise result in a wash-out of solid waste.	Potentially Relevant and Appropriate Requirement
Closure Requirements	RCRA/HWMA 40 CFR 264, Subpart G	Closure of hazardous waste repositories must meet protective standards. Regulations to minimize contaminant migration, provide leachate collection and prevent contaminant exposure will be met.	Potentially Relevant and Appropriate Requirement
Landfill Design and Construction	RCRA/HWMA 40 CFR 264, Subpart N	Hazardous waste landfills must meet minimum design standards. Protectiveness will be achieved through capping and institutional controls.	Potentially Relevant and Appropriate Requirement
Ground Water Monitoring	RCRA/HWMA 40 CFR 264, Subpart F 40 CFR 264, Subpart X	Establishes standards for detection and compliance monitoring. Site wide monitoring will accommodate specific ground water monitoring requirements.	Potentially Relevant and Appropriate Requirement
Criteria for Classification of Solid Waste Disposal Facilities and Practices	40 CFR 257	Establishes criteria for determining which solid waste disposal practices pose threats to human health and the environment.	Potentially Relevant and Appropriate Requirement
Occupational Exposure to Asbestos	29 CFR 1910 and 1926	Establishes OSHA requirements for asbestos-related work in the construction and demolition industry. Requirements on exposure limits, work practices and engineering controls to provide worker safety in handling, removal, disposal, or other workplace exposure to asbestos.	To Be Considered
Fugitive Dust Emissions	40 CFR § 50.6	Establishes standards for particulate matter with a diameter of 10 microns or less.	Potentially Relevant and Appropriate Requirement

Table 6 Action-Specific Potential Applicable or Relevant and Appropriate Requirements

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines, Wallowa Whitman National Forest, Oregon

Standard, Requirement Criteria, or Limitation	Citation	Description	Applicable/Relevant and Appropriate?		
STATE OF OREGON					
Regulations pertaining to National Pollutant Discharge Elimination System and Water Pollution Control Facility Permits	OAR 340 Division 45	Prescribes limitations on discharge of wastes and the requirements and procedures for obtaining National Pollutant Discharge Elimination System and Water Pollution Control Facility permits from the ODEQ	Potentially Relevant and Appropriate Requirement		
Groundwater Quality Protection Program	OAR 340 Division 40	Establishes the mandatory minimum groundwater quality protection requirements for federal and state agencies, cities, counties, industries, and citizens.	Potentially Relevant and Appropriate Requirement		
Solid Waste: Land Disposal Sites other than Municipal Solid Waste Landfills	OAR 340 Division 95	Regulates the siting, operation and maintenance of any non-municipal land disposal site.	Potentially Relevant and Appropriate Requirement		
Storage, Treatment and Disposal of Hazardous Waste	ORS Chapter 466	Regulates the transportation and disposal of hazardous waste.	Potentially Relevant and Appropriate Requirement		
Reduction of use of Toxic Substances and Hazardous Waste Generation	ORS 465.200455 and 465.900	Establishes ODEQ removal and remedial action program	Potentially Relevant and Appropriate Requirement		
	OAR 340-32-5620 through 5650	Establish ODEQ requirements for licensing and certification for asbestos workers. All workers who handle asbestos-containing materials must meet certain training, licensing and certification requirements.	Potentially Applicable Requirement		
Asbestos Removal	OAR 340-248-005 through 130	Establish ODEQ requirements for handling asbestos-containing materials. Handling, removing, transporting and disposing of asbestos material in a manner that prevents it from becoming friable and releasing asbestos fibers.	Potentially Applicable Requirement		

Note:

ARAR = Applicable/Relevant and Appropriate Requirement

CFR = The Code of Federal Regulations

LDR = Land Disposal Restrictions

OAR = Oregon Administrative Rules

ODEQ = Oregon Department of Environmental Quality

ORS = Oregon Revised Statutes

OSHA = Occupational Safety and Health Administration

RCRA = Resource Conservation and Recovery Act

USC = United States Code

Table 7
Cost Estimate for Alternative 2 - Onsite Containment
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task		Quantity	Units	Unit Cost	Cost
Mobilization		1	LS	\$ 10,000	\$ 10,000
Improvements to existing ro	mprovements to existing roads- FS 7345, FS 720, FS 280, and unnamed roads				\$ 40,000
Creation of new roads to accat Golden Fraction Mine	2	PM	\$ 80,000	\$ 160,000	
Grubbing and Scraping		3	PA	\$ 10,000	\$ 30,000
Erosion Control - Silt Fences	- Spring Diversion	1	LS	\$ 10,000	\$ 10,000
	Upper Upper Monumental Mine	470	CY	\$ 10.0	\$ 4,700
	Upper Monumental Mine	8,405	CY	\$ 10.0	\$ 84,050
	Lower Monumental Mine	5,910	CY	\$ 10.0	\$ 59,100
	Granite Creek Aquatic Station 03	80	CY	\$ 10.0	\$ 800
Grading	Cap Martin Mine	735	CY	\$ 10.0	\$ 7,350
Oraumg	Granite Creek #6 Mine	45	CY	\$ 10.0	\$ 450
	Tillicum Mine	205	CY	\$ 10.0	\$ 2,050
	Granite Creek #5 Mine	285	CY	\$ 10.0	\$ 2,850
	Golden Fraction Mine	295	CY	\$ 10.0	\$ 2,950
	Central Mine	80	CY	\$ 10.0	\$ 800
	Upper Upper Monumental Mine	1,200	SF	\$ 10.0	\$ 12,000
	Upper Monumental Mine	6,700	SF	\$ 20.0	\$ 134,000
	Lower Monumental Mine	5,700	SF	\$ 10.0	\$ 57,000
Cover Placement - assumes	Granite Creek Aquatic Station 03	259	SF	\$ 10.0	\$ 2,590
	Cap Martin Mine	3,000	SF	\$ 10.0	\$ 30,000
Monumental Mine	Granite Creek #6 Mine	150	SF	\$ 10.0	\$ 1,500
(assumes sourced from	Tillicum Mine	425	SF	\$ 10.0	\$ 4,250
Granite Creek Saddle)	Granite Creek #5 Mine	1,000	SF	\$ 10.0	\$ 10,000
	Golden Fraction Mine	400	SF	\$ 10.0	\$ 4,000
	Central Mine	441	SF	\$ 10.0	\$ 4,410

Table 7
Cost Estimate for Alternative 2 - Onsite Containment

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task		Quantity	Units	Unit Cost	Cost
	Upper Monumental Mine - Adit seep pipe construction	1	LS	\$ 5,000	\$ 5,000
Water Engineering	Upper Monumental Mine - settling pond diversion	1	LS	\$ 15,000	\$ 15,000
Controls	Lower Monumental Mine - adit and settling pond diversion channel	1	LS	\$ 25,000	\$ 25,000
	HDPE Culvert Under Access Roads	2	Each	\$ 5,000	\$ 10,000
Revegetation	Seed/Fertilization	5	PA	\$ 2,000	\$ 10,000
Revegetation	Mulch	5	PA	\$ 3,000	\$ 15,000
Road Decommissioning		1	LS	\$ 10,000	\$ 10,000
Confirmation sampling ana	lytical cost and XRF rental	1	LS	\$ 30,000	\$ 30,000
Demobilization		1	LS	\$ 10,000	\$ 10,000
			Subtotal C	apital Costs	\$ 804,850
Design Expenses (10%)					\$ 80,485
Construction Oversight (15	%)				\$ 120,728
Post Construction Monitor	ing (6 years)	6	PY	\$ 15,000	\$ 90,000
		Subtota	I Indirect C	apital Costs	\$ 291,213
Contingency (10%)					\$ 29,121
		TOTAL F	RESENT W	ORTH COST	\$ 1,125,184

Note:

CY = cubic yards

LS = lump sum

PA = per acre

PM = per mile

SF = square foot

PY = per year

Table 8
Cost Estimate for Alternative 3 - Excavation and Disposal in Onsite Repository

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task		Quantity	Units	Unit Cost	Cost
Mobilization		1	LS	\$ 10,000	\$ 10,000
Improvements to existing ro	pads- FS 7345, FS 720, FS 280, and unnamed roads	8	PM	\$ 5,000	\$ 40,000
Creation of new roads to acat Golden Fraction Mine	cess Granite Creek #6 and Cap Martin Mines, and upper waste rock pile	2	PM	\$ 80,000	\$ 160,000
Grubbing and Scraping		3	PA	\$ 10,000	\$ 30,000
Erosion Control - Silt Fences	- Spring Diversion	1	LS	\$ 10,000	\$ 10,000
	Upper Upper Monumental Mine	470	CY	\$ 14.0	\$ 6,580
	Upper Monumental Mine	8,405	CY	\$ 14.0	\$ 117,670
Waste Rock Excavation and	Lower Monumental Mine	5,910	CY	\$ 17.0	\$ 100,470
Hauling (rates increase	Granite Creek Aquatic Station 03	80	CY	\$ 32.0	\$ 2,560
with number of trucks and	Cap Martin Mine	735	CY	\$ 52.0	\$ 38,220
distance due to hauling	Granite Creek #6 Mine	45	CY	\$ 37.0	\$ 1,665
costs)	Tillicum Mine	205	CY	\$ 25.0	\$ 5,125
	Granite Creek #5 Mine	285	CY	\$ 25.0	\$ 7,125
	Golden Fraction Mine	295	CY	\$ 20.0	\$ 5,900
	Central Mine	80	CY	\$ 15.0	\$ 1,200
	Upper Upper Monumental Mine	1,200	SF	\$ 10.0	\$ 12,000
	Upper Monumental Mine	6,700	SF	\$ 10.0	\$ 67,000
	Lower Monumental Mine	5,700	SF	\$ 10.0	\$ 57,000
	Granite Creek Aquatic Station 03	259	SF	\$ 10.0	\$ 2,590
	Cap Martin Mine	3,000	SF	\$ 10.0	\$ 30,000
Regrading After Excavation	Granite Creek #6 Mine	150	SF	\$ 10.0	\$ 1,500
	Tillicum Mine	425	SF	\$ 10.0	\$ 4,250
	Granite Creek #5 Mine	1,000	SF	\$ 10.0	\$ 10,000
	Golden Fraction Mine	400	SF	\$ 10.0	\$ 4,000
	Central Mine	441	SF	\$ 10.0	\$ 4,410
Tailings Evenyation	Upper and Lower Monumental Mine (Vacuum Truck)	10	Day	\$ 2000.0	\$ 20,000
Tailings Excavation	Wetland Rehabilitation	1	LS	\$ 50000.0	\$ 50,000

Table 8
Cost Estimate for Alternative 3 - Excavation and Disposal in Onsite Repository

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task		Quantity	Units	Unit Cost	Cost
	Subgrade Excavation	1	LS	\$ 10,000	\$ 10,000
Repository Construction	Capping, grading, liner installation, engineering controls	1	LS	\$ 100,000	\$ 100,000
	Revegetation	2	PA	\$ 5,000	\$ 10,000
	Upper Monumental Mine - Adit seep pipe construction	1	LS	\$ 5,000	\$ 5,000
Water Engineering	Upper Monumental Mine - settling pond diversion	1	LS	\$ 15,000	\$ 15,000
Controls	Lower Monumental Mine - adit and settling pond diversion channel	1	LS	\$ 25,000	\$ 25,000
	HDPE Culvert Under Access Roads	2	Each	\$ 5,000	\$ 10,000
Revegetation	Seed/Fertilization	5	PA	\$ 2,000	\$ 10,000
Revegetation	Mulch	5	PA	\$ 3,000	\$ 15,000
Road Decommissioning		1 LS \$10,000			\$ 10,000
Confirmation sampling ana	ytical cost and XRF rental	1	LS	\$ 30,000	\$ 30,000
Demobilization		1 LS \$10,000		\$ 10,000	\$ 10,000
			Subtotal C	apital Costs	\$ 1,049,265
Design Expenses (20% to ac	count for additional design and permitting of the landfill)				\$ 209,853
Construction Oversight (159	%)				\$ 157,390
Post Construction Monitori	ng (20 years - longer to account for the presence of the landfill)	20	PY	\$ 15,000	\$ 300,000
Subtotal Indirect Capital Costs					\$ 667,243
Contingency (10%)					\$ 66,724
		TOTAL P	RESENT W	ORTH COST	\$ 1,783,232

Note:

CY = cubic yards

LS = lump sum

PA = per acre

PM = per mile

Table 9
Cost Estimate for Alternative 4 - Excavation and Offsite Disposal
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task		Quantity	Units	Unit Cost	Cost
Mobilization		1	LS	\$ 10,000	\$ 10,000
Improvements to existing ro	oads- FS 7345, FS 720, FS 280, and unnamed roads	8	PM	\$ 5,000	\$ 40,000
Creation of new roads to acat Golden Fraction Mine	cess Granite Creek #6 and Cap Martin Mines, and upper waste rock pile	2	PM	\$ 80,000	\$ 160,000
Grubbing and Scraping		3	PA	\$ 10,000	\$ 30,000
Erosion Control - Silt Fences	s - Spring Diversion	1	LS	\$ 10,000	\$ 10,000
	Upper Upper Monumental Mine	470	CY	\$ 14.0	\$ 6,580
	Upper Monumental Mine	8,405	CY	\$ 14.0	\$ 117,670
	Lower Monumental Mine	5,910	CY	\$ 17.0	\$ 100,470
	Granite Creek Aquatic Station 03	80	CY	\$ 32.0	\$ 2,560
Waste Rock Excavation	Cap Martin Mine	735	CY	\$ 52.0	\$ 38,220
Waste Nock Excavation	Granite Creek #6 Mine	45	CY	\$ 37.0	\$ 1,665
	Tillicum Mine	205	CY	\$ 25.0	\$ 5,125
	Granite Creek #5 Mine	285	CY	\$ 25.0	\$ 7,125
	Golden Fraction Mine	295	CY	\$ 20.0	\$ 5,900
	Central Mine	80	CY	\$ 15.0	\$ 1,200
	Upper Upper Monumental Mine	470	CY	\$ 100.0	\$ 47,000
	Upper Monumental Mine	7,965	CY	\$ 100.0	\$ 796,500
Waste Rock Hauling to	Lower Monumental Mine	5,730	CY	\$ 100.0	\$ 573,000
Subtitle D Landfill (costs	Granite Creek Aquatic Station 03	80	CY	\$ 100.0	\$ 8,000
assume 4 round trips to	Cap Martin Mine	735	CY	\$ 100.0	\$ 73,500
the landfill per truck day +	Granite Creek #6 Mine	45	CY	\$ 100.0	\$ 4,500
tipping fees)	Tillicum Mine	205	CY	\$ 100.0	\$ 20,500
	Granite Creek #5 Mine	285	CY	\$ 100.0	\$ 28,500
	Golden Fraction Mine	295	CY	\$ 100.0	\$ 29,500
	Central Mine	80	CY	\$ 100.0	\$ 8,000

Table 9
Cost Estimate for Alternative 4 - Excavation and Offsite Disposal
Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis
Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task		Quantity	Units	Unit Cost	Cost
	Upper Upper Monumental Mine	1,200	SF	\$ 10.0	\$ 12,000
	Upper Monumental Mine	6,700	SF	\$ 10.0	\$ 67,000
	Lower Monumental Mine	5,700	SF	\$ 10.0	\$ 57,000
	Granite Creek Aquatic Station 03	259	SF	\$ 10.0	\$ 2,590
	Cap Martin Mine	3,000	SF	\$ 10.0	\$ 30,000
Regrading After Excavation	Granite Creek #6 Mine	150	SF	\$ 10.0	\$ 1,500
	Tillicum Mine	425	SF	\$ 10.0	\$ 4,250
	Granite Creek #5 Mine	1,000	SF	\$ 10.0	\$ 10,000
	Golden Fraction Mine	400	SF	\$ 10.0	\$ 4,000
	Central Mine	441	SF	\$ 10.0	\$ 4,410
	Onsite Vacuum Truck	10	Day	\$ 2000.0	\$ 20,000
Tailings Excavation +Hauling	Haul to Subtitle C Landfill and Tipping Fees	620	CY	\$ 320.0	\$ 198,400
Friduling	Wetland Rehabilitation and Clean Soil Cover	1	LS	\$ 50000.0	\$ 50,000
	Upper Monumental Mine - Adit seep pipe construction	1	LS	\$ 5,000	\$ 5,000
Water Engineering	Upper Monumental Mine - settling pond diversion	1	LS	\$ 15,000	\$ 15,000
Controls	Lower Monumental Mine - adit and settling pond diversion channel	1	LS	\$ 25,000	\$ 25,000
	HDPE Culvert Under Access Roads	2	Each	\$ 5,000	\$ 10,000
Revegetation	Seed/Fertilization	5	PA	\$ 2,000	\$ 10,000
Nevegetation	Mulch	5	PA	\$ 3,000	\$ 15,000
Road Decommissioning		1	LS	\$ 10,000	\$ 10,000
Confirmation sampling anal	ytical cost and XRF rental	1	LS	\$ 30,000	\$ 30,000
Demobilization		1	LS	\$ 10,000	\$ 10,000
			Subtotal C	apital Costs	\$ 2,716,665

Cost Estimate for Alternative 4 - Excavation and Offsite Disposal

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task	Quantity	Units	Unit Cost	Cost
Design Expenses (Equal to Alternative 2)	•			\$ 80,485
Construction Oversight (Twice Alternative 3 to account for longer implementation time)				\$ 314,780
Post Construction Monitoring (6 years)	6	PY	\$ 15,000	\$ 90,000
	Subtota	l Indirect C	apital Costs	\$ 485,265
Contingency (10%)				\$ 48,526
	TOTAL	PRESENT W	ORTH COST	\$ 3,250,456

Note:

CY = cubic yards

LS = lump sum

PA = per acre

PM = per mile

Table 10 Cost Estimate for Recommended AlternativeNon-Time-Critical Removal Action Engineering Evaluation/Cost Analysis

Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

Task		Quantity	Units	Unit Cost	Cost
Mobilization		1	LS	\$ 10,000	\$ 10,000
Improvements to existing ro	ads- FS 7345, FS 720, and unnamed roads	5	PM	\$ 5,000	\$ 25,000
Grubbing and Scraping		2	PA	\$ 10,000	\$ 20,000
Erosion Control - Silt Fences	- Spring Diversion	1	LS	\$ 10,000	\$ 10,000
	Upper Upper Monumental Mine	470	CY	\$ 10.0	\$ 4,700
	Upper Monumental Mine	8,405	CY	\$ 10.0	\$ 84,050
Grading	Lower Monumental Mine	5910	CY	\$ 10.0	\$ 59,100
	Granite Creek Aquatic Station 03	80	CY	\$ 10.0	\$ 800
	Central Mine	80	CY	\$ 10.0	\$ 800
	Upper Upper Monumental Mine	1,200	SF	\$ 10.0	\$ 12,000
Cover Placement - assumes local cover except at Upper	Upper Monumental Mine	6,700	SF	\$ 20.0	\$ 134,000
Monumental Mine	Lower Monumental Mine	5700	SF	\$ 10.0	\$ 57,000
(assumes sourced from Granite Creek Saddle)	Granite Creek Aquatic Station 03	259	SF	\$ 10.0	\$ 2,590
	Central Mine	441	SF	\$ 10.0	\$ 4,410
	Upper Monumental Mine - Adit seep pipe construction	1	LS	\$ 5,000	\$ 5,000
Water Engineering	Upper Monumental Mine - settling pond diversion	1	LS	\$ 15,000	\$ 15,000
Controls	Lower Monumental Mine - adit and settling pond diversion channel	1	LS	\$ 25,000	\$ 25,000
	HDPE Culvert Under Access Roads	2	Each	\$ 5,000	\$ 10,000
	Onsite Vacuum Truck	10	Day	\$ 2000.0	\$ 20,000
Tailings Excavation +Hauling	Haul to Subtitle C Landfill and Tipping Fees	620	CY	\$ 320.0	\$ 198,400
rriddiirig	Wetland Rehabilitation and Clean Soil Cover	1	LS	\$ 50000.0	\$ 50,000
	Subgrade Excavation	1	LS	\$ 10,000	\$ 10,000
Repository Construction	Capping, Grading, Engineering Controls (no Liner)	1	LS	\$ 50,000	\$ 50,000
	Revegetation	2	PA	\$ 5,000	\$ 10,000
Povogotation	Seed/Fertilization	2	PA	\$ 2,000	\$ 4,000
Revegetation	Mulch	2	PA	\$ 3,000	\$ 6,000

Cost Estimate for Recommended Alternative

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

Task	Quantity	Units	Unit Cost	Cost
Road Decommissioning	1	LS	\$ 10,000	\$ 10,000
Confirmation sampling analytical cost and XRF rental	1	LS	\$ 30,000	\$ 30,000
Demobilization	1	LS	\$ 10,000	\$ 10,000
		Subtotal C	Capital Costs	\$ 877,850
Design Expenses (10%)				\$ 87,785
Construction Oversight (15%)				\$ 131,678
Post Construction Monitoring (6 years)	6	PY	\$ 15,000	\$ 90,000
	Subtota	l Indirect C	Capital Costs	\$ 309,463
Contingency (10%)				\$ 30,946
	TOTAL F	RESENT W	ORTH COST	\$ 1,218,259

Note:

CY = cubic yards

LS = lump sum

PA = per acre

PM = per mile

SF = square foot

PY = per year

Table 11 Recommended Removal Action Summary

Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

		Volume	
Mine	Waste Rock Pile	(cubic yards)	Recommended Alternative
	WRA	395	Alternative 2 - Onsite Containment
	WRB	5	Alternative 1 - No Action
	WRC	5	Alternative 1 - No Action
<u>L</u>	WRD	10	Alternative 2 - Onsite Containment
Upper-Upper	WRE	5	Alternative 1 - No Action
Monumental	WRF	10	Alternative 2 - Onsite Containment
	WRG	10	To be determined (requires characterization)
	WRH	25	To be determined (requires characterization)
	WRI	5	To be determined (requires characterization)
	WRJ	15	To be determined (requires characterization)
_	TLA	125	Alternative 4 - Offsite Disposal
	TLB	305	Alternative 4 - Offsite Disposal
Upper	TLC	10	Alternative 4 - Offsite Disposal
Monumental	WRA	7,905	Alternative 2 - Onsite Containment /
	WIG	7,505	Alternative 3 - Disposal in Onsite Repository
	WRB	60	Alternative 2 - Onsite Containment
Lower	TLA	180	Alternative 4 - Offsite Disposal
Monumental	WRA	5,560	Alternative 2 - Onsite Containment
	WRB	170	Alternative 2 - Onsite Containment
Granite Creek Aq.	WRA	15	Alternative 1 - No Action
Station 03	WRB	80	Alternative 2 - Onsite Containment
	WRA	370	Alternative 1 - No Action
Cap Martin	WRB	10	Alternative 1 - No Action
	WRC	735	Alternative 1 - No Action
	WRA	65	Alternative 1 - No Action
Sheridan	WRB	30	Alternative 1 - No Action
	WRC	5	Alternative 1 - No Action
Granite Creek #6	WRA	45	Alternative 1 - No Action
Granite Creek #0	WTP	140	Alternative 1 - No Action
Granite Creek #7	WRA	195	Alternative 1 - No Action
Granite Creek #7	WRB	125	Alternative 1 - No Action
	WRA	205	Alternative 1 - No Action
Tillicum	WRB	145	Alternative 1 - No Action
	WRC	210	Alternative 1 - No Action
Consider Considering	WRA	285	Alternative 1 - No Action
Granite Creek #5	WRB	10	Alternative 1 - No Action
	WRA	295	Alternative 1 - No Action
0.11 5 .:	WRB	145	Alternative 1 - No Action
Golden Fraction —	WRC	295	Alternative 1 - No Action
	WRD	1,105	Alternative 1 - No Action
	WRA	80	Alternative 2 - Onsite Containment
 	WRB	25	Alternative 1 - No Action
Central	WRC	105	Alternative 1 - No Action
 	WRD	25	Alternative 1 - No Action
<u> </u>	5		
otal Volume for Alteri	native 1 - No Action		5,400 cubic yards
otal Volume for Alternative 1 - No Action			10,257.5 cubic yards
	native 3 - Disposal in Onsite R		3952.5 cubic yards
	native o pioposai ili Olisile N	CPOSITOLY	L SESSES LUDIC VALUE

Notes:

All waste rock volume estimates have been rounded to the nearest 5 cubic yards, with 5 cubic yards being the minimum volume. Total volumes assume half of Upper Monumental Mine waste rock pile A would require disposal in an onsite repository.

Figures

- 1 Site Location
- 2 Site Layout
- 3 Upper-Upper Monumental Mine
- 4 Upper Monumental Mine
- 5 Lower Monumental Mine
- 6 Granite Creek Aquatic Station 03
- 7 Cap Martin Mine
- 8 Sheridan Mine
- 9 Granite Creek #6 Mine
- 10 Granite Creek #7 Mine
- 11 Tillicum Mine
- 12 Granite Creek #5 Mine
- 13 Golden Fraction Mine
- 14 Central Mine
- 15 Background Soil and Surface Water Sampling Locations

Appendix A

Wetland Delineation Report

Wetland Delineation Report Monumental Mine Data Gap Assessment Grant County, Oregon

May 2011

Project Number 2723018-007

A **valmont ₹** COMPANY

Conserving Resources. Improving Life.

Cascade Earth Sciences 3511 Pacific Boulevard SW Albany, OR 97321 (541) 926-7737 www.cascade-earth.com

Wetland Delineation Report Monumental Mine Data Gap Assessment Grant County, Oregon

Prepared For:	Mr. Pete Jones Region 6 On-Scene Coordinator, Oregon 645 Washington Street Ashland, Oregon 97520
Prepared By:	Cascade Earth Sciences 3511 Pacific Boulevard SW Albany, Oregon 97321 (541) 926-7737
Principal Author:	Ryan Tobias, Project Biologist
Reviewed By:	Dustin Wasley, PE, Principal Engineer Rone Brewer, Senior Ecologist
Report Date:	May 2011
Project Number:	2723018-007
Submitted By:	
	Ryan Tobias, Project Biologist

Disclaimer: The contents of this document are confidential to the intended recipient at the location to which it has been addressed. The contents may not be changed, edited, and/or deleted. The information contained in this document is only valid on the date indicated on the original project file report retained by CES. By accepting this document, you understand that neither CES nor its parent company, Valmont Industries, Inc. (Valmont) accepts any responsibility for liability resulting from unauthorized changes, edits, and/or deletions to the information in this document.

CONTENTS

EXE	CUTIVE SUMMARY	IV
1.0	INTRODUCTION AND PURPOSE	1
2.0	SITE SETTING AND LAND USE	1
3.0	SITE ALTERATIONS	2
4.0	PRECIPITATION DATA AND ANALYSIS	2
5.0	WETLAND DELINEATION METHODS	4
6.0	DESCRIPTION OF WETLAND AND NON-WETLAND WATERS	5
7.0	DEVIATION FROM LOCAL WETLAND INVENTORY OR NATIONAL WETLAND INVENTORY	5
8.0	MAPPING METHOD	6
9.0	ADDITIONAL INFORMATION 9.1 Soils	6 6 7
10.0	WETLAND FUNCTIONAL ASSESSMENT	7
11.0	RESULTS AND CONCLUSIONS	9
12.0	PROPOSED WETLAND IMPACTS AND MITIGATION OPTIONS 12.1 Mitigation Assumptions and Alternatives 12.1.1 Assumptions 12.1.2 Goals	10 10
13.0	DISCLAIMER	11
LITE	ERATURE CITATIONS	11
	APPENDICES	
A.	Maps Aerial Photographs	

A.	Maps		Aerial Photographs	
	Figure 1.	Site Location Map	A1. 1956 Aerial Photograp	h
	Figure 2.	Tax Lot Map	A2. 1971 Aerial Photograp	h
	Figure 3.	National Wetland Inventory Map	A3. 1994 Aerial Photograp	h
	Figure 4.	Soil Survey Map	A4. 2005 Aerial Photograp	h
	Figure 5.	Wetland Delineation Map		
	Figure 6.	Historic Mine Photograph		

- B Field Data Forms
- C. Ground Level Color Photographs
- D. Additional Tables and Information
 - 1. Summary of Precipitation for 2008-2009 Water Year
 - 2. Precipitation Data from the NOAA Online Weather Database
 - 3. ORWAP Calculation Tables

EXECUTIVE SUMMARY

Cascade Earth Sciences (CES) has prepared the following wetland delineation report in preparation of the remediation of mine-related contamination at the U.S. Forest Service (Forest Service) Monumental Mine (Site).

- This delineation was conducted in concurrence with the Engineering Evaluation / Cost Analysis
 (EE/CA) for completing a Non-Time-Critical Removal Action related to hazardous substances in the
 Upper Granite Creek Watershed near Granite, Oregon (Site).
- The purpose of this delineation was to identify wetland boundaries, characteristics, functions, values, and area, and provide mitigation recommendations for wetlands disturbed during Site remediation.
- Typically, the Oregon Department of State Land and U.S. Army Corps of Engineers (Corps) would have jurisdiction of any impacts to onsite wetlands. However, this delineation was conducted within the authority of a federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup. As such, the U.S. Environmental Protection Agency (USEPA) has jurisdiction over Site wetlands (40 Code of Federal Regulation [CFR] 300.400(e); USEPA, 1992).
- Per Executive Orders 12580 and 13106, the President of the United States has delegated authority to
 the U.S. Department of Agriculture (USDA) to conduct CERCLA actions for projects administered
 inside National Forest System (Forest Service) lands. Thus, the Forest Service is the lead agency for
 CERCLA actions at the Site.
- While the local, regional, and national wetland regulations are not applicable, they are relevant and appropriate. Therefore, efforts reported herein were conducted to comply with appropriate state and federal wetland regulations.
- The wetland delineation was conducted using criteria outlined in the 2008 Interim Regional Supplement to the Corps Wetland Delineation Manual. Results of the delineation identified one wetland area at the Site, approximately 0.08 acres in size.

Proposed remedial actions at the Site may include removal of mine-contaminated tailings within the delineated wetland. Loss of wetlands resulting from removal of the tailings material should be mitigated by restoring the disturbed portion of the wetland or creating a new area of wetland.

- Compensatory mitigation is required for fill or excavation activities within a wetland.
- The proposed remedial action may require excavation of the upper and middle tailings ponds portions of the wetland (about 0.04 acres). Wetland restoration and creation replacement ratios are as follows:
 - o Restoration ratio is 1:1 (1 acre restored for every 1 acre lost).
 - Creation ration is 1.5:1 (1.5 acres created for every 1 acre lost).
- Restoration/creation of approximately 0.04 to 0.06 acres is recommended to compensate for wetlands excavated during possible Site remedial actions.
- The actual acreage of filled wetlands (if necessary) and subsequent final determination of mitigation acreage can be verified following development of the final remedial design.

1.0 INTRODUCTION AND PURPOSE

Cascade Earth Sciences (CES) has prepared the following Wetland Delineation report in concurrence with the Engineering Evaluation / Cost Analysis (EE/CA) for completing a Non-Time-Critical Removal Action (RA) related to hazardous substances at the abandoned Monumental Mine (Site) in Grant County, Oregon. The Site consists of an abandoned underground gold mine located in the Wallowa-Whitman National Forest, about 8 aerial miles north of Granite, Oregon, along Forest Road (FR) 7345 (Appendix A; Figure 1).

This Wetland Delineation was completed in general accordance with the Interim Regional Supplement to the Corps of Engineers (Corps) Wetland Delineation Manual (Corps, 2008). The purpose of the delineation is to document acreage and functions of onsite wetlands for the purposes of possible mitigation following removal of hazardous substances. This delineation was conducted within the authority of a federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup. As such, no federal, state, or local permits are required to perform on-site repose actions pursuant to CERCLA Sections 104, 106, 120, 121, or 122 (40 CFR 300.400(e)). Although procedural (permit or permit equivalency) approval is not and applicable or relevant and appropriate requirements under CERCLA Section 121(d)(2) and the National Oil and Hazardous Substances Pollution Contingency Plan (USEPA, 1992), the efforts reported herein were conducted to comply with appropriate state and federal wetland regulations.

Proposed Removal Alternatives outlined in the EE/CA report include excavation and disposal of hazardous substances from areas at the Site with wetland characteristics. Therefore, a delineation is required to identify appropriate mitigation activities to be completed as part of the RA. Moreover, a functional assessment was performed to document current functions and values of wetlands located in the footprint of proposed RA areas.

2.0 SITE SETTING AND LAND USE

The wetland Assessment Area (AA) is located near the headwaters of an unnamed tributary to Granite Creek at an elevation of approximately 6,300 feet above mean sea level (amsl; USGS, 1982).

- The Monumental Mine, millsite, adits, settling ponds, tailings, and waste rock piles are approximately 10 acres in size (EA, 2003).
- The AA is about 0.1 acres in size, and includes two settling ponds and connecting riparian area located downslope from the former mill.
- This AA was selected because wetland characteristics and contaminated mine tailings were identified
 in this area of the Site. Therefore, RA activities at the Site could impact wetland functions and
 values.
- Additional wetlands are potentially located within boundaries of the 10-acre Site. These areas were not delineated as part this assessment since it in not anticipated they will be impacted during the RA.
- Slopes vary within the Site, but are moderately to relatively steep, with depositional areas near the headwaters of the unnamed tributary.
- These depositional areas are located downslope from the millsite, and were likely formed by dumping tailings from the mill. The two former settling ponds within the AA are the focus of this wetland delineation.
- Unvegetated to sparsely vegetated waste rock piles located upslope from the AA likely contribute to sedimentation and ongoing contaminant loading to the AA via overland erosion, leaching, infiltration, and subsurface transport.

- General topography trends downhill toward the northwest.
- The Site is administered by the Forest Service, with active claims at the Upper and Lower Monumental Mine adits (Appendix A; Figure 2).
- The landscape is dominated by mid to late-successional conifer forest with a subalpine fir/grand fir/Engelmann spruce overstory.
- Runoff is directed to the northwest and locally toward the unnamed tributary, which bisects the AA.
- The settling ponds appear to be hydraulically connected. No outlet was observed from the lowest settling pond during field investigation activities.
- The unnamed tributary daylights downslope from the lowest waste rock pile and converges with Granite Creek, about 2.5 miles west of the Site.
- Color photographs of the AA are presented in Appendix C.

3.0 SITE ALTERATIONS

Gold mining activities began in the Granite Creek area in the 1860's (EA, 2003). The Monumental Mine was discovered and claimed in 1870. In 1875, a 20-stamp mill and chlorination plant were constructed and the mine and mill operated intermittently until about 1928.

Many of the remnants from mining operations remain at the Site, which include the following:

- The foundation and timbers of the former 20-stamp mill, floatation table, and chlorination flue (millsite upslope from the AA).
- Two adits and large waste rock piles. The upper adit and waste rock pile are located upslope from the AA and could contribute contaminant loading to the wetland.
- Contaminated tailings adjacent to the south and upslope from the upper settling pond. These tailings likely contribute to arsenic and other hazardous substances loading to the wetland.
- Two filled settling ponds in series, which are the focus of this delineation.
- The ponds are located to the northwest and downslope from the former millsite, adit, waste rock piles, and tailings piles.
- The former settling ponds were likely created to dump contaminated tailings from the mill. These
 depositional areas were also probably filled with depositional sediment since mining and milling
 operations ceased at the Site.
- The former settling ponds are primarily filled with tailings and depositional sediment and are vegetated with palustrine emergent wetland plants.

4.0 PRECIPITATION DATA AND ANALYSIS

The Site is located within the Blue Mountain physiographic province at an elevation of approximately 6,300 feet amsl.

- In the Blue Mountains, the fall, winter, and spring months are typically cold and wet, while summer months are warm and dry.
- At the Granite 4 west southwest (WSW) weather station, which operated from 1948 to 1967 about 8 miles southwest of the Site, approximately 84% of annual precipitation was recorded between the months of October and May, with snowfall the primary source of precipitation between November

and April (WRCC, 2010). Precipitation recorded at this weather station showed average annual precipitation was 26.37 inches per year.

The nearest continually operating weather station in the Blue Mountains is located at Meacham, Oregon, approximately 60 miles north of the Site at an elevation of 4,055 feet amsl.

- Precipitation totals average about 34.13 inches per year at the Meacham #2 (355394) station (NOAA, 2009).
- Table 1 (Appendix D) includes a summary of precipitation data for the 2008-2009 water year for the Meacham #2 weather station.
- In addition, the table below identifies precipitation during the three months preceding the delineation, as well as the water year beginning October 1, 2008.

Table A. Summary of Normal and Recorded Precipitation Between July 1, 2009 and September 31, 2009, Meacham, Oregon Station

Category	July 2009	August 2009	September 2009	Total Water Year to Date
Recorded Precipitation	0.39 in.	1.36 in.	Trace	34.13 in.
Precipitation Average	0.21 in.	0.77 in.	1.72 in.	27.21 in.
Percent of Normal	186%	176%	0%	125%

NOTE: Data obtained from the NOAA online weather data website: http://www.weather.gov/climate/. July 2009 data were obtained from the Weather Underground website: www.wunderground.com

As shown, precipitation trends varied in the months preceding the delineation.

- Precipitation totals in July and August 2009 were well above average.
- Very little precipitation fell in the month of September 2009, which is well below average.
- Collectively, precipitation for the three months preceding the delineation was about 65% of average.

Table B. Summary of Recorded Precipitation Between September 15-30, 2009 and October 1, 2009, Meacham, Oregon Station

Category	September 15-30 2009	October 1, 2009	Total Water Year to Date
Recorded Precipitation	Trace	0.05 in.	34.13 in.
Average*	~ 0.86 in.		27.21 in.
Percent of Normal	0%		125%

NOTE: Average was calculated from half the average monthly total of 1.72 inches.

As shown, about 0.05 inches of precipitation fell the day of the delineation, and a trace of precipitation was recorded for the two weeks preceding the investigation in September 2009.

- The monthly average for September is 1.72 inches of precipitation.
- As such, precipitation for the two weeks preceding the delineation was well below average.
- However, precipitation for the water year (October 1, 2008 September 30, 2009) was about 125% of average.

5.0 WETLAND DELINEATION METHODS

On October 1, 2009, Ryan Tobias and Timothy Otis, P.E., of CES conducted a routine wetland delineation of the AA. The study area includes the upper settling pond, downslope along the riparian area of the unnamed tributary, to the second settling pond. The wetland delineation methodology for this investigation included the following:

- Previous investigations and public domain resources were reviewed prior to the field effort to
 determine, to the extent possible, existing conditions and potential wetland indicators on the subject
 property. These resources included:
 - o Site Inspection Report (EA Engineering, Science, and Technology, 2003).
 - o The Mt. Ireland, Oregon quadrangle National Wetland Inventory (NWI) map (Appendix A; Figure 3).
 - o Forest Service Wallowa Whitman soils data (Appendix A; Figure 4).
 - o Historic aerial photographs (Appendix A; Figures A1-A4).
- Nine data plot locations were identified, three within the wetland and six outside the wetland, to determine wetland/upland characteristics.
- Soil conditions at the Site were determined by advancing shallow hand auger borings at the
 established data plots to approximately 18 inches or refusal. A Munsell color chart was used to
 identify soil hue, value, and chroma at each data plot.
- Hydrologic conditions were documented at each data plot.
- Vegetation and estimated percent cover were documented within a 20-foot radius of each data plot.
- Wetland boundaries were delineated, flagged, and surveyed by Anderson Perry and Associates, Inc. in La Grande, Oregon
 - o For each distinct wetland area, representative data plots were selected to characterize both wetland and upland habitats.
 - Nine data plots MMW-1 through MMW-9 (Figure 5) were established to collect vegetation, soils, and hydrology information. Each data plot was flagged and mapped with a handheld global positioning system (GPS) device.
- Wetland conditions were determined using the 2008 Corps Interim Regional Supplement to the Corps of Engineering Wetland Delineation Manual (Corps, 2008).
- A routine wetland determination was used since wetlands within the subject property contained homogeneous vegetation, soil, and hydrologic regimes.
- Data regarding vegetation, soil, and hydrology were collected at each sample plot and recorded on routine wetland determination data forms, which are presented in Appendix B.
- The wetland boundaries were determined at the location in which upland conditions changed to wetland conditions. Wetland conditions were defined by the following three parameters:
 - O Dominant plant species were considered hydrophytic by the U.S. Fish and Wildlife Service (USFWS) (Reed, 1988; Reed et, al, 1993).
 - o Soil was considered hydric under federal definition.
 - Hydrologic conditions meeting the federal wetland definitions were present or inferred.
- Wetland functions and values were determined using the Oregon Wetland Assessment Protocol (ORWAP) (reference) method, as defined by DSL regulations and guidance (Oregon Administrative Rule [OAR] 141-090-005 to 0055; DSL, 2009) and were determined with consideration of the entire wetland system associated with onsite wetlands.

6.0 DESCRIPTION OF WETLAND AND NON-WETLAND WATERS

A 0.08-acre contiguous wetland was delineated within the AA during field activities at the Site. The boundaries and characteristics of the wetland system are described below:

- The delineated wetland is a Palustrine Emergent (PEM)/riverine wetland that extends from the upper settling pond, along the riparian corridor of the unnamed tributary, to the bottom of the second settling pond.
- Data plots MMW-2, MMW-5, and MMW-8 were located within the wetland area. Please refer to Appendix B for additional information regarding these sample plot characteristics.
- The wetland supports various hydric plant species, dominated by Pacific onion (*Allium validium* OBL); tall managrass (*Glyceria elata* FACW); spotted saxifrage (Saxifraga punctata FAC); cow parsnip (*Heracleum lanatum* FAC); and monkey flower (*Mimulus spp.*) (possibly musk flower).
- Upland plots included a variety of coniferous species such as subalpine fir (*Abies lasiocarpa* FACU), grand fir (*Abies grandis* NI), lodgepole pine (*Pinus contorta* FAC-), Engelmann spruce (*Picea* engelmannii FAC), and Western larch (*Larix occidentialis* FACU). Understory species in upland plots included Idaho fescue (*Fescue idahoensis* NI), one-sided wintergreen (*Pyrolla secunda* FACU), and Canada goldenrod (*Solidago canadensis* FACU).
- Wetland hydrology is provided by perennial flow from a spring that forms the headwaters of the unnamed tributary to Granite Creek. The spring is located approximately 150 feet upslope from the upper settling pond.
- Seeps also emanate adjacent to the unnamed tributary channel and appear to provide year-round flow to the wetland system.
- Saturated conditions and surface water flow were noted during the delineation throughout the wetland area.
- The frequency and duration of saturated conditions support hydric soil characteristics in the wetland.
- Hydric soil criteria were met in three of the nine data plots established at the Site.
 - Soils collected from data plots MMW-2, MMW-5, and MMW-8 exhibited characteristics commonly observed in hydric soils (e.g., saturation in the upper 12-inches, matrix color, and sediment deposits).
 - o Gleyed soil conditions were noted within plot MMW-5 from 9 to 18 inches.
 - o Apparent mine tailings were encountered in wetland plots MMW-2, and MMW-8 during the field investigation at depths ranging from 10 to 18 inches below ground surface.
 - Upland habitat (Data Plots MMW-1, MMW -3, MMW -4, MMW -6, MMW -7, and MMW -9)
 was dominated by dry shallow forest soils consisting of duff/litter, underlain by loamy silt and
 gravel.

7.0 DEVIATION FROM LOCAL WETLAND INVENTORY OR NATIONAL WETLAND INVENTORY

Prior to conducting field activities at the Site, the Mt. Ireland 7.5-minute Quadrangle NWI map was reviewed to identify the possible presence of wetlands (Appendix A; Figure 3). There is no known local wetland inventory (LWI) map for the Site or surrounding areas.

• A review of the NWI map of the Site identified the unnamed tributary channel as riverine, upper perennial, unconsolidated bottom, permanently flooded (R3UBH) (USFWS, 1994).

- The NWI map did not show the presence of wetlands at the site.
- The onsite delineation identified a wetland system within this channel, however; the primary feature of the wetland system is the two settling ponds, which support PEM/riverine vegetation.

8.0 MAPPING METHOD

Wetland boundaries were marked with numbered flags during delineation activities at the Site using ribbon flagging and/or colored pin flags.

- The wetland boundaries were surveyed by a Professional Land Surveyor from Anderson Perry Associates, Inc.
- Flags were surveyed to an accuracy of one foot and the survey was extended approximately 100-feet beyond the wetland boundary.

A map of the delineated wetland is included in Appendix A (Figure 5).

9.0 ADDITIONAL INFORMATION

A review of public domain documents provided soil, wetland, rare, threatened or endangered species presence information, and historical background information for the Site. This information is presented in the following sections.

9.1 Soils

Preliminary soils data for the Site were provided by the Wallowa-Whitman National Forest, Baker Ranger District (USFS, 2010). A copy of the soil survey map for the Site is presented in Appendix A (Figure 4).

- The AA is mapped within soil type 0991CS. This soil is characterized by the Elkhorn, Prouty, and Hoffer components on 30 to 60 percent slopes.
 - o Elevations range from 6,273 to 7,037 feet amsl.
 - Soils are typically well-drained.
 - o The typical profile includes ashy sandy and silty loam, underlain by sandy to cobbly loam, with bedrock encountered at approximately 15 inches to 57 inches below ground surface.

9.2 Aerial Photograph Review

Aerial photographs can sometimes help identify historic areas of inundation and/or wetland features at a property. Evaluation of aerials is controlled by the photograph scale and quality. CES reviewed reasonably available aerial photographs depicting the Site and surrounding vicinity at periodic intervals (UO, 2009).

A total of 4 aerial photographs were available for review for the years 1956, 1971, 1994, and 2005. CES has summarized information from the review in Table C and provided copies of the aerial photographs in Appendix A (Figures A1-A4).

Table C. Aerial Photograph Review of the Site and Surrounding Areas

Date	Description
1956	The Site appears to be primarily forested, although a slight change in vegetation type is apparent at the assessment area. Waste rock piles are visible to the east and west. A cleared area adjacent to the south of the Site appears to have one structure. Remaining areas surrounding the Site are primarily forested.
1971	The Site and surrounding areas are relatively unchanged from the 1956 photograph.
1994	The Site appears to be primarily forested, with a very slight change in vegetation type depicted at the assessment area. A road is visible adjacent to the east of the Site, beyond which, is an apparent waste rock pile. Additional roadways and clearcuts are depicted to the north and west of the Site. The remaining areas are primarily forested.
2005	The Site and surrounding areas are relatively unchanged from the 1994 photograph.

As shown, a slight difference in vegetation type was visible at the AA in the available historic aerial photographs. The AA appears to have a more open canopy than the surrounding forested areas. Wetlands at the Site could not be deciphered on the aerial photographs.

9.3 <u>Historic Photograph - Monumental Mine</u>

CES has included a historic photograph of the Monumental Mine for reference purposes (Figure 6). The photograph depicts the 20-stamp mill, chlorination plant and exhaust, and approximate location of the upper settling pond in the AA (Baker County, 2009). Widespread Site alterations are visible in the photograph, including logging around the upper settling pond and headwaters of the unnamed tributary.

9.4 Rare, Threatened, and Endangered Species

A review of the possible presence of Rare, Threatened, and Endangered species was conducted as part of the SI (EA, 2003). The report identified the potential presence of the following species:

- Mid-Columbia River steelhead (federal threatened)
- Bull trout (federal threatened)
- Inland redband trout (species of concern)
- Westslope cutthroat trout (species of concern)
- Olive sided flycatcher (species of concern)
- Columbia spotted frog (state sensitive)

The presence of these species was not field verified during wetlands delineation activities. However, fish have been documented in the unnamed tributary to Granite Creek, which originates at the Site wetland.

10.0 WETLAND FUNCTIONAL ASSESSMENT

The purpose of the wetland functional assessment is to document wetlands and values anticipated to be lost as a result of the project and to assess mitigation success in terms of lost function and value replacement.

• The Oregon Rapid Wetland Assessment Protocol (ORWAP; Adamus et al., 2009) was used to evaluate the functions and values of the Site wetland. Using the ORWAP provides a rating score between 0 (low) and 10 (high) for selected wetland functions and values. The highest ratings identify the principle functions and values for a given wetland that should be protected or replaced (mitigated for), and lower ratings identify functions and values that may be improved during mitigation actions.

- The tables of ORWAP output scores calculated for the Site wetland are provided in Appendix D.
- Functions are the physical, chemical, and biological processes that characterize wetland ecosystems.
- ORWAP function scores rate the relative effectiveness of the wetland in performing each function.
- Values are the importance (worth) of wetland functions that include public attitude and the opportunity for a wetland to provide a specific function based on location.

Function and value scores are described in the Table D.

Table D. Oregon Rapid Wetland Assessment Protocol Function Scores for the Forest Service – Monumental Wetland

Function	Relative Effectiveness of the Function	Relative Value of the Function
Water Storage and Delay (WS)	0.00	2.92
Sediment Retention and Stabilization (SR)	7.17	2.94
Phosphorus Retention (PR)	9.08	4.18
Nitrate Removal and Retention (NR)	5.33	4.35
Thermoregulation (T)	0.00	0.00
Carbon Sequestration (CS)	4.19	
Organic Matter Export (OE)	0.00	
Aquatic Invertebrate Habitat (INV)	3.50	5.28
Anadromous Fish Habitat (FA)	0.00	0.33
Non-Anadromous Fish Habitat (FR)	1.50	10.00
Amphibian and Reptile Habitat (AM)	4.80	6.67
Waterbird Feeding Habitat (WBF)	0.33	4.50
Waterbird Nesting Habitat (WNH)	0.00	3.00
Songbird, Raptor, & Mammal Habitat (SBM)	5.28	3.33
Pollinator Habitat (PH)	4.95	5.00
Native Plant Diversity (PD)	3.33	5.14

As shown, function and value scores varied greatly for the Site wetland. Based on this:

- Potential enhancement opportunities are available for a number of components that scored low in the ORWAP assessment.
- Some functional components such as anadromous fish habitat cannot be enhanced since these species do not inhabit the uppermost headwaters of Granite Creek and tributaries.

Grouped services are considered a "roll-up" of individual functions and their associated values. A summary of grouped service function scores is provided in Table E.

Table E. Oregon Rapid Wetland Assessment Protocol Group Service Function and Value Scores for the Forest Service – Monumental Wetland

Grouped Service Function	Group Function Scores	Group Value Scores
Hydrologic Function (WS)	0.00	2.92
Water Quality Support Group	9.08	4.35
Carbon Sequestration Function	4.19	
Fish Support Group (FISH)	1.50	10.00
Aquatic Support Group (AQ)	4.80	6.67
Terrestrial Support Group (TERR)	5.28	5.14
Public Use & Recognition (PU)		0.83
Provisioning Services		0.00
Other Attributables		
Wetland Ecological Condition ¹		5.73
Wetland Stressors ²		6.44
Wetland Sensitivity ³		5.07

NOTES:

- 1 Condition is the integrity or health of a wetland based primarily on the vegetation component.
- 2 Stressors include the degree to which the wetland has been recently altered by, or exposed to risk, from human alterations.
- 3 Sensitivity is the resistance and resilience of a wetland to human and natural stressors.

11.0 RESULTS AND CONCLUSIONS

CES has completed a wetland delineation of the former settling ponds and riparian channel at the Forest Service Monumental Mine in Grant County, Oregon. Results of this delineation identified the following:

- Based on soil, vegetation, and hydrological conditions exhibited during the field investigation, one 0.08-acre PEM/riverine wetland was delineated at the Site.
- An assessment of functions and values was completed using ORWAP. The assessment identified a wide variety of component values.
- The highest function scores were for phosphorus retention and sediment retention and stabilization. Function scores of 0 were exhibited for water storage and delay, thermoregulation, organic matter export, anadromous fish habitat, and waterbird nesting habitat. Other low function scores were identified for non-anadromous fish habitat, waterbird feeding habitat, and native plant diversity.
- The ecological condition of the wetland, based solely on the vegetative component, scored 5.73. The stressor score, which measures alterations and risk to the wetland, measured 6.44. The wetland sensitivity score was 5.07.
- The ponds will likely need to be remediated as part of the CERCLA non-time critical RA at the Site.
- The wetland is considered to have a high potential for enhancement.
- Remediation of hazardous substances within the settling ponds will result in unavoidable impacts to
 the wetland. The RA must therefore include measures to avoid and minimize wetland impacts, and
 impacts to the unnamed tributary channel between the settling ponds should be avoided.

12.0 PROPOSED WETLAND IMPACTS AND MITIGATION OPTIONS

Remedial alternatives for the Monumental Mine are described in the EE/CA document. Proposed remedial actions at the Site may include removal of tailings from the settling ponds and restoration of the wetland system. The contaminated tailings are proposed to be disposed in an onsite repository.

- Compensatory mitigation is required for fill or excavation activities within a wetland.
- The proposed remedial action would excavate tailings from approximately 0.04 acres of wetland.
- To meet the 1:1 restoration mitigation ratio requirements approximately 0.04 to 0.06 acres of the excavated area will be restored to equivalent or enhanced pre-remediation functions and values.
- The actual acreage of excavated wetlands and subsequent final determination of restoration acreage can be verified following development of the final remedial design.

12.1 Mitigation Assumptions and Alternatives

12.1.1 Assumptions

The following assumptions have been developed with respect to wetland remedial activities:

- The Site waste rock and tailings piles will be excavated and disposed in an onsite repository. As such, sources of arsenic contamination, including the contaminated tailings within the AA, will be removed from the wetland and upslope sources.
- Since the source of arsenic contamination will be removed during the RA, the newly restored wetland system will not need to be engineered to treat contaminated water originating from the mine.

12.1.2 Goals

The primary objective of wetland restoration is promotion of native wetland characteristics with functions and values higher than pre-remediation conditions. To meet this objective, the following mitigation alternatives have been developed for the Site:

Mitigation options should include preservation of the current riparian areal extent, connecting the upper and middle settling ponds, and restoration of about 0.04 acres of wetland impacted from RA activities at the Site.

- Details of the wetland restoration, if completed, will be provided at a later date. Restoration may
 include replacement of contaminated tailings with clean organic fill and contouring to promote water
 retention within these areas.
- Target wetland types should resemble the current filled settling ponds and could include replanting of dominant species.
- As discussed in Section 9.4, the fish have been documented in the unnamed tributary to Granite
 Creek, which originates at the Site wetland. Moreover, federally threatened summer steelhead have
 been documented at the confluence of the unnamed tributary and Granite Creek. Therefore, water
 quality at the Site and downstream from the Site; fish and wildlife habitat; and human
 health/ecological considerations should be the key functions and values targeted for wetland
 restoration planning.
- The restoration will include post-construction monitoring and ORWAP assessment to verify enhanced wetland functions and values.

13.0 DISCLAIMER

This report documents the investigation, best professional judgment, and conclusions of the investigator. It is correct and complete to the best of CES' knowledge. It should be considered a Preliminary Jurisdictional Determination of wetlands and other waters of the state and used for CERCLA response actions conducted entirely on-site, where such action is selected and carried out in compliance with CERCLA Section 121(e)(1).

LITERATURE CITATIONS

- 1. 40 CFR 300.400(e). Code of Federal Regulations (CFR), Chapter 1 (7-1-03 Edition).
- 2. Adamus, P., J. Morlan, and K. Verble, 2009. Oregon Rapid Wetland Assessment Protocol (ORWAP): Calculator spreadsheet, databases, and data forms. Oregon Department of State Lands. Salem, Oregon.
- 3. Baker County, 2009. Monumental Mine Located 5 Miles NNE of Granite. Object I.D. 1981.1.1526. McCord Collection. Baker County Public Library, Baker, Oregon.
- 4. EA Engineering, Science, and Technology (EA), 2003. Site Inspection Report, Granite Creek Mines. U.S. Forest Service, Wallowa-Whitman National Forest.
- National Oceanic and Atmospheric Administration (NOAA), 2010. "NOAA Online Weather Data (NOWData), Meacham #2, (355394." http://www.weather.gov/climate/. NOAA National Weather Service website. Accessed January 4, 2009.
- 6. Oregon Administrative Rule [OAR] 141-090-0005 to 0055.
- 7. Oregon Department of State Lands (DSL), 2009. Wetland Determination/Determination Report Requirements Checklist. Division of State Lands, Salem, Oregon.
- 8. Reed, P.B., Jr., 1988. National List of Plant Species that Occur in Wetlands: Northwest (Region 9). U.S. Fish and Wildlife Service Biological Report 88(26.9). Washington D.C.
- 9. Reed, P.B., Jr., et al., 1993. Supplemental List to Plant Species that Occur in Wetlands: Northwest (Region 9). U.S. Fish and Wildlife Service Biological Report 88(26.9). Washington D.C.
- 10. University of Oregon (UO), 2009. Aerial photographs of AA: 1956, 1971, 1994, and 2005. University of Oregon Library System, Map Services Center. Eugene, Oregon.
- 11. U.S. Army Corps of Engineers (Corps), 2008. Interim Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region. U.S. Army Corps of Engineers Research and Development Center, Environmental Laboratory. Vicksburg, Mississippi.
- 12. U.S. Environmental Protection Agency (USEPA), 1992. Permits and Permit "Equivalency" Processes CERCLA On-site Responses. Memorandum dated February 19. Office of Solid Waste and Emergency Response. Directive 9355.7-03.
- 13. U.S. Forest Service (USFS), 2010. Monumental Mine Soil Sample Sites. Wallowa-Whitman National Forest, Baker Ranger District. Baker, Oregon

- 14. U.S. Fish and Wildlife Service (USFWS), 1994. National Wetlands Inventory, Mt. Ireland, Oregon. U.S. Department of the Interior. Fish and Wildlife Service, Washington, D.C.
- 15. United States Geological Survey (USGS), 1982. 7.5 Minute Series Topographic Map Mt. Ireland, Oregon. U.S. Geological Survey, Washington, D.C.
- 16. Western Regional Climate Center (WRCC), 2010. "Period of Record Monthly Climate Summary, Granite 4 WSW, Oregon (353430)." wrcc@dri.edu. Western Regional Climate Center website. Accessed January 4, 2010.

APPENDICES

A.	Maps		Aer	ial Photographs
	Figure 1.	Site Location Map	A1.	1956 Aerial Photograph
	Figure 2.	Tax Lot Map	A2.	1971 Aerial Photograph
	Figure 3.	National Wetland Inventory Map	A3.	1994 Aerial Photograph
	Figure 4.	Soil Survey Map	A4.	2005 Aerial Photograph
	Figure 5.	Wetland Delineation Map		
	Figure 6.	Historic Mine Photograph		

- B. Field Data Forms
- C. Ground Level Color Photographs
- D. Additional Tables and Information
 - ${\bf 1. \ Summary \ of \ Precipitation \ for \ 2008-2009 \ Water \ Year}$
 - 2. Precipitation Data from the NOAA Online Weather Database
 - 3. ORWAP Calculation Tables

Appendix A.

Maps

Figure 1. Site Location Map

Figure 2. Tax Lot Map

Figure 3. National Wetland Inventory Map

Figure 4. Soil Survey Map
Figure 5. Wetland Delineation Map Figure 6. Historic Mine Photograph

Aerial Photographs

A1. 1956 Aerial Photograph
A2. 1971 Aerial Photograph
A3. 1994 Aerial Photograph
A4. 2005 Aerial Photograph

Appendix B.

Field Data Forms

Project/Site: USFS – Monumental Mine	City/County	: 8 Miles	NE of Grani	ite, Oregon S	Sampling Date: _	10/1/2009
Applicant/Owner: <u>U.S. Forest Service, Wallowa-Whit</u>	itman National Forest State: Oregon Sampling Point: MMW-1					MMW-1
Investigator(s): Tobias/Otis	Section, Town	ship, Range	e: Sectio	n 18, Township 8 Sou	th, Range 36 Ea	st
Landform (hillslope, terrace, etc.): Hillslope	Lo	cal relief (c	oncave, cor	nvex, none): Conca	<u>ve</u> Slop	oe (%): <u>30</u>
Subregion (LRR): _E						
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (0991CS						
Are climatic / hydrologic conditions on the site typical for						
Are Vegetation X, Soil X, or Hydrology	-					Yes No >
Are Vegetation, Soil, or Hydrology						
SUMMARY OF FINDINGS – Attach site ma						
Hydrophytic Vegetation Present? Yes	NoX	Is th	e Sampled	Area		
	NoX		_	nd? Yes_	No	X
	NoX					
Remarks: Site conditions were altered significantly due to mining	a practices that h	nogan in 19	70 Thoan	os dolinostod includos	two cottling por	ads from the mine
with tailings material containing high concentrations of	f arsenic.	Jegan in 10	70. THE are	sa delineated includes	two setting pon	ds nom the mine
VEGETATION – Use scientific names of p	olants.					
		Dominant	Indicator	Dominance Test w	orksheet:	
<u>Tree Stratum</u> (Plot size: <u>20-foot radius</u>)		Species?		Number of Dominan		
1. Abies lasiocarpa				That Are OBL, FAC	W, or FAC:	1 (A)
2. Pinus contorta				Total Number of Do		
3				Species Across All S	Strata:	1 (B)
4		= Total Cov		Percent of Dominan		(4/5)
Sapling/Shrub Stratum (Plot size: 20-foot radius)		- Total Co	V C I	That Are OBL, FAC	W, or FAC:	0 (A/B)
Chimpaphilia umbellata	10	No		Prevalence Index v	vorksheet:	
2. Vaccinium spp	5	<u>No</u>		Total % Cover of		
3				OBL species		
4				FACW species		
5				FAC species		
Herb Stratum (Plot size: 20-foot radius)		= Total Co	ver	UPL species		
1. Fragaria virginiana	5	No	UPL	Column Totals:		
2. Fescue idahoensis	15	No	NI			. ,
3. Solidago canadensis			FACU		dex = B/A =	
4. Mertensia paniculata				Hydrophytic Veget		\$:
5				Dominance Tes Prevalence Inde		
6				Morphological A		ovide supporting
7 8				data in Rema	arks or on a sepa	arate sheet)
9.				Wetland Non-Va		
10				Problematic Hyd		
11.				¹ Indicators of hydric be present, unless of		
		= Total Cov		Do procent, amose o		Tomatio.
Woody Vine Stratum (Plot size:)						
1				Hydrophytic Vegetation		
2		= Total Cov			Yes N	lo <u>X</u>
% Bare Ground in Herb Stratum		_ 10ta1 C0	v G1			
Remarks:						
1						

OIL							Sampling Point: <u>MMW-1</u>
Profile Des	cription: (Describ	e to the de	pth needed to docur	ment the indicator	or confirn	n the absence	of indicators.)
Depth	Matrix		Redo	x Features			
(inches)	Color (moist)	%	Color (moist)	% Type ¹	Loc ²	Texture	Remarks
0-4"			· -	. <u> </u>		Duff/Litter	
4-15"	10YR 2/2	100				Loamy silt	Dark brown
15-18"	2.5YR 3/2	100					
10 10	2.011(0/2		-	·			
	· · · · · · · · · · · · · · · · · · ·			·			
							
				- <u> </u>			
			·	<u> </u>			
¹ Type: C=C	concentration, D=De	pletion, RN	M=Reduced Matrix, CS	S=Covered or Coate	ed Sand Gi	rains. ² Loc	cation: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Appl	cable to a	I LRRs, unless other	rwise noted.)		Indicato	rs for Problematic Hydric Soils ³ :
Histoso	` '		Sandy Redox (•		_	n Muck (A10)
	pipedon (A2)		Stripped Matrix	` '			Parent Material (TF2)
	listic (A3) en Sulfide (A4)		Loamy Mucky N	Mineral (F1) (excep	t MLRA 1)	Otne	er (Explain in Remarks)
	ed Below Dark Surfa	ice (A11)	Depleted Matrix				
	ark Surface (A12)	(7111)	Redox Dark Su			³ Indicato	rs of hydrophytic vegetation and
	Mucky Mineral (S1)		Depleted Dark	, ,			nd hydrology must be present,
	Gleyed Matrix (S4)		Redox Depress	sions (F8)		unles	s disturbed or problematic.
Restrictive	Layer (if present):						
Type:							
Type:	nches):					Hydric Soil	Present? Yes No X
Type: Depth (in						Hydric Soil	Present? Yes No <u>X</u>
Type: Depth (in Remarks:	nches):					Hydric Soil	Present? Yes No X
Type: Depth (in Remarks:	oches):					Hydric Soil	Present? Yes No X
Type: Depth (in Remarks: IYDROLC Wetland Hy	OGY vdrology Indicators	3:		vi)			
Type:	OGY rdrology Indicators	3:	ed; check all that appl		veent MIL	Secon	ndary Indicators (2 or more required)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface	OGY rdrology Indicators cators (minimum of	3:	ed; check all that appl	ined Leaves (B9) (e	except MLI	Secon	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High W.	OGY vdrology Indicators cators (minimum of Water (A1) ater Table (A2)	3:	ed; check all that appl Water-Sta 1, 2, 4	ined Leaves (B9) (e A, and 4B)	xcept MLI	<u>Secor</u> RA W	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High Woods	OGY rdrology Indicators cators (minimum of Water (A1) ater Table (A2) ion (A3)	3:	ed; check all that appl Water-Sta 1, 2, 44 Salt Crust	ined Leaves (B9) (e A, and 4B) (B11)	xcept MLI	<u>Secor</u> R A W	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High Wi Saturati Water M	ordes):	3:	ed; check all that appl Water-Sta 1, 2, 4,4 Salt Crust Aquatic In	ined Leaves (B9) (eA, and 4B) (B11) vertebrates (B13)	xcept MLI	<u>Secor</u> RA W D D	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High Wi Saturati Water M	order (A1) ater Table (A2) ion (A3) Marks (B1) arthur Deposits (B2)	3:	ed; check all that appl Water-Sta Salt Crust Aquatic In: Hydrogen	ined Leaves (B9) (eA, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1)	·	<u>Secor</u> RA W D D S.	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10)
Type: Depth (in Remarks: IYDROLC Wetland Hy Primary Indi Surface High Water Mater Mater Mater Mater Mater Mater Mater Drift De	order (A1) ater Table (A2) ion (A3) Marks (B1) arthur Deposits (B2)	3:	ed; check all that appl Water-Sta 1, 2, 44 Salt Crust Aquatic In Hydrogen Oxidized F	ined Leaves (B9) (eA, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1)	Living Roc	Secor RA V D D S ots (C3) G	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (CS
Type: Depth (in Remarks: IYDROLC Wetland Hy Primary Indi Surface High Water Mater Mater Mater Mater Mater Mater Mater Drift De	ordes): OGY Indicators Indi	3:	ed; check all that appl Water-Sta 1, 2, 44 Salt Crust Aquatic In: Hydrogen Oxidized F Presence	ined Leaves (B9) (e A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along	Living Roo 4)	Secor RA D D S. ots (C3) G S	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (CS) eomorphic Position (D2)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De	ordes): OGY Indicators Indi	3:	ed; check all that appl Water-Sta 1, 2, 4 Salt Crust Aquatic In: Hydrogen Oxidized F Presence Recent Iro	ined Leaves (B9) (e A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C-	Living Roc 4) d Soils (C6	Secon RA W D S Sots (C3) G S S	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (Cs) eomorphic Position (D2) hallow Aquitard (D3)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High W Saturati Water M Sedime Drift De Algal M Iron De Surface	OGY rdrology Indicators icators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) ant Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	s: one requir	ed; check all that appl Water-Sta 1, 2, 44 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Stunted or	ined Leaves (B9) (e A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con In Reduction in Tille	Living Roc 4) d Soils (C6	Secor RA W D S S S S S S S S	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (CS) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5)
Type:	OGY rdrology Indicators cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) ant Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6)	s: one require	ed; check all that appl Water-Sta 1, 2, 44 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Stunted or 37) Other (Exp	ined Leaves (B9) (eA, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille	Living Roc 4) d Soils (C6	Secor RA W D S S S S S S S S	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (CS) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
Type: Depth (in Remarks: IYDROLC Wetland Hy Primary Indi Surface High Water N Sedime Drift De Algal M Iron De Surface Inundat Sparsel	ordes): OGY Indicators Indicato	s: one require	ed; check all that appl Water-Sta 1, 2, 44 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Stunted or 37) Other (Exp	ined Leaves (B9) (eA, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille	Living Roc 4) d Soils (C6	Secor RA W D S S S S S S S S	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (CS) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De Surface Inundat Sparsel Field Obser	OGY rdrology Indicators icators (minimum of water (A1) ater Table (A2) ion (A3) Marks (B1) ant Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6) ion Visible on Aeria by Vegetated Conca rvations: ter Present?	one require I Imagery (I	ed; check all that appl Water-Sta 1, 2, 44 Salt Crust Aquatic In: Hydrogen Oxidized F Presence Recent Iro Stunted or Other (Exp.	ined Leaves (B9) (eA, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (Dolain in Remarks)	Living Roo 4) d Soils (C6 1) (LRR A	Secor RA W D S S S S S S S S	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (CS) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
Type: Depth (in Remarks: IYDROLO Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De Surface Inundat Sparsel Field Obser	ordes):	one require I Imagery (Ive Surface Yes	ed; check all that appl Water-Sta 1, 2, 4,4 Salt Crust Aquatic In: Hydrogen Oxidized F Presence Recent Iro Stunted or 37) (B8)	ined Leaves (B9) (eA, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (Dolain in Remarks) ches):	Living Roc 4) d Soils (C6 1) (LRR A	Secor RA	ndary Indicators (2 or more required) /ater-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (CS) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)

Remarks:

Project/Site: <u>USFS – Monumental Mine</u>	City/County	: 8 Miles	NE of Grani	te, Oregon Sampl	ling Date: 10/1/2009	
Applicant/Owner: <u>U.S. Forest Service, Wallowa-Whitr</u>	man National Forest State: Oregon Sampling Point: MMW-2					
Investigator(s):	Section, Towns	ship, Rang	e: Section	n 18, Township 8 South, Ra	ange 36 East	
Landform (hillslope, terrace, etc.): Hillslope	Lo	cal relief (c	concave, cor	ivex, none): Concave	Slope (%): 0	_
Subregion (LRR): E	Lat: N 44°	51.618	Long:	W 118° 21.225'	Datum: <u>NAD 1983</u>	
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (0991C						
Are climatic / hydrologic conditions on the site typical for						
Are Vegetation X, Soil X, or Hydrology	-					o >
Are Vegetation, Soil, or Hydrology						
SUMMARY OF FINDINGS – Attach site ma						etc.
Hydrophytic Vegetation Present? Yes X	No					
	No		ne Sampled	Area nd?	No	
Wetland Hydrology Present? Yes X	No	Witi	iiii a vvetiai	iu: les X	NO	
Remarks:						
Site conditions were altered significantly due to mining with tailings material containing high concentrations of	practices that barsenic.	egan in 18	370. The are	ea delineated includes two	settling ponds from the mi	ne
VEGETATION – Use scientific names of p	lants.					
		Dominant		Dominance Test worksh	heet:	
Tree Stratum (Plot size:) 1	% Cover			Number of Dominant Spe That Are OBL, FACW, or	ecies FAC: <u>2</u> (A	A)
2				Total Number of Dominar	nt	
3				Species Across All Strata	a: <u>3</u> (E	B)
4				Percent of Dominant Spe		
Sapling/Shrub Stratum (Plot size: _20-foot radius)		= Total Co	ver	That Are OBL, FACW, or	FAC: <u>67</u> (A	A/B)
1. Alnus tenuifolia	5	No	FACW	Prevalence Index works	sheet:	
2. Ribes lacustre	5	No	FAC+	Total % Cover of:	Multiply by:	
3. Ribes spp	5	No		OBL species	x 1 =	
4				FACW species		
5				FAC species		
Herb Stratum (Plot size: 20-foot radius)	15	= Total Co	over	FACU species		
1. Allium validium	30	Yes	OBL	UPL species	X S =	(B)
2. Glyceria elata	0.5		FACW	Coldinii Totals.	(^)	(D)
3. Senecio triangularis	5	No	FACW+	Prevalence Index =	= B/A =	
4. Solidago canadensis	<1	No	FACU	Hydrophytic Vegetation		
5. Saxifraga punctata		Yes	FAC	X Dominance Test is >		
6. <u>Liverwort spp</u>				Prevalence Index is s		
7. Moss spp				data in Remarks of	ations ¹ (Provide supporting or on a separate sheet)	g
8.				Wetland Non-Vascula	ar Plants ¹	
9				Problematic Hydroph	nytic Vegetation ¹ (Explain)	
10 11					and wetland hydrology mus	st
		= Total Co		be present, unless disturb	bed or problematic.	
Woody Vine Stratum (Plot size:)						
1				Hydrophytic Vegetation		
2					X No	
% Bare Ground in Herb Stratum10		= Total Co	ver			
Remarks:				L		

SOIL Sampling Point: MMW-2

Profile Desc	ription: (Describe	to the depth	needed to document the indicator or confi	rm the abse	nce of indic	ators.)
Depth	<u>Matrix</u>		Redox Features			5
(inches)	Color (moist)	%	Color (moist) % Type ¹ Loc ²	Texture		Remarks
0-5"	7.5YR 3/1	100		<u>Clayey si</u>	lt <u>Dark</u>	brown
<u>5-10"</u>	7.5YR 4/4	100		Coarse s	and Brow	n/orange
10-18"	5YR 5/2	100		Tailings	Pink/	/brown/gray
				_		
				_		
				_		·
						
			educed Matrix, CS=Covered or Coated Sand			L=Pore Lining, M=Matrix.
-		cable to all LR	RRs, unless otherwise noted.)			roblematic Hydric Soils ³ :
Histosol	` '	_	_ Sandy Redox (S5)		2 cm Muck (,
Histic Ep	nipedon (A2)	_	Stripped Matrix (S6)Loamy Mucky Mineral (F1) (except MLRA	· · · · · · · · · · · · · · · · · · ·		Material (TF2)
	n Sulfide (A4)	_	Loamy Gleyed Matrix (F2)	') '	Jiriei (Expia	in in Remarks)
	Below Dark Surfac	e (A11)	C Depleted Matrix (F3)			
	ark Surface (A12)		Redox Dark Surface (F6)	³ Indi	cators of hyd	Irophytic vegetation and
X Sandy M	lucky Mineral (S1)	_	Depleted Dark Surface (F7)			ology must be present,
Sandy G	leyed Matrix (S4)	<u> </u>	_ Redox Depressions (F8)	uı	nless disturb	ed or problematic.
Restrictive L	ayer (if present):					
Type:			<u> </u>			
Depth (inc	ches):		<u> </u>	Hydric S	Soil Present	? Yes <u>X</u> No
Remarks: Co	ontaminated mine ta	ailings encoun	tered from 10-18".			
HYDROLO	GV.					
		_				
-	drology Indicators		shoot all that and A	0		
		one requirea; o	check all that apply)		-	licators (2 or more required)
X Surface	` '		Water-Stained Leaves (B9) (except M	LRA		ined Leaves (B9) (MLRA 1, 2,
_	ater Table (A2)		1, 2, 4A, and 4B)		4A, an	
X Saturation	` ,		Salt Crust (B11)	_	_	Patterns (B10)
Water M			Aquatic Invertebrates (B13)			on Water Table (C2)
· · · · · · · · · · · · · · · · · · ·	nt Deposits (B2) posits (B3)		Hydrogen Sulfide Odor (C1)Oxidized Rhizospheres along Living R	·	_	Visible on Aerial Imagery (C9)
	it or Crust (B4)		Presence of Reduced Iron (C4)			quitard (D3)
Iron Dep			Recent Iron Reduction in Tilled Soils (·		ral Test (D5)
	Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR			nt Mounds (D6) (LRR A)
	on Visible on Aerial	Imagery (B7)	Other (Explain in Remarks)			ve Hummocks (D7)
	Vegetated Concav					(= :)
Field Observ			,			
Surface Wate	er Present?	res X No	Depth (inches): At surface			
Water Table			Depth (inches):			
Saturation Pr				etland Hydro	logy Preser	nt? Yes <u>X</u> No
(includes cap		7 <u>7</u> 110	Bopan (monoo).	riiana myano	.097000.	160 <u>-X</u>
Describe Red 1994 and 200		n gauge, monit	toring well, aerial photos, previous inspections	s), if available	: Aerial Pho	otos reviewed from 1956, 1971,
Remarks:						

Project/Site: USFS – Monumental Mine	City/County	: 8 Miles NE of Gra	nite, Oregon Sampl	ling Date: 10/1/2009
Applicant/Owner: <u>U.S. Forest Service, Wallowa-Whit</u>	man National Fo	orest State	e: <u>Oregon</u> Samp	ling Point: MMW-3
Investigator(s): Tobias/Otis	Section, Town	ship, Range: Secti	ion 18, Township 8 South, Ra	ange 36 East
Landform (hillslope, terrace, etc.): Hillslope		· -		-
Subregion (LRR): E				
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (0991C				
Are climatic / hydrologic conditions on the site typical fo				
	-			
Are Vegetation X, Soil X, or Hydrology				
Are Vegetation, Soil, or Hydrology SUMMARY OF FINDINGS – Attach site ma				
	•			
	No X No X	Is the Sample		
	No <u>X</u>	within a Wetla	and? Yes	No <u></u>
Remarks:	<u> </u>			
Site conditions were altered significantly due to mining with tailings material containing high concentrations of	g practices that I f arsenic.	began in 1870. The a	rea delineated includes two	settling ponds from the mine
VEGETATION – Use scientific names of p	lants.			
Tron Stratum (Plot aiza: 20 fact radius)	Absolute			
Tree Stratum (Plot size: 20-foot radius) 1. Abies lasiocarpa		Species? Status	- I Number of Dominant Spe	ecies FAC: <u> </u>
Larix occidentalis		Yes FACU+		
3. Pinus contorta		No FAC-	 Total Number of Dominar Species Across All Strata 	
4. Abies grandis			· ·	
Sapling/Shrub Stratum (Plot size: 20-foot radius)		= Total Cover	Percent of Dominant Spe That Are OBL, FACW, or	cies FAC: <u>0</u> (A/B)
1.			Prevalence Index works	sheet:
2.			Total % Cover of:	Multiply by:
3.			OBL species	x 1 =
4			FACW species	x 2 =
5			FAC species	x 3 =
(5)	0	= Total Cover	FACU species	
Herb Stratum (Plot size: 20-foot radius)	20	Van FACU	UPL species	
1. Pyrolla secunda			- Column Totals:	(A) (B)
2			- Prevalence Index =	= B/A =
3 4			Hydrophytic Vegetation	
5			Dominance Test is >	
6.			Prevalence Index is	≤3.0 ¹
7			Morphological Adapt	ations ¹ (Provide supporting or on a separate sheet)
8.			Wetland Non-Vascul	
9			Problematic Hydroph	ytic Vegetation ¹ (Explain)
10.				and wetland hydrology must
11		= Total Cover	be present, unless disturb	ped or problematic.
Woody Vine Stratum (Plot size:)		= Total Cover		
1.			Hydrophytic	
2			Vegetation Present? Yes	No <u>X</u>
		= Total Cover	11030111: 165	NU <u> </u>
% Bare Ground in Herb Stratum 80 Remarks:				
INGINAINS.				

SOIL Sampling Point: MMW-3

Profile Desc	cription: (Describe	to the dep	th needed to document the indicator or o	confirm	the absence of indicators.)
Depth	Matrix Color (moist)	%	Redox Features Color (moist) % Type ¹ L	oc²	Toytura Pomorka
(inches)	Color (moist)		Color (moist) % Type ¹ L		Texture Remarks
0-5"	-				Duff/Litter
5-8"	5YR 5/2	100			Tailings Pink/brown
8-13"	10YR 2/2	100			Loamy silt Dark brown
13-18"	2.5YR	100			Loamy silt Brown
				 -	
			=Reduced Matrix, CS=Covered or Coated S LRRs, unless otherwise noted.)	and Gra	ains. ² Location: PL=Pore Lining, M=Matrix. Indicators for Problematic Hydric Soils ³ :
-		cable to all			•
Histosol	oipedon (A2)		Sandy Redox (S5) Stripped Matrix (S6)		2 cm Muck (A10) Red Parent Material (TF2)
	istic (A3)		_RA 1)	Other (Explain in Remarks)	
	en Sulfide (A4)		Loamy Mucky Mineral (F1) (except MLLoamy Gleyed Matrix (F2)		<u> </u>
	d Below Dark Surfac	ce (A11)	Depleted Matrix (F3)		
	ark Surface (A12)		Redox Dark Surface (F6)		³ Indicators of hydrophytic vegetation and
	Mucky Mineral (S1)		Depleted Dark Surface (F7)		wetland hydrology must be present,
	Bleyed Matrix (S4) Layer (if present):		Redox Depressions (F8)	1	unless disturbed or problematic.
Type:	-l\-				Hudria Cail Brasanto Van Na V
Depth (in	,				Hydric Soil Present? Yes No X
Remarks: C	ontaminated tailings	8 -c mon 8			
HYDROLO	GY				
Wetland Hy	drology Indicators	:			
Primary India	cators (minimum of	one require	d; check all that apply)		Secondary Indicators (2 or more required)
Surface	Water (A1)		Water-Stained Leaves (B9) (exce	pt MLR	A Water-Stained Leaves (B9) (MLRA 1, 2,
High Wa	ater Table (A2)		1, 2, 4A, and 4B)	-	4A, and 4B)
Saturation	on (A3)		Salt Crust (B11)		Drainage Patterns (B10)
Water M	larks (B1)		Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)
Sedimer	nt Deposits (B2)		Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)
Drift Dep	posits (B3)		Oxidized Rhizospheres along Livi	ng Roots	s (C3) Geomorphic Position (D2)
Algal Ma	at or Crust (B4)		Presence of Reduced Iron (C4)		Shallow Aquitard (D3)
Iron Dep	oosits (B5)		Recent Iron Reduction in Tilled So	oils (C6)	FAC-Neutral Test (D5)
_	Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR A)	
		Imagani (D	7) Other (Explain in Remarks)		Frost-Heave Hummocks (D7)
	on Visible on Aerial				
Sparsely	y Vegetated Concav		B8)		
Sparsely Field Obser	y Vegetated Concav	ve Surface (,		
Sparsely Field Obser Surface Water	y Vegetated Concav vations: er Present?	ve Surface (No X Depth (inches):		
Sparsely Field Obser Surface Wate Water Table	y Vegetated Concavorations: er Present?	ve Surface (,		
Sparsely Field Obser Surface Wate Water Table Saturation P	y Vegetated Concavorations: er Present? Present?	ve Surface (Yes Yes	No X Depth (inches):	Wetlar	nd Hydrology Present? Yes No <u>X</u>
Field Obser Surface Water Table Saturation P (includes cap	y Vegetated Concavorations: er Present? Present? resent? pillary fringe) corded Data (stream	ye Surface (Yes Yes Yes	NoX Depth (inches): NoX Depth (inches): NoX Depth (inches):		nd Hydrology Present? Yes No _X f available: Aerial Photos reviewed from 1956, 1971,
Sparsely Field Obser Surface Water Table Saturation P (includes cap Describe Re	y Vegetated Concavorations: er Present? Present? resent? pillary fringe) corded Data (stream	ye Surface (Yes Yes Yes	NoX Depth (inches): NoX Depth (inches): NoX Depth (inches):		
Sparsely Field Obser Surface Wate Water Table Saturation P (includes cap Describe Re 1994 and 20	y Vegetated Concavorations: er Present? Present? resent? pillary fringe) corded Data (stream	ye Surface (Yes Yes Yes	NoX Depth (inches): NoX Depth (inches): NoX Depth (inches):		
Sparsely Field Obser Surface Wate Water Table Saturation P (includes cap Describe Re 1994 and 20	y Vegetated Concavorations: er Present? Present? resent? pillary fringe) corded Data (stream	ye Surface (Yes Yes Yes	NoX Depth (inches): NoX Depth (inches): NoX Depth (inches):		
Sparsely Field Obser Surface Wate Water Table Saturation P (includes cap Describe Re 1994 and 20	y Vegetated Concavorations: er Present? Present? resent? pillary fringe) corded Data (stream	ye Surface (Yes Yes Yes	NoX Depth (inches): NoX Depth (inches): NoX Depth (inches):		

Project/Site: USFS – Monumental Mine	City/County	: 8 Miles NE of Gr	ranite, Oregon	Sampling Date:	10/1/2009
Applicant/Owner: U.S. Forest Service, Wallowa-Whit	tman National Fo	orest Sta	ate: Oregon	Sampling Point: _	MMW-4
Investigator(s): Tobias/Otis	_ Section, Town	ship, Range: Sec	ction 18, Township 8 So	uth, Range 36 Eas	st
Landform (hillslope, terrace, etc.): Hillslope	Lo	ocal relief (concave,	convex, none): Conc	ave Slop	e (%): <u>20</u>
Subregion (LRR): _E	Lat: N 44°	° 51.630' Loi	ng: W 118° 21.244'	Datum:	NAD 1983
Soil Map Unit Name: <u>Elkhorn, Prouty, Hoffer (0991</u>					
Are climatic / hydrologic conditions on the site typical for					
Are Vegetation X, Soil X, or Hydrology	-				∕es No >
Are Vegetation, Soil, or Hydrology					
SUMMARY OF FINDINGS – Attach site m					
Hydrophytic Vegetation Present? Yes	NoX				
	NoX	Is the Samp	oled Area etland?	No	v
Wetland Hydrology Present? Yes	NoX	Within a We	tiana: res_		<u>~</u>
Remarks:					
Site conditions were altered significantly due to minin with tailings material containing high concentrations of	g practices that I of arsenic.	began in 1870. The	area delineated include	s two settling pon	ds from the mine
VEGETATION – Use scientific names of p	olants.				
Tree Stratum (Plot size: _20-foot radius_)		Dominant Indicate	_		
Abies lasiocarpa 1. Abies lasiocarpa	<u> </u>	Species? Status Yes FACU	Number of Domina		0 (A)
Picea engelmannii					(/,)
3			Total Number of D Species Across All		2 (B)
4		- <u></u>	,		
Sapling/Shrub Stratum (Plot size: 20-foot radius)	50	= Total Cover	Percent of Domina That Are OBL, FAC		0 (A/B)
Chimpaphilia umbellata	5	<u>No</u>	Prevalence Index	worksheet:	
2				of: Mu	
3.			OBL species		
4			FACW species FAC species		
5		= Total Cover	FACU species		
Herb Stratum (Plot size: 20-foot radius)		_ = Total Cover	UPL species		
1. Pyrola secunda	5	No FACU	Column Totals:		
2			_		
3				ndex = B/A =	
4			Hydrophytic Vege Dominance Te		•
5			-		
6			Morphological		vide supporting
8			Wetland Non-\	•	ilato circot,
9			Problematic H		tion¹ (Explain)
10.			Indicators of hydri		
11		= Total Cover	be present, unless	disturbed or probl	ematic.
Woody Vine Stratum (Plot size:)		= Total Cover			
1			Hydrophytic		
2			Vegetation Present?	Yes N	o X
% Bare Ground in Herb Stratum 95		= Total Cover			
Remarks:					

MW-4

(inches)	Color (moist)	%	Color (moist)	<u>% T</u>	ype ¹	Loc ²	Texture		Remark	(S	
0-3"							Duff/Litter				
3-5"	5YR 5/2	100		<u> </u>			Tailings	Pink/bro	wn		
5-14"	10YR 2/2	100					Loamy silt	Dark bro	own		
14-18	2.5YR 3/2	100					Loamy silt	Brown			
				- — — — - — — —							
¹ Type: C=0	Concentration, D=Dep	oletion, RM	=Reduced Matrix, CS	S=Covered or	Coated	Sand G		ation: PL=			
Hydric Soil	Indicators: (Applic	able to all	LRRs, unless other	rwise noted.))		Indicato	rs for Prob	lematic Hy	dric Soils	3.
Histoso	ol (A1)		Sandy Redox (S5)			2 cm	n Muck (A10	0)		
Histic E	pipedon (A2)		Stripped Matrix	(S6)			Red Parent Material (TF2)				
Black F	Histic (A3)		Loamy Mucky N	√lineral (F1) (€	except N	ILRA 1)	Other (Explain in Remarks)				
Hydrog	en Sulfide (A4)		Loamy Gleyed	Matrix (F2)							
Deplete	ed Below Dark Surfac	e (A11)	X Depleted Matrix								
Thick D	Oark Surface (A12)	, ,	Redox Dark Su	rface (F6)			³ Indicators of hydrophytic vegetation and				
Sandy	Mucky Mineral (S1)		Depleted Dark	Surface (F7)			wetla	wetland hydrology must be present,			
Sandy	Gleyed Matrix (S4)		Redox Depress	ions (F8)			unles	s disturbed	or problem	atic.	
Restrictive	Layer (if present):			-							-
Type:											
Depth (ir	nches):						Hydric Soil	Present?	Yes	No	Х
Remarks: (Contaminated tailings	present at	3-5"				- L				

HYDROLOGY

TIT DIGEOGI									
Wetland Hydrology Indica	tors:								
Primary Indicators (minimum	n of one req	uired; chec	k all that apply)		Secondary Indicators (2 or more required)				
Surface Water (A1)		_	Water-Stained Leaves (B9) (exc	ept MLRA	Water-Stained Leaves (B9) (MLRA 1, 2,				
High Water Table (A2)			1, 2, 4A, and 4B)		4A, and 4B)				
Saturation (A3)		_	Salt Crust (B11)		Drainage Patterns (B10)				
Water Marks (B1)			Dry-Season Water Table (C2)						
Sediment Deposits (B2))		Saturation Visible on Aerial Imagery (C9)						
Drift Deposits (B3)		Geomorphic Position (D2)							
Algal Mat or Crust (B4)		Shallow Aquitard (D3)							
Iron Deposits (B5)		FAC-Neutral Test (D5)							
Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A)					Raised Ant Mounds (D6) (LRR A)				
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)					Frost-Heave Hummocks (D7)				
Sparsely Vegetated Co	ncave Surfa	ce (B8)							
Field Observations:									
Surface Water Present?	Yes	No	X Depth (inches):						
Water Table Present?	Yes	No	X Depth (inches):						
Saturation Present?	Yes	No	X Depth (inches):	Wetland Hyd	drology Present? Yes No X				
(includes capillary fringe)									
Describe Recorded Data (st 1994 and 2005.	ream gauge	e, monitorin	ig well, aerial photos, previous inspe	ctions), if availa	ble: Aerial Photos reviewed from 1956, 1971,				
Remarks:									

Project/Site: USFS – Monumental Mine	_ City/County	: 8 Miles	NE of Grani	te, Oregon Sampl	ing Date: 10/1/2009
Applicant/Owner: <u>U.S. Forest Service, Wallowa-Whitm</u>	an National Fo	rest	State:	Oregon Sampl	ling Point: MMW-5
Investigator(s):	Section, Towns	ship, Rang	ge: <u>Sectio</u>	n 18, Township 8 South, Ra	ange 36 East
Landform (hillslope, terrace, etc.): Hillslope	Lo	cal relief (concave, cor	ivex, none): Concave	Slope (%): <u>10</u>
Subregion (LRR): <u>E</u>	Lat: <u>N 44</u> °	51.629	Long:	W 118° 21.234'	Datum: <u>NAD 1983</u>
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (0991CS					
Are climatic / hydrologic conditions on the site typical for					
Are Vegetation X, Soil X, or Hydrology X	-				
Are Vegetation, Soil, or Hydrology					
SUMMARY OF FINDINGS – Attach site maj					
Hydrophytic Vegetation Present? Yes X	No				
Hydric Soil Present? Yes X			he Sampled		N I.
Wetland Hydrology Present? Yes X	No	Wit	nın a vvetiar	nd? Yes X	NO
Remarks:					
Site conditions were altered significantly due to mining with tailings material containing high concentrations of a	practices that barsenic.	pegan in 1	870. The are	ea delineated includes two s	settling ponds from the mine
VEGETATION – Use scientific names of pla	ants.				
			t Indicator	Dominance Test worksh	neet:
Tree Stratum (Plot size:) 1			? Status	Number of Dominant Spe That Are OBL, FACW, or	ecies FAC: <u>3</u> (A)
2				Total Number of Dominar	nt
3				Species Across All Strata	: <u>3</u> (B)
4				Percent of Dominant Spe	
Sapling/Shrub Stratum (Plot size: 20-foot radius)		= Total Co	over	That Are OBL, FACW, or	FAC: 100 (A/B)
1. Alnus tenuifolia	5	No	FACW	Prevalence Index works	sheet:
2				Total % Cover of:	Multiply by:
3				OBL species	x 1 =
4				FACW species	
5				FAC species	
Herb Stratum (Plot size: _20-foot radius)	5	= Total C	over	FACU species	
1. Alium validium	30	Yes	OBL	UPL species	
2. Glyceria elata	30	Yes	FACW	Coldinii Totais.	(A) (D)
3. Heracleum lanatum	<1	No	FAC		= B/A =
4. Solidago canadensis	5	No	FACU	Hydrophytic Vegetation	
Saxifraga punctata	10	Yes	FAC	X Dominance Test is >	
6. grass spp		No		Prevalence Index is s	
7. Moss spp					ations ¹ (Provide supporting or on a separate sheet)
8. Viola spp			<u></u>	Wetland Non-Vascula	ar Plants ¹
Mimulus spp (moschatus)? Mertensia paniculata	_		FACW+ FACW	Problematic Hydroph	nytic Vegetation ¹ (Explain)
Mertensia paniculata Sandwort spp		No			and wetland hydrology must
Th. Canawort spp		= Total Co		be present, unless disturb	ped or problematic.
Woody Vine Stratum (Plot size:)					
1				Hydrophytic	
2				Vegetation Present? Yes	X No
% Bare Ground in Herb Stratum11		= Total Co	over		
Remarks:				<u>I</u>	

SOIL Sampling Point: MMW-5

Profile Desc	ription: (Describe	to the depth	needed to document the indicator or cor	nfirm the abs	ence	of indicators.)
Depth	Matrix		Redox Features	2 - .		5
(inches)	Color (moist)	%	Color (moist) % Type ¹ Loc			Remarks
0-8"	2.5YR 2.5/1	100		Clayey	<u>silt</u>	Black
8-9"	7.5YR 3/2	100		Clayey	<u>sand</u>	Brown
9-18"	Gley 3/5G	100		Clay		Gleyed
1- 0.0					2,	
			educed Matrix, CS=Covered or Coated San RRs, unless otherwise noted.)			ation: PL=Pore Lining, M=Matrix. rs for Problematic Hydric Soils ³ :
Histosol		able to all Li	Sandy Redox (S5)			Muck (A10)
	ipedon (A2)	_	Stripped Matrix (S6)			Parent Material (TF2)
Black His		_	Loamy Mucky Mineral (F1) (except MLR	——————————————————————————————————————		r (Explain in Remarks)
	n Sulfide (A4)		Loamy Gleyed Matrix (F2)			(=
	Below Dark Surfac	ce (A11)	C Depleted Matrix (F3)			
Thick Da	rk Surface (A12)		Redox Dark Surface (F6)			rs of hydrophytic vegetation and
	ucky Mineral (S1)	_	_ Depleted Dark Surface (F7)			nd hydrology must be present,
	leyed Matrix (S4)		_ Redox Depressions (F8)		unles	s disturbed or problematic.
	ayer (if present):					
Type:			<u> </u>			
Depth (inc	,		_	Hydric	Soil	Present? Yes <u>X</u> No
Remarks: Po	ossible iron/reducing	g conditions fro	om 9-18".			
HYDROLO	ev.					
		_				
•	Irology Indicators		check all that apply)		Saaan	dany Indicators (2 or more required)
-	•	one requirea; o	***			dary Indicators (2 or more required)
X Surface	` ,		Water-Stained Leaves (B9) (except	MLKA _	vv	ater-Stained Leaves (B9) (MLRA 1, 2,
_	ter Table (A2)		1, 2, 4A, and 4B)		-	4A, and 4B)
X Saturation	` '		Salt Crust (B11)	_		rainage Patterns (B10)
Water Ma	` '		Aquatic Invertebrates (B13)			ry-Season Water Table (C2)
	nt Deposits (B2)		Hydrogen Sulfide Odor (C1)	·-		aturation Visible on Aerial Imagery (C9)
Drift Dep	t or Crust (B4)		Oxidized Rhizospheres along LivingPresence of Reduced Iron (C4)			nallow Aquitard (D3)
X Iron Dep	` ,		Recent Iron Reduction in Tilled Soils	_		AC-Neutral Test (D5)
	Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LR			aised Ant Mounds (D6) (LRR A)
	on Visible on Aerial	Imagery (B7)	Other (Explain in Remarks)			ost-Heave Hummocks (D7)
	Vegetated Concav			-	— ''	ost ricave riaminooks (B1)
Field Observ		C Canado (Bo				
Surface Water		res X No	Depth (inches): At surface			
Water Table			Depth (inches):			
Saturation Pr				Watland Hudr	ology	Present? Yes X No
(includes cap		163 <u>X</u> NC	Deptif (inches). At surface	wedana nyai	ology	Tresent: Tes X NO
Describe Red	corded Data (stream	n gauge, moni	toring well, aerial photos, previous inspection	ons), if availab	le: A	erial Photos reviewed from 1956, 1971,
1994 and 200						
Remarks:						

Project/Site: USFS – Monumental Mine	City/County	r: 8 Miles N	NE of Grani	ite, Oregon San	npling Date: _	10/1/2009
Applicant/Owner: U.S. Forest Service, Wallowa-Whit	tman National Fo	orest	State:	Oregon San	npling Point: _	MMW-6
Investigator(s):	Section, Town	ship, Range	: Sectio	n 18, Township 8 South,	Range 36 Eas	st
Landform (hillslope, terrace, etc.): Hillslope	Lo	ocal relief (co	oncave, cor	nvex, none): Concave	Slop	e (%): <u>25</u>
Subregion (LRR): E	Lat: N 44°	51.621	Long:	W 118° 21.240'	Datum:	NAD 1983
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (0991C						
Are climatic / hydrologic conditions on the site typical for						
Are Vegetation X, Soil X, or Hydrology	-					∕es No >
Are Vegetation, Soil, or Hydrology						
SUMMARY OF FINDINGS – Attach site m						
Hydrophytic Vegetation Present? Yes	NoX	lo th	e Commind			
	No X		e Sampled in a Wetlan	nd? Yes	No	Y
Wetland Hydrology Present? Yes	NoX	William		<u> </u>		<u>~</u>
Remarks:						
Site conditions were altered significantly due to mining with tailings material containing high concentrations of	g practices that I f arsenic.	began in 187	70. The are	ea delineated includes tw	o settling pone	ds from the mine
VEGETATION – Use scientific names of p				T		
Tree Stratum (Plot size: _20-foot radius_)		Dominant Species?		Dominance Test worl		
1. Abies grandis				Number of Dominant S That Are OBL, FACW,		0 (A)
2. Pinus contorta				Total Number of Domir		
3				Species Across All Stra		4 (B)
4				Percent of Dominant S	inecies	
Sapling/Shrub Stratum (Plot size: 20-foot radius)	45	= Total Cov	er	That Are OBL, FACW,		0 (A/B)
Chimpaphila umbellata	5	No		Prevalence Index wo		
2				Total % Cover of:		
3				OBL species		
4				FACW species		
5		= Total Cov		FAC species		
Herb Stratum (Plot size: 20-foot radius)		_ = 10tal C0	vei	UPL species		
1. Pyrolla secunda	5	No	FACU	Column Totals:		
2. Solidago canadensis	10	Yes	FACU			
3. Fragaria virginiana			<u>UPL</u>	Prevalence Index		
4. Fescue idahoensis				Hydrophytic Vegetati		Œ.
5. <u>Eroginum spp</u>				Dominance Test is Prevalence Index		
6. Penstemon spp				Morphological Ada		wide supporting
7				data in Remark	s or on a sepa	arate sheet)
8 9				Wetland Non-Vaso	cular Plants ¹	
10				Problematic Hydro		
11.				¹ Indicators of hydric so be present, unless dist		
		= Total Cov		be present, unless dist	urbed or probi	ematic.
Woody Vine Stratum (Plot size:)		-				
1				Hydrophytic Vegetation		
2.					esN	o <u>X</u>
% Bare Ground in Herb Stratum66		= Total Cov	er			
Remarks:				1		

SOIL Sampling Point: MMW-6

Profile Desci	iption: (Describe	to the depth	needed to	document	the in	dicator o	r confirm	the absence	of indicators.)
Depth	Matrix			Redox Fe	atures				
(inches)	Color (moist)	<u> </u>	Color (mo	ist)	<u>%</u>	Type'	Loc ²	Texture	Remarks
0-4"		· -				·		Duff/Litter	
4-8"	10YR 2/2	100						Loamy silt	Dark brown
8-18"	2,5YR 3/2	100						Loamy silt	Brown
18"		100						Gravel	
		· -							
		· -				 -			
		· -							
	ncentration, D=Depl						d Sand Gr		cation: PL=Pore Lining, M=Matrix.
-	ndicators: (Applica				e noted	1.)			ors for Problematic Hydric Soils ³ :
Histosol (A1) pedon (A2)	_	Sandy R	edox (S5) Matrix (S6)					m Muck (A10) d Parent Material (TF2)
Black His		_		lucky Mine		(excent	MIRA 1)		er (Explain in Remarks)
	Sulfide (A4)	_		Bleyed Matr	, ,	(OXOOPT	,	•	or (Explain in Romano)
	Below Dark Surface	e (A11)	X Deplete	-	` '				
	rk Surface (A12)	_		ark Surface	` '			³ Indicate	ors of hydrophytic vegetation and
	ucky Mineral (S1)	_		I Dark Surfa)			and hydrology must be present,
	eyed Matrix (S4)	_	_ Redox D	epressions	(F8)			unles	ss disturbed or problematic.
	ayer (if present):								
Type: Gi									
Depth (inc	nes): <u>18"</u>							Hydric Soil	I Present? Yes No X
Remarks:									
HYDROLOG	SY								
Wetland Hyd	rology Indicators:								
_	ators (minimum of o	ne required;	check all th	at apply)				Seco	ndary Indicators (2 or more required)
	Vater (A1)			ter-Stained	Leaves	(B9) (ex	cept MLF		Vater-Stained Leaves (B9) (MLRA 1, 2,
	er Table (A2)			1, 2, 4A, an		` , `	•		4A, and 4B)
Saturatio			Sal	Crust (B1	1)			0	Drainage Patterns (B10)
Water Ma	arks (B1)		Aqı	atic Inverte	brates	(B13)		0	Ory-Season Water Table (C2)
Sedimen	Deposits (B2)		Hyd	lrogen Sulfi	de Odo	or (C1)		s	Saturation Visible on Aerial Imagery (C9)
Drift Dep	osits (B3)		Oxi	dized Rhizo	sphere	s along L	iving Roo	ots (C3) G	Geomorphic Position (D2)
Algal Mat	or Crust (B4)		Pre	sence of R	educed	Iron (C4))	s	Shallow Aquitard (D3)
Iron Depo	osits (B5)		Red	ent Iron Re	eduction	n in Tilled	Soils (C6	i) F	FAC-Neutral Test (D5)
Surface S	Soil Cracks (B6)		Stu	nted or Stre	essed P	lants (D1) (LRR A)) <u> </u>	Raised Ant Mounds (D6) (LRR A)
	n Visible on Aerial II	3 , , ,		er (Explain	in Rem	arks)		F	Frost-Heave Hummocks (D7)
<u> </u>	Vegetated Concave	Surface (B8	3)						
Field Observ									
Surface Wate		es No							
Water Table I		es No							
Saturation Pro		es No	<u>X</u> De	epth (inches	s):		_ Wetla	and Hydrolog	y Present? Yes No X
(includes cap Describe Rec		gauge, mon	toring well	aerial photo	os, prev	/ious insr	ections)	if available: 4	Aerial Photos reviewed from 1956, 1971,
1994 and 200		Jacgo, 111011			- 0, pio			a.anabio. F	
Remarks:									

US Army Corps of Engineers

Project/Site: <u>USFS – Monumental Mine</u>	City/County	: 8 Miles NE of Gran	ite, Oregon S	Sampling Date: 10/1/20	009
Applicant/Owner: <u>U.S. Forest Service, Wallowa-Whiti</u>	man National Fo	orest State	: Oregon S	Sampling Point: MMW	-7
Investigator(s):					
Landform (hillslope, terrace, etc.): Hillslope		-		-	
Subregion (LRR): E					
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (0991CS)					
Are climatic / hydrologic conditions on the site typical fo					•
	-				No. N
Are Vegetation X, Soil X, or Hydrology					INU/
Are Vegetation, Soil, or Hydrology					
SUMMARY OF FINDINGS – Attach site ma	ap snowing	sampling point ic	ocations, transec	ts, important feat	ures, etc.
	No <u>X</u>	Is the Sampled	l Area		
	No X	within a Wetlan	nd? Yes	No X	_
	No <u>X</u>				
Remarks:	, prostings that I	nagan in 1970. The ar	oo dalisaatad isaludaa	tuo cattina nanda fran	m tha mina
Site conditions were altered significantly due to mining with tailings material containing high concentrations of		began in 1870. The ar	ea delineated includes	two settling ponds from	n the mine
VEGETATION – Use scientific names of p	lants.				
Total Objections (Phylorical Conference)	Absolute		Dominance Test w	orksheet:	
Tree Stratum (Plot size: 20-foot radius)		Species? Status	Number of Dominan		(4)
1. Abies lasiocarpa			That Are OBL, FAC	W, or FAC: 1	(A)
Picea engelmannii Larix occidentalis		<u>Yes FAC</u> <u>No FACU</u>	Total Number of Doi		(D)
4. Pinus contorta			Species Across All S	Strata: 2	(B)
4. Tillus contotta		= Total Cover	Percent of Dominan) (A/D)
Sapling/Shrub Stratum (Plot size: 20-foot radius)		= 10tai 00vci	That Are OBL, FAC	W, or FAC:50	<u>)</u> (A/B)
1. Vaccinium spp	<1	No	Prevalence Index v	vorksheet:	
2			Total % Cover of	of: Multiply	by:
3			OBL species	x 1 =	
4			· ·	x 2 =	
5			*	x 3 =	
Herb Stratum (Plot size: 20-foot radius)	0	= Total Cover		x 4 =	
Pyrola secunda	2	No EACH		x 5 =	
2.			Column Totals:	(A)	(B)
3.			Prevalence Inc	dex = B/A =	
4.			Hydrophytic Veget		
5.			Dominance Tes	st is >50%	
6.			Prevalence Inde	ex is ≤3.0 ¹	
7			Morphological A data in Rema	Adaptations ¹ (Provide sarks or on a separate s	upporting heet)
8			Wetland Non-Va	ascular Plants ¹	
9			Problematic Hyd	drophytic Vegetation ¹ (I	Explain)
10.				soil and wetland hydro	
11		= Total Cover	be present, unless d	disturbed or problemation).
Woody Vine Stratum (Plot size:)					
1			Hydrophytic		
2			Vegetation Present?	Yes No <u>X</u>	
9/ Poro Cround in Llorb Stratum CO		= Total Cover		<u></u>	
% Bare Ground in Herb Stratum 98 Remarks:					

SOIL							Sampling Point: MMW-7		
Profile Des	cription: (Describe	to the dep	th needed to docum	ent the indicator	or confire	m the absence	of indicators.)		
Depth	Matrix			Features	. 2	_			
(inches)	Color (moist)	%	Color (moist)	<u>%</u> Type'	Loc ²	<u>Texture</u>	Remarks		
0-2"						<u>Duff/Litter</u>			
2-9 "	2.5YR 3/2	100				Loamy silt	Brown		
9"	Refusal					·			
	-								
¹Type: C=C	Concentration D=Der	 oletion. RM=			ed Sand G	irains. ² l oc	 cation: PL=Pore Lining, M=Matrix.		
			LRRs, unless otherv				rs for Problematic Hydric Soils ³ :		
Histosol (A1)			Sandy Redox (S	5)		2 cn	2 cm Muck (A10)		
Histic Epipedon (A2)			Stripped Matrix (•		Red Parent Material (TF2)			
	listic (A3)			ineral (F1) (except	MLRA 1) Othe	er (Explain in Remarks)		
	en Sulfide (A4)	- (0.4.4)	Loamy Gleyed M						
Depleted Below Dark Surface (A11)						³ Indicators of hydrophytic vegetation and			
	Mucky Mineral (S1)	Depleted Dark S	, ,			wetland hydrology must be present,			
	• ' '		Bopiotoa Bank o	arrado (i i j			na nyarology maor bo procent,		
Sandy	Gleyed Matrix (S4)		Redox Depression	ons (F8)			s disturbed or problematic.		
	Gleyed Matrix (S4) Layer (if present):		Redox Depression	ons (F8)					
Restrictive			Redox Depression	ons (F8)					
Restrictive Type:	Layer (if present):		Redox Depression	ons (F8)			s disturbed or problematic.		
Restrictive Type:	Layer (if present): Bedrock?		Redox Depression	ons (F8)		unles	s disturbed or problematic.		
Type: Depth (in	Layer (if present): Bedrock?		Redox Depression	ons (F8)		unles	s disturbed or problematic.		
Type: Depth (in	Layer (if present): Bedrock?		Redox Depression	ons (F8)		unles	s disturbed or problematic.		
Type: Depth (in	Layer (if present): Bedrock?		Redox Depression	ons (F8)		unles	s disturbed or problematic.		
Restrictive Type: Depth (ir Remarks:	Layer (if present): Bedrock? nches): 9"		Redox Depression	ons (F8)		unles	s disturbed or problematic.		
Restrictive Type: Depth (in Remarks:	Bedrock? nches): 9"		Redox Depression	ons (F8)		unles	s disturbed or problematic.		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy	Layer (if present): Bedrock? nches): 9" OGY /drology Indicators:					Hydric Soil	s disturbed or problematic. Present? Yes NoX		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind	Layer (if present): Bedrock? nches): 9" OGY /drology Indicators: icators (minimum of common		d; check all that apply)		Hydric Soil Secon	s disturbed or problematic. Present? Yes No _X ndary Indicators (2 or more required)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface	DGY vdrology Indicators: was water (A1)		d; check all that apply) ned Leaves (B9) (e	xcept ML	Hydric Soil Secon	Present? Yes No X Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2,		
Type: Depth (ir Remarks:	DGY /drology Indicators: icators (minimum of of the Water (A1) /drel (A2)		d: check all that apply Water-Stair 1, 2, 4A,) ned Leaves (B9) (e	xcept ML	Hydric Soil Secon	Present? Yes No X Manage of the second seco		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturate	DGY rdrology Indicators: icators (minimum of of the Water (A1) ater Table (A2) ion (A3)		d; check all that apply — Water-Stair 1, 2, 4A, — Salt Crust () ned Leaves (B9) (e , and 4B) B11)	xcept ML	Hydric Soil	Present? Yes No X Adary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10)		
Type: Depth (ir Remarks:	DGY /drology Indicators: e Water (A1) ater Table (A2) ion (A3) Marks (B1)		d; check all that apply Water-Stair 1, 2, 4A, Salt Crust (I) ned Leaves (B9) (e and 4B) B11) ertebrates (B13)	xcept ML	Hydric Soil	Present? Yes No X Maintain Ma		
Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime	DGY /drology Indicators: icators (minimum of of water (A1) dater Table (A2) ion (A3) Marks (B1) ent Deposits (B2)		d; check all that apply — Water-Stair 1, 2, 4A, — Salt Crust (I) — Aquatic Invo) ned Leaves (B9) (e and 4B) B11) ertebrates (B13) Sulfide Odor (C1)		Hydric Soil	Present? Yes No X Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Trainage Patterns (B10) Try-Season Water Table (C2) Auturation Visible on Aerial Imagery (C9)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W	DGY vorology Indicators: icators (minimum of context) water (A1) icater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3)		d; check all that apply — Water-Stair 1, 2, 4A, — Salt Crust (I) — Aquatic Involution — Hydrogen S) ned Leaves (B9) (e and 4B) B11) ertebrates (B13) Sulfide Odor (C1) nizospheres along	Living Ro	Hydric Soil	Present? Yes No X Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M	DGY Address (if present): Bedrock? DGY Adrology Indicators: Cattors (minimum of cattors (minimum of cattors) Water (A1) Cattor (A3) Marks (B1) Cattor (B4) Cattor (B4)		d; check all that apply Water-Stair 1, 2, 4A, Salt Crust (I Aquatic Invo Hydrogen S Oxidized RI Presence o	ned Leaves (B9) (en and 4B) B11) ertebrates (B13) Sulfide Odor (C1) nizospheres along f Reduced Iron (C-	Living Ro 4)	Hydric Soil	Present? Yes No _X Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De	DGY Adrology Indicators: icators (minimum of of the Water (A1) idater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5)		d; check all that apply Water-Stair 1, 2, 4A, Salt Crust (I Aquatic Invo Hydrogen S Oxidized RI Presence o Recent Iron	ned Leaves (B9) (e and 4B) B11) ertebrates (B13) Sulfide Odor (C1) nizospheres along f Reduced Iron (C4) Reduction in Tille	Living Ro 4) d Soils (C	Hydric Soil	Present? Yes NoX Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface	DGY /drology Indicators: icators (minimum of of other) /drology Indicators: icators (minimum of other) /drology Indicators: /drolog	one required	d; check all that apply Water-Stair 1, 2, 4A, Salt Crust (I Aquatic Invo Hydrogen S Oxidized RI Presence o Recent Iron Stunted or S	ned Leaves (B9) (e and 4B) B11) ertebrates (B13) Sulfide Odor (C1) nizospheres along f Reduced Iron (C4) Reduction in Tille Stressed Plants (D	Living Ro 4) d Soils (C	Hydric Soil	Present? Yes No _X Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) recomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundat	DGY Adrology Indicators: icators (minimum of of the Water (A1) idater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5)	one required	d; check all that apply Water-Stair 1, 2, 4A, Salt Crust (I Aquatic Invo Hydrogen S Oxidized RI Presence o Recent Iron Stunted or S Other (Expl	ned Leaves (B9) (e and 4B) B11) ertebrates (B13) Sulfide Odor (C1) nizospheres along f Reduced Iron (C4) Reduction in Tille Stressed Plants (D	Living Ro 4) d Soils (C	Hydric Soil	Present? Yes NoX Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundat	DGY Inches): 9" DGY Inches): 9" Inches):	one required	d; check all that apply Water-Stair 1, 2, 4A, Salt Crust (I Aquatic Invo Hydrogen S Oxidized RI Presence o Recent Iron Stunted or S Other (Expl	ned Leaves (B9) (e and 4B) B11) ertebrates (B13) Sulfide Odor (C1) nizospheres along f Reduced Iron (C4) Reduction in Tille Stressed Plants (D	Living Ro 4) d Soils (C	Hydric Soil	Present? Yes No _X Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) recomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundat Sparse Field Obse	DGY Arches): 9" DGY Archology Indicators: icators (minimum of control of c	one required Imagery (B: e Surface (I	d: check all that apply Water-Stair 1, 2, 4A, Salt Crust (i Aquatic Invo Hydrogen S Oxidized RI Presence o Recent Iron Stunted or 3 Other (Expl	ned Leaves (B9) (en and 4B) B11) Britebrates (B13) Sulfide Odor (C1) Drizospheres along of Reduced Iron (C4) Reduction in Tille Stressed Plants (Dain in Remarks)	Living Ro 4) d Soils (C 1) (LRR A	Hydric Soil	Present? Yes No _X Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) recomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)		
Restrictive Type: Depth (ir Remarks: HYDROLO Wetland Hy Primary Ind Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundat Sparse Field Obse	DGY Inches): 9" DGY Inches): 9" DGY Inches): 9" DGY Inches): 9" Inches): 9"	Imagery (B' e Surface (I	d; check all that apply Water-Stair 1, 2, 4A, Salt Crust (I Aquatic Invo Hydrogen S Oxidized RI Presence o Recent Iron Stunted or S Other (Expl	ned Leaves (B9) (en and 4B) B11) ertebrates (B13) Sulfide Odor (C1) nizospheres along f Reduced Iron (C4) Reduction in Tille Stressed Plants (D) ain in Remarks)	Living Ro 4) d Soils (C 1) (LRR A	Hydric Soil	Present? Yes No _X Indary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) recomorphic Position (D2) hallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)		

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Aerial Photos reviewed from 1956, 1971, 1994 and 2005.

Remarks:

(includes capillary fringe)

Project/Site: USFS – Monumental Mine	City/County:	: 8 Miles	NE of Grani	te, Oregon Sar	Sampling Date: <u>10/1/2009</u>		
Applicant/Owner: U.S. Forest Service, Wallowa-Wi	tman National Forest State			Oregon Sar	npling Point: MMW-8	Point: MMW-8	
Investigator(s): Tobias/Otis	Section, Towns	ship, Rang	je: <u>Sectio</u>	n 18, Township 8 South,	3, Township 8 South, Range 36 East		
Landform (hillslope, terrace, etc.): Hillslope	Lo	Slope (%): <u>0</u>					
Subregion (LRR): _E	Lat: N 44°	51.643	Long:	W 118° 21.251' Datum: NAD 1983			
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (09910							
Are climatic / hydrologic conditions on the site typical							
Are Vegetation X, Soil X, or Hydrology _	-					No	
Are Vegetation, Soil, or Hydrology	_	-		eded, explain any answe		_ 140	
SUMMARY OF FINDINGS – Attach site r						es, etc.	
Hydrophytic Vegetation Present? Yes X	No	ls t	he Sampled	Area			
	No		•	nd? Yes X No			
	No						
Remarks: Site conditions were altered significantly due to min	ing practices that b	egan in 1	870. The are	ea delineated includes tw	vo settling ponds from th	e mine	
with tailings material containing high concentrations	of arsenic.						
VEGETATION – Use scientific names of	-						
Tree Stratum (Plot size:) 1		Species		Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC:3(A)			
2.						_ (^)	
3.				Total Number of Domi		(B)	
4.						_ (5)	
Sapling/Shrub Stratum (Plot size: 20-foot radius)	= Total Cover			Percent of Dominant S That Are OBL, FACW,	Species or FAC: 100	_ (A/B)	
Saxifraga punctata	5	No	FACW	Prevalence Index wo	rksheet:		
2. Solidago cana	5	No	FACU	Total % Cover of:	Multiply by:		
3. Claytonia sibirica	5	No	FAC		x 1 =		
4. Abies grandis		No		· ·	x 2 =		
5		1		-	x 3 =		
Herb Stratum (Plot size: 20-foot radius)	20	_ = Total (Cover		x 4 =		
1. Moss spp					x 5 =		
2. Glyceria elata	40	Yes	FACW	Column Totals.	(A)	(B)	
3. Heracleum lanatum		Yes	FAC	Prevalence Index	x = B/A =		
4. Mimulus spp (moschatus)?	10	Yes	FACW+	Hydrophytic Vegetati	on Indicators:		
5				X Dominance Test i			
6				Prevalence Index			
7				Morphological Ada	aptations ¹ (Provide supp ks or on a separate shee	orting	
8				Wetland Non-Vas	•)	
9					ophytic Vegetation ¹ (Exp	lain)	
10					oil and wetland hydrology	,	
11				be present, unless dist		,	
Woody Vine Stratum (Plot size:)	65	= Total Co	over				
1				Hydrophytic			
2.				Vegetation			
		= Total Co	over	Present? Yes X No No			
% Bare Ground in Herb Stratum 35							
Remarks:							

SOIL Sampling Point: MMW-8

Profile Desc	ription: (Describe	to the depth	needed to document the indicator or confi	rm the absen	ce of indicators.)
Depth (in the case)	Matrix		Redox Features		December 1
(inches)	Color (moist)	%	Color (moist) % Type ¹ Loc ²	Texture	Remarks
0-2"	2.5YR 3/1	100		Peat	Organic/Black
2-6"	10YR 5/4	100		Coarse sa	nd Light brown
6-12"	2.5YR 2.5/1	100		Clayey silt	Black
12-18"	5YR 5/2	100		Tailings	Pink/brown/gray
				<u> </u>	
				_	
				_	-
1- 0.0					
			educed Matrix, CS=Covered or Coated Sand (RRs, unless otherwise noted.)		Location: PL=Pore Lining, M=Matrix. ators for Problematic Hydric Soils ³ :
•		able to all Liv	•		•
X Histosol X Histic Ep	` '	_	_ Sandy Redox (S5) _ Stripped Matrix (S6)		cm Muck (A10) led Parent Material (TF2)
Black His		_	_ Loamy Mucky Mineral (F1) (except MLRA 1		other (Explain in Remarks)
	n Sulfide (A4)	_	Loamy Gleyed Matrix (F2)		and (Explain in Normalite)
	Below Dark Surfac	e (A11)	Depleted Matrix (F3)		
	rk Surface (A12)	` ′ _	Redox Dark Surface (F6)	³ Indic	ators of hydrophytic vegetation and
X Sandy M	lucky Mineral (S1)		Depleted Dark Surface (F7)	we	tland hydrology must be present,
Sandy G	leyed Matrix (S4)	<u> </u>	_ Redox Depressions (F8)	un	less disturbed or problematic.
Restrictive L	.ayer (if present):				
Туре:			<u> </u>		
Depth (inc	hes):		<u> </u>	Hydric S	oil Present? Yes X No
Remarks: Co	ontaminated tailings	present at 12	-18"	1	
	0V				
HYDROLO					
•	Irology Indicators				
	•	one required; o	check all that apply)		condary Indicators (2 or more required)
X Surface	Water (A1)		Water-Stained Leaves (B9) (except M	LRA	Water-Stained Leaves (B9) (MLRA 1, 2,
_	ter Table (A2)		1, 2, 4A, and 4B)		4A, and 4B)
X Saturation			Salt Crust (B11)		Drainage Patterns (B10)
Water Ma			Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)
	nt Deposits (B2)		Hydrogen Sulfide Odor (C1)	·	Saturation Visible on Aerial Imagery (C9)
	osits (B3)		Oxidized Rhizospheres along Living Remarks		
	t or Crust (B4)		Presence of Reduced Iron (C4)		Shallow Aquitard (D3)
Iron Dep			Recent Iron Reduction in Tilled Soils (0		FAC-Neutral Test (D5)
	Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR		Raised Ant Mounds (D6) (LRR A)
	on Visible on Aerial		Other (Explain in Remarks)		Frost-Heave Hummocks (D7)
	Vegetated Concav	e Surface (B8)		
Field Observ					
Surface Water		res X No	Depth (inches): At surface		
Water Table	Present?	/es <u>X</u> N	Depth (inches): 6"		
Saturation Pr		es X No	Depth (inches): At surface We	tland Hydrol	ogy Present? Yes X No
(includes cap	illary fringe)	n daude monit	toring well, aerial photos, previous inspections) if available:	Aerial Photos reviewed from 1056, 1071
1994 and 200		r gauge, monii	toring well, derial photos, previous inspections), ii avallable.	Actial Filotos reviewed from 1950, 1971,
Remarks:					

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: <u>USFS – Monumental Mine</u>	City/County	: 8 Miles NE of Gran	ite, Oregon Sa	ampling Date: <u>10/1/2009</u>	
Applicant/Owner: <u>U.S. Forest Service, Wallowa-Whit</u>	man National Fo	orest State	: Oregon Sa	ampling Point: <u>MMW-9</u>	
Investigator(s):Tobias/Otis	Section, Town	ship, Range: Section	n 18, Township 8 South	ı, Range 36 East	
Landform (hillslope, terrace, etc.): Hillslope	Lo	ocal relief (concave, co	nvex, none): Concave	slope (%): <u>20</u>	
Subregion (LRR): E	Lat: N 44°	51.634' Long:	W 118° 21.262'	Datum: <u>NAD 1983</u>	
Soil Map Unit Name: Elkhorn, Prouty, Hoffer (0991Cs					
Are climatic / hydrologic conditions on the site typical for					
Are Vegetation X, Soil X, or Hydrology	•				lo)
Are Vegetation, Soil, or Hydrology					
SUMMARY OF FINDINGS – Attach site m					etc.
Hydrophytic Vegetation Present? Yes	NoX	Is the Sample	I Area		
	NoX	within a Wetla		No <u>X</u>	
	NoX				
Remarks:		h '- 4070 Th	and delicerate discolution	to a control of the c	•
Site conditions were altered significantly due to mining with tailings material containing high concentrations of		began in 1870. The ar	ea delineated includes t	.wo settling ponds from the mi	ine
VEGETATION – Use scientific names of p					
Tree Stratum (Plot size: 20-foot radius)	Absolute % Cover	Dominant Indicator Species? Status	Dominance Test wo Number of Dominant		
1. Abies grandis	<u> </u>			V, or FAC:1 ((A)
2. Picea engelmannii	50	Yes FAC	Total Number of Dom	ninant	
3			Species Across All St		(B)
4			Percent of Dominant	Species	
Sapling/Shrub Stratum (Plot size: 20-foot radius)	50	= Total Cover		/, or FAC:	(A/B)
Chimpaphila umbellata	5	<u>No</u>	Prevalence Index w		
2				: Multiply by:	
3				x 1 =	
4			· ·	x 2 = 0 x 3 = 3	
5		= Total Cover		x 4 = 4	
Herb Stratum (Plot size: 20-foot radius)		_ = Total Cover		x 5 =0	
Pyrola secunda	<1	No FACU		(A) <u>7</u>	(B)
2					
3			Hydrophytic Vegeta	ex = B/A = 3.5	
4			X Dominance Test		
5			Prevalence Index		
7			Morphological Addata in Rema	daptations ¹ (Provide supportin	ng
8			Wetland Non-Va	·	
9			Problematic Hyd	rophytic Vegetation ¹ (Explain))
10.				soil and wetland hydrology mu	ıst
11		= Total Cover	be present, unless di	sturbed or problematic.	
Woody Vine Stratum (Plot size:)		10.001			
1			Hydrophytic		
2			Vegetation Present?	res No <u>X</u>	
% Bare Ground in Herb Stratum 100		_= Total Cover			
Remarks:					

SOIL							Sampling Poir	nt· MM\/\/-Q
	intion: (Describ	e to the der	oth needed to docum	nent the indicator	or confirm	the absence		it. IVIIVIV O
Depth	Matrix	o 10 1110 dop		x Features	0. 00	tille abcollec	or maroutorory	
(inches)	Color (moist)	%	Color (moist)	% Type ¹	Loc ²	Texture	Remarks	i
0-2"						Duff/Litter		
2-18 "	2.5YR 3/2	100				Loamy silt	Brown	_
2 10	2.011(0/2					Louiny one	Diowii	
								
			-				-	
	-		-					
			-	- <u> </u>			-	
				<u> </u>				
¹Type: C=Co	ncentration D-De	nletion RM	=Reduced Matrix, CS	S-Covered or Coate	ad Sand Gr	ains ² l or	cation: PL=Pore Lining,	M-Matriy
			LRRs, unless other		d Garia Gr		ors for Problematic Hyd	
Histosol (Sandy Redox (S			2 cn	n Muck (A10)	
Histic Epi	pedon (A2)		Stripped Matrix			Red	Parent Material (TF2)	
Black His	stic (A3)			Mineral (F1) (except	t MLRA 1)	Oth	er (Explain in Remarks)	
	Sulfide (A4)		Loamy Gleyed I					
	Below Dark Surfa	ace (A11)	Depleted Matrix			3 In dianta	ors of hydrophytic vegeta	ation and
	rk Surface (A12) ucky Mineral (S1)		Redox Dark Su Depleted Dark S				nd hydrology must be p	
	eyed Matrix (S4)		Redox Depress	` '			s disturbed or problema	
	ayer (if present):			(/			, , , , , , , , , , , , , , , , , , , ,	
Type:								
Depth (inc	hes):		<u></u>			Hydric Soil	Present? Yes	No X
Remarks:	, -						<u> </u>	
UVDBOL O								
HYDROLOG								
_	rology Indicators					_		
-	•	one require	d; check all that apply	* *			ndary Indicators (2 or mo	
·	Vater (A1)			ined Leaves (B9) (e	xcept MLF	RA W	Vater-Stained Leaves (B	9) (MLRA 1, 2,
_	er Table (A2)			A, and 4B)		5	4A, and 4B)	
Saturatio			Salt Crust	, ,			rainage Patterns (B10)	(C2)
Water Ma	t Deposits (B2)			vertebrates (B13) Sulfide Odor (C1)		·	ry-Season Water Table aturation Visible on Aeri	• •
Drift Dep				Rhizospheres along	Living Poo		seomorphic Position (D2	• • • •
	t or Crust (B4)			of Reduced Iron (C	_		hallow Aquitard (D3))
Iron Depo				n Reduction in Tille		·	AC-Neutral Test (D5)	
	Soil Cracks (B6)			Stressed Plants (D			aised Ant Mounds (D6)	(LRR A)
	n Visible on Aeria	I Imagery (B		plain in Remarks)	., (=:::::,		rost-Heave Hummocks	
	Vegetated Conca			,				,
Field Observ	-		` ,					
Surface Wate	r Present?	Yes	No X Depth (in	ches):	_			
Water Table F	Present?		No X Depth (in					
Saturation Pro	esent?		No X Depth (in			and Hydrolog	y Present? Yes	No <u>X</u>
(includes capi								
1994 and 200		ııı gauge, m	omoning well, aerial p	priotos, previous ins	pections),	ıı avalladle: A	verial Photos reviewed fr	UIII 1956, 1971,

Remarks:

Appendix C.

Ground Level Color Photographs

Photograph 1.

Wetland vegetation in the upper settling pond.

Photograph 2.

Sample Plot MMW-2.

Photograph 3.

Upland Plot MMW-3.

Photograph 4.

Plot MMW-5 within the channel of the unnamed tributary.

Photograph 5.

Perennial spring at headwaters of the unnamed tributary .

Appendix D.

Additional Tables of Information

Table 1. Summary of Precipitation for 2008-2009 Water Year
Forest Service Monumental Mine - DGA Wetland Delineation
Wallowa-Whitman National Forest, Grant County, Oregon

Month	Recorded Precipitation ¹	Normal	Departure from Normal	Percent of
		inches		Normal
October 2008	1.59	2.34	-0.75	68%
November 2008	4.21	3.15	1.06	134%
December 2008	6.58	3.81	2.77	173%
January 2009	5.84	3.76	2.08	155%
February 2009	2.05	3.19	-1.14	64%
March 2009	6.91	2.55	4.36	271%
April 2009	3.59	1.25	2.34	287%
May 2009	3.19	2.79	0.4	114%
June 2009	1.79	2.16	-0.37	83%
July 2009 ²	0.39	0.21	0.18	186%
August 2009	1.36	0.77	0.59	177%
September 2009	Trace	1.72	1.72	0%
Total Precipitation	34.13	27.21	6.92	125%
Field Investigation and Pre	eceding Dates ²			
October 1, 2009	0.05			
September 15-30, 2009	Trace			

NOTES

From the Meacham #2 (355394) weather station located approximately 60 miles north of the Monumental Mine at an elevation of
 4,055 feet msl. Data obtained from the National Oceanic and Atmospheric Administration (NOAA) website: www.weather.gov/climate
 Data obtained from the Weather Underground website: www.wunderground.com

² OAR 141-090-0035 requires precipitation data for the day of the investigation and preceding 1-2 weeks.

^{-- =} Not Measured

NOWData - NOAA Online Weather Data

MEACHAM #2 (355394) Monthly Totals/Averages Precipitation (inches) Year: 2009

Year Jan Feb Mar Apr May Jun Jul Aug Sep 0ct Nov Dec Annual 2009 5.84 2.05 6.91 3.59 3.19 1.79 1.36 0.00 3.04 2.60 3.76 34.13

Official data and data for additional locations and years are available from the Regional Climate Centers and the National Climatic Data Center.

Back to the clickable map Back to the data request form

Display Normals Display Records

<-- Prev Month Next Month -> <-- Prev Year Next Year ->

Observed Data for Meacham No 2 September 2008

M M M M	M M M M	0.00 0.00 0.00 0.00	0.0	0 0 0	
М М М	M M M	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0	
M M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
		0.00		0	
M	M	0.00	0.0	0	
М	M			0	
M	M			Ō	
M	M	0.00		0	
M	M	M	0.0	0	
M	M	M	0.0	Ó	
M	M	0.00	0.0	0	
M	M	0.00	0.0	O	
M	M	0.00	0 - 0	0	
M	M	0.00	0.0	O .	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	O.	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	0	
M	M	0.00	0.0	Q	
M	M	0.00	0.0	O	
M	M	0.00	0,0		
M	M	0.00	0.0	0	
Max	Min	Precip	Snow	Depth	
	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M	M M 0.00 M M M 0.00	M M 0.00 0.0 M M M 0.00 0.0	M M 0.00 0.0 0 0 0 0 0 0 0 M M 0.00 0.0 0 0 0

Back to the clickable map Back to the data request form

Display Normals Display Records

<-- Prev Month Next Month --> <-- Prev Year Next Year -->

Observed Data for Meacham No 2 October 2008

Day M	ax	Min	Precip	Snow	Depth
1	М	34	0.00	0.0	0
2	M	M	0.00	0.0	0
3	M	74	0.62	0.0	0
4	M	14	0.23	0.0	0
5	M	M	0.13	0.0	0
6	M	14	0.03	0.0	0
7	M	M	0.02	0,0	0
8	M	M	M	0.0	0
9	М	M	0.13	0,0	0
0	M	M	0.21	2.7	2
1	M	M	0.00	0.0	M
2	M	M	0.00	0.0	M
3	М	14	0.00	0.0	0
4	M	M	0.00	0.0	0
5	M	M	0.00	0.0	0
6	M	M	T	0.0	0
i	M	14	0.00	0.0	0
3	M	M	0.03	0.0	0.
9	M	M	0.00	0.0	0
0	M	M	0.00	0.0	0
1	M	M	0.19	0.0	0
2	M	M	0.00	0.0	0
3	M	M	0.00	0.0	0
4	M	M	0.00	0.,0	0
5	M	M	0.00	0.0	0
6	M	14	0.00	0.0	0
7	M	M	0.00	0.0	0
8	M	M	0.00	0.0	0
9	M	M	0.00	0.0	0
0	M	M	0.00	0.0	0
1	M.	М	0.00	0.0	0
vg M		M	1.59	2.7	_

Avg M M 1.59 2.7

Dep M M M M (Departure from climatological normals)

Back to the clickable map Back to the data request form

Display Normals Display Records

<-- Prev Month Next Month --> <-- Prev Year Next Year -->

Observed Data for Meacham No 2 November 2008

Day	Max	Min	Precip	Snow	Depth	
1	М	М	0.08	0.0	0	
1 2	M	M	0.02	0.0	0	
3	M	14	0.10	0.0	0	
4	1/1	M	0.05	0.0	0	
5	M	M	0.88	3.9	3	
5	M	M	0.02	0.0	2	
7	M	M	0.07	0.0	1	
8	M	М	0.01	0.0	0	
9	M	M	0.17	0.0	Q	
10	M	М	0.25	0.0	0	
11	M	M	0.04	0.0		
12	М	M	1.28	0.0	0	
13	14	M	1.02	0.0	o	
14	M	M	0.00	0.0	0	
15	M	M	0.00	0.0	0	
16	M	М	0.00	0.0	Ō	
17	M	M	0.00	0,0	0	
18	M	M	0.00	0.0		
19	M	M	0.00	0.0	0	
20	M	14	0.00	0.0	Ō	
21	M	м	0.13	0.7	O .	
22	M	14	0.00	0.0	0	
23	M	M	0.01	T	0	
24	7.4	M	0.00	0.0	0	
25	M	M	0.00	0.0	0	
26	M	M	0.00	0.0	0	
27	M	M	0.00	0.0	0	
28	M	M	0.02	0.0	Ō	
29	M	M	0.06	0.0	Q	
30	M	М	0.00	0.0	Ö	
Avg	М	М	4.21	4.6		
Dep	M	M	М	M	'(Departure from climatological no	inems

Back to the clickable map Back to the data request form

Display Normals Display Records

<-- Prev Month Next Month --> <-- Prev Year Next Year -->

Observed Data for Meacham No 2 December 2008

Day	Max	Min	Precip	Snow	Depth
1	M	M	0.00	0.0	0
2	M	M	0.36	0.0	0
3	141	M	0.04	0.0	0
3	M	M	0.00	0.0	0
5	M	M	0.00	0.0	0
6	M	M	0.00	0.0	O
7	M	M	0.00	0.0	0
8	M	M	1.48	4.2	4
9	M	M	0.02	0.0	4
10	M	M	0.00	0.0	3
11	M	M	0.00	0.0	2
12	M	M	0.00	0.0	2
13	M	M	0.41	3.4	5
14	M	M	0.86	15.3	18
15	M	M	0.07	1,2	17
16	M	M	0.01	0.4	17
17	M	M	0.00	0.0	15
18	M	M	0.04	0.6	13
19	14	M	0.51	8,4	23
20	M	M	0.15	2,3	20
21	M	M	0.17	2.8	21
22	M	M	0.36	5.5	23
23	M	М	T	0.2	21
24	M	M	T	0.5	20
25	M	M	0.24	3.6	22
26	M	M	0.02	0.4	20
27	M	M	0.96	8.2	28
28	M	M	0.22	2.7	24
29	M	M	0.46	0.3	20
30	M	M	0.18	1.1	19
31	M	M	0.02	0.2	18

Avg M M 6.58 61.3

^{&#}x27;(Departure from climatological normals)

Daily / Illianiae

NOWbata - NOAA Online Weather Date

MEACHAM #2 (355394)

Daily Almanac Date: Oct 1, 2009

Daily Values	Observed	Normal	Record/Year	Prev Year
Max Temperature	-	-	- in 0	
Min Temperature	-	-	- in 0	120
Avg Temperature	<u>-</u>	-	- in 0	
Precipitation	0.05	- - €	2.00 in 2000	0.00
New Snowfall	0.0	-	0.0 in 2009+	0.0
Snow Depth	0	=	0 in 2009+	0
HDD (base 65)	120	-	- in 0	
CDD (base 65)	n==	(. 	- in 0	-
Month-To-Date	Observed	Normal	Record/Year	Prev Year
Avg Max Temperature		=	- in 0	-
Avg Min Temperature	4.	-	- in 0	-
Avg Temperature		-	- in 0	- A
Total Precipitation	0.05	>"	2.00 in 2000	0.00
Total Snowfall	0.0	=	0.0 in 2009	0.0
Avg Snow Depth	0	-	0 in 2009	0
Total HDD	-	·	- in 0	ė i
Total CDD	-	-	- in 0	

⁺ indicates record also occurred in previous years (last occurrence listed).

Official data and data for additional locations and years are available from the Regional Climate Centers and the National Climatic Data Center.

GRANITE 4 WSW, OREGON (353430)

Period of Record Monthly Climate Summary

Period of Record: 7/2/1948 to 10/16/1967

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Max. Temperature (F)	30.3	36.4	40.1	49.0	58.0	66.2	77.5	76.2	68.9	55.8	40.0	32.2	52.6
Average Min. Temperature (F)	11.3	15.1	17.0	25.3	31.4	36.6	39.3	38.4	33.8	28.8	21,5	15.6	26.2
Average Total Precipitation (in.)	3.66	2.93	2.73	1.87	2.33	1.76	0.60	0.71	1.08	1.93	2.93	3.84	26.37
Average Total SnowFall (in.)	40.6	31.5	29.7	10.5	3.9	0.6	0.0	0.0	0.7	3.7	17.5	35.4	174.1
Average Snow Depth (in.)	28	35	35	16	Ī	0	0	0	0	0	3	14	11

Percent of possible observations for period of record.

Max. Temp.: 99.3% Min. Temp.: 99.2% Precipitation: 99.4% Snowfall: 99.1% Snow Depth: 98.6% Check Station Metadata or Metadata graphics for more detail about data completeness.

Western Regional Climate Center, wrcc@dri.edu

CoverPg: Basic Description of Assessment

Site Name:	USFS - Monumental Mine
Investigator Name:	Tobias
Date of Field Assessment:	10/1/2009
County:	Grant
Nearest Town:	Granite
Latitude (decimal degrees):	44.8606
Longitude (decimal degrees):	-118.354
TRS, quarter/quarter section and tax lot(s)	T 8S, R 36E, Sec 18
Approximate size of the Assessment Area (AA, in acres)	0.1
AA as percent of entire wetland (approx.)	
If delineated, DSL file number (WD #) if known	NJ- 1
Soil Map Units within the AA (list these in approx. rank order by area, from WSS web site or published county survey; see manual)	0991CS
Soil Map Units surrounding and contiguous to the AA (list all present in	9413BO
approx. rank order by area; see manual)	0988BS
, , , , , , , , , , , , , , , , , , , ,	0990BS
	0993CN
Cowardin Systems & Classes (indicate all present, based on field visit and/or aerial imagery): Systems: Palustrine =P, Riverine =R, Lacustrine =L, Estuarine =E	Р
<u>Classes</u> : Emergent =EM, Scrub-Shrub =SS, Forested =FO, Aquatic Bed (incl. SAV) =AB, Open Water =OW, Unconsolidated Bottom =UB, Unconsolidated Shore =US	EM
HGM Class (Scores worksheet will suggest a class; see manual section 2.4.2)	Slope
If tidal, the tidal phase during most of visit:	
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Have you attended an ORWAP training session? If so, indicate approximate month & year.	
How many wetlands have you assessed previously using ORWAP (approx.)?	
Comments about the site or this ORWAP assessment (attach extra page if desir	red):

ORWAP SCORES SHEET. Version 2.0.

Site Name:	USFS - Monumental Mine	
Investigator Name:	Tobias	
Date of Field Assessment:		10/1/2009
Latitude (decimal degrees):	44.86060 Longitude (decimal degrees):	-118.35400

Note: It is normal for some cells below to have non-zero values even when no data have been entered. This does not imply hidden weighting of those functions or values.

Please cite this method as: Adamus, P., J. Morlan, and K. Verble. 2009. Oregon Rapid Wetland Assessment Protocol (ORWAP): calculator spreadsheet, databases, and data forms. Oregon Dept. of State Lands, Salem, OR.

SPECIFIC FUNCTIONS:	Relative Effectiveness of the Function	Relative Values of the Function	(click on cells in this column to see definitions of the wetland functions)
Water Storage & Delay (WS)	0.00	2.92	
Sediment Retention & Stabilization (SR)	7.17	2.94	
Phosphorus Retention (PR)	9.08	4.18	
Nitrate Removal & Retention (NR)	5.33	4.35	
Thermoregulation (T)	0.00	0.00	
Carbon Sequestration (CS)	4.19		
Organic Matter Export (OE)	0.00		
Aquatic Invertebrate Habitat (INV)	3.50	5.28	
Anadromous Fish Habitat (FA)	0.00	0.33	
Non-anadromous Fish Habitat (FR)	1.50	10.00	
Amphibian & Reptile Habitat (AM)	4.80	6.67	
Waterbird Feeding Habitat (WBF)	0.33	4.50	
Waterbird Nesting Habitat (WBN)	0.00	3.00	
Songbird, Raptor, & Mammal Habitat (SBM)	5.28	3.33	
Pollinator Habitat (POL)	4.95	5.00	
Native Plant Diversity (PD)	3.33	5,14	

GROUPED SERVICES:	Group Scores (functions)	Group Scores (values)	
Hydrologic Function (WS)	0.00	2.92	(identical to Water Storage and Delay function and value scores)
Water Quality Support Group (WQ)	9.08	4.35	(maximum of scores for SR, PR, NR, and T)
Carbon Sequestration Function (CS)	4.19		(identical to Carbon Sequestration score above)
Fish Support Group (FISH)	1.50	10.00	(maximum of scores for FA and FR)
Aquatic Support Group (AQ)	4.80		(maximum of scores for OE, AM, INV, WBF, and WBN)
Terrestrial Support Group (TERR)	5.28	5.14	(maximum of scores for PD, POL, and SBM)
Public Use & Recognition (PU)		0.83	
Provisioning Services (PS)		0.00	

OTHER ATTRIBUTES:

Wetland Ecological Condition	5.73 (click on this cell to see this attribute defined)
Wetland Stressors	6.44 (click on this cell to see this attribute defined)
Wetland Sensitivity	5.07 (click on this cell to see this attribute defined)

HGM Class - Relative Probabilities		
Estuarine	0.00	
Riverine	0.00	
Slope	3.15	
Flat	0.00	
Depressional	0.00	
Lacustrine	0.00	

Appendix B

Supplemental Site Investigation Report

Supplemental Site Investigation Report

Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

Prepared for

United States Department of Agriculture Forest Service 1220 SW 3rd Avenue Portland, Oregon 97204

Prepared by

Terraphase Engineering Inc. 610 SW Broadway, Suite 405 Portland, Oregon 97205

February 3, 2025

Project Number 0031.005.002

This is a draft document and the information contained herein is subject to change. It should not be relied upon; consult the final document.

File: rpt-SSI-UpperGraniteCrkWatershed-0031-005-FDFCR

Contents

Acı	onym	s and Abbreviations	V		
1	Introduction				
2	Inves	tigation Activities	1		
	2.1	Pre-Field Activities	1		
	2.2	Mapping of Site Features	1		
	2.3	X-Ray Fluorescence Waste Rock and Tailings Screening	2		
	2.4	Soil, Waste Rock, and Tailings Sampling	2		
	2.5	Surface Water and Stream Sediment Sampling	3		
	2.6	Decontamination and Quality Assurance/Quality Control Sampling	3		
	2.7	Deviations from the SAP	3		
3 F	Results		4		
	3.1	XRF Results	4		
	3.2	Soil and Waste Rock Laboratory Analytical Results	6		
	3.3	Comparison of XRF to Laboratory Analytical Results	7		
	3.4	Sediment Analytical Results	7		
	3.5	Surface Water Analytical Results	8		
	3.6	Quality Assurance/Quality Control	8		
4	Preli	minary Remediation Goals	9		
5	Refe	rences	11		

Tables

- 1 Waste Rock and Tailings Pile Volumes
- 2 Summary of XRF Measurements
- 3 Summary of Soil Analytical Results
- 4 Waste Rock/Tailings Pile UCL Calculations
- 5 Summary of Sediment Analytical Results
- 6 Summary of Surface Water Analytical Results
- 7 In Vitro Bioaccessibility (IVBA) and Relative Bioavailability (RBA) Calculations

Figures

- 1 Site Location
- 2 Site Layout
- 3 Upper-Upper Monumental Mine
- 4 Upper Monumental Mine
- 5 Lower Monumental Mine
- 6 Granite Creek Aquatic Station 03
- 7 Cap Martin Mine
- 8 Sheridan Mine
- 9 Granite Creek #6 Mine
- 10 Granite Creek #7 Mine
- 11 Tillicum Mine
- 12 Granite Creek #5 Mine
- 13 Golden Fraction Mine
- 14 Central Mine
- 15 Background Soil and Surface Water Sampling Locations
- 16 XRF Analytical Data Correlation
- 17 XRF Laboratory Data Comparison Chart
- 18 Surface Water Arsenic Concentration with Distance

Appendices

- A Field Notes
- **B** ProUCL Outputs
- C Laboratory Analytical Reports
- D Data Validation Reports

THIS PAGE INTENTIONALLY LEFT BLANK

Acronyms and Abbreviations

CES Cascade Environmental Sciences

EE/CA Engineering Evaluation/Cost Analysis

IVBA in-vitro bioavailability mg/kg milligrams per kilogram

ODEQ Oregon Department of Environmental Quality

ppm parts per million

RBA relative bioavailability adjustment

RBC Risk-Base Concentration

PRG preliminary remediation goal

QA quality assurance QC quality control

SAP Sampling and Analysis Plan

Site Upper Granite Creek Watershed Mines

Terraphase Engineering Inc.

UCL upper confidence level

USEPA Unite State Environmental Protection Agency

USDA United States Department of Agriculture

WRP waste rock piles
XRF x-ray fluorescence

THIS PAGE INTENTIONALLY LEFT BLANK

1 Introduction

Terraphase has prepared this *Supplemental Site Investigation Report* for the United States Department of Agriculture (USDA) Forest Service to describe sampling and analysis activities conducted at the Upper Granite Creek Watershed Mines (the "Site"; Figure 1) to support preparation of an updated Engineering Evaluation/Cost Analysis (EE/CA) for the Site, to which this document is an appendix.

The Site is comprised of the following nine mines (Figure 2):

- 1. Monumental Mine
- 2. Cap Martin Mine
- 3. Tillicum Mine
- 4. Sheridan Mine
- 5. Golden Fraction Mine

- 6. Central Mine
- 7. Granite Creek #5 Mine
- 8. Granite Creek #6 Mine
- 9. Granite Creek #7 Mine

All field work was performed in accordance with the *Sampling and Analysis Plan* (SAP) approved by the USDA Forest Service on September 23, 2024 (Terraphase 2024a). Additional background information, including detailed descriptions of each mine and the results of previous environmental investigations, can be found in the SAP and the updated EE/CA.

2 Investigation Activities

This section describes site investigation activities performed by Terraphase between October 1 and 5, 2024. Field notes for the site investigation are included in Appendix A.

2.1 Pre-Field Activities

Prior to conducting the site investigation, Terraphase prepared a site-specific *Health and Safety Plan* (2024b), which identifies potential hazards at the Site and identifies controls (i.e., personal protective equipment) and procedures to be used when conducting sampling work to minimize those hazards.

2.2 Mapping of Site Features

Terraphase documented observable features at each mine using an EOS Arrow 100 handheld GPS device. Points were recorded with a minimum accuracy of 30 inches. For waste rock piles (WRPs), tailing piles, placer deposits, and other areal features, Terraphase collected points around the perimeter of each feature. For trenches, former roadways, tributaries, and other linear features, Terraphase collected survey points along the visible extent of each feature. A total of 245 points, 73 areal features, and 48 linear features were recorded. When applicable, the shape and extent of features were corrected using

light detection and ranging (LIDAR) data obtained from the United States Geological Survey. ¹ Terraphase named the adits, shafts, WRPs, and tailings piles using a consistent format. All mapped features and sampling points are shown on Figures 2 through 15. Photographs of Site features are included in the field notes (Appendix A).

The cut-fill spatial analyst tool in ArcGIS Pro was used to calculate the volumes of each waste rock and tailings pile. This process involves creating a base surface within the extent of each pile polygon. The base surface has variable elevation, determined by interpolating the unique Z-value (elevation) assigned to each point along the perimeter of the waste rock or tailings pile polygon. The original surface elevations within the extent of each polygon were then compared to the corresponding base surface to calculate the pile's volume. Where the original surface elevations are higher than the base surface elevations, the difference is considered a "cut." Conversely, where the original surface elevations are lower than the base surface elevations, the difference is considered a "fill." These differences were summed within each waste rock or tailings pile polygon to calculate a total volume for each pile. Calculated and previously estimated waste rock and tailings piles volumes are included in Table 1.

2.3 X-Ray Fluorescence Waste Rock and Tailings Screening

Terraphase used a handheld Vanta C Series x-ray fluorescence (XRF) device to measure arsenic concentrations in waste rock and tailings piles, and in soil surrounding select piles, in accordance with the procedures outlined in the SAP. Measurements were made of select locations downslope of WRPs (samples designated with "-DS" suffix) to assess the potential for surficial erosion of the piles. All XRF measurements were taken of soil samples collected below rooting depth (i.e., from approximately 0.5 to 1 foot below ground surface) using clean plastic trowels. The samples were placed in bags prior to measurement. XRF measurements were recorded by taking readings from both sides of each bagged sample until the standard deviation of the samples was less than 30 or until 10 measurements were recorded, consistent with EPA guidance (EPA 2022a). A minimum of four readings were recorded for each sample. Overall, a total of 897 XRF measurements were recorded at 124 sample locations, with arsenic concentrations ranging from 5 to 18,300 milligrams per kilogram (mg/kg) or parts per million (ppm). XRF sample locations are shown on Figures 3 through 14.

2.4 Soil, Waste Rock, and Tailings Sampling

Samples of soil, waste rock, and tailings (when applicable) were collected from each mine for laboratory analysis. At each mine, samples were generally collected from locations with the highest XRF measurements. Again, all samples were collected from below the rooting depth (from approximately 0.5 to 1 foot below ground surface) using clean plastic trowels. Samples were also collected in the soil downslope of WRPs with high XRF measurements to assess the risk of surface erosion from the WRPs.

These samples were submitted to ALS Environmental in Kelso, Washington, following strict chain-of-custody procedures for analysis of arsenic using United States Environmental Protection Agency (USEPA) Method 6020B. Select samples were also analyzed for arsenic and lead in-vitro bioavailability (IVBA)

¹ https://apps.nationalmap.gov/downloader/

using USEPA Method 1340. Forty-two samples were submitted for arsenic analysis; 13 samples were submitted for IVBA analysis. Sample locations are shown on Figures 3 through 14.

2.5 Surface Water and Stream Sediment Sampling

Eight co-located surface water and sediment samples were collected at regular intervals within Granite Creek between Forest Service Road 73 and its headwaters near Monumental Mine. These surface water and sediment samples were collected to support overall characterization of metals in these environmental media to help initially evaluate potential ecological risk (Figure 15).

Samples were submitted to ALS Environmental following strict chain-of-custody procedures. The samples were analyzed for antimony, arsenic, cadmium, chromium, lead, silver, and zinc using USEPA Method 6020B and for mercury using USEPA Method 7470A (surface water) or 7471B (sediment). Surface water samples were also analyzed for hardness using USEPA Method SM 2340B.

2.6 Decontamination and Quality Assurance/Quality Control Sampling

The plastic trowels used to collect soil samples were decontaminated in between each sample collection to prevent cross-contamination. This was done by first cleaning each trowel with tap water, then scrubbing it with non-phosphate containing detergent (Alconox), and finally rinsing it with laboratory-supplied deionized water. Three equipment blanks were collected by pouring laboratory-supplied deionized water over the clean trowel and allowing it to fill the appropriate sample bottle. Equipment blanks were collected to assess the potential for cross-contamination. Duplicate samples were also collected at a rate of at 1 per 20 samples per media to evaluate sample variability.

2.7 Deviations from the SAP

The following summarizes completed tasks that varied from the SAP:

- Before visiting the Site, the extent to which WRPs could be identified as distinct from their surroundings was unknown and the SAP specified a procedure using the XRF to identify the extent of each pile over which soil concentrations were greater than preliminary remediation goals (PRGs). Upon visiting the Site, the WRPs were distinct. Terraphase verified using XRF that the visual edges of several piles represented different material than the surrounding material, but this was not done for every pile as stated in the SAP.
- The SAP proposed the collection of 10 co-located surface water and sediment samples to ensure the availability of a background sample (i.e., upstream of Monumental Mine, the first of the nine Site mines). However, after visiting Monumental Mine, it was apparent that the ground surface sloped away from Granite Creek and surface water/groundwater would be expected to flow to Cap Martin Creek instead, which enters Granite Creek between the Sheridan and Cap Martin Mines. Therefore, sample CS-1 was moved to the proposed location of sample CS-3 and all other sample names were adjusted accordingly. This change was approved by USDA Forest Service On-scene Coordinator Mario Isaias-Vera in the field.

- The SAP did not propose collecting samples for XRF measurement from the location of the WRPs along Granite Creek, identified in the previous EE/CA as Granite Creek Station 03. XRF arsenic concentrations were measured at the previously identified WRP (GC03-WRA) as well as one WRP observed upstream (GC03-WRB; Figure 6).
- The presence of shafts and WRPs uphill of Upper Monumental Mine Adit #2 were not recorded in previous investigations. Terraphase mapped and sampled this area (designated Upper-Upper Monumental Mine) and identified 9 shafts, 1 potential shaft, 10 WRPs, and 3 trenches. Arsenic concentrations determined via XRF measurements were taken at six WRPs and five samples were submitted for arsenic via laboratory analysis.

3 Results

This section summarizes the results of the site investigation. All soil sample locations are depicted on the relevant mine site map (Figures 3 through 14). Creek surface water and sediment sampling locations are depicted on Figure 15.

3.1 XRF Results

Table 2 lists XRF measurement by mine and WRP. Individual measurements are listed as X01 through X10 after the associated sample name. For example, the first XRF arsenic measurement from sample UMM-WRA-0.5-1 is listed as UMM-WRA-0.5-1-X01. The table includes calculated 95 upper confidence levels (UCLs) of the mean (UCLMs) for the readings taken from each sample (indicated by XUCL). For example, the UCLM from the 10 XRF readings made of sample LMM-WRA-0.5-3 is listed as LMM-WRA-0.5-3-XUCL. All UCLMs were calculated using ProUCL, Version 5.2.0 (USEPA 2022a). The output files from ProUCL, which include information regarding sample distribution and standard deviation, are included as Appendix B.

XRF measurements varied by mine and feature within the mine. Samples collected downslope and adjacent to WRPs generally had much lower concentrations than the WRPs, suggesting that erosion of the piles has not had a notable effect on surrounding soil. Exceptions to this are XRF measurements taken at locations between WRP A at Tillicum Mine and Granite Creek, which had similar concentrations to the WRP, and downslope of Golden Fraction Mine WRP D, which had generally low concentrations in both the WRP and the downslope sample. The following summarizes XRF arsenic measurements per mine and feature, as well as the associated downslope sample, where applicable:

• Monumental Mine (Upper Upper):

WRP A: 911–3,092 ppm; UCL downslope sample: 19–35 ppm

WRP B: 96–202 ppm

WRP C: 16–20 ppm

WRP D: 269–334 ppm

WRP E: 24–26 ppm

- WRP F: 290–786 ppm
- Monumental Mine (Upper):
 - Flotation Table: 18,300 ppm (one measurement)
 - Tailings pile A: 316–3,402 ppm
 - Tailings pile B: 221-3,822 ppm
 - Tailings pile C: 410–3,389 ppm
 - WRP A: 128–1,876 ppm; downslope samples: 30–68 ppm
 - WRP B: 453–16,020 ppm; downslope sample: 65–78 ppm
- Monumental Mine (Lower):
 - Tailings pile A: 461–17,380 ppm
 - WRP A: 38–2,991 ppm; downslope sample: 16–50 ppm
 - WRP B: 97–978 ppm; downslope sample: 14–19 ppm
- Granite Creek Aquatic Station 03:
 - WRA: 30-45 ppm
 - WRB: 75–485 ppm
- Cap Martin Mine:
 - Placer Spoils: 25–36 ppm
 - WRP A: 5–13 ppm
 - WRP B: 5–14 ppm
 - WRP C: 36–375 ppm
- Sheridan Mine:
 - WRP A: 9–21 ppm
 - WRP B: 19–66 ppm
 - WRP C: 12–21 ppm
- Granite Creek #6 Mine:
 - WRP A: 134–422 ppm
 - Wet Trench Pile: 5–16 ppm
- Granite Creek #7 Mine:
 - WRP A: 10-31 ppm
 - WRP B: 10–12 ppm

· Tillicum Mine:

WRP A: 131–438 ppm; downslope samples: 150–185 ppm

WRP B: 67–184 ppmWRP C: 99–205 ppm

Granite Creek #5 Mine:

WRP A: 54–446 ppm; downslope sample: 56–76 ppm

WRP B: 52–162 ppm

Golden Fraction Mine:

WRP A: 188–491 ppm

WRP B: 62–117 ppm

WRP C: 50–102 ppm

WRP D: 30–80 ppm, downslope sample: 31-62 ppm

Drain: 39–83 ppm

Central Mine:

WRP A: 37–264 ppm; downslope sample: 30–38 ppm

WRP B: 125–242 ppm
WRP C: 52–170 ppm
WRP D: 56–87 ppm

3.2 Soil and Waste Rock Laboratory Analytical Results

Table 3 presents laboratory analytical results for arsenic in soil and waste rock for each mine site and mine feature, including those from previous investigations. Soil analytical results were screened against:

- Oregon Department of Environmental Quality (ODEQ) ecological Risk-Based Concentrations (RBCs);²
- ODEQ human health RBCs for soil direct contact³ exposure of an excavation worker;
- ODEQ clean fill screening levels (Blue Mountains Province), which represent regional background concentrations;⁴
- PRGs developed for the SAP; and
- Refined PRGs developed with consideration for the IVBA results.

² https://www.oregon.gov/deq/Hazards-and-Cleanup/env-cleanup/Pages/ERA.aspx

³ Considers incidental ingestion of soil, dermal contact with soil, and inhalation of soil-derived particulates and vapors.

⁴ https://www.oregon.gov/deq/filtered%20library/imdcleanfill.pdf

Arsenic results are consistent with XRF measurements and generally show exceedances of ecological RBCs and PRGs. IVBA results and updated PRG calculations are discussed in Section 4.

3.3 Comparison of XRF to Laboratory Analytical Results

Arsenic concentrations measured via XRF, and those analyzed via USEPA Method 6020B, showed a strong correlation (R value of 0.98). Figure 16 is a plot of arsenic laboratory results versus arsenic XRF measurements. Figure 17 is a plot of each sample location on the x-axis with the laboratory result, the estimated arsenic concentration determined via XRF (based on UCLM), and the range of XRF measurements plotted on the y-axis. Most of the laboratory analytical results were within the range of concentrations measured via XRF. Figure 17 also shows total arsenic concentrations measured prior to IVBA extraction. These values are always greater than the associated non-IVBA total arsenic concentrations, which is likely because the IVBA total arsenic concentrations were measured after sieving the soil to a sample of material with a grain size less than 150 micrometers.

Combined XRF and laboratory analytical results, including laboratory analytical results of previous investigations, were used to calculate UCLMs for each waste rock and tailings pile. Table 4 lists the calculated UCLMs, as well as the sample distribution, maximum detected arsenic concentration, number of samples used to calculate UCLMs, and the number of sample locations on the features used for the samples. When six or more samples were available for a feature, the XRF UCLMs and analytical laboratory sample results were both used in the UCLM calculation. When less than six locations were associated with a recognized feature, individual XRF measurements were used in the UCLM calculation in lieu of XRF UCLs.

Terraphase reviewed the data distributions to infer if data were consistent within a Site feature. Data from 35 of the 40 features followed a normal distribution. When data did not follow a normal distribution, Terraphase evaluated the data and found that either the data represented two populations (WRPs SH-WRA, LMM-WRB, and UMM-WRB) and/or that an outlier skewed the distribution (WRP GF-WRC). For WRP GF-WRC, the outlier was from a previous consultant's sample, which based on its concentration may not have been collected from this WRP. As a result, a revised UCLM was calculated for WRP GF-WRC with this outlier removed (Table 4).

3.4 Sediment Analytical Results

Table 5 presents sediment analytical results, including those from previous investigations. Sediment analytical results were screened against:

- ODEQ ecological RBCs for freshwater sediment;
- USEPA Region IV ecological screening values; ⁵
- ODEQ clean fill screening levels (Blue Mountains Province);
- PRGs developed for the SAP; and

⁵ https://www.epa.gov/sites/default/files/2018-03/documents/era regional supplemental guidance report-march-2018 update.pdf

The PRG for tailings based on IVBA results (Section 4).

Concentrations of arsenic, cadmium, lead, silver, and zinc exceeded the ODEQ clean fill screening levels. Concentrations of arsenic, cadmium, mercury, and zinc exceeded the ecological RBC for freshwater sediment. Concentrations of arsenic, cadmium, mercury, silver, and zinc exceeded the ecological screening values. In general, samples CS-SD-7 and CS-SD-8, collected furthest downstream, had the highest metals concentrations, and samples CS-SD-1 and CS-SD-2, collected furthest upstream, had the lowest concentrations, showing the general contribution of the mines on sediment quality.

No concentrations exceeded the PRGs. The highest detected arsenic concentration of samples collected during this investigation was 35.2 mg/kg in sample CS-SD-8 collected downstream of all mines. These results are also relatively consistent with previously collected results presented in the prior EE/CA (Cascade Environmental Sciences [CES] 2011). Higher concentrations of arsenic and other metals were detected in sediment samples collected further downstream than the Site and likely reflect contribution from other non-site mines.

3.5 Surface Water Analytical Results

Table 6 presents surface water analytical results, including those from previous investigations. Surface water samples were screened against ODEQ ecological RBCs. There were no exceedances of ecological RBCs for samples collected during this investigation.

Figure 18 shows arsenic concentrations in surface water relative to the distance along Granite Creek. Concentrations increase with distance and provide an indication of the potential contribution from mine sites. The largest increase is between samples CS-SW-4 and CS-SW-5, likely associated with the contribution from Cap Martin Creek, a tributary that starts as a spring at Upper Monumental Mine and flows through settling ponds and tailings from Upper and Lower Monumental Mines.

The identification of concentrations below ecological RBCs suggests *de minimis* impact to aquatic receptors. This is consistent with previous sampling, which found that surface water sample metals concentrations were below ecological RBCs, except for lead at one sample location. Further downstream of the Site, there were two previous sampling locations with detected levels of mercury (2003 samples ST-SFW-53 and ST-SFW-54; Figure 15), but these are likely due to contribution of other non-site related mines.

Samples collected from adit seeps and surface water features at Cap Martin, Granite Creek #5, Golden Fraction, Lower Monumental, and Upper Monumental Mines had arsenic concentrations an order of magnitude higher than Granite Creek surface water samples. This suggests that the contribution of water from these features to Granite Creek is much less than other contributing springs and tributaries at and upstream of the Site.

3.6 Quality Assurance/Quality Control

Analyses were performed in accordance with the quality assurance (QA) and quality control (QC) procedures provided in the SAP.

Terraphase completed data validation after receiving the laboratory analytical reports. The data validation process included a review of chain-of-custody forms, holding times, laboratory analytical reports, method blanks, surrogate recoveries, matrix spike, matrix spike duplicates, and detection limits. The laboratory analytical reports are included as Appendix C, and the data validation reports are included as Appendix D. QA/QC information to note include the following:

- Data are considered usable and support the Work Plan objectives.
- All holding times were met, all sample preservation were appropriate, and all data were successfully
 verified against the electronic data deliverables and chain-of-custody form, with minor exceptions.
- Several laboratory flags related to laboratory QA/QC issues were reported. Flags were applied to sample results in cases where the estimated concentration was affected by the QA/QC issue.
- The relative percent difference for several laboratory duplicate samples were outside of the acceptable range. This is likely due to the heterogenous nature of the waste rock samples and not considered a significant issue.
- Arsenic was detected in all three equipment blanks collected during the investigation at
 concentrations of 0.64, 3.12, and 0.11 micrograms per liter. Arsenic concentrations detected in soil
 samples are more than five times these slight detections, and therefore, no data was qualified due
 to blank detections.
- All relative percent differences were considered acceptable (less than the 50 percent criteria
 established in the SAP) with the exception of the total IVBA lead analysis for sample UUMM-WRA-3DUP.

4 Preliminary Remediation Goals

PRGs were developed for the SAP (Terraphase 2024a) to reflect updated risk assessment science and site-specific exposure assumptions consistent with current and reasonably anticipated use of the Site (Terraphase 2024a). This *Supplemental Site Investigation Report* includes an update to the PRG for arsenic to account for site- and material-specific relative bioavailability adjustment (RBA) factors as determined by sampling and analysis of soil, waste rock, and tailings. Consistent with the CES EE/CA (2011) and Terraphase SAP (2024a), the PRGs are based on the assumed potential exposure of a receptor assumed to be engaged in hunting, hiking, and/or camping activities (generally referred to herein as "a trespasser/recreator"). As described in the SAP, the PRGs conservatively reflect exposure of an adolescent trespasser/recreator who could encounter metals in soil/waste rock and tailings at the Site.

Standard default exposure factors, which USEPA (1991, 2011, 2014, 2017) recommends for use in estimating reasonable maximum exposure, were used where available and appropriate. Where standard default exposure factors are not available or appropriate, similarly conservative exposure factors based

on site-specific considerations and professional judgement were used. Toxicity values used were based on USEPA's (2003) hierarchy of sources. RBCs for carcinogens and noncarcinogens were calculated at a target incremental excess cancer risk of 1×10^{-6} and a target noncancer hazard quotient of 1 (OAR 340-122). Finally, to account for background exposure, the proposed updated PRGs are representative of concentrations which are equal to the sum of the RBC and a background exposure concentration.

To calculate a site-specific RBA, arsenic was analyzed for IVBA. This method determines the fraction of a contaminant in soil (e.g., arsenic) that is solubilized following extraction and subsequently available for absorption, or rather, is bioaccessible. The RBA is then determined using a simple regression model (i.e., an in vivo-in vitro correlation) which predicts the in vivo oral RBA for arsenic in soil based on the measured IVBA (Interstate Technology & Regulatory Council 2017).

For in vivo-in vitro correlation, arsenic RBA is expressed as a function of arsenic IVBA, which is expressed as the following fraction:

$$IVBA_{Arsenic} = \frac{ ext{Bioaccessible Arsenic [mg/kg]} }{ ext{Total Soil Arsenic Content [mg/kg]} }$$

The preferred model for predicting arsenic RBA from arsenic IVBA is:

$$RBA_{arsenic} = (0.79 \cdot IVBA) + 0.03 [R^2 = 0.87]$$

Where RBA and IVBA are expressed as fractions (Interstate Technology & Regulatory Council 2017; USEPA 2017).

The resulting IVBA and RBA calculations are summarized in Table 7. Calculated RBAs for soil and waste rock samples were similar and the datasets were combined. The RBAs for tailings were much higher than the soil and waste rock; therefore, a separate PRG was developed to assess exposure to tailings. A UCL was calculated using the RBA results from the combined soil and waste rock arsenic data (nine samples total), resulting in an RBA of 0.077 that was used to calculate a PRG of 190 mg/kg. From the two tailing samples, the maximum RBA of 0.36 was used to calculate a PRG of 110 mg/kg for arsenic in tailings.

These PRGs are higher than the previously calculated PRG of 82 mg/kg for arsenic provided in the SAP (Terraphase 2024a). The soil/waste rock PRG is higher than the 2006 risk assessment⁹ PRG for arsenic of

⁶ Assumes that the trespasser/recreator could be present at the Site 2 days per month (24 days per year) over a 10-year period from the age of 6 until the age of 16.

⁷ https://oregon.public.law/rules/oar 340-122-0040

⁸ Background exposure concentrations for soil/waste rock and tailings were calculated using the available background sampling data. The exposure concentration is equal to the 90-percent UCLM.

⁹ Terraphase assessed the previously performed calculations, including the exposure assumptions and toxicity values presented in the 2006 risk assessment, and was unable to replicate the PRG of 143 mg/kg. As presented in Appendix B10 of CES' (2011) *Human Health and Ecological Risk Assessment*, the reasonable maximum exposure concentration for arsenic of 1,800 mg/kg resulted in an excess cancer risk of 3x10⁻⁵. By extension then, and using the same exposure assumptions and toxicity values for arsenic, a target excess cancer risk of 1x10⁻⁶ would result in an

143 mg/kg. Both previously calculated PRGs incorporated the use of the generic default RBA factor of 0.6 recommended by USEPA. ¹⁰ Consistent with the conclusions presented in the EE/CA (CES 2011) and SAP, a comparison of these updated PRGs to measured concentrations in waste rock/soil identified during prior and additional sampling of the Site demonstrates that arsenic in waste rock/soil represents the sole human health risk driver and primary chemical of concern for remedy decision-making.

While PRGs have not been calculated with consideration for ecological exposures, the outcome of this non-time-critical removal action, which is focused on eliminating potential unacceptable risks to human health, will also result in a reduction of potential risks to ecological receptors.

Figures 2 through 14 indicate the WRPs or tailings piles that have calculated UCLs above and below updated PRGs.

5 References

Cascade Environmental Sciences. 2011. Non-Time-Critical Removal Action Engineering Evaluation/Cost Analysis, Upper Granite Creek, Grant County, Oregon, Wallowa-Whitman National Forest. May.

Interstate Technology & Regulatory Council. 2017. *Bioavailability of Contaminants in Soil: Considerations for Human Health Risk Assessment. BCS-1.* Washington, D.C.: Interstate Technology & Regulatory Council, Bioavailability in Contaminated Soil Team. www.itrcweb.org.

State of Oregon Department of Environmental Quality (ODEQ). *Clean Fill Determinations*. https://www.oregon.gov/deq/filtered%20library/imdcleanfill.pdf.

Terraphase Engineering Inc. (Terraphase). 2024a. Sampling and Analysis Plan, Upper Granite Creek Watershed Mines, Wallow-Whitman National Forest, Oregon. September 20.

———. 2024b. Health and Safety Plan, Upper Granite Creek Watershed Mines, Integrated EE/CA, Wallow-Whitman National Forest, Oregon. August 20.

United States Environmental Protection Agency (USEPA). 2017. Release of Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead and Arsenic in Soil and Validation Assessment of the In Vitro Arsenic Bioaccessibility Assay for Predicting Relative Bioavailability of Arsenic in Soils and Soil-like Materials at Superfund Sites. May 5.

———. 2022a. Superfund & Emergency Management X-Ray Fluorescence Field Operations Guide. July 19.

———. 2022b. ProUCL Version 5.2.0 Technical Guide. April.

 $^{^{10}}$ This is USEPA's recommended default value in the absence of site-specific information (2012).

RBC for arsenic of approximately 60 mg/kg—generally consistent with the RBC of 67 mg/kg estimated by Terraphase in preparing the PRG for the SAP.

THISE PAGE INTENTIONALLY LEFT BLANK

Tables

- 1 Waste Rock and Tailings Pile Volumes
- 2 Summary of XRF Measurements
- 3 Summary of Soil Analytical Results
- 4 Waste Rock/Tailings Pile UCL Calculations
- 5 Summary of Sediment Analytical Results
- 6 Summary of Surface Water Analytical Results
- 7 In Vitro Bioaccessibility (IVBA) and Relative Bioavailability (RBA) Calculations

Table 1
Waste Rock and Tailings Piles Volumes
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

		Previously Calculated	Previously Calculated
		Volume (cubic yards)	Volume (cubic yards)
Waste Rock Pile	(cubic yards)	(EA)	(CES)
WRA	395		
WRB	5		
WRC	5		
WRD	10		-
WRE			
WRF	10		-
WRG	10		-
WRH	25		-
WRI	5		-
WRJ	15		
TLA	125**		400
TLB	305		900
TLC	10		100
WRA	7,905	5,187	15,000*
WRB	60	37	200
TLA	180		1,200
		6,874	18,500*
			100
		190	
		128	1,000
			125
			30
			70
			200
			400
			600
		51	300
			400
			20
			2,000
			120
			380
			350
			40
			60
WRD	25		200
	WRA WRB WRC WRD WRE WRF WRG WRH WRI WRJ TLA TLB TLC WRA WRB TLA WRA WRB WRA WRB WRA WRB WRA WRB WRA WRB WRC WRA WRB WRA WRB WRA WRB WRC WRA WRB WRA WRB WRC WRA WRB WRA WRB WRC WRA WRB	WRA 395 WRB 5 WRC 5 WRC 5 WRD 10 WRE 5 WRF 10 WRF 10 WRG 10 WRH 25 WRI 5 WRJ 15 TLA 125** TLB 305 TLC 10 WRA 7,905 WRB 60 TLA 180 WRA 5,560 WRB 170 WRA 15 WRA 370 WRB 80 WRA 370 WRB 10 WRA 65 WRB 10 WRC 735 WRB 30 WRC 5 WRB 125 WRA 195 WRB 125 WRA 205 WRB 145 WRA 295 WRB 10 WRA 295 WRB 105 WRA 295 WRB 145 WRC 295 WRD 1,105	Waste Rock Pile Volume (cubic yards) Volume (EA) WRA 395 WRB 5 WRC 5 WRD 10 WRE 5 WRF 10 WRG 10 WRG 10 WRI 5 WRI 5 WRI 5 WRI 15 TLA 125** TLB 305 TLC 10 WRA 7,905 5,187 WRB 60 37 TLA 180 WRA 5,560 6,874 WRB 170 WRA 15 WRA 15 WRB 10 WRB 10

Notes:

^{-- =} not calculated

^{* =} volume based on survey data

^{** =} volume based on area multiplied by 4 feet (the maximum depth of tailings materials observed during the 2011 investigation performed by CES)

All Terraphase estimates have been rounded to the nearest 5 cubic yards, with 5 cubic yards being the minimum volume.

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
401	Location	Field Samula ID	Material	Collection Depth	Cample Date	Avaania
AOI	Location	Field Sample ID Tailings P	Material PRG	(ft bgs)	Sample Date	Arsenic 110
		Waste Rock/S	oil PRG			190
	CM-PS	CM-PS-0.5-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	36
	CM-PS-1 CM-PS-2	CM-PS-0.5-1-X01 CM-PS-0.5-2-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	38.61 36
	CM-PS-3	CM-PS-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	33
	CM-PS-4	CM-PS-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	25
		CM-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	5
	CNA NA/DA 1	CM-WRA-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	7
	CM-WRA-1	CM-WRA-0.5-1-X03 CM-WRA-0.5-1-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	9 7
		CM-WRA-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	8.92
		CM-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	13
		CM-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	12
	CM-WRA-2	CM-WRA-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	12 11
		CM-WRA-0.5-2-X04 CM-WRA-0.5-2-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	13
		CM-WRB-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	11
		CM-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	5
	CM-WRB-1	CM-WRB-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	10
		CM-WRB-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	8
		CM-WRB-0.5-1-XUCL CM-WRB-0.5-2-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	11.61 14
		CM-WRB-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	11
	CM-WRB-2	CM-WRB-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	11
		CM-WRB-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	13
Can Martin		CM-WRB-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	14
Cap Martin	CM-WRC-1	CM-WRC-0.5-1-X01 CM-WRC-0.5-1-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	60 62
		CM-WRC-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	81
		CM-WRC-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	60
		CM-WRC-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/3/2024	77.76
		CM-WRC-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	113
		CM-WRC-0.5-2-X02 CM-WRC-0.5-2-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	62 75
	CM-WRC-2	CM-WRC-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	84
		CM-WRC-0.5-2-X05	Waste Rock/Soil	0.5 - 1	10/3/2024	86
		CM-WRC-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	101.9
	CM-WRC-3	CM-WRC-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	36
		CM-WRC-0.5-3-X02 CM-WRC-0.5-3-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	63 39
		CM-WRC-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	55
		CM-WRC-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	63.42
		CM-WRC-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>309</u>
	CNA MAIDC A	CM-WRC-0.5-4-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>375</u>
	CM-WRC-4	CM-WRC-0.5-4-X03 CM-WRC-0.5-4-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	322 312
		CM-WRC-0.5-4-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	365.8
		CM-WRC-0.5-5-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	106
		CM-WRC-0.5-5-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	83
	CM-WRC-5	CM-WRC-0.5-5-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	105
		CM-WRC-0.5-5-X04 CM-WRC-0.5-5-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	77 110.3
		CEM-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	58
		CEM-WRA-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	51
	CEM-WRA-1	CEM-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	64
		CEM-WRA-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	52
		CEM-WRA-0.5-1-XUCL CEM-WRA-0.5-2-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	63.33 153
		CEM-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	211
		CEM-WRA-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	138
		CEM-WRA-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>214</u>
Control	CENTIALDA O	CEM-WRA-0.5-2-X05	Waste Rock/Soil	0.5 - 1	10/5/2024	145
Central	CEM-WRA-2	CEM-WRA-0.5-2-X06 CEM-WRA-0.5-2-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	100 129
		CEM-WRA-0.5-2-X07	Waste Rock/Soil	0.5 - 1	10/5/2024	264
		CEM-WRA-0.5-2-X09	Waste Rock/Soil	0.5 - 1	10/5/2024	161
		CEM-WRA-0.5-2-X10	Waste Rock/Soil	0.5 - 1	10/5/2024	147
		CEM-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>194.5</u>
		CEM-WRA-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	43
	CEM-WRA-3	CEM-WRA-0.5-3-X02 CEM-WRA-0.5-3-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	44 40
	CEIVI VVIIM-3	CEM-WRA-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	37
		CEM-WRA-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	44.72

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
AOI	Location	Field Sample ID	Material	Collection Depth (ft bgs)	Sample Date	Arsenic
		Tailings PF				110
		Waste Rock/So		0.5.1	10/5/2024	190
		CEM-WRA-0.5-4-X01 CEM-WRA-0.5-4-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	77 69
	CEM-WRA-4	CEM-WRA-0.5-4-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	89
		CEM-WRA-0.5-4-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	56
		CEM-WRA-0.5-4-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	89.07
		CEM-WRA-0.5-4-DS-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	38
	CEM-WRA-4-DS	CEM-WRA-0.5-4-DS-X02 CEM-WRA-0.5-4-DS-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	31 34
	CEIVI WITH 4 D3	CEM-WRA-0.5-4-DS-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	30
		CEM-WRA-0.5-4-DS-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	37.48
	CEM-WRB-1	CEM-WRB-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>187</u>
	-	CEM-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>210</u>
		CEM-WRB-0.5-1-X03 CEM-WRB-0.5-1-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	125 165
		CEM-WRB-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/5/2024	126
		CEM-WRB-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/5/2024	133
	CEM-WRB-1	CEM-WRB-0.5-1-X07	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>217</u>
		CEM-WRB-0.5-1-X08	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>242</u>
		CEM-WRB-0.5-1-X09 CEM-WRB-0.5-1-X10	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	142 151
Central		CEM-WRB-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	194.1
		CEM-WRC-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	123
		CEM-WRC-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	187
		CEM-WRC-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	94
		CEM-WRC-0.5-1-X04 CEM-WRC-0.5-1-X05	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	104 121
	CEM-WRC-1	CEM-WRC-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/5/2024	109
		CEM-WRC-0.5-1-X07	Waste Rock/Soil	0.5 - 1	10/5/2024	170
		CEM-WRC-0.5-1-X08	Waste Rock/Soil	0.5 - 1	10/5/2024	136
		CEM-WRC-0.5-1-X09	Waste Rock/Soil	0.5 - 1	10/5/2024	102
		CEM-WRC-0.5-1-XUCL CEM-WRC-0.5-2-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	147.1 68
		CEM-WRC-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	64
	CEM-WRC-2	CEM-WRC-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	52
		CEM-WRC-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	57
		CEM-WRC-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	68.65
	CEM-WRD-1	CEM-WRD-0.5-1-X01 CEM-WRD-0.5-1-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	62 56
		CEM-WRD-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	61
		CEM-WRD-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	87
		CEM-WRD-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	82.88
		GF-DR-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	39
	GF-DR-1	GF-DR-0.5-1-X02 GF-DR-0.5-1-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	57 83
	0. 5 1	GF-DR-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	51
		GF-DR-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	79.36
		GF-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>401</u>
		GF-WRA-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>372</u>
		GF-WRA-0.5-1-X03 GF-WRA-0.5-1-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	352 491
		GF-WRA-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/5/2024	269
	GF-WRA-1	GF-WRA-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/5/2024	170
		GF-WRA-0.5-1-X07	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>460</u>
		GF-WRA-0.5-1-X08	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>322</u>
		GF-WRA-0.5-1-X09 GF-WRA-0.5-1-X10	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	<u>324</u> 322
		GF-WRA-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	401.7
Golden Fraction		GF-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	188
		GF-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>237</u>
	GF-WRA-2	GF-WRA-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>279</u>
		GF-WRA-0.5-2-X04 GF-WRA-0.5-2-X05	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	237 266
		GF-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	274.8
		GF-WRA-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>299</u>
		GF-WRA-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>378</u>
		GF-WRA-0.5-3-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>275</u>
		GF-WRA-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>416</u>
	GF-WRA-3	GF-WRA-0.5-3-X05 GF-WRA-0.5-3-X06	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/5/2024 10/5/2024	<u>250</u> 269
	J. 111013	GF-WRA-0.5-3-X07	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>203</u> 248
		GF-WRA-0.5-3-X08	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>269</u>
		GF-WRA-0.5-3-X09	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>224</u>
		GF-WRA-0.5-3-X10	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>296</u>
		GF-WRA-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	<u>327.2</u>

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection Depth		
Location	Field Sample ID	Material RG	(ft bgs)	Sample Date	Arsenic 110
					190
	GF-WRB-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	117
	GF-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	112
GF-WRB-1		·			144 103
		,			139.8
	GF-WRB-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	87
	GF-WRB-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	68
GF-WRB-2					75
					82 87.75
	GF-WRB-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	75
	GF-WRB-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	62
GF-WRB-3	GF-WRB-0.5-3-X03	Waste Rock/Soil			87
		· · · · · · · · · · · · · · · · · · ·			60 58.79
					81
	GF-WRC-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	79
GF-WRC-1	GF-WRC-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	102
		•			78
					98.42 85
GF-WRC-2	GF-WRC-0.5-2-X02		0.5 - 1	10/5/2024	75
	GF-WRC-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	100
GF-WRC-2	GF-WRC-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	88
		·			99.11 50
		,			47
GF-WRC-3	GF-WRC-0.5-3-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	41
	GF-WRC-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	46
	GF-WRC-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	50.4
					67 42
GF-WRC-4	GF-WRC-0.5-4-X03	,			58
	GF-WRC-0.5-4-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	54
	GF-WRC-0.5-4-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	67.45
GF-WRD-1					59 60
					69
	GF-WRD-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	60
	GF-WRD-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	67.52
	GF-WRD-0.5-2-X01				30
GF-WRD-2					42 44
OF WIND 2			0.5 - 1		38
	GF-WRD-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/5/2024	45.79
	GF-WRD-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	62
GE WRD 2		· .			55 74
GI-WND-3					56
	GF-WRD-0.5-3-X05	Waste Rock/Soil	0.5 - 1	10/5/2024	72.02
	GF-WRD-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	57
CE WDD 4	GF-WRD-0.5-4-X02	Waste Rock/Soil			49
GF-WKD-4					42 55
	GF-WRD-0.5-4-XUCL	Waste Rock/Soil			58.69
	GF-WRD-0.5-4-DS-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	31
05.1105.1	GF-WRD-0.5-4-DS-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	62
GF-WRD-4-DS		Waste Rock/Soil			54 46
		,			63.81
	GF-WRD-0.5-5-X01	Waste Rock/Soil	0.5 - 1	10/5/2024	52
	GF-WRD-0.5-5-X02	Waste Rock/Soil	0.5 - 1	10/5/2024	55
GF-WRD-5	GF-WRD-0.5-5-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	55
		·			62 60.99
					51
	GF-WRD-0.5-6-X02	Waste Rock/Soil			80
GF-WRD-6	GF-WRD-0.5-6-X03	Waste Rock/Soil	0.5 - 1	10/5/2024	53
SI WIND U	GF-WRD-0.5-6-X04	Waste Rock/Soil	0.5 - 1	10/5/2024	52
	GF-WRB-1 GF-WRC-1 GF-WRC-2 GF-WRC-3 GF-WRD-1 GF-WRD-1 GF-WRD-3 GF-WRD-3	GF-WRB-0.5-1-X01	### Tailings PRG ### Waste Rock/Soil PRG GF-WRB-0.5-1-X01 Waste Rock/Soil GF-WRB-0.5-1-X02 Waste Rock/Soil GF-WRB-0.5-1-X03 Waste Rock/Soil GF-WRB-0.5-1-X03 Waste Rock/Soil GF-WRB-0.5-1-X04 Waste Rock/Soil GF-WRB-0.5-2-XUCL Waste Rock/Soil GF-WRB-0.5-2-XUCL Waste Rock/Soil GF-WRB-0.5-2-X01 Waste Rock/Soil GF-WRB-0.5-2-X02 Waste Rock/Soil GF-WRB-0.5-2-X04 Waste Rock/Soil GF-WRB-0.5-2-X04 Waste Rock/Soil GF-WRB-0.5-2-XUCL Waste Rock/Soil GF-WRB-0.5-3-X01 Waste Rock/Soil GF-WRB-0.5-3-X01 Waste Rock/Soil GF-WRB-0.5-3-X02 Waste Rock/Soil GF-WRB-0.5-3-X02 Waste Rock/Soil GF-WRB-0.5-3-X04 Waste Rock/Soil GF-WRB-0.5-3-X04 Waste Rock/Soil GF-WRB-0.5-3-X04 Waste Rock/Soil GF-WRB-0.5-3-X04 Waste Rock/Soil GF-WRC-0.5-1-X02 Waste Rock/Soil GF-WRC-0.5-1-X02 Waste Rock/Soil GF-WRC-0.5-1-X02 Waste Rock/Soil GF-WRC-0.5-1-X02 Waste Rock/Soil GF-WRC-0.5-1-X03 Waste Rock/Soil GF-WRC-0.5-1-X04 Waste Rock/Soil GF-WRC-0.5-1-X04 Waste Rock/Soil GF-WRC-0.5-1-X04 Waste Rock/Soil GF-WRC-0.5-1-X05 Waste Rock/Soil GF-WRC-0.5-1-X04 Waste Rock/Soil GF-WRC-0.5-1-X04 Waste Rock/Soil GF-WRC-0.5-2-X03 Waste Rock/Soil GF-WRC-0.5-2-X04 Waste Rock/Soil GF-WRC-0.5-3-X04 Waste Rock/Soil GF-WRD-0.5-4-X02 Waste Rock/Soil GF-WRD-0.5-4-X02 Waste Rock/Soil GF-WRD-0.5-4-X04 Waste Rock/Soil GF-WRD-0.5-4-X04 Waste Rock/Soil GF-WRD-0.5-4-X04 Waste Rock/Soil GF-WRD-0.5-4-X04 Waste Rock/Soil GF-	Frailings PRG	### Tailings PRG #### Waste Rock/Soil

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
				Collection Depth		_
AOI	Location	Field Sample ID Tailings PI	Material RG	(ft bgs)	Sample Date	Arsenic 110
		Waste Rock/So				190
		GC5-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	86
	GC5-WRA-1	GC5-WRA-0.5-1-X02 GC5-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	90 89
	GC3-WKA-1	GC5-WRA-0.5-1-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	133
		GC5-WRA-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	125.9
		GC5-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	54
	GC5-WRA-2	GC5-WRA-0.5-2-X02 GC5-WRA-0.5-2-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	71 81
	GCS WITH Z	GC5-WRA-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	70
		GC5-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	82.14
		GC5-WRA-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>416</u>
		GC5-WRA-0.5-3-X02 GC5-WRA-0.5-3-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	<u>356</u> 296
		GC5-WRA-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>364</u>
		GC5-WRA-0.5-3-X05	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>253</u>
	GC5-WRA-3	GC5-WRA-0.5-3-X06	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>273</u>
		GC5-WRA-0.5-3-X07 GC5-WRA-0.5-3-X08	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	<u>399</u> 346
		GC5-WRA-0.5-3-X09	Waste Rock/Soil	0.5 - 1	10/4/2024	446
		GC5-WRA-0.5-3-X10	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>327</u>
		GC5-WRA-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>383.7</u>
		GC5-WRA-0.5-4-X01 GC5-WRA-0.5-4-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	112 230
Granite Creek #5		GC5-WRA-0.5-4-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	99
		GC5-WRA-0.5-4-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	136
		GC5-WRA-0.5-4-X05	Waste Rock/Soil	0.5 - 1	10/4/2024	163
	GC5-WRA-4	GC5-WRA-0.5-4-X06 GC5-WRA-0.5-4-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	81 101
		GC5-WRA-0.5-4-X08	Waste Rock/Soil	0.5 - 1	10/4/2024	167
		GC5-WRA-0.5-4-X09	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>302</u>
		GC5-WRA-0.5-4-X10	Waste Rock/Soil	0.5 - 1	10/4/2024	106
-		GC5-WRA-0.5-4-XUCL GC5-WRA-0.5-4-DS-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	189.9 74
		GC5-WRA-0.5-4-DS-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	76
	GC5-WRA-4-DS	GC5-WRA-0.5-4-DS-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	56
		GC5-WRA-0.5-4-DS-X04 GC5-WRA-0.5-4-DS-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	65 78.55
-	GC5-WRB-1	GC5-WRB-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	133
-		GC5-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	162
	GC5-WRB-1	GC5-WRB-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	129
		GC5-WRB-0.5-1-X04 GC5-WRB-0.5-1-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	132 157.2
-		GC5-WRB-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	52
		GC5-WRB-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	82
	GC5-WRB-2	GC5-WRB-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	86
		GC5-WRB-0.5-2-X04 GC5-WRB-0.5-2-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	120 117.8
		GC6-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	172
		GC6-WRA-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	189
	GC6-WRA-1	GC6-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	179
		GC6-WRA-0.5-1-X04 GC6-WRA-0.5-1-X05	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	239 193
		GC6-WRA-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>219.4</u>
		GC6-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>257</u>
		GC6-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	185 156
		GC6-WRA-0.5-2-X03 GC6-WRA-0.5-2-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	378
		GC6-WRA-0.5-2-X05	Waste Rock/Soil	0.5 - 1	10/4/2024	134
	GC6-WRA-2	GC6-WRA-0.5-2-X06	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>422</u>
Granite Creek #6		GC6-WRA-0.5-2-X07 GC6-WRA-0.5-2-X08	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	<u>201</u> 270
Granite Creek #0		GC6-WRA-0.5-2-X08 GC6-WRA-0.5-2-X09	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/4/2024	<u>270</u> 173
		GC6-WRA-0.5-2-X10	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>235</u>
		GC6-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>296</u>
		GC6-WTP-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	10 7
	GC6-WTP-1	GC6-WTP-0.5-1-X02 GC6-WTP-0.5-1-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	7
	-	GC6-WTP-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	5
<u> </u>		GC6-WTP-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	9.676
		GC6-WTP-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	11
	GC6-WTP-2	GC6-WTP-0.5-2-X02 GC6-WTP-0.5-2-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	11 16
	-	GC6-WTP-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	14
<u> </u>						

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
				Collection Depth		
AOI	Location	Field Sample ID	Material	(ft bgs)	Sample Date	Arsenic
		Tailings P Waste Rock/S				110 190
		GC6-WTP-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	6
	000 14/77 2	GC6-WTP-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	7
Granite Creek #6	GC6-WTP-3	GC6-WTP-0.5-3-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	6
		GC6-WTP-0.5-3-X04 GC6-WTP-0.5-3-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	7 7.179
		GC7-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	13
		GC7-WRA-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	15
	GC7-WRA-1	GC7-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	17
		GC7-WRA-0.5-1-X04 GC7-WRA-0.5-1-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	15 16.92
		GC7-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	10.32
		GC7-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	11
	GC7-WRA-2	GC7-WRA-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	14
		GC7-WRA-0.5-2-X04 GC7-WRA-0.5-2-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	15 15.3
Granite Creek #7		GC7-WRA-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	31
		GC7-WRA-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	19
	GC7-WRA-3	GC7-WRA-0.5-3-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	27
		GC7-WRA-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	30
-		GC7-WRA-0.5-3-XUCL GC7-WRB-0.5-1-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	33.15 10
		GC7-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	10
	GC7-WRB-1	GC7-WRB-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	16
		GC7-WRB-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	11
		GC7-WRB-0.5-1-XUCL GC7-WRB-0.5-2-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	15.13 11
		GC7-WRB-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	12
Granite Creek #7	GC7-WRB-2	GC7-WRB-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	10
		GC7-WRB-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	11
	CCO3 W/BA	GC7-WRB-0.5-2-XUCL GC03-WRA-0.5-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	11.96
	GC03-WRA GC03-WRA-1	GC03-WRA-0.5-X0CL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	43.57 36
Ī	GC03-WRA-2	GC03-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	30
	GC03-WRA-3	GC03-WRA-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	31
-	GC03-WRA-4 GC03-WRB	GC03-WRA-0.5-4-X01 GC03-WRB-0.5-XUCL	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024	45 303.7
Granite Creek	GC03-WRB-1	GC03-WRB-0.5-1-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/3/2024 10/3/2024	150
Aq. St. 3	GC03-WRB-2	GC03-WRB-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	142
	GC03-WRB-3	GC03-WRB-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>304</u>
-	GC03-WRB-4	GC03-WRB-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	141
-	GC03-WRB-5 GC03-WRB-6	GC03-WRB-0.5-5-X01 GC03-WRB-0.5-6-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	75 222
-	GC03-WRB-7	GC03-WRB-0.5-7-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	222
	GC03-WRB-8	GC03-WRB-0.5-8-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	485
		LMM-TLA-0.5-1-X01	Tailings	0.5 - 1	10/3/2024	<u>3805</u>
		LMM-TLA-0.5-1-X02 LMM-TLA-0.5-1-X03	Tailings	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	3054 3451
	LMM-TLA-1	LMM-TLA-0.5-1-X04	Tailings Tailings	0.5 - 1	10/3/2024	3424
		LMM-TLA-0.5-1-X05	Tailings	0.5 - 1	10/3/2024	4114
		LMM-TLA-0.5-1-X06	Tailings	0.5 - 1	10/3/2024	4841
		LMM-TLA-0.5-1-X07	Tailings	0.5 - 1	10/3/2024	<u>4155</u>
	LMM-TLA-1	LMM-TLA-0.5-1-X08 LMM-TLA-0.5-1-X09	Tailings Tailings	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>4046</u> 4066
		LMM-TLA-0.5-1-X10	Tailings	0.5 - 1	10/3/2024	3775
<u> </u>		LMM-TLA-0.5-1-XUCL	Tailings	0.5 - 1	10/3/2024	<u>4160</u>
		LMM-TLA-0.5-2-X01	Tailings	0.5 - 1	10/3/2024	6591 7810
Lwr Mon'tl		LMM-TLA-0.5-2-X02 LMM-TLA-0.5-2-X03	Tailings Tailings	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	7810 4263
2.00.0.1 (1		LMM-TLA-0.5-2-X04	Tailings	0.5 - 1	10/3/2024	<u>5524</u>
		LMM-TLA-0.5-2-X05	Tailings	0.5 - 1	10/3/2024	9330
	LMM-TLA-2	LMM-TLA-0.5-2-X06	Tailings	0.5 - 1	10/3/2024	<u>8150</u>
		LMM-TLA-0.5-2-X07 LMM-TLA-0.5-2-X08	Tailings	0.5 - 1	10/3/2024	8540 10034
		LMM-TLA-0.5-2-X09	Tailings Tailings	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>10034</u> <u>10428</u>
		LMM-TLA-0.5-2-X10	Tailings	0.5 - 1	10/3/2024	<u>17380</u>
		LMM-TLA-0.5-2-XUCL	Tailings	0.5 - 1	10/3/2024	10884
		LMM-TLA-0.5-3-X01	Tailings	0.5 - 1	10/3/2024	10
	ΜΜ-ΤΙ Δ-2	LMM-TLA-0.5-3-X02 LMM-TLA-0.5-3-X03	Tailings Tailings	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	12 13
	LMM-TLA-3	F141141 1 FU-017-7-V02				
		LMM-TLA-0.5-3-X04	Tailings	0.5 - 1	10/3/2024	11

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
401	Location	Field Semule ID	Material	Collection Depth	Cample Date	Ausania
AOI	Location	Field Sample ID Tailings PI	Material RG	(ft bgs)	Sample Date	Arsenic 110
		Waste Rock/So				190
		LMM-TLA-0.5-4-X01	Tailings	0.5 - 1	10/3/2024	<u>1097</u>
		LMM-TLA-0.5-4-X02 LMM-TLA-0.5-4-X03	Tailings Tailings	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>1213</u> <u>732</u>
		LMM-TLA-0.5-4-X04	Tailings	0.5 - 1	10/3/2024	493
		LMM-TLA-0.5-4-X05	Tailings	0.5 - 1	10/3/2024	<u>738</u>
	LMM-TLA-4	LMM-TLA-0.5-4-X06	Tailings	0.5 - 1	10/3/2024	<u>461</u>
		LMM-TLA-0.5-4-X07 LMM-TLA-0.5-4-X08	Tailings Tailings	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>555</u> 570
		LMM-TLA-0.5-4-X09	Tailings	0.5 - 1	10/3/2024	476
		LMM-TLA-0.5-4-X10	Tailings	0.5 - 1	10/3/2024	<u>496</u>
		LMM-TLA-0.5-4-XUCL	Tailings	0.5 - 1	10/3/2024	<u>838.9</u>
		LMM-WRA-0.5-1-X01 LMM-WRA-0.5-1-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>423</u> 192
		LMM-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>192</u> 283
		LMM-WRA-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>256</u>
		LMM-WRA-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/3/2024	185
	LMM-WRA-1	LMM-WRA-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>232</u>
		LMM-WRA-0.5-1-X07 LMM-WRA-0.5-1-X08	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>271</u> 281
		LMM-WRA-0.5-1-X09	Waste Rock/Soil	0.5 - 1	10/3/2024	95
		LMM-WRA-0.5-1-X10	Waste Rock/Soil	0.5 - 1	10/3/2024	170
		LMM-WRA-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	289.8
		LMM-WRA-0.5-2-X01 LMM-WRA-0.5-2-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	318 299
		LMM-WRA-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	239
		LMM-WRA-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	209
		LMM-WRA-0.5-2-X05	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>280</u>
	LMM-WRA-2	LMM-WRA-0.5-2-X06 LMM-WRA-0.5-2-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	330 531
		LMM-WRA-0.5-2-X07	Waste Rock/Soil	0.5 - 1	10/3/2024	457
		LMM-WRA-0.5-2-X09	Waste Rock/Soil	0.5 - 1	10/3/2024	213
		LMM-WRA-0.5-2-X10	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>329</u>
		LMM-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024	380.3 49
	LMM-WRA-3	LMM-WRA-0.5-3-X01 LMM-WRA-0.5-3-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/3/2024 10/3/2024	95
Lwr Mon'tl		LMM-WRA-0.5-3-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	134
		LMM-WRA-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	63
		LMM-WRA-0.5-3-X05	Waste Rock/Soil	0.5 - 1	10/3/2024	107
		LMM-WRA-0.5-3-X06 LMM-WRA-0.5-3-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	97 38
		LMM-WRA-0.5-3-X08	Waste Rock/Soil	0.5 - 1	10/3/2024	46
		LMM-WRA-0.5-3-X09	Waste Rock/Soil	0.5 - 1	10/3/2024	48
		LMM-WRA-0.5-3-X10	Waste Rock/Soil	0.5 - 1	10/3/2024	69
		LMM-WRA-0.5-3-XUCL LMM-WRA-0.5-3-DS-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	93.12 47
		LMM-WRA-0.5-3-DS-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	42
	LMM-WRA-3-DS	LMM-WRA-0.5-3-DS-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	50
		LMM-WRA-0.5-3-DS-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	16
		LMM-WRA-0.5-3-DS-XUCL LMM-WRA-0.5-4-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	57.01 1750
		LMM-WRA-0.5-4-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	2465
		LMM-WRA-0.5-4-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>1445</u>
		LMM-WRA-0.5-4-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	2149
	LMM-WRA-4	LMM-WRA-0.5-4-X05	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>2991</u>
	LIVIIVI-VV NA-4	LMM-WRA-0.5-4-X06 LMM-WRA-0.5-4-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>1437</u> 815
		LMM-WRA-0.5-4-X08	Waste Rock/Soil	0.5 - 1	10/3/2024	1453
		LMM-WRA-0.5-4-X09	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>697</u>
		LMM-WRA-0.5-4-X10	Waste Rock/Soil	0.5 - 1	10/3/2024	735
		LMM-WRA-0.5-4-XUCL LMM-WRB-0.5-1-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	<u>2037</u> 735
		LMM-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	869
	LMM-WRB-1	LMM-WRB-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>864</u>
		LMM-WRB-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>738</u>
		LMM-WRB-0.5-1-X05 LMM-WRB-0.5-1-X06	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024	978 645
		LMM-WRB-0.5-1-X06	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/3/2024 10/3/2024	<u>645</u> 923
	LMM-WRB-1	LMM-WRB-0.5-1-X08	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>898</u>
	FIAIIAI-AA K Q-T	LMM-WRB-0.5-1-X09	Waste Rock/Soil	0.5 - 1	10/3/2024	964
ŀ		LMM-WRB-0.5-1-X10	Waste Rock/Soil	0.5 - 1	10/3/2024	827

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

				Collection Daniel		Meta
AOI	Location	Field Sample ID	Material	Collection Depth (ft bgs)	Sample Date	Arsen
		Tailings PI Waste Rock/So				110 190
		LMM-WRB-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	284
		LMM-WRB-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	186
		LMM-WRB-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	174
		LMM-WRB-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>196</u>
		LMM-WRB-0.5-2-X05	Waste Rock/Soil	0.5 - 1	10/3/2024	221
	LMM-WRB-2	LMM-WRB-0.5-2-X06	Waste Rock/Soil	0.5 - 1	10/3/2024	236 184
		LMM-WRB-0.5-2-X07 LMM-WRB-0.5-2-X08	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	142
		LMM-WRB-0.5-2-X09	Waste Rock/Soil	0.5 - 1	10/3/2024	148
		LMM-WRB-0.5-2-X10	Waste Rock/Soil	0.5 - 1	10/3/2024	182
Lwr Mon'tl		LMM-WRB-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	<u>219.</u>
		LMM-WRB-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	112
	LMM-WRB-3	LMM-WRB-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	97
	LIVIIVI-VVKB-3	LMM-WRB-0.5-3-X03 LMM-WRB-0.5-3-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	149 92
		LMM-WRB-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/3/2024	142.
		LMM-WRB-0.5-3-DS-X01	Waste Rock/Soil	0.5 - 1	10/3/2024	18
		LMM-WRB-0.5-3-DS-X02	Waste Rock/Soil	0.5 - 1	10/3/2024	14
	LMM-WRB-3-DS	LMM-WRB-0.5-3-DS-X03	Waste Rock/Soil	0.5 - 1	10/3/2024	19
		LMM-WRB-0.5-3-DS-X04	Waste Rock/Soil	0.5 - 1	10/3/2024	19
		LMM-WRB-0.5-3-DS-XUCL SH-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/3/2024 10/4/2024	20.3 12
		SH-WRA-0.5-1-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/4/2024	9
	SH-WRA-1	SH-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	13
		SH-WRA-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	12
		SH-WRA-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	13.5
	SH-WRA-2	SH-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	12
		SH-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	21
		SH-WRA-0.5-2-X03 SH-WRA-0.5-2-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	15 13
		SH-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	19.9
		SH-WRB-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	30
		SH-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	23
	SH-WRB-1	SH-WRB-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	19
		SH-WRB-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	26
Sheridan		SH-WRB-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	29.8 59
	SH-WRB-2	SH-WRB-0.5-2-X01 SH-WRB-0.5-2-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	65
		SH-WRB-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	66
		SH-WRB-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	62
		SH-WRB-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	66.7
		SH-WRC-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	14
	CH MDC 4	SH-WRC-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	12
	SH-WRC-1	SH-WRC-0.5-1-X03 SH-WRC-0.5-1-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	21 21
		SH-WRC-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	22.5
		SH-WRC-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	21
		SH-WRC-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	14
	SH-WRC-2	SH-WRC-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	16
		SH-WRC-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	21
		SH-WRC-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	22.1
		TL-WRA-0.5-1-X01 TL-WRA-0.5-1-DUP-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	131 165
		TL-WRA-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	176
		TL-WRA-0.5-1-DUP-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	157
	TL-WRA-1	TL-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	155
	I F- AALVW-T	TL-WRA-0.5-1-DUP-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	183
		TL-WRA-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	152
		TL-WRA-0.5-1-DUP-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	133
		TL-WRA-0.5-1-XUCL TL-WRA-0.5-1-DUP-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	175 182
Tillicum		TL-WRA-0.5-1-D0P-X0CL	Waste Rock/Soil	0.5 - 1	10/4/2024	185
		TL-WRA-0.5-1-DS-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	175
	TL-WRA-1-DS	TL-WRA-0.5-1-DS-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	156
		TL-WRA-0.5-1-DS-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	150
		TL-WRA-0.5-1-DS-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	185.
		TL-WRA-0.5-1-DS-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	185
	TL-WRA-1-DS-2	TL-WRA-0.5-1-DS-2-X02 TL-WRA-0.5-1-DS-2-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	161 178
	15 MIVU-1-D2-5	TL-WRA-0.5-1-DS-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	177
		0.0 1 D0 2 A04	Waste Rock/Soil	0.5 - 1	10/4/2024	187.

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
				Collection Depth		
AOI	Location	Field Sample ID Tailings P	Material	(ft bgs)	Sample Date	Arsenic 110
		Waste Rock/S				190
		TL-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>253</u>
	TI 14/DA 2	TL-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>299</u>
	TL-WRA-2	TL-WRA-0.5-2-X03 TL-WRA-0.5-2-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	<u>261</u> 299
		TL-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	306.8
		TL-WRA-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>367</u>
	TL-WRA-3	TL-WRA-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>335</u>
	-	TL-WRA-0.5-3-X03 TL-WRA-0.5-3-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	<u>394</u> 438
		TL-WRA-0.5-3-X05	Waste Rock/Soil	0.5 - 1	10/4/2024	408
		TL-WRA-0.5-3-X06	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>347</u>
		TL-WRA-0.5-3-X07	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>371</u>
	TL-WRA-3	TL-WRA-0.5-3-X08 TL-WRA-0.5-3-X09	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	<u>376</u> <u>321</u>
		TL-WRA-0.5-3-X10	Waste Rock/Soil	0.5 - 1	10/4/2024	353
		TL-WRA-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	<u>391.4</u>
		TL-WRA-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	147
	T. 14/DA 4	TL-WRA-0.5-4-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	125
	TL-WRA-4	TL-WRA-0.5-4-X03 TL-WRA-0.5-4-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	171 193
		TL-WRA-0.5-4-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	193.6
		TL-WRB-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	67
		TL-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	73
	TL-WRB-1	TL-WRB-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	67
		TL-WRB-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	72 52
		TL-WRB-0.5-1-XUCL TL-WRB-0.5-2-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	73.52 129
Tillicum		TL-WRB-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	126
	TL-WRB-2	TL-WRB-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	157
		TL-WRB-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	106
		TL-WRB-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	154.2
		TL-WRB-0.5-3-X01 TL-WRB-0.5-3-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	119 138
	TL-WRB-3	TL-WRB-0.5-3-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	113
		TL-WRB-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	128
		TL-WRB-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/4/2024	137.3
		TL-WRB-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	105
		TL-WRB-0.5-4-X02 TL-WRB-0.5-4-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	184 113
		TL-WRB-0.5-4-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	170
	TL-WRB-4	TL-WRB-0.5-4-X05	Waste Rock/Soil	0.5 - 1	10/4/2024	179
		TL-WRB-0.5-4-X06	Waste Rock/Soil	0.5 - 1	10/4/2024	161
		TL-WRB-0.5-4-X07 TL-WRB-0.5-4-X08	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	182 131
		TL-WRB-0.5-4-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/4/2024	174.6
		TL-WRC-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	145
		TL-WRC-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	145
	TL-WRC-1	TL-WRC-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	142
		TL-WRC-0.5-1-X04 TL-WRC-0.5-1-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/4/2024 10/4/2024	99 159.3
		TL-WRC-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/4/2024	203
		TL-WRC-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/4/2024	204
	TL-WRC-2	TL-WRC-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/4/2024	188
		TL-WRC-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/4/2024	205
	UMM-FLT	TL-WRC-0.5-2-XUCL UMM-FLT-0-1	Waste Rock/Soil Tailings	0.5 - 1 0.5 - 1	10/4/2024 10/2/2024	<u>209.5</u> 18300
	0.0	UMM-TLA-0.5-1-X01	Tailings	0.5 - 1	10/2/2024	104
		UMM-TLA-0.5-1-X02	Tailings	0.5 - 1	10/2/2024	72
	UMM-TLA-1	UMM-TLA-0.5-1-X03	Tailings	0.5 - 1	10/2/2024	53
		UMM-TLA-0.5-1-X04	Tailings	0.5 - 1	10/2/2024	95
		UMM-TLA-0.5-1-X05 UMM-TLA-0.5-1-XUCL	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	96 104.1
		UMM-TLA-0.5-2-X01	Tailings	0.5 - 1	10/2/2024	322
		UMM-TLA-0.5-2-X02	Tailings	0.5 - 1	10/2/2024	<u>317</u>
	UMM-TLA-2	UMM-TLA-0.5-2-X03	Tailings	0.5 - 1	10/2/2024	<u>316</u>
Hor Mon't		UMM-TLA-0.5-2-X04	Tailings	0.5 - 1	10/2/2024	388 376.0
Upr Mon'tl		UMM-TLA-0.5-2-XUCL UMM-TLA-0.5-3-X01	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>376.9</u> 100
	1	UMM-TLA-0.5-3-X01	Tailings	0.5 - 1	10/2/2024	104
		UMM-TLA-0.5-3-X03	Tailings	0.5 - 1	10/2/2024	<u>147</u>
		UMM-TLA-0.5-3-X04	Tailings	0.5 - 1	10/2/2024	55
	LINANA TIA 2	UMM-TLA-0.5-3-X05	Tailings	0.5 - 1	10/2/2024	63
	UMM-TLA-3	UMM-TLA-0.5-3-X06 UMM-TLA-0.5-3-X07	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>144</u> 11
		UMM-TLA-0.5-3-X07	Tailings	0.5 - 1	10/2/2024	13
		UMM-TLA-0.5-3-X09	Tailings	0.5 - 1	10/2/2024	13
	1	UMM-TLA-0.5-3-X10	Tailings	0.5 - 1	10/2/2024	<u>152</u>
		UMM-TLA-0.5-3-XUCL	Tailings	0.5 - 1	10/2/2024	<u>113.3</u>

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

				1		Metals
				Collection Depth		- Wickers
AOI	Location	Field Sample ID	Material	(ft bgs)	Sample Date	Arsenic
		Tailings PRO Waste Rock/Soi				110 190
		UMM-TLA-0.5-4-X01	Tailings	0.5 - 1	10/2/2024	72
		UMM-TLA-0.5-4-DUP-X01	Tailings	0.5 - 1	10/2/2024	81
		UMM-TLA-0.5-4-X02	Tailings	0.5 - 1	10/2/2024	59
		UMM-TLA-0.5-4-DUP-X02	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024	72 85
	UMM-TLA-4	UMM-TLA-0.5-4-X03 UMM-TLA-0.5-4-DUP-X03	Tailings	0.5 - 1	10/2/2024 10/2/2024	64
		UMM-TLA-0.5-4-X04	Tailings	0.5 - 1	10/2/2024	86
		UMM-TLA-0.5-4-DUP-X04	Tailings	0.5 - 1	10/2/2024	73
		UMM-TLA-0.5-4-XUCL	Tailings	0.5 - 1	10/2/2024	90.46
		UMM-TLA-0.5-4-DUP-XUCL UMM-TLA-0.5-5-X01	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	80.68 38
		UMM-TLA-0.5-5-DUP-X01	Tailings	0.5 - 1	10/2/2024	33
		UMM-TLA-0.5-5-X02	Tailings	0.5 - 1	10/2/2024	39
	UMM-TLA-5	UMM-TLA-0.5-5-DUP-X02	Tailings	0.5 - 1	10/2/2024	47
		UMM-TLA-0.5-5-X03 UMM-TLA-0.5-5-DUP-X03	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	46 44
		UMM-TLA-0.5-5-X04	Tailings	0.5 - 1	10/2/2024	31
		UMM-TLA-0.5-5-DUP-X04	Tailings	0.5 - 1	10/2/2024	35
	UMM-TLA-5	UMM-TLA-0.5-5-XUCL	Tailings	0.5 - 1	10/2/2024	45.72
		UMM-TLA-0.5-5-DUP-XUCL	Tailings	0.5 - 1	10/2/2024	47.75
		UMM-TLA-0.5-6-X01 UMM-TLA-0.5-6-X02	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>2576</u> 3177
		UMM-TLA-0.5-6-X03	Tailings	0.5 - 1	10/2/2024	3357
		UMM-TLA-0.5-6-X04	Tailings	0.5 - 1	10/2/2024	<u>3096</u>
		UMM-TLA-0.5-6-X05	Tailings	0.5 - 1	10/2/2024	<u>3018</u>
	UMM-TLA-6	UMM-TLA-0.5-6-X06 UMM-TLA-0.5-6-X07	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>2930</u> <u>3402</u>
		UMM-TLA-0.5-6-X08	Tailings	0.5 - 1	10/2/2024	2821
		UMM-TLA-0.5-6-X09	Tailings	0.5 - 1	10/2/2024	3293
		UMM-TLA-0.5-6-X10	Tailings	0.5 - 1	10/2/2024	<u>3070</u>
		UMM-TLA-0.5-6-XUCL	Tailings	0.5 - 1	10/2/2024	<u>3221</u>
		UMM-TLB-0.5-1-X01 UMM-TLB-0.5-1-X02	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	2731 2881
		UMM-TLB-0.5-1-X03	Tailings	0.5 - 1	10/2/2024	3414
		UMM-TLB-0.5-1-X04	Tailings	0.5 - 1	10/2/2024	<u>3611</u>
	LINANA TI D 4	UMM-TLB-0.5-1-X05	Tailings	0.5 - 1	10/2/2024	<u>3164</u>
Upr Mon'tl	UMM-TLB-1	UMM-TLB-0.5-1-X06 UMM-TLB-0.5-1-X07	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	3822 2765
Opi Won ti		UMM-TLB-0.5-1-X08	Tailings	0.5 - 1	10/2/2024	2889
		UMM-TLB-0.5-1-X09	Tailings	0.5 - 1	10/2/2024	2806
		UMM-TLB-0.5-1-X10	Tailings	0.5 - 1	10/2/2024	<u>3115</u>
		UMM-TLB-0.5-1-XUCL	Tailings	0.5 - 1	10/2/2024	3341
		UMM-TLB-0.5-2-X01 UMM-TLB-0.5-2-X02	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>519</u> 510
		UMM-TLB-0.5-2-X03	Tailings	0.5 - 1	10/2/2024	2130
		UMM-TLB-0.5-2-X04	Tailings	0.5 - 1	10/2/2024	<u>2073</u>
	LINANA TID O	UMM-TLB-0.5-2-X05	Tailings	0.5 - 1	10/2/2024	<u>2865</u>
	UMM-TLB-2	UMM-TLB-0.5-2-X06 UMM-TLB-0.5-2-X07	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>606</u> 676
		UMM-TLB-0.5-2-X08	Tailings	0.5 - 1	10/2/2024	271
		UMM-TLB-0.5-2-X09	Tailings	0.5 - 1	10/2/2024	<u>221</u>
		UMM-TLB-0.5-2-X10	Tailings	0.5 - 1	10/2/2024	467
	-	UMM-TLB-0.5-2-XUCL UMM-TLB-0.5-3-X01	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>2473</u> 471
		UMM-TLB-0.5-3-X02	Tailings	0.5 - 1	10/2/2024	<u>471</u> 674
		UMM-TLB-0.5-3-X03	Tailings	0.5 - 1	10/2/2024	<u>526</u>
		UMM-TLB-0.5-3-X04	Tailings	0.5 - 1	10/2/2024	<u>504</u>
	UMM-TLB-3	UMM-TLB-0.5-3-X05	Tailings	0.5 - 1 0.5 - 1	10/2/2024	<u>730</u> 377
	O IVIIVI- I LD-3	UMM-TLB-0.5-3-X06 UMM-TLB-0.5-3-X07	Tailings Tailings	0.5 - 1	10/2/2024 10/2/2024	3// 1143
		UMM-TLB-0.5-3-X08	Tailings	0.5 - 1	10/2/2024	1098
		UMM-TLB-0.5-3-X09	Tailings	0.5 - 1	10/2/2024	401
		UMM-TLB-0.5-3-X10	Tailings	0.5 - 1	10/2/2024	<u>367</u>
		UMM-TLB-0.5-3-XUCL UMM-TLB-0.5-4-X01	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>794.4</u> 2033
		UMM-TLB-0.5-4-X02	Tailings	0.5 - 1	10/2/2024	<u>2033</u> <u>1571</u>
		UMM-TLB-0.5-4-X03	Tailings	0.5 - 1	10/2/2024	1251
		UMM-TLB-0.5-4-X04	Tailings	0.5 - 1	10/2/2024	1374
	UMM-TLB-4	UMM-TLB-0.5-4-X05	Tailings	0.5 - 1	10/2/2024	1777 1254
	UIVIIVI-1LB-4	UMM-TLB-0.5-4-X06 UMM-TLB-0.5-4-X07	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1354</u> <u>1334</u>
		UMM-TLB-0.5-4-X08	Tailings	0.5 - 1	10/2/2024	1127
		UMM-TLB-0.5-4-X09	Tailings	0.5 - 1	10/2/2024	<u>1211</u>
		UMM-TLB-0.5-4-X10	Tailings	0.5 - 1	10/2/2024	<u>1713</u>
		UMM-TLB-0.5-4-XUCL	Tailings	0.5 - 1	10/2/2024	<u>1642</u>

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
				Collection Depth		
AOI	Location	Field Sample ID	Material	(ft bgs)	Sample Date	Arsenic
		Tailings PF Waste Rock/So				110 190
		UMM-TLC-0.5-1-X01	Tailings	0.5 - 1	10/2/2024	<u>987</u>
		UMM-TLC-0.5-1-X02	Tailings	0.5 - 1	10/2/2024	<u>746</u>
		UMM-TLC-0.5-1-X03	Tailings	0.5 - 1	10/2/2024	<u>897</u>
		UMM-TLC-0.5-1-X04 UMM-TLC-0.5-1-X05	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>410</u> <u>1366</u>
	UMM-TLC-1	UMM-TLC-0.5-1-X06	Tailings	0.5 - 1	10/2/2024	1347
		UMM-TLC-0.5-1-X07	Tailings	0.5 - 1	10/2/2024	1403
		UMM-TLC-0.5-1-X08	Tailings	0.5 - 1	10/2/2024	<u>1969</u>
		UMM-TLC-0.5-1-X09	Tailings	0.5 - 1	10/2/2024	<u>960</u>
		UMM-TLC-0.5-1-X10 UMM-TLC-0.5-1-XUCL	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>643</u> 1336
		UMM-TLC-0.5-2-X01	Tailings	0.5 - 1	10/2/2024	2564
		UMM-TLC-0.5-2-X02	Tailings	0.5 - 1	10/2/2024	2682
		UMM-TLC-0.5-2-X03	Tailings	0.5 - 1	10/2/2024	<u>2880</u>
		UMM-TLC-0.5-2-X04	Tailings	0.5 - 1	10/2/2024	<u>3389</u>
	UMM-TLC-2	UMM-TLC-0.5-2-X05 UMM-TLC-0.5-2-X06	Tailings Tailings	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>2771</u> 2930
	OIVIIVI-1EC-2	UMM-TLC-0.5-2-X07	Tailings	0.5 - 1	10/2/2024	2642
		UMM-TLC-0.5-2-X08	Tailings	0.5 - 1	10/2/2024	2125
		UMM-TLC-0.5-2-X09	Tailings	0.5 - 1	10/2/2024	<u>1794</u>
		UMM-TLC-0.5-2-X10	Tailings	0.5 - 1	10/2/2024	<u>2435</u>
		UMM-TLC-0.5-2-XUCL UMM-WRA-0.5-1-X01	Tailings Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	2877 1127
		UMM-WRA-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	654
	LINANA NA/DA 4	UMM-WRA-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	661
	UMM-WRA-1	UMM-WRA-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>597</u>
		UMM-WRA-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1876</u>
		UMM-WRA-0.5-1-X06	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>712</u> 672
		UMM-WRA-0.5-1-X07 UMM-WRA-0.5-1-X08	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/2/2024	604
	UMM-WRA-1	UMM-WRA-0.5-1-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1234</u>
		UMM-WRA-0.5-1-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	922
		UMM-WRA-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1143</u>
Upr Mon'tl		UMM-WRA-0.5-1-DS-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024	44 30
		UMM-WRA-0.5-1-DS-X02 UMM-WRA-0.5-1-DS-X03	Waste Rock/Soil	0.5 - 1	10/2/2024 10/2/2024	65
	LINANA VA/DA 1 DC	UMM-WRA-0.5-1-DS-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	45
	UMM-WRA-1-DS	UMM-WRA-0.5-1-DS-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	75
		UMM-WRA-0.5-1-DS-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	61
		UMM-WRA-0.5-1-DS-X07 UMM-WRA-0.5-1-DS-XUCL	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	44 63.38
		UMM-WRA-0.5-2-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/2/2024	768
		UMM-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	306
		UMM-WRA-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>357</u>
		UMM-WRA-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>310</u>
	UMM-WRA-2	UMM-WRA-0.5-2-X05 UMM-WRA-0.5-2-X06	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024	<u>409</u> 352
	OTVITVE VVICA-2	UMM-WRA-0.5-2-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/2/2024 10/2/2024	252
		UMM-WRA-0.5-2-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>279</u>
		UMM-WRA-0.5-2-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>409</u>
		UMM-WRA-0.5-2-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>509</u>
		UMM-WRA-0.5-2-XUCL UMM-WRA-0.5-2-DS-X01	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>482.6</u> 58
		UMM-WRA-0.5-2-DS-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	51
	UMM-WRA-2-DS	UMM-WRA-0.5-2-DS-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	68
		UMM-WRA-0.5-2-DS-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	52
		UMM-WRA-0.5-2-DS-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	66.43
		UMM-WRA-0.5-3-X01 UMM-WRA-0.5-3-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1142</u> 735
		UMM-WRA-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	978
		UMM-WRA-0.5-3-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1093</u>
		UMM-WRA-0.5-3-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1287</u>
	UMM-WRA-3	UMM-WRA-0.5-3-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1376</u>
		UMM-WRA-0.5-3-X07	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024	<u>894</u> 128
		UMM-WRA-0.5-3-X08 UMM-WRA-0.5-3-X09	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/2/2024 10/2/2024	716
		UMM-WRA-0.5-3-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>710</u> <u>1282</u>
		UMM-WRA-0.5-3-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	1178

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
				Collection Depth		
AOI	Location	Field Sample ID	Material	(ft bgs)	Sample Date	Arsenic
		Tailings PF Waste Rock/So				110 190
		UMM-WRA-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	320
		UMM-WRA-0.5-4-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>256</u>
	UMM-WRA-4	UMM-WRA-0.5-4-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>310</u>
		UMM-WRA-0.5-4-X04 UMM-WRA-0.5-4-X05	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>246</u> 278
		UMM-WRA-0.5-4-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	313
		UMM-WRA-0.5-4-DS-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	53
		UMM-WRA-0.5-4-DS-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	58
	UMM-WRA-4-DS	UMM-WRA-0.5-4-DS-X03 UMM-WRA-0.5-4-DS-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	60 57
		UMM-WRA-0.5-4-DS-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	60.46
		UMM-WRA-0.5-5-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	76
		UMM-WRA-0.5-5-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	53
	UMM-WRA-5	UMM-WRA-0.5-5-X03 UMM-WRA-0.5-5-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	67 58
		UMM-WRA-0.5-5-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	75.44
		UMM-WRA-0.5-6-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	1119
		UMM-WRA-0.5-6-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>679</u>
		UMM-WRA-0.5-6-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>572</u>
		UMM-WRA-0.5-6-X04 UMM-WRA-0.5-6-X05	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>669</u> 905
	UMM-WRA-6	UMM-WRA-0.5-6-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>304</u>
		UMM-WRA-0.5-6-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	419
		UMM-WRA-0.5-6-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>657</u>
		UMM-WRA-0.5-6-X09 UMM-WRA-0.5-6-X10	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	483 905
		UMM-WRA-0.5-6-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>303</u> 815
		UMM-WRA-0.5-7-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>975</u>
		UMM-WRA-0.5-7-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>447</u>
	UMM-WRA-7	UMM-WRA-0.5-7-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>566</u>
		UMM-WRA-0.5-7-X04 UMM-WRA-0.5-7-X05	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>490</u> 326
		UMM-WRA-0.5-7-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>506</u>
		UMM-WRA-0.5-7-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>506</u>
		UMM-WRA-0.5-7-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>422</u>
		UMM-WRA-0.5-7-X09 UMM-WRA-0.5-7-X10	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	608 434
		UMM-WRA-0.5-7-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	629.8
Upr Mon'tl	UMM-WRA-8	UMM-WRA-0.5-8-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	601
		UMM-WRA-0.5-8-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>873</u>
		UMM-WRA-0.5-8-X03 UMM-WRA-0.5-8-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>549</u> 532
		UMM-WRA-0.5-8-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	634
		UMM-WRA-0.5-8-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	807
		UMM-WRA-0.5-8-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>593</u>
		UMM-WRA-0.5-8-X08 UMM-WRA-0.5-8-X09	Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024	<u>672</u> 593
	UMM-WRA-8	UMM-WRA-0.5-8-X10	Waste Rock/Soil Waste Rock/Soil	0.5 - 1	10/2/2024 10/2/2024	602
		UMM-WRA-0.5-8-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	709.8
		UMM-WRB-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>12620</u>
		UMM-WRB-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	9000
		UMM-WRB-0.5-1-X03 UMM-WRB-0.5-1-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	16800 11060
		UMM-WRB-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	13550
	UMM-WRB-1	UMM-WRB-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>13770</u>
		UMM-WRB-0.5-1-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>8550</u>
		UMM-WRB-0.5-1-X08 UMM-WRB-0.5-1-X09	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>16020</u> 13720
		UMM-WRB-0.5-1-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	10030
		UMM-WRB-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	14142
		UMM-WRB-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>2151</u>
		UMM-WRB-0.5-2-X02 UMM-WRB-0.5-2-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1862</u> 1412
		UMM-WRB-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	2565
		UMM-WRB-0.5-2-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1692</u>
	UMM-WRB-2	UMM-WRB-0.5-2-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1422</u>
		UMM-WRB-0.5-2-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1474</u>
		UMM-WRB-0.5-2-X08 UMM-WRB-0.5-2-X09	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1744</u> <u>1326</u>
		UMM-WRB-0.5-2-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	1911
		UMM-WRB-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1980</u>
		UMM-WRB-0.5-2-DS-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	67
		UMM-WRB-0.5-2-DS-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	66
	UMM-WRB-2-DS					
	UMM-WRB-2-DS	UMM-WRB-0.5-2-DS-X03 UMM-WRB-0.5-2-DS-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	78 65

Table 2
Summary of XRF Measurements
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

						Metals
AOI	Location	Field Sample ID	Material	Collection Depth (ft bgs)	Sample Date	Arsenic
AUI	Location	Tailings PF		(it bgs)	Sample Date	110
		Waste Rock/So	oil PRG			190
		UMM-WRB-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>711</u>
		UMM-WRB-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>862</u>
		UMM-WRB-0.5-3-X03 UMM-WRB-0.5-3-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1206</u> 765
		UMM-WRB-0.5-3-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	943
Upr Mon'tl	UMM-WRB-3	UMM-WRB-0.5-3-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	683
		UMM-WRB-0.5-3-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>859</u>
		UMM-WRB-0.5-3-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>992</u>
		UMM-WRB-0.5-3-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1011</u>
		UMM-WRB-0.5-3-X10 UMM-WRB-0.5-3-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>753</u> 972.7
		UMM-WRB-0.5-4-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	586
		UMM-WRB-0.5-4-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	453
		UMM-WRB-0.5-4-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>523</u>
		UMM-WRB-0.5-4-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>743</u>
	LINANA NA/DD 4	UMM-WRB-0.5-4-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>686</u>
	UMM-WRB-4	UMM-WRB-0.5-4-X06 UMM-WRB-0.5-4-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>891</u> 729
		UMM-WRB-0.5-4-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	531
		UMM-WRB-0.5-4-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>818</u>
		UMM-WRB-0.5-4-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>643</u>
		UMM-WRB-0.5-4-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>741.1</u>
		UUMM-WRA-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>911</u>
		UUMM-WRA-0.5-1-X02 UUMM-WRA-0.5-1-X03	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>975</u> 1067
		UUMM-WRA-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	1270
		UUMM-WRA-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	1230
	UUMM-WRA-1	UUMM-WRA-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	1190
		UUMM-WRA-0.5-1-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1114</u>
		UUMM-WRA-0.5-1-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>981</u>
		UUMM-WRA-0.5-1-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1160</u>
		UUMM-WRA-0.5-1-X10 UUMM-WRA-0.5-1-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1124</u> 1170
		UUMM-WRA-0.5-2-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	2693
		UUMM-WRA-0.5-2-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	1872
		UUMM-WRA-0.5-2-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>3092</u>
		UUMM-WRA-0.5-2-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>2717</u>
	11110404 14/04 2	UUMM-WRA-0.5-2-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>2058</u>
	UUMM-WRA-2	UUMM-WRA-0.5-2-X06 UUMM-WRA-0.5-2-X07	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>2077</u> 1447
		UUMM-WRA-0.5-2-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	1538
Upr Upr Mon'tl		UUMM-WRA-0.5-2-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	2066
		UUMM-WRA-0.5-2-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1549</u>
		UUMM-WRA-0.5-2-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>2435</u>
		UUMM-WRA-0.5-3-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1490</u>
		UUMM-WRA-0.5-3-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	1442
		UUMM-WRA-0.5-3-X03 UUMM-WRA-0.5-3-X04	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1557</u> 1816
		UUMM-WRA-0.5-3-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	1409
	UUMM-WRA-3	UUMM-WRA-0.5-3-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1673</u>
		UUMM-WRA-0.5-3-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1402</u>
		UUMM-WRA-0.5-3-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>1730</u>
		UUMM-WRA-0.5-3-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	1937
		UUMM-WRA-0.5-3-X10 UUMM-WRA-0.5-3-XUCL	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	<u>1382</u> 1697
	UUMM-WRA-3-DS	UUMM-WRA-0.5-3-X0CL	Waste Rock/Soil	0.5 - 1	10/2/2024	21
		UUMM-WRA-0.5-3-DS-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	35
	UUMM-WRA-3-DS	UUMM-WRA-0.5-3-DS-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	22
	OOMINI-WIKA-3-D3	UUMM-WRA-0.5-3-DS-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	19
L		UUMM-WRA-0.5-3-DS-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	32.81
		UUMM-WRB-0.5-1-X01 UUMM-WRB-0.5-1-X02	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	103 135
		UUMM-WRB-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	96
		UUMM-WRB-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	202
		UUMM-WRB-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	147
	UUMM-WRB-1	UUMM-WRB-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	109
		UUMM-WRB-0.5-1-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	173
		UUMM-WRB-0.5-1-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	184
		UUMM-WRB-0.5-1-X09 UUMM-WRB-0.5-1-X10	Waste Rock/Soil Waste Rock/Soil	0.5 - 1 0.5 - 1	10/2/2024 10/2/2024	123 106
	Ī	OCIALIAI-AAIVD-0'2-T-VTO	Waste NUCK/SUII	0.5 - 1	10/2/2024	100

Table 2 **Summary of XRF Measurements** Supplemental Site Investigation Report

Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

						Metals
				Collection Depth		
AOI	Location	Field Sample ID	Material	(ft bgs)	Sample Date	Arsenic
		Tailings PF	RG			110
		Waste Rock/So	oil PRG			190
		UUMM-WRC-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	20
		UUMM-WRC-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	18
	UUMM-WRC-1	UUMM-WRC-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	16
		UUMM-WRC-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	17
		UUMM-WRC-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	19.76
		UUMM-WRD-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u> 269</u>
		UUMM-WRD-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>282</u>
	UUMM-WRD-1	UUMM-WRD-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>279</u>
Jpr Upr Mon'tl		UUMM-WRD-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>334</u>
		UUMM-WRD-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>325.4</u>
		UUMM-WRE-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	24
		UUMM-WRE-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	25
	UUMM-WRE-1	UUMM-WRE-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	24
opi opi ivion ti		UUMM-WRE-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	26
		UUMM-WRE-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	25.88
		UUMM-WRF-0.5-1-X01	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>786</u>
		UUMM-WRF-0.5-1-X02	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>430</u>
		UUMM-WRF-0.5-1-X03	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>372</u>
		UUMM-WRF-0.5-1-X04	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>551</u>
		UUMM-WRF-0.5-1-X05	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>640</u>
	UUMM-WRF-1	UUMM-WRF-0.5-1-X06	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>454</u>
		UUMM-WRF-0.5-1-X07	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>290</u>
		UUMM-WRF-0.5-1-X08	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>468</u>
		UUMM-WRF-0.5-1-X09	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>569</u>
		UUMM-WRF-0.5-1-X10	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>534</u>
		UUMM-WRF-0.5-1-XUCL	Waste Rock/Soil	0.5 - 1	10/2/2024	<u>590.8</u>

Note:

- All concentrations reported in mg/kg (ppm); detection limits in parentheses.
 Underlined concentrations for results from Tailings exceed the Tailings PRG.
- 3. Underlined concentrations for results from Waste Rock/Soil exceed the Waste Rock/Soil PRG.

Aq = Aquatic

Mon'tl = Monumental

PRG = Preliminary Remediation Goal

St = Station

Terraphase Engineering Inc. Page 13 of 13

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic.	Arsenic.					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
	PR	G for SAP				4895	82				24468	9113			3681	489424		
	Tai	lings PRG					110											
		Rock/Soil PRG					190										1	
ODE	Q Blue Mou	ntain Region Clea	n Fill			1.3	14			950	2.6	0.69		190		120		21
OD	EQ Eco RBC	Plant Direct Toxic	ity			11	18			110	2.5	32			13	70	1	120
ODE	Q Eco RBC	Inverts Direct Toxi	city			78	6.8			330	40	140				80		1700
	ODEQ	Eco RBC Bird					15			630		0.29		23	76	14		11
	ODEQ Ec	o RBC Mammal				0.27	19			1800	21	0.27		34	230	42	1	56
	ODEQ Excav	ation Worker RCB	}				420				19000	9700				390000		800
		BG-SSS-19	0.5	7/19/2003	24400	0.84 J	4.5	NA	NA	288	1.2	0.43 J	1830	31.3	11.3	30.7	24600	8.4
	EA	BG-SSS-34	0.5	7/15/2003	26400	ND (0.38)	3.4	NA	NA	187	0.72	0.35 J	1130	5.7	5.5	8.9	10800	3.8
	LA	BG-SSS-35	0.5	7/15/2003	31200	ND (0.4)	5.5	NA	NA	268	1	0.54	2110	6.2	6.7	15.4	12400	5.9
		BG-SSS-36	0.5	7/15/2003	19400	ND (0.33)	11.4	NA	NA	319	0.55	ND (0.026)	2080	27.4	10.2	11	17700	6.3
		BGS-01		6/26/2007	NA	ND (0.2)	6.2	NA	NA	NA	0.6 J	1.1	NA	12	NA	8	22900	8.04
Background		BGS-02		6/26/2007	NA	ND (0.2)	7.8	NA	NA	NA	0.6 J	1.45	NA	7	NA	10	13600	5.98
Jaong. Jan. a		BGS-03		6/26/2007	NA	0.2 J	5.4	NA	NA	NA	0.4 J	0.39	NA	11	NA	8	20300	4.58
	CES	BGS-04		6/26/2007	NA	ND (0.2)	9	NA	NA	NA	0.8 J	2.03	NA	15	NA	24	16800	7.62
		BGS-05		6/26/2007	NA	0.3 J	11.8	NA	NA	NA	0.9 J	1.85	NA	7	NA	31	13400	7.92
		BGS-06		6/27/2007	NA	0.2 J	15.3	NA	NA	NA	0.4 J	0.51	NA	15	NA	5	29800	4.86
		BGS-07	0.5 - 1	6/27/2007	NA	ND (0.2)	5	NA	NA	NA	0.6 J	1.01	NA	12	NA	30	13600	5.93
		BGS-08		6/27/2007	NA 13500	0.3 J	43.5	NA	NA	NA 155	0.4 J	1.11	NA 1040	70	NA	67	35300	7.3
		TA-SUS-22		7/15/2003	12500	0.68 J	6.3	NA NA	NA	155	0.38 J	ND (0.03)	1940 2850	5.2	8	3.3 5.5	16300	2.8
	EA	WP-SUS-20 WP-SUS-21	4 2.5	7/15/2003 7/15/2003	15600 10400	0.38 J 2 J	10.1 <u>198</u>	NA NA	NA NA	180 177	0.48 0.5	ND (0.027)	6320	8.4 5.5	9.1 7.4	43.5	19700 20700	3.6 44.1
		WP-SUS-21 WP-SUS-39		7/15/2003	14900	0.61 J	198 17.5	NA NA	NA NA	167	0.5	ND (0.025)	905	9.7	9.6	43.5	19600	44.1
		CM-WR1-1		6/21/2007	NA	0.013	19.6	NA NA	NA NA	NA	ND (0.2)	0.17 J	NA	11	NA	4 J	20500	5.71
Cap Martin		CM-WR2-1		6/21/2007	NA NA	ND (0.2)	9.7	NA NA	NA NA	NA NA	ND (0.2)	0.33	NA NA	9	NA NA	3 J	15500	4.26
	CES	CM-WR2-2		6/21/2007	NA	ND (0.2)	26.5	NA NA	NA	NA	ND (0.2)	0.2 J	NA	11	NA	4 J	12400	4.68
		CM-WR3-1		6/21/2007	NA	0.9 J	131	NA	NA	NA	0.7 J	0.27 J	NA	3 J	NA	3	16800	12.9
		CM-WR4-1	0.5	6/21/2007	NA	ND (1)	257	NA	NA	NA	0.3 J	8.48	NA	6	NA	12	28800	105
	TEI	CM-WRC-4	0.5 - 1	10/3/2024	NA	NA	292 (0.42)	33.1 (1.9)	650 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TA-SUS-33		7/10/2003	11100	1.3 J	27.4	NA	NA	124	0.2 J	0.36 J	1380	9.8	7.2	12.6	16900	9.9
	EA	WP-SSS-31	0.5	7/10/2003	11100	5.9 J	<u>295</u>	NA	NA	223	0.28 J	3.4	2110	10.4	8.5	56.2	31400	358
	EA	WP-SUS-31	4.5	7/10/2003	10900	2.3 J	<u>150</u>	NA	NA	179	0.29 J	2.2	2270	8.4	8.1	30.6	26500	53
Central		WP-SUS-32		7/10/2003	17600	1.8 J	<u>106</u>	NA	NA	225	0.3 J	1.1	1900	13.3	9.9	16.3	28200	22.9
Cellulai		CEM-WRA-2	0.5 - 1	10/5/2024	NA	NA	<u>299 (8.3)</u>	44.5 (2)	794 (5)	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	CEM-WRA-4-DS	0.5 - 1	10/2/2024	NA	NA	32.6 (0.4)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	'-	CEM-WRB-1	0.5 - 1	10/5/2024	NA	NA	<u>151 (8.6)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		CEM-WRC-1	0.5 - 1	10/5/2024	NA	NA	<u>110 (8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
		G for SAP	, ,	ı		4895	82				24468	9113			3681	489424		
	Та	ilings PRG					110											
	Waste	Rock/Soil PRG					190											
ODEQ	Blue Mo	untain Region Clear	n Fill			1.3	14			950	2.6	0.69		190		120		21
ODE	Q Eco RB	C Plant Direct Toxici	ity			11	18			110	2.5	32			13	70		120
ODEC	Q Eco RBC	Inverts Direct Toxio	city			78	6.8			330	40	140				80		1700
	ODEQ	Eco RBC Bird					15			630		0.29		23	76	14		11
	ODEQ E	o RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
0	DEQ Exca	vation Worker RCB					420				19000	9700				390000		800
		GF-WR-01	1	6/25/2007	NA	0.6 J	28.7	NA	NA	NA	0.3 J	1	NA	20	NA	12	26300	14.8
	CES	GF-WR-2	0.5	6/25/2007	NA	30 J	<u>1340</u>	NA	NA	NA	ND (0.2)	1.36	NA	6	NA	114	97300	2430
	CES	GF-WR2-1	0.5	6/21/2007	NA	3.1	<u>141</u>	NA	NA	NA	0.3 J	4.07	NA	12	NA	22	30500	143
Golden Fraction		GF-WR-3	0.5	6/25/2007	NA	1.5	<u>89</u>	NA	NA	NA	0.3 J	0.85	NA	18	NA	15	35600	4.89
Golden Fraction		GF-DR-1	0.5 - 1	10/5/2024	NA	NA	58.3 (8.4)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GF-WRA-1	0.5 - 1	10/5/2024	NA	NA	<u>332 (7.8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	'-'	GF-WRD-4-DS	0.5 - 1	10/5/2024	NA	NA	55.2 (8.5)	12.3 (2)	137 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GF-WRD-6	0.5 - 1	10/5/2024	NA	NA	66.6 (7.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	CES	GC5-WR-01	0.5	6/26/2007	NA	1.4	<u>155</u>	NA	NA	NA	0.3 J	3.35	NA	13	NA	34	27300	35.8
		GC5-WR-02	0.5	6/26/2007	NA	2.4	<u>170</u>	NA	NA	NA	0.4 J	4.77	NA	18	NA	61	30600	88.5
Granite Creek #5		GC5-WRA-3	0.5 - 1	10/4/2024	NA	NA	<u>421 (8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GC5-WRA-4	0.5 - 1	10/4/2024	NA	NA	<u>160 (7.8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC5-WRA-4-DS	0.5 - 1	10/4/2024	NA	NA	81.3 (7.9)	10.4 (1.9)	221 (5)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC6-WR-01	0.5	6/24/2007	NA	ND (0.2)	9.3	NA	NA	NA	ND (0.2)	0.21	NA	9	NA	14	20700	1.49
Constitution Constitution	CES	GC6-WR-02	0.5	6/24/2007	NA	ND (0.2)	6.6	NA	NA	NA	0.3 J	0.24	NA	10	NA NA	6	21400	3.37
Granite Creek #6		GC6-WR-03	0.5	6/24/2007	NA	ND (0.2)	1.7	NA	NA	NA	ND (0.2)	0.29 J	NA	ND (1)	NA	4 J	2650	0.85
	TEI	GC6-WRA-1 GC6-WRA-2	0.5 - 1 0.5 - 1	10/4/2024	NA NA	NA NA	<u>257 (8.5)</u> 504 (8.5)	NA 29.3 (2)	NA 759 (4.9)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		GC6-WRA-2 GC7-WR-01		6/24/2007		19		29.3 (2) NA	759 (4.9) NA	NA NA	0.4 J	1.84	NA NA	6	NA NA	120	22600	81.7
		GC7-WR-01 GC7-WR-02	0.5 0.5	6/24/2007	NA NA	2.5	<u>185</u> 142	NA NA	NA NA	NA NA	0.4 J	0.5	NA NA	7	NA NA	17	28500	19
Granite Creek 7	CES	GC7-WR-02 GC7-WR-03	0.5	6/24/2007	NA NA	7.6	<u>142</u> 220	NA NA	NA NA	NA NA	0.6 J	0.76	NA NA	3	NA NA	66	25100	17.1
		GC7-WR-03	0.5	6/24/2007	NA NA	0.4 J	22.9	NA NA	NA NA	NA NA	0.8 J	0.76 0.27 J	NA NA	9	NA NA	9	22500	4.94
		GC7-WR-04	0.5 - 1	10/4/2024	NA NA	NA	26.9 (8.5)	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	4.94 NA
	TEI	GC7-WRA-3	0.5 - 1	10/4/2024	NA NA	NA NA	7.43 (0.43)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Granite Creek Aq. St. 3	CES	GC3-WR-01	0.5	6/24/2007	NA NA	7.2	337	NA NA	NA NA	NA NA	0.3 J	7.97	NA NA	7	NA NA	57	29900	152
5. ate 6/ cett / tq. 5t. 5	0.0	303 7777 01	0.5	5,21,2007	1471	7.12	<u>557</u>	1471	1471	1471	0.53	7.57	147.		1471		23300	132

Terraphase Engineering Inc.
Page 2 of 10

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
7.6.		G for SAP	(10.083)	Dute		4895	82				24468	9113			3681	489424		
		ilings PRG					110											
		Rock/Soil PRG					190											
ODE		ıntain Region Clear	ı Fill			1.3	14			950	2.6	0.69		190		120		21
	-	Plant Direct Toxici				11	18			110	2.5	32			13	70		120
		Inverts Direct Toxic				78	6.8			330	40	140				80		1700
		Eco RBC Bird					15			630		0.29		23	76	14		11
		o RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
		vation Worker RCB					420				19000	9700				390000		800
		ML-SSS-38	0.5	7/9/2003	1110	78.3	4470	NA	NA	51.7	0.033 J	0.22 J	308 J	2.3	0.6 J	26.6	16500	856
1	EA	WP-SSS-15	0.5	7/9/2003	3740	5 J	<u>573</u>	NA	NA	149	0.25 J	1.4	5570	3.5	6.4	14.6	18900	12.4
		WP-SUS-15	4	7/9/2003	4800	5.3 J	<u>544</u>	NA	NA	176	0.25 J	1.1	7180	4.4	6.6	18.2	20900	25
		MMDGA-T-46	3.5	9/30/2009	NA	NA	<u>3340</u>	NA	NA	NA	NA	NA	NA	NA	NA	152	NA	627
		MMDGA-WR-18	3.5	9/29/2009	NA	NA	<u>2700</u>	NA	NA	NA	NA	NA	NA	NA	NA	45	NA	589
		MMDGA-WR-19	3	9/29/2009	NA	NA	<u>223</u>	NA	NA	NA	NA	NA	NA	NA	NA	9.4	NA	16.1
	CES	MMDGA-WR-20	3	9/29/2009	NA	NA	<u>4610</u>	NA	NA	NA	NA	NA	NA	NA	NA	220	NA	3210
	CLS	MMDGA-WR-21	1	9/29/2009	NA	NA	<u>258</u>	NA	NA	NA	NA	NA	NA	NA	NA	13.9	NA	12
Lwr Mon'tl		MMDGA-WR-24	0.5	9/29/2009	NA	NA	<u>8150</u>	NA	NA	NA	NA	NA	NA	NA	NA	48	NA	712
		MMDGA-WR-25		9/29/2009	NA	NA	<u>9360</u>	NA	NA	NA	NA	NA	NA	NA	NA	60.5	NA	453
		MMDGA-WR-26		9/29/2009	NA	NA	<u>5690</u>	NA	NA	NA	NA	NA	NA	NA	NA	135	NA	578
		LMM-WRA-3		10/3/2024	NA	NA	<u>125 (0.44)</u>	16.6 (2)	328 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRA-3-DS	0.5 - 1	10/3/2024	NA	NA	21.6 (0.44)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		LMM-WRA-4	0.5 - 1	10/3/2024	NA	NA	<u>2290 (8.8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI		0.5 - 1	10/3/2024	NA NA	NA NA	<u>2570 (8.5)</u>	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		LMM-WRB-1	0.5 - 1 0.5 - 1	10/3/2024 10/3/2024	NA NA	NA NA	<u>1090 (0.42)</u> 802 (0.42)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		LMM-WRB-3-DS	0.5 - 1	10/3/2024	NA NA	NA NA	29.1 (0.41)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		TA-SUS-25	1.5	7/14/2003	17500	0.94 J	26	NA NA	NA NA	269	0.55	ND (0.027)	1930	8.6	10.5	10.2	20600	10.4
	EA	WP-SUS-23	3.5	7/14/2003	11900	6	81.8	NA NA	NA NA	188	0.33	0.63	2920	6.7	8.6	30.5	20100	15.6
Sheridan	CES	SM-WR2-1		6/21/2007	NA	ND (0.2)	16.8	NA	NA	NA	ND (0.2)	0.23 J	NA	9	NA	7	20700	11.1
		SH-WRB-2	0.5 - 1	10/4/2024	NA	NA	80.8 (0.39)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	SH-WRC-1	0.5 - 1	10/4/2024	NA	NA	14.4 (0.44)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TA-SSS-30	0.4	7/12/2003	11600	1.6 J	58.6	NA	NA	201	0.2 J	6.2	3480	8.8	8.8	10.4	22900	40.9
		WP-SSS-27	0.8	7/12/2003	9660	2.4 J	<u>88</u>	NA	NA	177	0.2 J	3.4	2600	5.9	8.2	27.5	20000	375
	EA	WP-SSS-28	0.8	7/12/2003	3550	1.3 J	<u>183</u>	NA	NA	32.8	0.43 J	2.8	26500	1.4	4.7	14.4	19300	52.2
1		WP-SUS-26	3	7/12/2003	8350	1.7 J	<u>156</u>	NA	NA	138	0.29 J	7.5	3120	4.3	6.7	32.3	23800	120
Tillicum		WP-SUS-27	4.5	7/12/2003	11700	1.8 J	35.7	NA	NA	206	0.21 J	1.9	1830	6.8	8.2	15.2	21300	27.8
	CES	TILL-WR-01		6/26/2007	NA	5.5	<u>371</u>	NA	NA	NA	0.7 J	15.6	NA	2 J	NA	27	24600	184
		TL-WRA-1-DS-2		10/4/2024	NA	NA	<u>267 (0.44)</u>	14.4 (1.9)	550 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	TEI	TL-WRA-3		10/4/2024	NA	NA	<u>454 (0.42)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TL-WRB-4	0.5 - 1	10/4/2024	NA	NA	<u>194 (0.42)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
			Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Company	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
		G for SAP	(4895	82				24468	9113			3681	489424		
	Та	ilings PRG					110											
		Rock/Soil PRG					190											
ODF	Q Blue Mo	untain Region Clear	n Fill			1.3	14			950	2.6	0.69		190		120		21
		C Plant Direct Toxic				11	18			110	2.5	32			13	70		120
OD	EQ Eco RBC	Inverts Direct Toxi	city			78	6.8			330	40	140				80		1700
	ODEQ	Eco RBC Bird	·				15			630		0.29		23	76	14		11
	ODEQ E	o RBC Mammal				0.27	19			1800	21	0.27		34	230	42	-	56
	ODEQ Exca	vation Worker RCB	}				420				19000	9700				390000		800
		ML-SSS-12	0.7	7/9/2003	13300	4 J	73	NA	NA	322	0.32 J	0.65	3050	8.4	10.4	14.2	32000	27.5
		ML-SSS-16	0.5	7/10/2003	6180	368	<u>7500</u>	NA	NA	129	0.25 J	8.1	1610	7.7	1.6 J	80	16300	1350
	EA	WP-SSS-13	1	7/9/2003	4220	11.6	<u>860</u>	NA	NA	189	0.087 J	ND (0.064)	523 J	3.6	3.6 J	12.5	21500	31.3
	LA	WP-SSS-14	0.7	7/10/2003	3190	2.5 J	<u>616</u>	NA	NA	69.8	0.26 J	8.5	5980	2.3	5 J	7.4	13600	15
		WP-SSS-17	1	7/9/2003	10600	241	<u>11400</u>	NA	NA	73.2	0.3 J	23.4	3610	2.1	2.7 J	698	16300	2120
		WP-SUS-14	3.5	7/10/2003	4680	5.8 J	<u>355</u>	NA	NA	166	0.23 J	0.52	10100	3.3	6.4	8	18800	36.9
		MMDGA-T-13	1	9/29/2009	NA	NA	<u>10200</u>	NA	NA	NA	NA	NA	NA	NA	NA	58.4	NA	1200
		MMDGA-T-34	0.25	9/30/2009	NA	NA	<u>1900</u>	NA	NA	NA	NA	NA	NA	NA	NA	119	NA	478
		MMDGA-T-34	2	9/30/2009	NA	NA	<u>9610</u>	NA	NA	NA	NA	NA	NA	NA	NA	440	NA	2340
		MMDGA-T-35	1	9/30/2009	NA	NA	<u>4770</u>	NA	NA	NA	NA	NA	NA	NA	NA	247	NA	1240
		MMDGA-T-37	0.25	9/30/2009	NA	NA	<u>1360</u>	NA	NA	NA	NA	NA	NA	NA	NA	128	NA	334
	CES	MMDGA-T-40	2	9/30/2009	NA	NA	<u>6310</u>	NA	NA	NA	NA	NA	NA	NA	NA	460	NA	1140
		MMDGA-T-41	2	9/30/2009	NA	NA	<u>8750</u>	NA	NA	NA	NA	NA	NA	NA	NA	700	NA	1680
I I a a NA a a lat		MMDGA-T-9	1	9/29/2009	NA	NA	<u>2440</u>	NA	NA	NA	NA	NA	NA	NA	NA NA	75.3	NA	549
Upr Mon'tl		MMDGA-WR-2	4	9/28/2009	NA NA	NA NA	<u>164</u>	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	15.2	NA NA	11.3
		MMDGA-WR-28	0.5	9/29/2009 9/28/2009	NA NA	NA NA	<u>740</u>	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.1 70.6	NA NA	10.4 <i>479</i>
		MMDGA-WR-3 MMDGA-WR-5	1	9/28/2009	NA NA	NA NA	<u>2240</u> 2920	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	51.1	NA NA	231
		UMM-TLA-6	0.5 - 1	10/2/2024	NA NA	NA NA	3270 (8.1)	1350 (2)	5560 (4.9)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	589 (0.81)
		UMM-TLB-1	0.5 - 1	10/2/2024	NA NA	NA NA	6130 (11)	1840 (2)	4420 (4.9)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1710 (1.1)
		UMM-TLB-4	0.5 - 1	10/2/2024	NA	NA NA	1540 (8)	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA
		UMM-TLC-1	0.5 - 1	10/2/2024	NA	NA NA	5290 (9.9)	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA
		UMM-TLC-2	0.5 - 1	10/2/2024	NA	NA	4980 (10)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	UMM-WRA-1	0.5 - 1	10/2/2024	NA	NA	1300 (8.4)	12.7 (2)	1590 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-1-DS	0.5 - 1	10/2/2024	NA	NA	37.5 (0.41)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-3	0.5 - 1	10/2/2024	NA	NA	1210 (0.45)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-1	0.5 - 1	10/2/2024	NA	NA	14000 (41)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5210 (4.1)
		UMM-WRB-2	0.5 - 1	10/2/2024	NA	NA	1800 (8.2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-2-DS	0.5 - 1	10/2/2024	NA	NA	79.2 (0.45)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRA-2	0.5 - 1	10/2/2024	NA	NA	<u>1940 (8.8)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRA-3	0.5 - 1	10/2/2024	NA	NA	<u>1710 (9.1)</u>	176 (1.9)	3440 (4.9)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Upr Upr Mon'tl	TEI	GOIVIIVI-VVINA-3	0.5 - 1	10/2/2024	NA	NA	<u>1470 (8)</u>	162 (2)	3280 (5)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Opi Opi Ivioli ti		UUMM-WRA-3-DS	+	10/2/2024	NA	NA	16 (0.44)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRD-1	0.5 - 1	10/2/2024	NA	NA	<u>269 (0.45)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRF-1	0.5 - 1	10/2/2024	NA	NA	<u>715 (0.44)</u>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

AOI				Collection								Metals						
AOI					Sample		Lead. Total											
PRG for SAP	AOI	Company	Location			Lead IVRA	,	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
Tailings PRG		/		(10 285)		-				•								
Maste Rock/Soil PRG																		
ODEQ Eco RBC Plant Direct Toxicity																		
ODEQ Eco RBC Plant Direct Toxicity 220 34 38 0.52 560 0.05 60 16 ODEQ Eco RBC Inverts Direct Toxicity 450 0.05 280 4.1 12 ODEQ Eco RBC Bird 1300 0.013 20 0.71 2.6 4.5 4.7 44 ODEQ Eco RBC Mammal 1400 1.7 10 0.63 1.4 0.42 280 7.7 ODEQ Eco RBC Mammal 1400 1.7 10 0.63 1.4 0.42 280 7.7 ODEQ Eco RBC Mammal 230000 2900 190000 49000 230000 2900 190000	ODE			n Fill					1800	1.4	92		0.93	0.51			400	160
ODEQ Eco RBC Inverts Direct Toxicity		-														0.05		160
ODEQ Eco RBC Bird																		120
ODEQ Excavation Worker RCB				,												4.5		46
BGS-503 O.5-1 6/26/2007 NA NA NA SAB S																		79
Beach Series 0.5 7/19/2003 NA NA 2630 837 0.14 23.4 1570 0.76 0.26 J 806 0.97 47.8 10 Be Sess-35 0.5 7/15/2003 NA NA 880 429 0.032 J 5.2 848 0.61 0.28 J 1220 ND (0.28) 24.9 5.0 Be Sess-35 0.5 7/15/2003 NA NA 140 1560 156 0.035 J 5.6 1140 0.42 J 0.42 J 0.42 J 0.42 J 0.62 J 1450 ND (0.29) 26.5 5.4 38 0.5 7/15/2003 NA NA 4930 610 0.027 J 23.4 3920 0.24 J 0.48 J 1180 ND (0.24) 47.2 61 Background BGS-01 0.5-1 6/26/2007 NA NA NA NA NA 0.027 J 23.4 3920 0.24 J 0.48 J 1180 ND (0.24) 47.2 61 <				3							_							
Background Bac		1			7/19/2003	NA	NA	2630	837	0.14	23.4	1570	0.76	0.26 J	806	0.97	47.8	105
Background Backgr																		50.2
BG-SSS-36		EA																43.2
Background Ref Ref Background Ref Ref Background Ref			BG-SSS-36	0.5	· ·	NA	NA	4930	610	0.027 J		3920	0.24 J	0.48 J	1180	, ,		61.3
Background Rescriptions Resc			BGS-01	0.5 - 1	6/26/2007	NA	NA	NA	716	0.06 J	7	NA	0.37	0.29	NA	NA	NA	71
CES BGS-03 O.5-1 G/2G/2007 NA NA NA 644 O.05	Dookaround		BGS-02	0.5 - 1	6/26/2007	NA	NA	NA	668	ND (0.04)	6	NA	0.28 J	0.51	NA	NA	NA	61
CES BGS-05 O.5-1 6/26/2007 NA NA NA NA 319 O.06 J 10 NA O.77 O.58 NA NA NA NA NA NA NA N	Background		BGS-03	0.5 - 1	6/26/2007	NA	NA	NA	644	0.05 J	8	NA	0.15 J	0.2	NA	NA	NA	71
BGS-05		CES	BGS-04	0.5 - 1	6/26/2007	NA	NA	NA	848	0.06 J	23	NA	0.36	0.63	NA	NA	NA	126
BGS-07 0.5-1 6/27/2007 NA NA NA NA 1060 0.07J 13 NA 0.39 0.23 NA NA NA NA NA 14 NA NA 14 NA		CLS	BGS-05	0.5 - 1	6/26/2007	NA	NA	NA	319	0.06 J	10	NA	0.77	0.58	NA	NA	NA	44
BGS-08			BGS-06	0.5 - 1	6/27/2007	NA	NA	NA	-	ND (0.04)	7	NA	0.24 J		NA	NA	NA	88
EA TA-SUS-22 1.5 7/15/2003 NA NA S180 408 0.058 3.8 J 3720 0.24 J 0.28 J 982 ND (0.28) 40.6 41 WP-SUS-20 4 7/15/2003 NA NA S200 270 0.026 J 4.3 4080 ND (0.31) 0.63 J 1100 ND (0.25) 52.2 48 WP-SUS-21 2.5 7/15/2003 NA NA NA 2980 504 0.3 4.1 3240 0.4 J 4.2 122 J 0.45 J 33.9 49 WP-SUS-39 2 7/15/2003 NA NA NA 4560 321 0.064 4.8 3560 0.4 J 0.79 J 1060 ND (0.23) 52.2 50 CM-WR1-1 0.5 6/21/2007 NA NA NA NA 312 0.06 J 3 J NA 0.3 0.14 NA NA NA NA NA NA NA S24 ND (0.04) 3 J NA 0.23 J 0.08 J NA NA NA NA NA NA S25 CM-WR2-2 0.5 6/21/2007 NA NA NA NA NA 198 0.07 J 4 J NA 0.23 J 0.19 NA NA NA NA NA NA D2 S25 CM-WR2-2 0.5 6/21/2007 NA NA NA NA NA 198 0.07 J 4 J NA 0.23 J 0.19 NA NA NA NA NA D2 S25 CM-WR2-2 0.5 6/21/2007 NA NA NA NA NA 198 0.07 J 4 J NA 0.23 J 0.19 NA NA NA NA NA NA D2 S25 CM-WR2-2 0.5 6/21/2007 NA NA NA NA NA 198 0.07 J 4 J NA 0.23 J 0.19 NA NA NA NA NA NA D2 S25 CM-WR2-2 0.5 6/21/2007 NA NA NA NA NA 198 0.07 J 4 J NA 0.23 J 0.19 NA NA NA NA NA NA D2 S25 CM-WR2-2 0.5 6/21/2007 NA NA NA NA NA NA NA NA NA D2 S25 CM-WR2-2 0.5 6/21/2007 NA					, ,													60
Cap Martin WP-SUS-20 4 7/15/2003 NA NA 5320 270 0.026 J 4.3 4080 ND (0.31) 0.63 J 1100 ND (0.25) 52.2 48 WP-SUS-21 2.5 7/15/2003 NA NA 2980 504 0.3 4.1 3240 0.4 J 4.2 122 J 0.45 J 33.9 49 WP-SUS-39 2 7/15/2003 NA NA 4560 321 0.064 4.8 3560 0.4 J 0.79 J 1060 ND (0.23) 52.2 50 CAP WR1-1 0.5 6/21/2007 NA NA NA 312 0.06J 3 J NA 0.3 0.14 NA NA NA NA CCES CM-WR2-1 0.5 6/21/2007 NA NA NA NA 198 0.07 J 4 J NA 0.23 J 0.19 NA NA NA 24 CCES CM-WR2-2 0.5 6/21/2007 NA NA NA 198 0.07 J			BGS-08	0.5 - 1		NA	NA				70		0.38					145
Cap Martin EA WP-SUS-21 2.5 7/15/2003 NA NA NA 2980 504 0.3 4.1 3240 0.4 J 4.2 122 J 0.45 J 33.9 49 WP-SUS-39 2 7/15/2003 NA NA NA NA 4560 321 0.064 4.8 3560 0.4 J 0.79 J 1060 ND (0.23) 52.2 50 CM-WR1-1 0.5 6/21/2007 NA NA NA NA NA NA NA NA NA N																1		41.8
Cap Martin WP-SUS-39 2 7/15/2003 NA NA NA 4560 321 0.064 4.8 3560 0.4 J 0.79 J 1060 ND (0.23) 52.2 50 CM-WR1-1 0.5 6/21/2007 NA NA NA NA NA NA NA NA NA N		EA											` ,			` '		48.6
Cap Martin CM-WR1-1 0.5 6/21/2007 NA NA NA NA NA NA S12 0.06 J 3 J NA 0.3 0.14 NA NA NA NA NA NA NA NA NA N																		495
Cap Martin CM-WR2-1 0.5 6/21/2007 NA NA NA NA NA NA 198 0.07 J 4 J NA 0.23 J 0.08 J NA NA NA NA NA NA NA NA NA N																		50.5
CES CM-WR2-2 0.5 6/21/2007 NA NA NA 198 0.07 J 4 J NA 0.23 J 0.19 NA NA NA NA 25	Cap Martin		_									ł						39
	•	CEC	_							, ,								34
		CES																
																		50 330
		TEI																330 NA
		IEI				` ,	` ,											63.2
																		203
		EA													_			137
WP-SUS-32 4 7/10/2003 NA NA 6300 697 0.12 9.7 4030 1 0.28 1 1040 1.3 73.7 96												_		_				96.2
L'entra	Central									_	_		_			_	-	NA
CFM-WRA-4-DS 0.5 - 1 10/2/2024 NA						` ,	, ,											NA
		TEI																NA
																		NA

Terraphase Engineering Inc.
Page 5 of 10

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Metals						
			Depth	Sample		Lead. Total											
AOI	Company	Location	(ft bgs)	Date	Lead. IVBA	,	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
	/	G for SAP	(10.00)						2153	244668		61175	61145			61218	
	Tai	ilings PRG															
	Waste I	Rock/Soil PRG															
ODEQ	Blue Mou	ıntain Region Clear	ı Fill					1800	1.4	92		0.93	0.51			400	160
ODE	Q Eco RBC	Plant Direct Toxic	ity					220	34	38		0.52	560		0.05	60	160
ODEC	Q Eco RBC	Inverts Direct Toxio	city					450	0.05	280		4.1					120
	ODEQ	Eco RBC Bird						1300	0.013	20		0.71	2.6		4.5	4.7	46
	ODEQ Ec	o RBC Mammal						1400	1.7	10		0.63	14		0.42	280	79
0	DEQ Excav	ation Worker RCB						230000	2900	190000			49000				
		GF-WR-01		6/25/2007	NA	NA	NA	692	NDH (0.04)	6	NA	0.23 J	0.58	NA	NA	NA	191
	CES	GF-WR-2	0.5	6/25/2007	NA	NA	NA	97.5	2.61	1	NA	3.26	52	NA	NA	NA	305
	CLS	GF-WR2-1	0.5	6/21/2007	NA	NA	NA	718	0.19 J	7	NA	0.39	7.95	NA	NA	NA	201
Golden Fraction		GF-WR-3	0.5	6/25/2007	NA	NA	NA	544	NDH (0.04)	8	NA	0.34	0.64	NA	NA	NA	94
Golden Haction		GF-DR-1	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GF-WRA-1	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	121	GF-WRD-4-DS	0.5 - 1	10/5/2024	8.94 (0.2)	25.6 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GF-WRD-6	0.5 - 1	10/5/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	CES	GC5-WR-01	0.5	6/26/2007	NA	NA	NA	821	0.08 JH	8	NA	0.4	1.2	NA	NA	NA	221
	020	GC5-WR-02	0.5	6/26/2007	NA	NA	NA	929	0.07 JH	8	NA	0.55	5.05	NA	NA	NA	250
Granite Creek #5		GC5-WRA-3	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	GC5-WRA-4	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC5-WRA-4-DS	0.5 - 1	10/4/2024	26.4 (0.19)	70.4 (0.5)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC6-WR-01		6/24/2007	NA	NA	NA	497	1.21 H	4 J	NA	0.25 J	0.08 J	NA	NA	NA	59
	CES	GC6-WR-02	0.5	6/24/2007	NA	NA	NA	367	0.09 JH	4 J	NA	0.26 J	0.09 J	NA	NA	NA	62
Granite Creek #6		GC6-WR-03	0.5	6/24/2007	NA	NA	NA	25.3	NDH (0.05)	ND (1)	NA	0.17 J	0.08 J	NA	NA	NA	4 J
	TEI	GC6-WRA-1	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC6-WRA-2	0.5 - 1	10/4/2024	150 (0.2)	360 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC7-WR-01	0.5	6/24/2007	NA	NA	NA	661	0.24 H	5 J	NA	0.35	20.4	NA	NA	NA	134
	CES	GC7-WR-02	0.5	6/24/2007	NA	NA	NA	593	0.24	5	NA	0.4	1.79	NA	NA	NA	84
Granite Creek 7		GC7-WR-03	0.5	6/24/2007	NA	NA	NA	608	0.42	0.4	NA	0.45	4.08	NA	NA	NA	83
		GC7-WR-04	0.5	6/24/2007	NA	NA	NA	443	NDH (0.04)	4 J	NA	0.26	0.34	NA	NA	NA	61
	TEI	GC7-WRA-3	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		GC7-WRB-1	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Granite Creek Aq. St. 3	CES	GC3-WR-01	0.5	6/24/2007	NA	NA	NA	1070	0.29 H	4 J	NA	0.27 J	19.1	NA	NA	NA	377

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Metals						
			Depth	Sample		Lead, Total											
AOI	Company	Location	(ft bgs)	Date	Lead, IVBA	IVBA	Magnosium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
AOI		G for SAP	(it bgs)	Date		IVDA 	iviagnesium	ivialigaliese	2153	244668		61175	61145	Joululli		61218	
		llings PRG											01143				
		Rock/Soil PRG															
ODE		Intain Region Clear	. r:II					1800	1.4	92		0.93	0.51			400	160
		Plant Direct Toxic	•					220	34	38		0.52	560		0.05	60	160
UDE		Inverts Direct Toxio	city					450	0.05	280		4.1					120
		Eco RBC Bird						1300	0.013	20		0.71	2.6		4.5	4.7	46
		o RBC Mammal						1400	1.7	10		0.63	14		0.42	280	79
	ODEQ Excav	ation Worker RCB						230000	2900	190000			49000				
		ML-SSS-38	0.5	7/9/2003	NA	NA	212 J	30.9	0.37	2.2 J	836	0.86	48	193 J	ND (0.46)	5.1 J	65
	EA	WP-SSS-15	0.5	7/9/2003	NA	NA	3690	757	0.14	4.8	2010	0.9	7.1	385 J	1.5	24.7	107
		WP-SUS-15	4	7/9/2003	NA	NA	4940	776	0.33	6	2730	0.99	6.4	478	1.8	30.3	130
		MMDGA-T-46	3.5	9/30/2009	NA	NA	NA	208	95	NA	NA	NA	54.9	NA	NA	NA	1500
		MMDGA-WR-18	3.5	9/29/2009	NA	NA	NA	51.1	0.42	NA	NA	NA	48.8	NA	NA	NA	152
		MMDGA-WR-19	3	9/29/2009	NA	NA	NA	277	0.17 J	NA	NA	NA	1.14	NA	NA	NA	63
	CES	MMDGA-WR-20	3	9/29/2009	NA	NA	NA	185	1.28	NA	NA	NA	343	NA	NA	NA	1140
		MMDGA-WR-21	1	9/29/2009	NA	NA	NA	784	0.36	NA	NA	NA	2.6	NA	NA	NA	132
Lwr Mon'tl		MMDGA-WR-24	0.5	9/29/2009	NA	NA	NA	342 207	2.99	NA	NA	NA	21.9 9.47	NA	NA	NA NA	78
		MMDGA-WR-25 MMDGA-WR-26	0.5 0.5	9/29/2009	NA NA	NA NA	NA NA	713	0.53 0.84	NA NA	NA NA	NA NA	40	NA NA	NA NA	NA NA	69 2030
		LMM-WRA-3	0.5 - 1				NA NA	NA	0.84 NA	NA NA		NA NA	NA	NA NA	NA NA	NA NA	NA
		LMM-WRA-3-DS	0.5 - 1	10/3/2024 10/3/2024	10.8 (0.2) NA	32 (0.49) NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		LIVIIVI-VV NA-3-D3	0.5 - 1	10/3/2024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	TEI	LMM-WRA-4	0.5 - 1	10/3/2024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	1 ''		0.5 - 1	10/3/2024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		LMM-WRB-1	0.5 - 1	10/3/2024	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
		LMM-WRB-3-DS	0.5 - 1	10/3/2024	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
	+	TA-SUS-25	1.5	7/14/2003	NA NA	NA	6310	444	0.048	5.3	4900	0.24 J	1.4	1330	ND (0.26)	58.5	66.9
	EA	WP-SUS-23	3.5	7/14/2003	NA NA	NA	5200	782	0.36	5.2	3320	0.48	32.5	676	0.76 J	50.8	87.8
Sheridan	CES	SM-WR2-1	0.5	6/21/2007	NA	NA	NA	278	0.15 J	5 J	NA	0.25 J	0.16	NA	NA	NA	67
		SH-WRB-2	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	SH-WRC-1	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TA-SSS-30	0.4	7/12/2003	NA	NA	6290	579	0.12	5.7	3490	0.45 J	0.29 J	927	0.98 J	51.6	297
		WP-SSS-27	0.8	7/12/2003	NA	NA	4330	556	0.38	4.3	2610	0.84	1.8	590	1.8	36.5	322
	EA	WP-SSS-28	0.8	7/12/2003	NA	NA	1740	890	0.21	4	1410	0.78	1.2	38.5 J	2	11.7	183
		WP-SUS-26	3	7/12/2003	NA	NA	3220	660	0.1	3.9 J	1980	1.1	2.2	271 J	2.3	34.5	356
Tillicum		WP-SUS-27	4.5	7/12/2003	NA	NA	5880	603	0.029 J	5.2	3820	0.95	ND (0.24)	947	1.6	51.8	157
	CES	TILL-WR-01	0	6/26/2007	NA	NA	NA	1020	0.46 H	4 J	NA	0.84	3.34	NA	NA	NA	525
		TL-WRA-1-DS-2	0.5 - 1	10/4/2024	83.3 (0.19)	218 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	TL-WRA-3	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		TL-WRB-4	0.5 - 1	10/4/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Terraphase Engineering Inc.
Page 7 of 10

Table 3
Summary of Soil Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

			Collection								Metals						
			Depth	Sample		Lead, Total											
AOI	Company	Location	(ft bgs)	Date	Lead, IVBA	IVBA		Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
7.0.	<u> </u>	G for SAP	(10.080)	Dute					2153	244668		61175	61145			61218	
		ilings PRG															
		Rock/Soil PRG															
ODEC		ıntain Region Clea	n Fill					1800	1.4	92		0.93	0.51			400	160
		Plant Direct Toxic						220	34	38		0.52	560		0.05	60	160
	-	Inverts Direct Toxi	•					450	0.05	280		4.1					120
ODL	-	Eco RBC Bird	city					1300	0.03	200		0.71	2.6		4.5	4.7	46
		o RBC Mammal						1400	1.7	10		0.63	14		0.42	280	79
	-	vation Worker RCB						230000	2900	190000			49000				
		ML-SSS-12	0.7	7/9/2003	NA	NA	5730	730	56	7.3	4270	1.1	1.8	1080	2.5	66.2	211
		ML-SSS-16	0.5	7/10/2003	NA	NA	678	100	3.1	2.5 J	2550	1.6	156	370 J	1.1 J	15.6	432
		WP-SSS-13	1	7/9/2003	NA	NA	2270	115	0.5	2.6 J	2950	0.83	21.2	557	0.57 J	26.1	55
	EA	WP-SSS-14	0.7	7/10/2003	NA	NA	2450	691	0.51	4.7	1650	0.7	1.5	ND (23.6)	1.2	15	857
		WP-SSS-17	1	7/9/2003	NA	NA	3200	321	784	3.2 J	3480	0.75	319	3240	1.6	14.9	2410
		WP-SUS-14	3.5	7/10/2003	NA	NA	4100	511	0.61	4.6	2920	0.61	11.6	516	1.7	25.4	107
		MMDGA-T-13	1	9/29/2009	NA	NA	NA	381	8	NA	NA	NA	35	NA	NA	NA	674
		MMDGA-T-34	0.25	9/30/2009	NA	NA	NA	398	190	NA	NA	NA	85	NA	NA	NA	816
		MMDGA-T-34	2	9/30/2009	NA	NA	NA	400	770	NA	NA	NA	229	NA	NA	NA	3490
		MMDGA-T-35	1	9/30/2009	NA	NA	NA	281	270	NA	NA	NA	144	NA	NA	NA	1760
		MMDGA-T-37	0.25	9/30/2009	NA	NA	NA	781	101	NA	NA	NA	51.1	NA	NA	NA	764
	CES	MMDGA-T-40	2	9/30/2009	NA	NA	NA	565	254	NA	NA	NA	214	NA	NA	NA	3030
		MMDGA-T-41	2	9/30/2009	NA	NA	NA	575	222	NA	NA	NA	303	NA	NA	NA	4900
		MMDGA-T-9	1	9/29/2009	NA	NA	NA	246	12	NA	NA	NA	80.1	NA	NA	NA	294
Upr Mon'tl		MMDGA-WR-2	4	9/28/2009	NA	NA	NA	1200	0.88	NA	NA	NA	0.82	NA	NA	NA	116
		MMDGA-WR-28	0.5	9/29/2009	NA	NA	NA	197	0.15 J	NA	NA	NA	2.58	NA	NA	NA	52
		MMDGA-WR-3	4	9/28/2009	NA NA	NA NA	NA NA	865 313	1.09 0.4	NA NA	NA NA	NA NA	48.1 39.8	NA NA	NA NA	NA NA	248
		MMDGA-WR-5 UMM-TLA-6	0.5 - 1	9/28/2009 10/2/2024		1110 (0.49)	NA NA	NA	9.23 (0.19)	NA NA	NA NA	NA NA	39.8 NA	NA NA	NA NA	NA NA	NA
		UMM-TLB-1	0.5 - 1	10/2/2024		840 (0.49)	NA NA	NA NA	387 (11)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		UMM-TLB-4	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
		UMM-TLC-1	0.5 - 1	10/2/2024	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA
		UMM-TLC-2	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TEI	UMM-WRA-1	0.5 - 1	10/2/2024	66 (0.2)	249 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-1-DS	0.5 - 1	10/2/2024	NA ,	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRA-3	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-1	0.5 - 1	10/2/2024	NA	NA	NA	NA	0.663 (0.098)	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-2	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UMM-WRB-2-DS	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRA-2	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRA-3	0.5 - 1		12.6 (0.19)	340 (0.49)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Upr Upr Mon'tl	TEI		0.5 - 1		7.14 (0.2)	340 (0.5)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
- p p		UUMM-WRA-3-DS		10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRD-1	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		UUMM-WRF-1	0.5 - 1	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3 Summary of Soil Notes Analytical Results Supplemental Site Investigation Report

Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

				Collection								Me	etals						
				Depth	Sample				Arsenic,	Arsenic,					Chromium				
AOI	Com	npany	Location	(ft bgs)	Date	Aluminum	Antimony	Arsenic	IVBA	Total IVBA	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
		PR	G for SAP			-	4895	82			-	24468	9113			3681	489424		
		Tai	lings PRG					110			1					-			
	V	Waste F	Rock/Soil PRG					190			-								
	ODEQ Blue Mountain Region Clean Fill						1.3	14			950	2.6	0.69		190	-	120		21
	ODEQ Eco RBC Plant Direct Toxicity						11	18			110	2.5	32			13	70		120
	ODEQ Ec	Inverts Direct Toxic	city			78	6.8			330	40	140				80		1700	
		ODEQ	Eco RBC Bird					15			630		0.29		23	76	14		11
	OI	DDEQ Eco	o RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
	ODEC	EQ Excav	ation Worker RCB					420			-	19000	9700				390000		800

Table 3

Summary of Soil Notes Analytical Results

Supplemental Site Investigation Report Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

			Collection								Me	tals						
AOI	Company	Location	Depth (ft bgs)	Sample Date	Aluminum	Antimony	Arsenic	Arsenic,	Arsenic, Total IVBA	Barium	Beryllium	Cadmium	Calcium	Chromium (total)	Cobalt	Copper	Iron	Lead
AOI			(It bgs)	Date	Alullillulli			IVDA	TOTALIVEA	Darium	· ·		Calcium	(total)			11011	Leau
	Р	RG for SAP				4895	82				24468	9113			3681	489424		
	T	ailings PRG					110											
	Waste	Rock/Soil PRG					190						-		1	-	-	
	ODEQ Blue Mo	ountain Region Clear			1.3	14			950	2.6	0.69		190	-	120		21	
	ODEQ Eco RE	C Plant Direct Toxic			11	18			110	2.5	32			13	70		120	
	ODEQ Eco RB	C Inverts Direct Toxi	city			78	6.8			330	40	140	-		-	80	-	1700
	ODE	Q Eco RBC Bird					15			630		0.29		23	76	14		11
	ODEQ E	co RBC Mammal				0.27	19			1800	21	0.27		34	230	42		56
	ODEQ Exca	avation Worker RCB	i				420				19000	9700				390000		800

Note:

- 1. All concentrations reported in mg/kg (ppm); detection limits in parentheses.
- 2. ODEQ does not provide a Eco Soil RBC for aluminum, but states that it is toxic if soil has a pH < 5.5.
- 3. Iron is a narrative criterion.
- 4. Underlined concentrations exceed the PRG for SAP.
- 5. Double underlined concentrations for results from Tailings exceed the Tailings PRG.
- 6. Double underlined concentrations for results from Waste Rock/Soil exceed the Waste Rock/Soil PRG.
- 7. Italicized concentrations exceed the ODEQ Blue Mountain Region Clean Fill.
- 8. Grey shaded concentrations exceed one or more of the ODEQ Eco RBC (i.e., plant, inverts, bird, or mammal).
- 9. Boldfaced concentrations exceed the ODEQ Excavation Worker RCB.
- CES Cascade Earth Scienes
- EA EA Engineering, Science, and Technology, Inc.
- Eco Ecological
- J Estimated Concentration
- H Storage and Preservation Times were Not Met
- Mon'tl Monumental
- ND Not Detected
- NA Not Analyzed
- ODEQ Oregon Department of Environmental Quality
- PRG Preliminary Remediation Goal
- RBC Risk-Based Concentration
- SAP Sampling and Analysis Plan
- St Station
- TEI Terraphase Engineering Inc.

Table 4
Waste Rock/Tailings Pile UCL Calculations

Supplemental Site Investigation Report Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

Area of Interest	Feature	UCL (mg/kg)	Maximum Arsenic Concentration (mg/kg)	Distribution	Sample Size	Number of Locations
	CEM-WRA	239.5	299	Normal	7	7
Central Mine	CEM-WRB	185.8	242	Normal	13	3
Central Wille	CEM-WRC	124.5	187	Normal	16	3
	CEM-WRD	82.88	87	Normal	4	1
	CM-PS	36.61	38.61	Normal	7	3
Con Montin Mine	CM-WRA	12.61	19.6	Normal	12	4
Cap Martin Mine	CM-WRB	13.26	17.5	Normal	11	3
	CM-WRC	243.5	365.8	Normal	9	9
Granite Creek Aquatic	GC03-WRA	43.57	45	Normal	4	4
Station 03	GC03-WRB	309.3	485	Normal	9	9
Cranita Craak #F Mina	GC5-WRA	293.2	421	Normal	8	8
Granite Creek #5 Mine	GC5-WRB	137.1	162	Normal	10	2
Cranita Craal, #C Mina	GC6-WRA	286.6	504	Normal	17	4
Granite Creek #6 Mine	GC6-WTP	10.02	16	Normal	14	5
Cuanita Cuank #7 Mina	GC7-WRA	22.44	31	Normal	14	5
Granite Creek #7 Mine	GC7-WRB	176.6	220	Normal	6	6
	GF-WRA	332	491	Normal	26	4
	GF-WRB	115.9	141	Normal	7	7
Golden Fraction Mine	GF-WRC	274	1340	Nonparametric	17	5
	GF-WRC-Rev	77.26	102	Normal	16	4
	GF-WRD	72.49	80	Normal	7	7

Terraphase Engineering Inc. Page 1 of 2

Table 4 Waste Rock/Tailings Pile UCL Calculations

Supplemental Site Investigation Report Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

Area of Interest	Feature	UCL (mg/kg)	Maximum Arsenic Concentration (mg/kg)	Distribution	Sample Size	Number of Locations
	LMM-TLA	8099	10884	Normal	7	7
Lower Monumental Mine	LMM-WRA	2683	4610	Gamma	13	13
	LMM-WRB	7612	8150	Gamma	6	6
	SH-WRA	33.18	81.8	Nonparametric	10	4
Sheridan Mine	SH-WRB	62.2	80.8	Normal	9	3
	SH-WRC	19.5	21	Normal	9	3
	TL-WRA	357.7	454	Normal	7	7
Tillicum Mine	TL-WRB	165.1	194	Normal	7	7
	TL-WRC	188.1	205	Normal	9	3
	UMM-TLA	7487	10200	Normal	6	6
	UMM-TLB	6067	11400	Normal	12	12
Upper Monumental Mine	UMM-TLC	3238	8750	Gamma	23	5
	UMM-WRA	1261	2920	Normal	16	16
	UMM-WRB	13851	14142	Lognormal	7	7
	UUMM-WRA	2091	2435	Normal	6	6
	UUMM-WRB	159.5	202	Normal	10	1
Upper Upper	UUMM-WRC	19.76	20	Normal	4	1
Monumental Mine	UUMM-WRD	312.5	334	Normal	5	2
	Mine LMM-WRB SH-WRA SH-WRB SH-WRC TL-WRA TI-WRB TL-WRC UMM-TLA UMM-TLB UMM-TLC UMM-WRA UMM-WRB UUMM-WRB UUMM-WRB UUMM-WRB UUMM-WRB UUMM-WRC UUMM-WRC	25.88	26	Normal	4	1
	UUMM-WRF	608.4	786	Normal	11	2

Note:

UCL =Calculated 95 percent upper concentration level, estimate of the mean mg/kg = milligrams per kilogram

Shaded cells represent features with UCLs above preliminary remediation goals

Terraphase Engineering Inc. Page 2 of 2

Table 5
Summary of Sediment Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

					Metals										
			Sample								Chromium				
AOI	Company	Location	Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	(total)	Cobalt	Copper	Iron	Lead
	PRG fo	r SAP			4895	82		24468	9113			3681	489424		
	Tailing	s PRG				110									
ODEQ B	lue Mounta	in Region Clean	Fill		1.3	14	950	2.6	0.69		190		120	21	
	ODEQ Eco	RBC FW			3	6			0.6		37		36		35
USEPA R4 Eco	SV FW Non-	Narcotic Mode	of Action	25000	2	9.8	20		1		43.4	50	31.6	20000	35.8
USEPA R4 Eco SV	FW Aquatic I	Non-Narcotic Mo	de of Action												
USEPA R4 Eco SV	FW Wildlife														
		ST-PSD-03	7/15/2003	4360	1.2 J	13.8	76.3	0.32 J	ND (0.053)	2050	<i>45.6</i>	6.4	2.5	40000	4.4
		ST-PSD-04 ST-PSD-05	7/15/2003 7/14/2003	6260 6670	1.5 J ND (0.39)	19.5 18.7	127 126	0.38 J 0.27 J	ND (0.053) ND (0.062)	1650 1820	5.2 7	6.3 5.7	3.1 2.4 J	11600 14500	4.9 6.4
		ST-PSD-05	7/14/2003	9210	ND (0.33)	18.6	170	0.27 J	ND (0.065)	2130	8.1	8.2	3	18800	4.9
		ST-PSD-07	7/12/2003	6980	ND (0.36)	21.9	127	0.3 J	ND (0.057)	2040	11.5	5.7	10.6	19100	5.3
		ST-PSD-08	7/12/2003	11700	ND (0.55)	25.9	217	0.47 J	ND (0.086)	2990	10.7	9.6	7.8	24600	6.7
		ST-PSD-09	7/11/2003	3990	ND (0.42)	9.6	52.3	0.11 J	0.069 J	1240	2.3	1.9 J	1.5 J	5650	2.2
		ST-PSD-10	7/10/2003	6680	0.74 J	22.5	109	0.29 J	0.12 J	1710	9	5.1 J	12.2	16100	8
		ST-PSD-53	7/19/2003	10200	2 J	<u>130</u>	139	0.24 J	0.96	2180	10.4	6.9	18.1	21600	38.2
	EA	ST-PSD-54	7/17/2003	8910	5.1 J	<u>303</u>	144	0.26 J	2.8	2740	10.9	6.5	28	18900	148
		ST-RSD-03 ST-RSD-04	7/15/2003 7/15/2003	3820 5940	ND (0.4) ND (0.41)	17.4 44.2	68.2 92.5	0.2 J 0.23 J	ND (0.062) 0.074 J	1430 2070	12.9 6.1	3.7 J 4.7 J	1.3 J 2.1 J	15400 12400	4.1 6.3
		ST-RSD-04	7/13/2003	6030	ND (0.41)	23	105	0.23 J	ND (0.063)	1950	9.7	4.7 J	2.13	15200	3.8
		ST-RSD-06	7/14/2003	4640	0.92 J	9.3	92.1	0.32 J	ND (0.059)	1900	24.9	6	2.4 J	29900	4.4
		ST-RSD-07	7/12/2003	9650	ND (0.42)	19.3	174	0.39 J	ND (0.066)	2330	10.1	8	3.5	22000	4.3
		ST-RSD-08	7/12/2003	8350	ND (0.4)	14.8	158	0.39 J	ND (0.063)	2310	15.3	8.2	7.7	25300	5.7
		ST-RSD-09	7/11/2003	6190	0.56 J	57.9	101	0.27 J	0.62	1820	10	5.2	7.7	16900	52.4
Granite Creek		ST-RSD-10	7/10/2003	6850	1 J	29	116	0.36 J	ND (0.068)	2300	24.3	7.9	8.9	33700	9.5
		ST-RSD-53	7/19/2003	9670	2.3 J	<u>126</u>	127	0.25 J	1.2	2230	9.9	6.2	18.6	19000	44.3
		ST-RSD-54 GC-ABS-01	7/17/2003 6/26/2007	7770 NA	5.1 <i>J</i> 1.2	<u>246</u> 27.9	126 NA	0.21 J 0.2 J	1.8 0.44	1750 NA	8.3 25	6.4 NA	30 4 J	18300 36000	121 12.5
		GC-ABS-01	6/26/2007	NA NA	1.2	<u>127</u>	NA NA	ND (0.2)	0.44	NA NA	12	NA NA	7	26600	45.3
		GC-ABS-03	6/26/2007	NA NA	0.7 J	25	NA	ND (0.2)	0.85	NA NA	42	NA NA	3 J	54600	15.1
	CES	GC-ABS-04	6/27/2007	NA	1.7	67.4	NA	0.3 J	1.49	NA	18	NA	10	29400	45.8
		GC-SS-01	6/25/2007	NA	ND (0.2)	7.5	NA	0.3 J	0.22 J	NA	9	NA	3 J	9320	1.89
		GC-SS-02	6/25/2007	NA	0.3 J	6.3	NA	0.6 J	0.12 J	NA	9	NA	2 J	13700	2.04
		GC-SS-03	6/25/2007	NA	0.3 J	36.5	NA	0.8 J	0.17 J	NA	10	NA	3 J	16600	2.63
		CS-SD-1	10/5/2024	NA	0.26 (0.13)	5.8 (1.3)	NA	NA	0.234 (0.053)	NA	7.81 (0.53)	NA	NA	NA	4.12 (0.13)
		CS-SD-2	10/3/2024	NA NA	0.038 J (0.054)		NA	NA NA	0.038 (0.022)	NA NA	2.49 (0.22)	NA	NA NA	NA NA	0.927 (0.054)
		CS-SD-3 CS-SD-4	10/3/2024 10/3/2024	NA NA	0.069 (0.063) 0.892 (0.058)	11.7 (0.63) 32.7 (0.58)	NA NA	NA NA	0.062 (0.025) 1.09 (0.023)	NA NA	4.9 (0.25) 9.05 (0.23)	NA NA	NA NA	NA NA	1.53 (0.063) 25.6 (0.058)
	TEI	CS-SD-4 CS-SD-5	10/3/2024	NA NA	0.892 (0.038)	14.1 (0.51)	NA	NA NA	0.169 (0.02)	NA NA	5.03 (0.23)	NA NA	NA NA	NA NA	2.79 (0.051)
	-	CS-SD-6	10/4/2024	NA	0.147 (0.045)	16.6 (0.45)	NA	NA	0.146 (0.018)	NA	4.76 (0.18)	NA	NA	NA	2.74 (0.045)
		CS-SD-7	10/4/2024	NA	0.355 (0.048)	24.2 (0.48)	NA	NA	0.538 (0.019)	NA	10.6 (0.19)	NA	NA	NA	12.1 (0.048)
		CS-SD-7 (DUP)	10/4/2024	NA	0.334 (0.054)	24.3 (0.54)	NA	NA	0.446 (0.022)	NA	9.1 (0.22)	NA	NA	NA	12.8 (0.054)
		CS-SD-8	10/5/2024	NA	0.406 (0.058)	35.2 (0.58)	NA	NA	0.316 (0.023)	NA	9.13 (0.23)	NA	NA	NA	10.7 (0.058)

Table 5
Summary of Sediment Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

					Metls									
			Sample											
AOI	Company	Location	Date	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
7.0.	PRG fo					2153	244668		61175	61145			61218	
	Tailing													
ODEQ B	_	in Region Clean	Fill		1800	1.4	92		0.93	0.51			400	160
,	ODEQ Eco				1100	0.2	18			4.5				123
USEPA R4 Eco	SV FW Non-	Narcotic Mode	of Action		460		22.7		0.72	1				121
USEPA R4 Eco SV	USEPA R4 Eco SV FW Aquatic Non-Narcotic Mode of Action					0.18								
USEPA R4 Eco SV	USEPA R4 Eco SV FW Wildlife Non-Narcotic Mode of Action					0.17			0.8					
	ST-PSD-03 7/15/2003			1520	162	ND (0.019)	5.5	950	0.88	0.22 J	ND (41.6)	1.8	154	23
		ST-PSD-04	7/15/2003	3330	159	ND (0.02)	4.3	2020	0.34 J	0.58 J	ND (41.9)	ND (0.25)	28.5	43.7
		ST-PSD-05	7/14/2003	3530	187	ND (0.021)	3.2 J	2190	0.5 J	0.64 J	ND (48.9)	ND (0.29)	36.6	41.9
		ST-PSD-06	7/14/2003	5550	343	0.027 J	4.4	3000	0.57	0.54 J	ND (50.9)	0.5 J	45.3	63.3
		ST-PSD-07	7/12/2003	3080	202	0.087	3.6 J	2100	0.4 J	0.83 J	ND (44.8)	0.3 J	57.5	62.6
		ST-PSD-08	7/12/2003	6100	342	0.12	5.7 J	3870	0.73	0.63 J	ND (68)	0.44 J	61.9	94.2
		ST-PSD-09	7/11/2003	1370	100	ND (0.019)	1.1 J	762	0.29 J	ND (0.1)	230 J	ND (0.31)	13 46	20.7
		ST-PSD-10 ST-PSD-53	7/10/2003 7/19/2003	2840 4790	177 364	0.07 0.11	3.2 J 6.2	2000 2840	0.63 0.44 J	0.49 J 1.8	79.7 J ND (45.2)	ND (0.33) 0.69 J	52.1	50.2 <i>150</i>
		ST-PSD-54	7/17/2003	3460	611	0.32	7.6	2400	0.44)	7.9	70.2 J	ND (0.67)	43	186
	EA	ST-RSD-03	7/15/2003	1600	171	ND (0.019)	2.2 J	1070	0.43 J	ND (0.094)	96.8 J	ND (0.29)	50.2	21.8
		ST-RSD-04	7/15/2003	3390	203	ND (0.021)	2.7 J	1320	0.35 J	0.86 J	120 J	ND (0.31)	29.5	34
		ST-RSD-05	7/14/2003	2600	169	ND (0.023)	3.1 J	1630	0.41 J	ND (0.094)	76 J	ND (0.29)	45.9	38.7
		ST-RSD-06	7/14/2003	2220	156	0.037 J	4.3	1420	0.63	0.24 J	ND (46.8)	1.1	113	35.6
		ST-RSD-07	7/12/2003	5160	277	0.05	4.4	3500	0.37 J	1.9	ND (52.2)	0.59 J	58.5	57.7
		ST-RSD-08	7/12/2003	5210	283	0.058	4.8	3330	0.34 J	0.73 J	ND (49.8)	0.69 J	76.2	58.1
		ST-RSD-09	7/11/2003	3130	177	0.031 J	3.2 J	1920	0.4 J	1	ND (44.1)	0.51 J	51.2	75.1
Granite Creek		ST-RSD-10	7/10/2003	3490	193	0.034 J	5.2	2410	0.58	0.92 J	ND (53.2)	1.4	117	64.9
		ST-RSD-53	7/19/2003	4030	360	0.12	6.5	2550	0.42 J	4.9	45.9	0.73 J	45.9	148
		ST-RSD-54 GC-ABS-01	7/17/2003 6/26/2007	3380 NA	560 243	0.12 0.23	7.3 3 J	2340 NA	0.63 0.28 J	6.3 1.15	79.5 J NA	0.76 J NA	38.3 NA	151 77
		GC-ABS-01	6/26/2007	NA NA	376	0.12 J	4 J	NA NA	0.28 J	3.27	NA NA	NA NA	NA NA	99
		GC-ABS-03	6/26/2007	NA	320	0.09 J	3 J	NA NA	0.38	0.68	NA NA	NA NA	NA NA	84
	CES	GC-ABS-04	6/27/2007	NA	414	ND (0.05)	5	NA	0.64	2.4	NA	NA	NA	120
		GC-SS-01	6/25/2007	NA	165	0.07 J	1 J	NA	0.31	0.12	NA	NA	NA	25
		GC-SS-02	6/25/2007	NA	213	ND (0.04)	ND (1)	NA	0.09 J	0.05 J	NA	NA	NA	36
		GC-SS-03	6/25/2007	NA	298	0.1 JH	ND (1)	NA	0.15 J	0.13	NA	NA	NA	36
		CS-SD-1	10/5/2024	NA	NA	0.031 J (0.053)	NA	NA	NA	0.282 (0.053)	NA	NA	NA	45 (1.3)
		CS-SD-2	10/3/2024	NA	NA	ND (0.024)	NA	NA	NA	0.043 (0.022)	NA	NA	NA	16.9 (0.54)
		CS-SD-3	10/3/2024	NA	NA	0.923 (0.027)	NA	NA	NA	0.112 (0.025)	NA	NA	NA	29.7 (0.63)
	TE:	CS-SD-4	10/3/2024	NA	NA	0.011 J (0.029)	NA	NA NA	NA NA	0.961 (0.023)	NA	NA	NA	47.2 (0.58)
	TEI	CS-SD-5	10/4/2024	NA NA	NA NA	0.056 (0.025)	NA NA	NA NA	NA NA	0.582 (0.02)	NA NA	NA NA	NA NA	32.7 (0.51)
		CS-SD-6	10/4/2024	NA NA	NA NA	0.033 (0.021)	NA NA	NA NA	NA NA	0.2 (0.018) 1.1 (0.019)	NA NA	NA NA	NA NA	37.1 (0.45)
		CS-SD-7 CS-SD-7 (DUP)	10/4/2024 10/4/2024	NA NA	NA NA	0.097 (0.023) 0.099 (0.024)	NA NA	NA NA	NA NA	1.62 (0.022)	NA NA	NA NA	NA NA	168 (0.48) 102 (0.54)
		CS-SD-7 (DOF)	10/4/2024	NA NA	NA NA	0.096 (0.024)	NA NA	NA NA	NA NA	1.26 (0.023)	NA NA	NA NA	NA NA	102 (0.54)
	<u>I</u>	C3 3D 0	10/ 3/ 2024	14/7	INA	3.030 (0.020)	IVA	I INA	INA	1.20 (0.023)	14/7	INA	I	100 (0.50)

Table 5

Summary of Sediment Notes Analytical Results

Supplemental Site Investigation Report Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

					Metals										
AOI	Company	Location	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium (total)	Cobalt	Copper	Iron	Lead
PRG for SAP					4895	82		24468	9113			3681	489424		
Tailings PRG						110									
ODEQ	Blue Mountai	n Region Clean	Fill		1.3	14	950	2.6	0.69		190		120		21
	ODEQ Eco	RBC FW			3	6			0.6		37		36		35
USEPA R4 Eco	USEPA R4 Eco SV FW Non-Narcotic Mode of Action			25000	2	9.8	20		1		43.4	50	31.6	20000	35.8
USEPA R4 Eco S	USEPA R4 Eco SV FW Aquatic Non-Narcotic Mode of Action														
USEPA R4 Eco SV FW Wildlife Non-Narcotic Mode of Action															

Note:

- 1. All concentrations reported in mg/kg (ppm); detection limits in parentheses.
- 2. Underlined concentrations exceed the PRG for SAP.
- 3. Double underlined concentrations exceed the Tailings PRG.
- 4. Boldfaced concentrations exceed the ODEQ Blue Mountain Region Clean Fill.
- 5. Italicized concentrations exceed the ODEQ Eco RBC FW.
- 6. Grey shaded concentrations exceed the USEPA R4 Eco SV FW Non-Narcotic Mode of Action.
- 7. Blue shaded concentrations exceed the USEPA R4 Eco SV FW Aquatic Non-Narcotic Mode of Action.
- 8. Red colored concentrations exceed the USEPA R4 Eco SV FW Wildlife Non-Narcotic Mode of Action.
- CES = Cascade Earth Scienes
- EA = EA Engineering, Science, and Technology, Inc.
- Eco = Ecological
- FW = Freshwater
- ND = Not Detected NA = Not Analyzed
- J = Estimated Concentration
- ODEQ = Oregon Department of Environmental Quality
- PRG = Preliminary Remediation Goal
- RBC = Risk-Based Concentration
- SAP = Sampling and Analysis Plan
- SV = Screening Value
- TEI = Terraphase Engineering Inc.
- USEPA R4 = United States Environmental Protection Agency Region 4

Table 6
Summary of Surface Water Analytical Results
Supplemental Site Investigation Report
Upper Granite Creek Watershed Mines
Wallowa-Whitman National Forest, Oregon

				Physical Properties	rties Metals									
			Sample											
AOI	Company	Location	Date	Hardness (total)	Aluminum	Antimony	Arsenic	Barium	Cadmium	Calcium	Chromium (total)	Copper	Iron	
Eco RBC	FW Aquatic	Chronic Exposure			0.32	0.19	0.15	0.22	0.000094	120	11	0.0014	1	
Eco RBC	FW Aquati	c Acute Exposure			0.69	0.9	0.34	2	0.00049		16	0.0023		
Eco RBC	FW Wildlife	Chronic Exposure	1											
Eco RBC	FW Wildlif	e Acute Exposure												
Cara Mantin	CEC.	CM-AS-01	6/21/2007	NA	NA	ND (0.0004)	ND (0.0005)	NA	ND (0.0001)	9.8	ND (0.01)	ND (0.0005)	0.65	
Cap Martin	CES	CM-AS-02	6/21/2007	NA	NA	ND (0.0004)	0.0013	NA	0.0001 J	9.9	ND (0.01)	ND (0.0005)	2.03	
		ST-SFW-03	7/15/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0349 J	ND (0.0006)	5.56	ND (0.0014)	ND (0.0024)	ND (0.0333)	
		ST-SFW-04	7/15/2003	NA	0.126 J	ND (0.0047)	ND (0.0048)	0.0415 J	ND (0.0006)	7.06	ND (0.0014)	ND (0.0024)	0.0941 J	
		ST-SFW-05	7/13/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0385 J	ND (0.0006)	7.13	ND (0.0014)	ND (0.0024)	ND (0.0333)	
		ST-SFW-06	7/13/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0456 J	ND (0.0006)	8.45	ND (0.0014)	ND (0.0024)	ND (0.0333)	
	EA	ST-SFW-07	7/12/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0455 J	ND (0.0012)	8.7	ND (0.0019)	ND (0.0033)	ND (0.0667)	
	EA	ST-SFW-08	7/12/2003	NA	ND (0.0236)	ND (0.0047)	ND (0.0048)	0.0485 J	ND (0.0006)	9.01	ND (0.0014)	ND (0.0024)	ND (0.0333)	
		ST-SFW-09	7/11/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0509 J	ND (0.0012)	9.69	ND (0.0019)	ND (0.0033)	ND (0.0667)	
		ST-SFW-10	7/10/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0529 J	ND (0.0012)	9.91	ND (0.0019)	ND (0.0033)	ND (0.0667)	
		ST-SFW-53	7/17/2003	NA	0.0793 J	ND (0.0047)	0.0131	0.055 J	ND (0.0006)	15.3	ND (0.0014)	ND (0.0024)	ND (0.0168)	
		ST-SFW-54	7/17/2003	NA	0.0264 J	ND (0.0038)	0.0096 J	0.051 J	ND (0.0003)	15.9	0.00074 J	ND (0.0014)	0.0323 J	
Granite Creek		GC-SW-01	6/25/2007	NA	NA	ND (0.0004)	0.0006 J	NA	ND (0.0001)	4.5	ND (0.01)	ND (0.0005)	0.03 J	
Granite Creek	CES	GC-SW-02	6/25/2007	NA	NA	ND (0.0004)	ND (0.0005)	NA	ND (0.0001)	4.5	ND (0.01)	ND (0.0005)	0.04 J	
		GC-SW-03	6/5/2007	NA	NA	ND (0.0004)	0.0006 J	NA	ND (0.0001)	4.7	ND (0.01)	ND (0.0005)	0.1	
		CS-SW-1	10/5/2024	18.1 (0.09)	NA	0.000036 J (0.00005)	0.00036 J (0.0005)	NA	ND (0.00002)	5.59 (0.02)	0.00011 J (0.0002)	NA	NA	
		CS-SW-2	10/3/2024	19.7 (0.09)	NA	0.000025 J (0.00005)	0.00067 (0.0005)	NA	ND (0.00002)	6.07 (0.02)	0.00011 J (0.0002)	NA	NA	
		CS-SW-2 (DUP)	10/3/2024	19.3 (0.09)	NA	0.000031 J (0.00005)	0.00061 (0.0005)	NA	ND (0.00002)	5.92 (0.02)	0.00011 J (0.0002)	NA	NA	
		CS-SW-3	10/3/2024	21 (0.09)	NA	0.000038 J (0.00005)	0.00087 (0.0005)	NA	ND (0.00002)	6.49 (0.02)	0.00012 J (0.0002)	NA	NA	
	TEI	CS-SW-4	10/3/2024	27.5 (0.09)	NA	0.000036 J (0.00005)	0.00092 (0.0005)	NA	ND (0.00002)	8.41 (0.02)	0.00014 J (0.0002)	NA	NA	
		CS-SW-5	10/4/2024	31.8 (0.09)	NA	0.000098 (0.00005)	0.00178 (0.0005)	NA	0.00001 J (0.00002)	9.55 (0.02)	0.00011 J (0.0002)	NA	NA	
		CS-SW-6	10/4/2024	32.3 (0.09)	NA	0.000076 (0.00005)	0.00204 (0.0005)	NA	ND (0.00002)	9.71 (0.02)	0.00011 J (0.0002)	NA	NA	
		CS-SW-7	10/4/2024	36.3 (0.09)	NA	0.000104 (0.00005)	0.00199 (0.0005)	NA	0.000019 J (0.00002)	10.9 (0.02)	0.00009 J (0.0002)	NA	NA	
		CS-SW-8	10/5/2024	36.7 (0.09)	NA	0.000108 (0.00005)	0.00221 (0.0005)	NA	0.00002 J (0.00002)	10.9 (0.02)	0.00011 J (0.0002)	NA	NA	
Granite Creek #5	CES	GC5-AS-01	6/24/2007	NA	NA	0.0009 J	0.0046	NA	<u>0.0007</u>	22.7	ND (0.01)	<u>0.0038</u>	1.74	
Golden Fraction	CES	GF-AS-01	6/25/2007	NA	NA	0.0007 J	0.0119	NA	ND (0.0001)	28.2	ND (0.01)	0.0007 J	1.87	
	EA	SP-SFW-19	7/19/2003	NA	ND (0.0631)	ND (0.005)	0.0214	0.0995 J	ND (0.0012)	22.6	ND (0.0019)	ND (0.0033)	ND (0.0667)	
Lwr Mon'tl		MMDGA-AS-01	9/28/2009	NA	NA	NA	0.0218	NA	NA	NA	NA	NA	0.13	
LWI WOIL	CES		9/28/2009	NA	NA	NA	0.0199	NA	NA	NA	NA	NA	0.06	
		MMDGA-SW-02		NA	NA	NA	0.0242	NA	NA	NA	NA	NA	ND (0.02)	
	EA	SP-SFW-18	7/9/2003	NA	ND (0.0631)	ND (0.005)	0.0818	0.0677 J	ND (0.0012)	17.4	ND (0.0019)	ND (0.0033)	ND (0.0667)	
	EA		7/10/2003	NA	ND (0.0631)	ND (0.005)	ND (0.006)	0.0756 J	ND (0.0012)	17.8	ND (0.0019)	ND (0.0033)	ND (0.0667)	
Upr Mon'tl	CES		9/28/2009	NA	NA	NA	0.0272	NA	NA	NA	NA	NA	0.33	
	CES		9/28/2009	NA	NA	NA	0.105	NA	NA	NA	NA	NA	5.61	
	CES	MMDGA-SW-01	9/28/2009	NA	NA	NA	0.051	NA	NA	NA	NA	NA	4.22	

Table 6 **Summary of Surface Water Analytical Results** Supplemental Site Investigation Report

Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

				Metals										
AOI	Company	Location	Sample Date	Lead	Magnesium	Manganese	Mercury	Potassium	Selenium	Silver	Sodium	Zinc		
Eco RBC	FW Aquatic	Chronic Exposure		0.00054	82	0.093	0.000012	53	0.0046	0.0001	680	0.036		
Eco RB	C FW Aquati	c Acute Exposure		0.014		1.7	0.0014		0.02	0.0003		0.036		
Eco RBC	FW Wildlife	Chronic Exposure)				0.000013							
Eco RB0	C FW Wildlife	e Acute Exposure					0.000012							
Can Martin	CES	CM-AS-01	6/21/2007	0.0001 J	2	0.021 J	0.0000095	NA	ND (0.0001)	ND (0.00005)	NA	<u>1.31</u>		
Cap Martin	CES	CM-AS-02	6/21/2007	0.0001 J	2.1	0.026 J	0.00000574	NA	ND (0.0001)	ND (0.00005)	NA	ND (0.01)		
		ST-SFW-03	7/15/2003	ND (0.0013)	0.998 J	ND (0.0007)	ND (0.0001)	1.21 J	ND (0.0034)	ND (0.0022)	2.81 J	0.002 J		
		ST-SFW-04	7/15/2003	ND (0.0013)	1.32 J	0.0057 J	ND (0.0001)	1.75 J	ND (0.0034)	ND (0.0022)	3.16 J	0.0026 J		
		ST-SFW-05	7/13/2003	ND (0.0013)	1.33 J	0.00088 J	ND (0.0001)	2.34 J	ND (0.0034)	ND (0.0022)	3.26 J	0.0025 J		
		ST-SFW-06	7/13/2003	ND (0.0013)	1.72 J	0.00072 J	ND (0.0001)	1.99 J	ND (0.0034)	ND (0.0022)	3.22 J	0.0023 J		
	F.A.	ST-SFW-07	7/12/2003	0.0017 J	1.76 J	ND (0.0019)	ND (0.0001)	1.59 J	ND (0.0017)	ND (0.0029)	3.16 J	0.0029 J		
	EA	ST-SFW-08	7/12/2003	ND (0.0013)	1.82 J	0.0011 J	ND (0.0001)	2.67 J	ND (0.0034)	ND (0.0022)	3.42 J	0.003 J		
		ST-SFW-09	7/11/2003	ND (0.0015)	2.01 J	ND (0.0019)	ND (0.0001)	1.62 J	ND (0.0017)	ND (0.0029)	3.24 J	0.0033 J		
		ST-SFW-10	7/10/2003	ND (0.0015)	2.07 J	ND (0.0019)	ND (0.0001)	1.63 J	ND (0.0017)	ND (0.0029)	3.14 J	0.0035 J		
		ST-SFW-53	7/17/2003	ND (0.0013)	3.54 J	0.0103 J	0.0002 J	1.87 J	ND (0.0017)	ND (0.0022)	3.38 J	0.0031 J		
		ST-SFW-54	7/17/2003	ND (0.0013)	4.04 J	0.0067 J	0.0001 J	2.49 J	ND (0.0017)	ND (0.0009)	3.65 J	ND (0.0057)		
		GC-SW-01	6/25/2007	0.0001 J	0.7 J	ND (0.005)	ND (0.0000001)	NA	ND (0.0001)	ND (0.00005)	NA	ND (0.01)		
Granite Creek	CES	GC-SW-02	6/25/2007	ND (0.0001)	0.8 J	ND (0.005)	0.00000048	NA	ND (0.0001)	ND (0.00005)	NA	0.01 J		
		GC-SW-03	6/5/2007	0.0001 J	0.9 J	ND (0.005)	0.0000048	NA	ND (0.0001)	ND (0.00005)	NA	0.01 J		
		CS-SW-1	10/5/2024	0.000013 J (0.00002)	0.996 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)		
		CS-SW-2	10/3/2024	0.000012 J (0.00002)	1.11 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)		
		CS-SW-2 (DUP)	10/3/2024	0.000007 J (0.00002)	1.09 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)		
		CS-SW-3	10/3/2024	0.000012 J (0.00002)	1.17 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)		
	TEI	CS-SW-4	10/3/2024	ND (0.00002)	1.59 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	ND (0.002)		
		CS-SW-5	10/4/2024	0.000018 J (0.00002)	1.93 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0018 J (0.002)		
		CS-SW-6	10/4/2024	0.000013 J (0.00002)	1.96 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0007 J (0.002)		
		CS-SW-7	10/4/2024	0.000022 (0.00002)	2.2 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0008 J (0.002)		
		CS-SW-8	10/5/2024	0.000084 (0.00002)	2.31 (0.01)	NA	ND (0.0002)	NA	NA	ND (0.00002)	NA	0.0008 J (0.002)		
Granite Creek #5	CES	GC5-AS-01	6/24/2007	0.009	4.9	0.01 J	0.000141	NA	0.0005 J	0.00009 J	NA	0.02 J		
Golden Fraction	CES	GF-AS-01	6/25/2007	0.0002 J	6.7	0.374	0.00000194	NA	ND (0.0001)	ND (0.00005)	NA	ND (0.01)		
	EA	SP-SFW-19	7/19/2003	0.0023 J	7.15	0.0067 J	ND (0.0001)	2.72 J	0.0026 J	ND (0.0029)	3.31 J	0.0156 J		
Lur Manit		MMDGA-AS-01	9/28/2009	ND (0.0001)	NA	NA	NA	NA	NA	NA	NA	0.004 J		
Lwr Mon'tl	CES	MMDGA-SP-02	9/28/2009	ND (0.0001)	NA	NA	NA	NA	NA	NA	NA	0.004 J		
		MMDGA-SW-02	9/28/2009	0.0003 J	NA	NA	NA	NA	NA	NA	NA	0.009 J		
	EA	SP-SFW-18	7/9/2003	ND (0.0015)	4.66 J	0.0029 J	ND (0.000001)	2.44 J	ND (0.0017)	ND (0.0029)	2.94 J	0.0276		
	EA	SP-SFW-51	7/10/2003	0.0021 J	4.53 J	0.0554	ND (0.0000001)	1.61 J	ND (0.0017)	ND (0.0029)	2.63 J	0.005 J		
Upr Mon'tl	CES	MMDGA-AS-02	9/28/2009	0.0004 J	NA	NA	NA	NA	NA	NA	NA	0.014		
	CES	MMDGA-SP-01	9/28/2009	<u>0.0294</u>	NA	NA	NA	NA	NA	NA	NA	<u>0.12</u>		
	CES	MMDGA-SW-01	9/28/2009	0.0118	NA	NA	NA	NA	NA	NA	NA	0.028		

Terraphase Engineering Inc. Page 2 of 3

Table 6 Summary of Surface Water Analytical Results Upper Granite Creek Watershed Mines

Wallowa-Whitman National Forest, Oregon

				Physical Properties		Metals									
101			Sample	Handana (tata)	Almetama	A., 11.	A	D avidson	On desirem	Collations	Characters (Astal)	•	1		
AOI	Compan	y Locatio	n Date	Hardness (total)	Aluminum	Antimony	Arsenic	Barium	Cadmium	Calcium	Chromium (total)	Copper	Iron		
Eco	RBC FW Aqua	ic Chronic Exp	osure		0.32	0.19	0.15	0.22	0.000094	120	11	0.0014	1		
Ec	RBC FW Aqua	tic Acute Expo	sure		0.69	0.9	0.34	2	0.00049	-	16	0.0023			
Eco	Eco RBC FW Wildlife Chronic Exposure														
Eco	Eco RBC FW Wildlife Acute Exposure														

Note:

- 1. All concentrations reported in mg/L; detection limits in parentheses.
- 2. Only compounds with at least one detection are shown.
- 3. The numbers presented for Chromium (total) are the criteria established by ODEQ for Chromium VI.
- 4. Grey-shaded concentrations exceed the Eco RBC FW Aquatic Chronic Exposure.
- 5. Underlined concentrations exceed the Eco RBC FW Aquatic Acute Exposure.
- 6. Boldfaced concentrations exceed the Eco RBC FW Wildlife Chronic Exposure.
- 7. Italicized concentrations exceed the Eco RBC FW Wildlife Acute Exposure.
- CES = Cascade Earth Scienes
- EA = EA Engineering, Science, and Technology, Inc.
- Eco = Ecological
- FW = Freshwater
- ND = Not Detected
- NA = Not Analyzed
- J = Estimated Concentration
- Mon'tl = Monumental
- ODEQ =Oregon Department of Environmental Quality
- RBC = Risk-Based Concentration
- TEI = Terraphase Engineering Inc.

Terraphase Engineering Inc.
Page 3 of 3

Table 7
In Vitro Bioaccessibility (IVBA) and Relative Bioavailability (RBA) Calculations

Supplemental Site Investigation Report Upper Granite Creek Watershed Mines Wallowa-Whitman National Forest, Oregon

Material	Waste Rock CEM-WRA-2	Waste Rock CM-WRC-4	Waste Rock GC6-WRA-2	Waste Rock LMM-WRA-3	Waste Rock	Waste Rock UMM-WRA-3 L	Waste Rock	Native Soil GC5-WRA-4-DS	Native Soil GF-WRD-4-DS T	Native Soil	Tailings UMM-TLA-6	Tailings UMM-TLB-1
Mine Site	Central		iranite Creek #6	Lwr Mon'tl	•				Golden Fraction	Tillicum	Upr Mon'tl	Upr Mon'tl
Depth (ft bgs)	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0	0.5 - 1.0
Sample Date	10/5/2024	10/3/2024	10/4/2024	10/3/2024	10/2/2024	10/2/2024	10/2/2024	10/4/2024	10/5/2024	10/4/2024	10/2/2024	10/2/2024
Comments						F	ield Duplicate					
Metals												
Arsenic, IVBA	44.5	33.1	29.3	16.6	12.7	176	162	10.4	12.3	14.4	1350	1840
Arsenic, Total IVBA	794	650	759	328	1590	3440	3280	221	137	550	5560	4420
IVBA fraction:	0.056	0.051	0.039	0.051	0.0080	0.051	0.049	0.047	0.090	0.026	0.24	0.42
RBA fraction:	0.074	0.070	0.060	0.070	0.036	0.070	0.069	0.067	0.10	0.051	0.22	0.36
RBA:	0.077 \	Naste Rock/Nativ	ve Soil							RBA:	0.36	Tailings

Note:

1 All concentrations reported in mg/kg (ppm).

2 Arsenic, IVBA is the bioaccessible arsenic concentration in soil.

3 Arsenic, Total IVBA is the total arsenic concentration in soil.

IVBA = In Vitro Bioaccessibility

Lwr = lower

Mon'tl = monumental

RBA = Relative Bioavailability

Upr = upper

Terraphase Engineering Inc. Page 1 of 1

Figures

- 1 Site Location
- 2 Site Layout
- 3 Upper-Upper Monumental Mine
- 4 Upper Monumental Mine
- 5 Lower Monumental Mine
- 6 Granite Creek Aquatic Station 03
- 7 Cap Martin Mine
- 8 Sheridan Mine
- 9 Granite Creek #6 Mine
- 10 Granite Creek #7 Mine
- 11 Tillicum Mine
- 12 Granite Creek #5 Mine
- 13 Golden Fraction Mine
- 14 Central Mine
- 15 Background Soil and Surface Water Sampling Locations
- 16 XRF Analytical Data Correlation
- 17 XRF Laboratory Data Comparison Chart
- 18 Surface Water Arsenic Concentration with Distance

Notes:	SAFETY FIRST	CLIENT: USDA Forest Service Surface Wa	Surface Water Arsenic
	terra phase	PROJECT: Upper Granite Creek Watershed Mines, Granite, Oregon	
	engineering	PROJECT NUMBER: 0031.005	FIGURE 18

Appendix A

Field Notes

Project Number: 0031.005

By: Adrienne Venegas

Date	10/01/2024	Contractor	
Staff On-Site	Adrienne Venegas, Don Malkemus, James Farrow	Crew	
Staff From Time	09:00	From Time	
Staff To Time	16:30	To Time	
Weather	Sunny	Tailgate Meeting?	YES
Equipment		Remarks	

Work Summary

Time Notes

09:00 Meet with Mario and Keifer with USFS near Central Mine. Introductions and health and safety meeting

Picture taken at: 09:23

Caption: HASP review and acceptance form

Latitude: 44.85701750773097 Longitude: -118.3942462940675

Picture taken at: 09:24

Caption: DFR

Latitude: 44.85624445584468

Longitude: -118.3936392660795

09:25 Driving to Upper Monumental Mine

Project Number: 0031.005

Time Notes

Picture taken at: 09:57 Caption: Stamp Mill

Latitude: 44.85967547233333 Longitude: -118.3535353385

Picture taken at: 09:57
Caption: Chlorination flue
Latitude: 44.859680902

Longitude: -118.3535841383333

Picture taken at: 09:57 Caption: Flotation table Latitude: 44.85967803

Longitude: -118.3536781416666

Picture taken at: 09:58

Caption: Chlorination flue (foreground) and flotation table

(background)

Latitude: 44.8596509485

Project Number: 0031.005

Time Notes

Picture taken at: 10:02
Caption: Chlorination flue
Latitude: 44.85955154583333
Longitude: -118.3541252503333

Picture taken at: 10:03

Caption: Upper retaining wall
Latitude: 44.85972296566667
Longitude: -118.3537110743333

Picture taken at: 10:09

Caption: Mill remains

Latitude: 44.8599069955

Longitude: -118.3538225465

Picture taken at: 10:09

Caption: Mill remains and tailings Latitude: 44.8599081743333 Longitude: -118.3538226001667

Project Number: 0031.005

Time Notes

Picture taken at: 10:10

Caption: Mill remains and upper and lower retaining walls

Latitude: 44.85990836866666 Longitude: -118.3538222428333

Picture taken at: 10:30 Caption: Upper shaft

Latitude: 44.86059106966667 Longitude: -118.3504906728334

Picture taken at: 10:43

Caption: Shaft above upper monumental shaft (not previously

mapped)

Latitude: 44.86081504183333 Longitude: -118.3496741993333

Picture taken at: 10:48

Caption: Shaft #3 above upper monumental shaft (not previously

mapped). Very deep hole at bottom right

Latitude: 44.86090162483333 Longitude: -118.3492360385

11:36 Lower monumental mine.

Project Number: 0031.005

Time Notes

Picture taken at: 11:37

Caption: Adit from above

Latitude: 44.86108379900001

Longitude: -118.355107257

Picture taken at: 11:41

Caption: Lower monumental adit entrance

Latitude: 44.86105575

Longitude: -118.3554127151667

Picture taken at: 11:41

Caption: Drainage from Lower monumental adit

Latitude: 44.86105649449999 Longitude: -118.3554090786667

Picture taken at: 11:44

Caption: Cabin

Latitude: 44.86130057416667 Longitude: -118.3556658905

Project Number: 0031.005

Time Notes

Picture taken at: 11:47 Caption: Collapsed adit

Latitude: 44.86175704066667 Longitude: -118.3555481198333

Picture taken at: 11:48
Caption: Collapsed adit

Latitude: 44.86176202983334 Longitude: -118.3555403036667

Picture taken at: 11:51

Caption: Former rock crusher. Area of high arsenic concentration

Latitude: 44.86133833333334 Longitude: -118.3560416666667

Picture taken at: 11:53

Caption: Wetland/spring ("unnamed tributaries") below former

crusher area

Latitude: 44.86140766083332 Longitude: -118.3561838248333

Project Number: 0031.005

Time Notes

Picture taken at: 11:54

Caption: Wetland/spring ("unnamed tributaries") below former

crusher area

Latitude: 44.86139036416666 Longitude: -118.3561593996667

Picture taken at: 11:56

Caption: Collapsed cabin (not mapped)

Latitude: 44.86158838266667 Longitude: -118.3560458813333

Picture taken at: 11:57

Caption: Collapsed cabin #2 (not mapped)

Latitude: 44.86176913149999 Longitude: -118.3561870145

12:30 Headed to Cap Martin

Picture taken at: 12:47

Caption: Collapsed cabin

Latitude: 44.85807001800001

Project Number: 0031.005

Time Notes

Picture taken at: 12:52

Caption: Settling pond? Second drainage

Latitude: 44.85705450550001 Longitude: -118.3687287458333

Picture taken at: 12:53

Caption: Drainage and waste rock pile

Latitude: 44.85701166666666

Longitude: -118.36885

Picture taken at: 12:58

Caption: Adit #3

Latitude: 44.85732991616666 Longitude: -118.3683959126667

Picture taken at: 12:59

Caption: Adit near #4

Latitude: 44.857037865

Project Number: 0031.005

Time Notes

Picture taken at: 13:00 Caption: Adit near #4

Picture taken at: 13:02

Caption: Drainage from adits

Latitude: 44.85710241966667

Longitude: -118.3681869576667

Picture taken at: 13:05

Caption: Adit #4

Latitude: 44.85717833333333 Longitude: -118.3680633333333

Picture taken at: 13:10

Caption: Cabin

Latitude: 44.85717852233334 Longitude: -118.368063151

13:24 Heading to GC-6

Project Number: 0031.005

Time Notes

Picture taken at: 13:45 Caption: GC-6 adit

Latitude: 44.85765392850001 Longitude: -118.3756544251667

Picture taken at: 13:47

Caption: Wet trench (left-right) with waste pile (not from adit)

beyond at GC-6

Latitude: 44.85768046716667 Longitude: -118.3756259823333

13:59 GC-7

Picture taken at: 14:00

Caption: GC-7 adit and "unnamed tributary"

Latitude: 44.85812620499999 Longitude: -118.3746201356667

14:17 Sheridan

Picture taken at: 14:17

Caption: Sheridan - 1 of several parallel adits? Or "steep slope

with gouges?"

Latitude: 44.85716953533333 Longitude: -118.3750253946667

Project Number: 0031.005

Time Notes

Picture taken at: 14:22

Caption: Sheridan - 2nd of several parallel adits? Or "steep slope

with gouges?"

Latitude: 44.85720707166666 Longitude: -118.3748731503333

Picture taken at: 14:24

Caption: Several rusted drums

Latitude: 44.8571973805

Longitude: -118.3748722141667

Picture taken at: 14:31

Caption: Retaining wall at Sheridan

Latitude: 44.85700116616668 Longitude: -118.3753940575

14:57 Heading to main road to hike NF Rd 680

15:09 Central mine

Picture taken at: 15:09

Caption: Central mine #1

Latitude: 44.85501767533334

Project Number: O031.005

Time Notes

15:18 golden fraction

Picture taken at: 15:18

Caption: Collapsed adit (lower)
Latitude: 44.85510870866667
Longitude: -118.3889174681667

Picture taken at: 15:29

Caption: Retaining wall between lower golden fraction and GC-5

Latitude: 44.85505057416667 Longitude: -118.3879588078333

15:32 GC-5

Picture taken at: 15:33

Caption: GC-5 adit

Latitude: 44.85560349699999 Longitude: -118.3863341225

15:50 Tillicum mine

Project Number: O031.005

Time Notes

Picture taken at: 15:50

Caption: Tillicum adit (lower)
Latitude: 44.856359515

Longitude: -118.3818410655

16:20 Heading to quarry (potential repository site).

Picture taken at: 16:34

Caption: Quarry

Latitude: 44.82991502433662 Longitude: -118.422087232068

Picture taken at: 16:34

Caption: Quarry

Latitude: 44.82992898691602

Longitude: -118.4220694659046

16:30 TEI headed back to Airbnb

Project Number: 0031.005

By: Don Malkemus

Date	10/01/2024	Contractor	
Staff On-Site	Don Malkemus, Adrienne Venegas, James Farrow	Crew	
Staff From Time	07:55	From Time	
Staff To Time		To Time	
Weather	Clear	Tailgate Meeting?	YES
Equipment	Vanya c series XRF	Remarks	

Work Summary

Time	Notes
07:56	Calibrate XRF. Arsenic reads 22. 17 in a ziplock bag. 18 in ziplock at 30 seconds.
09:01	Arrive at the site, meet Mario Isaias-Vera and Keifer Nace. At intersection of FS73 and FS7345. Go through introductions.
09:03	Health and safety tailgate
09:18	There is a quarry on FS7350.
09:56	Arrive at upper monumental mine. 3.3 on 7345 from 73.
09:57	Document upper monumental site features. Find additional previously unmapped shafts and waste rock piles above the upper shaft. Hummocks terrain
11:37	Visit lower monumental mine
12:47	Visit cap Martin mine
13:43	Visit GC-6. Not where describe or mapped
14:11	Visit GC-7, on the Sheridan map
14:11	Visit Sheridan
14:15	Survey marker
15:10	Visit central mine
15:12	Claim
15:32	Visit granite creek 5
15:49	Is it Tillicum mine
16:20	Leave mine sites, head to quarry
16:31	Arrive at quarry
10.40	Offsite any goodhya ta Maria and Kaifar

Project Number: 0031.005

By: Adrienne Venegas

Date	10/02/2024	Contractor	
Staff On-Site	Adrienne Venegas, James Farrow	Crew	
Staff From Time	08:40	From Time	
Staff To Time	17:54	To Time	
Weather	Partly Cloudy	Tailgate Meeting?	
Equipment		Remarks	

Work Summary

09:30

Time	Notes
08:40	Arrive at Monumental Mine. Walk to Upper Upper Monumental Mine

Sampling upper monumental mine waste rock pile and mapping features

Picture taken at: 10:31

Caption: MM-WRA-0.5-2 and -2-DS

Latitude: 44.860653333333333

Longitude: -118.3523166666667

Picture taken at: 10:38

Caption: MM-WRA-0.5-3

Latitude: 44.86041922916667

Longitude: -118.3519728946667

Picture taken at: 10:54

Caption: MM-WRA-0.5-4

Latitude: 44.86008186533333

Project Number: 0031.005

Time Notes

Picture taken at: 11:27 Caption: MM-WRA-0.5-5

Latitude: 44.86031073583334 Longitude: -118.3518727916667

Picture taken at: 11:31 Caption: MM-WRA-0.5-6

Latitude: 44.86034947433333 Longitude: -118.3522562825

Picture taken at: 11:40
Caption: MM-WRA-0.5-7
Latitude: 44.86026666666667

Longitude: -118.35212

Picture taken at: 11:51
Caption: MM-WRA-0.5-8

12:11 Sampling upper upper monumental mine (not previously mapped) waste rock pile and mapping features

Project Number: 0031.005

Time Notes

Picture taken at: 13:18

Caption: UUMM-WRA-0.5-2 (foreground) and 1 (background)

Picture taken at: 13:29

Caption: UUMM-WRC-0.5-1 (left of trench)

Latitude: 44.86105987483333 Longitude: -118.3495929021667

Picture taken at: 13:45

Caption: UUMM-WRD-0.5-1

Latitude: 44.860445

Longitude: -118.3495116666667

Picture taken at: 13:50

Caption: UUMM-WRE-0.5-1

Latitude: 44.86035833333333

Project Number: 0031.005

Time Notes

Picture taken at: 14:03

Caption: UUMM-WRF-0.5-1 (pile to left of trench)

Latitude: 44.86029666666667 Longitude: -118.3497083333333

Picture taken at: 14:03

Caption: UUMM-WRF (pile to downslope of trench)

Latitude: 44.86029666666667 Longitude: -118.349655

14:29 Sampling upper monumental mine waste rock pile and mapping features

Picture taken at: 14:30

Caption: Upper shaft (downslope side)

Latitude: 44.86064166666667 Longitude: -118.3504466666667

Picture taken at: 14:30

Caption: Upper shaft (upslope side)

Latitude: 44.86064166666667

Project Number: 0031.005

Time Notes

Picture taken at: 14:34

Caption: UMM-WRB-0.5-1 (shaft in background)

Picture taken at: 14:46

Caption: UMM-WRB-0.5-2 (farther) and UMM-WRB-0.5-2-DS

(closer)

Latitude: 44.86061166666666 Longitude: -118.3506916666667

Picture taken at: 14:50

Caption: UMM-WRB-0.5-3 (shaft in background)

Latitude: 44.86063

Longitude: -118.3505633333333

Picture taken at: 14:54

Caption: UMM-WRB-0.5-4 (downhill edge of shaft)

Latitude: 44.86057810883334 Longitude: -118.3505025001667

15:48 Upper mine near stamp mill (tailing piles, chlorination flue, flotation table, etc)

Project Number: 0031.005

Time Notes

Picture taken at: 15:49

Caption: Upper and lower retaining walls

Latitude: 44.85992706766667 Longitude: -118.3536460298333

Picture taken at: 15:50

Caption: Erosional chute 1/3

Latitude: 44.859912324

Longitude: -118.3536262888333

Picture taken at: 15:56

Caption: Erosional chute 2/3
Latitude: 44.85984768033333

Longitude: -118.3539777846667

Picture taken at: 15:58

Caption: UMM-TLA-0.5-1

Latitude: 44.85986879083332

Project Number: 0031.005

Time Notes

Picture taken at: 16:00

Caption: UMM-TLA-0.5-2

Latitude: 44.85993446516666

Longitude: -118.3539610836667

Picture taken at: 16:02

Caption: Old road (continues away from mill)

Latitude: 44.85984380066667 Longitude: -118.3543046616666

Picture taken at: 16:04

Caption: Erosional chute 3/3?
Latitude: 44.85982435716666
Longitude: -118.3541982723333

Picture taken at: 16:07

Caption: UMM-TLA-0.5-3

Latitude: 44.85991798333333 Longitude: -118.3535461333333

Project Number: 0031.005

Time Notes

Picture taken at: 16:09

Caption: UMM-TLA-0.5-4

Latitude: 44.85995027166667

Longitude: -118.3534044343333

Picture taken at: 16:11

Caption: UMM-TLA-0.5-5

Latitude: 44.85987502933334

Longitude: -118.353381637

Picture taken at: 16:15
Caption: UMM-TLA-0.5-6
Latitude: 44.85978235633333
Longitude: -118.3537078031667

Picture taken at: 16:21
Caption: Chlorination flue
Latitude: 44.85968069816666
Longitude: -118.3536930685

Project Number: 0031.005

Time Notes

Picture taken at: 16:25

Caption: Upper retaining wall
Latitude: 44.85972560583333
Longitude: -118.3537275328333

Picture taken at: 16:40

Caption: Wetlands on upper settling pond (toward tributary)

Latitude: 44.86033666983333 Longitude: -118.3538482471667

Picture taken at: 16:40

Caption: Wetlands on upper settling pond

Latitude: 44.86033132583334 Longitude: -118.353817384

Picture taken at: 16:58

Caption: UMM-TLB-0.5-4 (near upper settling pond)

Latitude: 44.86037

Project Number: O031.005

Notes Time

Picture taken at: 17:08

Caption: Wetlands on middle settling pond

Latitude: 44.860685072

Longitude: -118.3542392566667

Picture taken at: 17:10 Caption: UMM-TLC-0.5-1

Latitude: 44.86071280166666 Longitude: -118.3542512848333

Picture taken at: 17:12 Caption: UMM-TLC-0.5-2 Latitude: 44.86075874966667

Picture taken at: 17:21

Caption: UMM-TLB-0.5-3 (foreground) and 1 & 2 (background)

Latitude: 44.86023615333333 Longitude: -118.353842624

Project Number: 0031.005

Time Notes

Picture taken at: 17:23 Caption: UMM-TLB-0.5-1 Latitude: 44.86025210999999

Longitude: -118.3536833281667

Picture taken at: 17:24 Caption: UMM-TLB-0.5-2 Latitude: 44.86026880983333

Longitude: -118.3537255115

17:54 TEI off site

Project Number: 0031.005

By: Don Malkemus

Date	10/02/2024	Contractor	
Staff On-Site		Crew	
Staff From Time		From Time	
Staff To Time		To Time	
Weather		Tailgate Meeting?	
Equipment		Remarks	

Work Summary

Time	Notes
07:43	Calibrate PID. Cal check passed. Arsenic in bag 20 +6, arsenic without bag 23+5, blank in bag LE 91.22%, Si 6.27%
08:56	Arrive at upper monumental mine, prepare equipment
09:30	Begin soil sampling and collecting XRF readings on WRA
09:44	Initial XRF in waste rock 809 ppm As. 3 feet downslope in brown soil 64 ppm.
10:23	Collect sample MM-WRA-0.5-1 from initial downslope boundary. Collect sample MM-WRA-DS-0.5 from native soil downslope of the waste rock pile.
12:11	Mob to upper shaft area
12:45	Arrive at upper upper area
13:18	Begin mapping, collecting soil samples and XRF readings. Appears that the many small waste rock piles would fit within the many holes and shaft openings.
13:35	Recalibrate XRF. Cal check passed. As in bag 16 +5, out of bag 13+4, blank LE 99.990%, rest is Fe, Zn
13:49	Continue mapping, XRFing
14:30	Map and XRF at the upper shaft. Appears that the waste rock would fit in the shaft opening.
15:47	Arrive at upper monumental mill site
15:56	XRF at flotation table is out of range, As at 18310 and lead at 25020 ppm
16:20	XRF bricks, As ranges from 69 to 275
16:43	Visit upper and middle settling ponds
17:27	Leave site

Project Number: 0031.005

By: Adrienne Venegas

Date	10/03/2024	Contractor	
Staff On-Site	Adrienne Venegas, Don Malkemus, James farrow	Crew	
Staff From Time	08:10	From Time	
Staff To Time		To Time	
Weather	Sunny	Tailgate Meeting?	
Equipment		Remarks	

Work Summary

Time	Notes
08:10	TEI en route to Lower Monumental mine

08:48 Walking to Lower Monumental mine

Picture taken at: 09:00

Caption: Investigating Drainage (not mapped) between middle

and lower settling ponds and tailings

Latitude: 44.86086172083333 Longitude: -118.3550789836667

Picture taken at: 09:26

Caption: Lower settling pond near adit

Latitude: 44.86096666666667

Project Number: 0031.005

Time Notes

Picture taken at: 09:29

Caption: Lower settling pond near adit

Latitude: 44.86088833333334 Longitude: -118.3554833333333

Picture taken at: 09:34 Caption: Former crusher Latitude: 44.86132

Longitude: -118.356055

Picture taken at: 09:38 Caption: Collapsed cabin Latitude: 44.86158

Longitude: -118.35602

Picture taken at: 09:48

Caption: LMM-WRA-0.5-4

Latitude: 44.86108605699999 Longitude: -118.3556077828333

Project Number: 0031.005

Time Notes

Picture taken at: 09:50
Caption: LMM-WRA-0.5-1
Latitude: 44.8612579155

Longitude: -118.3562858703333

Picture taken at: 09:52
Caption: LMM-WRA-0.5-2
Latitude: 44.861181917
Longitude: -118.356342687

Picture taken at: 09:54

Caption: LMM-WRA-0.5-3

Latitude: 44.86134915333334

Longitude: -118.3564625656667

Picture taken at: 09:55

Caption: LMM-WRA-0.5-3-DS Latitude: 44.86148238766667 Longitude: -118.356479084

Project Number: 0031.005

Time Notes

Picture taken at: 10:30

Caption: LMM-TLA-0.5-3

Latitude: 44.86146398514013

Longitude: -118.3562245963152

Picture taken at: 10:40

Caption: LMM-TLA-0.5-1

Latitude: 44.86128392166667

Longitude: -118.3557902623333

Picture taken at: 10:42 Caption: LMM-TLA-0.5-2 Latitude: 44.86129605033334

Longitude: -118.355905148

Picture taken at: 10:43 Caption: LMM-TLA-0.5-4 Latitude: 44.861448196

Project Number: 0031.005

Time Notes

Picture taken at: 10:49
Caption: LMM-WRB-0.5-1
Latitude: 44.86158853133333

Longitude: -118.3557070478333

Picture taken at: 10:50

Caption: LMM-WRB-0.5-2

Latitude: 44.861652572

Longitude: -118.3556089325

Picture taken at: 10:53

Caption: Adit #3

Latitude: 44.861828333333334

Longitude: -118.355505

Picture taken at: 11:11

Caption: LMM-WRB-0.5-3-DS

Latitude: 44.861545

Project Number: 0031.005

Time Notes

Picture taken at: 11:13

Caption: LMM-WRB-0.5-3

Latitude: 44.86156785749999

Longitude: -118.3559074638333

13:20 Cap Martin

Picture taken at: 13:11

Caption: Adit #1 at cap Martin

Latitude: 44.8558286925

Longitude: -118.3692865623333

Picture taken at: 13:17
Caption: CMM-WRA-0.5-2 at cap Martin

Latitude: 44.855906042

Longitude: -118.3694323281667

Project Number: 0031.005

Time Notes

Picture taken at: 13:41
Caption: CMM-WRB-0.5-1
Latitude: 44.85663333333333

Longitude: -118.37088

Picture taken at: 13:42

Caption: Adit #2 - very overgrown Latitude: 44.85661907866667 Longitude: -118.3708862646667

Picture taken at: 13:44

Caption: CMM-WRB-0.5-2

Latitude: 44.85665204683334 Longitude: -118.370809521

14:49 Switching to DAM log

Project Number: 0031.005

By: Adrienne Venegas

Date	10/04/2024	Contractor	
Staff On-Site	Adrienne Venegas, Don Malkemus, James farrow	Crew	
Staff From Time	08:50	From Time	
Staff To Time	16:45	To Time	
Weather	Sunny	Tailgate Meeting?	
Equipment		Remarks	

Work Summary

Time	Notes
08:50	Park at Sheridan Mine. Gather equipment
09:25	Collecting CS-SW-5 (water) and CS-SD-5 (soil)

09:32 Mapping features and collecting XRF samples at Sheridan

Picture taken at: 09:49

Caption: Adit 1

Latitude: 44.85730202296959 Longitude: -118.3750389692218

Picture taken at: 10:05 Caption: SH-WRA-0.5-1 Latitude: 44.8573153355

Project Number: 0031.005

Time Notes

Picture taken at: 10:09

Caption: SH-WRA-0.5-2 with adit 1 to left

Latitude: 44.85724722433334 Longitude: -118.3749621631667

Picture taken at: 10:11
Caption: Adit 2 (potential)

Latitude: 44.85721433783333 Longitude: -118.3750245023333

Picture taken at: 10:15

Caption: Potential Spring from potential adit 3 (not previously

mapped)

Latitude: 44.85713259083333 Longitude: -118.374928396

Picture taken at: 10:21

Caption: SH-WRB-0.5-2 (adit 2 beyond)

Latitude: 44.85714666666667

Project Number: 0031.005

Time Notes

Picture taken at: 10:22

Caption: SH-WRC-0.5-1 (adit 3 to left)

Latitude: 44.85714017233332 Longitude: -118.374993237

Picture taken at: 10:27 Caption: SH-WRC-0.5-2 Latitude: 44.857058646

Longitude: -118.3749980076667

Picture taken at: 10:31
Caption: SH-WRB-0.5-1

Latitude: 44.85719582983334 Longitude: -118.374995155

10:45 Mapping features and collecting XRF samples at GC-6

Picture taken at: 11:03 Caption: GC6-WTP-0.5-3

Latitude: 44.85770833333333 Longitude: -118.3754883333333

Project Number: 0031.005

Time Notes

Picture taken at: 11:04

Caption: GC6-WTP-0.5-2

Latitude: 44.85771630583334

Longitude: -118.3754872918333

Picture taken at: 11:06

Caption: GC6-WTP-0.5-1

Latitude: 44.85764864383334

Longitude: -118.3755053425

Picture taken at: 11:08
Caption: GC6-WRA-0.5-2
Latitude: 44.85765885849999
Longitude: -118.3755772786667

11:37 Mapping features and collecting XRF samples at GC-7

Picture taken at: 11:52

Caption: GC7-WRA-0.5-1 (adit beyond)

Latitude: 44.85809233066666 Longitude: -118.374635725

Project Number: 0031.005

Time Notes

Picture taken at: 11:54

Caption: GC7-WRA-0.5-2

Latitude: 44.85804985566666

Longitude: -118.3746857153333

Picture taken at: 11:57

Caption: GC7-WRA-0.5-3

Latitude: 44.85799591933334

Longitude: -118.3746669551667

Picture taken at: 12:01

Caption: GC7-WRB-0.5-2 (adit beyond)

Latitude: 44.85810029916667 Longitude: -118.374518634

Picture taken at: 12:13

Caption: GC7-WRB-0.5-1

Latitude: 44.85803943016668

Longitude: -118.3745557091667

12:14 Headed back to car

13:36 Collecting CS-SW-7 (water) and CS-SD-7 (soil) and CS-SD-7-DUP

Project Number: 0031.005

Time Notes

Picture taken at: 14:12

Caption: TL-WRB-0.5-1 at Tillicum Latitude: 44.85622302816667 Longitude: -118.3819868695

14:16 Mapping features and collecting XRF samples at Tillicum

Picture taken at: 14:16 Caption: TL-WRA-0.5-4

Latitude: 44.85618308416667 Longitude: -118.3819032196667

Picture taken at: 14:20 Caption: TL-WRA-0.5-1

Latitude: 44.85609540933334 Longitude: -118.3819744368333

Picture taken at: 14:21

Caption: TL-WRA-0.5-1-DS Latitude: 44.85611688566667 Longitude: -118.3820030815

Project Number: 0031.005

Time Notes

Picture taken at: 14:31 Caption: TL-WRB-0.5-2

Latitude: 44.85629667083333 Longitude: -118.3819895898333

Picture taken at: 14:32 Caption: TL-WRB-0.5-3

Latitude: 44.85628020849999 Longitude: -118.3819784573333

Picture taken at: 14:34 Caption: TL-WRB-0.5-1

Latitude: 44.85638736883334 Longitude: -118.381977674

Picture taken at: 14:44
Caption: TL-WRC-0.5-2
Latitude: 44.8566282265

Project Number: 0031.005

Time Notes

Picture taken at: 14:45 Caption: TL-WRC-0.5-1

Latitude: 44.85664855766667 Longitude: -118.381879152

Picture taken at: 14:47
Caption: Upper adit

Latitude: 44.85665246799999 Longitude: -118.3817636833333

Picture taken at: 15:24

Caption: TL-WRA-0.5-1-DS2 - very close to River

Latitude: 44.85611618883333 Longitude: -118.3819982275

15:10 Collecting CS-SW-6 (water) and CS-SD-6 (soil)

Picture taken at: 15:10

Caption: Collecting CS-SW-6 (water) and CS-SD-6 (soil)

Latitude: 44.8561914445

Project Number: 0031.005

Time Notes

Picture taken at: 15:54

Caption: GC5-WRA-0.5-2

Latitude: 44.85565754716666

Longitude: -118.3862101191667

Picture taken at: 15:55
Caption: GC5-WRA-0.5-1
Latitude: 44.85560845766666
Longitude: -118.386404823

Picture taken at: 15:56
Caption: GC5-WRA-0.5-3
Latitude: 44.85562926750001
Longitude: -118.3863704898333

Picture taken at: 15:57

Caption: GC5-WRB-0.5-1

Latitude: 44.85561375833333

Longitude: -118.3865324223333

Project Number: 0031.005

Time Notes

Picture taken at: 15:58

Caption: GC5-WRB-0.5-2

Latitude: 44.8556561155

Longitude: -118.386513499

Picture taken at: 16:00
Caption: GC5-WRA-0.5-4
Latitude: 44.8555311335

Longitude: -118.3862488983333

Picture taken at: 16:01

Caption: GC5-WRA-0.5-4-DS (along River)

Latitude: 44.85550516116668 Longitude: -118.3862477945

16:45 TEI off site

Project Number: 0031.005

By: Don Malkemus

Date	10/04/2024	Contractor	
Staff On-Site	Don Malkemus, Adrienne Venegas, James Farrow	Crew	
Staff From Time	07:38	From Time	
Staff To Time		To Time	
Weather	Cool Clear	Tailgate Meeting?	YES
Equipment	Vanya C Series	Remarks	

Work Summary

Sheridan, GC 6, GC 7

Time Notes

07:38 Calibrate XRF. Cal check passed. Standard in bag As: 21+6, Standard outside bag As: 24+9, blank in bag: LE + Si 99.99%

Picture taken at: 07:41 Caption: Cal check pass

Latitude: 44.83628551642082 Longitude: -118.467842598333

09:24 Arrive at Sheridan, collect CS-SW-5 and CS-SD-5

Picture taken at: 09:28

Caption: Surface water sampling Latitude: 44.85694383449999 Longitude: -118.376280228

09:41 Begin mapping, sampling at Sheridan. Unable to find collapsed cabin

10:38 Finish mapping Sheridan, mob to GC #6

Project Number: O031.005

Time Notes

Picture taken at: 10:40

Caption: Old car on abandoned road

Latitude: 44.85751116408795

Longitude: -118.3753651356147

10:46	Begin	mapping	GC-6
10.70	Degiii	Παρριπια	00-0

11:40 Begin mapping GC-7

12:33 Finish mapping GC-7, mob to car.

13:09 Mob to Tillicum.

13:34 Collect CS-SW-7, SC-SD-7, and CS-SD-7-DUP. Move location slightly down gradient of GC-5

Picture taken at: 13:41

Caption: CS-7 sampling location Latitude: 44.85536237658032

Longitude: -118.3866192263865

14:02 Calibrate XRF. Bagged standard As: 20+5, unbagged standard As: 18+5, blank in bag: no As, LE + Si 99.99%

Picture taken at: 14:04

Caption: Cal check pass

Latitude: 44.85623720983082

Longitude: -118.3821642251675

14:10 Begin mapping and sampling at Tillicum

15:39 Begin mapping and sampling at GC-5

Project Number: 0031.005

Time Notes

Picture taken at: 15:49

Caption: Collecting bioavailability sample at GC-05

Latitude: 44.85564769512642 Longitude: -118.3862886946638

16:27 Finish sampling, mapping GC-5.

16:47 Offsite

Project Number: 0031.005

By: Adrienne Venegas

Date	10/05/2024	Contractor	
Staff On-Site	Adrienne Venegas, Don Malkemus, James Farrow	Crew	
Staff From Time	08:30	From Time	
Staff To Time	14:15	To Time	
Weather	Sunny	Tailgate Meeting?	
Equipment		Remarks	

Work Summary

Time	Notes
08:30	Decon trowels

09:16 Gather equipment and walk to golden fraction

Picture taken at: 09:29

Caption: Spring at lower GF
Latitude: 44.85520674366666
Longitude: -118.3888165911667

Picture taken at: 09:44

Caption: GF-WRA-0.5-1

Latitude: 44.85616642316666 Longitude: -118.3889246321667

Project Number: 0031.005

Time Notes

Picture taken at: 09:45 Caption: GF-WRA-0.5-2

Latitude: 44.85620611816667 Longitude: -118.3888719275

Picture taken at: 09:46 Caption: GF-WRA-0.5-3

Latitude: 44.85624380833332 Longitude: -118.3888295021667

Picture taken at: 09:58
Caption: GF-WRB-0.5-3

Latitude: 44.85590156533333 Longitude: -118.3891905096667

Picture taken at: 09:59

Caption: GF-WRB-0.5-2

Latitude: 44.85597949566667 Longitude: -118.3890238976667

Project Number: 0031.005

Time Notes

Picture taken at: 10:00 Caption: GF-WRB-0.5-1 Latitude: 44.85599451

Longitude: -118.3889499636667

Picture taken at: 10:02

Caption: Potential adit (previously mapped)

Latitude: 44.85586653533334 Longitude: -118.388989579

Picture taken at: 10:05

Caption: Area marked as cabin - no evidence of cabin

Latitude: 44.85566333333333 Longitude: -118.3887783333333

Picture taken at: 10:32

Caption: Dredge trench

Latitude: 44.85531067533334 Longitude: -118.3894149395

Project Number: 0031.005

Time Notes

Picture taken at: 10:34 Caption: GF-WRC-0.5-3

Latitude: 44.85522059733333 Longitude: -118.3895098273333

Picture taken at: 10:36 Caption: GF-WRC-0.5-4 Latitude: 44.855318473

Longitude: -118.3895803691667

Picture taken at: 10:37 Caption: GF-WRC-0.5-1

Latitude: 44.85541364683333 Longitude: -118.3895121963333

Picture taken at: 10:42 Caption: GF-WRC-0.5-2

Latitude: 44.85540267983333 Longitude: -118.3892824981667

Project Number: 0031.005

Time Notes

Picture taken at: 10:45 Caption: GF-DR-0.5 Latitude: 44.855296252

Longitude: -118.3894022528333

12:18 At Central mine, line feature is "excavation"

Picture taken at: 12:18

Caption:

Latitude: 44.8554148365

Longitude: -118.3910947703333

12:26 Find adit 2

Picture taken at: 12:26

Caption:

Latitude: 44.85567245033334 Longitude: -118.3907950745

12:26 Find adit 3, above adit 2

Project Number: 0031.005

Time Notes

Picture taken at: 12:27

Caption:

Latitude: 44.855650223

Longitude: -118.3907830961667

12:28 Find adit 4, east of Adit 3

Picture taken at: 12:29

Caption:

Latitude: 44.85578229566666 Longitude: -118.3904338358333

12:28 A trench connects adit 3 and adit 4, mapped as a line parallel with contours on Field maps

Picture taken at: 12:29

Caption:

Latitude: 44.8557745765 Longitude: -118.3904351065

13:53 Heading back to vehicle

14:15 TEI off site

Appendix B

ProUCL Outputs

	A B C D E	F	G H I J K L
2	UCL Statis	stics for Unc	ensored Full Data Sets
3	User Selected Options Date/Time of Computation ProUCL 5.2 11/18/2024	10.17.40 444	
5	Date/Time of Computation ProUCL 5.2 11/18/2024 From File WorkSheet.xls	10:17:49 AIVI	
6 7	Full Precision OFF Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9			
11	CEM-WRA		
12 13		General	Statistics
14	Total Number of Observations		Number of Distinct Observations 7
15 16	Minimum	44.72	Number of Missing Observations 0 Mean 162.2
17	Maximum	299	Median 150
18 19	SD Coefficient of Variation		Std. Error of Mean 39.78 Skewness 0.39
20			
21 22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,
23 24	but note that ITRC may recommend the	he t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.
26 27			•
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test
29 30	1% Shapiro Wilk Critical Value	0.73	Data appear Normal at 1% Significance Level
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level
32 33	Data appe	ar Normal at	1% Significance Level
34	Note GOF tests	may be unre	eliable for small sample sizes
35 36		suming Nor	mal Distribution
37	95% Normal UCL 95% Student's-t UCL	239.5	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 233.9
38 39			95% Modified-t UCL (Johnson-1978) 240.5
40		Gamma	GOF Test
41 42	A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level
46			eliable for small sample sizes
47 48		Gamma	Statistics
49	k hat (MLE)	2.462	k star (bias corrected MLE) 1.502
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 108 nu star (bias corrected) 21.03
52	MLE Mean (bias corrected)		MLE Sd (bias corrected) 132.4
53 54	Adjusted Level of Significance	0.0158	Approximate Chi Square Value (0.05) 11.61 Adjusted Chi Square Value 9.572
55		•	
56 57	As 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL 356.4
58 59		•	
60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test
61 62	10% Shapiro Wilk Critical Value	0.838	Data appear Lognormal at 10% Significance Level
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level
64 65	Data appear	Lognormal a	at 10% Significance Level
66	Note GOF tests	may be unre	eliable for small sample sizes
67 68	Minimum of Land 15		I Statistics
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 4.872 SD of logged Data 0.747
70 71		umina l cara	
72	95% H-UCL	433.5	prmal Distribution 90% Chebyshev (MVUE) UCL 305.3
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	368.9	97.5% Chebyshev (MVUE) UCL 457.3
75			
76 77			tion Free UCL Statistics Discernible Distribution
78			
79 80	Nonpa 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL 232.4
81	95% Standard Bootstrap UCL	225.5	95% Bootstrap-t UCL 260.7
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL 230.5

	A B C D E	F	G H I J K	L
83	90% Chebyshev(Mean, Sd) UCL	281.6	95% Chebyshev(Mean, Sd) UCL	335.6
84	97.5% Chebyshev(Mean, Sd) UCL	410.7	99% Chebyshev(Mean, Sd) UCL	558
85				
86 87	95% Student's-t UCL	Suggested 239.5	UCL to Use	
88	95% Students-t OCL	239.5	<u> </u>	
89	Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
90	Recommendations are based upon data size	, data distribi	ution, and skewness using results from simulation studies.	
91	However, simulations results will not cover all Real W	Vorld data se	ts; for additional insight the user may want to consult a statisticia	n.
92 93				
	CEM-WRB			
95	SEM WILD			
96		General	Statistics	
97 98	Total Number of Observations	13	Number of Distinct Observations	12
99	Minimum	106	Number of Missing Observations Mean	0 165.3
100	Maximum		Median	151
101	SD	41.37	Std. Error of Mean	11.47
102	Coefficient of Variation	0.25	Skewness	0.452
103 104				
104	Shapiro Wilk Test Statistic	0.953	GOF Test Shapiro Wilk GOF Test	
106	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
107	Lilliefors Test Statistic		Lilliefors GOF Test	
108	1% Lilliefors Critical Value	0.271	Data appear Normal at 1% Significance Level	
109 110	Data appe	ar Normal at	1% Significance Level	
111	Λ.	eumina Nor	nal Distribution	
112	95% Normal UCL	Summy Non	95% UCLs (Adjusted for Skewness)	
113	95% Student's-t UCL	185.8	95% Adjusted-CLT UCL (Chen-1995)	185.7
114			95% Modified-t UCL (Johnson-1978)	186
115 116		0	205 T	
117	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
118	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	e l evel
119	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	2010.
120	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	e Level
121 122	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
123		Gamma	Statistics	
124	k hat (MLE)		k star (bias corrected MLE)	13.62
125	Theta hat (MLE)		Theta star (bias corrected MLE)	12.14
126	nu hat (MLE)		nu star (bias corrected)	354.1
127 128	MLE Mean (bias corrected)	165.3	MLE Sd (bias corrected)	44.79
129	Adjusted Level of Significance	0.0301	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	311.5 305.8
130	Adjusted Edver of digrillicance	0.0001	Adjusted offi oquale value	303.0
131			ma Distribution	
132	95% Approximate Gamma UCL	187.9	95% Adjusted Gamma UCL	191.4
133 134		Lognormod	COE Toot	
135	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
136	10% Shapiro Wilk Critical Value	0.889	Data appear Lognormal at 10% Significance Level	
137	Lilliefors Test Statistic	0.137	Lilliefors Lognormal GOF Test	
138	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
139 140	Data appear	Lognormal a	at 10% Significance Level	
141		Lognorma	I Statistics	
142	Minimum of Logged Data	4.663	Mean of logged Data	5.079
143	Maximum of Logged Data		SD of logged Data	0.249
144 145			most Distribution	
145			ormal Distribution 90% Chebyshev (MVUE) UCL	199.8
147	95% Chebyshev (MVUE) UCL		90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	237
148	99% Chebyshev (MVUE) UCL		57.575 Shobyanov (mvoz.) OOL	
149				
150 151			tion Free UCL Statistics	
152	Data appea	ai to tollow a	Discernible Distribution	
153	Nonpa	rametric Dist	tribution Free UCLs	
154	95% CLT UCL	184.2	95% BCA Bootstrap UCL	183.9
155	95% Standard Bootstrap UCL		95% Bootstrap-t UCL	187.6
156 157	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL		95% Percentile Bootstrap UCL	183.7
158	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	215.3 279.5
159	57.5% Shebyshev(Weah, Od) OCE	,	OUT CHOSYSHOV(MCCH, OU) OCL	_,
160			UCL to Use	
161	95% Student's-t UCL	185.8		
162 163	Note: Suggestions regarding the collection of a OEO	(IICI 252 55	ovided to help the user to calent the most energiate OEO/ LICI	
164			ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
1	riccommendations are pased upon data size	, aata distribl	ation, and one micoo doing results from simulation studies.	

165	A B C D E However simulations results will not cover all Real Wo	F orld data se	G H I J K ts; for additional insight the user may want to consult a statisticia	L
166	Tiewerer, eminateme researce will not cover all research	0114 4444 00	e, for additional molgit the door may want to constant a stational	
167 168	CEM-WRC			
169	OEIM-WITO			
170 171	T. IN		Statistics	-10
172	Total Number of Observations	16	Number of Distinct Observations Number of Missing Observations	16 0
173	Minimum	52	Mean	107
174 175	Maximum	187	Median	106.5
176	SD Coefficient of Variation	39.88 0.373	Std. Error of Mean Skewness	9.969 0.439
177	Godinoloni di Valiationi			0.100
178 179	Shapiro Wilk Test Statistic	Normal 0 0.952	GOF Test	
180	1% Shapiro Wilk Critical Value	0.952	Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
181	Lilliefors Test Statistic	0.145	Lilliefors GOF Test	
182 183	1% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Level t 1% Significance Level	
184	Data appea	ii inviiliai ai	. 1 % Significance Level	
185		suming Norr	mal Distribution	
186 187	95% Normal UCL 95% Student's-t UCL	124.5	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	124.6
188	33 % Student 3-t OCL	127.0	95% Modified-t UCL (Johnson-1978)	124.7
189 190			0057	
190	A-D Test Statistic	0.292	GOF Test Anderson-Darling Gamma GOF Test	
192	5% A-D Critical Value	0.74	Detected data appear Gamma Distributed at 5% Significance	e Level
193 194	K-S Test Statistic	0.156	Kolmogorov-Smirnov Gamma GOF Test	o Level
195	5% K-S Critical Value Detected data appear	0.215 Gamma Dis	Detected data appear Gamma Distributed at 5% Significand stributed at 5% Significance Level	e Levei
196	Dottotion until appear			
197 198	I. bot (MI E)		Statistics	0.151
199	k hat (MLE) Theta hat (MLE)	7.52 14.24	k star (bias corrected MLE) Theta star (bias corrected MLE)	6.151 17.4
200	nu hat (MLE)	240.6	nu star (bias corrected)	196.8
201 202	MLE Mean (bias corrected)	107	MLE Sd (bias corrected)	43.16 165.4
203	Adjusted Level of Significance	0.0335	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	162.1
204				
205 206	Ass 95% Approximate Gamma UCL		nma Distribution 95% Adjusted Gamma UCL	130
207	95 % Approximate Gamina OCL	127.4	95 % Aujusteu Gaitilla OCL	130
208			I GOF Test	
209 210	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.955 0.906	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
211	Lilliefors Test Statistic	0.147	Lilliefors Lognormal GOF Test	
212 213	10% Lilliefors Critical Value	0.196	Data appear Lognormal at 10% Significance Level	
214	Data appear L	<u>Lognormai a</u>	at 10% Significance Level	
215		Lognorma	l Statistics	
216 217	Minimum of Logged Data	3.951	Mean of logged Data	4.605
218	Maximum of Logged Data	5.231	SD of logged Data	0.387
219			ormal Distribution	
220 221	95% H-UCL 95% Chebyshev (MVUE) UCL	130.9 153.4	90% Chebyshev (MVUE) UCL	139.1 173.4
221 222 223	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	212.7	97.5% Chebyshev (MVUE) UCL	1/3.4
223				
224 225 226			tion Free UCL Statistics Discernible Distribution	
226	Data appear	to follow a	DISCOTTIBUE DISCIBULION	
227			tribution Free UCLs	1010
228 229	95% CLT UCL 95% Standard Bootstrap UCL	123.4 123.3	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	124.9 127.7
230 231 232 233	95% Hall's Bootstrap UCL	127.2	95% Percentile Bootstrap UCL	123.5
231	90% Chebyshev (Mean, Sd) UCL	137	95% Chebyshev (Mean, Sd) UCL	150.5
233	97.5% Chebyshev(Mean, Sd) UCL	169.3	99% Chebyshev(Mean, Sd) UCL	206.2
234			UCL to Use	
235 236	95% Student's-t UCL	124.5		
237	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
238	Recommendations are based upon data size,	data distribi	ution, and skewness using results from simulation studies.	
239 240	However, simulations results will not cover all Real Wo	orld data se	ts; for additional insight the user may want to consult a statisticia	n.
241				
242	CEM-WRD			
243 244		General	Statistics	
245	Total Number of Observations	4	Number of Distinct Observations	4
246			Number of Missing Observations	0

	Α		В		С		D	E		F	G		Н		I		J	K		L
247						•		Minimu		56								Me		66.5
248 249								Maximu		87							0.1	Medi		61.5
250						<u> </u>	officion	t of Variati	SD	13.92 0.209							Sta.	Error of Me Skewne		6.958 1.781
251							enicien	it Oi Vailati	IUII	0.203								Skewile	33	1.701
252			Note: Sa	mple :	size is	smal	l (e.g., ·	<10), if dat	ta a	re collected	using inc	emen	tal sar	mplin	g meth	nodolo	gy (ISN	1) approach	,	
253										n ISM (ITR										
254 255			t	but no	te that					e t-UCL or t							zes (n <	< 7).		
256					Re					ten results i nnical Guide							<u> </u>			
257					110	,101 10	uio i ic	JOOL 0.2	1001	iiiicai Gaia	, ioi a aisc	40010	11 OI UI	011	CDYGII	.,	<u></u>			
258 259										Normal C	OF Test									
260								Test Statis		0.793							GOF Te			
261					1% 5			<u>Critical Val</u> Test Statis		0.687 0.377		U	ата ар				<u>% Signit</u>)F Tes t	icance Leve	<u> </u>	
262					1			Critical Val		0.413		D	ata ap					icance Leve	el	
263										r Normal at										
264 265							Not	te GOF tes	sts n	nay be unre	liable for s	mall	sample	e size	s					
266									Δεε	suming Norr	nal Dietrih	ution								
266 267					95% N	lorma	IUCL		/ 100	dining Hon	ilai Disaib	uuon	95	% UC	CLs (A	djuste	d for SI	(ewness)		
268								ıdent's-t U	CL	82.88				95%	% Adju	sted-0	CLT UC	L (Chen-199		84.57
269 270														95	% Mod	dified-	t UCL (J	Johnson-197	78)	83.91
270										Gamma (GOF Test									
272							A-D	Test Statis	stic	0.562	JOI TEST		And	ersor	n-Darli	ng Ga	mma G	OF Test		
273						5	% A-D (Critical Val	lue	0.657	Detec	ed da	ta app	ear G	amma	Distri	buted a	t 5% Signific	canc	e Level
274								Test Statis	_	0.385								GOF Test		
275 276								<u>Critical Val</u>		0.394 Gamma Dis							buted a	t 5% Signific	canc	e Level
277						L				nay be unre										
278										nay be anne			Julii pi							
279										Gamma	Statistics									
280 281							The	k hat (ML		33.76 1.97					The			orrected ML orrected ML		8.606
282								eta hat (ML nu hat (ML		270.1					rne		_	orrected ML		7.727 68.85
283					М	1LE M		as correcte		66.5								oias correcte		22.67
284							•							App	oroxim			e Value (0.0		50.75
285 286					Adju	isted L	_evel of	Significan	nce	N/A						Adjus	sted Chi	Square Val	ue	N/A
287									Δος	uming Gam	ma Dietrih	ution								
288					95% A	Approx	ximate (Gamma U		90.22	ma Distric	ulion				95% A	Adjusted	d Gamma U	CL	N/A
289																				
290 291						Ol :-	\A/:II-	T4 04-4'-		Lognormal	GOF Tes		O.L.		\A#!II. I			NE T4		
292					10% S	Shanir	O Wilk	<u>Test Statis</u> Critical Val	lue	0.824 0.792		Data						DF Test nificance Le	vel	
293					10 /0 0			Test Statis		0.362		Date					nal GOF		VOI	
294					10	0% Lil		Critical Val		0.346						at 10	% Signi	ficance Lev	el	
295 296										imate Logno										
297							INOI	e GOF tes	sis n	nay be unre	ilable for s	maii	sample	SIZE	:5					
298										Lognorma	Statistics									
299								Logged Da		4.025								of logged Da		4.182
300 301						Maxir	num of	Logged Da	ata	4.466							SD	of logged Da	ata	0.194
302								А	SSU	ming Logno	rmal Distr	butio	n							
303								95% H-U	CL	87.85								/ (MVUE) U		85.76
304								(MVUE) U		94.5					97.5	% Ch	ebyshe	/ (MVUE) U	CL	106.6
305 306					99%	Cheb	yshev ((MVUE) U	UL	130.5										
307								Nonpara	met	tric Distribut	tion Free l	JCL S	tatistic	s						
308										to follow a										
309					-															
310 311							O	Non 5% CLT U	para	ametric Dist 77.95	ribution F	ee U(JLS			050	% BC \ '	Bootstrap U	~ T	N/A
312					95%	6 Stan		ootstrap U		77.95 N/A						307		ootstrap U		N/A N/A
313								ootstrap U		N/A					95	<u>% Pe</u> r		Bootstrap U		N/A
314								ean, Sd) U	-	87.37					95%	Cheb	yshev(N	lean, Sd) U	CL	96.83
315 316				97	.5% Cl	nebys	nev(Me	ean, Sd) U	CL	110					99%	Cheb	yshev(N	lean, Sd) U	JL	135.7
317										Suggested	UCL to He	e								
318						9	95% Stu	ıdent's-t U		82.88										
319									.=											
320 321		Not																oriate 95% L	ICL.	
322		Howe								<u>data distribu</u> orld data set								n studies. nsult a statis	ticia	n.
323		.5446			J . 03ul	****		. J. J. T. T. C.	, , , (.551 111	., wa		.oun a otatio		

	A B C	D E	F	G H I	J K	L
1		UCL Statis	tics for Unce	nsored Full Data Sets		
2	User Selected Options	,				
3	Date/Time of Computation	ProUCL 5.2 11/18/2024 1	I0·24·45 AM			
4	From File	WorkSheet.xls	10.24.40 AW			
5	Full Precision	OFF				
6 7	Confidence Coefficient	95%				
8	Number of Bootstrap Operations	2000				
9						
10						
11	CM-PS					
12						
13			General		_	
14	Total	I Number of Observations	7		er of Distinct Observations	6
15				Numbe	er of Missing Observations	0
16		Minimum	9.7		Mean	29.26
17		Maximum	38.61		Median	33
18		SD Coefficient of Variation	10.01		Std. Error of Mean	3.782
19		Coefficient of Variation	0.342		Skewness	-1.42
20	Note: Sample size is	small (a.g. <10) if data a	re collected	using incremental sampling metho	dology (ISM) approach	
21		, - ,		2020 and ITRC 2012) for addition	** * * * * * * * * * * * * * * * * * * *	
22		<u> </u>	•	e Chebyshev UCL for small samp	•	
23 24	Dat note that			n gross overestimates of the mean		
25	Re	<u> </u>		for a discussion of the Chebyshev		
26				<u> </u>		
27			Normal C	OF Test		
28	S	Shapiro Wilk Test Statistic	0.857	Shapiro W	/ilk GOF Test	
29	1% S	Shapiro Wilk Critical Value	0.73	Data appear Normal	at 1% Significance Level	
30		Lilliefors Test Statistic	0.217	Lilliefors	GOF Test	
31	1	1% Lilliefors Critical Value	0.35	Data appear Normal	at 1% Significance Level	
32				1% Significance Level		
33		Note GOF tests r	may be unre	iable for small sample sizes		
34				and Polymerity and		
35	OFO/ N	Ass ormal UCL	suming Norn	al Distribution	unted for Chaumana'	
36	95% N	95% Student's-t UCL	36.61	` •	usted for Skewness) ed-CLT UCL (Chen-1995)	33.31
37		30 /0 Student S-t UCL	30.01		ried-t UCL (Johnson-1978)	36.27
38				95 /0 IVIOUII	.53 (55)	
39 40			Gamma (OF Test		
41		A-D Test Statistic	0.734		g Gamma GOF Test	
42		5% A-D Critical Value	0.709		ited at 5% Significance Leve	;
43		K-S Test Statistic	0.255		ov Gamma GOF Test	
44		5% K-S Critical Value	0.313	Detected data appear Gamma D	Distributed at 5% Significance	e Level
45		Detected data follow App	or. Gamma I	istribution at 5% Significance Leve	əl	
46		Note GOF tests r	may be unre	iable for small sample sizes		
47						
48			Gamma			
49		k hat (MLE)	6.549		star (bias corrected MLE)	3.838
50		Theta hat (MLE)	4.468	Theta	star (bias corrected MLE)	7.624
51		nu hat (MLE)	91.69		nu star (bias corrected)	53.73
52	M	LE Mean (bias corrected)	29.26	Α	MLE Sd (bias corrected)	14.94
53	٨ ـــانــ ٨	sted Level of Significance	0.0158		e Chi Square Value (0.05) Adjusted Chi Square Value	37.89 33.91
54		sieu Level OI Significance	0.0108	μ	aujusteu oni square value	33.91
55						

	Α		В		С		D		E	F	Con	G nma Distrib	hutio	Н		I			J	\perp	K	(L
56					050	/- Ann	rovimato	. Can	nma UCL			nma Distrit	Dutio	n ———			050	0/ ₋ Λ d	ljusted	1 G a	mms	, LICI	46.35
57					957	o App	IOXIIIIale	Gail	IIIIa UCL	41.5							33.	70 Au	Justeu	- Ga	1111110	OCL	40.55
58	i i									Logn	orma	I GOF Tes	:t										
59	İ					Sha	piro Wilk	k Tes	t Statistic			1 401 100		Sha	apiro	Wilk	Loa	norn	nal GC)F 1	lest		
60					10%				cal Value					Data Not	_							evel	
61 62	 [t Statistic										I GOF				
63	 					10%	Lilliefors	Criti	cal Value					Data Not			-					evel	
64	. <u> </u>							D	ata Not L	_ognorm	al at	⊥ : 10% Signi											
65																							
66										Logn	orma	al Statistics	S										
67	 [Mii	nimum o	of Log	ged Data	2.2	72							N	Mean c	of lo	gged	Data	3.298
68						Ma	ximum o	of Log	ged Data	3.6	54								SD	of lo	gged	l Data	0.481
69																							
70									Ass	uming l	.ogno	ormal Distr	ributi	on									
71								95	% H-UCL	48.8	36					90	0% (Cheb	yshev	/ (M)	VUE)) UCL	46.19
72	 L						•	•	UE) UCL		9					97.5	5% (Cheb	yshev	/ (M)	VUE)) UCL	63.87
73	<u> </u>				99	% Ch	ebyshev	v (MV	UE) UCL	. 84.0)6												
74				_		_				navamatria Distribution Fron IIOI Otatiotica													
75	<u> </u>								-	nparametric Distribution Free UCL Statistics													
76	ļ							D	ata appe	ar to foll	ow a	Discernib	le Di	stributio	n								
77	 												• •	10.									
78	 							0501	-			stribution Free UCLs											
79	 					5 0/ 0 :			CLT UCL			95% BCA Bo										33.94	
80	 				9:				trap UCL			95% Bootstrap-t 95% Percentile Bootstrap								34.88			
81	 				000/				trap UCL														34.59
82	 								Sd) UCL Sd) UCL									-	shev(M shev(M				45.74 66.89
83					17.5%	Cheb	ysnev(iv	/iean,	Sa) UCL	52.8	57					99%	Ch	ebys	nev(IVI	iear	ı, Su)	UCL	00.89
84										Sugge	eted	UCL to Us											
85	<u> </u>						95% St	tuder	nt's-t UCL			002 10 03											
86 87	<u> </u>						3070 01	tuuoi		. 00.0										—			
88]	Note	: Sua	estio	ns rea	ardino	the sele	ection	n of a 95°	% UCL a	re pr	rovided to h	nelp t	the user t	to se	lect th	ne m	nost a	approp	oriat	e 95%	% UCL	
89	 [oution, and											
90		Howev										ets; for addi											 an.
91	<u> </u>											<u> </u>											
92	 	No	ote: F	or hig	hly ne	gative	ely-skew	ved d	ata, conf	idence	imits	e.g., Che	en, Jo	ohnson, l	Logr	orma	I, an	nd Ga	amma`) ma	ay no	t be	
93				r	eliable	e. Ch	en's and	d Joh	nson's m	ethods	provi	ide adjustn	nent	s for pos	itvel	y skev	wed	data	sets.				
94	 [
95																							
96	CM-WRA																						
97																							
98											eral	Statistics											
99					To	otal N	umber of	f Obs	oservations 12 Number of Distinct (9					
100	<u> </u>										Number of Missing Observat							0					
101	<u> </u>	Mir																				Mean	10.64
102	<u> </u>							ľ	Maximum													edian	10.55
103	 								SD										Std.			Mean	1.099
104	 					(Coefficie	ent of	Variation	0.3	58										Skev	vness	0.924
105												0055											
106	 					<u>C'</u>	mine 1877	L T	4 C4-4' ''			GOF Test					\A /**	II. 01					
107	<u> </u>				40				t Statistic					Doto ==					OF Tes			0.40	
108	<u> </u>				1%				cal Value					Data app					Signiti Test		ce Le	evel .	
109									t Statistic					Doto co								0)(0)	
110						1 70	LIIIIEIUIS	o Cittl	cai value	0.2	0.281 Data appear Normal at 1% Significance Level												

111	A B C D E Data appea	F ar Normal at	G H I J K 1	L
112	<u> </u>			
113	Ass	suming Norr	nal Distribution	
114	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
115	95% Student's-t UCL	12.61	95% Adjusted-CLT UCL (Chen-1995)	12.76
116			95% Modified-t UCL (Johnson-1978)	12.66
117				
118		Gamma (GOF Test	
119	A-D Test Statistic	0.25	Anderson-Darling Gamma GOF Test	
120	5% A-D Critical Value	0.731	Detected data appear Gamma Distributed at 5% Significand	e Level
121	K-S Test Statistic	0.151	Kolmogorov-Smirnov Gamma GOF Test	
122	5% K-S Critical Value	0.246	Detected data appear Gamma Distributed at 5% Significance	e Level
123	Detected data appear	Gamma Dis	stributed at 5% Significance Level	
124				
125		Gamma	Statistics	
126	k hat (MLE)	8.767	k star (bias corrected MLE)	6.631
127	Theta hat (MLE)	1.213	Theta star (bias corrected MLE)	1.604
128	nu hat (MLE)	210.4	nu star (bias corrected)	159.1
129	MLE Mean (bias corrected)	10.64	MLE Sd (bias corrected)	4.13
130			Approximate Chi Square Value (0.05)	131
131	Adjusted Level of Significance	0.029	Adjusted Chi Square Value	127.1
132				
133			ma Distribution	
134	95% Approximate Gamma UCL	12.92	95% Adjusted Gamma UCL	13.32
135				
136			GOF Test	
137	Shapiro Wilk Test Statistic	0.969	Shapiro Wilk Lognormal GOF Test	
138	10% Shapiro Wilk Critical Value	0.883	Data appear Lognormal at 10% Significance Level	
139	Lilliefors Test Statistic	0.153	Lilliefors Lognormal GOF Test	
140	10% Lilliefors Critical Value	0.223	Data appear Lognormal at 10% Significance Level	
141	Data appear L	Lognormai a	at 10% Significance Level	
142		Lognorma	I Statistica	
143	Minimum of Logged Data	1.609	Mean of logged Data	2.306
144	Maximum of Logged Data	2.976	SD of logged Data	0.36
145	Maximum of Logged Data	2.970	3D of logged Data	
146	Деен	mina Loans	rmal Distribution	
147	95% H-UCL	13.28	90% Chebyshev (MVUE) UCL	14.01
148	95% Chebyshev (MVUE) UCL	15.53	97.5% Chebyshev (MVUE) UCL	17.64
149	99% Chebyshev (MVUE) UCL	21.79	57.576 Chebyshev (MVGE) GGE	-17.04
150	55 % S.1.55 (MV SE) 50E	•		
151 152	Nonparamet	tric Distribu	tion Free UCL Statistics	
153	<u> </u>		Discernible Distribution	
153				
155	Nonpar	ametric Dist	tribution Free UCLs	
156	95% CLT UCL	12.44	95% BCA Bootstrap UCL	12.46
157	95% Standard Bootstrap UCL	12.34	95% Bootstrap-t UCL	12.92
158	95% Hall's Bootstrap UCL	13.55	95% Percentile Bootstrap UCL	12.38
159	90% Chebyshev(Mean, Sd) UCL	13.93	95% Chebyshev(Mean, Sd) UCL	15.43
160	97.5% Chebyshev(Mean, Sd) UCL	17.5	99% Chebyshev(Mean, Sd) UCL	21.57
161	·		·	
162		Suggested	UCL to Use	
163	95% Student's-t UCL	12.61		
164				
165	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
.00				

166	Α	B Rec	C commendation	ons are	D based up	E oon data size	F e, data distrib	G ution, and s	H kewness usi	I ing results fro	J om simulation s	K tudies.	L
167	H	owever, si	imulations re	esults wi	Il not cov	er all Real V	Vorld data se	ts; for addit	ional insight	the user may	want to consu	lt a statisticia	in.
168													
169													
170	CM-WRB												
171													
172							General	Statistics					
173			Te	otal Nur	mber of C	Observations	11			Numbe	er of Distinct Ob	servations	8
174										Numbe	r of Missing Ob	servations	0
175	1					Minimum	5					Mean	11.46
176						Maximum						Median	11
177						SD					Std. Err	or of Mean	0.992
178				С	oefficient	t of Variation	0.287					Skewness	-0.203
179													
180	<u></u>							GOF Test					
181						Test Statistic				-	ilk GOF Test		
182			19			Critical Value			Data apr		at 1% Significar	nce Level	
183						Test Statistic					GOF Test		
184				1% L	illiefors C	Critical Value					at 1% Significar	nce Level	
185						Data appe	ear Normal a	t 1% Signifi	cance Level				
186													
187						As	ssuming Nor	mal Distribu					
188			95%	6 Norma					959		usted for Skew	•	
189					95% Stu	dent's-t UCL	13.26				ed-CLT UCL (C	· .	13.03
190										95% Modif	ied-t UCL (Johr	nson-1978)	13.25
191													
192					4 D 3	T+ O+-+:-+:		GOF Test	Ad	D	. 0 005	· T	
193						Test Statistic		Detect			Gamma GOF		a Lavial
194						Critical Value Test Statistic		Detecte			oistributed at 5%		e Level
195						Critical Value		Datast			ov Gamma GC		no Lovel
196							r Gamma Di				istributed at 5%	6 Significand	e Level
197					Detected	i uata appea	II Gaillilla Di	suibuleu al	376 Signific	ance Level			
198							Gamma	Statistics					
199						k hat (MLE)				k	star (bias corre	ected MLF)	8.35
200					The	ta hat (MLE)					star (bias corre	<i>'</i>	1.373
201						nu hat (MLE)		 		711010	nu star (bias	1	183.7
202				MLE N		as corrected)					MLE Sd (bias	1	3.967
203					(Approximat	e Chi Square V	<i>'</i>	153.4
204 205	·		A	djusted	Level of	Significance	0.0278				djusted Chi Sq	` ′	148.8
206				,				<u> </u>			,		
207						As	suming Gan	ıma Distrib	ution				
208			959	% Appro	oximate C	Gamma UCL				9:	5% Adjusted Ga	amma UCL	14.15
209				-				1					
210							Lognorma	I GOF Test					
211				Shap	iro Wilk 7	Test Statistic	0.897		Sha	apiro Wilk Lo	gnormal GOF	Test	
212			10%	% Shapi	ro Wilk C	Critical Value	0.876		Data appe	ar Lognormal	at 10% Signific	cance Level	
213				L	illiefors 7	Test Statistic	0.231		L	illiefors Logr	ormal GOF Te	st	
214				10% L	illiefors C	Critical Value	0.231		Data Not	Lognormal a	t 10% Significa	nce Level	
215					Data a	ppear Appro	ximate Logn	ormal at 10	% Significar	nce Level			
216													
217							Lognorma	I Statistics					
218						Logged Data						ogged Data	2.395
219				Maxi	mum of l	Logged Data	2.862				SD of lo	ogged Data	0.331
220								·					

	Α	В	С	D	E Assu	F ming Logno	G ormal Distri	H oution	I	J	K	L
221 222				9	5% H-UCL	14.25			90%	Chebyshev (M	VUE) UCL	15.01
223			95%	Chebyshev (M	VUE) UCL	16.58			97.5%	Chebyshev (M	VUE) UCL	18.77
224			99%	Chebyshev (M	IVUE) UCL	23.07						
225							l					
226				ı	Nonparame	tric Distribu	tion Free U	CL Statistics	3			
227				1	Data appear	to follow a	Discernible	Distribution	1			
228												
229					Nonpara	ametric Dis	tribution Fr	ee UCLs				
230					6 CLT UCL	13.1				95% BCA Boo	tstrap UCL	13
231				Standard Boo		13.02				95% Boots	•	13.19
232				95% Hall's Boo	•	13.32				Percentile Boo	·	13.01
233				nebyshev(Mear		14.44				nebyshev(Mear	,	15.79
234			97.5% Ch	nebyshev(Mear	n, Sd) UCL	17.66			99% CI	nebyshev(Mear	n, Sd) UCL	21.33
235												
236						Suggested	UCL to Us	•				
237				95% Stude	ent's-t UCL	13.26						
238												
239	1							-		nost appropriat		
240				•						m simulation st		
241	Но	wever, simu	lations result	ts will not cove	r all Real W	orld data se	ts; for addit	onal insight	the user may	want to consul	t a statisticia	an.
242												
243		Note: For			*					nd Gamma) m	ay not be	
244			reliable.	Chen's and Jo	hnson's me	thods provi	de adjustm	ents for posi	tvely skewed	l data sets.		
245												
246												
247	CM-WRC											
248												
249						General	Statistics					
250			Total	Number of Ob	servations	9			Nlumbo	r of Dictinct Ob	servations	
251												9
050										r of Missing Ob	servations	0
252					Minimum	63.42					servations Mean	0 177.5
253					Maximum	365.8				r of Missing Ob	Mean Median	0 177.5 131
253					Maximum SD	365.8 106.5				r of Missing Ob Std. Err	Mean Median or of Mean	0 177.5 131 35.49
252253254255				Coefficient c	Maximum SD	365.8				r of Missing Ob Std. Err	Mean Median	0 177.5 131
253 254					Maximum SD of Variation	365.8 106.5 0.6			Numbe	r of Missing Ob Std. Err	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257		Note: Sa		small (e.g., <1	Maximum SD of Variation 0), if data a	365.8 106.5 0.6			Numbe	r of Missing Ob Std. Err	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257			refer also t	small (e.g., <1 o ITRC Tech F	Maximum SD of Variation 0), if data a Reg Guide o	365.8 106.5 0.6 re collected	C 2020 and	ITRC 2012	Numbe	Std. Err	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257 258 259			refer also t	small (e.g., <1 o ITRC Tech F ITRC may rec	Maximum SD of Variation 0), if data a Reg Guide of	365.8 106.5 0.6 re collected on ISM (ITR	C 2020 and	ITRC 2012 hev UCL for	Number	Std. Err	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257 258 259 260			refer also to	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of	365.8 106.5 0.6 re collected on ISM (ITR e t-UCL or t	C 2020 and he Chebys in gross ov	ITRC 2012 hev UCL for erestimates	Number spling method for addition small sample of the mean.	Std. Err dology (ISM) a al guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261			refer also to	small (e.g., <1 o ITRC Tech F ITRC may rec	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of	365.8 106.5 0.6 re collected on ISM (ITR e t-UCL or t	C 2020 and he Chebys in gross ov	ITRC 2012 hev UCL for erestimates	Number spling method for addition small sample of the mean.	Std. Err dology (ISM) a al guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261 262			refer also to	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of	365.8 106.5 0.6 re collected on ISM (ITR e t-UCL or to iten results hnical Guide	C 2020 and he Chebys in gross ov e for a disc	ITRC 2012 hev UCL for erestimates	Number spling method for addition small sample of the mean.	Std. Err dology (ISM) a al guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261 262 263			refer also to the that Ref	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or to the results of the collected on ISM (ITRe et-UCL or to the results of the collected on ISM (ITRe et-UCL or to the results of the collected on ISM (ITRe et-UCL or to the collected on ISM (ITRE	C 2020 and he Chebys in gross ov	ITRC 2012 hev UCL for erestimates	npling method for addition small samplof the mean.	Std. Err	Mean Median or of Mean Skewness	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261 262 263 264			refer also to the court note that Ref	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecles ast Statistic	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or titen results innical Guide Normal C	C 2020 and he Chebys in gross ov e for a disc	ITRC 2012 hev UCL for erestimates ussion of the	npling method for addition small sampl of the mean. Chebyshev	Std. Err dology (ISM) a al guidance, e sizes (n < 7). UCL.	Mean Median or of Mean Skewness pproach,	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261 262 263 264 265			refer also to the court note that Ref	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecles est Statistic itical Value	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or to the results of the collected on ISM (ITRE et-UCL) Normal Collected on ISM (ITRE et-UCL)	C 2020 and he Chebys in gross ov e for a disc	ITRC 2012 hev UCL for erestimates ussion of the	npling method of for addition small sample of the mean. of Chebyshev Shapiro W pear Normal a	Std. Err	Mean Median or of Mean Skewness pproach,	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261 262 263 264 265 266			refer also to but note that Ref S 1% S	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te	Maximum SD of Variation O), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic litical Value est Statistic	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or the results of the results o	C 2020 and he Chebys in gross ov e for a disc	hev UCL for erestimates ussion of the Data app	npling method for addition small sampl of the mean. Chebyshev Shapiro W pear Normal a	Std. Err dology (ISM) a al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significar GOF Test	Mean Median or of Mean Skewness pproach,	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267			refer also to but note that Ref S 1% S	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic litical Value est Statistic litical Value	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or the results innical Guide 0.905 0.764 0.224 0.316	C 2020 and he Chebys in gross ov e for a disc	hev UCL for erestimates ussion of the Data app	npling method for addition small sampl of the mean. Chebyshev Shapiro W pear Normal a Lilliefors	Std. Err	Mean Median or of Mean Skewness pproach,	0 177.5 131 35.49
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268			refer also to but note that Ref S 1% S	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te % Lilliefors Cri	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic stical Value est Statistic stical Value Data appear	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or to the results) hnical Guide Normal C 0.905 0.764 0.224 0.316 re Normal at	C 2020 and he Chebys in gross ov e for a disc GOF Test	hev UCL for erestimates ussion of the Data app	pling method for addition small sampl of the mean. Chebyshev Shapiro W pear Normal a	Std. Err dology (ISM) a al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significar GOF Test	Mean Median or of Mean Skewness pproach,	0 177.5 131 35.49
253 254 255 256 257 258 260 261 262 263 264 265 266 267 268			refer also to but note that Ref S 1% S	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te % Lilliefors Cri	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic stical Value est Statistic stical Value Data appear	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or to the results) hnical Guide Normal C 0.905 0.764 0.224 0.316 re Normal at	C 2020 and he Chebys in gross ov e for a disc GOF Test	hev UCL for erestimates ussion of the Data app	pling method for addition small sampl of the mean. Chebyshev Shapiro W pear Normal a	Std. Err dology (ISM) a al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significar GOF Test	Mean Median or of Mean Skewness pproach,	0 177.5 131 35.49
253 254 255 256 257 258 260 261 262 263 264 265 266 267 268 269 270			refer also to but note that Ref S 1% S	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te % Lilliefors Cri	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic litical Value est Statistic litical Value Data appear	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or the results in the results of the results o	C 2020 and he Chebys in gross ov e for a disc GOF Test 1% Signifi eliable for s	hev UCL for erestimates ussion of the Data appropriate appropriate procession appropriate p	pling method for addition small sampl of the mean. Chebyshev Shapiro W pear Normal a	Std. Err dology (ISM) a al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significar GOF Test	Mean Median or of Mean Skewness pproach,	0 177.5 131 35.49
253 254 255 256 257 258 260 261 262 263 264 265 267 268 269 270 271			refer also to that Ref	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te % Lilliefors Cri	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic litical Value est Statistic litical Value Data appear	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or to the results) hnical Guide Normal C 0.905 0.764 0.224 0.316 re Normal at	C 2020 and he Chebys in gross ov e for a disc GOF Test 1% Signifi eliable for s	hev UCL for erestimates ussion of the Data appropriate Data appropriate Data appropriate Data appropriate Level mall sample ution	Number spling method for addition small sample of the mean. Chebyshev sear Normal a Lilliefors sear Normal a sizes	Std. Err dology (ISM) a al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significar GOF Test at 1% Significar	Mean Median or of Mean Skewness pproach, nce Level	0 177.5 131 35.49
253 254 255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272			refer also to that Ref	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te % Lilliefors Cri Note	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic stical Value est Statistic stical Value Data appear GOF tests r	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or the results of the results o	C 2020 and he Chebys in gross ov e for a disc GOF Test 1% Signifi eliable for s	hev UCL for erestimates ussion of the Data appropriate Data appropriate Data appropriate Data appropriate Level mall sample ution	npling method for addition small sampl of the mean. Chebyshev Shapiro W pear Normal a Lilliefors pear Normal a sizes	Std. Errost. Std. Errost. Gology (ISM) a al guidance, e sizes (n < 7). UCL. IIK GOF Test at 1% Significant GOF Test at 1% Significant	mean Median or of Mean Skewness pproach, mice Level mice Level mess)	0 177.5 131 35.49 0.717
253 254 255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272 273			refer also to that Ref	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te % Lilliefors Cri Note	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic litical Value est Statistic litical Value Data appear	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or the results in the results of the results o	C 2020 and he Chebys in gross ov e for a disc GOF Test 1% Signifi eliable for s	hev UCL for erestimates ussion of the Data appropriate Data appropriate Data appropriate Data appropriate Level mall sample ution	Shapiro W ear Normal a Lilliefors ear Normal a sizes 6 UCLs (Adju-	Std. Errodology (ISM) and guidance, se sizes (n < 7). UCL. Illk GOF Test at 1% Significant 1%	mess) Chen-1995)	0 177.5 131 35.49 0.717
253 254 255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272			refer also to that Ref	small (e.g., <1 o ITRC Tech F ITRC may rec The Chebys fer to the ProU Shapiro Wilk Te hapiro Wilk Cri Lilliefors Te % Lilliefors Cri Note	Maximum SD of Variation 0), if data a Reg Guide of commend the shev UCL of ICL 5.2 Tecl est Statistic stical Value est Statistic stical Value Data appear GOF tests r	365.8 106.5 0.6 re collected on ISM (ITRe et-UCL or the results of the results o	C 2020 and he Chebys in gross ov e for a disc GOF Test 1% Signifi eliable for s	hev UCL for erestimates ussion of the Data appropriate Data appropriate Data appropriate Data appropriate Level mall sample ution	Shapiro W ear Normal a Lilliefors ear Normal a sizes 6 UCLs (Adju-	Std. Errost. Std. Errost. Gology (ISM) a al guidance, e sizes (n < 7). UCL. IIK GOF Test at 1% Significant GOF Test at 1% Significant	mess) Chen-1995)	0 177.5 131 35.49 0.717

	Α	В	С		D	E		F	G	Н	I	ı	J		ŀ	(L
276									GOF Test								
277						Test Sta		0.306			derson-Da	•					
278					5% A-D (0.726	Detected	d data app							ce Level
279						Test Sta		0.182	Datasta		ogorov-S						11
280					5% K-S (0.281		d data app			stribute	e at 5	% Sigi	nifican	ce Level
281							•		stributed at 5			vei					
282					NOU	e GOF	lesis i	nay be unre	eliable for sm	an sample	e sizes						
283								Gamma	Statistics								
284						k hat (f	MI E)	3.183				k	star (bia	as corr	rected	MI E)	2.196
285					The	eta hat (I	-	55.75			т		star (bia				80.8
286						nu hat (I		57.3					•	ar (bias		,	39.53
287				MIF	Mean (bia	•		177.5					MLE S	•		,	119.7
288							olou)	177.0			Approx					-	26.13
289 290				Adjusted	Level of	Signific	ance	0.0231			7,00107		djusted				23.85
291													,		10000		
292							Ass	uming Gam	ıma Distribut	ion							
293			95		oximate (Gamma		268.5				95°	% Adju	sted G	amma	a UCL	294.1
294																	
295								Lognormal	GOF Test								
296				Shap	iro Wilk	Test Sta	atistic	0.95		Sh	napiro Wil	lk Log	norma	I GOF	Test		
297			10)% Shap	iro Wilk C	Critical \	/alue	0.859		Data appe	ear Logno	ormal a	at 10%	Signifi	icance	Level	
298				L	_illiefors ⁻	Test Sta	itistic	0.144		ı	Lilliefors	Logno	rmal C	OF To	est		
299				10% L	illiefors C	Critical \	/alue	0.252	!	Data appe	ear Logno	rmal a	at 10%	Signifi	icance	Level	
300					-	Data ap	pear l	Lognormal a	at 10% Signif	icance Le	evel			-		-	
301					Not	e GOF	tests r	may be unre	eliable for sm	all sample	e sizes						
302																	
303								Lognorma	l Statistics								
304					imum of l			4.15						ean of I			5.014
305				Maxi	imum of l	Logged	Data	5.902						SD of I	ogged	I Data	0.616
306																	
307									rmal Distribu	ution						1	
308						95% H-		311.7					Chebys	`		,	289.3
309					ebyshev (339.9			9.	7.5% (Chebys	shev (N	NVUE) UCL	410.2
310				39% Cne	ebyshev ((MIVUE)	UCL	548.1									
311						Nonne		trio Diotribu	tion Free UC	L Statistic							
312									Discernible								
313							ippeai	- to lollow a	Discernible								
314						N	onpar	ametric Dist	tribution Free	e UCLs							
315 316					95	5% CLT	-	235.8					95% BC	CA Bor	otstrar) UCL	241.8
317				95% Sta	ındard Bo			232.9						% Boot			259.7
318					Hall's Bo			237.9			!	95% F	Percent				238
319			90°		/shev(Me	an, Sd)	UCL	283.9			95		ebyshe	ev(Mea	an, Sd) UCL	332.1
320					/shev(Me			399.1					ebyshe	•		•	530.5
321																	
322								Suggested	UCL to Use								
323					95% Stu	dent's-t	UCL	243.5									
324																	
325		Note: Sugge	estions re	garding	the selec	ction of	a 95%	UCL are pro	ovided to help	p the user	to select	the m	ost ap	propria	ite 95°	% UCL	
326		Recor	nmendat	ions are	based up	oon data	size,	data distribu	ution, and ske	ewness us	sing resul	ts fror	n simul	lation s	studies	S.	
327	Н	owever, sim	ulations r	esults w	ill not cov	ver all R	eal W	orld data set	ts; for addition	nal insight	t the user	may	want to	consu	ılt a st	atistici	an.
328																	

	A B C	D E	F	G H I J K	L
1		UCL Statis	Stics for Unce	ensored Full Data Sets	
2	User Selected Options	,			
3	Date/Time of Computation	ProUCL 5.2 11/18/2024 1	10·46·30 AM		
4	From File	WorkSheet.xls	10.10.007.		
5 6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	GC03-WRA				
12					
13			General		
14	Total	Number of Observations	4	Number of Distinct Observations	4
15				Number of Missing Observations	0
16	<u> </u>	Minimum	30	Mean	35.5
17		Maximum SD	45 6.856	Median Std. Fyrar of Mann	33.5
18		Coefficient of Variation	0.193	Std. Error of Mean Skewness	1.241
19		Coemcient of Variation	0.193	Skewness	1.241
20	Note: Sample size is	small (e.g., <10) if data a	are collected	using incremental sampling methodology (ISM) approach,	
21 22		, - ,		C 2020 and ITRC 2012) for additional guidance,	
23		_	•	ne Chebyshev UCL for small sample sizes (n < 7).	
24		=		n gross overestimates of the mean.	
25	Ref			e for a discussion of the Chebyshev UCL.	
26					
27			Normal C	GOF Test	
28	S	Shapiro Wilk Test Statistic	0.881	Shapiro Wilk GOF Test	
29	1% S	hapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level	
30		Lilliefors Test Statistic	0.244	Lilliefors GOF Test	
31	1 	% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32	 			1% Significance Level	
33		Note GOF tests	may be unre	liable for small sample sizes	
34		Λοι	eumina Norr	nal Distribution	
35	95% N	ormal UCL	summy Non	95% UCLs (Adjusted for Skewness)	
36		95% Student's-t UCL	43.57	95% Adjusted-CLT UCL (Chen-1995)	43.41
37 38				95% Modified-t UCL (Johnson-1978)	43.92
39				, , , , ,	
40			Gamma (GOF Test	
41	 	A-D Test Statistic	0.371	Anderson-Darling Gamma GOF Test	
42		5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	e Level
43		K-S Test Statistic	0.277	Kolmogorov-Smirnov Gamma GOF Test	
44		5% K-S Critical Value	0.394	Detected data appear Gamma Distributed at 5% Significance	e Level
45				stributed at 5% Significance Level	
46		Note GOF tests	may be unre	liable for small sample sizes	
47	 			7. d.d.	
48	 	1. L /A AL>	Gamma		0.604
49		k hat (MLE)	38.07	k star (bias corrected MLE)	9.684
50		Theta hat (MLE)	0.932 304.6	Theta star (bias corrected MLE) nu star (bias corrected)	3.666 77.47
51	N.A.	nu hat (MLE) LE Mean (bias corrected)	304.6	nu star (blas corrected) MLE Sd (bias corrected)	11.41
52	<u></u>	LE IVIGATI (DIAS COTTECTED)	JJ.J	Approximate Chi Square Value (0.05)	58.2
53 54	Adina	sted Level of Significance	N/A	Adjusted Chi Square Value Adjusted Chi Square Value	N/A
54 55	Aujus		(, agasted om oquare value	
ეე					

56	А		В		С		D		E A	\ssumi	F ing Gam	G nma Distrib	bution	H 1		ı		J			K		L
57					959	% Apı	oroximate	e Gar	nma UC	L 4	17.26					9	95%	Adjus	sted C	Samn	na UCI		N/A
58	·											1											
59												I GOF Tes	st										
60							apiro Wilk				0.9				-	Vilk L							
61					109	% Sha	piro Wilk				0.792		Da	ta appea	_				-		ce Leve	el	
62						100/	Lilliefors				0.246					rs Log							
63						10%	Lilliefors				0.346	1 100/ 01:		ta appea		norma	al at	10%	Signit	icano	e Leve	el 	
64							Nia					at 10% Sig											
65							INC	ole C	OF LESI	ъ пау	De unit	eliable ioi s	Siliali	Sample	SIZE	•						—	
66										Lc	anorme	al Statistics	<u> </u>										
67 68		-				M	inimum o	of Loc	ged Dat		3.401							Me	an of	logge	ed Data	a	3.556
69							aximum o		-		3.807										ed Data		0.185
70																							
71									As	sumin	g Logna	ormal Distr	ributio	on									
72								95	% H-UC	L 4	16.14					90%	% Ch	nebys	hev (MVUI	E) UCI		45.3
73	·				9	5% C	hebyshev	v (MV	/UE) UC	;L 4	19.74					97.5%	% Ch	nebys	hev (MVU	E) UCI		55.91
74					99	9% C	hebyshev	v (MV	/UE) UC	E C	88.02												
75																							
76												ition Free l											
77								D	ata app	ear to	follow a	Discernib	le Dis	stribution	1								
78																							
79												tribution F	ree U	CLs				0/ 50					
80						NEO/ 0			CLT UC		11.14						95				ap UCI		N/A
81					9		tandard E		-		I/A					050					p-t UCL		N/A
82					000/		% Hall's E		•		I/A										ap UCI		N/A
83							byshev(M byshev(M		,		15.78 56.91							•	•		d) UCL		50.44 69.61
84	<u> </u>				97.5%	o Che	bysnev(iv	nean,	, Su) UC	,L 3						99% (Juen	Jysne	v(ivie	an, S	u) UCI		09.01
85										Suc	ngested	UCL to Us	se										
86 87							95% St	tuder	nt's-t UC		13.57											\top	
88																							
89		Note	: Sug	gestic	ons reg	gardir	g the sele	ectio	n of a 95	5% UC	L are pr	ovided to h	nelp th	ne user to	o sele	ect the	mos	st app	oropri	ate 9!	5% UC	L.	
90			Reco	omme	endatio	ons ar	e based ı	upon	data siz	ze, dat	a distrib	ution, and	skew	ness usir	ng re	sults fr	om s	simul	ation	studi	es.		
91	Н	owev	er, sin	nulat	ons re	esults	will not co	over	all Real	World	data se	ts; for addi	itional	l insight t	he us	er ma	ıy wa	ant to	cons	ult a s	statistic	cian	1.
92	·																						
93																							
94	GC03-WR	В																					
95												<u> </u>											
96						-1-1-	استار	· O'				Statistics				NI.		1 D: -	i	<u></u>			
97					- 1	otal iv	lumber of	ODS	ervation	is s	9										vations		8
98									Minimu	Number of Missing Obse um 75						ser	vations Mear		0 230.9				
99									Maximu								Mediar		222				
100									S		26.6									42.19			
101							Coefficie	ent of			0.548										ewness		0.971
102 103								- 01															
103		N	ote: S	Samp	le size	e is sr	nall (e.g.,	, <10), if data	a are c	ollected	d using inc	reme	ntal sam	pling	metho	odol	ogy (ISM)	apprı	oach,	—	
104									-			C 2020 an											
106				but	note t	hat IT	RC may	reco	mmend	the t-l	JCL or 1	the Chebys	shev	UCL for	smal	l samp	ole s	izes	(n < 7	') .			
107							The Che	ebysh	nev UCL	often	results	in gross ov	veres	timates	of the	mear	n.						
108						Refe	to the P	roUC	CL 5.2 T	echnic	al Guid	e for a disc	cussi	on of the	Che	byshe	v UC	CL.					
109																							
110										N	lormal (GOF Test											
. •		_																	_	_		_	

112 1% Shapiro Wilk Critical Value 0.764 Data appear Normal at 1% Significance Level Lilliefors Test Statistic 0.195 Lilliefors GOF Test 114 1% Lilliefors Critical Value 0.316 Data appear Normal at 1% Significance Level Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Note GOF tests may be unreliable for small sample sizes Assuming Normal Distribution 119 95% Normal UCL 95% UCLs (Adjusted for Skewness) 120 95% Student's-t UCL 309.3 95% Adjusted-CLT UCL (Chen-1995) 121 95% Modified-t UCL (Johnson-1978)	314.9 311.6
114 1% Lilliefors Critical Value 0.316 Data appear Normal at 1% Significance Level 115 Data appear Normal at 1% Significance Level 116 Note GOF tests may be unreliable for small sample sizes 117 118 Assuming Normal Distribution 119 95% Normal UCL 95% UCLs (Adjusted for Skewness) 120 95% Student's-t UCL 309.3 95% Adjusted-CLT UCL (Chen-1995) 121 95% Modified-t UCL (Johnson-1978)	
Data appear Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes Assuming Normal Distribution Symmetry Symmet	
Note GOF tests may be unreliable for small sample sizes	
117	
118 Assuming Normal Distribution	
119 95% Normal UCL 95% UCLs (Adjusted for Skewness) 120 95% Student's-t UCL 309.3 95% Adjusted-CLT UCL (Chen-1995) 121 95% Modified-t UCL (Johnson-1978) 122 95% Modified tuck	
120 95% Student's-t UCL 309.3 95% Adjusted-CLT UCL (Chen-1995) 121 95% Modified-t UCL (Johnson-1978) 122	
121 95% Modified-t UCL (Johnson-1978) 122	
122	
0 00== :	
123 Gamma GOF Test	
124 A-D Test Statistic 0.239 Anderson-Darling Gamma GOF Test	
125 5% A-D Critical Value 0.725 Detected data appear Gamma Distributed at 5% Significance	e Level
126 K-S Test Statistic 0.175 Kolmogorov-Smirnov Gamma GOF Test	
127 5% K-S Critical Value 0.281 Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear Gamma Distributed at 5% Significance Level	
Note GOF tests may be unreliable for small sample sizes	
130	
131 Gamma Statistics	
k hat (MLE) 3.853 k star (bias corrected MLE)	2.643
Theta hat (MLE) 59.92 Theta star (bias corrected MLE)	87.37
nu hat (MLE) 69.35 nu star (bias corrected)	47.57
MLE Mean (bias corrected) 230.9 MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	32.74
130 A.F 14 - 140 G 17 - 0.0004	30.17
	30.17
138 Assuming Gamma Distribution	
139 Assuming Gamma Distribution 140 95% Approximate Gamma UCL 335.5 95% Adjusted Gamma UCL	364.1
141 Lognormal GOF Test	
143 Shapiro Wilk Test Statistic 0.97 Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic 0.151 Lilliefors Lognormal GOF Test	
146 10% Lilliefors Critical Value 0.252 Data appear Lognormal at 10% Significance Level	
Data appear Lognormal at 10% Significance Level	
Note GOF tests may be unreliable for small sample sizes	
149	
Lognormal Statistics	F 207
Minimum of Logged Data 4.317 Mean of logged Data Maximum of Logged Data 6.184	5.307
152 Maximum of Logged Data 6.184 SD of logged Data	0.563
153 Assuming Lognormal Distribution	
000/ 01 1 000	364.5
050 OF 1 1 1 (AD415) 101 7 07 50 OF 1 1 (AD415) 101	508.2
156 95% Chebyshev (MVUE) UCL 424.7 97.5% Chebyshev (MVUE) UCL 157 99% Chebyshev (MVUE) UCL 672.2	
158	
Nonparametric Distribution Free UCL Statistics	
160 Data appear to follow a Discernible Distribution	
161	
162 Nonparametric Distribution Free UCLs	
95% CLT UCL 300.3 95% BCA Bootstrap UCL	307.9
95% Standard Bootstrap UCL 296.8 95% Bootstrap-t UCL	342.8
95% Hall's Bootstrap UCL 341 95% Percentile Bootstrap UCL	301.9

	Α	В	С	D	E	F	G	Н		J	K	L
166			90% Ch	ebyshev(Mea	an, Sd) UCL	357.5			95% Ch	ebyshev(Me	an, Sd) UCL	414.8
167			97.5% Ch	ebyshev(Mea	an, Sd) UCL	494.4			99% Ch	ebyshev(Me	an, Sd) UCL	650.7
168												
169						Suggested	UCL to Use					
170				95% Stud	dent's-t UCL	309.3						
171												
172	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
173		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
174	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.
175												

	A B C	D E	F	G H I J K	L
1		UCL Statis	Stics for Unce	ensored Full Data Sets	
2	User Selected Options	,			
3	Date/Time of Computation	ProUCL 5.2 11/18/2024	10·50·06 AM		
4	From File	WorkSheet.xls	10.00.007 ((1)		
5 6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	GC5-WRA				
12					
13			General		
14	Total	Number of Observations	8	Number of Distinct Observations	8
15				Number of Missing Observations	0
16		Minimum	82.14	Mean	211
17		Maximum	421	Median	165
18		SD Coefficient of Variation	122.8	Std. Error of Mean	43.43
19		Coemicient of Variation	0.582	Skewness	1.159
20	Note: Sample size is	small (e.a. <10) if data s	are collected	using incremental sampling methodology (ISM) approach,	
21	· ·	,		C 2020 and ITRC 2012) for additional guidance,	
22 23		_	•	ne Chebyshev UCL for small sample sizes (n < 7).	
24				n gross overestimates of the mean.	
25	Re			e for a discussion of the Chebyshev UCL.	
26				·	
27			Normal C	GOF Test	
28	S	Shapiro Wilk Test Statistic	0.814	Shapiro Wilk GOF Test	
29	1% S	hapiro Wilk Critical Value	0.749	Data appear Normal at 1% Significance Level	
30		Lilliefors Test Statistic	0.318	Lilliefors GOF Test	
31	1	% Lilliefors Critical Value	0.333	Data appear Normal at 1% Significance Level	
32				1% Significance Level	
33		Note GOF tests	may be unre	liable for small sample sizes	
34					
35	050/ N		suming Norr	nal Distribution	
36	90% NO	ormal UCL 95% Student's-t UCL	293.2	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	301.4
37		90 /0 Student S-t UCL	∠3J.∠	95% Adjusted-CLT OCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	296.2
38				3370 Modified-t OCE (301115011-1370)	200.2
39 40	<u> </u>		Gamma (GOF Test	
41		A-D Test Statistic	0.545	Anderson-Darling Gamma GOF Test	
42		5% A-D Critical Value	0.719	Detected data appear Gamma Distributed at 5% Significance	ce Level
43		K-S Test Statistic	0.263	Kolmogorov-Smirnov Gamma GOF Test	
44		5% K-S Critical Value	0.295	Detected data appear Gamma Distributed at 5% Significance	ce Level
45		Detected data appear	r Gamma Dis	stributed at 5% Significance Level	
46		Note GOF tests	may be unre	liable for small sample sizes	
47					
48			Gamma		
49		k hat (MLE)	3.877	k star (bias corrected MLE)	2.506
50		Theta hat (MLE)	54.42	Theta star (bias corrected MLE)	84.17
51		nu hat (MLE)		nu star (bias corrected)	40.1
52	M	LE Mean (bias corrected)	211	MLE Sd (bias corrected)	133.3
53	لـ ۸	sted Level of Significance	0.0195	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	26.59
54	Adjus	sieu Level of Significance	0.0195	Aujusted Cni Square Value	23.04
55					

56	Α		В			С		D		E As:	F suming Ga		G Distribu	⊢ ıtion	ł		l			J	工	K		L
57						95% A	pprox	imate (Gamr	na UCL	318.1						9	95%	Adju	usted	Gan	nma	UCL	354.8
58																								
59											Lognorm	al GOF	Test											
60	<u> </u>									Statistic							Vilk Lo							
61						10% S				al Value				Data a		_				_			Level	
62	<u> </u>									Statistic							s Log							
63	<u> </u>					10)% Lilli			al Value		1 . 1 400	· •	Data a			norma	al at	10%	Sign	itica	nce	Level	
64	 										Lognorma may be ur													
65								1401	ie GC	ir iesis	illay be ui	ii eiiabie	5 101 51	ııaıı saı	iihi e s	SIZES								
66											Lognorn	nal Stat	istics											
67 68							Minim	um of	Logg	ed Data									Μє	ean of	f loa	ged	Data	5.217
69										ed Data										SD of	_	_		0.545
70											1													
71										Assı	uming Log	normal	Distrib	oution										
72	 								95%	H-UCL	352.8						90%	% Ch	neby	shev	(MV	UE)	UCL	332
73						95%	Cheby	/shev ((MVU	E) UCL	387.5						97.5%	% Ch	neby	shev	(MV	UE)	UCL	464.4
74						99%	Cheby	/shev ((MVU	E) UCL	615.6													
75																								
76										•	etric Distrib													
77									Dat	a appea	ar to follow	a Disc	ernible	Distrib	ution									
78	<u> </u>																							
79	<u> </u>								= 0./ 0		rametric D	istributi	ion Fre	e UCL	3									
80	<u> </u>					050/	<u> </u>			LT UCL								95		CA B				288.1
81	<u> </u>									ap UCL							050			% Boo		•		446.6
82	<u> </u>									ap UCL										tile B		•		281.3
83	<u> </u>						-	•		d) UCL							95% C			•		,		400.3
84	<u> </u>				97.	5% Cr	nebysr	nev(IVIe	ean, S	d) UCL	482.2						99% C	Jner		ev(IVI6	эап, ——	Sa)	UCL	643.1
85											Suggeste	4 UCI	to I lee	,										
86 87							9!	5% Stu	ıdent'	s-t UCL		u ool	10 030										$\overline{}$	
88																								
89		Note	e: Sug	gest	ions	regard	ding th	e sele	ction	of a 95%	6 UCL are	provide	d to he	lp the u	ser to	sele	ct the	mos	st ap	propr	riate	95%	UCL	
90			_	_		-	_				, data distr			-					-					
91	Н	lowe	er, si	mula	tions	result	ts will	not co	ver al	l Real W	Vorld data	sets; for	additio	onal ins	ight th	ne us	er ma	y wa	ant to	o cons	sult a	a sta	tisticia	an.
92																							-	
93																								
94	GC5-WRB	3																						
95	<u> </u>																							
96								_	01		Genera	al Statis	stics						<u> </u>	<u> </u>	<u></u>			
97	<u> </u>					Total	Numl	per of (Obsei	vations	10						Numb							10
98	<u> </u>									II I.							Numb	er o	t Mis	sing	Obs			0
99										linimum aximum													Mean edian	117.1 124.5
100									IVI	aximum SD										Std. E	Erro			124.5
101							Cor	officion	nt of \/	ariation										oiu. E		Skewi		-0.629
102								JIIICI C []	it OI V	anauUII	0.234											-NGWI	1033	-0.029
103											Norma	I GOF	Test											
104 105						S	Shapiro	o Wilk	Test S	Statistic						Sha	piro V	Vilk	GOF	F Tes				
105							-			al Value				Data	appe		ormal					e Le	vel	
106										Statistic							lliefor			-				
107						1				al Value				Data	а арре		ormal				canc	e Le	vel	
108											ar Normal	at 1% \$	Signific					•					-	
110																								
110		_																			_			

111	Α	В	С		D	E A	F ssuming Nor	G mal Distribution	H on	I		J	K		L
112			95%	6 Norma	I UCL				95%	6 UCLs (Adjuste	ed for Sk	ewness)		
113				9	95% Stud	dent's-t UCL	137.1			95% Ad	justed-	CLT UCL	(Chen-199	5)	132.7
114										95% M	odified-	t UCL (Jo	hnson-197	8)	136.7
115							-	1						•	
116							Gamma	GOF Test							
117					A-D T	est Statistic	0.498		Ande	rson-Da	rling G	amma Go	OF Test		
118				5	% A-D C	ritical Value	0.725	Detected of	data appe	ar Gamm	na Distr	ibuted at	5% Signific	ance	e Level
119					K-S T	est Statistic				_			GOF Test		
120						ritical Value						ibuted at	5% Signific	ance	e Level
121					Detected	data appea	ır Gamma Di	stributed at 5%	6 Significa	ance Lev	⁄el				
122															
123								Statistics							
124						k hat (MLE						•	rrected ML		7.422
125						ta hat (MLE				Th		•	rrected ML		15.78
126						u hat (MLE						•	as correcte	′	148.4
127				MLE M	lean (bia	s corrected	117.1					•	as correcte	·	42.98
128										Approxi			Value (0.0		121.3
129			A	djusted l	Level of	Significance	0.0267				Adju	sted Chi	Square Valu	Je	117
130															
131								nma Distributio	n						
132			959	% Appro	ximate G	amma UCL	143.3				95%	Adjusted	Gamma UC	CL	148.5
133															
134								I GOF Test							
135						est Statistic				piro Wilk					
136			109 			ritical Value		Da					ificance Le	vel	
137						est Statistic				lliefors L	-				
138				10% Li		critical Value)% Signifi	cance Leve	el	
139					Data ap	ppear Appro	ximate Logn	ormal at 10% S	Significan	ice Level					
140								10: 11:11							
141				Mini			_	al Statistics				N4	(1 d D-		4 745
142						ogged Data							f logged Da f logged Da		4.715
143				Maxii	num or L	Logged Data	5.088					30 0	подуец Ба	la	0.348
144						۸۵۵	uming Logn	ormal Distributi	tion						
145						95% H-UCL			11011	C	00% Ch	obyshov	(MVUE) UC	ווי	157.1
146			10	5% Chal		MVUE) UCL						-	(MVUE) UC		199.5
147					• •	MVUE) UCI				37.	.5 /0 C11	ebysnev	(IVIVOL) OC		199.5
148				J 70 OHCL	bysilev (i	WIVOL) 001	. 240	<u> </u>							
149						Nonnaram	etric Distribu	tion Free UCL	Statistics						
150						•		Discernible Di							
151															
152 153						Nonna	arametric Dis	tribution Free I	UCLs						
153					95	% CLT UCI					95	% BCA B	ootstrap UC	CL	133.9
155			9	95% Star		otstrap UCL							otstrap-t UC		135.7
156						otstrap UCL		<u> </u>		9	5% Pe		ootstrap UC		133.9
157			90%			an, Sd) UCL		<u> </u>					ean, Sd) UC		164.6
158					•	an, Sd) UCL						• .	ean, Sd) UC		225.5
159					*			1				•	<u> </u>		
160							Suggested	UCL to Use							
161				9	95% Stud	dent's-t UCL	137.1								
162								1							
163		Note: Sugge	stions reç	garding t	he selec	tion of a 95°		ovided to help	the user to	o select t	the mos	t appropi	riate 95% U	CL.	
164		Recon	nmendatio	ons are b	ased up	on data size	, data distrib	ution, and skev	wness usii	ng results	s from s	simulation	studies.		
165	Нс	wever, simu	lations re	sults wil	I not cov	er all Real \	Norld data se	ts; for additiona	al insight t	the user r	may wa	int to con	sult a statis	ticiar	า.
. 55															

	Α	В	C	D	E	F	G	Н		J	K	L
166												
167		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	ıd Gamma) ı	may not be	
168			reliable. (Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
169												

	A B C	D E	F	G H I J K ensored Full Data Sets	L
1		OCL Statis	ucs for Office	erisoreu Fuii Data Sets	
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.2 11/18/2024 1	10:57:52 AM		
	From File	WorkSheet.xls			
5 6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
_	GC6-WRA				
12					
13			General	Statistics	
14	Total	Number of Observations	17	Number of Distinct Observations	16
15				Number of Missing Observations	0
16		Minimum	134	Mean	243.8
17		Maximum	504	Median	201
18		SD	101.1	Std. Error of Mean	24.53
19		Coefficient of Variation	0.415	Skewness	1.518
20					
21			Normal (GOF Test	
22	S	Shapiro Wilk Test Statistic	0.825	Shapiro Wilk GOF Test	
23	1% S	hapiro Wilk Critical Value	0.851	Data Not Normal at 1% Significance Level	
24		Lilliefors Test Statistic	0.221	Lilliefors GOF Test	
25	1	% Lilliefors Critical Value	0.241	Data appear Normal at 1% Significance Level	
26		Data appear Appr	roximate No	rmal at 1% Significance Level	
27					
28		Ass	suming Norr	mal Distribution	
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	286.6	95% Adjusted-CLT UCL (Chen-1995)	293.8
31				95% Modified-t UCL (Johnson-1978)	288.1
32					
33			Gamma (GOF Test	
34		A-D Test Statistic	0.769	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.74	Data Not Gamma Distributed at 5% Significance Leve	el
36		K-S Test Statistic	0.183	Kolmogorov-Smirnov Gamma GOF Test	
37		5% K-S Critical Value	0.209	Detected data appear Gamma Distributed at 5% Significand	ce Level
38		Detected data follow App	or. Gamma l	Distribution at 5% Significance Level	
39					
40				Statistics	
41		k hat (MLE)	7.643	k star (bias corrected MLE)	6.333
42		Theta hat (MLE)	31.9	Theta star (bias corrected MLE)	38.49
43		nu hat (MLE)	259.8	nu star (bias corrected)	215.3
44	MI	LE Mean (bias corrected)	243.8	MLE Sd (bias corrected)	96.86
45			0.00.10	Approximate Chi Square Value (0.05)	182.4
46	Adjus	sted Level of Significance	0.0346	Adjusted Chi Square Value	179.2
47				Distribution	
48	0501			nma Distribution	202.2
49	95% A	pproximate Gamma UCL	287.8	95% Adjusted Gamma UCL	292.9
50				LCOE Took	
51		Namina MULTI O		I GOF Test	
52		Shapiro Wilk Test Statistic	0.923	Shapiro Wilk Lognormal GOF Test	
53	10% S	hapiro Wilk Critical Value	0.91	Data appear Lognormal at 10% Significance Level	
54	40	Lilliefors Test Statistic % Lilliefors Critical Value	0.166	Lilliefors Lognormal GOF Test	
55	10	% Lilletors Critical Value	0.19	Data appear Lognormal at 10% Significance Level	

	A B C D E	F Lognormal s	G H I J K at 10% Significance Level	L
56 57	Data appear	Lognormare	at 10 % digitification Level	
58		Lognorma	Il Statistics	
59	Minimum of Logged Data	4.898	Mean of logged Data	5.429
60	Maximum of Logged Data	6.223	SD of logged Data	0.361
61			1	
62			ormal Distribution	
63	95% H-UCL	289.2	90% Chebyshev (MVUE) UCL	307.2
64	95% Chebyshev (MVUE) UCL	336.6	97.5% Chebyshev (MVUE) UCL	377.4
65	99% Chebyshev (MVUE) UCL	457.5		
66	Nonnonomo	ania Diatribu	tion Free UCL Statistics	
67			Discernible Distribution	
68	Бата арреа	ii to ioliow a	Discernible Distribution	
69 70	Nonpar	rametric Dis	tribution Free UCLs	
71	95% CLT UCL	284.1	95% BCA Bootstrap UCL	295.1
72	95% Standard Bootstrap UCL	283.3	95% Bootstrap-t UCL	307.9
73	95% Hall's Bootstrap UCL	301.6	95% Percentile Bootstrap UCL	285.7
74	90% Chebyshev(Mean, Sd) UCL	317.3	95% Chebyshev(Mean, Sd) UCL	350.7
75	97.5% Chebyshev(Mean, Sd) UCL	396.9	99% Chebyshev(Mean, Sd) UCL	487.8
76				
77		Suggested	UCL to Use	
78	95% Student's-t UCL	286.6		
79				
80			stribution passing only one of the GOF tests,	
81	it is suggested to use a UCL bas	вей ироп а и	istribution passing both GOF tests in ProUCL	
82				
82 83	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
82 83 84	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	UCL are pr		ın.
82 83 84 85	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	UCL are pr	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	ın.
82 83 84	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	UCL are pr	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	ın.
82 83 84 85 86	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,	UCL are pr	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	in.
82 83 84 85 86 87	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	UCL are pr	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	ın.
82 83 84 85 86 87 88	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	o UCL are pro data distribution data se	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	
82 83 84 85 86 87 88	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W	o UCL are pro data distribition data se	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	9
82 83 84 85 86 87 88 89	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations	General	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations	9
82 83 84 85 86 87 88 89 90 91 92 93	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum	General 14	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean	9 0 8.236
82 83 84 85 86 87 88 89 90 91 92 93	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum	General 14 1.7	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median	9 0 8.236 7
82 83 84 85 86 87 88 89 90 91 92 93 94	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD	General 14 1.7 16 3.761	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	9 0 8.236 7 1.005
82 83 84 85 86 87 88 89 90 91 92 93 94 95	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum	General 14 1.7	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median	9 0 8.236 7
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD	General 14 1.7 16 3.761 0.457	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	9 0 8.236 7 1.005
82 83 84 85 86 87 90 91 92 93 94 95 96 97	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD	General 14 1.7 16 3.761 0.457	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	9 0 8.236 7 1.005
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation	General 14 1.7 16 3.761 0.457	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	9 0 8.236 7 1.005
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	General 14 1.7 16 3.761 0.457 Normal C	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test	9 0 8.236 7 1.005
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	General 14 1.7 16 3.761 0.457 Normal (0.825)	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	9 0 8.236 7 1.005
82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	General 14 1.7 16 3.761 0.457 Normal C 0.926 0.825 0.272 0.263	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test	9 0 8.236 7 1.005
82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Apple	General 14 1.7 16 3.761 0.457 Normal C 0.926 0.825 0.272 0.263 roximate No	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level rmal at 1% Significance Level	9 0 8.236 7 1.005
82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102 103	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr	General 14 1.7 16 3.761 0.457 Normal C 0.926 0.825 0.272 0.263 roximate No	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level rmal at 1% Significance Level	9 0 8.236 7 1.005
82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appi As: 95% Normal UCL	General 14 1.7 16 3.761 0.457 Normal C 0.926 0.825 0.272 0.263 roximate No	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness)	9 0 8.236 7 1.005 0.607
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr	General 14 1.7 16 3.761 0.457 Normal C 0.926 0.825 0.272 0.263 roximate No	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	9 0 8.236 7 1.005 0.607
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appi As: 95% Normal UCL	General 14 1.7 16 3.761 0.457 Normal C 0.926 0.825 0.272 0.263 roximate No	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness)	9 0 8.236 7 1.005 0.607
82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, However, simulations results will not cover all Real W GC6-WTP Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr As: 95% Normal UCL	General 14 1.7 16 3.761 0.457 Normal C 0.926 0.825 0.272 0.263 roximate No suming Normal 10.02	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	9 0 8.236 7 1.005 0.607

	Α	В	(D		E	F	G	1	Н	1		J		K		L	Т
111					A-[O Test S	Statistic	0.545			Ander	rson-Dar	rling (Gamma	GOF	Test			1
112					5% A-D) Critica	al Value	0.739	Detected	data	a appea	ır Gamm	na Dis	tributed	l at 5%	6 Signifi	canc	e Level	1
113					K-9	S Test S	Statistic	0.213		ŀ	Kolmog	jorov-Sm	nirnov	/ Gamm	na GO	F Test			1
114					5% K-S	S Critica	al Value	0.23	Detected	data	a appea	ır Gamm	na Dis	tributed	l at 5%	6 Signifi	canc	e Level	1
115					Detect	ed data	appea	r Gamma Di	stributed at 5	i% Si	ignifica	nce Leve	el						
116																			
117								Gamma	Statistics										
118						k ha	t (MLE)	4.496						•		ected ML		3.58	
119					TI		t (MLE)					Th	ieta st	tar (bias	s corre	ected ML	-E)	2.3	
120							t (MLE)								•	correcte	´	100.2	
121				MLE	Mean (l	bias coi	rrected)	8.236							•	correcte	1	4.353	
122												Approxir				•		78.14	
123				Adjuste	d Level	of Signi	ificance	0.0312					Adj	usted C	Chi Sq	uare Va	lue	75.56	
124																			
125									nma Distributi	ion									
126			g	15% Apr	roximate	e Gamn	na UCL	10.56					95%	6 Adjust	ted Ga	amma U	CL	10.93	
127																			
128									I GOF Test										
129					apiro Will						-	oiro Wilk	_						
130			1	0% Sha	piro Wilk					Dat		_ognorma					el		
131					Lilliefor							liefors Lo							
132				10%	Lilliefors							_ognorma	al at 1	10% Sig	ınifica	nce Lev	el ——		
133						Dat	a Not L	ognormal at	10% Significa	ance	e Level								
134																			
135									I Statistics										
136					nimum c											ogged Da		1.993	
137				Ma	ximum c	of Logge	ed Data	2.773						SI.	D of Io	ogged Da	ata	0.543	
138								!	I Distrib										_
139						050/			ormal Distribu	noıtı	-		200/ C	ما میں مام مان	/ \ /	V/II=\ I I		10.10	_
140				050/ 01	nebyshev		H-UCL	11.62						•	,	IVUE) U		12.19	
141					nebysnev							97.	.5% C	nebysn	iev (ivi	IVUE) U	CL	16.28	_
142				99 /0 CI	lebysile	v (IVI V O	E) UCL	20.94											-
143						Nor	noroma	otrio Diotribu	tion Free UC	1 0+	otiotico								4
144							•		Discernible [4
145						Date	a appea	ai to ioliow a	Discernible i	Disti	- IDUIIOII								-
146							Nonna	rametric Dis	tribution Free										-
147						95% CI	LT UCL						9	5% BC/	A Roo	tstrap U	CIT	9.95	-
148				95% S	tandard l											strap-t U		10.24	-
149 150					% Hall's I		•					<u></u>	5% P			tstrap U		9.907	\dashv
151			90		yshev(N		•									n, Sd) U		12.62	\dashv
152					yshev(N									-	-	n, Sd) U		18.24	\dashv
153					, ,,,		,	ĺ								- , -			\dashv
154								Suggested	UCL to Use										\dashv
155					95% S	Student's	s-t UCL										$\overline{}$		-
156																			\dashv
157				When a	data se	t follow	s an apı	proximate dis	stribution pass	sing	only on	e of the	GOF	tests,					\dashv
158									istribution pas										\dashv
159									F 22		-								\dashv
160		Note: Sugge	estions i	egardin	g the sel	lection of	of a 95%	6 UCL are pr	ovided to help	p the	user to	select tl	he mo	ost appr	ropriat	e 95% l	JCL.		\dashv
161				_				· · · · · · · · · · · · · · · · · · ·	ution, and ske										\exists
162	H					•			ts; for addition								sticia	n.	\exists
163																			1
. 55																			

	A B C	D E	F	G H I J K Consorred Full Data Sets	L
1		OCL Statis		erisoreu Fuii Data Sets	
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.2 11/18/2024 1	11:03:21 AM		
5	From File	WorkSheet.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	GC7-WRA				
12					
13				Statistics	
14	Total	I Number of Observations	14	Number of Distinct Observations	12
15				Number of Missing Observations	0
16		Minimum	10	Mean	19.06
17		Maximum	31	Median	16
18		SD SD	7.15	Std. Error of Mean	1.911
19		Coefficient of Variation	0.375	Skewness	0.547
20			Name of 6	20F Took	
21	c	Shapiro Wilk Test Statistic	0.897	GOF Test Shapiro Wilk GOF Test	
22		Shapiro Wilk Critical Value	0.897	Data appear Normal at 1% Significance Level	
23	1763	Lilliefors Test Statistic	0.825	Lilliefors GOF Test	
24	1	1% Lilliefors Critical Value	0.263	Data appear Normal at 1% Significance Level	
25 26				: 1% Significance Level	
27					
28		Ass	suming Non	mal Distribution	
29	95% N	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	22.44	95% Adjusted-CLT UCL (Chen-1995)	22.5
31				95% Modified-t UCL (Johnson-1978)	22.49
32					
33			Gamma (GOF Test	
34		A-D Test Statistic	0.493	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.736	Detected data appear Gamma Distributed at 5% Significance	e Level
36		K-S Test Statistic	0.201	Kolmogorov-Smirnov Gamma GOF Test	
37		5% K-S Critical Value	0.229	Detected data appear Gamma Distributed at 5% Significand	e Level
38		Detected data appear	Gamma Di	stributed at 5% Significance Level	
39				Ohabishisa	
40				Statistics	6 262
41		k hat (MLE) Theta hat (MLE)	7.91 2.409	k star (bias corrected MLE) Theta star (bias corrected MLE)	3.043
42		nu hat (MLE)	2.409	nu star (bias corrected MLE)	175.3
43	NA	ILE Mean (bias corrected)	19.06	MLE Sd (bias corrected)	7.615
44	IVI	LE MEAN (DIAS CONTECTEU)	13.00	Approximate Chi Square Value (0.05)	145.7
45 46	Adius	sted Level of Significance	0.0312	Adjusted Chi Square Value	142.1
46 47	. 10/01			,25.50 5 5400.5 Value	-
48		Ass	suming Garr	nma Distribution	
48	95% A	Approximate Gamma UCL	22.93	95% Adjusted Gamma UCL	23.51
50				·	
51			Lognorma	GOF Test	
52	5	Shapiro Wilk Test Statistic	0.933	Shapiro Wilk Lognormal GOF Test	
53	10% S	Shapiro Wilk Critical Value	0.895	Data appear Lognormal at 10% Significance Level	
54		Lilliefors Test Statistic	0.181	Lilliefors Lognormal GOF Test	
55	10	0% Lilliefors Critical Value	0.208	Data appear Lognormal at 10% Significance Level	

56	Α		В		С		D	Data ap		F Lognormal	G at 10% Sig	H nificance	Level	I		J		K	L
57																			
58										_	al Statistics								
59								Logged		2.303						Mean o			2.883
60					l	Maxir	num of	Logged	Data	3.434						SD o	f logge	ed Data	0.372
61											15:								
62								95% H			ormal Distri	bution		000	0/ Ob -	byshev	/ N / N / L I	וב) ווכו	24.83
63					05%	Choh	vehov	(MVUE)		23.44						byshev	`	,	31.08
64							-	(MVUE)		38.22				37.3	70 CHE	bysnev	(IVI V U	L) UCL	31.00
65 66					3370	01101	yonev	(WVOL)	OOL	00.22									
66 67								Nonpa	arame	tric Distrib	ıtion Free U	JCL Statis	tics						
68								Data a	appea	r to follow a	Discernibl	e Distribu	tion						
69																			
70								N	onpar	ametric Dis	tribution Fr	ee UCLs							
71							9	95% CLT	UCL	22.2					95%	BCA B	ootstr	ap UCL	22.26
72					95%	Stan	dard B	Bootstrap	UCL	22.14						95% Bo	otstra	p-t UCL	22.95
73					ç	95% F	lall's B	Bootstrap	UCL	22.16				959	% Pero	centile B	ootstr	ap UCL	22.2
74							•	ean, Sd)		24.79					•	shev(Me	-	′	27.39
75				97	′.5% Cl	hebys	hev(M	ean, Sd)	UCL	30.99				99%	Cheby	shev(Me	ean, S	Sd) UCL	38.07
76																			
77											UCL to Us	е							
78							5% St	udent's-t	UCL	22.44									
79		Noto	Cuasa	otiono		dina t		ation of	o 0E0/	LICI oro n	ravidad ta b	ala tha ua	or to	a alaat tha	moot	onnronr	ioto O	E0/ LICI	
					regard	aing ti	ie seie	ection of	a 95%	OCL are p	ovided to h	eip the us	er to :	select the	most	appropr	late 9	5% UCL.	
80			Racom	nmand	dations	ara h	acad ı	ınon dət	9 6170	data dietrik	ution and	kownoce	ueino	reculte f	rom ci	mulation	etudi	ioc	
81	Н							-			oution, and s								ın
81 82	Но							-			oution, and sets; for addit								ın.
81 82 83	Но							-											ın.
81 82 83 84	Ho GC7-WRB							-											ın.
81 82 83 84 85								-											in.
81 82 83 84								-		orld data se									in.
81 82 83 84 85 86					s resul	lts will	not co	-	teal W	orld data se	ets; for addit			e user ma	ay war		sult a	statisticia	6
81 82 83 84 85 86 87					s resul	lts will	not co	over all F	teal W	orld data se	ets; for addit			e user ma	ay war	nt to cons	Sult a	statisticia	
81 82 83 84 85 86 87					s resul	lts will	not co	Observa	teal W	General 6 7.43	ets; for addit			e user ma	ay war	nt to cons	Sult a : Obser	rvations rvations Mean	6 0 96.92
81 82 83 84 85 86 87 88					s resul	lts will	not co	Observa	ations mum	General 6 7.43 220	ets; for addit			e user ma	ay war	Distinct	Obser	rvations rvations Mean Median	6 0 96.92 78.57
81 82 83 84 85 86 87 88 89					s resul	Its will	ber of	Observa Min	ations mum sp	General 6 7.43 220 96.8	ets; for addit			e user ma	ay war	Distinct	Obser Obser	rvations rvations Mean Median of Mean	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93					s resul	Its will	ber of	Observa	ations mum sp	General 6 7.43 220	ets; for addit			e user ma	ay war	Distinct	Obser Obser	rvations rvations Mean Median	6 0 96.92 78.57
81 82 83 84 85 86 87 88 89 90 91 92 93		oweve	r, simu	lations	Total	I Num	ber of	Observa Mini Maxi	etions imum SD iation	General 6 7.43 220 96.8 0.999	Statistics	ional insiç	ht the	Numb	ber of I	Distinct Missing Std. E	Obser Obser	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94		oweve	r, simu	mple s	Total	I Num	ber of	Observa Mini Maxi nt of Var	intions imum SD iation	General 6 7.43 220 96.8 0.999	Statistics	remental s	ht the	Numb	ber of l	Distinct Missing Std. E	Obser Obser Error o	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95		oweve	r, simu	mple s	Total	Its will	ber of efficience (e.g.,	Observa Mini Maxi nt of Var <10), if	etions mum SD iation	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF	Statistics d using incr	remental s	ht the	Numb Numb	ber of loor of	Distinct Missing Std. E	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96		oweve	r, simu	mple s	Total	I Num Ccc smal	ber of efficie (e.g., C Tec	Observa Mini Maxi nt of Var <10), if th Reg Grecomme	imum SD iation data a	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF	Statistics d using increase C 2020 and the Chebys	remental s	ample 112) for	Numb Numb ing methor addition	ber of loor of loor of loon of	Distinct Missing Std. E	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97		oweve	r, simu	mple s	Total size is r also tote that	Ccc small	ber of efficient (e.g., C Tectors may be Chelon	Observa Mini Maxi 10), if ch Reg Grecommobyshev l	eal W intions imum SD iation data a iuide cend th	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results	Statistics d using incr C 2020 and the Chebys in gross ov	remental sed ITRC 20 shev UCL	ampl for sr	Numb Numb ing methor additionall samu	ber of loodologonal gu	Distinct Missing Std. E	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	GC7-WRB	oweve	r, simu	mple s	Total size is r also tote that	Ccc small	ber of efficient (e.g., C Tectors may be Chelon	Observa Mini Maxi 10), if ch Reg Grecommobyshev l	eal W intions imum SD iation data a iuide cend th	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results	Statistics d using increase C 2020 and the Chebys	remental sed ITRC 20 shev UCL	ampl for sr	Numb Numb ing methor additionall samu	ber of loodologonal gu	Distinct Missing Std. E	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	GC7-WRB	oweve	r, simu	mple s	Total size is r also tote that	Ccc small	ber of efficient (e.g., C Tectors may be Chelon	Observa Mini Maxi 10), if ch Reg Grecommobyshev l	eal W intions imum SD iation data a iuide cend th	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results hnical Guid	Statistics d using incr C 2020 and the Chebys in gross ov	remental sed ITRC 20 shev UCL	ampl for sr	Numb Numb ing methor additionall samu	ber of loodologonal gu	Distinct Missing Std. E	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101	GC7-WRB	oweve	r, simu	mple s	Total size is r also tote that	Cosmal to ITRO	ber of efficient (e.g., C Tector may recommended the Property of the Proper	Observa Mini Maxi 10), if ch Reg Grecommobyshev l	mum SD iation data a fuide cend th	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results hnical Guid	Statistics d using increase 2020 and the Chebys in gross over the for a discontinuous control of the control o	remental sed ITRC 20 shev UCL	amplification of the Control of the	Numb Numb ing methor additionall samu	ber of loor of	Distinct Missing Std. E	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	GC7-WRB	oweve	r, simu	mple s	Total size is r also to the that	Its will I Num Co smal to ITF Th fer to	ber of efficience (e.g., C Tectors may be Chelothe Process o Wilk	Observa Mini Maxi 10), if th Reg Grecommobyshev U	ations mum SD iation data a duide cend th JCL of	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF et-UCL or ften results hnical Guid	Statistics d using increase 2020 and the Chebys in gross over the for a discontinuous control of the control o	remental sed ITRC 20 shev UCL verestimate sussion of	ht the	Numb Numb ing methor additionall samuthe mea	ber of loor of loonal guple size. Wilk G	Distinct Missing Std. Eggy (ISM) Std. Eggy (ISM) Juidance, L.	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 101	GC7-WRB	oweve	r, simu	mple s	Total size is r also to the that	Ccc small to ITRC The fer to	ber of efficient (e.g., C Tectors may not be Chelotthe Proceed to Wilk or Wi	Observa Mini Maxi 10), if th Reg Grecommobyshev Ucu 5.	ations mum SD iation data a fuide cend th JCL of 2 Tec	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results hnical Guid	Statistics d using increase 2020 and the Chebys in gross over the for a discontinuous control of the control o	remental sed ITRC 20 shev UCL verestimate sussion of	ht the	Numb Numb ing meth or additionall same the mea	ber of loor of	Distinct Missing Std. Egy (ISM) Juidance, Zees (n <	Obser Obser Sko	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	GC7-WRB	oweve	r, simu	mple s	Total size is r also tote that	cc small to ITRC The fer to Shapin Li	ber of efficie (e.g., C Tec may receive the Pr	Observa Mini Maxi 10), if th Reg Grecommobyshev U Test Sta Critical V Test Sta	data a diude conditions. JCL of 2 Teccondistic /alue	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results hnical Guid 0.823 0.713 0.301 0.373	Statistics d using increte C 2020 and the Chebys in gross owe for a disconstitution of the Company of the Comp	remental sed ITRC 20 shev UCL rerestimate sussion of	ht the	Numb Numb ing methor additionall samp the mea	ber of loor of	Distinct Missing Std. E Std. E GOF Tes Gof Signific	Obser Obser Sko) appro	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	GC7-WRB	oweve	r, simu	mple s	Total size is r also tote that	cc small to ITRC The fer to Shapin Li	ber of efficient (e.g., C Tectors e Chell the Proposition of Wilk D Wilk Diefors liefors	Observa Mini Maxi 10), if the Reg Grecommobyshev Ucullong Test State Critical Value Critical V	ations ations ations ations ation data a atide cond the JCL of 2 Tec atistic /alue atistic /alue appea	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF et-UCL or ften results hnical Guid 0.823 0.713 0.301 0.373 ar Normal a	Statistics d using incr C 2020 and the Chebys in gross ov le for a disc	remental sed ITRC 20 shev UCL rerestimal cussion of	ample appear	Numb Numb ing methor additionall samp the mea	ber of loor of	Distinct Missing Std. E Std. E GOF Tes Gof Signific	Obser Obser Sko) appro	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	GC7-WRB	oweve	r, simu	mple s	Total size is r also tote that	cc small to ITRC The fer to Shapin Li	ber of efficient (e.g., C Tectors e Chell the Proposition of Wilk D Wilk Diefors liefors	Observa Mini Maxi 10), if the Reg Grecommobyshev Ucullong Test State Critical Value Critical V	ations ations ations ations ation data a atide cond the JCL of 2 Tec atistic /alue atistic /alue appea	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF et-UCL or ften results hnical Guid 0.823 0.713 0.301 0.373 ar Normal a	Statistics d using increte C 2020 and the Chebys in gross owe for a disconstitution of the Company of the Comp	remental sed ITRC 20 shev UCL rerestimal cussion of	ample appear	Numb Numb ing methor additionall samp the mea	ber of loor of	Distinct Missing Std. E Std. E GOF Tes Gof Signific	Obser Obser Sko) appro	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	GC7-WRB	oweve	r, simu	mple s	Total size is r also tote that	cc small to ITRC The fer to Shapin Li	ber of efficient (e.g., C Tectors e Chell the Proposition of Wilk D Wilk Diefors liefors	Observa Mini Maxi 10), if the Reg Grecommobyshev Ucullong Test State Critical Value Critical V	mum SD iation data a Guide Cend th JCL of 2 Tec atistic /alue atistic /alue atpea	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results hnical Guid Normal 0.823 0.713 0.301 0.373 ar Normal a	Statistics d using increase 2020 and the Chebys in gross over the for a disconstitution of the Chebys in gross over the for a disconstitution of the Chebys in gross over the for a disconstitution of the Chebys in gross over the for a disconstitution of the Chebys in gross over the Chebys in gro	remental sed ITRC 20 shev UCL rerestimate cussion of Data	ample appear	Numb Numb ing methor additionall samp the mea	ber of loor of	Distinct Missing Std. E Std. E GOF Tes Gof Signific	Obser Obser Sko) appro	rvations rvations Mean Median of Mean ewness	6 0 96.92 78.57 39.52
81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	GC7-WRB	oweve	r, simu	mple s refer	Total size is r also tote that	Its will I Num Cc smal to ITF ITRC Th fer to Shapir Li 1% Lil	ber of efficient (e.g., C Tectors may recommended the Property of Wilker) o Wilker Wi	Observa Mini Maxi 10), if the Reg Grecommobyshev Ucullong Test State Critical Value Critical V	mum SD iation data a Guide Cend th JCL of 2 Tec atistic /alue atistic /alue atpea	General 6 7.43 220 96.8 0.999 are collecte on ISM (ITF e t-UCL or ften results hnical Guid Normal 0.823 0.713 0.301 0.373 ar Normal a	Statistics d using incr C 2020 and the Chebys in gross ov le for a disc	remental sed ITRC 20 shev UCL rerestimal sussion of Data icance Lesmall samution	ample appea	Numb Numb ing methor additionall samp the mea	ber of loor of	Distinct Missing Std. E Std. E gy (ISM) Jidance, L. GOF Tes 6 Signific	Obser Obser Obser Tror c Sko	rvations rvations Mean Median of Mean ewness roach,	6 0 96.92 78.57 39.52

	Α	В	С	D	E	F	G	Н	l J K	L
111				95% Stude	ent's-t UCL	176.6			95% Adjusted-CLT UCL (Chen-1995)	166.3
112									95% Modified-t UCL (Johnson-1978)	177.2
113										
114				4 D T	. 0		GOF Test		D. I' O	
115					est Statistic	0.639 0.721	Datastad		erson-Darling Gamma GOF Test	and awal
116				5% A-D Cri	est Statistic	0.721	Detected		ear Gamma Distributed at 5% Significand gorov-Smirnov Gamma GOF Test	ce Level
117				5% K-S Cri		0.298	Detected		ear Gamma Distributed at 5% Significand	na l aval
118							stributed at 59			SC ECVCI
119 120							eliable for sma			
121										
122						Gamma	Statistics			
123				k	hat (MLE)	0.767			k star (bias corrected MLE)	0.495
124				Theta	hat (MLE)	126.4			Theta star (bias corrected MLE)	196
125					hat (MLE)	9.202			nu star (bias corrected)	5.935
126			М	LE Mean (bias	corrected)	96.92			MLE Sd (bias corrected)	137.8
127									Approximate Chi Square Value (0.05)	1.606
128			Adjus	sted Level of S	ignificance	0.0122			Adjusted Chi Square Value	0.927
129					A ==	i O	Dietwik sti			
130			05% Λ	approximate Ga		358	nma Distributio	on ————	95% Adjusted Gamma UCL	620.6
131			9576 F	приохіпіате Са	illilla UCL	336			33 % Adjusted Gariiria OCL	020.0
132 133						Lognorma	I GOF Test			
134			S	Shapiro Wilk Te	st Statistic	0.822		Sha	apiro Wilk Lognormal GOF Test	
135				hapiro Wilk Cri		0.826			Lognormal at 10% Significance Level	
136				Lilliefors Te	st Statistic	0.273		L	illiefors Lognormal GOF Test	
137			10	% Lilliefors Cr	tical Value	0.298	Г	ata appea	ar Lognormal at 10% Significance Level	
138							ormal at 10%			
139				Note	GOF tests	may be unre	eliable for sma	all sample	sizes	
140										
141				N4: :			I Statistics		M (1 15 1	0.700
142				Minimum of Lo					Mean of logged Data SD of logged Data	3.796 1.551
143				waxiiiiuiii oi Lo	gyeu Data	5.594			3D of logged Data	1.551
144					Assı	ımina Loana	ormal Distribu	tion		
145 146				9	5% H-UCL	9925			90% Chebyshev (MVUE) UCL	301
147			95%	Chebyshev (M	VUE) UCL	388.2			97.5% Chebyshev (MVUE) UCL	509.3
148			99%	Chebyshev (M	VUE) UCL	747.2				
149									1	
150					Nonparame	etric Distribu	tion Free UCL	Statistic	s	
151				l	Data appea	r to follow a	Discernible D	istributio	n	
152										
153				<u>+</u>	-		tribution Free	UCLs	0-2/-0-2	450.0
			050		CLT UCL	161.9			95% BCA Bootstrap UCL	159.3
154				Standard Boo	tstrap UCL	155.9			95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	175.7 159.9
154 155					totro - LIOI	122				1288
154 155 156			g	95% Hall's Boo		132			•	
154 155 156 157			90% Ch	95% Hall's Boo nebyshev(Mear	n, Sd) UCL	215.5			95% Chebyshev(Mean, Sd) UCL	269.2
154 155 156 157 158			90% Ch	95% Hall's Boo	n, Sd) UCL				•	
154 155 156 157 158 159			90% Ch	95% Hall's Boo nebyshev(Mear	n, Sd) UCL	215.5 343.7	UCL to Use		95% Chebyshev(Mean, Sd) UCL	269.2
154 155 156 157 158 159 160			90% Ch	95% Hall's Boo nebyshev(Mear	n, Sd) UCL n, Sd) UCL	215.5 343.7	UCL to Use		95% Chebyshev(Mean, Sd) UCL	269.2
154 155 156 157 158 159 160 161			90% Ch	95% Hall's Boo nebyshev(Mear nebyshev(Mear	n, Sd) UCL n, Sd) UCL	215.5 343.7 Suggested	UCL to Use		95% Chebyshev(Mean, Sd) UCL	269.2
154 155 156 157 158 159 160 161 162		Note: Sugge	90% Cr 97.5% Cr	95% Hall's Boo nebyshev(Mear nebyshev(Mear 95% Stude	n, Sd) UCL n, Sd) UCL ent's-t UCL	215.5 343.7 Suggested 176.6		the user t	95% Chebyshev(Mean, Sd) UCL	269.2 490.1
154 155 156 157 158 159 160 161 162 163			90% Ch 97.5% Ch	95% Hall's Boo nebyshev(Mean nebyshev(Mean 95% Stude	n, Sd) UCL n, Sd) UCL ent's-t UCL	215.5 343.7 Suggested 176.6	ovided to help		95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	269.2 490.1
154 155 156 157 158 159 160 161 162		Recon	90% Ch 97.5% Ch estions regard	95% Hall's Boo nebyshev(Mean nebyshev(Mean 95% Stude ding the selecti are based upo	n, Sd) UCL n, Sd) UCL ent's-t UCL on of a 95% n data size	215.5 343.7 Suggested 176.6 UCL are production, data distribution	ovided to help ution, and ske	wness usi	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL to select the most appropriate 95% UCL.	269.2

A B C D E F G H I J K L

1	A B C D E	F	G H I J K L
2	OGE Status	uco ioi one	censored i dii bata cets
3	User Selected Options	LAF. 40 D	
5	Date/Time of Computation ProUCL 5.2 11/19/2024 4 From File ProUCL Input.xls	+.45:42 PM	
6	Full Precision OFF		
7	Confidence Coefficient 95%		
9	Number of Bootstrap Operations 2000		
10			
11 12	GF-WRA		
13		General	Il Statistics
14	Total Number of Observations	26	Number of Distinct Observations 22
15 16	Minimum	170	Number of Missing Observations 0 Mean 305.6
17	Maximum	491	Median 287.5
18 19	SD	78.73	Std. Error of Mean 15.44
20	Coefficient of Variation	0.258	Skewness 0.634
21		Normal	GOF Test
22	Shapiro Wilk Test Statistic	0.96	Shapiro Wilk GOF Test
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.891 0.132	Data appear Normal at 1% Significance Level Lilliefors GOF Test
25	1% Lilliefors Critical Value	0.199	Data appear Normal at 1% Significance Level
26 27	Data appea	ar Normal a	at 1% Significance Level
28	Ass	sumina Nor	rmal Distribution
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)
30 31	95% Student's-t UCL	332	95% Adjusted-CLT UCL (Chen-1995) 333.1 95% Modified-t UCL (Johnson-1978) 332.3
32			
33 34	* D.T. (0		GOF Test
35	A-D Test Statistic 5% A-D Critical Value	0.234 0.744	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level
36	K-S Test Statistic	0.109	Kolmogorov-Smirnov Gamma GOF Test
37 38	5% K-S Critical Value	0.171	Detected data appear Gamma Distributed at 5% Significance Level Distributed at 5% Significance Level
39	регестей аата арреаг	adminia Di	visuributed at 576 SigniffCalice Level
40			a Statistics
41 42	k hat (MLE) Theta hat (MLE)	16.13 18.95	k star (bias corrected MLE) 14.29 Theta star (bias corrected MLE) 21.39
43	nu hat (MLE)		nu star (bias corrected) 743.1
44 45	MLE Mean (bias corrected)	305.6	MLE Sd (bias corrected) 80.84
46	Adjusted Level of Significance	0.0398	Approximate Chi Square Value (0.05) 680.9 Adjusted Chi Square Value 676.9
47			
48 49	Ass 95% Approximate Gamma UCL		mma Distribution 95% Adjusted Gamma UCL 335.5
50	93% Approximate Gamina OCL	333.0	95 % Aujusteu Gaillilla OCL 555.5
51			al GOF Test
52 53	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.984 0.933	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level
54	Lilliefors Test Statistic	0.0925	Lilliefors Lognormal GOF Test
55 56	10% Lilliefors Critical Value	0.156	Data appear Lognormal at 10% Significance Level
57	Data appear i	Lognormal	at 10% Significance Level
58			nal Statistics
59 60	Minimum of Logged Data Maximum of Logged Data	5.136 6.196	Mean of logged Data 5.691 SD of logged Data 0.256
61			
62 63			normal Distribution
64	95% H-UCL 95% Chebyshev (MVUE) UCL	335.3 373.2	90% Chebyshev (MVUE) UCL 352.1 97.5% Chebyshev (MVUE) UCL 402.4
65	99% Chebyshev (MVUE) UCL	459.8	7.15.15 0.1007,0.1107 (11.17 0.17 0.01 1.17 0.17
66 67	Nonorama	tric Dietrib	ution Free UCL Statistics
68			a Discernible Distribution
69 70			strikution Free LICLs
71	Nonpar 95% CLT UCL	ametric Dis 331	stribution Free UCLs 95% BCA Bootstrap UCL 331.3
72	95% Standard Bootstrap UCL	330.3	95% Bootstrap-t UCL 334.4
73 74	95% Hall's Bootstrap UCL	333.8	95% Percentile Bootstrap UCL 330
75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	351.9 402	95% Chebyshev(Mean, Sd) UCL 372.9 99% Chebyshev(Mean, Sd) UCL 459.2
76			
77 78	95% Student's-t UCL	Suggested 332	d UCL to Use
79	95% Student S-f UCL	33Z	
80			provided to help the user to select the most appropriate 95% UCL.
81 82			bution, and skewness using results from simulation studies. ets; for additional insight the user may want to consult a statistician.
JŁ	However, Simulations results will not cover all Real W	onu uala Se	eta, for additional marght the user may want to consult a statistician.

	Α	В	С		D	Е	-	F	G		Н				J	ŀ	(L
83 84																		
	GF-WRB																	
86																		
87 88			Tc	atal Nu	mber of (Obcony	ations	General 7	Statistics				Numb	or of	Distinct (Oheon	ations	7
89			10	<u>ilai ivui</u>	ilibei oi c	Juseiva	2110115	/							Missing (0
90							imum	28.7									Mean	84.81
91 92						Maxi	imum SD	141 42.32							Std F	M Error of	edian	79.36 16
93				C	oefficien	nt of Var		0.499							Olu. L		vness	0.402
94 95						40) '((1014)			
96		Note: Sa						re collected on ISM (ITR									acn,	
97		ŀ		nat ITR	C may re	ecomm	end th	e t-UCL or t	he Cheby	shev	UCL for	sma	ıll samp	ole siz				
98 99								ften results hnical Guid							1			
100				telel to	o uie Pic	<u> </u>	.2 160	illical Guiu	e ioi a uis	Cussic	on or un	e Cili	ebysne	v UC	<u></u>			
101									GOF Test									
102 103			1%		iro Wilk iro Wilk (0.907 0.73			Data ani				GOF Tes Signific		evel	
104					_illiefors			0.189			Jata ap		Lilliefor			Janee L	CVCI	
105				1% L	illiefors (0.35	10/ 0: :				Normal	at 1%	6 Signific	cance L	evel	
106 107					Not	<u>uata</u> le GOF	appea tests	ar Normal at may be unre	<u>: 1% Signi</u> eliable for	ricano small	e Leve samnle	ı Size	es.					
108					1100	.5 401						. 5.20						
109 110			OF0'	Name	al lioi		Ass	suming Nor	mal Distrib	ution		0/ 11/	N c /A -	li i et e	d for Ole	D14/P # = = =	`	
111			<u> </u>		<u>al UCL</u> 95% Stu	udent's-t	t UCL	115.9			95				d for Ske LT UCL			113.7
112								<u> </u>							UCL (Jo			116.3
113 114								Gammo	GOF Test									
115					A-D	Test Sta	atistic	0.298			And	ersor	n-Darlin	ıg Ga	mma GC	OF Test		
116				Ę	5% A-D (0.71	Detec	ted da	ata appe	ear G	amma	Distril	outed at	5% Sigi	nificano	e Level
117 118					<u>K-S</u> 5% K-S (Test Sta		0.186 0.313	Detec	ted d:					iamma (outed at			lava l a
119								Gamma Di						Distrii	Juica at	J 70 Olgi	illicario	ic Ecver
120 121					Not	<u>ie GOF</u>	tests	may be unre	eliable for	<u>small</u>	sample	size	s					
122								Gamma	Statistics									
123						k hat (4.281							(bias co			2.541
124 125						eta hat (19.81 59.93					Theta		(bias co ı star (bi			33.37
126				MLE N	Mean (bia	<u>nu hat (</u> as corre		84.81							E Sd (bi			35.58 53.2
127					•							App	oroxima	te Ch	i Square	Value	(0.05)	22.93
128 129			Ad	ljusted	Level of	Signific	cance	0.0158						Adjus	ted Chi S	Square	Value	19.92
130								suming Gan	ma Distril	bution)							
131 132			95%	6 Appro	oximate (<u>Gamma</u>	ı UCL	131.6					9	95% A	djusted	Gamma	UCL	151.5
133								Lognorma	I GOF Tes									
134					iro Wilk			0.928	. 461 160						mal GO			
135 136			10%		iro Wilk (0.838		<u>Da</u>					0% Sign		Level	
137					<u>illiefors</u> illiefors (0.182 0.28		Da					<u>al GOF</u> 0% Sign		Level	
138						Data ap	ppear	Lognormal a		nifica	nce Le	vel						
139 140					Not	<u>ie GOF</u>	tests I	may be unre	eliable for	<u>small</u>	sample	size	s					
141								Lognorma	l Statistics	S								
142 143					imum of			3.357							Mean of			4.319
144				waxi	imum of	<u>Logged</u>	Data	4.949							SD 01	f logged	ı Data	0.557
145								ıming Logno	rmal Dist	ributic	n							
146 147			05	0/ Cb -	hych	95% H		157.7							byshev			140
148					ebyshev (ebyshev (164.6 265.9					97.5%	₀ ∪ne	ebyshev	(IVI V UE	JUCL	198.7
149					.,													
150 151								tric Distribu r to follow a										
152						aia 8	apped	i to ioliow a	ייסרוווום איריים.	וה הופ	•แามนแบ	11						
153					-			ametric Dis	tribution F	ree U	CLs		_	051	, DC : -		110:	110.5
154 155			Ot	5% Sta	95 Indard Bo	5% CLT		111.1 109.4							<u>6 BCA B</u> 95% Bo			112.5 130.3
156				95%	Hall's Bo	ootstrap	UCL	140.9						6 Pero	centile B	ootstrap	UCL	109.9
157 158					shev(Me			132.8							shev(Me			154.5
159			97.5%	uneby	shev(Me	ean, Sd)	UCL	184.7					99% (neby	shev(Me	ean, Sd	UCL	244
160								Suggested	UCL to Us	se								
161 162					95% Stu	ıdent's-t	t UCL	115.9										
163		Note: Sugge	estions rea	arding	the selec	ction of	a 95%	UCL are pr	ovided to h	nelp th	ne user	to se	lect the	most	appropr	iate 959	% UCL.	
164								data distrib										

405	Α	В	С	D	E	F	G	Н	Į	J	K	L
165 166		wever, simu	lations results	s will not co	over all Real W	orld data se	ts; for additio	nal insight the	e user may v	vant to cons	ult a statisticia	an.
167												
	GF-WRC											
169												
170						General	Statistics					
171			Total	Number of	Observations	17					Observations	17
172 173						44			Number	of Missing C	Observations	0
174					Minimum Maximum	41 1340					Mean Median	143.1 75
175					SD	309.1				Std F	rror of Mean	74.96
176				Coefficier	nt of Variation	2.16				Old. L	Skewness	4.094
177												
178							GOF Test					
179 180					Test Statistic	0.318				k GOF Test		
181			1% Sr		Critical Value Test Statistic	0.851 0.494		Data Not	Lilliefors	% Significar	ice Level	
182			19		Critical Value	0.434		Data Not		% Significar		
183			•	70 Elliototo			% Significar		- Torrinar at 1	70 Olgimiodi	100 20101	
184												
185					As:	<u>suming Nor</u>	mal Distributi					
186 187			95% No	ormal UCL		074				sted for Ske		246
188				95% 50	udent's-t UCL	274					(Chen-1995) hnson-1978)	346 286.4
189									33 /6 IVIOUIIIE	u-1 OCL (301	1115011-1970)	200.4
190				-		Gamma	GOF Test					
191					Test Statistic	3.592				Gamma GO		
192					Critical Value	0.768	Da	ata Not Gamm	na Distribute	ed at 5% Sig	nificance Lev	el
193 194					Test Statistic	0.426	-			v Gamma G		
195					Critical Value Oata Not Gamr	0.215				at 5% Sig	nificance Lev	el
196					ata NOL Gailli		eu at 5 /6 Sig	IIIIICAIICE LEV	<u>CI</u>			
197						Gamma	Statistics					
198					k hat (MLE)	0.958			ks	tar (bias cor	rrected MLE)	0.828
199					eta hat (MLE)	149.4			Theta s		rrected MLE)	172.8
200 201					nu hat (MLE)	32.57					as corrected)	28.15
202			ML	<u>-E Mean (bi</u>	ias corrected)	143.1		Λ			as corrected)	157.3 17.05
203			Δdius	ted Level o	f Significance	0.0346		A			Value (0.05) Square Value	16.14
204			Aujus	ieu Levei o	i Signilicance	0.0340			Au	justeu Cili S	quale value	10.14
205					Ass	suming Gam	nma Distribut	tion				
206			95% Ap	pproximate	Gamma UCL	236.4			95%	% Adjusted C	Gamma UCL	249.6
207 208												
208			CI	hanira Wille	Toot Ctotiotic	Lognorma 0.623	I GOF Test	Chani	no Mille I om	normal COE	Toot	
210					Test Statistic Critical Value	0.623				normal GOF 10% Signific		
211			10 70 01		Test Statistic	0.309				rmal GOF T		
212			109		Critical Value	0.19				10% Signific		
213					Data Not Lo	ognormal at	10% Signific	ance Level				
214 215 216												
215				Minimum of	Logged Date		I Statistics			Moon of	Jaggad Data	4 250
217					Logged Data Logged Data	3.714 7.2					logged Data logged Data	4.358 0.791
218			iv	laximum or	Logged Data	7.2				<u> </u>	logged Data	0.731
219					Assı	ıming Logno	rmal Distribu	ution				
220					95% H-UCL	170					MVUE) UCL	168.9
221					(MVUE) UCL	198.1			97.5% (<u>Chebyshev (</u>	MVUE) UCL	238.7
222 223			99% (<u>Inebyshev</u>	(MVUE) UCL	318.4						
224					Nonnarame	tric Dietribu	tion Free UC	1 Statistics				
225							iscernible D					
225 226 227												
227							tribution Free	e UCLs				
228 229			0501		5% CLT UCL	266.4					ootstrap UCL	369.2
230					ootstrap UCL ootstrap UCL	260.2 994.7			OEO/ F		otstrap-t UCL	
221					ean, Sd) UCL	368					ootstrap UCL an, Sd) UCL	291.5 469.9
232					ean, Sd) UCL	611.2					an, Sd) UCL	888.9
233					, , , , , , , , ,							
234							UCL to Use					
232 233 234 235 236				95% St	udent's-t UCL	274						
236		Th	louisted LIC	0.000 5	d on see:	iono that the	doto ware -	vallacted != -	randam ar	d upbiocod :	monros	
238		i ne ca	iicuiated UCL		ed on assumpt ase verify the d					ı undiased î	наннег.	
238 239 240					were collected							
240					hen contact a							
241												
242	ı	Note: Sugge	stions regardi	ing the sele	ection of a 95%	UCL are pr	ovided to hel	p the user to s	select the m	ost appropri	ate 95% UCL]
243 244	11-	Recon	mendations a	are based u	ipon data size,	, data distrib	ution, and ske	ewness using	results fron	1 simulation	studies.	
244 245	HO	wever, simu	iauons result	5 WIII HOT CO	over all Real W	ronu data se	is, ior additio	ııaı ırısıgnt the	user may v	varii io cons	uit a statisticia	JII.
246												

	A B C D E		F	G	Н		J	K	L
247 248	GF-WRC-Rev								
249			General	Statistics					
250	Total Number of Observatio		16					Observations	16
251 252	Minimu	ım 4	41			Numbe	r of Missing (Observations Mean	0 68.31
253	Maximu		02					Median	71
254 255			20.42				Std. E	rror of Mean	5.106
256	Coefficient of Variation	on	0.299					Skewness	0.154
257 258			Normal (GOF Test					
258 259			0.928		D-4		ilk GOF Test		
260	1% Shapiro Wilk Critical Valu Lilliefors Test Statis		0.844		рата арре		at 1% Signific GOF Test	ance Levei	
261	1% Lilliefors Critical Val	ue	0.248				at 1% Signific	ance Level	
262 263	Data ap	pear N	lormal at	t 1% Significa	ance Level				
264		Assum	ning Norr	mal Distributi	on				
265	95% Normal UCL				95%		usted for Ske		
266 267	95% Student's-t UC		77.26					(Chen-1995) hnson-1978)	76.92 77.3
268						33 70 WOUTH	CG-1 OOL (00	11113011-1370)	77.0
269 270	4.D.T. +0.15			GOF Test			0 00	\F.T.	
270	A-D Test Statis 5% A-D Critical Vali		0.475 0.739	Detected			I Gamma GC)F Test 5% Significan	ce I evel
272	K-S Test Statis		0.163	Detected			ov Gamma G		JC LCVCI
273 274	5% K-S Critical Value	ue	0.215	Detected	data appea	r Gamma D	istributed at	5% Significan	ce Level
275	Detected data appoint	ear Ga	amma Dis	stributed at 5	% Significa	nce Level			
276				Statistics					
277 278	k hat (ML		11.58					rrected MLE)	9.446
279	Theta hat (ML nu hat (ML		5.902 370.4			<u>i neta</u>	star (bias co	as corrected)	7.232 302.3
280	MLE Mean (bias correcte		68.31				MLE Sd (bia	as corrected)	22.23
281	Adjusted Loyal of Cignifican		0.0335					Value (0.05)	263 258.8
282 283	Adjusted Level of Significan	ce (0.0335			A	ajustea Chi S	Square Value	258.8
284				ma Distributi	ion				
285 286	95% Approximate Gamma UC	<u>CL 7</u>	78.51			95	Marked 6	Gamma UCL	79.78
287		Lc	ognormal	I GOF Test					
288 289	Shapiro Wilk Test Statis		0.924				gnormal GOI		
289	10% Shapiro Wilk Critical Valı Lilliefors Test Statis		0.906 0.171				at 10% Signi ormal GOF	ificance Level	
291	10% Lilliefors Critical Value	ue	0.196		Data appear	Lognormal		ficance Level	
292 293	Data appe	ar Log	<u>ınormal a</u>	at 10% Signif	icance Leve	el			
294 295		L	.ognorma	I Statistics					
295	Minimum of Logged Da		3.714					logged Data	4.18
296 297	Maximum of Logged Da	ata	4.625				SD of	logged Data	0.309
298			ng Logno	rmal Distribu	ıtion				
299 300	95% H-U(CL T	79.7					(MVUE) UCL	84.45
301	95% Chebyshev (MVUE) U0 99% Chebyshev (MVUE) U0		91.73 21.7			97.5%	Chebysnev	(MVUE) UCL	101.8
302								l	
303 304				tion Free UC Discernible I					
305	Дата ард	<u>jear to</u>	TOIIOW a	Discernible	Distribution				
306				tribution Free	UCLs		A- 0/		
307 308	95% CLT U0 95% Standard Bootstrap U0		76.71 76.57					ootstrap UCL otstrap-t UCL	76.94 77.7
309 310	95% Standard Bootstrap UC 95% Hall's Bootstrap UC		76.62			95%	Percentile Bo		76.56
310 311		CL 8	83.63			95% CI	hebyshev(Me	ean, Sd) UCL	90.57
312	97.5% Chebyshev(Mean, Sd) U(<u>ا ات</u>	00.2			99% CI	nebyshev(Me	an, Sd) UCL	119.1
313			ggested	UCL to Use					
314 315	95% Student's-t U0	CL 7	77.26						
316	Note: Suggestions regarding the selection of a 9)5% UC	CL are pr	ovided to helr	the user to	select the r	nost appropri	iate 95% UCI	
317	Recommendations are based upon data si	ize, dat	ıta distribu	ution, and ske	ewness usin	g results fro	m simulation	studies.	
318 319	However, simulations results will not cover all Rea	I World	data set	ts; for addition	nal insight th	ne user may	want to cons	sult a statisticia	an.
320									
321	GF-WRD								
322 323			General	Statistics					
324	Total Number of Observation		7	Julionico		Numbe	er of Distinct (Observations	7
325 326		\perp	45.70			Numbe	r of Missing (Observations	0
327	Minimu Maximu		45.79 80					Mean Median	64.52 66.6
328			10.85				Std. E	rror of Mean	4.101

	Α	В		С		D		E	F		G		Н		I		J		K	L
329					С	oefficie	ent of V	/ariation	0.168	8								Ske	ewness	-0.481
330 331		Note: C	omplo	olao lo		ul (o. a.	~10\	if data	oro colloc	ato d	uoina ineres	mont	al aa	malia	a moth	adala	av (ISM	l\ oppr		
332		Note: 5									using increi								oacn,	
333											he Chebysh									
334											n gross ove									
335				Re	<u>efer to</u>	o the P	roUCL	. 5.2 Ted	chnical G	uide	for a discu	<u>ssion</u>	of th	he Ch	ebyshe	v UC	L.			
336 337									Marra	-1.0	OF Tool									
338					Shan	iro Will	(Test	Statistic			OF Test			SI	aniro \	Wilk C	OF Tes	et .		
339								al Value		,		Da	ita ar				6 Signifi		Level	
340					Ĺ	illiefors	s Test	Statistic	0.153	3					Lilliefo	rs GO	F Test			
341					<u>1% L</u>	illiefors		al Value							Norma	l at 19	6 Signifi	cance	Level	
342 343						N					1% Signification 1% Signification 1% 1% Signification 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%				·•					
344						INC	ole GC	JF IESIS	may be u	ııııe	ilable for Sir	idii Sa	ampi	e size	5					
345								As	suming N	Norn	nal Distribut	ion								
346				95% N		al UCL							95				d for Sk			
347 348						95% S	tudent	's-t UCL	72.49)							CLT UCL			70.46
349														95	% IVIOU	illea-t	UCL (J	onnsor	1-19/8)	72.36
350									Gamn	na (GOF Test									
351						A-D) Test	Statistic					And	derso	n-Darlii	ng Ga	mma G	OF Te	st	
352								al Value			Detected									ce Level
353 354								Statistic al Value			Detected						Samma (oo Lovel
355											Detected at 5						บนเ ย น สโ	. J % SI	griiican	e revei
356											liable for sm									
357																				
358 359							1. 1	/ N AL T \			Statistics					I	/l-!			20.10
360						Tı		at (MLE) at (MLE)									(bias co			22.12 2.917
361								at (MLE)		•					11161		u star (b			309.6
362				N	VLE I	Mean (b		rrected)	64.52	2						ML	E Sd (b	ias cor	rected)	13.72
363														App			i Square			269.9
364 365				Adju	<u>usted</u>	Level	of Sign	ificance	0.015	8						Adjus	ted Chi	Square	<u> Value</u>	258.6
366								Δο	sumina G	am	ma Distribut	tion								
367				95% /	Appro	oximate	Gamı	ma UCL							(95% A	Adjusted	Gamn	na UCL	77.25
368										•										
369 370					01		- .	O			GOF Test		-		\A.C.I. I		100			
371								Statistic al Value		_		Data					rmal GO		t ce Level	
372				10 /0 C				Statistic				Data					al GOF		<u>'e revei</u>	
373				1			Critica	al Value	0.28			Data	appe	ear Lo			0% Sigr		e Level	
374 375											t 10% Signi									
376						No	ote GC	OF tests	may be u	ınre	liable for sm	nall sa	ampl	e size	S					
377									Lognor	rmal	Statistics									
378					Mini	imum o	f Logg	ed Data			- Otationoo						Mean o	of logge	ed Data	4.154
379					Maxi	imum o	f Logg	ed Data	4.382	2							SD o	of logge	ed Data	0.178
380 381								A			maal Diatella									
382							95%	H-UCL			rmal Distrib	ution			900	% Che	ebyshev	/M\/LI	E) IICI	77.58
383				95%	6 Che	byshev		JE) UCL	83.49								ebyshev			91.68
384								JE) UCL												
385 386							L 1.		anda Dist	٠ الد	ion Fact US		_a! - *!							
387											ion Free UC Discernible									
388							Jai	appec	101101	., a		<u></u>	uul	J.1						
389											ribution Fre	e UC	Ls							
390				0=0	V 0:			LT UCL									6 BCA B			70.28
391 392								rap UCL							OEO		95% Bo			71.84 70.67
393			(rap UCL Sd) UCL									centile B /shev(M			82.39
394								Sd) UCL									/shev(M			105.3
395			•			· ·								•						
396 397						050/ 0		I- + ! ! O'			UCL to Use								— т	
397						95% S	tudent	's-t UCL	72.49	,										
399	1	Note: Suan	estions	s regar	rdina	the sel	ection	of a 95%	6 UCL are	e pro	ovided to hel	p the	user	r to se	lect the	most	appron	riate 9!	5% UCI	
400		Reco	mmenc	dations	s are	based	upon d	lata size	, data dis	tribu	ition, and sk	ewne	ss u	sing re	esults f	rom si	imulatio	n studi	es.	
401	Ho										s; for additio									an.
402 403		Nata : F	su bledd		_4! '	دام برا	الجامور		dans - "	- la	/o.a. Oh	1-1-		1	I	and 4	``	\ 		
403		Note: Fo									(e.g., Chen, de adjustme							, may r	IOT DE	
405			161	avi6.	<u> </u>	ni o aiil	<u> </u>	JUI & III	ourous pi	OVIC	aajusiiil e	1160 10	, pu	OILV CI	JACW	ou ud	.ය ೨೮಄.			

3 User Selected Options 4 Dates Time of Compatation ProduCL Set 2122/2024 9:16:19 PM 5 From Fill ProduCL Input xis 7 Confidence Coefficient Ship 7 Coefficient Ship 7 Coefficient Ship 7 Coefficient Ship 7 Coefficient Ship 8 Coefficient Ship 8 Coefficient Ship 8 Coefficient Ship 9 Coeffi	1	Α	В	С	D	E LIOL Otati	F	G H I J K L
Duse/Time of Composition ProUCEL Epot 4:8						UCL Statis	Stics for Unc	ensored Fuli Data Sets
Front File ProUCI, InputAls		D-				10/0/0001.0	.10:10 DM	
Full Precision (OFF Number of Bosterrap Operations 2000 10 11 11 12 13 14 15 15 16 16 17 18 18 18 19 19 19 19 10 10 10 10 10 10		Dai	te/Time of Co				: 16: 19 PM	
Minimum Size Mini				II Precision	OFF			
Common Statistics Total Number of Deservations 7 Number of Desired Observations 7 Number of Missing Observations 7 7 Number of Missing Observations 7 Number of Missing Obse		Number						
Text	9	Trainbor C	л воогопар	Орогацопо	12000			
Total Number of Observations 7		I MM-TI Δ						
Total Number of Observations	12	CIAIIAI- I CV						
Number of Missian Observations O				Total	Number of O	hoonyotiono		
Maximum 18894	15			TOLAI	Number of O	<u>DSELVATIONS</u>	/	
Section Conficient of Variation O.321								
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC 7 sch Rag Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance. The Chebryshev UCL other results in gross overestimates of the meen. The Chebryshev UCL other results in gross overestimates of the meen. The Chebryshev UCL Sc Technical Guide for a Sciencesion of the Chebryshev UCL. The Chebryshev UCL Sc Technical Guide for a Sciencesion of the Chebryshev UCL. The Chebryshev UCL Sc Technical Guide for a Sciencesion of the Chebryshev UCL. Normal GOF Test Shapiro Wilk Test Statistic 0,73	18							
Note: Sample size is small (e.g., <10). If data are collected using incremental sampling methodology (SM) approach, refer state to ITRC Tech Reg Guide on ISM (TRC 2020) and ITRC 2012 for additional guidance, state of ITRC 100 for the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL for small sample sizes (n < 7) and spaces for small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL small sample sizes (n < 7). The Chebyshev UCL smal	19				Coefficient	of Variation	0.631	
Teffer also to ITRC Tech Reo Guide on ISM (TIRC 2020 and ITRC 2012) for additional guidence, but note that ITRC may recommend the LUCL of the Chebyshev UCL for semila sample sizes (n < 7).			Note: Sar	mple size is :	small (e.g. <	10), if data a	are collected	using incremental sampling methodology (ISM) approach
The Chebyshev UCL often results in gross overestimates of the mean.	22			refer also to	o ITRC Tech	Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,
Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL	23		b	out note that				
Shapiro Wilk Test Steinstic	25			Ref				
Shapiro Wilk Test Statistic 0.942 Shapiro Wilk GOF Test								•
1% Shapiro Wilk Critical Value 0.73	28			S	hapiro Wilk T	est Statistic	0.942	
1% Lillefors Critical Value 0.35	29				hapiro Wilk Cı	ritical Value	0.73	Data appear Normal at 1% Significance Level
Second Color				1				
	32					Data appe	ar Normal at	1% Significance Level
Second S					Note	GOF tests	may be unre	liable for small sample sizes
	35					As	suming Nor	nal Distribution
				95% No		1	0000	
Gamma GOF Test	38				95% Stud	ient's-t UCL	8099	
A.D Test Statistic								
S% A-D Critical Value					A-D T	est Statistic		
Significance Sign	42							Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level								
A	45				Detected	data appea	r Gamma Di	stributed at 5% Significance Level
Camma Statistics Camma Stati	46				Note	GOF tests	may be unre	liable for small sample sizes
Reserve	48						Gamma	Statistics
Number							2.259	k star (bias corrected MLE) 1.386
MLE Mean (bias corrected) 5535 MLE Sd (bias corrected) 4701								
Adjusted Level of Significance 0.0158	52			MI				MLE Sd (bias corrected) 4701
Assuming Gamma Distribution 95% Adjusted Gamma UCL 10313 95% Adjusted Gamma UCL 12637 95% Approximate Gamma UCL 10313 95% Adjusted Gamma UCL 12637	53 54			\ diuc	stad Laval of C	Significance	0.0150	
Data appear Lognormal Statistics	55			Aajus	teu Level of S	эідіннсапсе	0.0158	Aujusteu Oni Square value 8.499
Lognormal GOF Test	56 57			050/ *				
Shapiro Wilk Test Statistic 0.891 Shapiro Wilk Lognormal GOF Test	58			95% A	pproximate G	iarrima UCL	10313	95% Adjusted Gamma UCL 1263/
10% Shapiro Wilk Critical Value 0.838 Data appear Lognormal at 10% Significance Level				_				
Color								
Data appear Lognormal at 10% Significance Level	62				Lilliefors To	est Statistic	0.233	Lilliefors Lognormal GOF Test
Note GOF tests may be unreliable for small sample sizes				10				
Lognormal Statistics 68 Minimum of Logged Data 6.732 Mean of logged Data 8.381 69 Maximum of Logged Data 9.295 SD of logged Data 0.845 70 71 Assuming Lognormal Distribution 72 95% H-UCL 19275 90% Chebyshev (MVUE) UCL 11515 73 95% Chebyshev (MVUE) UCL 14075 97.5% Chebyshev (MVUE) UCL 17629 74 99% Chebyshev (MVUE) UCL 24608 Nonparametric Distribution Free UCL Statistics 75 0 Nonparametric Distribution Free UCL Statistics 78 Nonparametric Distribution Free UCLs 80 95% CLT UCL 7706 95% BCA Bootstrap UCL 7886 81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484	65							
68 Minimum of Logged Data 6.732 Mean of logged Data 8.381 69 Maximum of Logged Data 9.295 SD of logged Data 0.845 70 71 Assuming Lognormal Distribution 72 95% H-UCL 19275 90% Chebyshev (MVUE) UCL 11515 73 95% Chebyshev (MVUE) UCL 14075 97.5% Chebyshev (MVUE) UCL 17629 74 99% Chebyshev (MVUE) UCL 24608 Nonparametric Distribution Free UCL Statistics 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL 7886 81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484								
Maximum of Logged Data 9.295 SD of logged Data 0.845	68				Minimum of I	ogged Data		
Assuming Lognormal Distribution 95% H-UCL 19275 90% Chebyshev (MVUE) UCL 11515 97.5% Chebyshev (MVUE) UCL 14075 97.5% Chebyshev (MVUE) UCL 17629 99% Chebyshev (MVUE) UCL 24608 97.5% Chebyshev (MVUE) UCL 17629 99% Chebyshev (MVUE) UCL 24608 99% Chebyshev (MVUE) UCL 17629 99% Chebyshev (MVUE) UCL	69							
72 95% H-UCL 19275 90% Chebyshev (MVUE) UCL 11515 73 95% Chebyshev (MVUE) UCL 14075 97.5% Chebyshev (MVUE) UCL 17629 74 99% Chebyshev (MVUE) UCL 24608 75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL 7886 80 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484						Δορ	umina I cana	rmal Distribution
74 99% Chebyshev (MVUE) UCL 24608 75 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 Nonparametric Distribution Free UCLs 80 95% CLT UCL 7706 95% BCA Bootstrap UCL 7886 81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484	72					95% H-UCL	19275	90% Chebyshev (MVUE) UCL 11515
75 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 Nonparametric Distribution Free UCLs 80 95% CLT UCL 7706 95% BCA Bootstrap UCL 7886 81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484	73 74							97.5% Chebyshev (MVUE) UCL 17629
Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% CLT UCL 7706 95% BCA Bootstrap UCL 7886 81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484	75				onenyanev (N	vi v OL) UCL	<u> </u>	
78 79 Nonparametric Distribution Free UCLs 80 95% CLT UCL 7706 95% BCA Bootstrap UCL 7886 81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484								
79 Nonparametric Distribution Free UCLs 80 95% CLT UCL 7706 95% BCA Bootstrap UCL 7886 81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484	78					uata appea	ar to tollow a	DISCERNIDIE DISTRIBUTION
81 95% Standard Bootstrap UCL 7580 95% Bootstrap-t UCL 9484	79							
				Q5%				

	A B C D E	F	G H I J K	L
83	90% Chebyshev(Mean, Sd) UCL	-	95% Chebyshev(Mean, Sd) UCL	11288
84	97.5% Chebyshev(Mean, Sd) UCL		99% Chebyshev(Mean, Sd) UCL	
85				
86 87	95% Student's-t UCL		UCL to Use	
88	95% Students-t OCL	0099		
89	Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
90	Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
91	However, simulations results will not cover all Real W	/orld data se	ts; for additional insight the user may want to consult a statisticia	ın.
92 93				
94	LMM-WRA			
95				
96			Statistics	
97 98	Total Number of Observations	13	Number of Distinct Observations Number of Missing Observations	13 0
99	Minimum	93.12	Mean	1284
100	Maximum		Median	544
101	SD		Std. Error of Mean	393
102	Coefficient of Variation	1.104	Skewness	1.218
103 104		Normal (GOF Test	
105	Shapiro Wilk Test Statistic	0.801	Shapiro Wilk GOF Test	
106	1% Shapiro Wilk Critical Value		Data Not Normal at 1% Significance Level	
107	Lilliefors Test Statistic	0.307	Lilliefors GOF Test	
108 109	1% Lilliefors Critical Value		Data Not Normal at 1% Significance Level	
110	Data Not	i inormal at 1	% Significance Level	
111	As	sumina Nori	mal Distribution	
112	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
113	95% Student's-t UCL	1985	95% Adjusted-CLT UCL (Chen-1995)	
114 115			95% Modified-t UCL (Johnson-1978)	2007
116		Gamma	GOF Test	
117	A-D Test Statistic		Anderson-Darling Gamma GOF Test	
118	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significand	e Level
119 120	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
121	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significand stributed at 5% Significance Level	e Levei
122	Dototou data appou	- Gamma Di	Sansatou at 0 % Signinoanio Esvoi	
123			Statistics	
124 125	k hat (MLE)		k star (bias corrected MLE)	0.71
126	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	1808 18.47
127	MLE Mean (bias corrected)		MLE Sd (bias corrected)	1524
128			Approximate Chi Square Value (0.05)	9.731
129	Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	8.84
130 131		oumina Com	ma Diawih wian	
132	95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	2683
133	30% Approximate damina 66E	2407	33 % Adjusted Canima GOE	2005
134			GOF Test	
135 136	Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
137	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.889 0.197	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
138	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
139			at 10% Significance Level	
140 141		1	I Chadiatica	
141	Minimum of Logged Data		I Statistics Mean of logged Data	6.471
143	Maximum of Logged Data		SD of logged Data	1.295
144				
145			ormal Distribution	2050
146 147	95% H-UCL 95% Chebyshev (MVUE) UCL		90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	<u>2952</u> 4685
148	95% Chebyshev (MVUE) UCL		97.3% Chebysnev (WVUE) UCL	4000
149				
150			tion Free UCL Statistics	
151 152	Data appea	r to follow a	Discernible Distribution	
153	Nonna	rametric Die	tribution Free UCLs	
154	95% CLT UCL		95% BCA Bootstrap UCL	2047
155	95% Standard Bootstrap UCL		95% Bootstrap-t UCL	2319
156 157	95% Hall's Bootstrap UCL			1939
158	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	
159	or.on onedyshev(mean, ou) oue		55% Ghobyshov(Modif, Od) GOE	- 100
160			UCL to Use	
161 162	95% Adjusted Gamma UCL	2683		
163	The calculated LICLs are based on assume	tions that the	e data were collected in a random and unbiased manner.	
164			e data were collected in a random and unbiased manner.	

165	A B C D E	F	G	Н		J	K	L
165 166	If the data were collected then contact a					3,		
167								
168 169	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,							
170	However, simulations results will not cover all Real W							an.
171 172								
	LMM-WRB							
174 175			0					
176	Total Number of Observations	General 6	Statistics		Numbe	r of Distinct C	Observations	6
177						r of Missing C	Observations	0
178 179	Minimum Maximum	142.8 8150					Mean Median	1885 854.5
180	SD	3093				Std. E	rror of Mean	1263
181 182	Coefficient of Variation	1.64					Skewness	2.366
183	Note: Sample size is small (e.g., <10), if data a	are collected	using increme	ental samp	ling method	dology (ISM)	approach,	
184 185	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and IT	RC 2012) 1	for addition	al guidance,		
186	but note that ITRC may recommend th The Chebyshev UCL o					e sizes (n < /	′).	
187	Refer to the ProUCL 5.2 Tec	hnical Guide	e for a discuss	ion of the	Chebyshev	UCL.		
188 189		Normal (GOF Test					
190	Shapiro Wilk Test Statistic	0.61	201 100t			ilk GOF Test		
191 192	1% Shapiro Wilk Critical Value	0.713		Data No		1% Significar	nce Level	
193	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.435 0.373		Data No		GOF Test 1% Significar	nce Level	
194 195		Normal at 1	% Significanc					
195	As	suming Norr	mal Distribution	n				
197	95% Normal UCL	ounning reon	Tidi Diotribatio	95%	UCLs (Adju	sted for Ske	wness)	
198 199	95% Student's-t UCL	4429		,		ed-CLT UCL ed-t UCL (Jo		
200					95 % MOUIII	eu-i OCL (30	11115011-1970)	4033
201	. 5.7		GOF Test					
202 203	A-D Test Statistic 5% A-D Critical Value	0.57 0.725	Detected (Gamma GO istributed at 5		ce I evel
204	K-S Test Statistic	0.329		Kolmog	orov-Smirn	ov Gamma G	OF Test	
205 206	5% K-S Critical Value Detected data appear					istributed at 5	5% Significan	ce Level
207	Note GOF tests							
208 209		Commo	Statistics					
210	k hat (MLE)		Statistics		k	star (bias cor	rected MLE)	0.449
211	Theta hat (MLE)				Theta	star (bias cor		
212 213	nu hat (MLE) MLE Mean (bias corrected)	8.099 1885					as corrected)	5.383 2815
214				,		Chi Square	Value (0.05)	1.333
215 216	Adjusted Level of Significance	0.0122			A	djusted Chi S	quare Value	0.739
217			ma Distributio	n				
218 219	95% Approximate Gamma UCL	7612			95	% Adjusted (Gamma UCL	13728
220		Lognormal	GOF Test					
221 222	Shapiro Wilk Test Statistic	0.925				gnormal GOF		
223	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.826 0.236	<u> </u>			at 10% Signi ormal GOF T		
224	10% Lilliefors Critical Value	0.298		ata appear	Lognormal	at 10% Signi		
225 226	Data appear Note GOF tests		at 10% Signific eliable for sma					
227	11000							
228 229	Minimum of Logged Data	Lognorma 4.961	I Statistics			Moon of	logged Data	6.642
230	Maximum of Logged Data Maximum of Logged Data	9.006					logged Data	1.423
231 232	A	ımine Lees	rmal Distribute	lon	· ·			
233	ASSU 95% H-UCL		ormal Distributi	IUII	90%	Chebyshev (MVUE) UCL	4359
234	95% Chebyshev (MVUE) UCL	5590				Chebyshev (7298
235 236	99% Chebyshev (MVUE) UCL	10654	<u> </u>					
237			tion Free UCL					
238 239	Data appea	r to follow a	Discernible D	istribution				
240	Nonpar	rametric Dist	tribution Free	UCLs				
241	95% CLT UCL	3962				95% BCA Bo		4620
242 243	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL				95%	95% Boo Percentile Bo	otstrap-t UCL	14725 4282
244	90% Chebyshev(Mean, Sd) UCL	5673			95% CI	nebyshev(Me	an, Sd) UCL	7389
245 246	97.5% Chebyshev(Mean, Sd) UCL	9770			99% CI	nebyshev(Me	an, Sd) UCL	14447
∠4 0								

	Α	В	С	D	E	F	G	Н	I	J	K	L
247						Suggested	UCL to Use					
248			Recommend	ation cannot	be provided							
249												
250		The ca	Iculated UCI	s are based	on assump	tions that the	e data were d	collected in a	a random and	d unbiased r	nanner.	
251				Pleas	e verify the	data were co	ollected from	random loca	ations.			
252				If the data w	ere collecte	d using judgi	mental or oth	er non-rand	om methods	,		
253				the	en contact a	statistician	to correctly c	alculate UC	Ls.			
254												
255	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UC	L.
256		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fron	n simulation	studies.	
257		wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may v	want to cons	ult a statistic	ian.
258												

	A B C	D E	F	G H I J J ensored Full Data Sets	K	L
1		UCL Statis	SUCS IOI ONG	erisoreu Fuli Data Sets		
3	User Selected Options					
4	Date/Time of Computation	ProUCL 5.2 11/18/2024	12:17:31 PM			
5	From File	WorkSheet.xls				
6	Full Precision	OFF				
7	Confidence Coefficient	95%				
8	Number of Bootstrap Operations	2000				
9		.1				
10						
11	SH-WRA					
12						
13				Statistics		
14	Total	I Number of Observations	10	Number of Distinct Obser		7
15	<u> </u>	N. A	0	Number of Missing Obser		0
16		Minimum	9		Mean	20.56
17		Maximum SD	81.8		Median	13 6.883
18		Coefficient of Variation	21.76 1.059	Std. Error o	t Mean ewness	3.033
19		Coemcient of variation	1.059	SKE	wiless	J.UJJ
20			Normal (GOF Test		
21 22	5	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test		
23		Shapiro Wilk Critical Value		Data Not Normal at 1% Significance Le	evel	
24		Lilliefors Test Statistic	0.392	Lilliefors GOF Test		
25	1	1% Lilliefors Critical Value	0.304	Data Not Normal at 1% Significance Le	evel	
26		Data Not	t Normal at 1	% Significance Level		
27						
28		As	suming Nor	nal Distribution		
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewnes	s)	
30		95% Student's-t UCL	33.18	95% Adjusted-CLT UCL (Cher	- 1	38.93
31				95% Modified-t UCL (Johnson	n-1978)	34.28
32						
33				GOF Test		
34		A-D Test Statistic		Anderson-Darling Gamma GOF Tes		
35		5% A-D Critical Value		Data Not Gamma Distributed at 5% Significa		!
36	<u> </u>	K-S Test Statistic 5% K-S Critical Value	0.323 0.27	Kolmogorov-Smirnov Gamma GOF T Data Not Gamma Distributed at 5% Significa		<u></u>
37				ed at 5% Significance Level	lice Leve	л ————————————————————————————————————
38		Data Not Gaill	IIIa Distribut	at 5 % Significance Level		
39		 	Gamma	Statistics		
40 41		k hat (MLE)	2.174	k star (bias correcte	d MLE)	1.588
41		Theta hat (MLE)	9.459	Theta star (bias correcte		12.95
43		nu hat (MLE)	43.47	nu star (bias cor	,	31.76
44	M	LE Mean (bias corrected)	20.56	MLE Sd (bias cor	- 1	16.31
45		<u> </u>	1	Approximate Chi Square Value	(0.05)	19.88
46	Adjus	sted Level of Significance	0.0267	Adjusted Chi Square	e Value	18.27
47			1		I_	
48		As	suming Gam	ma Distribution		
49	95% A	Approximate Gamma UCL	32.84	95% Adjusted Gamm	na UCL	35.75
50						
51				GOF Test		
52		Shapiro Wilk Test Statistic	0.705	Shapiro Wilk Lognormal GOF Test		
53	10% S	Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance	Level	
54		Lilliefors Test Statistic	0.271	Lilliefors Lognormal GOF Test	1 2	
55	10	0% Lilliefors Critical Value	0.241	Data Not Lognormal at 10% Significance	Level	

	A B C D E	F ognormal at	G H I J K 1 10% Significance Level	L
56 57		ognoma ac	Total Giginii Ganica Lavoi	
58		Lognorma	l Statistics	
59	Minimum of Logged Data	2.197	Mean of logged Data	2.776
60	Maximum of Logged Data	4.404	SD of logged Data	0.615
61				
62	Assu	ıming Logno	ormal Distribution	
63	95% H-UCL	31.69	90% Chebyshev (MVUE) UCL	30.36
64	95% Chebyshev (MVUE) UCL	35.51	97.5% Chebyshev (MVUE) UCL	42.65
65	99% Chebyshev (MVUE) UCL	56.69		
66	Namanana	tulo Dietulbu	tion Fron LICI Chatistics	
67			tion Free UCL Statistics Discernible Distribution	
68	Data do II	ot lollow a L	viscernible Distribution	
69 70	Nonpa	rametric Dis	tribution Free UCLs	
70 71	95% CLT UCL	31.88	95% BCA Bootstrap UCL	40.52
72	95% Standard Bootstrap UCL	31.29	95% Bootstrap-t UCL	102.5
73	95% Hall's Bootstrap UCL	86.63	95% Percentile Bootstrap UCL	33.82
74	90% Chebyshev(Mean, Sd) UCL	41.21	95% Chebyshev(Mean, Sd) UCL	50.56
75	97.5% Chebyshev(Mean, Sd) UCL	63.54	99% Chebyshev(Mean, Sd) UCL	89.04
76			·	
77		Suggested	UCL to Use	
78	95% Student's-t UCL	33.18		
79				
80	-		e data were collected in a random and unbiased manner.	
81	-		ollected from random locations.	
82	II III III III III III III III III III			
~~			mental or other non-random methods,	
83			to correctly calculate UCLs.	
84	then contact a	statistician	to correctly calculate UCLs.	
84 85	then contact a Note: Suggestions regarding the selection of a 95%	statistician		
84 85 86	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	statistician UCL are production, data distrib	to correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL.	n.
84 85	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	statistician UCL are production, data distrib	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	n.
84 85 86 87	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	statistician UCL are production, data distrib	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	n.
84 85 86 87 88 89	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size	statistician UCL are production, data distrib	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	ın.
84 85 86 87 88	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	Statistician UCL are pr data distrib orld data se	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	n.
84 85 86 87 88 89	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB	Statistician O UCL are proposed to the propos	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial statistics.	
84 85 86 87 88 89 90 91 92 93	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W	Statistician UCL are pr data distrib orld data se	ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations	9
84 85 86 87 88 89 90 91 92 93 94	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations	Statistician UCL are proposed data distribution data se	co correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Missing Observations	9
84 85 86 87 88 90 91 92 93 94 95	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum	Statistician 5 UCL are properties of the proper	co correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Missing Observations Mean	9 0 47.87
84 85 86 87 88 89 90 91 92 93 94 95 96	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum	General 9 19 80.8	co correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Missing Observations Mean Median	9
84 85 86 87 88 89 90 91 92 93 94 95 96	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum	Statistician 5 UCL are properties of the proper	co correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Missing Observations Mean	9 0 47.87 59
84 85 86 87 88 89 90 91 92 93 94 95 96 97	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD	General 9 19 80.8 23.13	co correctly calculate UCLs. In covided to help the user to select the most appropriate 95% UCL. In the select the most appropriate 95% UCL. It is the select the most appropriat	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation	General 9 19 80.8 23.13 0.483	co correctly calculate UCLs. In covided to help the user to select the most appropriate 95% UCL. In the select the most appropriate 95% UCL. It is the select the most appropriat	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a	General 9 19 80.8 23.13 0.483	co correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide of the size is small (e.g., <10).	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR	co correctly calculate UCLs. In covided to help the user to select the most appropriate 95% UCL. In cution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticial statistics. Statistics	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide of but note that ITRC may recommend the The Chebyshev UCL of the size is small (e.g., <10).	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR	co correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance, the Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	9 0 47.87 59 7.71
84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 101	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide of but note that ITRC may recommend the The Chebyshev UCL of the same of th	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR	co correctly calculate UCLs. ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticial Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance, the Chebyshev UCL for small sample sizes (n < 7).	9 0 47.87 59 7.71
84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide but note that ITRC may recommend the The Chebyshev UCL of Refer to the ProUCL 5.2 Tech	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR	statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance, the Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide but note that ITRC may recommend the The Chebyshev UCL of Refer to the ProUCL 5.2 Tech	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR let t-UCL or fiten results chnical Guid	co correctly calculate UCLs. In ovided to help the user to select the most appropriate 95% UCL. In ovided to help the user to select the most appropriate 95% UCL. In ovided to help the user to select the most appropriate 95% UCL. In ovided to help the user may want to consult a statistic as the statistic and the sta	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide but note that ITRC may recommend the The Chebyshev UCL of Refer to the ProUCL 5.2 Tech	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR let-UCL or fiten results chnical Guid	co correctly calculate UCLs. In covided to help the user to select the most appropriate 95% UCL. In cution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticial statistics. Statistics	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide a but note that ITRC may recommend the The Chebyshev UCL or Refer to the ProUCL 5.2 Tech Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR let t-UCL or state) thinical Guide Normal (0.872 0.764	co correctly calculate UCLs. Dovided to help the user to select the most appropriate 95% UCL. Sution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticial statistics. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Lusing incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance, the Chebyshev UCL for small sample sizes (n < 7). In gross overestimates of the mean. The for a discussion of the Chebyshev UCL. SOF Test Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	9 0 47.87 59 7.71
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size However, simulations results will not cover all Real W SH-WRB Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., <10), if data a refer also to ITRC Tech Reg Guide but note that ITRC may recommend the The Chebyshev UCL of Refer to the ProUCL 5.2 Tech Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	General 9 19 80.8 23.13 0.483 are collected on ISM (ITR let-UCL or fiten results chnical Guid	co correctly calculate UCLs. In covided to help the user to select the most appropriate 95% UCL. In cution, and skewness using results from simulation studies. Its; for additional insight the user may want to consult a statisticial statistics. Statistics	9 0 47.87 59 7.71

111	A B C D E Data appea	F ar Normal at	G H I J K 1% Significance Level	L
112			liable for small sample sizes	
113			·	
114	Ass	suming Norr	nal Distribution	
115	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
116	95% Student's-t UCL	62.2	95% Adjusted-CLT UCL (Chen-1995)	60.38
117			95% Modified-t UCL (Johnson-1978)	62.18
118				
119		Gamma (OF Test	
120	A-D Test Statistic	0.692	Anderson-Darling Gamma GOF Test	
121	5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance L	Level
122	K-S Test Statistic	0.283	Kolmogorov-Smirnov Gamma GOF Test	
123	5% K-S Critical Value	0.28	Data Not Gamma Distributed at 5% Significance Level	
124	Detected data follow App	pr. Gamma I	Distribution at 5% Significance Level	
125	Note GOF tests r	may be unre	liable for small sample sizes	
126				
127		Gamma	Statistics	
128	k hat (MLE)	4.192	,	2.869
129	Theta hat (MLE)	11.42	` '	16.68
130	nu hat (MLE)	75.46	` '	51.64
131	MLE Mean (bias corrected)	47.87		28.26
132				36.14
133	Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	33.42
134				
135			ma Distribution	
136	95% Approximate Gamma UCL	68.4	95% Adjusted Gamma UCL	73.96
137				
138	0	Lognormal		
139	Shapiro Wilk Test Statistic	0.86	Shapiro Wilk Lognormal GOF Test	
140	10% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 10% Significance Level	
141	Lilliefors Test Statistic	0.283	Lilliefors Lognormal GOF Test	
142	10% Lilliefors Critical Value	0.252	Data Not Lognormal at 10% Significance Level	
143			ormal at 10% Significance Level	
144	Note GOF tests i	may be unre	liable for small sample sizes	
145		Lognorma	Chatistica	
146	Minimum of Logged Data	2.944		3.744
147	Maximum of Logged Data	4.392		0.551
148	waxiiiuiii oi Logged Data	7.002	SD of logged Data	0.001
149	Δοσι	ımina l oano	rmal Distribution	
150	95% H-UCL	77.28		75.34
151	95% Chebyshev (MVUE) UCL	87.58		04.6
152	99% Chebyshev (MVUE) UCL	138	23.03.2 22330.03 (132.) 302	
153	33 % 335/3.107 (1117 3.2.)			
154 155	Nonparame	tric Distribut	tion Free UCL Statistics	
156	•		Discernible Distribution	
157				
157	Nonpar	ametric Dist	ribution Free UCLs	
159	95% CLT UCL	60.55		59.56
160	95% Standard Bootstrap UCL	59.82	·	61.46
161	95% Hall's Bootstrap UCL	58.43	•	59.87
162	90% Chebyshev(Mean, Sd) UCL	71	·	81.47
163	97.5% Chebyshev(Mean, Sd) UCL	96.01		24.6
164				
165		Suggested	UCL to Use	
100				<u> </u>

	A B		D E	F	G	Н	I	J	K	L
166		95	5% Student's-t UCL	62.2						
167	N			1101			1		. 050/ 1101	
168			e selection of a 95%	•	•					
169			nsed upon data size, not cover all Real W		<u> </u>					
170	However, Simu		not cover all Real vi	ond data se	is, for additiona	I Insigni ii	ie usei may	want to cons	uit a statisticia	JII.
171	Note: For	r highly negatively-	skewed data, confid	lence limite	(e.g. Chen Io	hneon I	ognormal a	nd Gamma)	may not he	
172	11010.101		s and Johnson's me				_	· · ·		
173 174		Tollable: Gliell		oulous provi	ao aajaoanona	- TOT POOR	voly okoliou	data ooto.		
175										
176	SH-WRC									
177										
178				General	Statistics					
179		Total Numb	per of Observations	9			Numbe	r of Distinct (Observations	5
180		-					Number	of Missing (Observations	0
181			Minimum	12					Mean	17.16
182			Maximum	21					Median	16
183			SD	3.784				Std. E	rror of Mean	1.261
184		Coe	efficient of Variation	0.221					Skewness	0.0146
185										
186	Note: Sar		(e.g., <10), if data a						approach,	
187	<u></u>		C Tech Reg Guide o	•		•		•		
188	 		may recommend th				·	e sizes (n < 7	7).	
189			Chebyshev UCL on the ProUCL 5.2 Tec					LICI		
190			ne Prouct 5.2 red	ninical Guide	e ior a discussi	On or the	Chebyshev	UCL.		
191				Normal (GOF Test					
192		Shapiro	Wilk Test Statistic	0.801	1001		Shapiro Wi	lk GOF Test	<u> </u>	
193 194		•	Wilk Critical Value	0.764		Data appe	-	t 1% Signific		
195			iefors Test Statistic	0.29				GOF Test		
196		1% Lilli	efors Critical Value	0.316		Data appe	ar Normal a	t 1% Signific	ance Level	
197			Data appea	ar Normal at	1% Significan	ce Level				
198			Note GOF tests	may be unre	liable for small	sample s	sizes		-	
199										
200				suming Norr	mal Distribution					
201		95% Normal					` -	sted for Ske	•	
202		95	5% Student's-t UCL	19.5					(Chen-1995)	19.24
203							95% Modific	ed-t UCL (Jo	hnson-1978)	19.5
204				Cam 1	COE Took					
205			A-D Test Statistic	0.866	GOF Test	Andor	eon-Darlina	Gamma GC)F Teet	
206		50 /	A-D Test Statistic A-D Critical Value	0.721	Data				nificance Lev	el
207			K-S Test Statistic	0.301	Data			ov Gamma G	<u> </u>	-
208 209		5%	6 K-S Critical Value	0.279	Data				nificance Lev	el
210			Data Not Gamr							
211										
212				Gamma	Statistics					
213			k hat (MLE)	22.67			k:	star (bias co	rrected MLE)	15.19
214			Theta hat (MLE)	0.757			Theta	star (bias co	rrected MLE)	1.13
215			nu hat (MLE)	408				•	as corrected)	273.4
216		MLE Me	an (bias corrected)	17.16				•	as corrected)	4.402
217								•	Value (0.05)	236.1
218		Adjusted Le	evel of Significance	0.0231			Ad	djusted Chi S	Square Value	228.7
219										
220			Ass	suming Gam	ma Distributior	1 				

	Α	В		С	D	E	F	G	Н		J	K	L
221				95% A _l	pproximate (Gamma UCL	19.87			9	95% Adjusted	Gamma UCL	20.5
222													
223								I GOF Test					
224					•	Test Statistic			•		ognormal GO		
225				10% Sł		Critical Value				•	at 10% Signifi		
226						Test Statistic				-	normal GOF		
227				10	% Lilliefors C	Critical Value				ognormal .	at 10% Signifi	cance Level	
228						Data Not L	ognormal at	10% Signific	cance Level				
229													
230								I Statistics					
231						Logged Data						f logged Data	2.82
232				N	laximum of l	Logged Data	3.045				SD o	f logged Data	0.225
233													
234							uming Logno	ormal Distrib	ution				
235						95% H-UCL	20.07				% Chebyshev	` '	21.03
236						MVUE) UCL	22.79			97.5%	% Chebyshev	(MVUE) UCL	25.22
237				99% (Chebyshev (MVUE) UCL	30.01						
238													
239						•	etric Distribu						
240						Data appea	ar to follow a	Discernible	Distribution				
241													
242						-	rametric Dist	tribution Fre	e UCLs				
243						5% CLT UCL	19.23					ootstrap UCL	19.11
244						otstrap UCL	19.12					otstrap-t UCL	19.36
245						otstrap UCL	18.74				6 Percentile B	•	19.11
246					•	an, Sd) UCL	20.94				Chebyshev(Me		22.65
247			97	7.5% Ch	ebyshev(Me	an, Sd) UCL	25.03			99% (Chebyshev(Me	ean, Sd) UCL	29.71
248													
249							Suggested	UCL to Use					
250					95% Stu	dent's-t UCL	19.5						
251													
252			-	•	_		•		•			riate 95% UCL	
253											rom simulatior		
254	H	owever, sin	mulatior	ns result	s will not cov	er all Real W	/orld data set	ts; for additio	nal insight th	ne user ma	y want to con-	sult a statisticia	an.
255													

	A B C	D E	F	G H	l J	K	L
1		UCL Statis	Stics for Unce	ensored Full Data Sets			
2	User Selected Options	,					
3	Date/Time of Computation	ProUCL 5.2 11/18/2024	12·24·51 PM				
4	From File	WorkSheet.xls	12.24.011 W				
5	Full Precision	OFF					
6 7	Confidence Coefficient	95%					
8	Number of Bootstrap Operations	2000					
9							
10							
	TL-WRA						
12							
13			General	Statistics			
14	Total	Number of Observations	8		Number of Distin		8
15					Number of Missin	ng Observations	0
16		Minimum	175.2			Mean	282.2
17		Maximum	454			Median	250.2
18		SD	112.8		Sto	d. Error of Mean	39.87
19		Coefficient of Variation	0.4			Skewness	0.426
20	Maka O-mula atau ta	email (e.g. 40) 18 4-2-1	no oalla -4- 1	using incremental accord	ing mothedal//	M) oppress-L	
21	=	small (e.g., <10), if data a to ITRC Tech Reg Guide o		-			
22		ITRC may recommend th	•	•	_		
23	Dut note that	=		in gross overestimates of	· · · · · · · · · · · · · · · · · · ·	< / ₁ / ₁ .	
24	Rei	fer to the ProUCL 5.2 Tec					
25 26							
27			Normal C	GOF Test			
28	S	Shapiro Wilk Test Statistic	0.843	:	Shapiro Wilk GOF T	est	
29	1% S	hapiro Wilk Critical Value	0.749	Data appea	ar Normal at 1% Sign	ificance Level	
30		Lilliefors Test Statistic	0.284		Lilliefors GOF Tes	st	
31	1	% Lilliefors Critical Value	0.333	Data appea	ar Normal at 1% Sign	ificance Level	
32				1% Significance Level			
33		Note GOF tests	may be unre	liable for small sample si	zes		
34							
35			suming Norr	mal Distribution			
36	95% N	ormal UCL	057.7		UCLs (Adjusted for S	•	0540
37		95% Student's-t UCL	357.7		5% Adjusted-CLT UC	,	354.2
38					95% Modified-t UCL ((301118011-1978)	358.7
39			Gamma (GOF Test			
40		A-D Test Statistic	0.693		son-Darling Gamma	GOF Test	
41 42		5% A-D Critical Value	0.717	Detected data appear	=		ce Level
42		K-S Test Statistic	0.296		prov-Smirnov Gamma		
44		5% K-S Critical Value	0.295		na Distributed at 5%		el
45				Distribution at 5% Signific		=	
46				liable for small sample si			
47							
48			Gamma	Statistics			
49		k hat (MLE)	7.275		k star (bias	corrected MLE)	4.63
50		Theta hat (MLE)	38.79		Theta star (bias	ŕ	60.94
51		nu hat (MLE)				(bias corrected)	74.08
52	M	LE Mean (bias corrected)	282.2			(bias corrected)	131.1
53			0.01==	Α	Approximate Chi Squa		55.26
54		sted Level of Significance	0.0195		Adjusted Ch	hi Square Value	51.17
55							

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. Normal GOF Test		Α		В		С		D	E		F	G	والمراا	Н		ı		,	j		K	工	L
						05% /	\\ nnrov	imata (Gamma				ibuuc	<u></u>			05%	Λdiu	etod (Gar	ma H		408 E
Stropping Wilk Teel Statistic 18.83 Shapino Wilk Lognormal COF Teet 10% Shapino Wilk Cell Statistic 18.85 Data Not Lognormal at 10% Significance Level 10% Illisifients Critical Value 0.25 Data Not Lognormal at 10% Significance Level 18.85 Data Not Lognormal at 10%						93 /0 F	Approx	iiiate (Jaiiiiia	UCL	376.3						95 /0	Auju	Sieu	Jan	IIIa U	UL	400.5
Shapiro Wilk Test Statistic 0.833	\vdash										Lognorma	l GOF Te	est										
19% Shapiro Wilk Critical Value 0.851							Shapiro	o Wilk	Test Sta	atistic	<u> </u>			Sha	apiro	Wilk I	Loan	orma	I GOF	F Te	est		
Lillidors Tost Statistic 2.78							•								-							 el	
10% Lilliefors Critical Value 0.265 Data Not Lognormal at 10% Significance Level	-																						
Data Not Lognormal at 10% Significance Level	\vdash					10											_					el	
									Data I	Not Lo	ognormal a	10% Sigi											
Maximum of Logged Data 5.168	-										Lognorma	rmal Statistics											
Maximum of Logged Date 6.118 SD of logged Date 0.4	-						Minim	um of	Logged	Data	5.166							Мє	an of	log	ged Da	ata	5.572
The Content of C	\vdash						Maxim	um of	Logged	Data	6.118							,	SD of	log	ged Da	ata	0.4
77																							
	70									Assı	ıming Logn	ormal Dis	tribut	ion									
	71								95% H-	-UCL	397.3					90	% C	hebys	shev ((MV	UE) U	CL	402.6
73						95%	Cheb	yshev (MVUE)	UCL	457.2					97.5	% C	hebys	shev ((MV	UE) U	CL	533
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution Pree UCL						99%	Cheb	yshev ((MVUE)	UCL	681.9												
Data appear to follow a Discemible Distribution	74																						
Nonparametric Distribution Free UCLs	75								-														
Nonparametric Distribution Free UCLs 347.8 95% BCA Bootstrap UCL 347.8 35% BCA Bootstrap UCL 347.6 347.8 35% BCA Bootstrap UCL 347.6 347.8 35% BCA Bootstrap UCL 347.6	76	Data appear to follow a Discernible Distribution																					
95% Standard Bootstrap UCL 347.8 95% BCA Bootstrap UCL 351.1 95% Bootstrap UCL 372.1 344.5 95% Bootstrap UCL 372.1 344.5 95% Bootstrap UCL 372.1 351.6 95% Halfs Bootstrap UCL 345.6 95% Percentile Bootstrap UCL 345.6 35.6 95% Percentile Bootstrap UCL 345.6 35.6 95% Percentile Bootstrap UCL 345.6 35.6 95% Percentile Bootstrap UCL 35.6 35.6 95% Percentile Bootstrap UCL 35.6 35.6 95% Chebyshev(Mean, Sd) UCL 465 35.2 99% Chebyshev(Mean, Sd) UCL 456 35.2 99% Chebyshev(Mean, Sd) UCL 465 99% Chebyshev(Mean, Sd)	77																						
Standard Bootstrap UCL 344.5 95% Bootstrap-t UCL 372.1	78											tribution	Free	UCLs									
1	79																						
20 90% Chebyshev(Mean, Sd) UCL 401.8 95% Chebyshev(Mean, Sd) UCL 456	80																				•		
State Suggested UCL to Use Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Suggestions regarding the selection of a 95% UCL are provided to help the user used upon data statistic in However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistic in Suggestion Suggest	81								•														
Suggested UCL to Use Suggested UCL to Use	82						-											-	-				
85 Suggested UCL to Use 86 95% Student's-t UCL 357.7	83				9	7.5% C	hebysł	nev(Me	an, Sd)	UCL	531.2					99%	Che	byshe	ev(Me	an,	Sd) U	CL	678.9
86 95% Student's-t UCL 357.7 88 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 89 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 90 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 91 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 91 Page 10 Page 1	\vdash										0	1101 1 1											
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. For additional insight the user may want to consult a statistician. General Statistics General Statistics Total Number of Distinct Observations of Number of Distinct Observations of Number of Missing Observations of Number of Distinct Observations of Number of Missing Observations of Number of Missing Observations of Number of Numb	85						0	F0/ C+		LICI		UCL to C	Jse										
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. TL-WRB TL-WRB General Statistics General Statistics Total Number of Observations 7 Number of Distinct Observations 7 Number of Missing Observations 0 Minimum 35.7 Number of Missing Observations 0 Maximum 194 Median 137.3 Mean 122.5 Maximum 194 Median 137.3 Coefficient of Variation 0.473 Skewness -0.322 Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.	_						9:	5% Stu	uents-t	UCL	357.7											\perp	
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. General Statistics General Statistics Total Number of Observations 7 Number of Distinct Observations 7 Number of Missing Observations 0 Number of Missing Observations 10 Number of Numbe	_		Note:	Suga	estion	s renar	ding th	م دمامہ	ction of	a 95%	LICL are n	ovided to	heln	the user t	to se	lect the	e mo	et an	nronri	iate	95% I	ICI	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 91 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 92 Page 193 TL-WRB 94 Page 195 Page	\vdash																						
192																						sticia	n.
92				.,								,					<u>,</u>						
93 TL-WRB 94 95 General Statistics 96 Total Number of Observations 7 Number of Distinct Observations 7 Number of Missing Observations 0 98 Minimum 35.7 Number of Missing Observations 0 98 Maximum 194 Median 137.3 100 SD 57.99 Std. Error of Mean 21.92 101 Coefficient of Variation 0.473 Skewness -0.322 102 103 Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, 105 but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). 106 The Chebyshev UCL often results in gross overestimates of the mean. 107 Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. 108 Normal GOF Test 109 Normal																							
94 95 General Statistics 96 Total Number of Observations 7 Number of Distinct Observations 7 Number of Missing Observations 0 98 Minimum 35.7 Mean 122.5 99 Maximum 194 Median 137.3 100 SD 57.99 Std. Error of Mean 21.92 101 Coefficient of Variation 0.473 Skewness -0.322 102 103 Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, 104 refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, 105 but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). 106 The Chebyshev UCL often results in gross overestimates of the mean. 107 Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. 108 Normal GOF Test 108 Normal GOF Test 109 Normal GOF		TL-WRB																					
95 General Statistics 96 Total Number of Observations 7 Number of Distinct Observations 7 97 Number of Missing Observations 0 98 Minimum 35.7 Mean 122.5 99 Maximum 194 Median 137.3 100 SD 57.99 Std. Error of Mean 21.92 101 Coefficient of Variation 0.473 Skewness -0.322 102 Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, 104 refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, 105 but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). 106 The Chebyshev UCL often results in gross overestimates of the mean. 107 Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. 108 109 Normal GOF Test	33																						
Total Number of Observations 7 Number of Distinct Observations 7 Number of Missing Observations 0 Minimum 35.7 Mean 122.5 Maximum 194 Median 137.3 Coefficient of Variation 0.473 Std. Error of Mean 21.92 Coefficient of Variation 0.473 Skewness -0.322 Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.											General	Statistics	3										
Number of Missing Observations 0						Tota	l Numl	ber of C	Observa	tions	7					Num	ber o	of Dis	tinct (Obse	ervatio	ns	7
Minimum 35.7 Mean 122.5 Maximum 194 Median 137.3 Modian																Num	ber c	of Mis	sing (Obse	ervatio	ns	0
Maximum 194 Median 137.3									Mini	mum	35.7										Me	an	122.5
SD 57.99 Std. Error of Mean 21.92									Maxi	mum	194										Medi	an	137.3
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. Normal GOF Test	-									SD	57.99								Std. E	Error	of Me	an	21.92
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. Normal GOF Test	101	Coefficient of Va									0.473									S	kewne	ss	-0.322
refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. Normal GOF Test	102																						
but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. Normal GOF Test	103		No	ote: Sa											-						roach	l,	
The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. Normal GOF Test	104	V T																					
107 Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. 108 109 Normal GOF Test	105																						
108 109 Normal GOF Test	106	<u> </u>																					
Normal GOF Test	107					Re	fer to	the Pro	JUCL 5.	2 Tec	hnical Guid	e for a dis	scuss	sion of the	e Ch	ebysh	ev U	CL.					
OL : WILL T. 101 C. I. O.	108																						
Shapiro Wilk Test Statistic 0.952 Shapiro Wilk GOF Test	109											GOF Test	t										
	110						Shapiro	o Wilk	Test Sta	itistic	0.952	<u></u>			SI	napiro	Wilk	GOF	Test	t 			

	A B C D E	F	G H I J K L
111	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level
112	Lilliefors Test Statistic		Lilliefors GOF Test
113	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level
114	• •		t 1% Significance Level
115	Note GOF tests	may be unre	eliable for small sample sizes
116	Δο	suming Non	mal Distribution
117	95% Normal UCL		95% UCLs (Adjusted for Skewness)
118 119	95% Student's-t UCL	165.1	95% Adjusted-CLT UCL (Chen-1995) 155.7
120			95% Modified-t UCL (Johnson-1978) 164.6
121		1	
122		Gamma (GOF Test
123	A-D Test Statistic	0.329	Anderson-Darling Gamma GOF Test
124	5% A-D Critical Value	0.71	Detected data appear Gamma Distributed at 5% Significance Level
125	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test
126	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level
127			stributed at 5% Significance Level
128	Note GOF tests	may be unre	eliable for small sample sizes
129			Chablishing
130	k bot /MLF)		Statistics k star (bias corrected MLE) 2.373
131	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) 2.373 Theta star (bias corrected MLE) 51.61
132	nu hat (MLE)		nu star (bias corrected) 33.22
133	MLE Mean (bias corrected)		MLE Sd (bias corrected) 79.5
134 135	(5:65 55:155:53)		Approximate Chi Square Value (0.05) 21.04
136	Adjusted Level of Significance	0.0158	Adjusted Chi Square Value 18.18
137	, ,		· · · · · · · · · · · · · · · · · · ·
138	As	suming Garr	nma Distribution
139	95% Approximate Gamma UCL	193.4	95% Adjusted Gamma UCL 223.8
140		<u>I</u>	
141		Lognorma	I GOF Test
142	Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test
143	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level
144	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test
145	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level
146	• •		at 10% Significance Level
147	Note GOP tests	may be unre	eliable for small sample sizes
148		Lognorma	al Statistics
149	Minimum of Logged Data		Mean of logged Data 4.677
150 151	Maximum of Logged Data		SD of logged Data 0.602
152			
153	Assı	uming Logno	ormal Distribution
154	95% H-UCL	248.7	90% Chebyshev (MVUE) UCL 211.1
155	95% Chebyshev (MVUE) UCL	250	97.5% Chebyshev (MVUE) UCL 304
156	99% Chebyshev (MVUE) UCL	410.2	
157			
158	-		tion Free UCL Statistics
159	Data appea	ir to follow a	Discernible Distribution
160			No. 1 to East 1101 to
161	<u> </u>		tribution Free UCLs
162	95% CLT UCL	158.5	95% BCA Bootstrap UCL 154.9 95% Bootstrap-t UCL 162.7
163	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 162.7 95% Percentile Bootstrap UCL 155.6
164	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL		95% Percentile Bootstrap UCL 155.6 95% Chebyshev(Mean, Sd) UCL 218
165	30 % Chebyshev(iviean, 30) OCL	100.2	33 /0 Chebyshev (Wedt), 30) UCL 210

	Α		В	С		D	E	F		G		Н		J	K	L			
166				97.5%	Cheby	shev(Mea	an, Sd) UCL	259.3					99% C	chebyshev(Mean,	Sd) UCL	340.5			
167																			
168								Suggested	J UCL t	to Use									
169						95% Stud	dent's-t UCL	165.1											
170															050/ 1101				
171		Not		_	-			•			•			most appropriate					
172		I												om simulation stud					
173	ļ	10we	ver, simu	liations res	Suits Wi	not cov	er all Real v	voria data s	ets; for	additio	nai in	signt tr	ne user may	want to consult a	1 Statisticia	an.			
174			loto: For	. biably po	gotivol		d data sanf	idonoo limit	- /	Chan	lohn	oon L	ognormal o	and Gamma) may	, not bo				
175			NOIE. FOI			-		nethods prov					_		not be				
176				Tellable	5. Cile	- S and 5	011130113111	eulous prov	nue auj	Justine	1113 101	i posit	vely skewe	u uata sets.					
177																			
178	TL-WRC	—																	
180								Genera	l Statis	tics									
181				Tc	tal Nur	nber of C	bservations		T				Numbe	er of Distinct Obse	ervations	8			
182 183								-	+					er of Missing Obse		0			
183							Minimum	n 99	+						Mean	165.2			
185							Maximum	n 205							Median	156			
186							SD	36.84	+					Std. Error	of Mean	12.28			
187					C	oefficient	t of Variation	0.223	+					S	kewness	-0.428			
188								_1											
189	Note: Occupie the install (see add) if data are callested union in constant and the data of (IOM) constant																		
190	refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance,																		
191	hat a last ITDO and a last ITD																		
192	The Obstant will Obstant with the words of the words																		
193				F	Refer to	the Pro	UCL 5.2 Te	chnical Guid	de for a	ı discu	ssion	of the	Chebyshev	UCL.					
194																			
195								Normal	GOF T	est									
196							Test Statistic							/ilk GOF Test					
197				1%			Critical Value				Dat	ta appe		at 1% Significance	e Level				
198							Test Statistic							s GOF Test					
199					1% Li	lliefors C	Critical Value		100				ear Normal	at 1% Significance	e Level				
200								ear Normal a		-									
201						Note	GOF tests	may be uni	reliable	tor sn	nali sa	imple s	sizes						
202								ssuming No	mal D	iotrib. d									
203				05%	Norma	ALIICI		Summy No		Sulbut	.1011	05%	LICLe (Adi	usted for Skewne					
204							dent's-t UCL	188.1	+				, ,	ted-CLT UCL (Che		183.5			
205									+-				•	fied-t UCL (Johns	′	187.8			
206								1					30.0 MOUII						
207 208								Gamma	GOF 1	Test									
208						A-D T	Test Statistic		Τ.			Ander	rson-Darlin	g Gamma GOF T	est				
210					- 5		Critical Value		D	etecte				Distributed at 5% S		ce Level			
211							Test Statistic		+					ov Gamma GOF					
212					Ę	% K-S C	Critical Value		D	etecte				Distributed at 5% S		ce Level			
213						Detected	data appea	ar Gamma D)istribu	ted at !	5% Si	gnifica	nce Level						
214						Note	GOF tests	may be uni	reliable	for sn	nall sa	ample :	sizes						
215						-					-								
216						-		Gamma	Statis	tics									
217							k hat (MLE)	20.57					k	star (bias correct	ed MLE)	13.79			
218						Thet	ta hat (MLE)	8.034					Theta	star (bias correct	ed MLE)	11.99			
219						n	nu hat (MLE)	370.2	1					nu star (bias co	orrected)	248.1			
220					MLE N	lean (bia	s corrected)) 165.2	1					MLE Sd (bias co	orrected)	44.5			

221										-		212.7			
222			Adjus	sted Level of	Significance	0.0231			Ad	ljusted Chi Sq	μare Value	205.7			
223															
224						suming Gam	nma Distribut	tion							
225			95% A	pproximate (Gamma UCL	192.8			959	% Adjusted G	amma UCL	199.3			
226															
227							I GOF Test								
228				•	Test Statistic			·-		normal GOF					
229			10% S		Critical Value					at 10% Signific					
230					Test Statistic				_	ormal GOF Te					
231			10		Critical Value					at 10% Signific	cance Level				
232					Data appear										
233				Not	te GOF tests	may be unre	liable for sm	nall sample s	sizes						
234															
235							I Statistics								
236					Logged Data						ogged Data	5.083			
237			N	Maximum of	Logged Data	5.323				SD of lo	ogged Data	0.242			
238	Accomplised to an arms of Distribution														
239		Assuming Lognormal Distribution													
240	95% H-UCL 196.1 90% Chebyshev (MVUE) UCL 205.6														
241	95% Chebyshev (MVUE) UCL 223.8 97.5% Chebyshev (MVUE) UCL 249														
242			99%	Chebyshev	(MVUE) UCL	298.6									
243															
244					Nonparame	etric Distribu	tion Free UC	CL Statistics							
245					Data appea	r to follow a	Discernible	Distribution							
246															
247					Nonpa	rametric Dis	tribution Fre	e UCLs							
248				9!	5% CLT UCL				(95% BCA Boo	-	181.8			
249					ootstrap UCL						strap-t UCL	187.5			
250			9	5% Hall's Bo	ootstrap UCL	182.7			95% F	Percentile Boo	otstrap UCL	183.3			
251			90% Ch	ebyshev(Me	ean, Sd) UCL	202.1			95% Ch	ebyshev(Mea	ın, Sd) UCL	218.8			
252			97.5% Ch	nebyshev(Me	ean, Sd) UCL	241.9			99% Ch	ebyshev(Mea	ın, Sd) UCL	287.4			
253															
254						Suggested	UCL to Use								
255				95% Stu	udent's-t UCL	188.1									
256															
257										ost appropria					
258		Recom	nmendations	are based u	pon data size	, data distrib	ution, and sk	ewness usin	ng results from	n simulation s	tudies.				
259	Ho	wever, simu	ılations result	ts will not co	ver all Real W	/orld data se	ts; for additio	onal insight th	he user may v	want to consu	ılt a statistici	an.			
260															
261		Note: For								nd Gamma) m	nay not be				
262			reliable.	Chen's and	Johnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.					
263															
				-											

	A B C D E	F	G H I J K L
2	UCL Statis	stics for Unc	ensored Full Data Sets
3	User Selected Options Date/Time of Computation ProUCL 5.2 12/2/2024 9	.10.04 DM	
5	From File ProUCL 1.2 12/2/2024 9	: 19:04 PM	
6 7	Full Precision OFF Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9			
11	UMM-TLA		
12 13		General	Statistics
14	Total Number of Observations	6	Number of Distinct Observations 6
15 16	Minimum	376.9	Number of Missing Observations 0 Mean 4501
17	Maximum	10200	Median 3246
18 19	SD Coefficient of Variation		Std. Error of Mean 1482 Skewness 0.81
20			
21			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,
23	but note that ITRC may recommend the	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.
26			•
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test
29 30	1% Shapiro Wilk Critical Value	0.713	Data appear Normal at 1% Significance Level
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level
32 33	Data appe	ar Normal at	1% Significance Level
34	Note GOF tests	may be unre	eliable for small sample sizes
35 36		suming Nor	mal Distribution
37	95% Normal UCL 95% Student's-t UCL	7487	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 7462
38 39			95% Modified-t UCL (Johnson-1978) 7569
40		Gamma	GOF Test
41 42	A-D Test Statistic 5% A-D Critical Value	0.304 0.709	Anderson-Darling Gamma GOF Test
43	K-S Test Statistic		Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level
46			eliable for small sample sizes
47 48		Gamma	Statistics
49	k hat (MLE)	1.384	k star (bias corrected MLE) 0.803
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 5606 nu star (bias corrected) 9.635
52	MLE Mean (bias corrected)		MLE Sd (bias corrected) 5024
53 54	Adjusted Level of Significance	0.0122	Approximate Chi Square Value (0.05) 3.715 Adjusted Chi Square Value 2.515
55		•	
56 57	As: 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL 17244
58	50% Approximate dumina GC		
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test
61	10% Shapiro Wilk Critical Value	0.826	Data appear Lognormal at 10% Significance Level
62 63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level
64 65	Data appear	Lognormal a	at 10% Significance Level
66	Note GOF tests	may be unre	eliable for small sample sizes
67 68	10.		Statistics
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 8.009 SD of logged Data 1.157
70 71			
72	Assi 95% H-UCL		prmal Distribution 90% Chebyshev (MVUE) UCL 12034
73 74	95% Chebyshev (MVUE) UCL	15194	97.5% Chebyshev (MVUE) UCL 19579
75	99% Chebyshev (MVUE) UCL	Z8194	
76 77			tion Free UCL Statistics
78	Data appea	ai lo tollow a	Discernible Distribution
79 80			tribution Free UCLs
81	95% CLT UCL 95% Standard Bootstrap UCL	6734	95% BCA Bootstrap UCL 6958 95% Bootstrap-t UCL 11005
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL 6852

	A B C D E	F	G H I J K	L
83	90% Chebyshev(Mean, Sd) UCL	,	95% Chebyshev(Mean, Sd) UCL	10961
84	97.5% Chebyshev(Mean, Sd) UCL		99% Chebyshev(Mean, Sd) UCL	
85				
86 87	95% Student's-t UCL		UCL to Use	
88	95% Students-t OCL	7407		
89	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL	
90	Recommendations are based upon data size,	, data distribi	ution, and skewness using results from simulation studies.	
91	However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statisticia	an.
92 93				
	UMM-TLB			
95				
96	=		Statistics	
97 98	Total Number of Observations	12	Number of Distinct Observations Number of Missing Observations	12 0
99	Minimum	794.4	Mean	4273
100	Maximum		Median	2907
101	SD	3462	Std. Error of Mean	999.4
102	Coefficient of Variation	0.81	Skewness	1.061
103 104		Normal C	205 T	
105	Shapiro Wilk Test Statistic	0.864	GOF Test Shapiro Wilk GOF Test	
106	1% Shapiro Wilk Critical Value	0.805	Data appear Normal at 1% Significance Level	
107	Lilliefors Test Statistic	0.198	Lilliefors GOF Test	
108	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
109 110	Data appea	ar Normal at	: 1% Significance Level	
111	As	suming Norr	mal Distribution	
112	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
113	95% Student's-t UCL	6067	95% Adjusted-CLT UCL (Chen-1995)	
114 115			95% Modified-t UCL (Johnson-1978)	6118
116		Gamma (GOF Test	
117	A-D Test Statistic	0.348	Anderson-Darling Gamma GOF Test	
118	5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significance	ce Level
119	K-S Test Statistic	0.167	Kolmogorov-Smirnov Gamma GOF Test	
120 121	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significand stributed at 5% Significance Level	ce Level
122	Detected data appear	Gaillilla Di	stributed at 5% Significance Level	
123		Gamma	Statistics	
124	k hat (MLE)	1.747	k star (bias corrected MLE)	1.365
125 126	Theta hat (MLE)		Theta star (bias corrected MLE)	
127	nu hat (MLE) MLE Mean (bias corrected)	41.92 4273	nu star (bias corrected) MLE Sd (bias corrected)	32.77 3656
128	WILE Weatt (bias corrected)	42/3	Approximate Chi Square Value (0.05)	20.68
129	Adjusted Level of Significance	0.029	Adjusted Chi Square Value	19.23
130				
131 132			ma Distribution	7001
133	95% Approximate Gamma UCL	0/09	95% Adjusted Gamma UCL	/281
134		Lognormal	GOF Test	
135	Shapiro Wilk Test Statistic	0.958	Shapiro Wilk Lognormal GOF Test	
136 137	10% Shapiro Wilk Critical Value	0.883	Data appear Lognormal at 10% Significance Level	
138	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.139 0.223	Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
139			at 10% Significance Level	
140	uppour			
141	•••		I Statistics	0.04=
142 143	Minimum of Logged Data Maximum of Logged Data	6.678 9.341	Mean of logged Data SD of logged Data	8.047 0.845
144	waximum of Logged Data	3.341	SD or logged Data	0.045
145	Assı	uming Logno	ormal Distribution	
146	95% H-UCL	8758	90% Chebyshev (MVUE) UCL	
147 148	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	11217
148	99% Chebyshev (MVUE) UCL	15319		
150	Nonparame	etric Distribu	tion Free UCL Statistics	
151			Discernible Distribution	
152	-			
153 154	Nonpar 95% CLT UCL		tribution Free UCLs	6118
155	95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	6817
156	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	5894
157	90% Chebyshev(Mean, Sd) UCL	7271	95% Chebyshev(Mean, Sd) UCL	8629
158 159	97.5% Chebyshev(Mean, Sd) UCL	10514	99% Chebyshev(Mean, Sd) UCL	14216
160		Suggested	UCL to Use	
161	95% Student's-t UCL			
162				
163			ovided to help the user to select the most appropriate 95% UCL	
164		بمائست مناسست	ution, and skewness using results from simulation studies.	

165	A H	B owever simu	C lations result	D s will not cov	er all Real W	F /orld data se	G ts; for additiona	H al insight th	e user mav	want to consu	Ilt a statisticia	L an
166 167		oo.				0.14 444 00		2o.g				
	UMM-TLC											
169							a					
170 171			Total	Number of (Observations	General 23	Statistics		Number	r of Distinct O	bservations	23
172			Total	Trumber of C	J D J C I V G II O I I O					of Missing O		0
173 174					Minimum Maximum						Mean Median	
175					SD	1871				Std. Eı	rror of Mean	390.1
176 177				Coefficien	t of Variation	0.769					Skewness	1.98
178						Normal (GOF Test					
179					Test Statistic	0.814				lk GOF Test		
180 181			1% Sł		Critical Value Test Statistic	0.881 0.221		Data Not		1% Significan GOF Test	ce Level	
182			1		Critical Value	0.209		Data Not		1% Significan	ce Level	
183 184					Data Not	Normal at 1	% Significance					
185					As	suming Nor	mal Distribution	n				
186			95% No	rmal UCL				95%		sted for Skev		
187 188				95% Stu	dent's-t UCL	3103				ed-CLT UCL (
189							1		30 /0 IVIOUITIE	ed-t UCL (Joh	III50II-19/8)	3130
190					T . C		GOF Test			0 00		
191 192					Test Statistic Critical Value	0.308 0.754	Detected of			Gamma GO stributed at 5		ce Level
193				K-S	Test Statistic	0.132		Kolmogo	orov-Smirno	ov Gamma G	OF Test	
194 195				5% K-S (Critical Value					stributed at 5	% Significan	ce Level
196				Detected	і аата арреаі	Gamma Di	stributed at 5%	o Significar	ICE LEVEI			
197							Statistics				1	
198 199				The	k hat (MLE) eta hat (MLE)	2.179 1116				star (bias corı star (bias corı	-	1.924 1265
200					nu hat (MLE)	100.3			IIIeta		s corrected)	88.51
201			ML	_E Mean (bia	as corrected)	2433				MLE Sd (bia		1754
202 203			Δdiuc	ted Level of	Significance	0.0389		<i>F</i>		<u>Chi Square \</u> djusted Chi S		67.82 66.51
204			Aujus	ica Ecveror					710	ajusteu Oni O	quaic value	00.01
205 206			0E9/ A	nnrovimata (ma Distributio	n	O.F.	0/ Adjusted C	`amma LICI	2220
207			95% A	pproximate (Gamma UCL	31/5			95	% Adjusted G	amma UCL	3238
208							GOF Test					
209 210			10% Sk	hapiro Wilk	Test Statistic Critical Value	0.982 0.928	D			inormal GOF at 10% Signif		
211			10 70 31		Test Statistic		D.			ormal GOF T		
212 213			109		Critical Value					at 10% Signif	icance Level	
214					Data appear	<u>Lognormai a</u>	at 10% Signific	ance Leve)I			
215							l Statistics					
216 217					Logged Data Logged Data	6.016 9.077					logged Data logged Data	7.55 0.73
218			IV	nazimum Ul						3D 011	oggou Dala	
219 220							rmal Distributi	ion	000/	Chabriel ··· /	W/UE\ LIQI	2051
221			95% (Chebvshev (95% H-UCL MVUE) UCL					<u>Chebyshev (I</u> Chebyshev (I		3651 4953
221 222 223					MVUE) UCL				21.070		,	
223 224					Nonnarame	tric Dietribu	tion Free UCL	Statistics				
225							Discernible Di					
226 227	<u> </u>				Nonna	rametric Dic	tribution Free I	IICI s				
228 229				95	Nonpai 5% CLT UCL		u ibuuoii Fiee (OCLS		95% BCA Bo	otstrap UCL	3289
229				Standard Bo	ootstrap UCL	3052				95% Boot	tstrap-t UCL	3446
230 231					ootstrap UCL ean, Sd) UCL					Percentile Bo nebyshev(Mea		
232	_				an, Sd) UCL					ebyshev(Mea		
233						Cummasts -	1101 40 11					
234 235			959	% Adjusted (Gamma UCL		UCL to Use					——
236		N . 2									. 050/::-	
237 238							ovided to help to ution, and skew					
239	H						ts; for additiona					an.
240 241												
	UMM-WRA	\										
243		-										
244 245			Total	Number of C	Observations	General 16	Statistics		Numbo	r of Distinct O	hearvations	16
246			10181	inullibel of C	Juservations	10				of Missing O		0

	Α		В		(2	Т	D		Е	F	G	T	Н					J		K	T	L
247										 /linimum		<u> </u>	_							-	Mea	an	930.7
248									M	laximum											Media		724.9
249 250								· ·		SD									Std		r of Mea		188.3
251							<u> </u>	oefficie	nt of \	/ariation	0.809										Skewnes	SS_	1.522
252											Normal	GOF Test											
253							Shap	iro Wilk	k Test	Statistic	0.857	1001 1001			,	Shapi	ro W	ilk G	OF Te	est			
254						1% S	Shapi	ro Wilk	Critic	al Value	0.844			Data	appea						ce Level		
255	ļ									Statistic									F Test				
256 257	 						<u>1% L</u>	illietors		al Value	e 0.248 ear Normal a	4 10/ Ciani	<u> </u>			ar Nor	mal a	at 1%	Signi	ticano	ce Level		
258										ака арре	ai inoilliai a	it 1% Signii	ICa	ince re	vei								
259 260										As	ssuming Nor	mal Distrib	uti	on									
260					9!	5% N		al UCL											d for S				
261 262								95% St	tudent	's-t UCL	. 1261										nen-199		1317 1072
263															,	15% IV	/loaii	iea-t	UCL (Jonns	son-197	5)	12/3
264											Gamma	GOF Test											
265										Statistic	0.198								mma (
266	<u> </u>									al Value		Detec	<u>ted</u>								Signific	ance	<u>Level</u>
267 268	<u> </u>						 ,			Statistic		Datas									Test		. 11
269										al Value	e 0.219 ar Gamma Di	Detec	<u>tea</u>	data aj % Sign	ppear	Gami	ma D	vistrit	outea a	it 5%	Signific	ance	<u> Levei</u>
270									<u>su ual</u>	a appea	. Gamma Di			,u Oigil	cari	JU LU	731						
271												Statistics											
272	<u> </u>									at (MLE)											ted MLI		1.379
273 274								Th		at (MLE) at (MLE)						Т	neta				cted MLI corrected		674.9 44.13
275						N/	/II E N	/lean (h		orrected)											correcte	_	792.5
276						17	<u> /\</u>	caii (b	,.us cc	co.cu)					Α	pprox	imat				lue (0.0	- /	29.9
277						Adju	ısted	Level c	of Sigr	nificance	0.0335										are Valu		28.57
278												PI											
279 280						50/ /	Annr	vimoto	Gam	As ma UCL	suming Gan	nma Distrit	<u>uti</u>	on			O	50/_ ^	diusts	d С с.	nma UC	ıΤ	1438
281					٤	1370 F	Appro	жинаце	; Gam	ilia UCL	. 13/4						90)% A	ujuste	u Gai	IIIIa UC	,L	1430
282 283											Lognorma	I GOF Tes	t										
283										Statistic	0.955								mal G				
284 285					1	0% S				al Value			[<u> Data ap</u>							nce Lev	/el	
286						1/				Statistic al Value			<u> —</u>	Doto on					al GOI		it ance Lev	<u></u>	
287						- 10	J /0 L	illeiois			Lognormal	at 10% Sig	ınifi	<u>Jala ap</u> icance	Level	Logno	iiiiai	at II	J /0 SIÇ	JIIIICo	ince rev	/ei	
288										. арроа.	Lognomia	at 1070 Olg	••••	Journey									
289												al Statistics	;										
290 291	 									ed Data											ged Da		6.502
292							waxı	mum o	T Logg	jed Data	7.979								<u> 5D</u>	OT IOC	ged Da	ta	0.928
293										Ass	uming Logn	ormal Distr	ibu	ition									
294 295										6 H-UCL	1910										/UE) UC		1739
295	 									JE) UCL						9	7.5%	Che	byshe	v (M\	/UE) UC	;L:	2550
296 297						99%	Che	byshev	<u>/ (MVL</u>	JE) UCL	3477												
298									No	nnaram	etric Distribu	ıtion Free l	IC	l Statis	stics								
299											ar to follow a												
300																							
301 302								,	OEO/ C		rametric Dis	tribution F	ree	UCLs				OE0	DC 4	Dart	atron III	<u>ч</u>	1015
302						95%	6 Sta			LT UCL rap UCL			—								strap UC rap-t UC		<u>1315</u> 1422
304										rap UCL							95%				strap UC		1262
305)% C	heby	shev(M	/lean, S	Sd) UCL	1496					95	% C	heby	shev(I	Mean	, Sd) UC	CL	1752
306	<u> </u>				97.5	5% C	heby	shev(N	lean, S	Sd) UCL	2107					99	% C	heby	shev(I	Mean	, Sd) UC	;L_:	2805
307 308											Suggested	HCL to Us											
309								95% St	tudent	's-t UCL		JOL 10 08) U									\neg	
310													_										
311		Note									% UCL are pr											CL.	
312 313		Lla									e, data distrib											.: -:	
314		nowev	er, si	rnulat	ions	resu	its Wi	ııı not co	over a	ıı Keal V	Vorld data se	eis; for addi	tior	ıaı ınsıç	unt the	user	may	wan	to co	nsult	<u>a statist</u>	ıcıaı	1.
315		-																					
316	UMM-WF	₹В																					
317													_										
318 319						Tata	I NI.	mhar -f	f Oh	rvations		Statistics				K I -	ımak -	vr of I	Dicti	+ 0-	ervation	20	7
320						rota	ıı ıvul	IIDEI OI	Ouse	ı vauons	1										servatior servatior		0
321										/linimum	741.1		_			140				, 000			4928
322										laximum	14142										Media	an	1800
323	 							60 .		SD									Std		r of Mea		2367
324 325							C	oetticie	nt of \	/ariation	1.271										Skewnes	SS	1.206
326		N	lote:	Samn	le si	ze is	sma	ll (e.a	. <10)	. if data	are collected	d usina inc	ren	nental s	samnl	ina m	etho	dolo	ıv (ISI	M) an	proach		
327											on ISM (ITR										Judilij		
328											he t-UCL or												

220	Α		В		С		D		E	F	G		. Н		I		J		K	\Box	L	
329 330					Re					often results chnical Guid							21					
331					116	51G1 U	J uie Fi	OOCL	J.Z 160	Jillical Guic	ie ioi a uisi	cuss	sion or ar	ie Cili	<u>ebysile</u>	v 00	<u></u>					
332 333											GOF Test											
334							iro Wilk ro Wilk						Data N		napiro V ormal at				Lovol			
335					1 /0 3		illiefors						Data		Lilliefor:				Level			
336							illiefors	Critica	l Value	0.35					ormal at				Level			
337 338								D	ata No	t Normal at	1% Signific	canc	e Level									
339									Ας	suming Nor	mal Distrib	outio	n									
340					95% N	Norma	al UCL				linai Diotrib	, u.i.o		% UC	CLs (Adj	juste	ed for S	kewn	ess)			
341 342							95% St	udent's	s-t UCL	9528					% Adjus						9975	
343														95	% Modi	tied-	t UCL (Johns	on-19	/8)	9708	
344										Gamma	GOF Test											
345									Statistic	0.904					n-Darlin							
346 347						5	5% A-D					Dat	a Not Ga								<u>əl</u>	
348							<u>K-S</u> 5% K-S		Statistic Il Value			Dat	a Not Ga		v-Smirr Distribu						 al	
349										ma Distribut	ed at 5% S					atou	ut 0 70	Oigiiii	ounce			
350																						
351 352								k hat	t (MLE)		Statistics				L	cto.	r (bias	corroc	tod M	<u> </u>	0.5	61
353							Th		t (MLE)								r (bias				8783	51
354								nu hat	t (MLE)	11.41						n	u star	(bias c	orrect	ted)	7.8	55
355 356					N.	ALE N	/lean (b	ias cor	rected)	4928				Λ			LE Sd				6579	
357					Δdiı	ıstad	Level o	of Signi	ficance	0.0158				App	oroximat		nı Squa sted Cl				2.6 1.8	
358					7 (0)0	<u> 10100</u>	LOVOIO	n Olgin	iioaiioo	0.0100						lajac	oted of	ii Oqui	arc ve	iide		
359										suming Gar	nma Distrit	butic	n									
360 361					95% /	Appro	oximate	Gamn	na UCL	14600					9	5% <i>A</i>	Adjuste	ed Gar	nma L	<u> ICL</u>	<u>21154</u>	
362										Lognorma	I GOF Tes	st										
363							iro Wilk			0.805					Wilk Lo							
364 365					10% 5		ro Wilk						Data Not							<u>/el</u>		
366					1		<u>illiefors</u> illiefors						ata appe		ors Logi					ovol		
367					•	0 70 L				ximate Logr	ormal at 1					ıı uı	10 70 01	griirioc	11100 L	0101		
368							No	te GO	F tests	may be unr	eliable for	sma	II sample	e size	es							
369 370										Lognorms	al Statistics											
371						Mini	mum of	f Logge	ed Data		Journalis	<u>, </u>					Mean	of log	ged D	ata	7.7	76
372						Maxi	mum of	f Logge	ed Data	9.557								of log			1.2	67
373 374									٨٥٥	uming Logn	ormal Dietr	ribut	ion									
375								95%		53783		IDUL	ion		90%	6 Ch	ebyshe	ev (MV	UE) L	JCL	10939	
376					95%	6 Che	byshev			13851							ebyshe					
377 378					99%	6 Che	byshev	(MVUI	E) UCL	25834												
379								Non	parame	etric Distribu	ıtion Free l	UCL	Statistic	`S								
380										ar to follow a												
381											=											
382 383									Nonpa T UCL	rametric Dis 8822	stribution F	ree	UCLS			959	% BCA	Roots	tran I	ICI	10249	
384					95%	% Sta	ndard B									30					47055	
385						95%	Hall's B	Bootstra	ap UCL	50830							centile	Boots	trap L	JCL	8686	
386 387				_	<u>90% C</u> 97.5% C					12030							yshev(vshev(<u>15247</u> 28484	
388					,,.J/0 U	,, ieny	or i€v(IVI	ican, S	u, UCL	13/13	1				33 /0 C	>⊓GD	yon c v(ıvı c dil,	ou) C	,UL	<u> 20404</u>	\dashv
389										Suggested	UCL to Us	se										
390 391				Red	commen	ndatio	n canno	ot be pi	rovided													
392			The c	alcul	ated UC	CLs a	re base	ed on a	ssumn	tions that th	e data wer	e co	llected in	n a ra	ndom a	nd u	ınbiase	ed mai	nner.			\dashv
393				a. v ul		u				data were c								- a mul				
394						If th				d using judg					method	ds,						
395 396							t	nen co	ntact a	statistician	to correctly	y cal	icuiate U	CLS.								\dashv
397		Note:	Suaae	estio	ns regar	rdina	the sele	ection o	of a 95%	6 UCL are p	rovided to h	nelp	the user	to se	lect the	mos	t appro	priate	95%	UCL		\dashv
398			Recor	nme	ndations	s are	based ι	upon da	ata size	, data distrib	ution, and	skev	vness us	sing re	esults fro	om s	imulati	on stu	dies.			
399	H	oweve	er, sim	ulatio	ons resu	ılts wi	II not co	over all	Real V	Vorld data se	ets; for addi	ition	al insight	the ι	ıser may	y wa	nt to co	onsult	a stati	sticia	in.	
400																						

	A B C	D E	F	G H	l J	K	L
1		UCL Statis	Stics for Unce	ensored Full Data Sets			
2	User Selected Options	<u> </u>					
3	Date/Time of Computation	ProUCL 5.2 11/18/2024 1	1·18·00 PM				
4	From File	WorkSheet.xls	1.10.001 111				
5 6	Full Precision	OFF					
7	Confidence Coefficient	95%					
8	Number of Bootstrap Operations	2000					
9							
10							
11	UUMM-WRA						
12							
13			General	Statistics			
14	Total	I Number of Observations	6		Number of Distinct Observ		6
15					Number of Missing Observ		0
16		Minimum				Mean	1737
17		Maximum	2435			ledian	1704
18		SD Coefficient of Variation	429.8 0.247		Std. Error of		175.5
19		Coefficient of Variation	0.247		Ske	wness	0.556
20	Note: Sample size is	small (e.g. <10) if data	are collected	using incremental sampling	ng methodology (ISM) appro	ach	
21		,		C 2020 and ITRC 2012) for		ao11,	
22 23		_	•	he Chebyshev UCL for sm	- ·		
24				n gross overestimates of t			
25	Re	<u>-</u>		e for a discussion of the Ch			
26							
27			Normal C	GOF Test			
28	S	Shapiro Wilk Test Statistic	0.97	S	hapiro Wilk GOF Test		
29	1% S	Shapiro Wilk Critical Value	0.713	Data appear	Normal at 1% Significance L	.evel	
30		Lilliefors Test Statistic	0.192		Lilliefors GOF Test		
31	1	1% Lilliefors Critical Value	0.373	Data appear	Normal at 1% Significance L	.evel	
32				1% Significance Level			
33		Note GOF tests	may be unre	liable for small sample siz	es		
34				and Disability of the			
35	050/ N	ormal UCL	suming Norr	nal Distribution	Ol a /A divate d fan Olasson a a	<u>, </u>	
36	95% N	95% Student's-t UCL	2091		CLs (Adjusted for Skewness % Adjusted-CLT UCL (Chen-	•	2068
37		35 /0 Student S-t UCL	2031		% Adjusted-CLT OCL (Chen-	•	2008
38				9.	5.0 MOGINOU-LOOL (JUINSON	.570)	
39 40			Gamma (GOF Test			
41		A-D Test Statistic	0.2		n-Darling Gamma GOF Tes	t	
42		5% A-D Critical Value	0.697		Gamma Distributed at 5% Sig		ce Level
43		K-S Test Statistic	0.164		ov-Smirnov Gamma GOF Te		
44		5% K-S Critical Value	0.332	Detected data appear (Gamma Distributed at 5% Sig	nifican	ce Level
45		Detected data appear	r Gamma Dis	stributed at 5% Significanc	e Level		
46		Note GOF tests	may be unre	liable for small sample siz	es		
47							
48			Gamma	Statistics			
49		k hat (MLE)	19.81		k star (bias corrected	,	10.02
50		Theta hat (MLE)	87.68		Theta star (bias corrected	,	173.4
51		nu hat (MLE)			nu star (bias corr	,	120.2
52	M	ILE Mean (bias corrected)	1737	A	MLE Sd (bias corr	-	548.8
53	٨ ـــانــ ٨	sted Level of Significance	0.0122	Ар	proximate Chi Square Value Adjusted Chi Square		95.89
54	Adjus	sied Level of Significance	0.0122		Aujusted Uni Square	value	88.05
55							

	56	Α		В			С		D		E As:	F suming Ga	G mma Dis		Ition H			ı			J	I	K		L
Section Supplier Wilk Fleet Shalates 0.948 Shaptro Wilk Lognomal GOF Test		·					95% A	pprox	imate	Gamn	na UCL	2178						(95%	6 Adj	usted	Gar	mma	UCL	2371
Shapiro Wilk Tear Salatistic 0.984 Shapiro Wilk Lognormal GOF Teat																									
10% Shapiro Wilk Critical Value 0.826	59												al GOF	Гest											
	60																								
10% Lilliefors Critical Value 0.288 Data appear Lognormal at 10% Significance Level	61						10% S								Data ap		_				-			Level	
Detail appear Lognormal at 10% Significance Level	62																								
Note GOF tests may be unrelieble for smell sample sizes	63						10	1% Lill					1.1400/	.		•		norma	al at	t 10%	6 Sign	nitica	ance	Level	
Common Common Common Statistics Common Commo									INOI	ie GO	r tests	may be un	reliable	or sr	nali sam	ipie s	sizes								
Minimum of Logged Data 7.065 Mean of logged Data 7.434	-											Loanorn	al Statis	tice											
Maximum of Logged Data 7.798 SD of logged Data 0.248								Minim	num of	Logge	ed Data									M	lean o	of loc	nged	Data	7.434
Assuming Lognormal Distribution Assu																									
172 173 174 175										55-													13		
Page											Assı	uming Logi	normal D	istrib	oution										-
95% Chebyshev (MVUE) UCL 2803 97.5% Chebyshev (MVUE) UCL 2805		<u></u>								95%								909	% C	heby	yshev	(M\	/UE)	UCL	2264
74							95%	Cheb	yshev	(MVU	E) UCL	2503						97.59	% C	heby	yshev	(M\	/UE)	UCL	2835
Nonparametric Distribution Free UCL Statistics																									
Nonparametric Distribution Free UCL Statistics Statis																									
Note								-		Non	parame	etric Distrib	ution Fre	e U	CL Statis	stics					-			-	
Nonparametric Distribution Free UCLs 2026 95% BCA Bootstrap UCL 2026 2026 95% BCA Bootstrap UCL 2026 2026 95% BCA Bootstrap UCL 20176 2026 2026 95% Bootstrap UCL 20176 2026 20276 20276 20277 2	77									Data	a appea	r to follow	a Discer	nible	Distribu	ıtion									
80	78																								
1	79												stributio	n Fre	e UCLs										
Section Sect	80																		9						
Section Sect	81										-														
84 97.5% Chebyshev(Mean, Sd) UCL 2833 99% Chebyshev(Mean, Sd) UCL 3483 85 Suggested UCL to Use 87 95% Student's-t UCL 2991 Image: Color of Student's Stu	82										•														
Suggested UCL to Use	83							-	•		,										•		. ,		
86 Suggested UCL to Use 87 95% Student's-t UCL 2091 Image: Control of the part of	84					97.	5% Ch	nebysl	nev(Me	ean, S	id) UCL	2833						99% (Che	ebysł	nev(M	ean.	, Sd)	UCL	3483
87 95% Student's-t UCL 2091	85																								
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 10 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 10 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 10 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 10 UMM-WRB									F0/ O:				d UCL to	Use)										
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. WIMM-WRB UUMM-WRB UUMM-								9	5% Stu	udent's	s-t UCL	2091													
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.			Not	С	aaat	iono	ro a o r	dina th	م ممام	otion	of a OE0	/ LICL are i	rouidad	to bo	مراد مراد مرا	or to		ot the	- ma	201.0		rioto	OE 0/	1101	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Wild			NOLE	_	_		-	_				-			-										
ST State		— н	lowe							•							-								
94 bundward Undward 95 general Statistics 96 general Statistics 97 general Number of Distinct Observations of Distinct Obse	-			701, 311	iiiuia	itionic	resun	US WIII	1101 00	ver an	- Titear vv		Ct3, 101 d	uuiti	onai mon	giit ti	iic uc		ay w	vanit i	.0 0011	Suit	<u> </u>	tioticie	
94 WUMM-WRB 95 General Statistics 97 Total Number of Observations of Observations of Observations of Number of Missing Observations of Number of Missing Observations of																									
Section Section Statistics Section		UUMM-WI	'RB																						
96 General Statistics 97 Total Number of Observations 10 Number of Distinct Observations 10 98 Number of Missing Observations 0 99 Minimum 96 Median 137.8 100 Maximum 202 Median 129 101 SD 37.42 Std. Error of Mean 11.83 102 Coefficient of Variation 0.272 Skewness 0.618 103 Normal GOF Test 105 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level																									
97 Total Number of Observations 10 Number of Distinct Observations 10 98 Number of Missing Observations 0 99 Minimum 96 Mean 137.8 100 Maximum 202 Median 129 101 SD 37.42 Std. Error of Mean 11.83 102 Coefficient of Variation 0.272 Skewness 0.618 103 Normal GOF Test 105 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level												Genera	l Statisti	cs											
98 Number of Missing Observations 0 99 Minimum 96 Mean 137.8 100 Maximum 202 Median 129 101 SD 37.42 Std. Error of Mean 11.83 102 Coefficient of Variation 0.272 Skewness 0.618 103 Normal GOF Test 105 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level							Total	Num	ber of (Obser	vations	10						Numb	ber o	of Di	stinct	Obs	erva	tions	10
99 Minimum 96 Mean 137.8 100 Maximum 202 Median 129 101 SD 37.42 Std. Error of Mean 11.83 102 Coefficient of Variation 0.272 Skewness 0.618 103 Normal GOF Test 105 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level																		Numb	ber o	of Mi	ssing	Obs	serva	tions	0
100 Maximum 202 Median 129 101 Std. Error of Mean 11.83 102 Coefficient of Variation 0.272 Skewness 0.618 103 Normal GOF Test 104 Normal GOF Test 105 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level										М	inimum	96													137.8
101 SD 37.42 Std. Error of Mean 11.83 102 Coefficient of Variation 0.272 Skewness 0.618 103 Normal GOF Test 105 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level		 								Ma	aximum	202											Me	dian	129
102Coefficient of Variation0.272Skewness0.618103104Normal GOF Test105106Shapiro Wilk Test Statistic0.908Shapiro Wilk GOF Test106107Lilliefors Test Statistic0.781Data appear Normal at 1% Significance Level1081081% Lilliefors Critical Value0.304Data appear Normal at 1% Significance Level109Data appear Normal at 1% Significance Level		·									SD	37.42									Std.	Erro	r of N	/lean	11.83
103 Normal GOF Test 105 Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level								Co	efficien	nt of V	ariation	0.272										5	Skew	ness	0.618
Normal GOF Test Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test 106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level																									
106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level												Normal	GOF Te	est											
106 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level 107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level								-										-							
107 Lilliefors Test Statistic 0.179 Lilliefors GOF Test 108 1% Lilliefors Critical Value 0.304 Data appear Normal at 1% Significance Level 109 Data appear Normal at 1% Significance Level							1% S								Data	арре					-	cand	ce Le	vel	
109 Data appear Normal at 1% Significance Level		<u> </u>						Lil	liefors	Test S	Statistic														
109							1	% Lill	iefors (ear N	lorma	l at	1% 5	3ignifi	cand	ce Le	vel	
440	109									Da	ta appe	ar Normal	at 1% Si	gnific	cance Le	vel									
110	110																								

111	Α	В		С	D	Е		g Norm	G nal Distributi	H ion	I		J	K		L
112			9!	5% Nor	mal UCL					95%	UCLs (Ad	djusted	for Ske	wness)		
113					95% Stu	udent's-t U	CL 159	.5			95% Adju	sted-CL	T UCL (Chen-19	95)	159.7
114											95% Mod	dified-t L	JCL (Jol	nnson-19	78)	159.9
115																
116			-				Ga	mma G	OF Test							
117					A-D	Test Statis	tic 0.	383		Ande	rson-Darli	ng Gam	ıma GO	F Test		
118					5% A-D	Critical Val	ue 0.	725	Detected	d data appea	ar Gamma	Distribu	uted at 5	% Signif	icanc	e Level
119					K-S	Test Statis	tic 0.	191		Kolmoç	gorov-Smii	rnov Ga	ımma G	OF Test		
120					5% K-S	Critical Val	ue 0.	266	Detected	d data appea	ar Gamma	Distribu	uted at 5	% Signif	icanc	e Level
121					Detecte	d data app	ear Gam	ma Dis	tributed at 5	% Significa	ance Level					
122																
123							Ga	amma S	Statistics							
124						k hat (ML						,		rected M		11.13
125						eta hat (ML		721			The	,		rected M		12.38
126						nu hat (ML	,							s correct	- 1	222.5
127				MLE	Mean (bi	as correcte	ed) 137	.8					•	s correct	•	41.31
128											Approxima			•		189
129				Adjuste	ed Level of	f Significan	ice 0.0	0267				Adjuste	∍d Chi S	quare Va	ılue	183.6
130																
131				250/ 4					ma Distributi	ion		050/ 4 /			T	407
132				95% App	oroximate	Gamma U	CL 162	.2				95% Ad	ijustea C	Gamma L	ICL	167
133									00F Too!							
134				Ch	opiro Milk	Test Statis		927	GOF Test	Cha	mino \A/ilk I			Toot		
135					•	Critical Val		869		Sna Data appea	piro Wilk L					
136				0% 5118	•	Test Statis		178	<u>_</u>		lliefors Log				evei	
137				10%		Critical Val		241	ſ	Data appea		-				
138				10 /0					t 10% Signif	• • • • • • • • • • • • • • • • • • • •		ai at 10	70 Sigilii	icance L	CVCI	
139						Data appe	ar Logiic	ninai a	t 1070 Olgilli							
140							Loa	normal	Statistics							
141				М	inimum of	Logged Da	_	564				N	Mean of	logged D	ata	4.894
143						Logged Da		308						logged D		0.264
144																
145						Α	ssuming	Lognoi	rmal Distribu	ution						
146						95% H-U	CL 164				90'	% Cheb	yshev (MVUE) L	JCL	172.4
147				95% C	hebyshev	(MVUE) U	CL 188	.1			97.5	% Cheb	yshev (MVUE) L	JCL	209.9
148				99% C	hebyshev	(MVUE) U	CL 252	.8							\neg	
149																
150						Nonpara	metric D	istributi	ion Free UC	L Statistics	3					
151						Data app	oear to fo	llow a l	Discernible I	Distribution						
152																
153									ribution Free	UCLs						
154						5% CLT U								otstrap U		159.1
155						ootstrap U								tstrap-t L		164.5
156						ootstrap U								otstrap L		157.1
157					• •	ean, Sd) U							•	an, Sd) L		189.4
158			97.5	5% Che	byshev(Me	ean, Sd) U	CL 211	.7			99%	Chebys	hev(Me	an, Sd) L	ICL	255.6
159									101 : 1:							
160					050/ 0	adamet a tra			JCL to Use							
161					95% Sti	udent's-t U	CL 159	.5								
162		Note: Com	00tic=-	rogs ==!	a tha = -1	otion of a	NE0/ 1101	ore =	wided += !!	n the	2 00le st 11:	n mc = 1	nnr'	oto OE0/	IICI	
163				•	-				vided to help						JUL.	
164						<u>'</u>	-		•						otici-	
165	H	wever, simi	uiations	results	WIII FIOT CO	vei ali Kea	ıı vvorla d	aid Sets	s; for addition	ıaı ınsıgnt t	ne user ma	ay want	io consi	un a stati	sucia	.11.

	Α	В	С	D	Е	F	G	Н	I	J	K	L
166	i											
167 168	1	c										
169												
170	†					General	Statistics					
171			Total	I Number of 0	Observations	4			Numbe	r of Distinct (Observations	4
172									Number	r of Missing (Observations	0
173					Minimum	16					Mean	17.75
174					Maximum	20					Median	17.5
175					SD	1.708				Std. E	rror of Mean	0.854
176				Coefficien	t of Variation	0.0962					Skewness	0.753
177						II.	II.					
178		Note: Sar	mple size is	small (e.g.,	<10), if data	are collected	d using increr	mental sam	pling method	lology (ISM)	approach,	
179			refer also t	o ITRC Tech	Reg Guide	on ISM (ITR	C 2020 and I	TRC 2012)	for additiona	al guidance,		
180		t	out note that	ITRC may re	ecommend t	he t-UCL or t	the Chebyshe	ev UCL for	small sample	e sizes (n <	7).	
181				The Cheb	yshev UCL o	often results	in gross over	restimates	of the mean.			
182			Ref	fer to the Pro	UCL 5.2 Te	chnical Guid	e for a discus	ssion of the	Chebyshev	UCL.		
183												
184							GOF Test					
185				Shapiro Wilk					-	lk GOF Tes		
186			1% S	Shapiro Wilk (Data app	ear Normal a		ance Level	
187					Test Statistic					GOF Test		
188			1	1% Lilliefors (10/ 0: :5		ear Normal a	t 1% Signific	ance Level	
189				NI-4			t 1% Significa		_•			
190				NOT	e GOF tests	may be unre	eliable for sm	ali sample	SIZES			
191					۸۰	ouming Nor	mal Distributi	ion				
192			05% N	ormal UCL	As	summy Non			6 UCLs (Adju	eted for Ska	wnee)	
193					dent's-t UCL	19.76		90 /	• •		(Chen-1995)	19.5
194					Identia-t dol	13.70			,		hnson-1978)	19.81
195									- JO 70 WIGGIN		11113011 1070)	
196 197						Gamma	GOF Test					
198				A-D	Test Statistic			Ande	rson-Darling	Gamma GC	F Test	
199					Critical Value		Detected				5% Significand	ce Level
200				K-S	Test Statistic	0.189		Kolmo	gorov-Smirno	ov Gamma C	OF Test	
201				5% K-S (Critical Value	0.394	Detected	d data appe	ar Gamma D	istributed at	5% Significand	ce Level
202				Detected	d data appea	r Gamma Di	stributed at 5	% Significa	ance Level			
203	1			Not	e GOF tests	may be unre	eliable for sm	all sample	sizes			
204												
205	1					Gamma	Statistics					
206					k hat (MLE)	146.8			k	star (bias co	rrected MLE)	36.88
207				The	eta hat (MLE)	0.121			Theta	star (bias co	rrected MLE)	0.481
208					nu hat (MLE)					•	as corrected)	295
209			М	ILE Mean (bia	as corrected)	17.75				•	as corrected)	2.923
210											Value (0.05)	256.2
211			Adjus	sted Level of	Significance	N/A			A	djusted Chi S	Square Value	N/A
212								_				
213							nma Distribut	ion				
214	1		95% A	Approximate (Jamma UCL	20.44			95	% Adjusted	Gamma UCL	N/A
215						1	10055					
216				Ohamina MARU I	Tank Otali ii		I GOF Test	OI-	mine JABU- I	maurial OC	C Tost	
217				Shapiro Wilk					piro Wilk Log			
218			10% S	Shapiro Wilk (ificance Level	
219	1			Lilliefors 0% Lilliefors (Test Statistic				lliefors Lognormal		ificance Level	
220			10	, 70 LINEIUIS (onucai value	0.340		vara appea	ıı Loğnonnal	at 10 /0 SIYN	ncance Level	

221	Α	В	С	D [E Data appear l	F Lognormal a	G at 10% Signific	H ance Leve	 	J	K	L
222				Note	GOF tests	may be unre	liable for sma	II sample s	izes			
223												
224						Lognorma	l Statistics					
225				Minimum of L		2.773				Mean of lo		2.873
226			ı	Maximum of L	ogged Data	2.996				SD of lo	gged Data	0.0949
227					·							
228							rmal Distribut	on				
229					95% H-UCL	N/A				Chebyshev (M	· 1	20.27
230				Chebyshev (I		21.42			97.5%	Chebyshev (M	VUE) UCL	23.01
231			99%	Chebyshev (I	MVUE) UCL	26.13						
232												
233					-		tion Free UCL					
234					Data appea	r to follow a	Discernible D	istribution				
235												
236					-		tribution Free	UCLs			1	
237					% CLT UCL	19.15				95% BCA Boot	· ·	N/A
238				Standard Bo	-	N/A				95% Boots	·	N/A
239				95% Hall's Bo	•	N/A				Percentile Boot		N/A
240				nebyshev(Mea	•	20.31				nebyshev(Mear	. ,	21.47
241			97.5% Ch ———	nebyshev(Mea	an, Sd) UCL	23.08			99% Cl	nebyshev(Mear	n, Sd) UCL	26.25
242												
243				050/ 01			UCL to Use					
244				95% Stud	dent's-t UCL	19.76						
245		lata: Cuma			+if - OF0/	LICI ava va	والمواجه المواجه				- 0E% LICI	
246	1						· ·			nost appropriate m simulation st		
247	Но			•						want to consul		n e
248	110	wever, simu		LS WIII HOL COV	- all i teal vv	ond data se	is, for additions	ai irisigiit tii	e user may	want to consul	t a statisticio	
249												
250	UUMM-WRI	D										
201												
252 253												
254						General	Statistics					
255			Total	I Number of O	bservations	General 5	Statistics		Numbe	r of Distinct Ob	servations	4
256			Total	Number of O	bservations		Statistics					4 0
257			Total	Number of C	Observations Minimum		Statistics			r of Distinct Ob		
237			Total	I Number of C		5	Statistics				servations	0
258			Total	Number of C	Minimum	5 269	Statistics			r of Missing Ob	servations	0 286.6
258 259			Total		Minimum Maximum	5 269 334	Statistics			r of Missing Ob	Mean Median	0 286.6 279
259			Total		Minimum Maximum SD	5 269 334 27.13	Statistics			r of Missing Ob	Mean Median or of Mean	0 286.6 279 12.14
259 260		Note: Sai		Coefficient	Minimum Maximum SD t of Variation	5 269 334 27.13 0.0947		ental samp	Numbe	r of Missing Ob	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261		Note: Sai	mple size is s	Coefficient	Minimum Maximum SD t of Variation	5 269 334 27.13 0.0947			Number	std. Erro	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262			mple size is s	Coefficient small (e.g., < to ITRC Tech	Minimum Maximum SD of Variation 410), if data a	5 269 334 27.13 0.0947 are collected on ISM (ITR	using increme	RC 2012) 1	Number	std. Erro	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263			mple size is s	Coefficient small (e.g., < to ITRC Tech ITRC may re	Minimum Maximum SD t of Variation 410), if data a Reg Guide of	5 269 334 27.13 0.0947 are collected on ISM (ITRee t-UCL or t	using increme	RC 2012) 1 UCL for s	Number	Std. Erro Std. Erro dology (ISM) ap al guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263 264			mple size is a refer also to but note that	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby	Minimum Maximum SD of Variation 410), if data a Reg Guide of commend the syshev UCL of	269 334 27.13 0.0947 are collected on ISM (ITRe e t-UCL or to ften results)	using increme C 2020 and IT he Chebyshev	RC 2012) for some stimates of	Number strong method for additional sample f the mean.	std. Errodology (ISM) apal guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263 264 265			mple size is a refer also to but note that	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby	Minimum Maximum SD of Variation 410), if data a Reg Guide of commend the syshev UCL of	269 334 27.13 0.0947 are collected on ISM (ITRe e t-UCL or to ften results)	using increme C 2020 and IT he Chebyshev in gross overe	RC 2012) for some stimates of	Number strong method for additional sample f the mean.	std. Errodology (ISM) apal guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263 264 265 266			mple size is a refer also to but note that	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby	Minimum Maximum SD of Variation 410), if data a Reg Guide of commend the syshev UCL of	269 334 27.13 0.0947 are collected on ISM (ITRe e t-UCL or t ften results hnical Guide	using increme C 2020 and IT he Chebyshev in gross overe	RC 2012) for some stimates of	Number strong method for additional sample f the mean.	std. Errodology (ISM) apal guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263 264 265 266 267			mple size is a refer also to but note that	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby	Minimum Maximum SD of Variation (10), if data a Reg Guide of ecommend the yshev UCL of UCL 5.2 Tec	269 334 27.13 0.0947 are collected on ISM (ITRe e t-UCL or t ften results hnical Guide	using increme C 2020 and IT he Chebyshev in gross overe e for a discuss	RC 2012) for some stimates of	Number sling method for additional sample f the mean.	std. Errodology (ISM) apal guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263 264 265 266 267 268			mple size is a refer also to but note that	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby fer to the Pro	Minimum Maximum SD of Variation A10), if data a Reg Guide of commend the comme	269 334 27.13 0.0947 are collected on ISM (ITR) e t-UCL or t ften results hnical Guide	using increme C 2020 and IT he Chebyshev in gross overe e for a discuss	RC 2012) t UCL for s stimates o ion of the	Number Shapiro Wi	std. Errodology (ISM) apal guidance, e sizes (n < 7).	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263 264 265 266 267 268 269			mple size is a refer also to but note that	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby fer to the Pro	Minimum Maximum SD of Variation A10), if data a Reg Guide of commend the comme	269 334 27.13 0.0947 are collected on ISM (ITRe e t-UCL or t ften results hnical Guide Normal C 0.729	using increme C 2020 and IT he Chebyshev in gross overe e for a discuss	RC 2012) t UCL for s stimates o ion of the	Number Shapiro William Normal a	Std. Erro Std. Erro dology (ISM) ap al guidance, e sizes (n < 7). UCL.	Mean Median or of Mean Skewness	0 286.6 279 12.14
259 260 261 262 263 264 265 266 267 268 269 270			mple size is a refer also to out note that Ref	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby fer to the Pro	Minimum Maximum SD of Variation At 10), if data a Reg Guide of Commend the com	269 334 27.13 0.0947 are collected on ISM (ITRe e t-UCL or t ften results hnical Guide Normal C 0.729 0.686	using increme C 2020 and IT he Chebyshev in gross overe e for a discuss	RC 2012) 1 UCL for s stimates o ion of the 0	Number Shapiro Wiar Normal a	Std. Erro Std. Erro dology (ISM) apal guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significan	servations Mean Median or of Mean Skewness pproach,	0 286.6 279 12.14
259 260 261 262 263 264 265 266 267 268 269			mple size is a refer also to out note that Ref	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby fer to the Prof	Minimum Maximum SD of Variation A10), if data a Reg Guide of commend the commend that the commend	5 269 334 27.13 0.0947 are collected on ISM (ITRe e t-UCL or t ften results hnical Guide 0.729 0.686 0.367 0.396	using increme C 2020 and IT he Chebyshev in gross overe e for a discuss	RC 2012) for some stimates or ion of the of	Number Shapiro Wiar Normal a	std. Erro Std. Erro dology (ISM) ap al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significan	servations Mean Median or of Mean Skewness pproach,	0 286.6 279 12.14
259 260 261 262 263 264 265 266 267 268 269 270 271			mple size is a refer also to out note that Ref	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby fer to the Prof Shapiro Wilk T chapiro Wilk C Lilliefors T	Minimum Maximum SD of Variation 10), if data a Reg Guide of the commend the c	269 334 27.13 0.0947 are collected on ISM (ITRe et-UCL or the results hnical Guide Normal Co.729 0.686 0.367 0.396 ar Normal at	using increme C 2020 and IT he Chebyshev in gross overe e for a discuss	RC 2012) if UCL for s stimates or ion of the C	Number Nu	std. Erro Std. Erro dology (ISM) ap al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significan	servations Mean Median or of Mean Skewness pproach,	0 286.6 279 12.14
259 260 261 262 263 264 265 266 267 268 269 270			mple size is a refer also to out note that Ref	Coefficient small (e.g., < to ITRC Tech ITRC may re The Cheby fer to the Prof Shapiro Wilk T chapiro Wilk C Lilliefors T	Minimum Maximum SD of Variation 10), if data a Reg Guide of the commend the c	269 334 27.13 0.0947 are collected on ISM (ITRe et-UCL or the results hnical Guide Normal Co.729 0.686 0.367 0.396 ar Normal at	using increme C 2020 and IT he Chebyshev in gross overe e for a discuss GOF Test	RC 2012) if UCL for s stimates or ion of the C	Number Nu	std. Erro Std. Erro dology (ISM) ap al guidance, e sizes (n < 7). UCL. ilk GOF Test at 1% Significan	servations Mean Median or of Mean Skewness pproach,	0 286.6 279 12.14

276	Α	В	95% No	D ormal UCL	Е	F	G	H 95%	UCLs (Adjusted for	K Skewness)	L
277				95% Stu	dent's-t UCL	312.5			95% Adjusted-CLT U	CL (Chen-1995)	318.1
278									95% Modified-t UCL	(Johnson-1978)	314.3
279											
280							GOF Test				
281					Test Statistic	0.747	_		rson-Darling Gamma		
282					Critical Value	0.678	Da		nma Distributed at 5%		el
283					Test Statistic	0.367	D-		jorov-Smirnov Gamm		-1
284					Critical Value	0.357			nma Distributed at 5%	Significance Leve	el
285				Da	ata Not Gami	na Distribute	eu at 5% Sigi	nincance Le	evei		
286						Gamma	Statietice				
287					k hat (MLE)	149.4			k star (bias	corrected MLE)	59.88
288				The	ta hat (MLE)	1.919			Theta star (bias	·	4.786
289 290					nu hat (MLE)	1494			•	(bias corrected)	598.8
291			M	LE Mean (bia	, ,	286.6				(bias corrected)	37.04
292					<u> </u>				Approximate Chi Squ	are Value (0.05)	543.1
293			Adjus	sted Level of	Significance	0.0086			Adjusted C	hi Square Value	519.5
294							I				
295					Ass	suming Gam	ma Distributi	ion			
296			95% A	pproximate (Gamma UCL	316			95% Adjust	ed Gamma UCL	330.4
297							1			<u>"</u>	
298							GOF Test				
299				Shapiro Wilk		0.744		-	oiro Wilk Lognormal (
300			10% S	hapiro Wilk C		0.806			ognormal at 10% Sig		
301					Test Statistic	0.357			liefors Lognormal GC		
302			10	% Lilliefors C		0.319			ognormal at 10% Sig	nificance Level	
303					Data Not Lo	ognormal at	10% Signific	ance Level			
304							l Otatiania				
305				Minimum of I	agged Date	Lognorma	I Statistics		Maay	o of logged Data	E 655
306				Minimum of I Maximum of I		5.595 5.811				n of logged Data O of logged Data	5.655 0.09
307				viaximum or i	Logged Data	3.011				o i logged Data	
308					Assı	ımina Loana	rmal Distribu	ıtion			
309					95% H-UCL	N/A			90% Chebysh	ev (MVUE) UCL	321.2
310 311			95%	Chebyshev (336.8			97.5% Chebysh		358.6
312				Chebyshev (•	401.3			· · · · · · · · · · · · · · · · · · ·	,	
313											
314					Nonparame	tric Distribu	tion Free UC	L Statistics			
315					Data appea	r to follow a	Discernible I	Distribution			
316											
317					·=		tribution Free	UCLs			
318					5% CLT UCL	306.6				A Bootstrap UCL	N/A
319				Standard Bo	-	N/A				Bootstrap-t UCL	N/A
320				95% Hall's Bo		N/A				Bootstrap UCL	N/A
321				nebyshev(Me	-	323			95% Chebyshev		339.5
322			97.5% Ch	nebyshev(Me	an, Sd) UCL	362.4			99% Chebyshev	(Mean, Sd) UCL	407.3
323						Suggested	IICI to line				
324				Q5% C+	dent's-t UCL	312.5	JOL IO USE				
325				30 /0 Siu	u o ni 5-i UUL	J 1Z.Ü					
326		Note: Suga	estions regard	ling the selec	tion of a 95%	UCL are pro	ovided to help	the user to	select the most appro	onriate 95% LICI	
327			_	_		-	-		g results from simulat	-	
328	——————————————————————————————————————								he user may want to c		an.
329							, addition		acc. may want to c		
330											

331	А	В	С	D	E	F	G	Н	l	J	K	L
332	UUMM-WRI	Ē										
333												
334						General	Statistics					
335			Total	Number of C	bservations	4			Numbe	r of Distinct C)bservations	3
336									Numbe	r of Missing C)bservations	0
337					Minimum	24					Mean	24.75
338					Maximum	26					Median	24.5
339					SD	0.957				Std. E	rror of Mean	0.479
340				Coefficient	of Variation	0.0387					Skewness	0.855
341												
342		Note: Sa	mple size is	small (e.g., <	:10), if data a	are collected	using incre	mental sam	pling method	dology (ISM)	approach,	
343			refer also to	o ITRC Tech	Reg Guide	on ISM (ITR	C 2020 and I	ITRC 2012)	for additiona	al guidance,		
344		t	out note that	ITRC may re	commend th	e t-UCL or t	he Chebysh	ev UCL for s	small sample	e sizes (n < 7	<u>').</u>	
345				The Cheby	shev UCL o	ften results i	in gross ove	restimates o	of the mean.			
346			Ref	er to the Pro	UCL 5.2 Ted	hnical Guide	e for a discu	ssion of the	Chebyshev	UCL.		
347												
348						Normal C	GOF Test					
349			S	hapiro Wilk 1	est Statistic	0.865			Shapiro Wi	ilk GOF Test		
350			1% S	hapiro Wilk C	critical Value	0.687		Data appe	ear Normal a	t 1% Signific	ance Level	
351				Lilliefors 7	est Statistic	0.283			Lilliefors	GOF Test		
352			1	% Lilliefors C	critical Value	0.413		Data appe	ear Normal a	t 1% Signific	ance Level	
353					Data appe	ar Normal at	1% Signification	ance Level				
354				Note	GOF tests	may be unre	liable for sm	all sample :	sizes			
355												
356					As	suming Norr	nal Distribut	ion				
357			95% No	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)	
358				95% Stu	dent's-t UCL	25.88			•	ed-CLT UCL	`	25.76
359									95% Modifi	ed-t UCL (Jol	nnson-1978)	25.91
360												
361						Gamma (GOF Test					
362				A-D 1	est Statistic	0.427		Ande	rson-Darling	Gamma GO	F Test	
363				5% A-D C	critical Value	0.657	Detected				5% Significand	ce Level
364				K-S 1	est Statistic	0.318				ov Gamma G		
365					critical Value	0.394				istributed at 5	5% Significand	ce Level
366			<u> </u>		data appear			_				
367				Note	GOF tests	may be unre	liable for sm	nall sample	sizes			
368												
369						Gamma	Statistics					
370					k hat (MLE)	900.3				star (bias cor	<i>´</i>	225.2
371					ta hat (MLE)	0.0275			Theta	star (bias cor	*	0.11
372					nu hat (MLE)					•	as corrected)	1802
373			M	LE Mean (bia	s corrected)	24.75				•	as corrected)	1.649
374										e Chi Square	` ′	1704
375			Adjus	sted Level of	Significance	N/A			A	djusted Chi S	quare Value	N/A
376												
377						suming Gam	ma Distribut	tion				
378			95% A	pproximate C	amma UCL	26.17			95	% Adjusted 0	jamma UCL	N/A
379												
380							GOF Test					
381				hapiro Wilk T		0.865				gnormal GOF		
382			10% S	hapiro Wilk C		0.792		• • • • • • • • • • • • • • • • • • • •			ficance Level	
383					est Statistic	0.284			-	ormal GOF T		
384			10	% Lilliefors C		0.346			_	at 10% Signi	ficance Level	
385					Data appear	Lognormal a	at 10% Signif	ricance Leve	ei 			

386	Α	В	С	D No	E ote GOF tests	F may be unre	G eliable for si	H nall sample s	izes	J	K	L
387												
388						Lognorma	l Statistics					
389				Minimum c	of Logged Data	3.178				Mean of I	ogged Data	3.208
390				Maximum o	of Logged Data	3.258				SD of I	ogged Data	0.0384
391											"	
392					Assı	uming Logno	rmal Distrib	oution				
393					95% H-UCL	N/A				Chebyshev (N		26.17
394					v (MVUE) UCL				97.5%	Chebyshev (N	MVUE) UCL	27.72
395			99%	6 Chebyshev	v (MVUE) UCL	29.48						
396												
397					•	etric Distribut						
398					Data appea	ar to follow a	Discernible	Distribution				
399					Nonna	rametric Dist	tribution Ere	a IICI e				
400					95% CLT UCL			e octs		95% BCA Bo	ntetran LICI	N/A
401			059		Bootstrap UCL						strap-t UCL	N/A
402			30.		Bootstrap UCL				05%	Percentile Bo		N/A N/A
403			90% C		Mean, Sd) UCL					ebyshev(Mea	•	26.84
404 405				,	/lean, Sd) UCL /lean, Sd) UCL					ebyshev(Mea		29.51
405			37.370						0070 01	,(14100	, 54, 562	
406						Suggested	UCL to Use	ı				
407 408				95% S	tudent's-t UCL	25.88						
409												
410	1	Note: Sugge	estions rega	rding the sel	ection of a 95%	6 UCL are pr	ovided to he	lp the user to	select the m	nost appropria	ite 95% UCL	
411		Recon	nmendation	s are based	upon data size	, data distribi	ution, and sl	ewness usin	g results fro	m simulation s	studies.	
412	Ho	wever, simu	ulations resu	ults will not c	over all Real W	Vorld data se	ts; for additi	onal insight th	ne user may	want to consu	ılt a statistici	an.
413												
414												
415	UUMM-WR	F										
416												
417						General	Statistics					
418			Tot	al Number of	f Observations	11				r of Distinct O		11
419									Number	of Missing O	bservations	0
420					Minimum						Mean	528.1
421					Maximum	786					Median	534
422					SD					Std. Er	ror of Mean	44.31
423				Coefficie	ent of Variation	0.278					Skewness	0.243
424						No	20E T					
425				Chanira Mai	L Toot Ctoticti		GOF Test		Chemire W	IL COE Taat		
426				-	k Test Statistic			Data anna		Ik GOF Test t 1% Significa	neo I ovel	
427			1%		c Critical Value			рата арре		GOF Test	ince Level	
428					S Test Statistic			Data anna		t 1% Significa	nce I ovol	
429				- /o LIIIIEIUIS		ear Normal at	1% Signific		ai ivuiillai a	L 1 /0 SIGIIIICA	HICE LEVEI	
430							. i /o Oigiiiil	AIIOE LEVEI				
431					Δο	suming Norr	mal Distribu	tion				
432			95% !	Normal UCL			5.00150		UCLs (Adio	sted for Skev	vness)	
433			55701		tudent's-t UCL	608.4				d-CLT UCL (•	604.4
434 435										ed-t UCL (Joh	,	608.9
435 436						<u> </u>				3 2 2 (0011		
436 437						Gamma (GOF Test					
437				A-[D Test Statistic		- 7	Ander	son-Darlina	Gamma GO	F Test	
439					Critical Value		Detecte		_	stributed at 5		ce Level
								F F 7 **				
440					S Test Statistic	0.0977		Kolmoa	orov-Smirno	v Gamma G		

March Marc
Add MLE Mean (bias corrected) 528.1 MLE Sd (bias corrected) 166.
Mate
Approximate Chi Square Value (0.05) 187.
Adjusted Level of Significance 0.0278
Assuming Gamma Distribution Section 2007 Sect
Assuming Gamma Distribution G22.2 95% Adjusted Gamma UCL G39.3
Shapiro Wilk Test Statistic 0.981 Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value 0.876 Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic 0.111 Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value 0.231 Data appear Lognormal at 10% Significance Level
Data appear Lognormal at 10% Significance Level
Lognormal Statistics
Lognormal Statistics
Minimum of Logged Data 5.67 Mean of logged Data 6.28
Maximum of Logged Data 6.667 SD of logged Data 0.2
Assuming Lognormal Distribution 95% H-UCL 634.1 90% Chebyshev (MVUE) UCL 668.1 95% Chebyshev (MVUE) UCL 731.8 97.5% Chebyshev (MVUE) UCL 819.1 999% Chebyshev (MVUE) UCL 992.3 99% Chebyshev (MVUE) UCL 992.3 90% Chebyshev (MVUE) UCL 819.1 992.3 998.2 998.
Assuming Lognormal Distribution 95% H-UCL 634.1 90% Chebyshev (MVUE) UCL 668.5 95% Chebyshev (MVUE) UCL 731.8 97.5% Chebyshev (MVUE) UCL 819.5 99% Chebyshev (MVUE) UCL 992.3 90% Chebyshev (MVUE) UCL 992.3 99% Chebyshev (MVUE) UCL 819.5 99% Chebyshev (MVUE) UCL 9
95% H-UCL 634.1 90% Chebyshev (MVUE) UCL 668.5
95% Chebyshev (MVUE) UCL 731.8 97.5% Chebyshev (MVUE) UCL 819.3
99% Chebyshev (MVUE) UCL 992.3
Nonparametric Distribution Free UCL Statistics
Nonparametric Distribution Free UCL Statistics
A71
Nonparametric Distribution Free UCLs
Nonparametric Distribution Free UCLs 95% CLT UCL 601 95% BCA Bootstrap UCL 604.3 95% Standard Bootstrap UCL 598.2 95% Bootstrap-t UCL 621.0 95% Hall's Bootstrap UCL 620.6 95% Percentile Bootstrap UCL 598.3 95% Percentile Bootstrap UCL 95% Percentile Boots
475 95% CLT UCL 601 95% BCA Bootstrap UCL 604. 476 95% Standard Bootstrap UCL 598.2 95% Bootstrap-t UCL 621.0 477 95% Hall's Bootstrap UCL 620.6 95% Percentile Bootstrap UCL 598.2
476 95% Standard Bootstrap UCL 598.2 95% Bootstrap-t UCL 621.0 477 95% Hall's Bootstrap UCL 620.6 95% Percentile Bootstrap UCL 598.2
477 95% Hall's Bootstrap UCL 620.6 95% Percentile Bootstrap UCL 598.3
90% Chebyshev (Mean, Sd) UCL 661 95% Chebyshev (Mean, Sd) UCL 721.
479 97.5% Chebyshev(Mean, Sd) UCL 804.8 99% Chebyshev(Mean, Sd) UCL 969
480 Suggested LICL to Lice
Suggested UCL to Use 95% Student's-t UCL 608.4
702
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.
100
487

\Box	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	0.E7.20 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	3:57:38 PIVI		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Booletrap Operations (2000			
10 11	CEM-WRA-0.5-1			
12	<u>DEIM-VVRA-0.5-1</u>			
13 14	Total Number of Observations		Statistics Number of Distinct Changetions	
15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum		Mean	56.25
17 18	Maximum SD		Median Std. Error of Mean	<u>55</u> 3.01
19	Coefficient of Variation		Skewness	0.762
20 21	Note: Comple size is small (a.g. <10) if date	ara callacted	using ingremental compling mothedalogy (ICM) approach	
22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend the	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	THEIGH TO THE THOO SEE SEE THE		•	
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	Snapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
30 31	Lilliefors Test Statistic	0.26	Lilliefors GOF Test	
32	1% Lilliefors Critical Value Data appe		Data appear Normal at 1% Significance Level 1% Significance Level	
33			eliable for small sample sizes	
34 35	Λ.	eumina No-	mal Distribution	
36	95% Normal UCL	suming Non	95% UCLs (Adjusted for Skewness)	
37	95% Student's-t UCL	63.33	95% Adjusted-CLT UCL (Chen-1995)	62.43
38 39			95% Modified-t UCL (Johnson-1978)	63.53
40			GOF Test	
41 42	A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Lovel
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	Level
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
46			stributed at 5% Significance Level sliable for small sample sizes	
47				
48 49	k hat (MLE)		Statistics k star (bias corrected MLE)	29.92
50	Theta hat (MLE)		Theta star (bias corrected MLE)	1.88
51 52	nu hat (MLE)		nu star (bias corrected) MLE Sd (bias corrected)	239.4
53	MLE Mean (bias corrected)	56.25		10.28 204.5
54 55	Adjusted Level of Significance	N/A		N/A
56	Δε	sumina Gam	ma Distribution	
57	95% Approximate Gamma UCL			N/A
58 59		Lognormo	GOF Test	
60	Shapiro Wilk Test Statistic	0.913	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67			I Statistics	
68 69	Minimum of Logged Data	3.932	Mean of logged Data	4.026
70	Maximum of Logged Data	4.159	SD of logged Data	0.105
71	Assı	uming Logno	ormal Distribution	05.40
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	64.52 69.15	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	65.13 74.74
74	99% Chebyshev (MVUE) UCL		57.576 GREDYSHEV (WIVOL) OCL	, 7./7
75 76	No.	otrio Diotalba	tion Eron LICI Statistics	
77			tion Free UCL Statistics Discernible Distribution	
78				
79 80	Nonpal 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	N/A
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н		J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	65.28			95% Ch	ebyshev(Me	an, Sd) UCL	69.37
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	75.05			99% Ch	ebyshev(Me	an, Sd) UCL	86.2
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	63.33						
88							•					
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
91	Но	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.
92												

4	A B C D E	F	G H I J K	L
2		tics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/31/2024 4	1.01.02 DM		
5	From File ProUCL Input.xls	+.U 1.UZ PIVI		
6 7	Full Precision OFF Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9 10				
11	CEM-WRA-0.5-2			
12 13		General	Statistics	
14 15	Total Number of Observations	10	Number of Distinct Observations	10
16	Minimum	100	Number of Missing Observations Mean	0 166.2
17 18	Maximum	264	Median	150
19	SD Coefficient of Variation	48.81 0.294	Std. Error of Mean Skewness	15.43 0.898
20				
21 22	Shapiro Wilk Test Statistic	0.913	GOF Test Shapiro Wilk GOF Test	
23 24	1% Shapiro Wilk Critical Value	0.781	Data appear Normal at 1% Significance Level	
25	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.242 0.304	Lilliefors GOF Test Data appear Normal at 1% Significance Level	
26			1% Significance Level	
27 28	Ası	sumina Nori	mal Distribution	
29 30	95% Normal UCL		95% UCLs (Adjusted for Skewness)	100.0
31	95% Student's-t UCL	194.5	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	196.3 195.2
32		0		
34	A-D Test Statistic	0.393	GOF Test Anderson-Darling Gamma GOF Test	
35 36	5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance	e Level
37	K-S Test Statistic 5% K-S Critical Value	0.211 0.266	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
38 39	Detected data appear	Gamma Di	stributed at 5% Significance Level	
40		Gamma	Statistics	
41	k hat (MLE)	13.79	k star (bias corrected MLE)	9.722
43	Theta hat (MLE) nu hat (MLE)	12.05 275.9	Theta star (bias corrected MLE) nu star (bias corrected)	17.1 194.4
44 45	MLE Mean (bias corrected)	166.2	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	53.3 163.2
46	Adjusted Level of Significance	0.0267	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	158.2
47 48	Λος	numing Car	nma Distribution	
49	95% Approximate Gamma UCL	198	95% Adjusted Gamma UCL	204.3
50 51		Lognorma	GOF Test	
52	Shapiro Wilk Test Statistic	0.955	Shapiro Wilk Lognormal GOF Test	
53 54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.869 0.193	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
55	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level	
56 57	Data appear	Lognormal a	at 10% Significance Level	
58			Statistics	
59 60	Minimum of Logged Data Maximum of Logged Data	4.605 5.576	Mean of logged Data SD of logged Data	5.077 0.283
61 62				
63	Assu 95% H-UCL	<u>ıming Logno</u> 200.6	prmal Distribution 90% Chebyshev (MVUE) UCL	210.9
64 65	95% Chebyshev (MVUE) UCL	231.2	97.5% Chebyshev (MVUE) UCL	259.4
66	99% Chebyshev (MVUE) UCL	314.8		
67 68			tion Free UCL Statistics	
69	Data appea	r to tollow a	Discernible Distribution	
70 71			tribution Free UCLs	10F 2
72	95% CLT UCL 95% Standard Bootstrap UCL	191.6 190.1	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	195.2 202.4
73 74	95% Hall's Bootstrap UCL	198.8	95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	191.5
75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	212.5 262.6	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	233.5 319.8
76 77				
78	95% Student's-t UCL	194.5	UCL to Use	
79 80			ovided to help the upperte select the most approximate OF9/ LIQL	
81			ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
82			ts; for additional insight the user may want to consult a statisticia	n.

83 B C D E F G H I J K L

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/31/2024	4.00.00 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 ProUCL Input.xls	4:02:36 PIVI		
6 7	Full Precision OFF			
8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9				
10 11	CEM-WRA-0.5-3			
12	OLINIWI WY 0.0-0			
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	4
15	Total Number of Observations	7	Number of Missing Observations	0
16 17	Minimum Maximum	37 44	Mean Median	41 41.5
18	SD Waxiifulii	3.162	Std. Error of Mean	1.581
19 20	Coefficient of Variation	0.0771	Skewness	-0.632
21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Normal (GOF Test	
28	Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appe	ar Normal at	1% Significance Level	
33 34	Note GOF tests	may be unre	eliable for small sample sizes	
35		suming Nor	nal Distribution	
36 37	95% Normal UCL 95% Student's-t UCL	44.72	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	43.07
38	55 /o Students-t OCL	44.72	95% Adjusted-CE1 OCE (Cheri-1993) 95% Modified-t UCL (Johnson-1978)	44.64
39 40		0	00F T	
41	A-D Test Statistic	0.297	GOF Test Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	l evel
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	20101
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE)	219.9 0.186	k star (bias corrected MLE) Theta star (bias corrected MLE)	55.15 0.743
51	Theta hat (MLE) nu hat (MLE)	1759	nu star (bias corrected)	441.2
52 53	MLE Mean (bias corrected)		MLE Sd (bias corrected)	5.521
54	Adjusted Level of Significance	N/A		393.5 N/A
55		!		
56 57	As: 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A
58	55 % Approximate damina OCE			
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level	
65 66			liable for small sample sizes	
66 67		Lognorma	I Statistics	
68	Minimum of Logged Data	3.611	Mean of logged Data	3.711
69 70	Maximum of Logged Data	3.784	SD of logged Data	0.0783
71	Assı	uming Logno	ormal Distribution	
72 73	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	45.81
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	47.99 56.96	97.5% Chebyshev (MVUE) UCL	51.02
75		•		
76 77			tion Free UCL Statistics Discernible Distribution	
78				
79 80			tribution Free UCLs	NI/A
81	95% CLT UCL 95% Standard Bootstrap UCL	43.6 N/A	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A
82	95% Hall's Bootstrap UCL	1		N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	45.74	95% Chebyshev(Mean, Sd) UCL 47.89							
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	50.87			99% Ch	ebyshev(Me	an, Sd) UCL	56.73		
85														
86	Cuggotto CCL to CCC													
87	00 / 0 Ottadont 3 t OOL 44.72													
88	Recommended UCL exceeds the maximum observation													
89														
90		Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL			
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	m simulation	studies.			
92	Но	wever, simul	lations result	s will not cov	er all Real V	/orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.		
93														
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) i	may not be			
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.				
96														

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/31/2024	4.00.E0 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024	4:03:59 PIVI		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Booletrap Operations (2000			
10 11	CEM-WRA-0.5-4			
12	OLIM-44174-0.3-4			
13 14	Total Number of Observations		Statistics Number of Distinct Observations	4
15	Total Nulliber of Observations	4	Number of Missing Observations	0
16 17	Minimum		Mean	72.75 73
18	Maximum SD		Median Std. Error of Mean	6.933
19	Coefficient of Variation			-0.0961
20 21	Note: Sample size is small (e.g., <10), if data:	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7).	
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26 27			-	
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	1% Shapiro Wilk Critical Value	0.687	Data Not Normal at 1% Significance Level	
30 31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appear App	roximate No	rmal at 1% Significance Level	
33 34	Note GOF tests	may be unre	eliable for small sample sizes	
35		suming Non	mal Distribution	
36 37	95% Normal UCL		95% UCLs (Adjusted for Skewness)	00.0
38	95% Student's-t UCL	89.07	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	83.8 89.01
39				
40 41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	a Lawal
45	5% K-S Critical Value Detected data appear		Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	Level
46 47	Note GOF tests	may be unre	liable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE)	35.74	k star (bias corrected MLE)	9.102
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	7.992 72.82
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	24.11
53 54	Aditional Level of Cimpificance	NI/A	Approximate Chi Square Value (0.05)	54.17
55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56 57			ma Distribution	N1/A
58	95% Approximate Gamma UCL	97.8	95% Adjusted Gamma UCL	N/A
59			GOF Test	
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
62	Lilliefors Test Statistic	0.171	Lilliefors Lognormal GOF Test	
63 64	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
65			at 10% Significance Level eliable for small sample sizes	
66 67		-	·	
67 68	Minimum of Logged Data		I Statistics Mean of logged Data	4.273
69	Maximum of Logged Data		SD of logged Data	0.195
70 71	Ann	umina I cara	armal Distribution	
72	ASSI 95% H-UCL		ormal Distribution 90% Chebyshev (MVUE) UCL	94.01
73 74	95% Chebyshev (MVUE) UCL			117
74 75	99% Chebyshev (MVUE) UCL	143.2		
76			tion Free UCL Statistics	
77 78	Data appea	ar to follow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL	84.15	95% BCA Bootstrap UCL	N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A
	00 /0 Tidil 3 Doolstidp OOL		30 /0 1 Groomale Doolstrap GOL	

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	93.55	95% Chebyshev(Mean, Sd) UCL 103						
84													
85													
86													
87	95% Student's-t UCL 89.07												
88				Red	commended	UCL exceed	is the maxin	num observa	ation				
89													
90			Wher	a data set fo	llows an app	proximate dis	tribution pas	sing only on	e of the GOF	tests,			
91			it is su	ggested to us	e a UCL bas	sed upon a di	istribution pa	ssing both C	OF tests in I	ProUCL			
92													
93	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL		
94		Recom	mendations	are based up	on data size	, data distribi	ution, and sk	ewness usin	g results fror	m simulation	studies.		
95	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
96													
97		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be		
98			reliable.	Chen's and J	ohnson's me	ethods provi	de adjustme	nts for posit	vely skewed	data sets.			
99													
-													

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024	4:05:27 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations (2000			
10	CEM-WRA-0.5-4-DS			
12	<u> </u>			
13 14	Total Number of Observations		Statistics Number of Distinct Observations	4
15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16 17	Minimum	30	Mean	33.25
18	Maximum SD	38 3.594	Median Std. Error of Mean	32.5 1.797
19	Coefficient of Variation		Skewness	0.889
20	Note: Sample size is small (e.g. <10) if data	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Normal (GOF Test	
28	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level	
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appe	ar Normal at	1% Significance Level	
33 34	Note GOF tests	may be unre	eliable for small sample sizes	
35		suming Nor	mal Distribution	
36 37	95% Normal UCL 95% Student's-t UCL	37.48	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	37.06
38	33 /o Students-t OCL	37.40		37.61
39 40		Commo	COF Took	
41	A-D Test Statistic	0.3	GOF Test Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE) Theta hat (MLE)	117.2 0.284	k star (bias corrected MLE) Theta star (bias corrected MLE)	29.47 1.128
51	nu hat (MLE)	937.7	nu star (bias corrected) 2	235.8
52 53	MLE Mean (bias corrected)	33.25	MLE Sd (bias corrected)	6.125
54	Adjusted Level of Significance	N/A		201.2 N/A
55 56				
57	95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL 1	N/A
58 59				
60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67			I Statistics	
68 69	Minimum of Logged Data	3.401	Mean of logged Data	3.5
70	Maximum of Logged Data	3.638	SD of logged Data	0.106
71 72	Assi	uming Logno	ormal Distribution	20.52
73	95% H-UCL 95% Chebyshev (MVUE) UCL	38.18 40.93		38.53 44.25
74	99% Chebyshev (MVUE) UCL	50.78	5 5	
75 76	Nonnarame	etric Distribu	tion Free UCL Statistics	
77			Discernible Distribution	
78 79	None	rametric Dis	tribution Free LICLs	
80	Nonpa 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	N/A
81 82	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
. x/	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL 1	N/A

	Α	В	С	D	E	F	G	Н	ı	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	38.64	95% Chebyshev(Mean, Sd) UCL 41.0						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	44.47	99% Chebyshev(Mean, Sd) UCL 51.13						
85													
86	Cuggotica COL to COC												
87													
88													
89	ľ	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL		
90													
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													

-1	A B C D E	F tics for Unc	G H ensored Full Data Se	l ate	J	K	L
2		101 0110		,,,,			
3	User Selected Options	1.00.EE DN4					
5	Date/Time of Computation ProUCL 5.2 10/31/2024 4 From File ProUCL Input.xls	1:08:55 PIVI					
6	Full Precision OFF						
7	Confidence Coefficient 95%						
8	Number of Bootstrap Operations 2000						
10							
11	CEM-WRB-0.5-1						
12 13		General	Statistics				
14	Total Number of Observations	10	Stationio	Numb	er of Distinct (Observations	10
15 16	Main	105		Numb	er of Missing (0
17	Minimum Maximum	125 242				Mean Median	169.8 158
18	SD	41.87			Std. E	rror of Mean	13.24
19 20	Coefficient of Variation	0.247				Skewness	0.567
21		Normal (GOF Test				
22	Shapiro Wilk Test Statistic	0.907			Vilk GOF Tes		
23 24	1% Shapiro Wilk Critical Value	0.781	Data a	appear Normal		ance Level	
25	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.173 0.304	Data a	Lillietor appear Normal	s GOF Test at 1% Signific	ance I evel	
26		0.00.	1% Significance Lev		at 170 Olgillill		
27 28							
29	95% Normal UCL	suming Nor	nal Distribution	5% UCLs (Ad	justed for Ske	wness)	
30	95% Student's-t UCL	194.1		95% Adjus	ted-CLT UCL	(Chen-1995)	194.1
31 32						hnson-1978)	194.5
33		Gamma	GOF Test				
34	A-D Test Statistic	0.388	Ar	nderson-Darlin			
35	5% A-D Critical Value	0.725	Detected data ap	pear Gamma I	Distributed at	5% Significand	ce Level
36 37	K-S Test Statistic 5% K-S Critical Value	0.164 0.266	Kolr Detected data ap	nogorov-Smiri			o Lovol
38	Detected data appear	Gamma Di	stributed at 5% Signi	ficance Level	ייסוויטעו כ ע dl :	o /o olgillilcalic	C FEAGI
39					_	_	
40 41	k hat (MLE)	Gamma 19.02	Statistics	I	star (bias co	rrected MI EV	13.38
42	Theta hat (MLE)	8.927			a star (bias co		12.69
43	nu hat (MLE)				nu star (bia	as corrected)	267.6
44 45	MLE Mean (bias corrected)	169.8		Annrovima		as corrected) Value (0.05)	46.42 230.7
46	Adjusted Level of Significance	0.0267				Square Value	
47 48			ma Diatelle at a				
48	Ass 95% Approximate Gamma UCL		ma Distribution	Q	5% Adjusted	Gamma UCI	202.2
50	50% Approximate dumina 60E				_ / · · · · · · · · · · · · · · · · · ·		
51 52	Obj. 1 Mart T. (Co. 11 of		GOF Test	hamir- Marii '			
53	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.92 0.869		Shapiro Wilk Lo bear Lognorma			
54	Lilliefors Test Statistic	0.147		Lilliefors Log	normal GOF	Test	
55 56	10% Lilliefors Critical Value	0.241		oear Lognorma			
57	Data appear	<u>Lognormal</u> :	t 10% Significance I	_evei			
58			l Statistics				
59 60	Minimum of Logged Data	4.828				logged Data	5.108
61	Maximum of Logged Data	5.489			2D 01	logged Data	0.241
62			rmal Distribution				
63 64	95% H-UCL	198.6			Chebyshev		208.7
65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	226.3 298.9		97.5%	Chebyshev	(IVIVUE) UCL	250.8
66							
67 68			tion Free UCL Statis				
69	Data appea	I LU TOIIOW A	Discernible Distribut	IION			
70			ribution Free UCLs			7	
71 72	95% CLT UCL	191.6				ootstrap UCL	192.4
73	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	190 190.5		95%	95% Boo Percentile Bo	otstrap-t UCL ootstrap UCL	196.5 190.4
74	90% Chebyshev(Mean, Sd) UCL	209.5			Chebyshev(Me		227.5
75 76	97.5% Chebyshev(Mean, Sd) UCL	252.5		99% (hebyshev(Me	ean, Sd) UCL	301.6
76 77		Suggested	UCL to Use				
78	95% Student's-t UCL	194.1					
79 80	Nets Commentions and the Comment	1101 -	and a large front of			OF0/ LIO!	
81	Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size,						
82	However, simulations results will not cover all Real W						an.

83 B C D E F G H I J K L

UCL Statistics for Uncensored Full Data Sets User Selected Options Date/Time of Computation ProUCL 5.2 10/31/2024 4:10:58 PM	
4 Date/Time of Computation ProUCL 5.2 10/31/2024 4:10:58 PM	
From File ProUCL Input.xls	
6 Full Precision OFF	
7 Confidence Coefficient 95% 8 Number of Bootstrap Operations 2000	
9 Traines of Bostolian Sportations	
10 11 CEM-WRC-0.5-1	
[12]	
13 General Statistics 14 Total Number of Observations 9 Nu	umber of Distinct Observations 9
15 NL	umber of Missing Observations 0
16 Minimum 94	Mean 127.3 Median 121
18 SD 31.91	Median 121 Std. Error of Mean 10.64
Coefficient of Variation 0.251	Skewness 1.079
20 21 Note: Sample size is small (e.g., <10), if data are collected using incremental sampling m	ethodology (ISM) approach.
refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for add	ditional guidance,
but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small st The Chebyshev UCL often results in gross overestimates of the magnetic states.	
Refer to the ProUCL 5.2 Technical Guide for a discussion of the Cheby	
26 Normal GOF Test	
28 Shapiro Wilk Test Statistic 0.876 Shapi	iro Wilk GOF Test
29 1% Shapiro Wilk Critical Value 0.764 Data appear Nor	mal at 1% Significance Level
	efors GOF Test mal at 1% Significance Level
32 Data appear Normal at 1% Significance Level	at the digital desired Edvol
Note GOF tests may be unreliable for small sample sizes 34	
35 Assuming Normal Distribution	
36 95% Normal UCL 95% UCLs	(Adjusted for Skewness)
0070 010001110 1 002 1 1 1 1 1 1 1 1 1 1 1	djusted-CLT UCL (Chen-1995) 148.9 Modified-t UCL (Johnson-1978) 147.8
39	
40 Gamma GOF Test 41 A-D Test Statistic 0.44 Anderson-Da	arling Gamma GOF Test
42 5% A-D Critical Value 0.721 Detected data appear Gami	ma Distributed at 5% Significance Level
	ma Distributed at 5% Significance Level
45 Detected data appear Gamma Distributed at 5% Significance Le	
Note GOF tests may be unreliable for small sample sizes 47	
48 Gamma Statistics	
k hat (MLE) 19.75	k star (bias corrected MLE) 13.24
50 Theta hat (MLE) 6.446 T 51 nu hat (MLE) 355.6	heta star (bias corrected MLE) 9.615 nu star (bias corrected) 238.4
52 MLE Mean (bias corrected) 127.3	MLE Sd (bias corrected) 34.99
53 Approx 54 Adjusted Level of Significance 0.0231	kimate Chi Square Value (0.05) 203.6 Adjusted Chi Square Value 196.8
55	Aujusteu Otti Oquale Value 180.0
56 Assuming Gamma Distribution 57 95% Approximate Gamma UCI 149 1	95% Adjusted Gamma UCL 154.2
58	95% Adjusted Gamma UCL 154.2
59 Lognormal GOF Test 60 Shapiro Wilk Test Statistic 0.917 Shapiro Wil	III Lamannal COF Task
	Ik Lognormal GOF Test ormal at 10% Significance Level
62 Lilliefors Test Statistic 0.182 Lilliefors	Lognormal GOF Test
Data appear Lognormal at 10% Significance Level	ormal at 10% Significance Level
65 Note GOF tests may be unreliable for small sample sizes	
66 67 Lognormal Statistics	
68 Minimum of Logged Data 4.543	Mean of logged Data 4.821
Maximum of Logged Data 5.231	SD of logged Data 0.235
71 Assuming Lognormal Distribution	
72 95% H-UCL 149.9	90% Chebyshev (MVUE) UCL 157.1
74 99% Chebyshey (MVUF) UCL 226.5	7.5% Chebyshev (MVUE) UCL 189.5
75	
76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution	
78	
79 Nonparametric Distribution Free UCLs	050/ DOA D
80 95% CLT UCL 144.8 81 95% Standard Bootstrap UCL 143.7	95% BCA Bootstrap UCL 148.3 95% Bootstrap-t UCL 161.6
	95% Percentile Bootstrap UCL 145.4

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	159.2	95% Chebyshev(Mean, Sd) UCL 173.7						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	193.8	99% Chebyshev(Mean, Sd) UCL 233.2						
85	5												
86													
87				95% Stu	dent's-t UCL	147.1							
88						•	•						
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.		
91	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	ian.	
92													

	A B C D E	F	G H I J K	L								
2	UCL Statis	stics for Unc	ensored Full Data Sets									
3	User Selected Options	4.10.00 DM										
5	Date/Time of Computation ProUCL 5.2 10/31/2024 ProUCL Input.xls	4:12:20 PM										
6	Full Precision OFF											
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of Booletrap Operations (2000											
10 11	CEM-WRC-0.5-2											
12	OLIW-WYNO-0.5-2											
13 14	Total Number of Observations		Statistics Number of Distinct Observations	4								
15	Total Nulliber of Observations	4	Number of Missing Observations	0								
16 17	Minimum		Mean	60.25 60.5								
18	Maximum SD		Median Std. Error of Mean	3.568								
19	Coefficient of Variation			-0.142								
20 21	Note: Sample size is small (e.g., <10), if data:	are collected	using incremental sampling methodology (ISM) approach,									
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,									
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.									
25			e for a discussion of the Chebyshev UCL.									
26 27		Normal	GOF Test									
28	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test									
29 30	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level									
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level									
32	Data appe	ar Normal at	1% Significance Level									
33 34	Note GOF tests	liable for small sample sizes										
35	Assuming Normal Distribution 95% Normal LICI 95% Normal LICI 95% Normal LICI											
36 37	95% Normal UCL 95% Student's-t UCL		95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	65.85								
38	95% Student s-t UCL	68.65	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	68.6								
39 40												
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test									
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level								
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level								
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level									
46 47	Note GOF tests	may be unre	eliable for small sample sizes									
48			Statistics									
49 50	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) Theta star (bias corrected MLE)	23.66 2.547								
51	nu hat (MLE)	751.6	nu star (bias corrected)	2.547 189.2								
52 53	MLE Mean (bias corrected)		MLE Sd (bias corrected)	12.39								
54	Adjusted Level of Significance	N/A		158.4 N/A								
55		!										
56 57	As: 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A								
58	55707 pproximate dumina OCE											
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test									
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level									
62 63	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test									
64	10% Lilliefors Critical Value Data appear	Lognormal a	Data appear Lognormal at 10% Significance Level at 10% Significance Level									
65 66	Note GOF tests	may be unre	liable for small sample sizes									
66 67		Lognorma	I Statistics									
68	Minimum of Logged Data	3.951	Mean of logged Data	4.093								
69 70	Maximum of Logged Data	4.22	SD of logged Data	0.12								
71			rmal Distribution									
72 73	95% H-UCL	70.57	90% Chebyshev (MVUE) UCL	71.05								
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	75.94 96.07	97.5% Chebyshev (MVUE) UCL	82.73								
75												
76 77			tion Free UCL Statistics Discernible Distribution									
78												
79 80			tribution Free UCLs	NI/A								
81	95% CLT UCL 95% Standard Bootstrap UCL			N/A N/A								
82	95% Hall's Bootstrap UCL			N/A								

	Α	В	С	D	Е	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	70.95			95% Ch	ebyshev(Me	an, Sd) UCL	75.8		
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	82.53			99% Ch	ebyshev(Me	an, Sd) UCL	95.75		
85														
86						Suggested	UCL to Use							
87		95% Student's-t UCL 68.65												
88	Recommended UCL exceeds the maximum observation													
89														
90		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL			
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.			
92	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.		
93														
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be			
95		reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.												
96														

178		A B C D E	F	G H I J K	L								
Date/Time of Constation PropUCL, 52 1931/2024 477-04 PM	2	UCL Statis	stics for Unc	ensored Full Data Sets									
From File Production OFF			4.07.04.D14										
The Character 1975			4:07:04 PIVI										
Number of Bootstrap Operations		Full Precision OFF											
Color													
Total Number of Observations	9	Number of Bootstrap Operations (2000											
Total Number of Observations		CEM-WPD-0 5-1											
Total Number of Observations 4	12	SCINITALD-0:3-1											
Minimum S6		Total Number of Observations			4								
Maximum 87	15	Total Number of Observations	4										
18													
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Quide on ISM (ITRC 2012) for additional guidance, but note that ITRC may recommend the -UCL or the Chebyshev UCL for small sample sizes (n < 7).	18				6.958								
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (15M) approach, refer also to ITRG Tech Reg Guide on ISM (ITRC 2020 and ITRC 2020 a		Coefficient of Variation			1.781								
The content of the		Note: Sample size is small (e.g., <10), if data:	are collected	using incremental sampling methodology (ISM) approach.									
The Chebyshev UCL often results in gross overestimates of the mean. Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL. Normal GOF Test Shapiro Wilk Test Statistic Normal GOF Test Shapiro Wilk Critical Value 0.887 Data appear Normal at 1% Significance Level 11% Shapiro Wilk Critical Value 0.887 Data appear Normal at 1% Significance Level 11% Shapiro Wilk Critical Value 137 14% Lillefors Test Statistic 0.377 Data appear Normal at 1% Significance Level 138 14 Data appear Normal at 1% Significance Level 139 14 Data appear Normal at 1% Significance Level 140 150 151 152 153 154 155 155 155 155 155 155 155 155 155	22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,									
Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL Normal GOF Test	23												
Normal GOF Test	25												
Shapiro Wilk Test Statistic 0.793			Normal C	POE Toet									
1% Shapiro Wilk Critical Value 0.687 Data appear Normal at 1% Significance Level	28	Shapiro Wilk Test Statistic											
132													
Data appear Normal at 1% Significance Level	31												
Assuming Normal Distribution 95% UCLs (Adjusted for Skewness) 35	32	Data appe	ar Normal at	1% Significance Level									
Assuming Normal Distribution 95% Normal UCL 82.88 95% Adjusted for Skewness 95% Normal UCL 82.88 95% Adjusted-CLT UCL (Chen-1995) 84.57 83.91 95% Adjusted-CLT UCL (Chen-1995) 84.57 83.91 95% Modified-t UCL (Johnson-1978) 83.91 84.57 83.91 84.57		4											
Second Color	35												
Samma GOF Test		95% Normal UCL		95% UCLs (Adjusted for Skewness)	94 57								
Camma GOF Test	38	95% Students-t OCL	02.00										
A-D Test Statistic													
S% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level		A-D Test Statistic											
145	42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level								
Detected data appear Gamma Distributed at 5% Significance Level					l evel								
AF	45	Detected data appea	r Gamma Di	stributed at 5% Significance Level	LOVOI								
Residence Resi	46	Note GOF tests	may be unre	eliable for small sample sizes									
Theta hat (MLE)	48			Statistics									
The color of the					8.606								
MLE Mean (bias corrected) 66.5 MLE Sd (bias corrected) 22.67	51	1 /			68.85								
54 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A 55 Assuming Gamma Distribution 56 Assuming Gamma Distribution 95% Adjusted Gamma UCL N/A 57 95% Approximate Gamma UCL 90.22 95% Adjusted Gamma UCL N/A 58 Lognormal GOF Test 59 Lognormal GOF Test 60 Shapiro Wilk Test Statistic 0.824 Shapiro Wilk Lognormal GOF Test 61 10% Shapiro Wilk Critical Value 0.792 Data appear Lognormal at 10% Significance Level 62 Lilliefors Test Statistic 0.362 Lilliliefors Lognormal GOF Test 63 10% Lilliefors Critical Value 0.362 Lilliliefors Lognormal at 10% Significance Level 64 Data appear Approximate Lognormal at 10% Significance Level Significance Level 65 Note GOF tests may be unreliable for small sample sizes 66 Note GOF tests may be unreliable for small sample sizes 68 Minimum of Logged Data 4.025 Mean of logged Data 4.182 69 Maximum of Logged Data 4.866 SD of logged Data 9.194 <th>52</th> <th></th> <th>66.5</th> <th>MLE Sd (bias corrected)</th> <th>22.67</th>	52		66.5	MLE Sd (bias corrected)	22.67								
Assuming Gamma Distribution 95% Approximate Gamma UCL 90.22 95% Adjusted Gamma UCL N/A 95% Approximate Gamma UCL 90.22 95% Adjusted Gamma UCL N/A 58	ეპ 54	Adjusted Level of Significance	N/A										
S7	55												
Saming Lognormal GOF Test					N/A								
60 Shapiro Wilk Test Statistic 0.824 Shapiro Wilk Lognormal GOF Test 61 10% Shapiro Wilk Critical Value 0.792 Data appear Lognormal at 10% Significance Level 62 Lilliefors Test Statistic 0.362 Lilliefors Lognormal GOF Test 63 10% Lilliefors Critical Value 0.346 Data Not Lognormal at 10% Significance Level 64 Data appear Approximate Lognormal at 10% Significance Level 65 Note GOF tests may be unreliable for small sample sizes 66 Lognormal Statistics 68 Minimum of Logged Data 4.025 Mean of logged Data 4.18 69 Maximum of Logged Data 4.466 SD of logged Data 0.19 70 Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5 97.5% Chebyshev (MVUE) UCL 106.6 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a D	58	93 % Approximate damina OCL			14//								
61 10% Shapiro Wilk Critical Value 0.792 Data appear Lognormal at 10% Significance Level 62 Lilliefors Test Statistic 0.362 Lilliefors Lognormal GOF Test 63 10% Lilliefors Critical Value 0.346 Data Not Lognormal at 10% Significance Level 64 Data appear Approximate Lognormal at 10% Significance Level 65 Note GOF tests may be unreliable for small sample sizes 66 Lognormal Statistics 68 Minimum of Logged Data 4.025 69 Maximum of Logged Data 4.466 70 SD of logged Data 0.19 71 Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5 97.5% Chebyshev (MVUE) UCL 106.6 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution		Chanira Wills Took Chadishia											
62 Lilliefors Test Statistic 0.362 Lilliefors Lognormal GOF Test 63 10% Lilliefors Critical Value 0.346 Data Not Lognormal at 10% Significance Level 64 Data appear Approximate Lognormal at 10% Significance Level 65 Note GOF tests may be unreliable for small sample sizes 66 Lognormal Statistics 68 Minimum of Logged Data 4.025 Mean of logged Data 4.182 69 Maximum of Logged Data 4.466 SD of logged Data 0.194 70 Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5 Nonparametric Distribution Free UCL Statistics 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution	61												
Data appear Approximate Lognormal at 10% Significance Level 65 Note GOF tests may be unreliable for small sample sizes 66 Lognormal Statistics 68 Minimum of Logged Data 4.025 Mean of logged Data 4.182 69 Maximum of Logged Data 4.466 SD of logged Data 0.194 70 Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 75 Nonparametric Distribution Free UCL Statistics 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution		Lilliefors Test Statistic	0.362	Lilliefors Lognormal GOF Test									
Note GOF tests may be unreliable for small sample sizes	64												
Lognormal Statistics 68 Minimum of Logged Data 4.025 Mean of logged Data 4.182 69 Maximum of Logged Data 4.466 SD of logged Data 0.194 70 71 Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5 130.5 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution	65												
68 Minimum of Logged Data 4.025 Mean of logged Data 4.182 69 Maximum of Logged Data 4.466 SD of logged Data 0.194 70 71 Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5 130.5 Nonparametric Distribution Free UCL Statistics 76 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution			Lognormo	I Statistics									
69 Maximum of Logged Data 4.466 SD of logged Data 0.194 70 71 Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5 75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution	68		4.025	Mean of logged Data	4.182								
Assuming Lognormal Distribution 72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5		Maximum of Logged Data	4.466	SD of logged Data	0.194								
72 95% H-UCL 87.85 90% Chebyshev (MVUE) UCL 85.76 73 95% Chebyshev (MVUE) UCL 94.5 97.5% Chebyshev (MVUE) UCL 106.6 74 99% Chebyshev (MVUE) UCL 130.5 130.	71	Ass	uming Loand	ormal Distribution									
74 99% Chebyshev (MVUE) UCL 130.5 75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution	72	95% H-UCL	87.85	90% Chebyshev (MVUE) UCL	85.76								
75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution	74			97.5% Chebyshev (MVUE) UCL	106.6								
77 Data appear to follow a Discernible Distribution	75												
<u> </u>	78		ai to ioliow a	DISCOLLING DISTUNCTION									
79 Nonparametric Distribution Free UCLs	79				NI/A								
80 95% CLT UCL 77.95 95% BCA Bootstrap UCL N/A 81 95% Standard Bootstrap UCL N/A 95% Bootstrap t UCL N/A													
82 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A													

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	87.37	95% Chebyshev(Mean, Sd) UCL 96.83						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	110			99% Ch	ebyshev(Me	an, Sd) UCL	135.7	
85													
86	Suggested UCL to Use												
87	95% Student's-t UCL 82.88												
88													
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL		
90	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.												
91	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.												
92													

4	A B C D E	F	G H I J K	L								
2	UCL Statis	tics for Unc	ensored Full Data Sets									
3	User Selected Options											
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 3 From File WorkSheet.xls	3:34:54 PM										
6	Full Precision OFF											
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of Bootstrap Operations 2000											
10	OM Discour Octalle											
12	CM-Placer Spoils											
13			Statistics									
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0								
16	Minimum	25	Mean	32.5								
17 18	Maximum SD	36 5.196	Median Std. Error of Mean	34.5 2.598								
19	Coefficient of Variation	0.16		-1.597								
20	N. O. I. I. II. (40.161)											
21 22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,									
23	but note that ITRC may recommend the	e t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).									
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.									
26	Neiel to the F100CL 3.2 Tec	illical Guid	e for a discussion of the Chebyshev OCL.									
27 28	Objection MERC To be On the City		GOF Test									
29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	0.802 0.687	Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level									
30	Lilliefors Test Statistic	0.288	Lilliefors GOF Test									
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level 1 1% Significance Level									
33			eliable for small sample sizes									
34 35	Assuming Normal Distribution											
36	95% Normal UCL	suming Nori	95% UCLs (Adjusted for Skewness)									
37	95% Student's-t UCL	38.61	95% Adjusted-CLT UCL (Chen-1995)	34.56								
38 39			95% Modified-t UCL (Johnson-1978)	38.27								
40	Gamma GOF Test											
41 42	A-D Test Statistic 5% A-D Critical Value	0.57 0.656	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Lovol								
43	K-S Test Statistic	0.030	Kolmogorov-Smirnov Gamma GOF Test									
44 45	5% K-S Critical Value	0.394	Detected data appear Gamma Distributed at 5% Significance	Level								
46	Note GOF tests	may be unre	stributed at 5% Significance Level									
47		-										
48 49	k hat (MLE)	<u>Gamma</u> 47.18	Statistics k star (bias corrected MLE)	11.96								
50	Theta hat (MLE)	0.689	Theta star (bias corrected MLE)	2.717								
51 52	nu hat (MLE) MLE Mean (bias corrected)	377.5 32.5	nu star (bias corrected) MLE Sd (bias corrected)	95.7 9.397								
53	IVILE Mean (bias corrected)	32.3	Approximate Chi Square Value (0.05)	74.13								
54 55	Adjusted Level of Significance	N/A		N/A								
56	Ass	sumina Gam	ıma Distribution									
57	95% Approximate Gamma UCL			N/A								
58 59		Lognorma	GOF Test									
60	Shapiro Wilk Test Statistic	0.785	Shapiro Wilk Lognormal GOF Test									
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.792 0.31	Data Not Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test									
63	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level									
64 65	Data appear Approx		ormal at 10% Significance Level									
66	Note GOF tests I	may be unre	eliable for small sample sizes									
67			Statistics									
68 69	Minimum of Logged Data Maximum of Logged Data	3.219 3.584	Mean of logged Data SD of logged Data	3.471 0.173								
70				0.175								
71 72			ormal Distribution	40.02								
73	95% H-UCL 95% Chebyshev (MVUE) UCL	41.43 44.73	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	40.92 50.02								
74	99% Chebyshev (MVUE) UCL	60.4										
75 76	Nonnarama	tric Dietribu	tion Free UCL Statistics									
77			Discernible Distribution									
78 79												
80	Nonpar 95% CLT UCL	36.77	tribution Free UCLs 95% BCA Bootstrap UCL	N/A								
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A								
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A								

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	40.29		95% Chebyshev(Mean, Sd) UCL 43.82						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	48.72			99% Ch	ebyshev(Me	an, Sd) UCL	58.35		
85														
86						Suggested	UCL to Use							
87	95% Student's-t UCL 38.61													
88	Recommended UCL exceeds the maximum observation													
89														
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL			
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	n simulation	studies.			
92	Ho	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.		
93														
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) i	may not be			
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.				
96														

	A B C D E	F	G H I J K	L								
2	UCL Statis	tics for Unc	ensored Full Data Sets									
3	User Selected Options	2.20.20 DM										
5	Date/Time of Computation ProUCL 5.2 10/28/2024 3 From File WorkSheet.xls	3:30:20 PIVI										
6	Full Precision OFF											
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of Boolettap Operations (2000											
10 11	CM-WRA-0.5-1											
12	ON-WA-0.5-1											
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	3								
15	Total Number of Observations	4	Number of Missing Observations	0								
16 17	Minimum	<u>5</u> 9	Mean	7								
18	Maximum SD	1.633	Median Std. Error of Mean	0.816								
19	Coefficient of Variation	0.233	Skewness	0								
20 21	Note: Sample size is small (e.g., <10), if data a	re collected	I using incremental sampling methodology (ISM) approach,									
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,									
23 24			the Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.									
25			e for a discussion of the Chebyshev UCL.									
26 27		Normal C	GOF Test									
28	Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test									
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level									
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.25 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level									
32	Data appea	ar Normal at	1% Significance Level									
33 34	Note GOF tests	eliable for small sample sizes										
35	Assuming Normal Distribution 95% Normal LICI 95% LICI's (Adjusted for Skewness)											
36 37	95% Normal UCL 95% Student's-t UCL	8.922	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	8.343								
38	93% Students-t OCL	0.922	95% Adjusted-CET OCE (Chen-1995) 95% Modified-t UCL (Johnson-1978)	8.922								
39 40												
41	A-D Test Statistic	0.338	GOF Test Anderson-Darling Gamma GOF Test									
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	e Level								
43 44	K-S Test Statistic 5% K-S Critical Value	0.277 0.394	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	a Level								
45	Detected data appear	Gamma Di	stributed at 5% Significance Level) LOVOI								
46 47	Note GOF tests	may be unre	eliable for small sample sizes									
48		Gamma	Statistics									
49 50	k hat (MLE)	23.65	k star (bias corrected MLE)	6.079								
51	Theta hat (MLE) nu hat (MLE)	0.296 189.2	Theta star (bias corrected MLE) nu star (bias corrected)	1.151 48.64								
52	MLE Mean (bias corrected)	7	MLE Sd (bias corrected)	2.839								
53 54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	33.63 N/A								
55												
56 57	Ass 95% Approximate Gamma UCL	suming Gam 10.12	ma Distribution 95% Adjusted Gamma UCL	N/A								
58	5076 Approximate damina OCE											
59 60	Shapiro Wilk Test Statistic	Lognorma 0.935	I GOF Test Shapiro Wilk Lognormal GOF Test									
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level									
62 63	Lilliefors Test Statistic	0.285	Lilliefors Lognormal GOF Test									
64	10% Lilliefors Critical Value Data appear	0.346 Lognormal a	Data appear Lognormal at 10% Significance Level at 10% Significance Level									
65 66			eliable for small sample sizes									
66 67		Lognorma	I Statistics									
68	Minimum of Logged Data	1.609	Mean of logged Data	1.925								
69 70	Maximum of Logged Data	2.197	SD of logged Data	0.241								
71	Assu	ıming Logno	ormal Distribution									
72 73	95% H-UCL	10.11	90% Chebyshev (MVUE) UCL	9.526								
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	10.67 15.37	97.5% Chebyshev (MVUE) UCL	12.25								
75												
76 77			tion Free UCL Statistics Discernible Distribution									
78												
79 80			tribution Free UCLs	NI/A								
81	95% CLT UCL 95% Standard Bootstrap UCL	8.343 N/A	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A								
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A								

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	9.449			95% Ch	ebyshev(Me	an, Sd) UCL	10.56	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	12.1			99% Ch	ebyshev(Me	an, Sd) UCL	15.12	
85													
86	Suggested UCL to Use												
87	95% Student's-t UCL 8.922												
88													
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL		
90	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.												
91	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.												
92													

	A B C D E	F	G H I J K	L								
2	UCL Statis	tics for Unc	ensored Full Data Sets									
3	User Selected Options	0-20-40 DM										
5	Date/Time of Computation ProUCL 5.2 10/28/2024 3 From File WorkSheet.xls	3:32:42 PIVI										
6	Full Precision OFF											
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of Booleting Operations (2000											
10 11	CM-WRA-0.5-2											
12	ON-WIA-0.3-2											
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	3								
15	Total Number of Observations	4	Number of Missing Observations	0								
16 17	Minimum	11 13	Mean	12 12								
18	Maximum SD	0.816	Median Std. Error of Mean	0.408								
19	Coefficient of Variation	0.068	Skewness	0								
20 21	Note: Sample size is small (e.g., <10), if data a	re collected	using incremental sampling methodology (ISM) approach,									
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,									
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.									
25			e for a discussion of the Chebyshev UCL.									
26 27		Normal (GOF Test									
28	Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test									
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level									
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.25 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level									
32	Data appea	ar Normal at	1% Significance Level									
33 34	Note GOF tests	eliable for small sample sizes										
35	Assuming Normal Distribution											
36 37	95% Normal UCL 95% Student's-t UCL	12.96	95% UCLs (Adjusted for Skewness)	12.67								
38	93% Students-t OCL	12.90	95% Adjusted-CET OCE (Chen-1995) 95% Modified-t UCL (Johnson-1978)	12.07								
39 40												
41	A-D Test Statistic	0.331	GOF Test Anderson-Darling Gamma GOF Test									
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level								
43 44	K-S Test Statistic 5% K-S Critical Value	0.258 0.394	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level								
45	Detected data appear	Gamma Di	stributed at 5% Significance Level	LCVCI								
46 47	Note GOF tests	may be unre	eliable for small sample sizes									
48		Gamma	Statistics									
49 50	k hat (MLE)	287.2		71.96								
51	Theta hat (MLE) nu hat (MLE)	0.0418 2297	Theta star (bias corrected MLE) nu star (bias corrected) 5	0.167 575.7								
52	MLE Mean (bias corrected)	12	MLE Sd (bias corrected)	1.415								
53 54	Adjusted Level of Significance	N/A		521 N/A								
55				1								
56 57	Ass 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A								
58	ээ ло дургохинасе daniilid UCL			11/7								
59 60	Chanira Willy Task Chaking		GOF Test									
61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.944 0.792	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level									
62 63	Lilliefors Test Statistic	0.26	Lilliefors Lognormal GOF Test									
64	10% Lilliefors Critical Value Data appear	0.346 Lognormal a	Data appear Lognormal at 10% Significance Level at 10% Significance Level									
65	Note GOF tests	may be unre	eliable for small sample sizes									
66 67		Lognorma	I Statistics									
68	Minimum of Logged Data	2.398	Mean of logged Data	2.483								
69 70	Maximum of Logged Data	2.565	SD of logged Data	0.0682								
71	Assu	ıming Logno	ormal Distribution									
72 73	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	13.23								
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	13.78 16.07	97.5% Chebyshev (MVUE) UCL	14.56								
75												
76 77			tion Free UCL Statistics Discernible Distribution									
78												
79 80	Nonpar 95% CLT UCL	ametric Dis 12.67	tribution Free UCLs 95% BCA Bootstrap UCL	N/A								
81	95% Standard Bootstrap UCL	12.67 N/A		N/A N/A								
82	95% Hall's Bootstrap UCL	N/A		N/A								

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	13.22		95% Chebyshev(Mean, Sd) UCL 13.78						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	14.55			99% Ch	ebyshev(Me	an, Sd) UCL	16.06		
85														
86	Suggested UCL to Use													
87	95% Student's-t UCL 12.96													
88														
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL			
90														
91	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.													
92														

	A B C D E	F	G H I J K	L								
2	UCL Statis	stics for Unc	ensored Full Data Sets									
3	User Selected Options											
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 From File WorkSheet.xls	3:39:21 PM										
6	Full Precision OFF											
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of Bootstrap Operations 2000											
10	OM WDD 4											
12	CM-WRB-1											
13			Statistics									
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0								
16	Minimum	5	Mean	8.5								
17 18	Maximum		Median	9								
19	SD Coefficient of Variation		Std. Error of Mean Skewness	1.323 -0.864								
20				0.001								
21			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,									
23			the Chebyshev UCL for small sample sizes (n < 7).									
24 25	The Chebyshev UCL o	often results	in gross overestimates of the mean.									
26	Refer to the ProUCL 5.2 Tec	<u>ennical Guid</u>	e for a discussion of the Chebyshev UCL.									
27			GOF Test									
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level									
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test									
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level									
32 33			t 1% Significance Level eliable for small sample sizes									
34	Assuming Normal Distribution											
35 36		suming Norr										
37	95% Normal UCL 95% Student's-t UCL	11.61	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	10.07								
38	0070 010001110 1 002	11.01	95% Modified-t UCL (Johnson-1978)	11.52								
39 40			COF Took									
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test									
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level								
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	a Lovol								
45			stributed at 5% Significance Level	; Level								
46 47	Note GOF tests	may be unre	eliable for small sample sizes									
47		Gamma	Statistics									
49	k hat (MLE)		k star (bias corrected MLE)	3.133								
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	2.713								
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	25.07 4.802								
53			Approximate Chi Square Value (0.05)	14.66								
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A								
56	As	suming Garr	nma Distribution									
57 58	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A								
58		Lognorma	I GOF Test									
60	Shapiro Wilk Test Statistic	0.905	Shapiro Wilk Lognormal GOF Test									
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level									
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level									
64	Data appear	Lognormal a	at 10% Significance Level									
65 66	Note GOF tests	may be unre	eliable for small sample sizes									
67		Lognorma	I Statistics									
68	Minimum of Logged Data	1.609	Mean of logged Data	2.097								
69 70	Maximum of Logged Data	2.398	SD of logged Data	0.352								
71			ormal Distribution									
72 73	95% H-UCL	15.84	90% Chebyshev (MVUE) UCL	12.98								
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	17.8								
75												
76 77			tion Free UCL Statistics									
78	Data appea	ar to follow a	Discernible Distribution									
79			tribution Free UCLs									
80 81	95% CLT UCL	10.68	95% BCA Bootstrap UCL	N/A								
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A								
	33 /0 Hall S DOUISHAD UCL	1.1/7	, John elemine bootstrap OCL	11// 1								

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	12.47			95% Ch	ebyshev(Me	an, Sd) UCL	14.27	1
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	16.76			99% Ch	ebyshev(Me	an, Sd) UCL	21.66	
85													
86						Suggested	UCL to Use						
87	95% Student's-t UCL 11.61												
88	Recommended UCL exceeds the maximum observation												
89													
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL		
91		Recom	mendations a	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
92	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.	
93													
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) r	may not be		
95	reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.												
96		reliable. Cherrs and Johnson's methods provide adjustments for positively skewed data sets.											

	A B C D E	F	G H I J K	L							
2	UCL Statis	tics for Unc	ensored Full Data Sets								
3	User Selected Options	0.07.40 DM									
5	Date/Time of Computation ProUCL 5.2 10/28/2024 3 From File WorkSheet.xls	3:37:19 PM									
6	Full Precision OFF										
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Boolettap Operations (2000										
10 11	CM-WRB-2										
12	CNI-WAD-2										
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	3							
15	Total Number of Observations	4	Number of Missing Observations	0							
16 17	Minimum	11 14	Mean	12.25							
18	Maximum SD	1.5	Median Std. Error of Mean	12 0.75							
19	Coefficient of Variation	0.122	Skewness	0.37							
20 21	Note: Sample size is small (e.g., <10), if data a	re collected	using incremental sampling methodology (ISM) approach,								
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,								
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.								
25			e for a discussion of the Chebyshev UCL.								
26 27		Normal C	POE Toet								
28	Shapiro Wilk Test Statistic	0.851	GOF Test Shapiro Wilk GOF Test								
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level								
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.298 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32	Data appea	ar Normal at	1% Significance Level								
33 34	Note GOF tests	may be unre	eliable for small sample sizes								
35	Assuming Normal Distribution										
36 37	95% Normal UCL	95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 14.02 95% Adjusted-CLT UCL (Chen-1995) 13.63									
38	95% Student's-t UCL	14.02	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	14.04							
39 40		0									
41	A-D Test Statistic	Gamma (0.476	GOF Test Anderson-Darling Gamma GOF Test								
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level							
43 44	K-S Test Statistic 5% K-S Critical Value	0.333 0.394	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level							
45	Detected data appear	Gamma Dis	stributed at 5% Significance Level								
46 47	Note GOF tests	may be unre	eliable for small sample sizes								
48			Statistics								
49 50	k hat (MLE) Theta hat (MLE)	89.83 0.136	k star (bias corrected MLE) Theta star (bias corrected MLE)	22.62 0.541							
51	nu hat (MLE)			181							
52 53	MLE Mean (bias corrected)	12.25	MLE Sd (bias corrected)	2.575							
54	Adjusted Level of Significance	N/A		150.9 N/A							
55											
56 57	Ass 95% Approximate Gamma UCL	suming Gam 14.7	ma Distribution 95% Adjusted Gamma UCL	N/A							
58	0070 ripproximate dumina OOL										
59 60	Shapiro Wilk Test Statistic	Lognormal 0.845	GOF Test Shapiro Wilk Lognormal GOF Test								
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level								
62 63	Lilliefors Test Statistic	0.299	Lilliefors Lognormal GOF Test								
64	10% Lilliefors Critical Value Data appear	0.346 Lognormal a	Data appear Lognormal at 10% Significance Level at 10% Significance Level								
65 66	Note GOF tests	may be unre	liable for small sample sizes								
66 67		Lognorma	I Statistics								
68	Minimum of Logged Data	2.398	Mean of logged Data	2.5							
69 70	Maximum of Logged Data	2.639	SD of logged Data	0.122							
71	Assı		ormal Distribution								
72 73	95% H-UCL	14.39	90% Chebyshev (MVUE) UCL	14.48							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	15.49 19.66	97.5% Chebyshev (MVUE) UCL	16.9							
75											
76 77			tion Free UCL Statistics Discernible Distribution								
78											
79 80			tribution Free UCLs	NI/A							
81	95% CLT UCL 95% Standard Bootstrap UCL	13.48 N/A		N/A N/A							
82	95% Hall's Bootstrap UCL	N/A		N/A							

	Α	В	С	D	Е	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	14.5			95% Ch	ebyshev(Me	an, Sd) UCL	15.52		
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	16.93			99% Ch	ebyshev(Me	an, Sd) UCL	19.71		
85														
86		Suggested UCL to Use												
87	95% Student's-t UCL 14.02													
88				Red	commended	UCL exceed	ds the maxim	num observa	tion					
89														
90		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL			
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.			
92	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	an.		
93		-	-	-						-				

1		Statis	F tics for Unc	G H I J K L ensored Full Data Sets
2				
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/28/	<u>/2024 3</u>	3:43:26 PM	
6	From File WorkSheet.xls Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
10				
12	CM-WRC-1			
13			General	Statistics
14	Total Number of Observa	ations	4	Number of Distinct Observations 3
15				Number of Missing Observations 0
16		imum	60	Mean 65.75
17 18	Max	imum	81 10.21	Median 61
19	Coefficient of Var	SD	0.155	Std. Error of Mean 5.105 Skewness 1.95
20	Coefficient of Val	ilation	0.155	Skewiless 1.30
21	Note: Sample size is small (e.g., <10), if	data a	re collected	using incremental sampling methodology (ISM) approach,
22	refer also to ITRC Tech Reg C	Guide o	n ISM (ITR	C 2020 and ITRC 2012) for additional guidance,
23				he Chebyshev UCL for small sample sizes (n < 7).
24 25				in gross overestimates of the mean.
26	Refer to the ProucL 5	.∠ 1 <i>e</i> cl	iniicai Guide	e for a discussion of the Chebyshev UCL.
27			Normal C	GOF Test
28	Shapiro Wilk Test St		0.697	Shapiro Wilk GOF Test
29	1% Shapiro Wilk Critical		0.687	Data appear Normal at 1% Significance Level
30 31	Lilliefors Test St		0.393	Lilliefors GOF Test
32	1% Lilliefors Critical		0.413	Data appear Normal at 1% Significance Level 1% Significance Level
33				liable for small sample sizes
34	11010 401	100101	nay bo anno	Madio 161 Official Carripto Gizeo
35		Ass	suming Norr	mal Distribution
36	95% Normal UCL			95% UCLs (Adjusted for Skewness)
37 38	95% Student's-	t UCL	77.76	95% Adjusted-CLT UCL (Chen-1995) 79.47
39				95% Modified-t UCL (Johnson-1978) 78.59
40			Gamma (GOF Test
41	A-D Test St		0.772	Anderson-Darling Gamma GOF Test
42	5% A-D Critical		0.656	Data Not Gamma Distributed at 5% Significance Level
43 44	K-S Test St		0.409	Kolmogorov-Smirnov Gamma GOF Test
45	5% K-S Critical		0.394	Data Not Gamma Distributed at 5% Significance Level ed at 5% Significance Level
46	Data Not	<u>. Gaiiiii</u>		sa at 0 % Oignineance Level
47			Gamma	Statistics
48	k hat (60.47	k star (bias corrected MLE) 15.28
49 50	Theta hat (`	1.087	Theta star (bias corrected MLE) 4.302
51	nu hat (MLE Mean (bias corre		483.8 65.75	nu star (bias corrected) 122.3 MLE Sd (bias corrected) 16.82
52	MEE Mean (bias cone	ecteu)	03.73	Approximate Chi Square Value (0.05) 97.74
53	Adjusted Level of Signific	cance	N/A	Adjusted Chi Square Value N/A
54		•		
55 56	050/ 4			ma Distribution
57	95% Approximate Gamma	JUUL	82.26	95% Adjusted Gamma UCL N/A
58			Lognorma	GOF Test
59	Shapiro Wilk Test St		0.707	Shapiro Wilk Lognormal GOF Test
60	10% Shapiro Wilk Critical		0.792	Data Not Lognormal at 10% Significance Level
61 62	Lilliefors Test St		0.386	Lilliefors Lognormal GOF Test
63	10% Lilliefors Critical		0.346	Data Not Lognormal at 10% Significance Level 10% Significance Level
64	Data	14UL LO	gnomiai al	1070 Organicance Level
65			Lognorma	I Statistics
66	Minimum of Logged		4.094	Mean of logged Data 4.178
67 68	Maximum of Logged	d Data	4.394	SD of logged Data 0.145
69		Λ	mina Lease	armal Distribution
70	95% H		80.09	ormal Distribution 90% Chebyshev (MVUE) UCL 80.04
71	95% Chebyshev (MVUE		86.52	97.5% Chebyshev (MVUE) UCL 95.52
72	99% Chebyshev (MVUE	,	113.2	, , , , , , , , , , , , , , , , , , , ,
73				
74 75				tion Free UCL Statistics
76	Data	appear	to tollow a	Discernible Distribution
, 0		lonnar	ametric Dist	tribution Free UCLs
77				
77 78	95% CLT		74.15	95% BCA Bootstrap UCL N/A
77 78 79	95% CL1 95% Standard Bootstrap	UCL UCL	74.15 N/A	95% Bootstrap-t UCL N/A
77 78 79 80	95% CL1 95% Standard Bootstrag 95% Hall's Bootstrag	UCL UCL UCL	74.15 N/A N/A	95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A
77 78 79	95% CL1 95% Standard Bootstrap	UCL UCL UCL UCL	74.15 N/A	95% Bootstrap-t UCL N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83														
84	Suggested UCL to Use													
85		95% Student's-t UCL 77.76												
86														
87	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
88		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.												
89		wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	an.		
90														

	A B C D E	F	G H I J K L									
2	UCL Statis	stics for Unc	ensored Full Data Sets									
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024	0:40:04 DM										
5	Date/Time of Computation ProUCL 5.2 10/28/2024 From File WorkSheet.xls	3:49:21 PM										
6 7	Full Precision OFF Confidence Coefficient 95%											
8	Number of Bootstrap Operations 2000											
9												
11	CM-WRC-2											
12 13		General	Statistics									
14	Total Number of Observations		Number of Distinct Observations 5									
15 16	Minimum	62	Number of Missing Observations 0 Mean 84									
17	Maximum	113	Median 84									
18 19	SD Coefficient of Variation		Std. Error of Mean 8.396 Skewness 0.82									
20												
21			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,									
23	but note that ITRC may recommend the	he t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).									
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.									
26 27			•									
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test									
29 30	1% Shapiro Wilk Critical Value	0.686	Data appear Normal at 1% Significance Level									
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level									
32 33	Data appe	ar Normal at	1% Significance Level									
34	Note GUF tests	eliable for small sample sizes										
35 36	Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)											
37	95% Normal UCL 95% Student's-t UCL	101.9	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 101.1									
38 39			95% Modified-t UCL (Johnson-1978) 102.4									
40		Gamma	GOF Test									
41 42	A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level									
43	K-S Test Statistic	0.226	Kolmogorov-Smirnov Gamma GOF Test									
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level									
46			eliable for small sample sizes									
47 48		Gamma	Statistics									
49	k hat (MLE)	25.96	k star (bias corrected MLE) 10.52									
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 7.986 nu star (bias corrected) 105.2									
52	MLE Mean (bias corrected)	84	MLE Sd (bias corrected) 25.9									
53 54	Adjusted Level of Significance	0.0086	Approximate Chi Square Value (0.05) 82.52 Adjusted Chi Square Value 73.77									
55 56												
57	As: 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL 119.8									
58 59												
60	Shapiro Wilk Test Statistic	0.973	GOF Test Shapiro Wilk Lognormal GOF Test									
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test									
63	10% Lilliefors Critical Value	0.319	Data appear Lognormal at 10% Significance Level									
64 65			at 10% Significance Level eliable for small sample sizes									
66	Note GOT lesis											
67 68	Minimum of Logged Data		I Statistics Mean of logged Data 4.411									
69	Maximum of Logged Data Maximum of Logged Data		SD of logged Data 0.219									
70 71	Δος	umina Loans	ormal Distribution									
72	95% H-UCL	107.8	90% Chebyshev (MVUE) UCL 108.6									
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 135.2									
75												
76 77		Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution										
78												
79 80	Nonpal 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL 99.6									
81	95% Standard Bootstrap UCL	96.73	95% Bootstrap-t UCL 106.1									
82	95% Hall's Bootstrap UCL	117.5	95% Percentile Bootstrap UCL 97									

	Α	В	С	D	E	F	G	Н		J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	109.2			95% Ch	ebyshev(Me	an, Sd) UCL	120.6	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	136.4			99% Ch	ebyshev(Me	an, Sd) UCL	167.5	
85													
86	Suggested UCL to Use												
87	95% Student's-t UCL 101.9												
88							•						
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCI	-	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
91	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 3 From File WorkSheet.xls	3:52:33 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	014 14/20 0			
12	CM-WRC-3			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	36	Mean	48.25
17 18	Maximum	63	Median	47
19	SD Coefficient of Variation	12.89 0.267	Std. Error of Mean Skewness	6.447 0.276
20				0.27
21			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23			he Chebyshev UCL for small sample sizes (n < 7).	
24 25	The Chebyshev UCL or	ften results	in gross overestimates of the mean.	
26	Refer to the ProUCL 5.2 Tec	nnical Guid	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	0.904 0.687	Shapiro Wilk GOF Test	
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic	0.687	Data appear Normal at 1% Significance Level Lilliefors GOF Test	
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32 33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36		suming Nor	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	63.42	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	59.8
38	30% Gladoliko (002	00.12	95% Modified-t UCL (Johnson-1978)	63.57
39 40		Commo	GOF Test	
41	A-D Test Statistic	0.372	Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value	0.291 0.394	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	a Lovol
45			stributed at 5% Significance Level	; Level
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
47		Gamma	Statistics	
49	k hat (MLE)	18.68	k star (bias corrected MLE)	4.836
50 51	Theta hat (MLE)	2.583	Theta star (bias corrected MLE)	9.977
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	38.69 21.94
53			Approximate Chi Square Value (0.05)	25.44
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	Ass	suming Gam	ma Distribution	
57 58	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A
58		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.903	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
63	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.255 0.346	Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	3.584	Mean of logged Data	3.849
69 70	Maximum of Logged Data	4.143	SD of logged Data	0.269
71	Assı		ormal Distribution	
72 73	95% H-UCL	73.67	90% Chebyshev (MVUE) UCL	67.58
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	76.34 112.4	97.5% Chebyshev (MVUE) UCL	88.49
75				
76 77			tion Free UCL Statistics	
78	Data appea	r to follow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL	58.85	95% BCA Bootstrap UCL	N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	N/A N/A	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A
	33 /0 Fiall 5 DOUISII ap OCL	1 1/ / 1	1 30 /0 1 GLOGHAIG DOUISHAD OCL	11//3

	Α	В	С	D	Е	F	G	Н	1	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	67.59			95% Ch	ebyshev(Mea	an, Sd) UCL	76.35	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	88.51			99% Ch	ebyshev(Mea	an, Sd) UCL	112.4	
85													
86		Suggested UCL to Use											
87		95% Student's-t UCL 63.42											
88				Red	commended	UCL exceed	ds the maxim	num observa	ition				
89													
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL		
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
92	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to consi	ult a statistici	an.	
93													

	A B C D E	F	G H I J K L							
2	UCL Statis	stics for Unc	ensored Full Data Sets							
3	User Selected Options									
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 From File WorkSheet.xls	3:54:46 PM								
6	Full Precision OFF									
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000									
9	Number of Bootstrap Operations 2000									
10	014 14/20 4									
12	CM-WRC-4									
13			Statistics							
14 15	Total Number of Observations	4	Number of Distinct Observations 4 Number of Missing Observations 0							
16	Minimum	309	Mean 329.5							
17 18	Maximum		Median 317							
19	SD Coefficient of Variation	30.84 0.0936	Std. Error of Mean 15.42 Skewness 1.814							
20		•								
21			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,							
23			the Chebyshev UCL for small sample sizes (n < 7).							
24 25	The Chebyshev UCL o	ften results	in gross overestimates of the mean.							
26	Refer to the ProUCL 5.2 Tec	onnical Guid	e for a discussion of the Chebyshev UCL.							
27			GOF Test							
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test							
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test							
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level							
32 33			t 1% Significance Level eliable for small sample sizes							
34	Note GOF tests	may be unife	Silable for Silial Satisfic Sizes							
35	Assuming Normal Distribution 95% Normal LICI									
36 37	95% Normal UCL 95% Student's-t UCL	365.8	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 369.8							
38	3370 Ottacht 3-1 OCE	300.0	95% Modified-t UCL (Johnson-1978) 368.1							
39 40			005 Task							
41	A-D Test Statistic	0.598	GOF Test Anderson-Darling Gamma GOF Test							
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Level							
43 44	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test							
45	5% K-S Critical Value Detected data appear		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level							
46			eliable for small sample sizes							
47 48		Gamma	Statistics							
49	k hat (MLE)	160.4	k star (bias corrected MLE) 40.26							
50 51	Theta hat (MLE)		Theta star (bias corrected MLE) 8.184							
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 322.1 MLE Sd (bias corrected) 51.93							
53			Approximate Chi Square Value (0.05) 281.5							
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A							
56	As	suming Gam	nma Distribution							
57 50	95% Approximate Gamma UCL		95% Adjusted Gamma UCL N/A							
58 59		Lognorma	I GOF Test							
60	Shapiro Wilk Test Statistic	0.786	Shapiro Wilk Lognormal GOF Test							
61 62	10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level							
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level							
64	Data appear Approx	ximate Logn	ormal at 10% Significance Level							
65 66	Note GOF tests	may be unre	eliable for small sample sizes							
67		Lognorma	Il Statistics							
68	Minimum of Logged Data	5.733	Mean of logged Data 5.794							
69 70	Maximum of Logged Data	5.927	SD of logged Data 0.09							
71	Assi	uming Logno	ormal Distribution							
72	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL 373.9							
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	394.1 477	97.5% Chebyshev (MVUE) UCL 422.1							
75										
76 77			tion Free UCL Statistics							
78	Data appea	ar to follow a	Discernible Distribution							
79			tribution Free UCLs							
80 81	95% CLT UCL	354.9	95% BCA Bootstrap UCL N/A							
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	1	95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A							
	30 /0 Hall 5 DOUISHAP UCL	1 17//3	35 /6 F Greening Doorshap COL) IN/A							

	Α	В	С	D	E	F	G	Н	1	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	375.8			95% Ch	ebyshev(Me	an, Sd) UCL	396.7	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	425.8			99% Ch	ebyshev(Me	an, Sd) UCL	482.9	
85													
86	Suggested UCL to Use												
87	95% Student's-t UCL 365.8												
88							•						
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCI		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.		
91	Но	wever, simu	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													

	A B C D E	F	G H I J K L									
2	UCL Statis	stics for Unc	ensored Full Data Sets									
3	User Selected Options	0.50.54.514										
5	Date/Time of Computation ProUCL 5.2 10/28/2024 3 From File WorkSheet.xls	3:56:51 PIVI										
6	Full Precision OFF											
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of Booletiap Operations (2000											
10 11	CM-WRC-5											
12	ONI-WITO-0											
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations 4									
15	Total Number of Observations	4	Number of Missing Observations 0									
16 17	Minimum	77 106	Mean 92.75 Median 94									
18	Maximum SD	14.93	Median 94 Std. Error of Mean 7.465									
19	Coefficient of Variation	0.161	Skewness -0.134									
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,									
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,									
23 24			the Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.									
25			e for a discussion of the Chebyshev UCL.									
26 27		Normal (GOF Test									
28	Shapiro Wilk Test Statistic	0.834	Shapiro Wilk GOF Test									
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level									
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.294 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level									
32	Data appea	ar Normal at	1% Significance Level									
33 34	Note GOF tests	may be unre	eliable for small sample sizes									
35	Assuming Normal Distribution											
36 37	95% Normal UCL	95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 110.3 95% Adjusted-CLT UCL (Chen-1995) 104.5										
38	95% Students-t UCL	110.3	95% Adjusted-CLT UCL (Chen-1995) 104.5 95% Modified-t UCL (Johnson-1978) 110.2									
39 40		0										
41	A-D Test Statistic	Gamma 0.499	GOF Test Anderson-Darling Gamma GOF Test									
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance Level									
43 44	K-S Test Statistic 5% K-S Critical Value	0.328 0.394	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level									
45	Detected data appear	Gamma Di	stributed at 5% Significance Level									
46 47	Note GOF tests	may be unre	eliable for small sample sizes									
48			Statistics									
49 50	k hat (MLE) Theta hat (MLE)	50.69 1.83	k star (bias corrected MLE) 12.84 Theta star (bias corrected MLE) 7.224									
51	nu hat (MLE)	405.5	nu star (bias corrected MLE) 7.224									
52 53	MLE Mean (bias corrected)	92.75	MLE Sd (bias corrected) 25.88									
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) 80.33 Adjusted Chi Square Value N/A									
55												
56 57	Ass 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL N/A									
58	CONTRACTOR											
59 60	Shapiro Wilk Test Statistic	Lognorma 0.841	GOF Test Shapiro Wilk Lognormal GOF Test									
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level									
62 63	Lilliefors Test Statistic	0.294 0.346	Lilliefors Lognormal GOF Test									
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level									
65 66			eliable for small sample sizes									
66 67		Lognorma	I Statistics									
68	Minimum of Logged Data	4.344	Mean of logged Data 4.52									
69 70	Maximum of Logged Data	4.663	SD of logged Data 0.163									
71			ormal Distribution									
72 73	95% H-UCL	116.3	90% Chebyshev (MVUE) UCL 115.4									
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	125.7 167.9	97.5% Chebyshev (MVUE) UCL 139.9									
75			1 5 1101 0: 11 11									
76 77			tion Free UCL Statistics Discernible Distribution									
78												
79 80			tribution Free UCLs									
81	95% CLT UCL 95% Standard Bootstrap UCL	105 N/A	95% BCA Bootstrap UCL N/A 95% Bootstrap-t UCL N/A									
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL N/A									

	Α	В	С	D	Е	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	115.1			95% Ch	ebyshev(Me	an, Sd) UCL	125.3		
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	139.4			99% Ch	ebyshev(Me	an, Sd) UCL	167		
85														
86						Suggested	UCL to Use							
87		95% Student's-t UCL 110.3												
88		Recommended UCL exceeds the maximum observation												
89														
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL			
91		Recom	mendations a	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.			
92	Ho	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.		
93														
94		Note: For								nd Gamma) r	may not be			
95			reliable. (Chen's and J	ohnson's me	ethods provi	<u>de adjustme</u>	nts for posit	vely skewed	data sets.				
96														

	A B C D E	F	G H I J K	L						
2	UCL Statis	tics for Unc	ensored Full Data Sets							
3	User Selected Options									
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 4 From File WorkSheet.xls	4:02:25 PM								
6	Full Precision OFF									
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000									
9	Number of Bootstrap Operations 2000									
10	0000 WD4									
12	GC03-WRA									
13			Statistics							
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0						
16	Minimum	30	Mean	35.5						
17 18	Maximum	45	Median	33.5						
19	SD Coefficient of Variation	6.856 0.193	Std. Error of Mean Skewness	3.428 1.241						
20	-									
21			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,							
23			he Chebyshev UCL for small sample sizes (n < 7).							
24 25	The Chebyshev UCL of	ften results	in gross overestimates of the mean.							
26	Refer to the ProUCL 5.2 Tec	hnical Guid	e for a discussion of the Chebyshev UCL.							
27			OF Test							
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	0.881 0.687	Shapiro Wilk GOF Test							
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic	0.687	Data appear Normal at 1% Significance Level Lilliefors GOF Test							
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level							
32 33			t 1% Significance Level							
34										
35 36		suming Nor	mal Distribution							
37	95% Normal UCL 95% Student's-t UCL	43.57	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	43.41						
38	30 % Stadonio 1 002	10.07	95% Modified-t UCL (Johnson-1978)	43.92						
39 40		Commo	GOF Test							
41	A-D Test Statistic	0.371	Anderson-Darling Gamma GOF Test							
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level						
43 44	K-S Test Statistic 5% K-S Critical Value	0.277 0.394	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	a Lovol						
45			stributed at 5% Significance Level	; Level						
46 47	Note GOF tests	may be unre	eliable for small sample sizes							
47		Gamma	Statistics							
49	k hat (MLE)	38.07	k star (bias corrected MLE)	9.684						
50 51	Theta hat (MLE)	0.932	Theta star (bias corrected MLE)	3.666						
52	nu hat (MLE) MLE Mean (bias corrected)	304.6 35.5	nu star (bias corrected) MLE Sd (bias corrected)	77.47 11.41						
53			Approximate Chi Square Value (0.05)	58.2						
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A						
56	Ass	suming Gam	ma Distribution							
57 58	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A						
58		Lognorma	GOF Test							
60	Shapiro Wilk Test Statistic	0.9	Shapiro Wilk Lognormal GOF Test							
61 62	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level							
63	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.246 0.346	Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level							
64	Data appear	Lognormal a	at 10% Significance Level							
65 66	Note GOF tests	may be unre	eliable for small sample sizes							
67		Lognorma	I Statistics							
68	Minimum of Logged Data	3.401	Mean of logged Data	3.556						
69 70	Maximum of Logged Data	3.807	SD of logged Data	0.185						
71		ıming Logno	ormal Distribution							
72 73	95% H-UCL	46.14	90% Chebyshev (MVUE) UCL	45.3						
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	49.74 68.02	97.5% Chebyshev (MVUE) UCL	55.91						
75										
76 77			tion Free UCL Statistics							
78	Data appea	r to tollow a	Discernible Distribution							
79			tribution Free UCLs							
80 81	95% CLT UCL	41.14	95% BCA Bootstrap UCL	N/A						
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	N/A N/A	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A						
	20 /0 Hall 5 DOUISHAP UCL	1 1//-1	1 30 /0 L GLOGHING DOORSHAD OCK	11//3						

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	45.78			95% Ch	ebyshev(Me	an, Sd) UCL	50.44
84	97.5% Chebyshev(Mean, Sd) UCL 56.91 99% Chebyshev(Mean, Sd) UCL									69.61		
85												
86	Suggested UCL to Use											
87	95% Student's-t UCL 43.57											
88						•	•					
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL	
90	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.
92												

	A B C D E	F	G H I J K L								
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options	4 00 40 DM									
5	Date/Time of Computation ProUCL 5.2 10/28/2024 WorkSheet.xls	4:03:49 PM									
6	Full Precision OFF										
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Booletrap Operations (2000										
10 11	GC03-WRB										
12	G005-W11D										
13 14	Total Number of Observations		Statistics Number of Distinct Observations 7								
15	Total Nulliber of Observations	0	Number of Missing Observations 0								
16 17	Minimum		Mean 217.6 Median 186								
18	Maximum SD		Median 186 Std. Error of Mean 45.41								
19 20	Coefficient of Variation	0.59	Skewness 1.408								
21	Note: Sample size is small (e.g., <10), if data	are collected	I using incremental sampling methodology (ISM) approach,								
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,								
23 24	but note that ITRC may recommend the t-UCL or the Chebyshey UCL for small sample sizes (n < 7).										
25			e for a discussion of the Chebyshev UCL.								
26 27		Normal (GOF Test								
28	Shapiro Wilk Test Statistic	0.874	Shapiro Wilk GOF Test								
29 30	1% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test								
31	1% Lilliefors Critical Value	0.333	Data appear Normal at 1% Significance Level								
32 33			1% Significance Level								
34	4										
35 36		mal Distribution									
37	95% Normal UCL 95% Student's-t UCL	303.7	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 316.5								
38			95% Modified-t UCL (Johnson-1978) 307.4								
40	39 40 Gamma GOF Test										
41	A-D Test Statistic	0.296	Anderson-Darling Gamma GOF Test								
42 43	5% A-D Critical Value K-S Test Statistic		Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test								
44	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level								
45 46			stributed at 5% Significance Level								
47	Note GOF tests	iliay be ullik	eliable for Striali Sample Sizes								
48 49	L bot (MI E)		Statistics								
50	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) 2.409 Theta star (bias corrected MLE) 90.35								
51 52	nu hat (MLE)		nu star (bias corrected) 38.54								
53	MLE Mean (bias corrected)	217.6	MLE Sd (bias corrected) 140.2 Approximate Chi Square Value (0.05) 25.32								
54	Adjusted Level of Significance	0.0195	Adjusted Chi Square Value 22.65								
55 56	Δς	sumina Gam	nma Distribution								
57	95% Approximate Gamma UCL		95% Adjusted Gamma UCL 370.3								
58 59		Loanorma	I GOF Test								
60	Shapiro Wilk Test Statistic	0.968	Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test								
63	10% Lilliefors Critical Value	0.265	Data appear Lognormal at 10% Significance Level								
64 65			at 10% Significance Level								
66	Note GOF tests	may be unite	eliable for small sample sizes								
67 68	NO. 17		I Statistics								
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 5.242 SD of logged Data 0.566								
70											
71 72			prmal Distribution 90% Chebyshev (MVUE) UCL 349								
73	95% Chebyshev (MVUE) UCL	408.7	97.5% Chebyshev (MVUE) UCL 491.6								
74 75	99% Chebyshev (MVUE) UCL	654.5									
76			tion Free UCL Statistics								
77 78	Data appea	ar to follow a	Discernible Distribution								
79	Nonpa	rametric Dis	tribution Free UCLs								
80	95% CLT UCL	292.3	95% BCA Bootstrap UCL 312.8								
81 82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 347.9 95% Percentile Bootstrap UCL 293.4								
	JO /0 I Idii S DODISII AP OCL	000.1	35 /6 1 Crochine Doubling OCL 233.4								

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	353.9			95% Ch	ebyshev(Me	an, Sd) UCL	415.6
84	97.5% Chebyshev(Mean, Sd) UCL 501.2 99% Chebyshev(Mean, Sd) UCL									669.5		
85												
86	Suggested UCL to Use											
87	95% Student's-t UCL 303.7											
88						•	•					
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL	
90	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	an.
92												

1	A B C D	E UCL Statis	F stics for Unc	G H I J K L ensored Full Data Sets
2				
3	User Selected Options			
5		5.2 10/31/2024 3 Input.xls	3:44:08 PM	
6	Full Precision OFF	присла		
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
	GC5-WRA-0.5-1			
12	GC5-WRA-0.5-1			
13			General	Statistics
14	Total Number	of Observations	4	Number of Distinct Observations 4
15			00	Number of Missing Observations 0
16 17		Minimum Maximum	86 133	Mean 99.5 Median 89.5
18		SD	22.4	Std. Error of Mean 11.2
19	Coeffic	cient of Variation	0.225	Skewness 1.965
20				
21 22	Note: Sample size is small (e.g	g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,
23				C 2020 and ITRC 2012) for additional guidance, he Chebyshev UCL for small sample sizes (n < 7).
24				in gross overestimates of the mean.
25	Refer to the	ProUCL 5.2 Tec	hnical Guide	e for a discussion of the Chebyshev UCL.
26				-
27 28	Object 1 M	Silk Took Ok-21-21		GOF Test
29		ilk Test Statistic	0.7 0.687	Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level
30		ors Test Statistic	0.067	Lilliefors GOF Test
31	1% Lilliefo	rs Critical Value	0.413	Data Not Normal at 1% Significance Level
32	D	ata appear Appi	roximate No	rmal at 1% Significance Level
33 34		Note GOF tests	may be unre	eliable for small sample sizes
35		Λα.	ouming Norr	mal Distribution
36	95% Normal UC		Summy Non	mal Distribution 95% UCLs (Adjusted for Skewness)
37		Student's-t UCL	125.9	95% Adjusted-CLT UCL (Chen-1995) 129.7
38				95% Modified-t UCL (Johnson-1978) 127.7
39 40				0057
41	Δ	-D Test Statistic	0.775	GOF Test Anderson-Darling Gamma GOF Test
42		D Critical Value	0.773	Data Not Gamma Distributed at 5% Significance Level
43		-S Test Statistic	0.433	Kolmogorov-Smirnov Gamma GOF Test
44	5% K	-S Critical Value	0.394	Data Not Gamma Distributed at 5% Significance Level
45 46		Data Not Gamr	na Distribute	ed at 5% Significance Level
47			Gamma	Statistics
48		k hat (MLE)	29.8	k star (bias corrected MLE) 7.617
49		Theta hat (MLE)	3.339	Theta star (bias corrected MLE) 13.06
50		nu hat (MLE)	238.4	nu star (bias corrected) 60.93
51 52	MLE Mean	(bias corrected)	99.5	MLE Sd (bias corrected) 36.05 Approximate Chi Square Value (0.05) 43.98
53	Adjusted Leve	l of Significance	N/A	Approximate Chi Square Value (0.05) 43.98 Adjusted Chi Square Value N/A
54	Aujustou Leve	. or organicance	1 1// 1	/ Aujustica Offi Oquato Value 19/A
55				ma Distribution
56	95% Approxima	ite Gamma UCL	137.9	95% Adjusted Gamma UCL N/A
57 58			Lognormal	GOF Test
59	Shaniro W	ilk Test Statistic	Lognormai 0.717	Shapiro Wilk Lognormal GOF Test
60		ilk Critical Value	0.792	Data Not Lognormal at 10% Significance Level
61	Lilliefo	ors Test Statistic	0.408	Lilliefors Lognormal GOF Test
62 63	10% Lilliefo	rs Critical Value	0.346	Data Not Lognormal at 10% Significance Level
64		Data Not Lo	ognormal at	10% Significance Level
65			Lognorma	I Statistics
66	Minimum	of Logged Data	4.454	Mean of logged Data 4.583
67		of Logged Data	4.89	SD of logged Data 0.206
68 69		A	mala e I · · ·	armal Distribution
70		95% H-UCL	<u>ıming Logno</u> 134.1	prmal Distribution 90% Chebyshev (MVUE) UCL 130
71	95% Chehysh	ev (MVUE) UCL	143.8	97.5% Chebyshev (MVUE) UCL 163
72		ev (MVUE) UCL	200.7	
73				
74				tion Free UCL Statistics
		Data appea	r to follow a	Discernible Distribution
75 76		Nonnar	ametric Dist	tribution Free UCLs
76		itolipal		
76 77 78		95% CLT UCL	117.9	95% BCA Bootstrap UCL N/A
76 77 78 79		95% CLT UCL Bootstrap UCL	N/A	95% Bootstrap-t UCL N/A
76 77 78 79 80	95% Hall's	95% CLT UCL d Bootstrap UCL s Bootstrap UCL	N/A N/A	95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A
76 77 78 79		95% CLT UCL d Bootstrap UCL s Bootstrap UCL (Mean, Sd) UCL	N/A	95% Bootstrap-t UCL N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L
83												
84	Suggested UCL to Use											
85		95% Student's-t UCL 125.9										
86												
87			Wher	n a data set f	ollows an app	oroximate dis	stribution pas	sing only on	e of the GOF	tests,		
88			it is su	ggested to us	se a UCL bas	sed upon a d	istribution pa	ssing both C	OF tests in F	ProUCL		
89												
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCI	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fron	n simulation	studies.	
92	Но	wever, simu	lations result	s will not cov	er all Real V	/orld data se	ts; for addition	nal insight th	ne user may v	want to cons	ult a statistic	ian.
93												

4	A B C D E	F	G H I J K	L						
2	UCL Statis	stics for Unc	ensored Full Data Sets							
3	User Selected Options									
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 3 From File ProUCL Input.xls	3:45:38 PM								
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Number of Bootstrap Operations 2000									
10										
11	GC5-WRA-0.5-2									
12 13		General	Statistics							
14	Total Number of Observations	4	Number of Distinct Observations	4						
15 16		E 4	Number of Missing Observations	0						
17	Minimum Maximum	54 81	Mean Median	69 70.5						
18	SD	11.17	Std. Error of Mean	5.583						
19 20	Coefficient of Variation	0.162	Skewness	-0.785						
21	Note: Sample size is small (e.g., <10), if data ε	are collected	using incremental sampling methodology (ISM) approach,							
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,							
23 24			he Chebyshev UCL for small sample sizes (n < 7).							
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.							
26			•							
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test							
29	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level							
30	Lilliefors Test Statistic	0.286	Lilliefors GOF Test							
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level 1% Significance Level							
33			liable for small sample sizes							
34 35										
36	Ass	suming Nori	nal Distribution 95% UCLs (Adjusted for Skewness)							
37	95% Student's-t UCL	82.14	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	75.84						
38			95% Modified-t UCL (Johnson-1978)	81.77						
39 40		Gamma	GOF Test							
41	A-D Test Statistic	0.359	Anderson-Darling Gamma GOF Test							
42 43	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level						
43	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	l evel						
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	LOVOI						
46 47	Note GOF tests	may be unre	eliable for small sample sizes							
48		Gamma	Statistics							
49	k hat (MLE)	47.99	k star (bias corrected MLE)	12.16						
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	5.672						
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	97.32 19.78						
53			Approximate Chi Square Value (0.05)	75.56						
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A						
56	Ass	suming Gam	ma Distribution							
57	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A						
58 59		Lognorma	GOF Test							
60	Shapiro Wilk Test Statistic	0.914	Shapiro Wilk Lognormal GOF Test							
61 62	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level							
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level							
64	Data appear	Lognormal a	at 10% Significance Level							
65 66	Note GOF tests	may be unre	eliable for small sample sizes							
67		Lognorma	I Statistics							
68	Minimum of Logged Data	3.989	Mean of logged Data	4.224						
69 70	Maximum of Logged Data	4.394	SD of logged Data	0.17						
71	Assı	umina Loana	ormal Distribution							
72	95% H-UCL	87.48	90% Chebyshev (MVUE) UCL	86.55						
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	94.49 127.2	97.5% Chebyshev (MVUE) UCL	105.5						
75	99% Chebysnev (MIVUE) UCL	121.2	<u> </u>							
76			tion Free UCL Statistics							
77 78	Data appea	r to follow a	Discernible Distribution							
79	Nonpar	rametric Dis	tribution Free UCLs							
80	95% CLT UCL	78.18	95% BCA Bootstrap UCL	N/A						
81	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	N/A N/A	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A						
82		IN/A	95% Percentile Bootstran UCL	IN/A						

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Mea	an, Sd) UCL	85.75			95% Ch	ebyshev(Me	an, Sd) UCL	93.33
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	103.9			99% Ch	ebyshev(Me	an, Sd) UCL	124.5
85												
86	Suggested UCL to Use											
87		95% Student's-t UCL 82.14										
88				Red	commended	UCL exceed	is the maxim	<u>num observa</u>	ition			
89												
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
92	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	ohnson's m	ethods provi	<u>de adjustme</u>	nts for posit	vely skewed	data sets.		
96												

1	A B C D E	F tics for Unc	G H I J K L
2		uco ioi one	iconsored Full Data Octo
3	User Selected Options), 47, 47 DN4	
5	Date/Time of Computation ProUCL 5.2 10/31/2024 3 From File ProUCL Input.xls	3:47:17 PIVI	<u> </u>
6	Full Precision OFF		
7	Confidence Coefficient 95%		
9	Number of Bootstrap Operations 2000		
10			
11	GC5-WRA-0.5-3		
13		General	al Statistics
14	Total Number of Observations	10	Number of Distinct Observations 10
15 16	Minimum	253	Number of Missing Observations 0 Mean 347.6
17	Maximum	446	Median 351
18 19	SD	62.31	Std. Error of Mean 19.71
20	Coefficient of Variation	0.179	Skewness 0.00327
21		Normal (GOF Test
22	Shapiro Wilk Test Statistic	0.977	Shapiro Wilk GOF Test
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.781 0.0962	Data appear Normal at 1% Significance Level Lilliefors GOF Test
25	1% Lilliefors Critical Value	0.304	Data appear Normal at 1% Significance Level
26 27	Data appea	ar Normal a	at 1% Significance Level
28	Δος	sumina Nor	ormal Distribution
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)
30 31	95% Student's-t UCL	383.7	95% Adjusted-CLT UCL (Chen-1995) 380 95% Modified-t UCL (Johnson-1978) 383.7
32			1 33% Woullieu-t OCL (301118011-1976)] 383.7
33			GOF Test
34 35	A-D Test Statistic 5% A-D Critical Value	0.173 0.724	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level
36	K-S Test Statistic	0.724	Kolmogorov-Smirnov Gamma GOF Test
37	5% K-S Critical Value	0.266	Detected data appear Gamma Distributed at 5% Significance Level
38 39	Detected data appear	Gamma Di	Distributed at 5% Significance Level
40			a Statistics
41	k hat (MLE)	33.76	k star (bias corrected MLE) 23.7
42 43	Theta hat (MLE) nu hat (MLE)	10.3 675.1	Theta star (bias corrected MLE) 14.67 nu star (bias corrected) 473.9
44	MLE Mean (bias corrected)	347.6	MLE Sd (bias corrected) 71.41
45 46	Adjusted Lovel of Cignificance	0.0267	Approximate Chi Square Value (0.05) 424.4
47	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value 416.3
48			mma Distribution
49 50	95% Approximate Gamma UCL	388.1	95% Adjusted Gamma UCL 395.7
51		Lognorma	al GOF Test
52	Shapiro Wilk Test Statistic	0.971	Shapiro Wilk Lognormal GOF Test
53 54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.869 0.122	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test
55	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level
56 57	Data appear	Lognormal	l at 10% Significance Level
58		Lognorma	nal Statistics
59	Minimum of Logged Data	5.533	Mean of logged Data 5.836
60 61	Maximum of Logged Data	6.1	SD of logged Data 0.183
62	Assu	ıming Logno	normal Distribution
63	95% H-UCL	390.4	90% Chebyshev (MVUE) UCL 408.3
64 65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	435.8 548.9	97.5% Chebyshev (MVUE) UCL 474
66	99 /0 Griebysnev (NIVOE) UCL	J-U.J	
67 68			oution Free UCL Statistics
69	Data appea	r to tollow a	a Discernible Distribution
70		ametric Dis	istribution Free UCLs
71 72	95% CLT UCL	380	95% BCA Bootstrap UCL 376.1
73	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	377.9 379.6	95% Bootstrap-t UCL 383.9 95% Percentile Bootstrap UCL 376.8
74	90% Chebyshev(Mean, Sd) UCL	406.7	95% Chebyshev(Mean, Sd) UCL 433.5
75 76	97.5% Chebyshev(Mean, Sd) UCL	470.7	99% Chebyshev(Mean, Sd) UCL 543.7
76		Suggested	d UCL to Use
78	95% Student's-t UCL	383.7	
79 80	Nets Corrections and the desired of the Correction	1101 -	annidad to hale the years and other was to see the second of the second
81			provided to help the user to select the most appropriate 95% UCL. ibution, and skewness using results from simulation studies.
82			sets; for additional insight the user may want to consult a statistician.

83 B C D E F G H I J K L

1	A B C D E	F tics for Unc	G H I J K L censored Full Data Sets	
2		101 0110	cerisored i dii bata ees	
3	User Selected Options). 40.E0 DN4		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 3 From File ProUCL Input.xls	3:48:52 PIVI		
6	Full Precision OFF			
7	Confidence Coefficient 95%			
9	Number of Bootstrap Operations 2000			
10				
11	GC5-WRA-0.5-4			
13		General	I Statistics	
14	Total Number of Observations	10	Number of Distinct Observations 10	
15 16	Minimum	81	Number of Missing Observations 0 Mean 149.7	,
17	Maximum	302	Median 124	
18 19	SD	69.36	Std. Error of Mean 21.9	
20	Coefficient of Variation	0.463	Skewness 1.3	94
21		Normal (GOF Test	
22	Shapiro Wilk Test Statistic	0.851	Shapiro Wilk GOF Test	
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.781 0.207	Data appear Normal at 1% Significance Level Lilliefors GOF Test	
25	1% Lilliefors Critical Value	0.304	Data appear Normal at 1% Significance Level	
26 27	Data appea	ar Normal a	at 1% Significance Level	
28	Δος	sumina Nor	rmal Distribution	
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
30 31	95% Student's-t UCL	189.9	95% Adjusted-CLT UCL (Chen-1995) 196.1 95% Modified-t UCL (Johnson-1978) 191.5	
32			95 % Modified-t OCE (301115011-1978) 191.5	,
33			GOF Test	
34 35	A-D Test Statistic 5% A-D Critical Value	0.443 0.728	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Leve	اد
36	K-S Test Statistic	0.728	Kolmogorov-Smirnov Gamma GOF Test	51
37	5% K-S Critical Value	0.267	Detected data appear Gamma Distributed at 5% Significance Leve	el
38 39	Detected data appear	Gamma Di	istributed at 5% Significance Level	
40			Statistics	
41	k hat (MLE)	6.209	k star (bias corrected MLE) 4.4	
42 43	Theta hat (MLE) nu hat (MLE)	24.11 124.2	Theta star (bias corrected MLE) 33.9 nu star (bias corrected) 88.2	
44	MLE Mean (bias corrected)	149.7	MLE Sd (bias corrected) 71.2	26
45 46	Adjusted Level of Cignificance	0.0267	Approximate Chi Square Value (0.05) 67.6 Adjusted Chi Square Value 64.4	
47	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value 64.4	+ /
48			mma Distribution	
49 50	95% Approximate Gamma UCL	195.4	95% Adjusted Gamma UCL 205	
51		Lognorma	al GOF Test	
52 53	Shapiro Wilk Test Statistic	0.934	Shapiro Wilk Lognormal GOF Test	
54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.869 0.192	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
55	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level	
56 57	Data appear l	Lognormal a	at 10% Significance Level	
58		Lognorma	al Statistics	
59	Minimum of Logged Data	4.394	Mean of logged Data 4.9	
60 61	Maximum of Logged Data	5.71	SD of logged Data 0.4	14
62			ormal Distribution	
63 64	95% H-UCL	200.8	90% Chebyshev (MVUE) UCL 208]
65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	234.8 345.2	97.5% Chebyshev (MVUE) UCL 272	
66				
67 68			ution Free UCL Statistics	
69	Data appea	i to follow a	a Discernible Distribution	
70			stribution Free UCLs	
71 72	95% CLT UCL 95% Standard Bootstrap UCL	185.8 183.3	95% BCA Bootstrap UCL 192.6 95% Bootstrap-t UCL 222.5	
73	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	343.6	95% Bootstrap t UCL 222.s	
74	90% Chebyshev(Mean, Sd) UCL	215.5	95% Chebyshev(Mean, Sd) UCL 245.3	3
75 76	97.5% Chebyshev(Mean, Sd) UCL	286.7	99% Chebyshev(Mean, Sd) UCL 367.9)
77		Suggested	i UCL to Use	
78	95% Student's-t UCL	189.9		
79 80	Note: Suggestions regarding the selection of a 0E9/	LICL aro pr	provided to help the user to select the most appropriate 95% UCL.	
81			bution, and skewness using results from simulation studies.	
82			ets; for additional insight the user may want to consult a statistician.	

83 B C D E F G H I J K L

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			,
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 3	3:50:46 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
10				
11	GC5-WRA-0.5-4-DS			
12 13		General	Statistics	
14	Total Number of Observations	4	Number of Distinct Observations	4
15 16	Minimum	F.C.	Number of Missing Observations	0
17	Minimum Maximum	56 76	Mean Median	67.75 69.5
18	SD	9.179	Std. Error of Mean	4.589
19 20	Coefficient of Variation	0.135	Skewness	-0.722
21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7).	
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26			•	
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic	0.252	Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level 1 1% Significance Level	
33			eliable for small sample sizes	
34 35				
36	As: 95% Normal UCL	suming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Student's-t UCL	78.55	95% Adjusted-CLT UCL (Chen-1995)	73.53
38			95% Modified-t UCL (Johnson-1978)	78.27
39 40		Gamma	GOF Test	
41	A-D Test Statistic	0.336	Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
43	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	LOVOI
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE)	69.71	k star (bias corrected MLE)	17.59
50 51	Theta hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	3.851 140.7
52	nu hat (MLE) MLE Mean (bias corrected)		MLE Sd (bias corrected)	16.15
53			Approximate Chi Square Value (0.05)	114.3
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	Ass	suming Gam	ma Distribution	
57 50	95% Approximate Gamma UCL			N/A
58 59		Lonnorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.913	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level	
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	4.025	Mean of logged Data	4.209
69 70	Maximum of Logged Data	4.331	SD of logged Data	0.14
71	Assı	uming Loand	ormal Distribution	
72	95% H-UCL	81.87	90% Chebyshev (MVUE) UCL	81.97
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	88.4 114.9	97.5% Chebyshev (MVUE) UCL	97.33
75	99% Criebysnev (MVUE) UCL	114.9	<u> </u>	
76			tion Free UCL Statistics	
77 78	Data appea	ar to follow a	Discernible Distribution	
79	Nonpar	rametric Dis	tribution Free UCLs	
80	95% CLT UCL	75.3	95% BCA Bootstrap UCL	N/A
81 82	95% Standard Bootstrap UCL	N/A		N/A
UZ	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	A B C D E F G H I J										K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	81.52			95% Ch	ebyshev(Me	an, Sd) UCL	87.75
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	96.41			99% Ch	ebyshev(Me	an, Sd) UCL	113.4
85												
86	Cuggottou CCL to CCC											
87				95% Stu	dent's-t UCL	78.55						
88												
89												
90	l	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Ho	wever, simu	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

1	A B C D E UCL Statis	F stics for Unc	G H I J K L ensored Full Data Sets
2	,		
3	User Selected Options	0.E4.00 D15	
5	Date/Time of Computation ProUCL 5.2 10/31/2024 3	3:54:03 PM	
6	Full Precision OFF		
7	Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9			
	GC5-WRB-0.5-1		
12	GC3-WRD-0.3-1		
13		General	Statistics
14	Total Number of Observations	4	Number of Distinct Observations 4
15 16	N. Alianiana	100	Number of Missing Observations 0
17	Minimum Maximum		Mean 139 Median 132.5
18	SD	_	Std. Error of Mean 7.714
19	Coefficient of Variation		Skewness 1.926
20			
21 22			d using incremental sampling methodology (ISM) approach,
23			C 2020 and ITRC 2012) for additional guidance, the Chebyshev UCL for small sample sizes (n < 7).
24			in gross overestimates of the mean.
25			e for a discussion of the Chebyshev UCL.
26 27			
28	Shapiro Wilk Test Statistic		GOF Test Shapira Wilk GOF Test
29	Snapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level
30	Lilliefors Test Statistic		Lilliefors GOF Test
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level
32			t 1% Significance Level
33 34	Note GOF tests	may be unre	eliable for small sample sizes
35	Δο	suming Nor	mal Distribution
36	95% Normal UCL	Summy Non	95% UCLs (Adjusted for Skewness)
37	95% Student's-t UCL	157.2	95% Adjusted-CLT UCL (Chen-1995) 159.6
38 39			95% Modified-t UCL (Johnson-1978) 158.4
40		Gommo	GOF Test
41	A-D Test Statistic		Anderson-Darling Gamma GOF Test
42	5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level
43	K-S Test Statistic	_	Kolmogorov-Smirnov Gamma GOF Test
44 45	5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level
46	Data Not Gamir	ma Distribut	ed at 5% Significance Level
47		Gamma	Statistics
48	k hat (MLE)	115.5	k star (bias corrected MLE) 29.05
49 50	Theta hat (MLE)	1.203	Theta star (bias corrected MLE) 4.785
51	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 232.4 MLE Sd (bias corrected) 25.79
52	MLE Medil (bias correcteu)	139	Approximate Chi Square Value (0.05) 198.1
53	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A
54			
55 56			nma Distribution
57	95% Approximate Gamma UCL	103.1	95% Adjusted Gamma UCL N/A
58		Lognorma	I GOF Test
59	Shapiro Wilk Test Statistic	0.742	Shapiro Wilk Lognormal GOF Test
60	10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level
61 62	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test
63	10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level 10% Significance Level
64		ognormar at	1070 eiginiodiido Edfoi
65			Statistics
66 67	Minimum of Logged Data		Mean of logged Data 4.93
67 68	Maximum of Logged Data	5.088	SD of logged Data 0.106
69	Δοοι	umina Loana	ormal Distribution
70	95% H-UCL		90% Chebyshev (MVUE) UCL 161
71	95% Chebyshev (MVUE) UCL	171	97.5% Chebyshev (MVUE) UCL 184.8
72 73	99% Chebyshev (MVUE) UCL	212.1	
74	Monnorome	atric Dietribu	tion Free UCL Statistics
75			Discernible Distribution
76			
77			tribution Free UCLs
78 79	95% CLT UCL		95% BCA Bootstrap UCL N/A
79 80	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	N/A N/A	95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A
81	95% Hall's Bootstrap OCL 90% Chebyshev(Mean, Sd) UCL	162.1	95% Percentile Bootstrap UCL N/A 95% Chebyshev(Mean, Sd) UCL 172.6
	97.5% Chebyshev(Mean, Sd) UCL	187.2	99% Chebyshev(Mean, Sd) UCL 215.7
82			, , , , , , , , , , , , , , , , , , , ,

	Α	В	С	D	E	F	G	Н	I	J	K	L
83												
84		Suggested UCL to Use										
85				95% Stu	dent's-t UCL	157.2						
86							•					
87	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
88		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
89		wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for additio	nal insight th	ne user may	want to consi	ult a statistic	an.
90												

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 3	3:55:47 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	005 W/DD 0 5 0			
12	GC5-WRB-0.5-2			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	52	Mean	85
17 18	Maximum		Median	84
19	SD Coefficient of Variation		Std. Error of Mean Skewness	13.92 0.214
20				
21 22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23			he Chebyshev UCL for small sample sizes (n < 7).	
24 25	The Chebyshev UCL o	often results	in gross overestimates of the mean.	
26	Refer to the ProUCL 5.2 Tec	nnical Guide	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test	
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32 33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36		suming Norr	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	117.8	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 1	109.5
38	30% Cladonic (002	117.0		118
39 40		0	005 T4	
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Lovel
45			stributed at 5% Significance Level	Level
46 47			eliable for small sample sizes	
47		Gamma	Statistics	
49	k hat (MLE)		k star (bias corrected MLE)	3.135
50 51	Theta hat (MLE)			27.11
52	nu hat (MLE) MLE Mean (bias corrected)			<u>25.08</u> 48.01
53			Approximate Chi Square Value (0.05)	14.67
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	Ass	suming Garr	ma Distribution	
57 58	95% Approximate Gamma UCL			N/A
58		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.958	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level	
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	3.951	Mean of logged Data	4.4
69 70	Maximum of Logged Data	4.787	SD of logged Data	0.344
71			ormal Distribution	
72 73	95% H-UCL	154.9	90% Chebyshev (MVUE) UCL 1	128.6
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 1	175.7
75				
76 77			tion Free UCL Statistics	
78	Data appea	<u>ir to follow a</u>	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL	107.9	95% BCA Bootstrap UCL	N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL			N/A N/A
	20 /0 Hall 5 DOUISHAP UCL	1.1//-1	1 20 /0 L GLOGHING DOORSHAP OOF	14// 1

	Α	В	С	D	Е	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	126.7			95% Ch	ebyshev(Me	an, Sd) UCL	145.7
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	171.9			99% Ch	ebyshev(Me	an, Sd) UCL	223.5
85												
86	Suggested UCL to Use											
87	95% Student's-t UCL 117.8											
88						•	•					
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL	
90	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
92												

1	A B C D E	F	G H I J K L
2	UCL Statis	stics for Unc	ensored Full Data Sets
3	User Selected Options		
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 : From File ProUCL Input.xls	2:13:25 PM	
6	Full Precision OFF		
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000		
9	Number of Bootstrap Operations 2000		
10	000 WD4 0.5.4		
12	GC6-WRA-0.5-1		
13			Statistics
14 15	Total Number of Observations	5	Number of Distinct Observations 5 Number of Missing Observations 0
16	Minimum	172	Mean 194.4
17 18	Maximum SD	239 26.26	Median 189 Std. Error of Mean 11.75
19	Coefficient of Variation		Sta. Error of Mean 11.75 Skewness 1.694
20			
21 22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,
23	but note that ITRC may recommend the	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).
24 25			in gross overestimates of the mean.
26	Refer to the Prouct 5.2 Tec	milical Guid	e for a discussion of the Chebyshev UCL.
27	0		GOF Test
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level
30	Lilliefors Test Statistic	0.321	Lilliefors GOF Test
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level
33			t 1% Significance Level eliable for small sample sizes
34			
35 36	As 95% Normal UCL	suming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)
37	95% Student's-t UCL	219.4	95% Adjusted-CLT UCL (Chen-1995) 223.2
38			95% Modified-t UCL (Johnson-1978) 220.9
39 40		Gamma	GOF Test
41	A-D Test Statistic	0.483	Anderson-Darling Gamma GOF Test
42 43	5% A-D Critical Value	0.678	Detected data appear Gamma Distributed at 5% Significance Level
44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level
46 47	Note GOF tests	may be unre	eliable for small sample sizes
48		Gamma	Statistics
49 50	k hat (MLE)	74.11	k star (bias corrected MLE) 29.78
51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 6.528 nu star (bias corrected) 297.8
52	MLE Mean (bias corrected)		MLE Sd (bias corrected) 35.62
53 54	Adjusted Level of Significance	0.0086	Approximate Chi Square Value (0.05) 258.8 Adjusted Chi Square Value 242.8
55	Aujusteu Level of Significative	0.0000	Aujusteu Otti Squate Value 242.8
56 57			nma Distribution
58	95% Approximate Gamma UCL	223.1	95% Adjusted Gamma UCL 238.5
59			GOF Test
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.862 0.806	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level
62	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test
63 64	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level
64 65			at 10% Significance Level Bliable for small sample sizes
66	note don tests		
67 68	Minimum all and 15		I Statistics Mean of legged Date F 262
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 5.263 SD of logged Data 0.128
70			
71 72	Assi 95% H-UCL	uming Logno 222.2	prmal Distribution 90% Chebyshev (MVUE) UCL 227.6
73	95% Chebyshev (MVUE) UCL	242.6	97.5% Chebyshev (MVUE) UCL 263.5
74	99% Chebyshev (MVUE) UCL	304.6	, , , , , , , , , , , , , , , , , , , ,
75 76	Nonnarame	tric Distribu	tion Free UCL Statistics
77			Discernible Distribution
78 79			
79 80	Nonpal 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL 217.8
	95% Standard Bootstrap UCL		95% Bootstrap-t UCL 242.4
81 82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL 215.6

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	229.6			95% Ch	ebyshev(Me	an, Sd) UCL	245.6
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	267.8			99% Ch	ebyshev(Me	an, Sd) UCL	311.3
85												
86	Suggested UCL to Use											
87				95% Stu	dent's-t UCL	219.4						
88						•	•					-
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
90	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simul	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	ian.
92												

4	A B C D E	F	G H I J K	L
2	UCL Stati	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	2:15:50 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	000 W/D4 0 5 0			
12	GC6-WRA-0.5-2			
13			Statistics	
14 15	Total Number of Observations	10	Number of Distinct Observations Number of Missing Observations	10 0
16	Minimum		Mean	241.1
17 18	Maximum SD		Median Std. Error of Mean	218 29.94
19	Coefficient of Variation		Skewness	1
20		NI I (OCT	
21	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
23	1% Shapiro Wilk Critical Value	0.781	Data appear Normal at 1% Significance Level	
24 25	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
26			: 1% Significance Level	
27 28		aumina Na	nol Distribution	
29	95% Normal UCL	ssuming Nori	nal Distribution 95% UCLs (Adjusted for Skewness)	
30	95% Student's-t UCL	. 296	95% Adjusted-CLT UCL (Chen-1995)	300.5
31 32			95% Modified-t UCL (Johnson-1978)	297.6
33			GOF Test	
34 35	A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significanc	o Lovol
36	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	e reaei
37 38	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	e Level
39	Detected data appea	r Gamma Di	stributed at 5% Significance Level	
40			Statistics	
41	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) Theta star (bias corrected MLE)	5.645 42.71
43	nu hat (MLE)	159.4	nu star (bias corrected)	112.9
44 45	MLE Mean (bias corrected)	241.1	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	101.5 89.38
46	Adjusted Level of Significance	0.0267	Approximate Citi Square Value (0.03) Adjusted Chi Square Value	85.74
47 48		in Oom	man Distribution	
49	95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	317.5
50		<u> </u>		
51 52	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
53	10% Shapiro Wilk Critical Value	0.869	Data appear Lognormal at 10% Significance Level	
54 55	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
56			at 10% Significance Level	
57 58		Lognorma	I Statistics	
59	Minimum of Logged Data		Mean of logged Data	5.421
60 61	Maximum of Logged Data		SD of logged Data	0.371
62		umina Loana	ormal Distribution	
63	95% H-UCL	312.4	90% Chebyshev (MVUE) UCL	326.1
64 65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	418.7
66				
67 68			tion Free UCL Statistics	
69	Data appea	ar to rollow a	Discernible Distribution	
70 71			tribution Free UCLs	200
71 72	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	298 332.3
73	95% Hall's Bootstrap UCL	364.7	95% Percentile Bootstrap UCL	289.2
74 75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	371.6 539
76	27.570 Chebyshev(Mean, 30) UCL			333
77 78	0E0/ Childonal a 1101		UCL to Use	
79	95% Student's-t UCL	. 290	<u> </u>	
80			ovided to help the user to select the most appropriate 95% UCL.	
81 82			ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	ın l
~	However, Simulations results will not cover all Real V	voria data se	io, for additional moight the doct may want to consult a statisticia	11.

83 B C D E F G H I J K L

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:19:41 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
10				
11	GC6-WTP-0.5-1			
12 13		General	Statistics	
14	Total Number of Observations	4	Number of Distinct Observations	3
15 16	Marian	F	Number of Missing Observations	0
17	Minimum Maximum	5 10	Mean Median	7.25 7
18	SD	2.062	Std. Error of Mean	1.031
19 20	Coefficient of Variation	0.284	Skewness	0.713
21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7).	
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	110.01 to the 11000£ 0.2 160		•	
27 28	Objection MPD To a Control		GOF Test	
28	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic	0.298	Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36		suming Nor	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	9.676	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	9.338
38	35% Gludents-t GGE	3.070	95% Modified-t UCL (Johnson-1978)	9.737
39				
40 41	A-D Test Statistic	0.337	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	Level
46	Note GOF tests	may be unre	eliable for small sample sizes	
47 48		•	Orani da .	
48	k hat (MLE)	16.81	Statistics k star (bias corrected MLE)	4.369
50	Theta hat (MLE)		Theta star (bias corrected MLE)	1.659
51 52	nu hat (MLE)		nu star (bias corrected)	34.95
53	MLE Mean (bias corrected)	7.25	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	3.469 22.43
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.03) Adjusted Chi Square Value	N/A
55 56				
56	Ass 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A
58	90 / о друголинате Gamina OCL	11.0	3570 Aujusteu Gainind UCL	1 11/7
59 60	01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		GOF Test	
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
62	Lilliefors Test Statistic	0.257	Lilliefors Lognormal GOF Test	
63 64	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
65			at 10% Significance Level Bliable for small sample sizes	
66	Note GOF lests	ay De Ulile	madio for official outriple 31263	
67 68			I Statistics	4.05.
68	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	1.951 0.283
70	wiaxiiiluiii oi Logged Data		JD 01 logged Data	0.200
71			ormal Distribution	10.01
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	11.42 11.69	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	10.31 13.62
74	99% Chebyshev (MVUE) UCL		37.370 Gliebyshev (NIVOL) UCL	10.02
75 76			the Fee HOLOught	
76 77			tion Free UCL Statistics Discernible Distribution	
78		ar to lollow a		
79			tribution Free UCLs	NI/C
80 81	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A
82	95% Standard Bootstrap OCL 95% Hall's Bootstrap UCL	1	95% Percentile Bootstrap UCL	N/A N/A
		_		

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	10.34			95% Ch	ebyshev(Me	an, Sd) UCL	11.74
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	13.69			99% Ch	ebyshev(Me	an, Sd) UCL	17.51
85	35											
86	Suggested UCL to Use											
87				95% Stu	dent's-t UCL	9.676						
88							•					•
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
90	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simul	lations result	s will not cov	er all Real W	/orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
92												

4	A B C D E	F	G H I J K	L
2	UCL Stat	tistics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	4 2:22:06 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
10				
11	GC6-WTP-0.5-2			
12 13		General	Statistics	
14	Total Number of Observation		Number of Distinct Observations	3
15 16	Minimum	. 11	Number of Missing Observations	13
17	Minimun Maximun		Mean Median	12.5
18	SI	2.449	Std. Error of Mean	1.225
19 20	Coefficient of Variation	n 0.188	Skewness	0.544
21	Note: Sample size is small (e.g., <10), if data	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7).	
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26			•	
27 28	Shapiro Wilk Test Statisti		GOF Test Shapiro Wilk GOF Test	
29	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statisti	c 0.293	Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level 1 1% Significance Level	
33			eliable for small sample sizes	
34				
35 36	95% Normal UCL	ssuming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Student's-t UC	L 15.88	95% Adjusted-CLT UCL (Chen-1995)	15.37
38			95% Modified-t UCL (Johnson-1978)	15.94
39 40		Gamma	GOF Test	
41	A-D Test Statisti		Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value	_	Detected data appear Gamma Distributed at 5% Significance	Level
43	K-S Test Statisti 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	l evel
45	Detected data appe	ar Gamma Di	stributed at 5% Significance Level	20101
46 47	Note GOF tests	s may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE		k star (bias corrected MLE)	9.757
50 51	Theta hat (MLE		Theta star (bias corrected MLE)	1.332
52	nu hat (MLE MLE Mean (bias corrected		nu star (bias corrected) MLE Sd (bias corrected)	78.06 4.162
53	MEE Modif (blue corrected		Approximate Chi Square Value (0.05)	58.7
54 55	Adjusted Level of Significance	e N/A	Adjusted Chi Square Value	N/A
56	Α	ssuming Gam	nma Distribution	
57	95% Approximate Gamma UC			N/A
58 59		Lognorma	GOF Test	
60	Shapiro Wilk Test Statisti		Shapiro Wilk Lognormal GOF Test	
61	10% Shapiro Wilk Critical Value	e 0.792	Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statisti 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appea	r Lognormal a	at 10% Significance Level	
65 66	Note GOF test	s may be unre	eliable for small sample sizes	
66 67		Lognorma	I Statistics	
68	Minimum of Logged Date	a 2.398	Mean of logged Data	2.552
69 70	Maximum of Logged Date		SD of logged Data	0.186
70	Δε	sumina I oana	ormal Distribution	
72	95% H-UC	L 16.94	90% Chebyshev (MVUE) UCL	16.61
73 74	95% Chebyshev (MVUE) UC		97.5% Chebyshev (MVUE) UCL	20.53
74 75	99% Chebyshev (MVUE) UC	L 24.99		
76			tion Free UCL Statistics	
77 78	Data appe	ear to follow a	Discernible Distribution	
78 79	Nonn	arametric Die	tribution Free UCLs	
80	95% CLT UC	L 15.01	95% BCA Bootstrap UCL	N/A
	OFO/ Chandand Backetian LIC	L N/A	95% Bootstrap-t UCL	N/A
81 82	95% Standard Bootstrap UC 95% Hall's Bootstrap UC		95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н		J	K	L	1	
83			90% Ch	ebyshev(Me	an, Sd) UCL	16.67			95% Ch	95% Chebyshev(Mean, Sd) UCL 18.34				
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	20.65			99% Ch	ebyshev(Me	an, Sd) UCL	25.19	l	
85													ı	
86						Suggested	UCL to Use						ı	
87	95% Student's-t UCL 15.88											ı		
88							•						l	
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL		ı	
90		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.												
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	an.	l	
92														

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2	2:27:32 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of bootstrap Operations 2000			
10	OCC WITH O F 2			
12	GC6-WTP-0.5-3			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	6	Mean	6.5
17 18	Maximum SD	7 0.577	Median Std. Error of Mean	6.5 0.289
19	Coefficient of Variation		Std. Error or Mean Skewness	0.289
20 21	Nata Cample de la cuell (e e ed 0) 1/ 1 :	ana aalla -t-	using ingremental gameling mathedalage (IOM)	
22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend the	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	110101 to the 1 1000£ 3.2 Tec		•	
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	1% Shapiro Wilk Test Statistic		Data appear Normal at 1% Significance Level	
30 31	Lilliefors Test Statistic	0.307	Lilliefors GOF Test	
32	1% Lilliefors Critical Value Data appe		Data appear Normal at 1% Significance Level 1% Significance Level	
33			liable for small sample sizes	
34 35	Δο	sumina Nor	mal Distribution	
36	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
37 38	95% Student's-t UCL	7.179	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	6.975 7.179
39			95% Modified-t UCL (Johnson-1978)	7.179
40			GOF Test	
41 42	A-D Test Statistic 5% A-D Critical Value	0.719 0.657	Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	
43	K-S Test Statistic	0.341	Kolmogorov-Smirnov Gamma GOF Test	
44 45	5% K-S Critical Value Detected data follow Ap		Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level	Level
46			eliable for small sample sizes	
47 48		Cammo	Statistics	
49	k hat (MLE)	168.7	k star (bias corrected MLE)	42.33
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	0.154
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 3 MLE Sd (bias corrected)	338.7 0.999
53			Approximate Chi Square Value (0.05) 2	297
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56			ma Distribution	
57 58	95% Approximate Gamma UCL	7.411	95% Adjusted Gamma UCL	N/A
59			GOF Test	
60 61	Shapiro Wilk Test Statistic	0.731	Shapiro Wilk Lognormal GOF Test	
62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data Not Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level	
64 65			ormal at 10% Significance Level Bliable for small sample sizes	
66	Note GOF tests	may be unit	MIGNIO IVI SIIIGII SGIIIPIG SIZGS	
67 68	Minimum of Lange 1 Date		I Statistics Mean of legged Date	1 000
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	1.869 0.089
70 71		•		
71 72		uming Logno N/A	ormal Distribution 90% Chebyshev (MVUE) UCL	7.367
73	95% Chebyshev (MVUE) UCL	7.76	97.5% Chebyshev (MVUE) UCL	8.305
74 75	99% Chebyshev (MVUE) UCL	9.376		
76	Nonparame	etric Distribu	tion Free UCL Statistics	
77			Discernible Distribution	
78 79	Nonna	rametric Die	tribution Free UCLs	
80	95% CLT UCL	6.975	95% BCA Bootstrap UCL	N/A
81 82	95% Standard Bootstrap UCL	1		N/A
UΖ	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	7.366			95% Ch	ebyshev(Me	an, Sd) UCL	7.758	1
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	8.303			99% Ch	ebyshev(Me	an, Sd) UCL	9.372]
85]
86						Suggested	UCL to Use						1
87		95% Student's-t UCL 7.179											
88				Red	commended	UCL exceed	ds the maxim	num observa	ition				1
89]
90	1	Note: Sugge:	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		1
91		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
92	Но	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.	
93													1

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	2.20.01 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:30:01 PW		
6 7	Full Precision OFF			
8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9				
10 11	GC7-WRA-0.5-1			
12	GO7 711 (1 C.C.)			
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	3
15	Total Number of Observations	7	Number of Missing Observations	0
16 17	Minimum Maximum	13 17	Mean Median	15 15
18	SD SD	1.633	Std. Error of Mean	0.816
19 20	Coefficient of Variation	0.109	Skewness	0
21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Normal (GOF Test	
28	Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test	
31	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
32 33	Data appe	ar Normal at	1% Significance Level	
34	Note GOF tests	may be unre	liable for small sample sizes	
35		suming Nor	nal Distribution	
36 37	95% Normal UCL 95% Student's-t UCL	16.92	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	16.34
38	33 % Students-t OCL	10.32	95% Adjusted-CET OCE (Chen-1995) 95% Modified-t UCL (Johnson-1978)	16.92
39 40		0	COE Took	
41	A-D Test Statistic	0.332	GOF Test Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE) Theta hat (MLE)	111.7 0.134	k star (bias corrected MLE) Theta star (bias corrected MLE)	28.08 0.534
51	nu hat (MLE)	893.3	nu star (bias corrected)	224.7
52 53	MLE Mean (bias corrected)	15	MLE Sd (bias corrected)	2.831
54	Adjusted Level of Significance	N/A		191 N/A
55 56				
57	Ast 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A
58	22.2			
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	2.565	Mean of logged Data	2.704
69 70	Maximum of Logged Data	2.833	SD of logged Data	0.11
71	Assı	uming Logno	rmal Distribution	,
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	17.31 18.58	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	17.47 20.13
74	99% Chebyshev (MVUE) UCL	23.17	97.3% Chebyshev (WVOE) UCL	۷.۱۵
75 76			tion Eron LICI Statistics	
77			tion Free UCL Statistics Discernible Distribution	
78				
79 80	Nonpai 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	N/A
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н	1	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	17.45			95% Ch	ebyshev(Me	an, Sd) UCL	18.56
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	20.1			99% Ch	ebyshev(Me	an, Sd) UCL	23.12
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	16.92						
88							•					
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
90												
91	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
92												

4	A B C D E	F	G H I J K	L
2	UCL Statis	Sucs for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:31:34 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	GC7-WRA-0.5-2			
12	GC/-WKA-0.5-2			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	10	Mean	12.5
17 18	Maximum		Median Std. Error of Mean	12.5 1.19
19	SD Coefficient of Variation	2.38 0.19	Std. Error of Weari Skewness	0
20		•		
21 22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend th	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean.	
26	Refer to the Prouch 5.2 Tec	anneal Guid	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic		Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36	As: 95% Normal UCL	suming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Normal OCL 95% Student's-t UCL	15.3	95% OCLS (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	14.46
38			95% Modified-t UCL (Johnson-1978)	15.3
39 40		Gamma	GOF Test	
41	A-D Test Statistic	0.355	Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	e Level
43	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE)	36.31	k star (bias corrected MLE)	9.245
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	1.352 73.96
52	MLE Mean (bias corrected)	12.5	MLE Sd (bias corrected)	4.111
53 54	Adimate all arrel of Otion 10	NI/A	Approximate Chi Square Value (0.05)	55.16
55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56			ma Distribution	
57 58	95% Approximate Gamma UCL	16.76	95% Adjusted Gamma UCL	N/A
59			GOF Test	
60 61	Shapiro Wilk Test Statistic	0.913	Shapiro Wilk Lognormal GOF Test	
62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level	
64 65			at 10% Significance Level	
66	Note GOF tests	may be unre	eliable for small sample sizes	
67			Statistics	
68 69	Minimum of Logged Data		Mean of logged Data	2.512
70	Maximum of Logged Data	2.708	SD of logged Data	0.193
71	Assu		ormal Distribution	
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	16.48 17.74	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	16.1 20
74	99% Chebyshev (MVUE) UCL	24.45	37.370 Chebyshev (WVOL) UCL	
75 76		atala Distrib	tion Front IICI Chabinting	
77			tion Free UCL Statistics Discernible Distribution	
78				-
79 80			tribution Free UCLs	NI/A
80	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A
82	95% Hall's Bootstrap UCL	1	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	Е	F	G	Н		J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	16.07			95% Ch	ebyshev(Me	an, Sd) UCL	17.69
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	19.93			99% Ch	ebyshev(Me	an, Sd) UCL	24.34
85												
86						Suggested	UCL to Use					
87	95% Student's-t UCL											
88				Red	commended	UCL exceed	ds the maxim	num observa	tion			
89												
90		Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.										
92	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	an.
93		-	-	-						-		

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	0.00.14.514		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 ProUCL Input.xls	2:33:14 PIVI		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations (2000)			
10	GC7-WRA-0.5-3			
12	GC/-WRA-0.5-3			
13 14	T. IN 1 (0)		Statistics	4
15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum		Mean	26.75
17 18	Maximum SD		Median Std. Error of Mean	28.5 2.72
19	Coefficient of Variation		Skewness	-1.468
20 21	Note: Comple size is small (a.g. <10) if data	ara callactas	veing ingreportal compling mathedaless: (ICM) approach	
22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend the	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	Neigh to the Floods 3.2 let		•	
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	Snapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
30 31	Lilliefors Test Statistic	0.268	Lilliefors GOF Test	
32	1% Lilliefors Critical Value Data appe		Data appear Normal at 1% Significance Level 1% Significance Level	
33			eliable for small sample sizes	
34 35	٨٥	eumina Non	mal Distribution	
36	95% Normal UCL	Sulling Non	95% UCLs (Adjusted for Skewness)	
37 38	95% Student's-t UCL	33.15	95% Adjusted-CLT UCL (Chen-1995)	29.09
39			95% Modified-t UCL (Johnson-1978)	32.82
40			GOF Test	
41 42	A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	a Level
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
46	Note GOF tests	may be unre	stributed at 5% Significance Level	
47			·	
48 49	k hat (MLE)		Statistics k star (bias corrected MLE)	7.282
50	Theta hat (MLE)	0.94	Theta star (bias corrected MLE)	3.673
51 52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	58.26 9.913
53	MLE Mean (bias corrected)	20.75	Approximate Chi Square Value (0.05)	41.71
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	As	sumina Gam	ma Distribution	
57	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A
58 59		Loanorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.832	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
64 65	Data appear	Lognormal a	at 10% Significance Level	
66	Note GOF tests	may be unre	eliable for small sample sizes	
67			I Statistics	
68 69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data	3.269 0.224
70	wiaximum or Logged Data	J.434	SD of logged Data	0.224
71 72	Ass	uming Logno	ormal Distribution	25.75
73	95% H-UCL 95% Chebyshev (MVUE) UCL	37.4 39.81	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	35.75 45.45
74	99% Chebyshev (MVUE) UCL		2.13.13 2.130/JOHOT (INTOL) OOL	
75 76	Mannatam	atric Distribu	tion Free UCL Statistics	
77			Discernible Distribution	
78 79				
80	Nonpa 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	N/A
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	34.91			95% Ch	ebyshev(Me	an, Sd) UCL	38.6	1
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	43.73			99% Ch	ebyshev(Me	an, Sd) UCL	53.81]
85													1
86						Suggested	UCL to Use						
87				95% Stu	dent's-t UCL	33.15							
88	Recommended UCL exceeds the maximum observation												
89													
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL		
91		Recom	mendations a	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
92	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.	
93													
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) r	may not be		
95			reliable. (Chen's and J	ohnson's me	ethods provi	<u>de adjustme</u>	nts for posit	vely skewed	data sets.			
96													1

1	A B C D E	F	G H I J K	L
2	UCL Stati	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	2:35:27 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	007 W/DD 0.5.4			
12	GC7-WRB-0.5-1			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum		Mean	11.75
17 18	Maximum SD		Median Std. Error of Mean	10.5 1.436
19	Coefficient of Variation	_	Std. Error of Mean Skewness	1.436
20		•		
21 22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend t	he t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean.	
26	Refer to the Prouce 5.2 Te	CHINCAL GUID	e for a discussion of the Chebyshev UCL.	
27	<u></u>		GOF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic		Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
33			: 1% Significance Level sliable for small sample sizes	
34				
35 36	95% Normal UCL	ssuming Nor	nal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Student's-t UCL	. 15.13	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	15.53
38 39			95% Modified-t UCL (Johnson-1978)	15.35
40		Gamma	GOF Test	
41	A-D Test Statistic	0.643	Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level
45	Detected data appea	r Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE)		k star (bias corrected MLE)	6.477
51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	1.814 51.82
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	4.617
53 54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	36.28 N/A
55	Aujusteu Level of Signification	, IN/ <i>F</i> \	Aujusteu Cili Squale Value	111/7
56 57			ma Distribution	NI/A
58	95% Approximate Gamma UCL	. 16.78	95% Adjusted Gamma UCL	N/A
59	<u> </u>		GOF Test	
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 10% Significance Level	
62	Lilliefors Test Statistic	0.332	Lilliefors Lognormal GOF Test	
63 64	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
65			ormal at 10% Significance Level	
66	11000 401 1000	<u>-</u>	·	
67 68	Minimum of Laura d Data		I Statistics Moan of logged Data	2 444
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	2.444 0.224
70		•		
71 72			ormal Distribution 90% Chebyshev (MVUE) UCL	15.66
73	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	19.9
74 75	99% Chebyshev (MVUE) UCL			
75 76	Nonnaram	etric Distribu	tion Free UCL Statistics	
77			Discernible Distribution	
78	• •			
			tribution Free UCLs 95% BCA Bootstrap UCL	N/A
78 79	Nonpa 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	14.11 N/A	ribution Free UCLs 95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	16.06			95% Ch	95% Chebyshev(Mean, Sd) UCL 18.01				
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	20.72			99% Ch	ebyshev(Me	an, Sd) UCL	26.04		
85														
86						Suggested	UCL to Use							
87	95% Student's-t UCL 15.13													
88							•							
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL			
90		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.												
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.		
92														

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:37:11 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	007 WDD 0.5.0			
12	GC7-WRB-0.5-2			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	10	Mean	11
17 18	Maximum		Median	11
19	SD Coefficient of Variation	0.816 0.0742	Std. Error of Mean Skewness	0.408
20				
21 22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23			he Chebyshev UCL for small sample sizes (n < 7).	
24 25	The Chebyshev UCL o	ften results	in gross overestimates of the mean.	
26	Refer to the ProUCL 5.2 Tec	chnical Guid	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test	
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32 33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36		suming Nor	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	11.96	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	11.67
38	30% Cladoliko (002	11.00	95% Modified-t UCL (Johnson-1978)	11.96
39 40		Commo	COT Test	
41	A-D Test Statistic	0.331	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	l evel
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	Level
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE)	241.2	k star (bias corrected MLE)	60.46
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	0.182 483.7
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	1.415
53				433.7
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	As:	suming Gam	ma Distribution	
57 58	95% Approximate Gamma UCL			N/A
59		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.944	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	Lillefors Test Statistic 10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67			I Statistics	
68 69	Minimum of Logged Data	2.303	Mean of logged Data	2.396
70	Maximum of Logged Data	2.485	SD of logged Data	0.0745
71	Assı	uming Logno	rmal Distribution	
72 73	95% H-UCL		90% Chebyshev (MVUE) UCL	12.23
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	12.78 15.07	97.5% Chebyshev (MVUE) UCL	13.56
75			·	
76 77			tion Free UCL Statistics	
78	Data appea	ii to follow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL			N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL			N/A N/A
	CO /o Fiding Doolstrap CCL		, commo bootstap ool	

	Α	В	С	D	E	F	G	Н		J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	12.22	95% Chebyshev(Mean, Sd) UCL 12.78						1
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	13.55			99% Ch	ebyshev(Me	an, Sd) UCL	15.06	
85													
86	Suggested UCL to Use												
87				95% Stu	dent's-t UCL	11.96							1
88						•	•						
89	ľ	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
90		Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simu	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	an.	l
92													1

	A B C D E	F	G H I J K	L								
2	UCL Statis	stics for Unc	ensored Full Data Sets									
3	User Selected Options											
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 5 From File ProUCL Input.xls	5:04:24 PM										
6	Full Precision OFF											
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of bootstrap Operations 2000											
10	GF-DR-0.5-1											
12	<u>3F-DR-0.3-1</u>											
13 14	T. IN 1 (0)		Statistics									
15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0								
16	Minimum	39	Mean	57.5								
17 18	Maximum SD	83 18.57	Median Std. Error of Mean	54 9.287								
19	Coefficient of Variation		Skewness	1.038								
20	Notes Commission in small (see 440) 15 date		I walle a lea are was a lea are alle a rea alle a rea (IOM) a serve a le									
21			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,									
23	but note that ITRC may recommend th	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).									
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.									
26	Neiei to the Floods 5.2 Ted	Jimilicai Guiù	e ioi a discussion oi die Chebyshev CCL.									
27 28	Objective MEDI Total Co. C. C.		GOF Test									
28	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level									
30	Lilliefors Test Statistic	0.261	Lilliefors GOF Test									
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level 1% Significance Level									
33			eliable for small sample sizes									
34 35	Assuming Normal Distribution											
36	As: 95% Normal UCL	suming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)									
37	95% Student's-t UCL	79.36	95% Adjusted-CLT UCL (Chen-1995)	77.92								
38 39			95% Modified-t UCL (Johnson-1978)	80.16								
40		Gamma	GOF Test									
41	A-D Test Statistic	0.249	Anderson-Darling Gamma GOF Test									
42 43	5% A-D Critical Value K-S Test Statistic		Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	e Level								
44	5% K-S Critical Value	0.395	Detected data appear Gamma Distributed at 5% Significance	e Level								
45 46	Detected data appear	r Gamma Di	stributed at 5% Significance Level liable for small sample sizes									
47	Note GOT tests	iliay be ullie	silable for Small Sample Sizes									
48 49	11.4405		Statistics	0.544								
50	k hat (MLE) Theta hat (MLE)	13.51 4.256	k star (bias corrected MLE) Theta star (bias corrected MLE)	3.544 16.22								
51	nu hat (MLE)	108.1	nu star (bias corrected)	28.35								
52 53	MLE Mean (bias corrected)	57.5	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	30.54 17.2								
54	Adjusted Level of Significance	N/A	Approximate Crit Square Value (0.05) Adjusted Chi Square Value	N/A								
55 56												
57	Ass 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A								
58												
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test									
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level									
62 63	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test									
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level									
65			eliable for small sample sizes									
66 67		Lognorma	I Statistics									
68	Minimum of Logged Data		Mean of logged Data	4.014								
69 70	Maximum of Logged Data		SD of logged Data	0.313								
71	Δεοι	umina Loana	ormal Distribution									
72	95% H-UCL	96.95	90% Chebyshev (MVUE) UCL	84.24								
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	96.37 146.3	97.5% Chebyshev (MVUE) UCL	113.2								
75		170.0										
76			tion Free UCL Statistics									
77 78	Data appea	ar to follow a	Discernible Distribution									
79			tribution Free UCLs									
80 81	95% CLT UCL	72.78	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A								
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	1	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A								
0∠												

	Α	В	С	D	E	F	G	Н	ı	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	85.36	95% Chebyshev(Mean, Sd) UCL 97.						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	115.5	99% Chebyshev(Mean, Sd) UCL 149.9						
85													
86	Suggested UCL to Use												
87				95% Stu	dent's-t UCL	79.36							
88						•	•						
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL		
90		Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													

-1	Α	В	С	D	E LIOL Oberia	F	G	H	I	J	K	L	
2					UCL Statis	Stics for Unc	ensored Full D	Jata Sets					
3	Date	User Sele e/Time of Ce	cted Options	ProUCL 5.2	10/21/2024	1.26.21 DM							
5	Date		From File	ProUCL Inpu		4.20.21 F IVI							
6 7	(Il Precision Coefficient	OFF 95%									
8		f Bootstrap		2000									
9 10													
11	GF-WRA-0.	5-1											
12 13						General	Statistics						
14			Total	Number of O	bservations	10					Observations	9	
15 16					Minimum	170			Number	r of Missing	Observations Mean	0 348.3	
17 18					Maximum	491				0.1.1	Median	338	
19				Coefficient	SD of Variation	92.04 0.264				Sta. I	Error of Mean Skewness	29.11 -0.313	
20 21						Normal (COE Took						
22			S	Shapiro Wilk To	est Statistic	0.965	GOF Test		Shapiro Wi	ilk GOF Tes	st		
23 24				hapiro Wilk Cı	ritical Value	0.781		Data appear			cance Level		
25			1	% Lilliefors Ci	est Statistic ritical Value	0.188 0.304		Data appear		GOF Test at 1% Signific	cance Level		
26 27	Data appear Normal at 1% Significance Level												
28					As	suming Nori	nal Distributio						
29 30			95% No	ormal UCL	dent's-t UCL	401.7		95% U		sted for Sk	ewness) . (Chen-1995)	393.1	
31				95% Stud	Jenis-i ocl	401.7		95	5% Modifi	ed-t UCL (Jo	ohnson-1978)	401.2	
32						Gommo	GOF Test						
34				A-D T	est Statistic	0.342				Gamma Go			
35 36					ritical Value est Statistic	0.725 0.222	Detected of			istributed at ov Gamma (5% Significan	ce Level	
37				5% K-S Cı	ritical Value	0.266		data appear (Gamma D		5% Significan	ce Level	
38 39				Detected	data appeai	r Gamma Di	stributed at 5%	6 Significano	e Level				
40							Statistics						
41					k hat (MLE) a hat (MLE)	13.82 25.2			orrected MLE) orrected MLE)	9.741 35.75			
43				nı	u hat (MLE)	276.4		ias corrected)	194.8				
44 45			M	LE Mean (bias	s corrected)	348.3		Ar	oproximate		ias corrected) e Value (0.05)	111.6 163.5	
46 47			Adjus	sted Level of S	Significance	0.0267			A	djusted Chi	Square Value	158.6	
48					Ass	suming Gam	ıma Distributio						
49 50			95% A	pproximate G					95	% Adjusted	Gamma UCL	428	
51						Lognorma	GOF Test						
52 53				Shapiro Wilk To		0.904				normal GO			
54			10% 5	hapiro Wilk Cı Lilliefors To	est Statistic	0.869 0.244	D			ormal GOF	nificance Level Test		
55 56			10	% Lilliefors Cı			ormal at 10% s	Data Not Log		: 10% Signifi	icance Level		
57				vala ap	урсаі Друго)	-		<u>orginilical ICB</u>	F0101				
58 59				Minimum of Lo	onned Data	Lognorma 5.136	l Statistics			Mean o	f logged Data	5.816	
60				Maximum of L		6.196					f logged Data	0.299	
61 62					Δοοι	ımina I oana	ormal Distributi	ion					
63					95% H-UCL	427.6	a. Diodibat				(MVUE) UCL	449.4	
64 65				Chebyshev (N Chebyshev (N					97.5%	Chebyshev	(MVUE) UCL	557.4	
66			33 /0										
67 68							tion Free UCL Discernible D						
69													
70 71				950	Nonpai % CLT UCL		c Distribution Free UCLs 2 95% BCA Bootstrap UCL 39						
72				Standard Boo	otstrap UCL	393.7	.7 95% Bootstrap-t UCI				otstrap-t UCL	396.7	
73 74				95% Hall's Boo nebyshev(Mea							ootstrap UCL ean, Sd) UCL	393.4 475.2	
75				nebyshev(Mea		530.1					ean, Sd) UCL	637.9	
76 77						Suggested	UCL to Use						
78 79				95% Stud	dent's-t UCL								
80	N	lote: Sugge	stions regard	ling the select	tion of a 95%	UCL are pr	ovided to help	the user to s	elect the n	nost appropi	riate 95% UCL		
81		Recom	nmendations	are based upo	on data size,	, data distrib	ution, and skev	wness using	results fro	m simulatior	n studies.		
82	<u>Hov</u>	wever, simu	<u>ıatıons result</u>	is will not cove	er all Real W	orid data se	ts; for additiona	ai insight the	user may	want to con	sult a statistici	an.	

	Α	В	С	D	E	F	G	Н		J	K	L
83												
84		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	id Gamma) r	nay not be	
85			reliable. (Chen's and J	lohnson's me	ethods provi	de adjustme	nts for posity	vely skewed	data sets.		
86												

1	A B C D	E	F	G H I J K	L							
2		UCL Statis	Stics for Unc	ensored Full Data Sets								
3	User Selected Options	0/04/0004	4 0 4 0 0 D1 4									
5	Date/Time of Computation ProUCL 5.2 10 From File ProUCL Input.		4:31:28 PIVI									
6	Full Precision OFF											
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9												
10 11	GF-WRA-0.5-2											
12												
13 14	Total Niveshay of Oh		General									
15	Total Number of Ob	servations	5	Number of Distinct Observations Number of Missing Observations	0							
16 17		Minimum		Mean	241.4							
18		Maximum SD		Median Std. Error of Mean	237 15.67							
19	Coefficient o			Skewness	-0.818							
20 21	Note: Sample size is small (e.g. <1)	n) if data s	are collected	using incremental sampling methodology (ISM) approach,								
22	refer also to ITRC Tech R	eg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,								
23 24				he Chebyshev UCL for small sample sizes (n < 7).								
25				in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.								
26				•								
27 28	Shapiro Wilk Te	st Statistic	Normal C 0.927	GOF Test Shapiro Wilk GOF Test								
29	1% Shapiro Wilk Crit	tical Value	0.686	Data appear Normal at 1% Significance Level								
30 31	Lilliefors Te: 1% Lilliefors Crit			Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32		Data appe	ar Normal at	1% Significance Level								
33 34	Note GOF tests may be unreliable for small sample sizes											
35	Assuming Normal Distribution											
36	95% Normal UCL			95% UCLs (Adjusted for Skewness)								
37 38	95% Stude	nt's-t UCL	274.8	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	261 273.8							
39				, a	270.0							
40 41	A D T-	-4 ()4-4:-4:-		GOF Test								
42	A-D Te: 5% A-D Crit	st Statistic	0.355 0.678	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significanc	e Level							
43	K-S Te	st Statistic	0.263	Kolmogorov-Smirnov Gamma GOF Test								
44 45	5% K-S Crit Detected d			Detected data appear Gamma Distributed at 5% Significanc stributed at 5% Significance Level	e Level							
46				liable for small sample sizes								
47 48			Gamma	Statistics								
49	k	hat (MLE)		k star (bias corrected MLE)	22.42							
50 51		hat (MLE)		Theta star (bias corrected MLE)	10.77							
52	nu MLE Mean (bias	hat (MLE) corrected)		nu star (bias corrected) MLE Sd (bias corrected)	224.2 50.98							
53				Approximate Chi Square Value (0.05)	190.5							
54 55	Adjusted Level of Si	gnificance	0.0086	Adjusted Chi Square Value	176.9							
56				ma Distribution								
57 58	95% Approximate Ga	mma UCL	284	95% Adjusted Gamma UCL	306							
59			Lognorma	GOF Test								
60 61			0.904	Shapiro Wilk Lognormal GOF Test								
62	10% Shapiro Wilk Crit Lilliefors Te			Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test								
63	10% Lilliefors Crit	tical Value	0.319	Data appear Lognormal at 10% Significance Level								
64 65				at 10% Significance Level Hiable for small sample sizes								
66	Note	JOI (CSIS	may be unit	niuno ivi siliali sallipie sikes								
67 68	Maining - £1 -	agod Dete		I Statistics	E 477							
69	Minimum of Lo Maximum of Lo			Mean of logged Data SD of logged Data	5.477 0.153							
70 71												
71 72	Qr	Assı 5% H-UCL	uming Logno 284.4	rmal Distribution 90% Chebyshev (MVUE) UCL	290.9							
73	95% Chebyshev (M)	VUE) UCL	313.2	97.5% Chebyshev (MVUE) UCL	344.3							
74 75	99% Chebyshev (M)	VUE) UCL	405.3									
76		lonparame	etric Distribu	tion Free UCL Statistics								
77				Discernible Distribution								
78 79		Nonna	rametric Dist	tribution Free UCLs								
80		CLT UCL	267.2	95% BCA Bootstrap UCL	N/A							
81 82				95% Bootstrap-t UCL	N/A							
UΖ	95% Hall's Boot	strap UCL	N/A	95% Percentile Bootstrap UCL	N/A							

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Mea	an, Sd) UCL	288.4	95% Chebyshev(Mean, Sd) UCL 309.7						
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	339.2			99% Ch	ebyshev(Me	an, Sd) UCL	397.3	
85													
86						Suggested	UCL to Use						
87				95% Stu	dent's-t UCL	274.8							
88													
89		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
91	Ho	wever, simu	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													
93		Note: For	highly negat	ively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) i	may not be	·	
94			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.			
95													

1	Α	В	С	D	E UCL Statio	F	G ensored Full D	H Data Sata	I	J	K	L
2					UCL Statis	Stics for Unc	ensorea Full L	Jata Sets				
3	Date	User Sele e/Time of C	cted Options	ProUCL 5.2	10/31/2024	1.33.35 DM						
5	Date		From File	ProUCL Inpu		+.33.23 F IVI						
6 7			Il Precision Coefficient	OFF 95%								
8		f Bootstrap		2000								
9 10												
11	GF-WRA-0.	5-3										
12 13						General	Statistics					
14			Total	Number of O	bservations	10					t Observations	9
15 16					Minimum	224			Numbe	er of Missing	g Observations Mean	292.4
17 18					Maximum					0.1	Median	272
19				Coefficient	SD of Variation	60.1 0.206				Sta	. Error of Mean Skewness	19 1.28
20 21						Normal (COE Took					
22			S	Shapiro Wilk T	est Statistic	0.858	GOF Test		Shapiro W	/ilk GOF Te	est	
23 24			1% S	hapiro Wilk C	ritical Value est Statistic	0.781		Data appe			ficance Level	
25			1	% Lilliefors C		0.256 0.304		Data appe		s GOF Test at 1% Signi	ficance Level	
26 27		Data appear Normal at 1% Significance Level										
28					As	suming Nori	mal Distributio					
29 30			95% No	ormal UCL	dent's-t UCL	327.2		95%		usted for S	kewness) CL (Chen-1995)	331.9
31				30 /o Siu(Jenis-i UCL	JZ1.Z			95% Modif	ied-t UCL (Johnson-1978)	
32 33						Gamma	GOF Test					
34				A-D T	est Statistic	0.573				g Gamma C		
35 36					ritical Value est Statistic	0.725 0.228	Detected of				at 5% Significan a GOF Test	ce Level
37				5% K-S C	ritical Value	0.266		data appear	r Gamma D		at 5% Significan	ce Level
38 39				Detected	data appeai	r Gamma Di	stributed at 5%	<u> 6 Significan</u>	nce Level			
40							Statistics					
41 42					k hat (MLE) ta hat (MLE)	29.22 10.01	29.22 k star (bias 10.01 Theta star (bias					20.52 14.25
43				n	u hat (MLE)	584.3	nu star (bias corre					410.4
44 45			M	LE Mean (bia	s corrected)	292.4			Approximat		bias corrected) re Value (0.05)	64.55 364.4
46 47			Adjus	sted Level of	Significance	0.0267			А	djusted Ch	i Square Value	
48					Ass	suming Gam	nma Distributio	 on				
49 50			95% A	pproximate G	amma UCL	329.3			95	5% Adjuste	d Gamma UCL	336.2
51						Lognorma	GOF Test					
52 53				Shapiro Wilk T hapiro Wilk C		0.904 0.869	D			gnormal G	OF Test gnificance Level	
54				Lilliefors T	est Statistic	0.218		Lilli	iefors Logr	normal GOF	F Test	
55 56			10	% Lilliefors C			D: at 10% Signific			at 10% Sig	gnificance Level	
57					, ака арреа <u>і</u>			Janoe Leve	ra			
58 59				Minimum of L	ogged Data	Lognorma 5.412	l Statistics			Mean	of logged Data	5.661
60				Maximum of L		6.031					of logged Data	0.191
61 62					Assı	ıming Loand	ormal Distributi	tion				
63 64			050/		95% H-UCL	329.8					v (MVUE) UCL	345.2
65				Chebyshev (I Chebyshev (I		369.3 468.2			97.5%	Cnebyshe	v (MVUE) UCL	402.7
66 67				, (.			tion Fron UC	Chatlati				
68							tion Free UCL Discernible D					
69 70												
71					% CLT UCL	323.7	tribution Free	UCLS			Bootstrap UCL	
72 73				Standard Bo		322.5 544.2			0.50/		Bootstrap-t UCL Bootstrap UCL	363.7 324.4
74			90% Ch	nebyshev(Mea	an, Sd) UCL	349.4			95% C	hebyshev(N	Mean, Sd) UCL	375.2
75 76			97.5% Ch	nebyshev(Mea	an, Sd) UCL	411.1			99% C	hebyshev(N	Mean, Sd) UCL	481.5
77							UCL to Use					
78 79				95% Stud	dent's-t UCL	327.2						
80	N										priate 95% UCL	
81 82	Ца						ution, and skey				on studies. Insult a statistici	an
IJΖ	<u> </u>	wever, Simu	nations result	S WIII HOL COV	ei ali Keal W	ronu uata se	ര, ioi auditiona	ar msiyrit th	e usei IIIdy	wani io co	nisuit a Statistici	all.

83 B C D E F G H I J K L

	A B C D E	F	G H I J K	L								
2	UCL Statis	stics for Unc	ensored Full Data Sets									
3	User Selected Options											
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024	4:34:59 PM										
6	Full Precision OFF											
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000											
9	Number of Bootstrap Operations 2000											
10	OF WDD 0.5.4											
12	GF-WRB-0.5-1											
13			Statistics									
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0								
16	Minimum	103		119								
17 18	Maximum			114.5								
19	SD Coefficient of Variation		Std. Error of Mean Skewness	8.822 1.357								
20		,										
21			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,									
23			the Chebyshev UCL for small sample sizes (n < 7).									
24 25	The Chebyshev UCL o	often results	in gross overestimates of the mean.									
26	Refer to the ProUCL 5.2 Tec	nnical Guide	e for a discussion of the Chebyshev UCL.	——								
27			GOF Test									
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level									
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test									
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level									
32 33			t 1% Significance Level									
34	Note GOF tests may be unreliable for small sample sizes											
35 36		suming Norr	mal Distribution									
37	95% Normal UCL 95% Student's-t UCL	139.8	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 1	139.9								
38	50% StadSht 8 1 002	100.0		140.8								
39 40			COF Test									
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test									
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level								
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Lovol								
45			stributed at 5% Significance Level	Level								
46 47			eliable for small sample sizes									
47		Gamma	Statistics									
49	k hat (MLE)	64.11	k star (bias corrected MLE)	16.19								
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	7.349								
52	nu hat (MLE) MLE Mean (bias corrected)			129.5 29.57								
53			Approximate Chi Square Value (0.05) 1	104.3								
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A								
56	As	suming Garr	nma Distribution									
57 58	95% Approximate Gamma UCL			N/A								
58		Lognorma	I GOF Test									
60	Shapiro Wilk Test Statistic	0.926	Shapiro Wilk Lognormal GOF Test									
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level									
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level									
64	Data appear	Lognormal a	at 10% Significance Level									
65 66	Note GOF tests	may be unre	eliable for small sample sizes									
67		Lognorma	I Statistics									
68	Minimum of Logged Data	4.635	Mean of logged Data	4.771								
69 70	Maximum of Logged Data	4.97	SD of logged Data	0.143								
71			ormal Distribution									
72 73	95% H-UCL	144.3	90% Chebyshev (MVUE) UCL 1	144.4								
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 1	171.8								
75			· · · · · · · · · · · · · · · · · · ·									
76 77			tion Free UCL Statistics									
78	Data appea	<u>ir to follow a</u>	Discernible Distribution									
79			tribution Free UCLs									
80 81	95% CLT UCL	133.5	95% BCA Bootstrap UCL	N/A								
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		•	N/A N/A								
	30 /0 Hall 3 DOUISHAP UCL	1.11/7.1	1 20 /0 1 GLOGHUIG DOOLSHAP OCL	7// \								

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	145.5	95% Chebyshev(Mean, Sd) UCL 157.5						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	174.1			99% Ch	ebyshev(Me	an, Sd) UCL	206.8	
85													
86	Suggested UCL to Use												
87				95% Stu	dent's-t UCL	139.8							
88						•	•					-	
89	ľ	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL		
90		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	ian.	
92													

	A B C D E	F	G H I J K	L							
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options										
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024	4:36:18 PM									
6	Full Precision OFF										
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Bootstrap Operations 2000										
10	OF WDD 0.5.0										
12	GF-WRB-0.5-2										
13			Statistics								
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0							
16	Minimum	68		78							
17 18	Maximum			78.5							
19	SD Coefficient of Variation			4.143 -0.274							
20		,									
21 22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23			the Chebyshev UCL for small sample sizes (n < 7).								
24 25	The Chebyshev UCL o	often results	in gross overestimates of the mean.								
26	Refer to the ProUCL 5.2 Tec	<u>:nnical Guid</u>	e for a discussion of the Chebyshev UCL.								
27			GOF Test								
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test								
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test								
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level								
32 33			t 1% Significance Level								
34	Note GOF tests may be unreliable for small sample sizes										
35 36	Assuming Normal Distribution										
37	95% Normal UCL 95% Student's-t UCL	87.75	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	84.21							
38	30% Statistics (002	07.70		87.66							
39 40			COF Test								
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test								
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance I	Level							
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance I	Lovol							
45			stributed at 5% Significance Level	Levei							
46 47			eliable for small sample sizes								
47		Gamma	Statistics								
49	k hat (MLE)			29.26							
50 51	Theta hat (MLE)			2.666							
52	nu hat (MLE) MLE Mean (bias corrected)			234.1 14.42							
53			Approximate Chi Square Value (0.05) 1	99.6							
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A							
56	As	suming Garr	nma Distribution								
57 58	95% Approximate Gamma UCL			N/A							
58		Lognorma	I GOF Test								
60	Shapiro Wilk Test Statistic	0.978	Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level								
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
64	Data appear	Lognormal a	at 10% Significance Level								
65 66	Note GOF tests	may be unre	eliable for small sample sizes								
67		Lognorma	I Statistics								
68	Minimum of Logged Data	4.22	Mean of logged Data	4.352							
69 70	Maximum of Logged Data	4.466	SD of logged Data	0.108							
71	Assı	uming Logno	ormal Distribution								
72 73	95% H-UCL	89.76	90% Chebyshev (MVUE) UCL	90.58							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	96.27 119.7	97.5% Chebyshev (MVUE) UCL 1	04.2							
75											
76 77			tion Free UCL Statistics								
78	Data appea	<u>ir to follow a</u>	Discernible Distribution								
79			tribution Free UCLs								
80 81	95% CLT UCL	84.82	95% BCA Bootstrap UCL N	N/A							
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		•	N/A N/A							
	30 /0 Hall 3 DOUISHAP UCL	13773	1 20 /0 1 GLOGHING DOORSHAD OCK	1// 1							

	Α	В	С	D	E	F	G	Н	I	J	K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	90.43			95% Ch	ebyshev(Me	an, Sd) UCL	96.06
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	103.9			99% Ch	ebyshev(Me	an, Sd) UCL	119.2
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	87.75						
88	Trocommonaca Col Crocoac ale maximam obcorvation											
89												
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Но	wever, simu	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) i	may not be	
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

CF-WRB-0.5-3 CR		A B C D E	F	G H I J K	L							
Date Price of Computation ProdUCL Input.45	2	UCL Statis	stics for Unc	ensored Full Data Sets								
From File Product Installation OFF Confidence Coefficient SPS. Number of Disease potentions SPS.												
Full Processon OFF Today Control Contr			4:37:39 PM									
Function	6											
Total Number of Disservations 4												
General Statistics General Statistics Number of Distinct Observations 4		Number of Bootstrap Operations 2000										
Total Number of Observations	10											
14		GF-WRB-0.5-3										
Total Number of Observations 4			General	Statistics								
Monimum 60	14	Total Number of Observations			4							
Maximum 87		Marian	60									
Note: Sample size is small (a.g. <10, if data are collected using incremental sampling methodology (ISM) approach, rafer also to ITDC fieth Res Quite on ISM (ITRC 2002 and ITRC 2012 for saddlinosit guidence.)												
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Rag Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance.		SD	12.57		6.285							
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (SMM approach, refer also to ITRC Tech Reg Guide on ISM (TRC 2020 and ITRC 2012) for additional guidance, state of the control o		Coefficient of Variation	0.177	Skewness	0.705							
		Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach.								
The Chebyshev UCL often results in gross overestimates of the mean.	22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	-							
Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL	23											
Shapiro Wilk Test Statistic	25											
Shapiro Wilk Test Statistic 0.907 Shapiro Wilk GOF Test	26	110.01 to the 11000£ 0.2 160		•								
1% Shapiro Wilk Critical Value		Objection MPD To Control										
	29											
Second Part	30	Lilliefors Test Statistic	0.263	Lilliefors GOF Test								
Note GOF tests may be unreliable for small sample sizes												
	34											
Semma GOF Test			85 79		83.7							
Gamma GOF Test	38	35% Gludents-t GGE	00.70									
AD Test Statistic												
1.0		A-D Test Statistic										
SK STEAST Statistic 0.296 School Common Commo	42				e Level							
Detected data appear Gamma Distributed at 5% Significance Level												
Note GOF tests may be unreliable for small sample sizes					<u>e Level</u>							
	46	Note GOF tests	may be unre	eliable for small sample sizes								
R R R R R R R R R R			•	Orania di La								
Theta hat (MLE)	49	k hat (MLF)			11 11							
MLE Mean (bias corrected) 71	50		1.621	Theta star (bias corrected MLE)	6.388							
Adjusted Level of Significance N/A			350.3									
Adjusted Level of Significance N/A	53	MILE Mean (bias corrected)	/ 1									
Section	54	Adjusted Level of Significance	N/A									
S7				- Distribution								
Lognormal GOF Test					N/A							
Shapiro Wilk Test Statistic 0.912 Shapiro Wilk Lognormal GOF Test	58	CONT. INSTITUTE CONTINUE CONTI										
10% Shapiro Wilk Critical Value 0.792 Data appear Lognormal at 10% Significance Level		Chanira Will Took Chakinkin										
Lilliefors Test Statistic 0.263 Lilliefors Lognormal GOF Test												
Data appear Lognormal at 10% Significance Level	62	Lilliefors Test Statistic	0.263	Lilliefors Lognormal GOF Test								
Note GOF tests may be unreliable for small sample sizes												
Comparison Com	65											
68 Minimum of Logged Data 4.094 Mean of logged Data 4.251 69 Maximum of Logged Data 4.466 SD of logged Data 0.174 70 71 Assuming Lognormal Distribution 72 95% H-UCL 90.58 90% Chebyshev (MVUE) UCL 89.44 73 95% Chebyshev (MVUE) UCL 97.8 97.5% Chebyshev (MVUE) UCL 109.4 74 99% Chebyshev (MVUE) UCL 132.2 75 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL N/A 81 95% Standard Bootstrap UCL N/A	66		-	•								
Maximum of Logged Data 4.466 SD of logged Data 0.174		Minimum of Laure 1 Date			4 251							
70 Assuming Lognormal Distribution 72 95% H-UCL 90.58 90% Chebyshev (MVUE) UCL 89.44 73 95% Chebyshev (MVUE) UCL 97.8 97.5% Chebyshev (MVUE) UCL 109.4 74 99% Chebyshev (MVUE) UCL 132.2 75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 79 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL N/A 80 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 81 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	69											
72 95% H-UCL 90.58 90% Chebyshev (MVUE) UCL 89.44 73 95% Chebyshev (MVUE) UCL 97.8 97.5% Chebyshev (MVUE) UCL 109.4 74 99% Chebyshev (MVUE) UCL 132.2 75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL N/A 80 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	70											
73 95% Chebyshev (MVUE) UCL 97.8 97.5% Chebyshev (MVUE) UCL 109.4 74 99% Chebyshev (MVUE) UCL 132.2 75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL N/A 80 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	71 72				90.44							
74 99% Chebyshev (MVUE) UCL 132.2 75 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 Nonparametric Distribution Free UCLs 80 95% CLT UCL 81.34 95% BCA Bootstrap UCL N/A 81 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	73											
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution Nonparametric Distribution Free UCLs Nonparametric Distribution Free UCLs 80 95% CLT UCL 81.34 95% BCA Bootstrap UCL N/A 81 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	74											
Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% CLT UCL 81.34 95% BCA Bootstrap UCL N/A 81 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	75 76	Nazarana	telo Distelle	tion Erna LICI Statistics								
78 79 Nonparametric Distribution Free UCLs 80 95% CLT UCL 81.34 95% BCA Bootstrap UCL N/A 81 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	77											
80 95% CLT UCL 81.34 95% BCA Bootstrap UCL N/A 81 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A	78											
81 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A					NI/A							

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	89.85			95% Ch	ebyshev(Me	an, Sd) UCL	98.4
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	110.2			99% Ch	ebyshev(Me	an, Sd) UCL	133.5
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	85.79						
88						•	•					
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
91	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
92												

1	A B C D E UCL Statis	F stics for Unc	G H I J K ensored Full Data Sets	L						
2										
3	User Selected Options									
5	Date/Time of Computation ProUCL 5.2 10/31/2024 4 From File ProUCL Input.xls	4:46:09 PM								
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Number of Bootstrap Operations 2000									
9										
	GF-WRC-0.5-1									
12	GF-WNC-0.5-1									
13		General	Statistics							
14 15	Total Number of Observations	4	Number of Distinct Observations	4						
16	Minimum	78	Number of Missing Observations Mean	0 85						
17	Maximum		Median	80						
18	SD	11.4	Std. Error of Mean	5.701						
19	Coefficient of Variation	0.134	Skewness	1.93						
20 21	Notes Occurred also to small (a.g., 440). We detect		!							
22	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,							
23			he Chebyshev UCL for small sample sizes (n < 7).							
24	The Chebyshev UCL or	ften results i	in gross overestimates of the mean.							
25	Refer to the ProUCL 5.2 Tec	hnical Guide	e for a discussion of the Chebyshev UCL.							
26 27		Marral	POE Toet							
28	Shapiro Wilk Test Statistic	0.726	GOF Test Shapiro Wilk GOF Test							
29	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level							
30	Lilliefors Test Statistic	0.387	Lilliefors GOF Test							
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level							
33			1% Significance Level liable for small sample sizes							
34	Note GOF Tests I	may be unife	music for small satiffic sizes							
35	Assuming Normal Distribution									
36	95% Normal UCL		95% UCLs (Adjusted for Skewness)							
37 38	95% Student's-t UCL	98.42	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	100.3 99.33						
39			95% Modified-t UCL (Johnson-1978)	99.33						
40		Gamma (GOF Test							
41	A-D Test Statistic	0.71	Anderson-Darling Gamma GOF Test							
42 43	5% A-D Critical Value	0.656	Data Not Gamma Distributed at 5% Significance Leve	1						
44	K-S Test Statistic 5% K-S Critical Value	0.402 0.394	Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Leve	.1						
45			ed at 5% Significance Level							
46										
47 48	k hat (MLE)	Gamma 80.08	Statistics k star (bias corrected MLE)	20.19						
49	Theta hat (MLE)	1.061	Theta star (bias corrected MLE)	4.211						
50	nu hat (MLE)		nu star (bias corrected)	161.5						
51	MLE Mean (bias corrected)	85	MLE Sd (bias corrected)	18.92						
52 53	A diverse del constant di maifra a cons	NI/A	Approximate Chi Square Value (0.05)	133.1						
54	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A						
55	Ass	suming Gam	ma Distribution							
56	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A						
57 58			COFToo							
59	Shapiro Wilk Test Statistic	0.738	GOF Test Shapiro Wilk Lognormal GOF Test							
60	10% Shapiro Wilk Critical Value	0.738	Data Not Lognormal at 10% Significance Level							
61	Lilliefors Test Statistic	0.38	Lilliefors Lognormal GOF Test							
62	10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level							
63 64	Data Not Lo	ognormal at	10% Significance Level							
65		Lognorma	I Statistics							
66	Minimum of Logged Data	4.357	Mean of logged Data	4.436						
67	Maximum of Logged Data	4.625	SD of logged Data	0.127						
68 69			mad Distribution							
70	ASSU 95% H-UCL	uming Logno 100.6	rmal Distribution 90% Chebyshev (MVUE) UCL	101.1						
71	95% Chebyshev (MVUE) UCL	108.4	97.5% Chebyshev (MVUE) UCL	118.6						
72	99% Chebyshev (MVUE) UCL	138.5								
73		ad Birth	there For a LIOI. Observations							
74 75			tion Free UCL Statistics Discernible Distribution							
76	рака арреа	ii to follow a	Discernible Distribution							
77		rametric Dist	ribution Free UCLs							
78	95% CLT UCL	94.38	95% BCA Bootstrap UCL	N/A						
79 80	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A						
81	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	N/A 102.1	95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	N/A 109.8						
82	97.5% Chebyshev(Mean, Sd) UCL	120.6	99% Chebyshev(Mean, Sd) UCL	141.7						
02			55.5 5.155 for 10 f (111 car), Ca/ OOL							

	Α	В	С	D	E	F	G	Н	ı	J	K	L
83												
84						Suggested	UCL to Use					
85				95% Stu	dent's-t UCL	98.42						
86							•					
87	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
88		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
89		wever, simu	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to consi	ult a statistic	ian.
90												

	A B C D E	F	G H I J K L								
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options	4.47.40 DM									
5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	4:47:42 PIVI									
6 7	Full Precision OFF Confidence Coefficient 95%										
8	Number of Bootstrap Operations 2000										
9											
11	GF-WRC-0.5-2										
12 13		General	Statistics								
14	Total Number of Observations		Number of Distinct Observations 4								
15 16	Minimum	75	Number of Missing Observations 0 Mean 87								
17	Maximum	100	Median 86.5								
18 19	SD Coefficient of Variation		Std. Error of Mean 5.148 Skewness 0.282								
20											
21 22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23	but note that ITRC may recommend the	he t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).								
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.								
26			•								
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test								
29	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level								
30 31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32 33	Data appe	ear Normal at	1% Significance Level								
34	Note GOF tests may be unreliable for small sample sizes										
35 36	Assuming Normal Distribution										
37	95% Normal UCL 95% Student's-t UCL	. 99.11	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 96.24								
38 39			95% Modified-t UCL (Johnson-1978) 99.24								
40	Gamma GOF Test										
41 42	A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test								
43	K-S Test Statistic		Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test								
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level								
46	Note GOF tests	may be unre	eliable for small sample sizes								
47 48		Gamma	Statistics								
49	k hat (MLE)	95.47	k star (bias corrected MLE) 24.03								
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 3.62 nu star (bias corrected) 192.3								
52	MLE Mean (bias corrected)	87	MLE Sd (bias corrected) 17.75								
53 54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) 161.2 Adjusted Chi Square Value N/A								
55		·									
56 57	As 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL N/A								
58 59											
60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level								
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
64 65	Data appear	Lognormal	at 10% Significance Level								
66	Note GOF tests	inay be unre	sliable for small sample sizes								
67 68	Attainment on the same to		Statistics								
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 4.461 SD of logged Data 0.118								
70 71											
72	95% H-UCL	. 101.7	prmal Distribution 90% Chebyshev (MVUE) UCL 102.4								
73 74	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 119.1								
75	99% Chebyshev (MVUE) UCL	. 138.1	<u> </u>								
76 77			tion Free UCL Statistics								
78	Data appea	ar io toliow a	Discernible Distribution								
79 80			tribution Free UCLs								
81	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL N/A 95% Bootstrap-t UCL N/A								
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL N/A								

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	102.4			95% Ch	ebyshev(Me	an, Sd) UCL	109.4
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	119.1			99% Ch	ebyshev(Me	an, Sd) UCL	138.2
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	99.11						
88						•	•					
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	m simulation	studies.	
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
92												

	A B C D E	F	G H I J K	L							
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options	4.54.50.DM									
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024	4:51:58 PM									
6	Full Precision OFF										
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Bootstrap Operations 2000										
10											
12	GF-WRC-0.5-3										
13			Statistics								
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0							
16	Minimum	41	Mean	46							
17 18	Maximum			46.5							
19	SD Coefficient of Variation		Std. Error of Mean Skewness	1.871 -0.764							
20											
21 22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23			he Chebyshev UCL for small sample sizes (n < 7).								
24 25	The Chebyshev UCL o	often results	in gross overestimates of the mean.								
26	Refer to the ProUCL 5.2 Tec	chnical Guide	e for a discussion of the Chebyshev UCL.								
27			OF Test								
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test								
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test								
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level								
32 33			t 1% Significance Level								
34	Note GOF tests may be unreliable for small sample sizes										
35 36	Assuming Normal Distribution										
37	95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 50.4 95% Adjusted-CLT UCL (Chen-1995) 48.31										
38	50% StadSht 8 1 00 E	95% Modified-t UCL (Johnson-1978)	50.28								
39 40			COF Took								
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test								
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level							
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Lovol							
45			stributed at 5% Significance Level	Level							
46 47	Note GOF tests	may be unre	eliable for small sample sizes								
47		Gamma	Statistics								
49	k hat (MLE)	196.6		49.32							
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	0.933							
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 3 MLE Sd (bias corrected)	394.5 6.55							
53			Approximate Chi Square Value (0.05) 3	349.5							
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A							
56	As	suming Garr	ma Distribution								
57 58	95% Approximate Gamma UCL			N/A							
59		Lognorma	GOF Test								
60	Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level								
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
64	Data appear	Lognormal a	at 10% Significance Level								
65 66	Note GOF tests	may be unre	eliable for small sample sizes								
67		Lognorma	I Statistics								
68	Minimum of Logged Data	3.714	Mean of logged Data	3.826							
69 70	Maximum of Logged Data	3.912	SD of logged Data	0.0829							
71	Assı	uming Logno	ormal Distribution								
72 73	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	51.72							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	57.91							
75			· · · · · · · · · · · · · · · · · · ·								
76 77			tion Free UCL Statistics								
78	Data appea	ar to follow a	Discernible Distribution								
79			tribution Free UCLs								
80 81	95% CLT UCL	49.08	95% BCA Bootstrap UCL	N/A							
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL			N/A N/A							
	30 /0 Hall 3 DOUISHAP UCL	1.1//-1	JO /0 1 GLOGHUIG DUUISHAD UCL	17// 1							

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	51.61			95% Ch	ebyshev(Me	an, Sd) UCL	54.15
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	57.68			99% Ch	ebyshev(Me	an, Sd) UCL	64.61
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	50.4						
88	Recommended UCL exceeds the maximum observation											
89												
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	tively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

	A B C D E	F	G H I J K	L							
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options	4.E0.00 DM									
5	Date/Time of Computation ProUCL 5.2 10/31/2024	4:53:20 PM									
6	Full Precision OFF										
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Bootstrap Operations (2000										
10 11	GF-WRC-0.5-4										
12	di -WNO-0.5-4										
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	4							
15	Total Nulliber of Observations	4	Number of Missing Observations	0							
16 17	Minimum	42 67	Mean	55.25 56							
18	Maximum SD		Median Std. Error of Mean	5.186							
19	Coefficient of Variation	0.188	Skewness	-0.409							
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,								
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,								
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.								
25			e for a discussion of the Chebyshev UCL.								
26 27		Normal	POE Toot								
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test								
29 30	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level								
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32	Data appe	ar Normal at	1% Significance Level								
33 34	Note GOF tests may be unreliable for small sample sizes										
35	Assuming Normal Distribution										
36 37	95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 67.45 95% Adjusted-CLT UCL (Chen-1995) 62.65										
38	95% Students-1 OCL (07.45 95% Adulsted-CLT OCL (Cher-1995) 02.05 95% Modified-t UCL (Johnson-1978) 67.28										
39 40											
41	A-D Test Statistic 0.241 Anderson-Darling Gamma GOF Test										
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level							
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level							
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level								
46 47	Note GOF tests	may be unre	eliable for small sample sizes								
48			Statistics								
49 50	k hat (MLE) Theta hat (MLE)	36.08 1.531	k star (bias corrected MLE) Theta star (bias corrected MLE)	9.187 6.014							
51	nu hat (MLE)	288.7	nu star (bias corrected MLE)	73.5							
52 53	MLE Mean (bias corrected)	55.25	MLE Sd (bias corrected)	18.23							
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	54.76 N/A							
55		!									
56 57	Ase 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A							
58	00707 pproximate dumina OOL										
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test								
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level								
62 63	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test								
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level								
65 66			liable for small sample sizes								
66 67		Lognorma	I Statistics								
68	Minimum of Logged Data	3.738	Mean of logged Data	3.998							
69 70	Maximum of Logged Data	4.205	SD of logged Data	0.195							
71	Assı	uming Logno	ormal Distribution								
72 73	95% H-UCL	73.21	90% Chebyshev (MVUE) UCL	71.42							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	78.73 108.8	97.5% Chebyshev (MVUE) UCL	88.88							
75											
76 77			tion Free UCL Statistics Discernible Distribution								
78											
79 80			tribution Free UCLs	NI/A							
81	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A							
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	N/A							

	Α	В	С	D	E	F	G	Н	I	J	K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	70.81			95% Ch	ebyshev(Me	an, Sd) UCL	77.86
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	87.64			99% Ch	ebyshev(Me	an, Sd) UCL	106.9
85												
86	Suggested UCL to Use											
87				95% Stu	dent's-t UCL	67.45						
88	Recommended UCL exceeds the maximum observation											
89												
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Но	wever, simul	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	4.E4:20 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 4 From File ProUCL Input.xls	4:54:30 PIVI		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations (2000			
10 11	GF-WRC-0.5-4-DS			
12	ui -\\i\o-0.5-4-00			
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	4
15	Total Number of Observations	4	Number of Missing Observations	0
16 17	Minimum	31 62	Mean	48.25
18	Maximum SD	13.23	Median Std. Error of Mean	50 6.613
19	Coefficient of Variation	0.274	Skewness	-0.679
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Normal	POE Toet	
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appe	ar Normal at	1% Significance Level	
33 34	Note GOF tests	may be unre	liable for small sample sizes	
35		suming Nor	mal Distribution	
36 37	95% Normal UCL 95% Student's-t UCL	T	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	56.72
38	95% Student s-t UCL	63.81	95% Adjusted-CLT OCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	56.73 63.44
39 40		0		
41	A-D Test Statistic	0.271	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE) Theta hat (MLE)	15.93 3.028	k star (bias corrected MLE) Theta star (bias corrected MLE)	4.15 11.63
51	nu hat (MLE)	127.5	nu star (bias corrected)	33.2
52 53	MLE Mean (bias corrected)	48.25	MLE Sd (bias corrected)	23.69
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	21.03 N/A
55 56		!		
55	Ass 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A
58	55.0. ipproximate damini OOL			
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	liable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	3.434	Mean of logged Data	3.845
69 70	Maximum of Logged Data	4.127	SD of logged Data	0.3
71	Assı	uming Logno	rmal Distribution	
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	79.05 79.7	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	69.92 93.27
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.3% Chebysnev (MIVUE) UCL	33.Z1
75 76			Non-Free HOL Obelieties	
77			tion Free UCL Statistics Discernible Distribution	
78				
79 80	Nonpar 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	N/A
81	95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Mea	an, Sd) UCL	68.09	95% Chebyshev(Mean, Sd) UCL 77.07							
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	89.55			99% Ch	ebyshev(Me	an, Sd) UCL	114		
85														
86	Caggoold CCL to CCC													
87		95% Student's-t UCL 63.81												
88	Recommended UCL exceeds the maximum observation													
89														
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL			
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.			
92	Ho	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.		
93														
94		Note: For	highly negat	ively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) r	may not be			
95			reliable.	Chen's and J	ohnson's me	ethods provi	de adjustme	nts for posit	vely skewed	data sets.				
96														

1	A B C D	E UCL Statis	F tics for Unc	G H I J K L ensored Full Data Sets
2				
3	User Selected Options	E 0 40/04/0001	LEE-EZ 234	
5		5.2 10/31/2024 4 Input.xls	1:55:57 PM	
6	Full Precision OFF	присло		
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
	GF-WRD-0.5-1			
12	GI -VVIND-0.0-1			
13			General	Statistics
14 15	Total Number	of Observations	4	Number of Distinct Observations 3
16		Minimum	59	Number of Missing Observations 0 Mean 62
17		Maximum	69	Median 60
18		SD	4.69	Std. Error of Mean 2.345
19	Coeffic	cient of Variation	0.0757	Skewness 1.938
20 21	Note: Sample size is small (e.	a <10) if data a	ro collected	using incremental sampling methodology (ISM) approach,
22				C 2020 and ITRC 2012) for additional guidance,
23				he Chebyshev UCL for small sample sizes (n < 7).
24				in gross overestimates of the mean.
25 26	Refer to the	ProUCL 5.2 Tec	hnical Guid	e for a discussion of the Chebyshev UCL.
27			Normal (GOF Test
28	Shapiro W	ilk Test Statistic	0.716	Shapiro Wilk GOF Test
29		ilk Critical Value	0.687	Data appear Normal at 1% Significance Level
30 31		ors Test Statistic	0.415	Lilliefors GOF Test
32		rs Critical Value	0.413	Data Not Normal at 1% Significance Level rmal at 1% Significance Level
33				Iliable for small sample sizes
34				•
35		Ass	suming Norr	nal Distribution
36 37	95% Normal UC	Student's-t UCL	67.52	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 68.29
38	95 //	Students-t OCL	07.52	95% Modified-t UCL (Johnson-1978) 67.9
39		-		
40				GOF Test
41 42		-D Test Statistic -D Critical Value	0.762 0.657	Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level
43		-S Test Statistic	0.437	Kolmogorov-Smirnov Gamma GOF Test
44	5% K	-S Critical Value	0.394	Data Not Gamma Distributed at 5% Significance Level
45 46		Data Not Gamn	na Distribute	ed at 5% Significance Level
47			Gamma	Statistics
48		k hat (MLE)	243.9	k star (bias corrected MLE) 61.15
49		Theta hat (MLE)	0.254	Theta star (bias corrected MLE) 1.014
50 51	MI E Mana	nu hat (MLE)		nu star (bias corrected) 489.2
52	MILE Mean	(bias corrected)	62	MLE Sd (bias corrected) 7.928 Approximate Chi Square Value (0.05) 438.9
53	Adjusted Leve	l of Significance	N/A	Adjusted Chi Square Value N/A
54				
55 56	OE0/ A			ma Distribution
57	95% Approxima	te Gamma UCL	69.1	95% Adjusted Gamma UCL N/A
58			Lognorma	GOF Test
59		ilk Test Statistic	0.722	Shapiro Wilk Lognormal GOF Test
60 61		ilk Critical Value	0.792	Data Not Lognormal at 10% Significance Level
62		ors Test Statistic ors Critical Value	0.413 0.346	Lilliefors Lognormal GOF Test Data Not Lognormal at 10% Significance Level
63	10 /6 LIIIIeiC			10% Significance Level
64				
65 66		-41 15 -		I Statistics
67		of Logged Data of Logged Data	4.078 4.234	Mean of logged Data 4.125 SD of logged Data 0.0731
68	iviaXIIIIuII	or Logged Data	7.204	OD 01 logged Data 0.0731
69				rmal Distribution
70 71	2-2/ 2/ -	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL 68.79
71 72	,	ev (MVUE) UCL	71.87 84.54	97.5% Chebyshev (MVUE) UCL 76.14
73	99% Cnebysn	ev (MVUE) UCL	04.54	
74		Nonparame	tric Distribu	tion Free UCL Statistics
75 76		Data appea	r to follow a	Discernible Distribution
76 77		N	omotrio Di-	ribution Fron LICLo
78		Nonpar 95% CLT UCL	65.86	tribution Free UCLs 95% BCA Bootstrap UCL N/A
79	95% Standard	Bootstrap UCL	N/A	95% Bootstrap-t UCL N/A
		Bootstrap UCL	N/A	95% Percentile Bootstrap UCL N/A
80				
	95% Hall's 90% Chebyshev 97.5% Chebyshev	(Mean, Sd) UCL	69.04 76.65	95% Chebyshev(Mean, Sd) UCL 72.22 99% Chebyshev(Mean, Sd) UCL 85.33

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83														
84	Suggested UCL to Use													
85		95% Student's-t UCL 67.52												
86														
87	When a data set follows an approximate distribution passing only one of the GOF tests,													
88			it is su	ggested to us	se a UCL bas	sed upon a d	istribution pa	ssing both C	OF tests in F	ProUCL				
89														
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCI			
91									g results fron					
92	Ho	wever, simu	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may v	want to cons	ult a statistic	ian.		
93	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.													

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 4 From File ProUCL Input.xls	4:58:14 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	OF WDD 0.5.0			
12	GF-WRD-0.5-3			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	55	Mean	61.75
17 18	Maximum		Median	59
19	SD Coefficient of Variation		Std. Error of Mean Skewness	4.366 1.342
20		,		
21 22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23			he Chebyshev UCL for small sample sizes (n < 7).	
24 25	The Chebyshev UCL o	often results	in gross overestimates of the mean.	
26	Refer to the ProUCL 5.2 Tec	nnical Guide	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test	
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32 33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36		suming Norr	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	72.02	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	72.06
38	30% Cladoliko (002	72.02	95% Modified-t UCL (Johnson-1978)	72.51
39 40			COT Test	
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Lovol
45			stributed at 5% Significance Level	Levei
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
47		Gamma	Statistics	
49	k hat (MLE)		k star (bias corrected MLE)	17.76
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	3.477
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	142.1 14.65
53			Approximate Chi Square Value (0.05)	115.5
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	Ass	suming Garr	ma Distribution	
57 58	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A
58		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.88	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level	
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	4.007	Mean of logged Data	4.116
69 70	Maximum of Logged Data	4.304	SD of logged Data	0.136
71			ormal Distribution	
72 73	95% H-UCL	74.14	90% Chebyshev (MVUE) UCL	74.32
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	80.02 103.5	97.5% Chebyshev (MVUE) UCL	87.93
75			<u> </u>	
76 77			tion Free UCL Statistics	
78	Data appea	<u>ir to follow a</u>	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL	68.93	95% BCA Bootstrap UCL	N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A
	33 /0 Fiall's DOUISHAP UCL	1.10/77	1 Jo /o T el Certille DOUISITAD OCL	1 1// 1

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	74.85	95% Chebyshev(Mean, Sd) UCL 80						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	89.02			99% Ch	ebyshev(Me	an, Sd) UCL	105.2	
85													
86	Suggested UCL to Use												
87	95% Student's-t UCL 72.02												
88													
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
91													
92													

	A B C D E	F	G H I J K	L
2	UCL Statis	tics for Unc	ensored Full Data Sets	
3	User Selected Options	4.E0.22 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 4 From File ProUCL Input.xls	4:59:32 PIVI		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bookstup Operations 2000			
10 11	GF-WRD-0.5-4			
12	GI -WND-0.5-4			
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	4
15	Total Number of Observations	4	 	0
16 17	Minimum	42 57		50.75 52
18	Maximum SD	6.752		3.376
19	Coefficient of Variation	0.133		0.768
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			the Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Normal (GOF Test	
28	Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level	
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.235 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appea	ar Normal at	t 1% Significance Level	
33 34	Note GOF tests	may be unre	eliable for small sample sizes	
35		suming Nor	mal Distribution	
36 37	95% Normal UCL 95% Student's-t UCL		95% UCLs (Adjusted for Skewness)	54.02
38	95% Students-t UCL	58.69		54.92 58.48
39 40		0		
41	A-D Test Statistic	0.311	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance L	evel
43 44	K-S Test Statistic 5% K-S Critical Value	0.268 0.394	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance L	evel
45	Detected data appear	Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE) Theta hat (MLE)	72.18 0.703	, , ,	18.21 2.787
51	nu hat (MLE)	577.4	nu star (bias corrected) 14	45.7
52 53	MLE Mean (bias corrected)	50.75	MLE Sd (bias corrected)	11.89
54	Adjusted Level of Significance	N/A		18.8 I/A
55				
56 57	Ass 95% Approximate Gamma UCL	suming Gam 62.24	nma Distribution 95% Adjusted Gamma UCL N	I/A
58	5577 Typroximate dumina OOL			
59 60	Shapiro Wilk Test Statistic	Lognorma 0.925	I GOF Test Shapiro Wilk Lognormal GOF Test	
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statistic	0.237 0.346	Lilliefors Lognormal GOF Test	
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level	
65 66			eliable for small sample sizes	
66 67		Lognorma	Il Statistics	
68	Minimum of Logged Data	3.738	Mean of logged Data	3.92
69 70	Maximum of Logged Data	4.043	SD of logged Data	0.138
71	Assu	ıming Logno	ormal Distribution	
72 73	95% H-UCL	61.1	90% Chebyshev (MVUE) UCL	61.22
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	65.96 85.46	97.5% Chebyshev (MVUE) UCL	72.54
75				
76 77			tion Free UCL Statistics Discernible Distribution	
78				
79 80			tribution Free UCLs	1/4
81	95% CLT UCL 95% Standard Bootstrap UCL	56.3 N/A		I/A I/A
82	95% Hall's Bootstrap UCL	N/A		I/A

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	60.88	95% Chebyshev(Mean, Sd) UCL 65.4							
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	71.83			99% Ch	ebyshev(Me	an, Sd) UCL	84.34		
85	_													
86	Suggested UCL to Use													
87	95% Student's-t UCL 58.69													
88	Recommended UCL exceeds the maximum observation													
89														
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL			
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.			
92	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.		
93														
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be			
95			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.				
96														

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	5:01:02 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10				
12	GF-WRD-0.5-5			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	52		56
17 18	Maximum			55
19	SD Coefficient of Variation		Std. Error of Mean Skewness	2.121 1.309
20		,		
21 22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23			he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean.	
26	Refer to the ProUCL 5.2 Led	chnical Guid	e for a discussion of the Chebyshev UCL.	
27			GOF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test	
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32 33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36		suming Nor	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	60.99	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	60.97
38	30% StadSht 8 1 30E	00.00		61.22
39 40		Commo	COF Took	
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	LEVEI
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE)	239.3		60
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected) 4	0.933 180
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	7.23
53			Approximate Chi Square Value (0.05) 4	130.2
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	As	suming Gam	ma Distribution	
57 58	95% Approximate Gamma UCL			N/A
59		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.886	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	3.951	Mean of logged Data	4.023
69 70	Maximum of Logged Data	4.127	SD of logged Data	0.0741
71	Ass	uming Logno	ormal Distribution	
72 73	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	62.22
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	65.04 76.64	97.5% Chebyshev (MVUE) UCL	68.95
75				
76 77			tion Free UCL Statistics	
78	Data appea	ar to follow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL	59.49	95% BCA Bootstrap UCL	N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		,	N/A N/A
ļ	30 /0 Hall 5 DOOISHAD OCL	11//	30 /0 1 GIOGINING DOORSHAP OCL	17//

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Mea	n, Sd) UCL	62.36	95% Chebyshev(Mean, Sd) UCL 65						
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	69.25			99% Ch	ebyshev(Me	an, Sd) UCL	77.11	
85													
86	Suggested UCL to Use												
87	95% Student's-t UCL 60.99												
88													
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL		
90		Recom	mendations	are based up	on data size	data distrib	ution, and sk	ewness usin	g results from	m simulation	studies.		
91	Ho	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.	
92													

1	A B C D E	F stics for Unc	G ensored Full	H Data Sets	I	J	K	L
2	OOL Statis		CHOOLEG FUIL					
3	User Selected Options							
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	5:02:22 PM						
6	Full Precision OFF							
7	Confidence Coefficient 95%							
8	Number of Bootstrap Operations 2000							
9								
	GF-WRD-0.5-6							
12	a. 777.15 0.0 0							
13			Statistics				_	
14 15	Total Number of Observations	4					Observations	0
16	Minimum	51			Number	or wissing	Observations Mean	59
17	Maximum						Median	52.5
18	SD					Std. I	Frror of Mean	7.012
19 20	Coefficient of Variation	0.238					Skewness	1.98
21	Note: Sample size is small (e.g., <10), if data	are collected	l using increr	mental samplir	na methodo	ology (ISM)	annroach	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and I	TRC 2012) for	r additional	guidance,		
23	but note that ITRC may recommend to					sizes (n <	7).	
24 25	The Chebyshev UCL on Refer to the ProUCL 5.2 Te					ICI		
26	Neiei tu tile F100CL 5.2 Tel	cillical Guid	e ivi a uiscus	salon of tile of	IGDYSHEV C	, _O L.		
27			GOF Test					
28	Shapiro Wilk Test Statistic	0.685				k GOF Tes		
29 30	1% Shapiro Wilk Critical Value Lilliefors Test Statistic			Data Not N	lormal at 1 st	% Significa	nce Level	
31	Lillefors Lest Statistic 1% Lilliefors Critical Value			Data Not N		% Significa	nce Level	
32		t Normal at 1	% Significan					
33								
34 35		suming Nor	mal Distributi		Ol - / A -!!	ata difa a Ole		
36	95% Normal UCL 95% Student's-t UCL	75.5				sted for Ske	(Chen-1995)	77.95
37	33% otddont 3-t OCL	70.0					hnson-1978)	76.66
38						,		
39 40	A.D.T. (0) (1)		GOF Test	A	- Deallers	0	SE T	
41	A-D Test Statistic 5% A-D Critical Value		Da			Gamma GO	gnificance Leve	ام
42	K-S Test Statistic		D(v Gamma (01
43	5% K-S Critical Value	0.394				ed at 5% Sig	gnificance Leve	el
44 45	Data Not Gam	ma Distribute	ed at 5% Sig	nificance Leve	el .			
46		Gamma	Statistics					
47	k hat (MLE)		Otationio		k s	tar (bias co	rrected MLE)	6.896
48	Theta hat (MLE)				Theta s		rrected MLE)	8.556
49 50	nu hat (MLE)						as corrected)	55.17
51	MLE Mean (bias corrected)	59		An			as corrected) Value (0.05)	22.47 39.1
52	Adjusted Level of Significance	N/A		, ,,			Square Value	N/A
53				_				
54 55	As 95% Approximate Gamma UCL	suming Gam 83.25	ma Distribut	ion	OEO	/ Adiustad	Gamma UCL	N/A
56	95% Appioximate Gamma UCL	00.20	<u> </u>		95%	o Aujusted	uannid UUL	IN/A
57			GOF Test					
58	Shapiro Wilk Test Statistic					normal GO		
59 60	10% Shapiro Wilk Critical Value Lilliefors Test Statistic			Data Not Log		<u>10% Signifi</u> rmal GOF		
61	10% Lilliefors Critical Value			Data Not Loc				
62		ognormal at	10% Signific					
63 64		1	I Otatiati					
65	Minimum of Logged Data		I Statistics			Mean	f logged Data	4.059
66	Maximum of Logged Data Maximum of Logged Data						f logged Data	0.216
67								
68 69	Ass	uming Logno	rmal Distribu	ution	000/ 0	Na a b · · - ¹	/M//UE\ LIQI	77.05
70	95% H-UCL 95% Chebyshev (MVUE) UCL						(MVUE) UCL (MVUE) UCL	77.95 98.54
71	99% Chebyshev (MVUE) UCL				J1.J/0 C	on Conyonie V	(IVI V OL) OCL	50.54
72			•					
73		etric Distribu						
74 75	Data do r	not follow a D	uscernible D	stribution				
76	Nonna	rametric Dis	tribution Free	UCLs				
77	95% CLT UCL	70.53			9		ootstrap UCL	N/A
78	95% Standard Bootstrap UCL	N/A					otstrap-t UCL	N/A
79 80	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL						ootstrap UCL ean, Sd) UCL	N/A 89.56
81	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL						ean, Sd) UCL ean, Sd) UCL	128.8
82	57.5% Chebyshev(Mean, 30) UCL	., 102.0					Jan, Juj JUL	120.0

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83	Suggested UCL to Use													
84	Recommendation cannot be provided													
85														
86	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
87		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.			
88	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.													
89														

	A B C D E	F	G H I J K	L							
2	UCL Statis	tics for Unc	ensored Full Data Sets								
3	User Selected Options	4 57 44 514									
5	Date/Time of Computation ProUCL 5.2 10/31/2024	4:57:11 PM									
6	Full Precision OFF										
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9											
10 11	GF-WRD-0.5-2										
12	ai -WIAD-0.3-2										
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	4							
15	Total Number of Observations	4	Number of Missing Observations	0							
16 17	Minimum	30 44	Mean	38.5 40							
18	Maximum SD	6.191	Median Std. Error of Mean	3.096							
19	Coefficient of Variation	0.161	Skewness	-1.138							
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,								
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,								
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.								
25			e for a discussion of the Chebyshev UCL.								
26 27		Normal (POE Toet								
28	Shapiro Wilk Test Statistic	0.921	GOF Test Shapiro Wilk GOF Test								
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level								
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.218 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32	Data appe	ar Normal at	1% Significance Level								
33 34	Note GOF tests	may be unre	liable for small sample sizes								
35	Assuming Normal Distribution										
36 37	95% Normal UCL 95% Student's-t UCL		95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	41.71							
38	95% Students-t UCL	45.79	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	41.71							
39 40		0									
41	A-D Test Statistic	0.354	GOF Test Anderson-Darling Gamma GOF Test								
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level							
43 44	K-S Test Statistic 5% K-S Critical Value	y .									
45	Detected data appear	ar Gamma Distributed at 5% Significance Level									
46 47	Note GOF tests	may be unre	eliable for small sample sizes								
48			Statistics								
49 50	k hat (MLE) Theta hat (MLE)	47.8 0.806	k star (bias corrected MLE) Theta star (bias corrected MLE)	12.12 3.178							
51	nu hat (MLE)		nu star (bias corrected MLE)	96.93							
52 53	MLE Mean (bias corrected)	38.5	MLE Sd (bias corrected)	11.06							
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	75.22 N/A							
55											
56 57	Ase 95% Approximate Gamma UCL	<u>suming Gam</u> 49.61	ma Distribution 95% Adjusted Gamma UCL	N/A							
58	oo in a provintido dumina doc										
59 60	Shapiro Wilk Test Statistic	Lognorma 0.897	GOF Test Shapiro Wilk Lognormal GOF Test								
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level								
62 63	Lilliefors Test Statistic	0.244 0.346	Lilliefors Lognormal GOF Test								
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level								
65 66			liable for small sample sizes								
66 67		Lognorma	I Statistics								
68	Minimum of Logged Data	3.401	Mean of logged Data	3.64							
69 70	Maximum of Logged Data	3.784	SD of logged Data	0.171							
71	Assu		rmal Distribution								
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	48.89 52.81	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	48.35 58.99							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	71.14	97.3% Chebysnev (MIVUE) UCL	50.33							
75 76			Non-Free HOL Obskielies								
77			tion Free UCL Statistics Discernible Distribution								
78											
79 80	Nonpar 95% CLT UCL	rametric Dis 43.59	tribution Free UCLs 95% BCA Bootstrap UCL	N/A							
81	95% CLT OCL 95% Standard Bootstrap UCL	43.59 N/A	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A							
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A							

	Α	В	С	D	E	F	G	Н	I	J	K	L
83	90% Chebyshev(Mean, Sd) UCL 47.79 95% Chebyshev(Mean, Sd) UCL								51.99			
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	57.83			99% Ch	ebyshev(Me	an, Sd) UCL	69.3
85												
86	Suggested UCL to Use											
87	95% Student's-t UCL 45.79											
88	Recommended UCL exceeds the maximum observation											
89												
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
92	Но	wever, simul	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94	Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be											
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posity	vely skewed	data sets.		
96												

1	A B C D E	F	G H I J K L ensored Full Data Sets								
2	OOL Olds	131103 101 0110	Chisored Full Data Octs								
3	User Selected Options										
<u>4</u>	Date/Time of Computation ProUCL 5.2 10/28/2024	4:24:54 PM									
6	From File WorkSheet.xls Full Precision OFF										
7	Confidence Coefficient 95%										
8	Number of Bootstrap Operations 2000										
9											
10 11											
12	LMM-TLA-0.5-1										
13		General	Statistics								
14	Total Number of Observations	10	Number of Distinct Observations 10								
15 16		2054	Number of Missing Observations 0								
17	Minimum Maximum		Mean 3873 Median 3926								
18	SE		Std. Error of Mean 156.6								
19	Coefficient of Variation		Skewness 0.273								
20 21											
22	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test								
23	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level								
24	Lilliefors Test Statistic	0.185	Lilliefors GOF Test								
25	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level								
26 27	Data appe	ear Normal a	t 1% Significance Level								
28	Δ	ssumina Non	mal Distribution								
29	95% Normal UCL	ocuming ito	95% UCLs (Adjusted for Skewness)								
30	95% Student's-t UCL	4160	95% Adjusted-CLT UCL (Chen-1995) 4145								
31			95% Modified-t UCL (Johnson-1978) 4162								
33		Gamma	GOF Test								
34	A-D Test Statistic 0.297 Anderson-Darling Gamma GOF Test										
35	5% A-D Critical Value	0.724	Detected data appear Gamma Distributed at 5% Significance Level								
36 37	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test								
38	5% K-S Critical Value Detected data appea		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level								
39		anning Di	and the state of the significance better								
40			Statistics 47.00								
41	k hat (MLE Theta hat (MLE		k star (bias corrected MLE) 47.68 Theta star (bias corrected MLE) 81.23								
43	nu hat (MLE)	,	nu star (bias corrected MLE) 81.23								
44	MLE Mean (bias corrected)		MLE Sd (bias corrected) 560.9								
45	·		Approximate Chi Square Value (0.05) 882.9								
46 47	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value 871								
48	As	suming Gan	nma Distribution								
49	95% Approximate Gamma UCL		95% Adjusted Gamma UCL 4240								
50 51			LCOFTeet								
52	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test								
53	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level								
54	Lilliefors Test Statistic	0.172	Lilliefors Lognormal GOF Test								
55	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level								
56 57	Data appear	r Lognormal a	at 10% Significance Level								
58		Lognorma	al Statistics								
59	Minimum of Logged Data	a 8.024	Mean of logged Data 8.254								
60 61	Maximum of Logged Data	8.485	SD of logged Data 0.128								
62	Δοσ	sumina I oan	ormal Distribution								
63	95% H-UCL		90% Chebyshev (MVUE) UCL 4345								
64	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 4855								
65 66	99% Chebyshev (MVUE) UCL	_ 5438									
67	Nonnaram	etric Distribu	tion Free UCL Statistics								
68			Discernible Distribution								
69			17 d F 1101								
70 71	Nonpa 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL 4125								
72	95% CET OCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 4125 95% Bootstrap-t UCL 4179								
73	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL 4113								
74	90% Chebyshev(Mean, Sd) UCL	4343	95% Chebyshev(Mean, Sd) UCL 4556								
75 76	97.5% Chebyshev(Mean, Sd) UCL	4851	99% Chebyshev(Mean, Sd) UCL 5431								
77		Suggested	UCL to Use								
78	95% Student's-t UCL										
79											
80 81			ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.								
82			ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statistician.								
	sdiadono rocalio Will flot covor all recar		25, 25 25 25 25 25 25 25 25 25 25 25 25 25								

1	A B C D E	F	G H I J K L							
2		istics for Unc	ensored Full Data Sets							
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024	4:27:20 DM								
5	From File WorkSheet.xls	4.27.30 PIVI								
6 7	Full Precision OFF Confidence Coefficient 95%									
8	Number of Bootstrap Operations 2000									
9 10										
11	LMM-TLA-0.5-2									
12 13		General	Statistics							
14 15	Total Number of Observations		Number of Distinct Observations 10							
16	Minimum	1 4263	Number of Missing Observations 0 Mean 8805							
17 18	Maximum	n 17380	Median 8345							
19	SD Coefficient of Variation		Std. Error of Mean 1134 Skewness 1.493							
20										
21 22	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test							
23 24	1% Shapiro Wilk Critical Value	0.781	Data appear Normal at 1% Significance Level							
25	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level							
26 27			:1% Significance Level							
28	A	ssumina Nori	nal Distribution							
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)							
30 31	95% Student's-t UCL	10884	95% Adjusted-CLT UCL (Chen-1995) 11242 95% Modified-t UCL (Johnson-1978) 10973							
32										
34	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test							
35 36	5% A-D Critical Value	0.727	Detected data appear Gamma Distributed at 5% Significance Level							
37	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level							
38 39	Detected data appear Gamma Distributed at 5% Significance Level									
40		Gamma	Statistics							
41 42	k hat (MLE		k star (bias corrected MLE) 5.395 Theta star (bias corrected MLE) 1632							
43	Theta hat (MLE nu hat (MLE	′	Theta star (bias corrected MLE) 1632 nu star (bias corrected) 107.9							
44 45	MLE Mean (bias corrected)) 8805	MLE Sd (bias corrected) 3791 Approximate Chi Square Value (0.05) 84.93							
46	Adjusted Level of Significance	0.0267	Approximate Chi Square Value (0.05) 64.95 Adjusted Chi Square Value 81.39							
47 48	٨	seumina Gam	ma Distribution							
49	95% Approximate Gamma UCL		95% Adjusted Gamma UCL 11673							
50 51		Lognorma	GOF Test							
52	Shapiro Wilk Test Statistic	0.97	Shapiro Wilk Lognormal GOF Test							
53 54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test							
55	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level							
56 57	Data appear	r Lognormal a	at 10% Significance Level							
58			Statistics							
59 60	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 9.016 SD of logged Data 0.382							
61										
62 63			mal Distribution 90% Chebyshev (MVUE) UCL 12012							
64	95% Chebyshev (MVUE) UCL	13472	97.5% Chebyshev (MVUE) UCL 15498							
65 66	99% Chebyshev (MVUE) UCL	_ 19478								
67			tion Free UCL Statistics							
68 69	Data appe	ar to follow a	Discernible Distribution							
70			tribution Free UCLs							
71 72	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 11206 95% Bootstrap-t UCL 11658							
73	95% Hall's Bootstrap UCL	20697	95% Percentile Bootstrap UCL 10662							
74 75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL 13748 99% Chebyshev(Mean, Sd) UCL 20088							
76										
77 78	95% Student's-t UCL		UCL to Use							
79 80			avided to belie the yearth as lead to the work of the second of the seco							
81			ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.							
82			ts; for additional insight the user may want to consult a statistician.							

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	4.04.40.004		
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024	4:31:16 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10 11	LMM-TLA-0.5-3			
12	LMM-1LA-0.5-3			
13 14	T. IN 1 (0)		Statistics	4
15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	10	Mean	11.5
17 18	Maximum SD	13 1.291	Median Std. Error of Mean	11.5 0.645
19	Coefficient of Variation		Skewness	0.043
20 21	Note: Comple size is small (a.g. <10) if data	ana aallaataa	l using incremental sampling methodology (ISM) approach,	
22			C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend the	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	110101 10 110 1 10002 0.2 100		•	
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	1% Shapiro Wilk Test Statistic		Data appear Normal at 1% Significance Level	
30 31	Lilliefors Test Statistic	0.151	Lilliefors GOF Test	
32	1% Lilliefors Critical Value Data appe		Data appear Normal at 1% Significance Level 1 1% Significance Level	
33			eliable for small sample sizes	
34 35	Λο	suming Non	mal Distribution	
36	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
37 38	95% Student's-t UCL	13.02	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	12.56 13.02
39			35% Modified-t OCL (301118011-1978)	13.02
40 41	A.D.T. (0) (1)		GOF Test	
42	A-D Test Statistic 5% A-D Critical Value	0.202 0.657	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
43	K-S Test Statistic	0.182	Kolmogorov-Smirnov Gamma GOF Test	
44 45	5% K-S Critical Value Detected data appear		Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	: Level
46	Note GOF tests	may be unre	eliable for small sample sizes	
47 48		Gamma	Statistics	
49	k hat (MLE)	105.1	k star (bias corrected MLE)	26.45
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	0.435
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	211.6 2.236
53			Approximate Chi Square Value (0.05)	179
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56			ma Distribution	
57 58	95% Approximate Gamma UCL	13.6	95% Adjusted Gamma UCL	N/A
59		Lognorma	GOF Test	
60 61	Shapiro Wilk Test Statistic	0.993	Shapiro Wilk Lognormal GOF Test	
62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level	
64 65			at 10% Significance Level Bliable for small sample sizes	
66	Note GOF lests			
67 68	Minimum of Lange 1 Date		I Statistics	2.420
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	2.438 0.113
70 71		•		
71 72	Assu 95% H-UCL		prmal Distribution 90% Chebyshev (MVUE) UCL	13.45
73	95% Chebyshev (MVUE) UCL	14.33	97.5% Chebyshev (MVUE) UCL	15.55
74 75	99% Chebyshev (MVUE) UCL	17.96		
76	Nonparame	etric Distribu	tion Free UCL Statistics	
77			Discernible Distribution	
78 79	Nonna	rametric Die	tribution Free UCLs	
80	95% CLT UCL	12.56	95% BCA Bootstrap UCL	N/A
81 82	95% Standard Bootstrap UCL	1	95% Bootstrap LICL	N/A
υZ	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	Е	F	G	Н		J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	13.44			95% Ch	ebyshev(Me	an, Sd) UCL	14.31
84	97.5% Chebyshev(Mean, Sd) UCL 15.53 99% Chebyshev(Mean, Sd)							an, Sd) UCL	17.92			
85												
86		Suggested UCL to Use										
87	95% Student's-t UCL 13.02											
88	Recommended UCL exceeds the maximum observation											
89												
90		Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.										
91	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
92	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	an.
93			-	-		-						

User Selected Options ProJUCL 5.2 10282024 4.34:10 PM	1	A B C D E	F tics for Unc	G ensored Full D	H ata Sets	I	J	K	L	
Determine of Conductation	2		103 101 0110	crisored i dii b	ata Octo					
From File Words Service Serv			1.24.40 DM							
Full Precision OFF			1:34:10 PM							
MM-TLA-0.5-4	-	Full Precision OFF								
MATILA-0.5-4 Cannel Statistics Total Number of Observations 10										
MM-TLA-0.5-4	9	Number of Bootstrap Operations 2000								
Total Number of Observations 10	10									
Total Number of Observations 10		LMM-TLA-0.5-4								
Minimum 461	13		General	Statistics						
Minimum 451		Total Number of Observations	10							
Maximum 1213	16	Minimum	461			Numbe	r ot iviissin			
Coefficient of Variation	17	Maximum	1213					Media	n 562.5	
Shapiro Wilk Test Statistic Normal GOF Test							Std			
Shapiro Wilk Test Statistic 0.783	20	Coefficient of Variation	0.535					Skewnes	5 1.511	
1985 1985	21			GOF Test						
Common										
Data appear Normal at 1% Significance Level	24	Lilliefors Test Statistic			Data appea					
		1% Lilliefors Critical Value				ar Normal a	at 1% Sign	ificance Level		
Assuming Normal Distribution S7% UCLs (Adjusted for Skewness) 805 95% Normal UCL 838.9 95% Adjusted-CLT UCL (Liber-1995) 805.5	27	Data appea	ar inormal a	1 1% Significan	ce Level					
	28		suming Nor	mal Distribution	n					
Seminary			838 0						5) 860 5	
	31	95 % Students-t UCL	UJU.3							
A-D Test Statistic 0.775				0057						
Syk A-D Critical Value 0.726		A_D Test Statistic		GOF Test	Anders	on-Darling	Gamma (GOF Test		
1973 1986	35			Data					evel	
Detected data follow Appr. Gamma Distribution at 5% Significance Level				Detected						
Comma Comm	38			Distribution at	iata appear 5% Signific	cance Leve	istributea a I	at 5% Significa	ance Level	
A	39									
Theta hat (MLE)		k hat /MI ⊏\		Statistics		· ν	star (hias	corrected MI C	6 063	
A	42									
Adjusted Level of Significance 0.0267							nu star (bias corrected	121.3	
Adjusted Level of Significance 0.0267	45	MLE Mean (bias corrected)	ხგვ.1		Δ	Approximate				
Assuming Gamma Distribution S55.4 95% Adjusted Gamma UCL 890.3	46	Adjusted Level of Significance	0.0267							
Second		Λοο	umina Ca~	nma Dietributio	n					
Lognormal GOF Test Shapiro Wilk Test Statistic 0.847	49			a Distribution	··	95	% Adjuste	ed Gamma UC	L 890.3	
Shapiro Wilk Test Statistic 0.847 Shapiro Wilk Lognormal QOF Test 10% Shapiro Wilk Critical Value 0.869 Data Not Lognormal at 10% Significance Level 10% Critical Value 0.236 Lilliefors Test Statistic 0.236 Lilliefors Lognormal dept 10% Significance Level 10% Lilliefors Test Statistic 0.241 Data appear Lognormal at 10% Significance Level 10% Lilliefors Critical Value 0.241 Data appear Lognormal at 10% Significance Level 10% Signific			l acres	LCOF Tart						
10% Shapiro Wilk Critical Value	52	Shaniro Wilk Test Statistic		IGOF Test	Shani	iro Wilk Lo	normal G	OF Test		
Data appear Approximate Data appear Lognormal at 10% Significance Level	53	10% Shapiro Wilk Critical Value	0.869	[Data Not Lo	ognormal a	t 10% Sigr	nificance Leve		
Data appear Approximate Lognormal at 10% Significance Level	54 55			D.					vol	
	56						at 10 /0 319	grillicarice Lev	OI .	
Minimum of Logged Data 6.133 Mean of logged Data 6.467	57									
Maximum of Logged Data 7.101 SD of logged Data 0.349		Minimum of Logged Data		II STATISTICS			Mean	of logged Dat	a 6.467	
Assuming Lognormal Distribution 90% Chebyshev (MVUE) UCL 907.3	60									
Suggested UCL to Use Suggestions regarding the selection of a 95% Student's-t UCL 866.7 90% Chebyshev (MVUE) UCL 907.3 90% Chebyshev (MVUE) UCL 1010 97.5% Chebyshev (MVUE) UCL 1153 1153 99% Chebyshev (MVUE) UCL 1434 1153		Λοοιι	mina Loana	ormal Dietributi	on					
64 95% Chebyshev (MVUE) UCL 1010 97.5% Chebyshev (MVUE) UCL 1153 65 99% Chebyshev (MVUE) UCL 1434 Inches (MVUE) UCL 1434 66 Komparametric Distribution Free UCL Statistics 68 Data appear to follow a Discernible Distribution 69 To Nonparametric Distribution Free UCLs 70 Nonparametric Distribution Free UCLs 71 95% BCA Bootstrap UCL 869 72 95% Standard Bootstrap UCL 815.6 95% Bootstrap-t UCL 1015 73 95% Hall's Bootstrap UCL 1046 95% Percentile Bootstrap UCL 82.6 74 90% Chebyshev(Mean, Sd) UCL 1046 95% Chebyshev(Mean, Sd) UCL 1054 75 97.5% Chebyshev(Mean, Sd) UCL 1214 99% Chebyshev(Mean, Sd) UCL 1529 76 30 30 30 30 30 30 30 <td rowspa<="" th=""><th>63</th><th></th><th></th><th>Jimai Distributi</th><th><u> </u></th><th>90%</th><th>Chebyshe</th><th>ev (MVUE) UC</th><th>L 907.3</th></td>	<th>63</th> <th></th> <th></th> <th>Jimai Distributi</th> <th><u> </u></th> <th>90%</th> <th>Chebyshe</th> <th>ev (MVUE) UC</th> <th>L 907.3</th>	63			Jimai Distributi	<u> </u>	90%	Chebyshe	ev (MVUE) UC	L 907.3
Nonparametric Distribution Free UCL Statistics	64 65	95% Chebyshev (MVUE) UCL								
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution Nonparametric Distribution Nonparametric Distribution Free UCLs Nonparametric Distribution Free UCLs Standard Bootstrap UCL 822.9 95% BCA Bootstrap UCL 1015 Standard Bootstrap UCL 815.6 95% Bootstrap-t UCL 1015 Standard Bootstrap UCL 1046 95% Percentile Bootstrap UCL 822.6 Standard Bootstrap UCL 1046 95% Percentile Bootstrap UCL 822.6 Standard Bootstrap UCL 1046 95% Percentile Bootstrap UCL 822.6 Standard Bootstrap UCL 1015 Stan		99% Chebyshev (MVUE) UCL	1434							
Nonparametric Distribution Free UCLs	67									
Nonparametric Distribution Free UCLs		Data appear	r to follow a	Discernible Di	stribution					
71 95% CLT UCL 822.9 95% BCA Bootstrap UCL 869 72 95% Standard Bootstrap UCL 815.6 95% Bootstrap-t UCL 1015 73 95% Hall's Bootstrap UCL 1046 95% Percentile Bootstrap UCL 822.6 74 90% Chebyshev(Mean, Sd) UCL 938.1 95% Chebyshev(Mean, Sd) UCL 1054 75 97.5% Chebyshev(Mean, Sd) UCL 1214 99% Chebyshev(Mean, Sd) UCL 1529 77 Suggested UCL to Use 78 95% Student's-t UCL 838.9 Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	70	Nonpar	ametric Dis	tribution Free U	JCLs					
73 95% Hall's Bootstrap UCL 1046 95% Percentile Bootstrap UCL 822.6 74 90% Chebyshev(Mean, Sd) UCL 938.1 95% Chebyshev(Mean, Sd) UCL 1054 75 97.5% Chebyshev(Mean, Sd) UCL 1214 99% Chebyshev(Mean, Sd) UCL 1529 76 77 Suggested UCL to Use 78 95% Student's-t UCL 838.9 79 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	71 72	95% CLT UCL	822.9							
90% Chebyshev(Mean, Sd) UCL 938.1 95% Chebyshev(Mean, Sd) UCL 1054 97.5% Chebyshev(Mean, Sd) UCL 1214 99% Chebyshev(Mean, Sd) UCL 1529 980 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.						95%				
Suggested UCL to Use	74	90% Chebyshev(Mean, Sd) UCL	938.1			95% CI	nebyshev(Mean, Sd) UC	L 1054	
Suggested UCL to Use	75 76	97.5% Chebyshev(Mean, Sd) UCL	1214			99% CI	nebyshev(Mean, Sd) UC	L 1529	
95% Student's-t UCL 838.9 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	77		Sugaested	UCL to Use						
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	78									
Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.		Note: Suggestions regarding the selection of a 0E9/	IICI aro nr	ovided to bole +	the user to	select than	noet annro	nriate 05% III	<u> </u>	
	81								/L.	
	82								cian.	

4	A B C D E	F	G H I J K	L
2		stics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024 4	4.00.14 DM		
5	From File WorkSheet.xls	4.00.14 FIVI		
6 7	Full Precision OFF			
8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9				
10 11	LMM-WRA-0.5-1			
12	LIVINI-VVI (A-0.3-1			
13 14	Total Number of Observations	General 10	Statistics Number of Distinct Observations	10
15	Total Number of Observations	10	Number of Missing Observations	0
16 17	Minimum	95	Mean	238.8
18	Maximum SD		Median Std. Error of Mean	244 27.8
19	Coefficient of Variation	0.368	Skewness	0.591
20 21		Normal (GOF Test	
22	Shapiro Wilk Test Statistic	0.947	Shapiro Wilk GOF Test	
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.781 0.208	Data appear Normal at 1% Significance Level Lilliefors GOF Test	
25	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
26 27			1% Significance Level	
28	Ας	sumina Nor	mal Distribution	
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
30 31	95% Student's-t UCL	289.8	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	290.1 290.6
32				230.0
33 34	A D T O		GOF Test	
35	A-D Test Statistic 5% A-D Critical Value	0.304 0.727	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
36	K-S Test Statistic	0.173	Kolmogorov-Smirnov Gamma GOF Test	
37 38	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significanc stributed at 5% Significance Level	e Level
39	Detected data appear	Gamma Di	Surbated at 0.70 Organicalities Level	
40 41	L bot /AMI ES	Gamma 7.698	Statistics	5.455
42	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) Theta star (bias corrected MLE)	43.77
43	nu hat (MLE)	_	nu star (bias corrected)	109.1
44 45	MLE Mean (bias corrected)	238.8	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	102.2 86
46	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	82.44
47 48	Δει	suming Gam	nma Distribution	
49	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	316.1
50 51		Lognormo	LCOE Took	
52	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
53	10% Shapiro Wilk Critical Value	0.869	Data appear Lognormal at 10% Significance Level	
54 55	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.177 0.241	Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
56			at 10% Significance Level	
57 58		Lognorma	I Statistics	
59	Minimum of Logged Data	4.554	Mean of logged Data	5.409
60 61	Maximum of Logged Data	6.047	SD of logged Data	0.4
62	Assı	uming Loand	ormal Distribution	
63	95% H-UCL	319.7	90% Chebyshev (MVUE) UCL	332.1
64 65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	373.8 545.5	97.5% Chebyshev (MVUE) UCL	431.7
66				
67 68			tion Free UCL Statistics Discernible Distribution	
69				
70 71	Nonpar 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	284.4
72	95% Standard Bootstrap UCL	284.5 281.4	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	293
73 74	95% Hall's Bootstrap UCL	305.7	95% Percentile Bootstrap UCL	281.9
74 75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	322.2 412.4	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	360 515.4
76	57.575 Chebyonovimoun, our out			3.0.1
77 78	95% Student's-t UCL		UCL to Use	
79		1		
80 81			ovided to help the user to select the most appropriate 95% UCL.	
81 82			ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia	n.
	Tiomoroi, cimalationo rocalto Will flot cover all Medi W	ona aata 30	additional moight and door may want to conduit a statisticia	

-1	Α	В	С	D	E LIOL Otatia	F	G	H	I	J	K	L
2					UCL Statis	tics for Unc	ensored Full D	vata Sets				
3	Da	User Sele te/Time of C	cted Options	ProUCL 5.2	10/28/2024	1·11·12 DM						
5	Da		From File	WorkSheet.x		+. . Z F VI						
6 7		Fu Confidence	Il Precision	OFF 95%								
8	Number	of Bootstrap		2000								
9 10												
11	LMM-WRA	-0.5-2										
12 13						General	Statistics					
14			Total	Number of O	bservations	10					Observations	10
15 16					Minimum	209			Numbe	r of Missing	Observations Mean	0 320.5
17					Maximum	531					Median	308.5
18 19				Coefficient	SD of Variation	103.2 0.322				Std.	Error of Mean Skewness	32.63 1.09
20					0. 70							
21 22			S	Shapiro Wilk T	est Statistic	Normal 0 0.886	GOF Test		Shapiro W	ilk GOF Tes	st	
23				hapiro Wilk C	ritical Value	0.781			r Normal a	at 1% Signific	cance Level	
24 25			1	% Lilliefors C	est Statistic ritical Value	0.263 0.304		Data appea		GOF Test at 1% Signific	cance Level	
26							1% Significan				20101	
27 28					Ass	sumina Norr	mal Distribution					
29			95% No	ormal UCL				95% U		usted for Sk		200.0
30 31				95% Stud	dent's-t UCL	380.3		95	5% Adjuste 95% Modifi	ea-CLT UCL ed-t UCL (Ja	(Chen-1995) ohnson-1978)	386.2 382.2
32						0	005 7:			(50		
34				A-D T	est Statistic	0.374	GOF Test	Anderse	on-Darling	Gamma G	OF Test	
35 36				5% A-D C	ritical Value	0.725	Detected of	data appear	Gamma D	istributed at	5% Significan	ce Level
37					est Statistic ritical Value	0.222 0.267	Detected of			ov Gamma (istributed at	GOF Test :5% Significan	ce Level
38 39				Detected	data appear	Gamma Di	stributed at 5%				•	
40						Gamma	Statistics					
41 42					k hat (MLE)	11.88					orrected MLE)	8.381
43					a hat (MLE) u hat (MLE)	26.98 237.6	nu star (bias correc					38.24 167.6
44 45			MI	LE Mean (bias	s corrected)	320.5	MLE Sd (bias corre Approximate Chi Square Value (110.7 138.7
46			Adjus	sted Level of S	Significance	0.0267		A	рргохіпіац А	djusted Chi	Square Value	134.1
47 48					۸۵	numing Gam	ıma Distributio	<u> </u>				
49			95% A	pproximate G				<u>'''</u>	95	5% Adjusted	Gamma UCL	400.6
50 51						Lognorma	I GOF Test					
52				Shapiro Wilk T		0.936				gnormal GO		
53 54			10% S	hapiro Wilk C	ritical Value est Statistic	0.869 0.206	Da			at 10% Sigr ormal GOF	nificance Level	
55			10	% Lilliefors C	ritical Value	0.241		ata appear L			nificance Level	
56 57					Data appear	Lognormal a	at 10% Signific	ance Level				
58				NAIi Ci			I Statistics				41 15 . 1	F 707
59 60				Minimum of L Maximum of L		5.342 6.275					of logged Data of logged Data	5.727 0.302
61 62			•				man District					
63					Assu 95% H-UCL	<u>ıming Logno</u> 392.5	rmal Distributi	ION	90%	Chebyshev	(MVUE) UCL	412.4
64 65				Chebyshev (N	MVUE) UCL	454.3					(MVUE) UCL	512.4
66			99%	Chebyshev (N	vivue) UCL	626.6						
67 68							tion Free UCL					
69					uata appea	r to tollow a	Discernible Di	ISTRIDUTION				
70 71				05			tribution Free l	UCLs		050/ DOA D	Poototro = 1101	202.0
72			95%	Standard Boo	% CLT UCL otstrap UCL	374.2					Bootstrap UCL ootstrap-t UCL	383.9 414
73 74			9	95% Hall's Boo nebyshev(Mea	otstrap UCL	734.8				Percentile B	Bootstrap UCL	377.3 462.7
75				nebysnev(Mea nebyshev(Mea							462.7 645.2	
76 77						Suggested UCL to Use						
78				95% Stuc	dent's-t UCL		UCL IO USE					
79 80		Note: Sugge	etions regard	ling the select	tion of a OEº/	IICI ara nr	ovided to help t	the user to a	elect the	noet approx	riate 05% LICI	
81		Recor	nmendations	are based up	on data size,	data distrib	ution, and skew	wness using	results fro	m simulation	n studies.	
82	Но						ts; for additiona					an.

	A B C D E	F	G H I J K	L							
2		tics for Unc	ensored Full Data Sets								
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024 4	1.12.00 DM									
5	From File WorkSheet.xls	1. 13.06 PIVI									
6 7	Full Precision OFF										
8	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	110000000000000000000000000000000000000										
10 11	LMM-WRA-0.5-3			-							
12	ENW 111 0.0 0										
13 14	Total Number of Observations	General 10	Statistics Number of Distinct Observations	10							
15	Total Number of Observations	10	Number of Missing Observations	0							
16 17	Minimum	38	Mean	74.6							
18	Maximum SD	134 31.94	Median Std. Error of Mean	66 10.1							
19	Coefficient of Variation	0.428	Skewness	0.654							
20 21		Normal (GOF Test								
22	Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test								
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.781 0.189	Data appear Normal at 1% Significance Level Lilliefors GOF Test								
25	1% Lilliefors Critical Value	0.169	Data appear Normal at 1% Significance Level								
26 27		ar Normal at	1% Significance Level								
28	Assuming Normal Distribution										
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)								
30 31	95% Student's-t UCL	93.12	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	93.45 93.46							
32			95% Modified-t OCL (30111S011-1978)	93.40							
33 34	A D T+ 04-8-8-1		GOF Test								
35	A-D Test Statistic 5% A-D Critical Value	0.38 0.728	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level							
36	K-S Test Statistic	0.202	Kolmogorov-Smirnov Gamma GOF Test								
37 38	5% K-S Critical Value	0.267 Gamma Die	Detected data appear Gamma Distributed at 5% Significance	e Level							
39	Detected data appear Gamma Distributed at 5% Significance Level										
40 41	Librat (MILE)		Statistics	4 471							
42	k hat (MLE) Theta hat (MLE)	6.292 11.86	k star (bias corrected MLE) Theta star (bias corrected MLE)	4.471 16.69							
43	nu hat (MLE)	125.8	nu star (bias corrected)	89.42							
44 45	MLE Mean (bias corrected)	74.6	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	35.28 68.62							
46	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	65.46							
47 48	Λοι	umina Com	nma Distribution								
49	95% Approximate Gamma UCL	97.22	95% Adjusted Gamma UCL	101.9							
50 51			LOOF T								
52	Shapiro Wilk Test Statistic	0.939	GOF Test Shapiro Wilk Lognormal GOF Test								
53	10% Shapiro Wilk Critical Value	0.869	Data appear Lognormal at 10% Significance Level								
54 55	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.187 0.241	Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
56			at 10% Significance Level								
57 58		Lognorma	I Statistics	-							
59	Minimum of Logged Data	3.638	Mean of logged Data	4.231							
60 61	Maximum of Logged Data	4.898	SD of logged Data	0.425							
62	Assı	ımina Loana	ormal Distribution								
63	95% H-UCL	101.7	90% Chebyshev (MVUE) UCL	105							
64 65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	118.8 175.7	97.5% Chebyshev (MVUE) UCL	138							
66	33 /0 Chebyshev (INIVOE) UCL	173.7									
67 68			tion Free UCL Statistics								
69		i to follow a	Discernible Distribution								
70 71			tribution Free UCLs	00.0							
71 72	95% CLT UCL 95% Standard Bootstrap UCL	91.21 90.24	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	92.2 96.52							
73	95% Hall's Bootstrap UCL	92.02	95% Percentile Bootstrap UCL	90.5							
74 75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	104.9 137.7	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	118.6 175.1							
76				175.1							
77 78			UCL to Use								
79	95% Student's-t UCL	93.12									
80			ovided to help the user to select the most appropriate 95% UCL.								
81 82			ution, and skewness using results from simulation studies. ts; for additional insight the user may want to consult a statisticia								
υŁ	nowever, simulations results will not cover all Real W	onu data se	is, for additional insignt the user may want to consult a statisticia	11.							

	A B C D E	F	G H I J K	L								
2	UCL Stati	stics for Unc	ensored Full Data Sets									
3	User Selected Options											
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 From File WorkSheet.xls	4:15:12 PM										
6	Full Precision OFF											
7 8	Confidence Coefficient 95%											
9	Number of Bootstrap Operations 2000											
10												
11 12	LMM-WRA-0.5-3-DS											
13		General	Statistics									
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0								
16	Minimum	16	Mean	38.75								
17 18	Maximum		Median	44.5								
19	SD Coefficient of Variation		Std. Error of Mean Skewness	7.761 -1.739								
20												
21			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,									
23			he Chebyshev UCL for small sample sizes (n < 7).									
24 25	The Chebyshev UCL of	often results i	n gross overestimates of the mean.									
26	Refer to the ProUCL 5.2 Tec	unnical Guide	e for a discussion of the Chebyshev UCL.									
27		Normal C										
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level									
30	Lilliefors Test Statistic		Lilliefors GOF Test									
31 32	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level									
33			1% Significance Level liable for small sample sizes									
34	The state of the s											
35 36	Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness)											
37	95% Normai UCL 95% Student's-t UCL	57.01	95% UCLS (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	44.3								
38			95% Modified-t UCL (Johnson-1978)	55.89								
39 40		Gamma (GOF Test									
41	A-D Test Statistic	0.64	Anderson-Darling Gamma GOF Test									
42 43	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level								
44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level								
45 46	Detected data appea	r Gamma Dis	stributed at 5% Significance Level									
46 47	Note GOF tests	may be unre	liable for small sample sizes									
48		Gamma										
49 50	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) Theta star (bias corrected MLE)	1.611 24.05								
51	nu hat (MLE)	46.22	nu star (bias corrected MLE)	12.89								
52 53	MLE Mean (bias corrected)		MLE Sd (bias corrected)	30.53								
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	5.818 N/A								
55												
56 57	As 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A								
58	ээ ло Арргохинате Ganiilla OCL			111/7								
59 60	Observed MEH. To at On the		GOF Test									
61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 10% Significance Level									
62	Lilliefors Test Statistic	0.374	Lilliefors Lognormal GOF Test									
63 64	10% Lilliefors Critical Value	0.346	Data Not Lognormal at 10% Significance Level 10% Significance Level									
65	Data Not L											
66 67	Materians (1)	Lognorma		2 500								
68	Minimum of Logged Data Maximum of Logged Data	2.773 3.912	Mean of logged Data SD of logged Data	3.568 0.535								
69												
70 71			rmal Distribution 90% Chebyshev (MVUE) UCL	70.33								
72	95% Chebyshev (MVUE) UCL			103.8								
73	99% Chebyshev (MVUE) UCL		,,									
74 75	Nonnaram	etric Distribut	tion Free UCL Statistics	——								
76			Discernible Distribution									
77	M	rometric Dist	with ution Eron IICLs									
	Nonna		ribution Free UCLs									
78 79		. 51.52	95% BCA Bootstrap UCL	N/A								
78 79 80	95% CLT UCL 95% Standard Bootstrap UCL	. N/A	95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A								
78 79	95% CLT UCL	. N/A . N/A										

	Α	В	С	D	Е	F	G	Н		J	K	L	
83			97.5% Ch	ebyshev(Mea	an, Sd) UCL	87.22			99% Ch	ebyshev(Me	an, Sd) UCL	116	
84							-						
85	Suggested UCL to Use												
86		95% Student's-t UCL 57.01											
87		Recommended UCL exceeds the maximum observation											
88													
89		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.		
91	Ho	wever, simu	lations result	s will not cov	er all Real V	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													
93		Note: For	highly negat	ively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be		
94		reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.											
95													

1	Α	В	С	D	E	F	G	Н	ı	J	K	L	
2					UCL Statis	Stics for Unc	ensored Full D	Jata Sets					
3	Da	User Sele te/Time of C	ected Options	ProUCL 5.2 1	0/28/2024 /	1.21.EQ DM							
5	Da		From File	WorkSheet.xl		4.21.JO F W							
6 7		Fu Confidence	Ill Precision	OFF 95%									
8		of Bootstrap		2000									
9 10													
11	LMM-WRA-	-0.5-4											
12 13						General	Statistics						
14			Total	Number of Ob	servations	10	Otatiotics				t Observations	10	
15 16					Minimum	697			Numbe	er of Missing	Observations Mean	0 1594	
17					Maximum	2991					Median	1449	
18 19				Coefficient of	SD of Variation	764.4 0.48				Std.	Error of Mean Skewness	241.7 0.537	
20				Coemicient	n variation		<u> </u>				Skewiless	0.557	
21			9	Shapiro Wilk Te	et Statistic	Normal 0 0.929	GOF Test		Shaniro W	/ilk GOF Te	et		
23				hapiro Wilk Cri	tical Value	0.781					icance Level		
24 25			1	Lilliefors Te		0.173 0.304		Data anna		GOF Test			
26			I	% Lilliefors Cri			⊥ t 1% Significar		ai ivuiillal i	at 1 /0 OlyIlli	icance Level		
27 28					۸۵۰	eumina Non	mal Distributio	n -					
29			95% No	ormal UCL			וומו ווופוע ומוו	95%		usted for SI			
30 31				95% Stude	ent's-t UCL	2037		(95% Adjust	ed-CLT UC	L (Chen-1995) Johnson-1978)	2035	
32									JJ /0 IVIOUIT	i c u-l UCL (c	, OI II I I I I I I I I I I I I I I I I	2044	
33 34				4 D To	st Statistic	Gamma 0.339	GOF Test	Andor	oon Dorling	g Gamma G	OF Toot		
35				5% A-D Cri		0.339	Detected				t 5% Significan	ce Level	
36 37				K-S Te 5% K-S Cri	st Statistic	0.175 0.268	Detected			ov Gamma		an Lovel	
38							stributed at 59			distributed a	t 5% Significan	ce Level	
39 40						Commo	Ctatiation						
41				k	hat (MLE)	4.676	Statistics		k	star (bias c	orrected MLE)	3.34	
42 43				Theta	hat (MLE)		<u> </u>					477.2	
44			MI	nu LE Mean (bias	hat (MLE) corrected)	93.52 1594	2 nu star (bias con MLE Sd (bias con					66.79 872.1	
45 46			۸ طنب	sted Level of Si	ianificance	0.0267			Approximat	e Chi Squar	e Value (0.05) Square Value	48.99	
47			Adjus	sted Level of Si	ignificance	0.0267				lajustea Chi	Square value	46.35	
48 49			0E9/ A	pproximate Ga			ma Distributio	on	01	E0/ Adiustos	d Gamma UCL	2207	
50			95% A	pproximate Ga	ımma UCL	21/3			9:	5% Adjusted	Gamma UCL	2297	
51 52			0	Shapiro Wilk Te	et Statistic	Lognorma 0.925	ormal GOF Test Shapiro Wilk Lognormal GOF Test						
53				hapiro Wilk Cri		0.925	D				nificance Level		
54 55			10	Lilliefors Te		0.206				normal GOF			
56			10	% Lilliefors Cri			at 10% Signific			at 10% SIG	nificance Level		
57 58						Lognormo	I Statistics						
59				Minimum of Lo		6.547	i Giausucs				of logged Data	7.263	
60 61			N	Maximum of Lo	gged Data	8.003				SD	of logged Data	0.508	
62							rmal Distribut	tion					
63 64			0E9/	99 Chebyshev (M	5% H-UCL						/ (MVUE) UCL / (MVUE) UCL	2386 3236	
65				Chebyshev (M Chebyshev (M					97.5%	CHEDYSNE\	/ (IVIVUE) UCL	J∠J0	
66 67							tion From LICI	Stations					
68							tion Free UCL Discernible D						
69 70					•								
71					CLT UCL	1991	tribution Free	UCLS			Bootstrap UCL		
72 73				Standard Boot		L 1973 95% Bootstrap-t UCL					2124 1971		
74				ebyshev(Mear							lean, Sd) UCL		
75 76			97.5% Ch	nebyshev(Mear	n, Sd) UCL	d) UCL 3103 99% Chebyshev(Mean, Sd) UCL 3999							
77							UCL to Use						
78 79				95% Stude	ent's-t UCL								
80											oriate 95% UCL		
81 82		Recom	nmendations	are based upo	n data size,	, data distrib	ution, and skev	wness using	g results fro	om simulatio	n studies.		
02	<u>Hc</u>	owever, simu	<u>ııatıons result</u>	s will not cover	r all Real W	oria data se	s; for addition	aı ınsıght th	e user may	want to cor	nsult a statistici	an.	

1	_	E Statis	F tics for Unc	G ensored Full Data	H Sets	ı	J	K	L	
2	001	_ Otalis	ucs for Offic	crisored i dii Dad	ia 00i3					
3	User Selected Options		_							
4	Date/Time of Computation ProUCL 5.2 10/28	/2024 4	1:37:03 PM							
5 6	From File WorkSheet.xls Full Precision OFF									
7	Confidence Coefficient 95%									
8	Number of Bootstrap Operations 2000									
9										
10 11	LMM-WRB-0.5-1									
12	LIMINI-VVRD-U.3- I									
13			General	Statistics						
14	Total Number of Observ	ations	10					t Observations	10	
15 16	N/i-	nimama	645			Number	of Missing	Observations Mean	0 844.1	
17		nimum ximum	978					Median	866.5	
18		SD	108.3				Std.	Error of Mean	34.25	
19	Coefficient of Va	riation	0.128					Skewness	-0.612	
20 21		Normal (GOF Test							
22	Shapiro Wilk Test St	tatistic	0.94	JOF TEST	S	hapiro Wi	lk GOF Te	est		
23	1% Shapiro Wilk Critical		0.781	Da				ficance Level		
24	Lilliefors Test St		0.173				GOF Test			
25 26	1% Lilliefors Critical		0.304	Date 1% Significance	ata appear	Normal a	t 1% Signif	ficance Level		
27	Data	a appea	ai inoiiiidi ai	с ти этуппісапсе	- Level					
28		Ass	suming Nor	mal Distribution						
29	95% Normal UCL						sted for SI			
30 31	95% Student's-	-t UCL	906.9					L (Chen-1995)	893.3	
32]		1	95	iVIOQITI6 % د	tu-ι UCL (c	Johnson-1978)	905.8	
33	Gamma GOF Test									
34	A-D Test St		0.361				Gamma G			
35 36	5% A-D Critical		0.724					t 5% Significan	ce Level	
37	K-S Test St 5% K-S Critical		0.19 0.266					GOF Test at 5% Significan	ce Level	
38				stributed at 5% S			<u> </u>	it 5 /0 Olymilledil	CG FGAGI	
39										
40 41	1.1 4	/N/I =\		Statistics		L.	stor/hi== -	orrooted MI EVI	1176	
42	K hat Theta hat	(MLE)	63.84 13.22			Theta 9	star (bias c	corrected MLE)	44.76 18.86	
43		(MLE)						bias corrected)	895.1	
44	MLE Mean (bias corr	ected)	844.1					bias corrected)	126.2	
45 46	Adjusted Level of Signifi	icance	0.0267					re Value (0.05) i Square Value	826.7 815.2	
47	Aujusteu Levet of Signiff	Carice	0.0207	1		A	ijasi c a OII	. Oquale value	010.2	
48				ma Distribution						
49 50	95% Approximate Gamma	a UCL	914			95	% Adjusted	d Gamma UCL	926.8	
51			Lognorma	I GOF Test						
52	Shapiro Wilk Test St	tatistic	0.922		Shapiro	Wilk Log	normal G	OF Test		
53	10% Shapiro Wilk Critical		0.869	Data				nificance Level		
54 55	Lilliefors Test St 10% Lilliefors Critical		0.192 0.241	Dat-			ormal GOF			
56				⊥ ⊃ata at 10% Significan		ognomal a	at 10% SIG	nificance Level		
57	Suita d	ا الله د در س								
58 59		1 D · 1		I Statistics					0.70	
60	Minimum of Logged Maximum of Logged		6.469 6.886					of logged Data of logged Data	6.73 0.134	
61	waxiiiuii oi Logget	u Dala	0.000	1			טט	o, logged Dald	U. 13 1	
62				ormal Distribution	n					
63 64		H-UCL	917					v (MVUE) UCL	951.9	
65	95% Chebyshev (MVUE 99% Chebyshev (MVUE		1001 1201			97.5%	onebysne)	v (MVUE) UCL	1068	
66	33 /0 Chebyshev (MIVOL	., 552		1				I		
67				tion Free UCL St		_		-		
68 69	<u>Data</u>	appea	r to follow a	Discernible Distr	ribution					
70		Nonnar	ametric Dis	tribution Free UC	CLs					
71	95% CL	T UCL	900.4					Bootstrap UCL	895.4	
72	95% Standard Bootstra							ootstrap-t UCL	902.5	
73 74	95% Hall's Bootstra							Bootstrap UCL	898.2	
75	90% Chebyshev(Mean, Sd 97.5% Chebyshev(Mean, Sd							/lean, Sd) UCL /lean, Sd) UCL	993.4 1185	
76	57.5% Onebysitev(weatt, ou	., JUL	1000	1		00 /0 OH	oby on ev (IV		1100	
77				UCL to Use						
78 79	95% Student's-	t UCL	906.9							
80	Note: Suggestions regarding the selection of	f a 95%	UCL are pr	ovided to help the	e user to se	elect the m	ost appror	oriate 95% LICI		
81	Recommendations are based upon da	ta size,	data distrib	ution, and skewne	ess using r	esults fror	n simulatio	on studies.		
82	However, simulations results will not cover all l	Real W	orld data se	ts; for additional in	insight the	user may	want to co	nsult a statistici	an.	
_		_								

	Α	В	С	D	E	F	G	Н		J	K	L
83												
84		Note: For	highly negat	ively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	id Gamma) r	nay not be	
85			reliable. (Chen's and J	lohnson's me	ethods provi	de adjustme	nts for posity	vely skewed	data sets.		
86												

4	A B C D E	F	G H I J K	L
2		Stics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024	4.20.27 DM		
5	From File WorkSheet.xls	4.39.27 PIVI		
6 7	Full Precision OFF Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
11	LMM-WRB-0.5-2			
12 13		General	Statistics	
14 15	Total Number of Observations	10	Number of Distinct Observations	10
16	Minimum	142	Number of Missing Observations Mean	0 195.3
17 18	Maximum	284	Median	185
19	SD Coefficient of Variation	42.31 0.217	Std. Error of Mean Skewness	13.38 0.937
20 21				
22	Shapiro Wilk Test Statistic	GOF Test Shapiro Wilk GOF Test		
23 24	1% Shapiro Wilk Critical Value	0.929 0.781	Data appear Normal at 1% Significance Level	
25	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.193 0.304	Lilliefors GOF Test Data appear Normal at 1% Significance Level	
26 27			1% Significance Level	
28	As:	suming Nor	mal Distribution	
29 30	95% Normal UCL		95% UCLs (Adjusted for Skewness)	221.5
31	95% Student's-t UCL	219.8	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	221.5 220.5
32 33		Comme		
34	A-D Test Statistic	0.285	GOF Test Anderson-Darling Gamma GOF Test	
35 36	5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	e Level
37	K-S Test Statistic 5% K-S Critical Value	0.17 0.266	Detected data appear Gamma Distributed at 5% Significance	e Level
38 39	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
40		Gamma	Statistics	
41 42	k hat (MLE) Theta hat (MLE)	25.23 7.741	k star (bias corrected MLE) Theta star (bias corrected MLE)	17.73 11.02
43	nu hat (MLE)	504.6	nu star (bias corrected)	354.5
44 45	MLE Mean (bias corrected)	195.3	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	46.39 311.9
46	Adjusted Level of Significance	0.0267	Approximate crit Square Value Adjusted Chi Square Value	
47 48		suming Gam	nma Distribution	
49	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	227.1
50 51		Lognorma	GOF Test	
52	Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Lognormal GOF Test	
53 54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.869 0.155	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
55 56	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level	
57	Data appear	Lognormal a	at 10% Significance Level	
58 59	Minimum of the state of the sta		Statistics	E OFF
60	Minimum of Logged Data Maximum of Logged Data	4.956 5.649	Mean of logged Data SD of logged Data	5.255 0.208
61 62		uming Lagra		
63	ASSU 95% H-UCL	uming Logno 223	prmal Distribution 90% Chebyshev (MVUE) UCL	233.9
64 65	95% Chebyshev (MVUE) UCL	251.4	97.5% Chebyshev (MVUE) UCL	275.7
66	99% Chebyshev (MVUE) UCL	323.5	<u> </u>	
67 68			tion Free UCL Statistics Discernible Distribution	
69				
70 71	Nonpar 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	220.6
72	95% Standard Bootstrap UCL	216.3	95% Bootstrap-t UCL	228.4
73 74	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	241.4 235.4	95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	216.4 253.6
75	97.5% Chebyshev(Mean, Sd) UCL	278.8	95% Chebyshev(Mean, Sd) UCL	328.4
76 77		Suggested	UCL to Use	
78	95% Student's-t UCL		00E 10 000	
79 80	Note: Suggestions regarding the selection of a 05%	CIICL are pr	ovided to help the user to select the most appropriate 95% UCL.	
81	Recommendations are based upon data size,	, data distrib	ution, and skewness using results from simulation studies.	
82	However, simulations results will not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statisticia	n.

	G H I J K L									
UCL Statistics for Uncensor	ed Full Data Sets									
3 User Selected Options										
4 Date/Time of Computation ProUCL 5.2 10/28/2024 3:27:22 PM 5 From File WorkSheet.xls										
6 Full Precision OFF										
7 Confidence Coefficient 95%										
8 Number of Bootstrap Operations 2000										
10										
11 LMM-WRB-0.5-3-DS										
12 13 General Statis	tice									
Total Number of Observations 4	Number of Distinct Observations 3									
15 16 Minimum 14	Number of Missing Observations 0									
16 Minimum 14	Mean 17.5 Median 18.5									
18 SD 2.38	Std. Error of Mean 1.19									
19 Coefficient of Variation 0.136	Skewness -1.779									
Note: Sample size is small (e.g., <10), if data are collected using	incremental sampling methodology (ISM) approach.									
22 refer also to ITRC Tech Reg Guide on ISM (ITRC 202	0 and ITRC 2012) for additional guidance,									
but note that ITRC may recommend the t-UCL or the Chebyshev UCL often results in gro										
Refer to the ProUCL 5.2 Technical Guide for a										
26	•									
27 Normal GOF 7 28 Shapiro Wilk Test Statistic 0.764	Shapiro Wilk GOF Test									
29 1% Shapiro Wilk Critical Value 0.687	Data appear Normal at 1% Significance Level									
30 Lilliefors Test Statistic 0.333 31 1% Lilliefors Critical Value 0.413	Lilliefors GOF Test									
32 Data appear Normal at 1% 5	Data appear Normal at 1% Significance Level									
Note GOF tests may be unreliable										
36 95% Normal UCL	95% UCLs (Adjusted for Skewness)									
95% Student's-t UCL 20.3	95% Adjusted-CLT UCL (Chen-1995) 18.33									
38 39	95% Modified-t UCL (Johnson-1978) 20.12									
40 Gamma GOF	Fest									
A-D Test Statistic 0.651	Anderson-Darling Gamma GOF Test									
42 5% A-D Critical Value 0.656 D 43 K-S Test Statistic 0.357	etected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test									
44 5% K-S Critical Value 0.394 D	etected data appear Gamma Distributed at 5% Significance Level									
45 Detected data appear Gamma Distribu	ted at 5% Significance Level									
47	ioi smail sample sizes									
48 Gamma Statis										
49 k hat (MLE) 65.75 50 Theta hat (MLE) 0.266	k star (bias corrected MLE) 16.6 Theta star (bias corrected MLE) 1.054									
51 nu hat (MLE) 526	nu star (bias corrected MLE) 1.054									
52 MLE Mean (bias corrected) 17.5	MLE Sd (bias corrected) 4.295									
53 54 Adjusted Level of Significance N/A	Approximate Chi Square Value (0.05) 107.2 Adjusted Chi Square Value N/A									
55										
56 Assuming Gamma D 57 95% Approximate Gamma UCL 21 68										
58	95% Adjusted Gamma UCL N/A									
59 Lognormal GOF										
60 Shapiro Wilk Test Statistic 0.75 61 10% Shapiro Wilk Critical Value 0.792	Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 10% Significance Level									
62 Lilliefors Test Statistic 0.347	Lilliefors Lognormal GOF Test									
63 10% Lilliefors Critical Value 0.346	Data Not Lognormal at 10% Significance Level									
64 Data Not Lognormal at 10%	Significance Level									
66 Lognormal Stat										
Minimum of Logged Data 2.639	Mean of logged Data 2.855									
69	SD of logged Data 0.146									
70 Assuming Lognormal										
71 95% H-UCL 21.35 72 95% Chebyshey (MVUE) UCL 23.06	90% Chebyshev (MVUE) UCL 21.33									
73 99% Chebyshey (MVUE) UCL 30.19	97.5% Chebyshev (MVUE) UCL 25.47									
74										
75 Nonparametric Distribution F 76 Data appear to follow a Discr										
77	MINIO DISUIDUUOII									
78 Nonparametric Distributi										
79 95% CLT UCL 19.46 80 95% Standard Bootstrap UCL N/A	95% BCA Bootstrap UCL N/A 95% Bootstrap-t UCL N/A									
0070 014111441 4 20010114 2001 11771	95% Percentile Bootstrap UCL N/A									
81 95% Hall's Bootstrap UCL N/A 82 90% Chebyshev(Mean, Sd) UCL 21.07	30701 Crecitate Bootstrap CCE 14/71									

	Α	В	С	D	Е	F	G	Н		J	K	L	
83			97.5% Ch	ebyshev(Mea	an, Sd) UCL	24.93			99% Ch	ebyshev(Me	an, Sd) UCL	29.34	
84							-						
85	Suggested UCL to Use												
86		95% Student's-t UCL 20.3											
87		Recommended UCL exceeds the maximum observation											
88													
89		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.		
91	Ho	wever, simu	lations result	s will not cov	er all Real V	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													
93		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) i	may not be		
94			reliable.	Chen's and J	ohnson's m	ethods provi	<u>de adjustme</u>	nts for posit	vely skewed	data sets.			
95													

UCL Statistics for Uncensored Full Data Sets User Selected Options ProUCL 5.2 10/28/2024 3:22:06 PM User Selected Options User Sele	ct Observations g Observations Mean Median	4								
4 Date/Time of Computation 5 From File WorkSheet.xls 6 Full Precision OFF 7 Confidence Coefficient 95% 8 Number of Bootstrap Operations 2000 9 10 11 LMM-WRB-0.5-3 12 General Statistics	g Observations Mean									
5 From File WorkSheet.xls 6 Full Precision OFF 7 Confidence Coefficient 95% 8 Number of Bootstrap Operations 2000 9 10 11 LMM-WRB-0.5-3 12 General Statistics	g Observations Mean									
7	g Observations Mean									
8 Number of Bootstrap Operations 2000 9 10 11 LMM-WRB-0.5-3 12 13 General Statistics	g Observations Mean									
9	g Observations Mean									
11 LMM-WRB-0.5-3 12 General Statistics	g Observations Mean									
12 General Statistics	g Observations Mean									
	g Observations Mean									
	g Observations Mean									
15 Number of Missin		0								
16 Minimum 92 17 Maximum 149	iviediani	112.5 104.5								
18 SD 25.77 Std	I. Error of Mean	12.89								
Coefficient of Variation 0.229	Skewness	1.413								
20 21 Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISI	M) approach									
refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance	e,									
but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n The Chebyshev UCL often results in gross overestimates of the mean.	< 7).									
Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshey UCL.										
26 27 Normal GOF Test										
28 Shapiro Wilk Test Statistic 0.872 Shapiro Wilk GOF Te	 est									
29 1% Shapiro Wilk Critical Value 0.687 Data appear Normal at 1% Signi	ificance Level									
30 Lilliefors Test Statistic 0.258 Lilliefors GOF Test 31 1% Lilliefors Critical Value 0.413 Data appear Normal at 1% Signi										
Data appear Normal at 1% Significance Level										
Note GOF tests may be unreliable for small sample sizes 34										
35 Assuming Normal Distribution										
95% Normal UCL 95% UCLs (Adjusted for Skewness)										
37 95% Student's-t UCL 142.8 95% Adjusted-CLT UCL 38 95% Modified-t UCL (143.4 144.3								
39										
40 Gamma GOF Test 41 A-D Test Statistic 0.376 Anderson-Darling Gamma G	30F Test									
42 5% A-D Critical Value 0.657 Detected data appear Gamma Distributed a	at 5% Significand	ce Level								
K-S Test Statistic 0.257 Kolmogorov-Smirnov Gamma K-S Test Statistic 0.257 Kolmogorov-Smirnov Gamma S% K-S Critical Value 0.394 Detected data appear Gamma Distributed a		ne l evel								
45 Detected data appear Gamma Distributed at 5% Significance Level	3t 5 % Significant	e reaei								
Note GOF tests may be unreliable for small sample sizes										
48 Gamma Statistics										
49 k hat (MLE) 27.61 k star (bias	corrected MLE)	7.07								
mota nat (m22) non	(bias corrected)	15.91 56.56								
52 MLE Mean (bias corrected) 112.5 MLE Sd (bias corrected)	42.31								
53 Approximate Chi Squa 54 Adjusted Level of Significance N/A Adjusted Ch	re Value (0.05) ni Square Value	40.27 N/A								
55	oquale value	13/73								
Assuming Gamma Distribution 95% Approximate Gamma UCI 158 95% Adjuste	d Gamma UCL	N/A								
58	u Ganiina UCL	IN/A								
Lognormal GOF Test Shapiro Wilk Test Statistic 0.902 Shapiro Wilk Lognormal G	OF Toot									
60 Shapiro Wilk Test Statistic 0.902 Shapiro Wilk Lognormal G 61 10% Shapiro Wilk Critical Value 0.792 Data appear Lognormal at 10% Signormal										
62 Lilliefors Test Statistic 0.226 Lilliefors Lognormal GO	F Test									
63 10% Lilliefors Critical Value 0.346 Data appear Lognormal at 10% Significance Level	ınıtıcance Level									
Note GOF tests may be unreliable for small sample sizes										
66 67 Lognormal Statistics										
68 Minimum of Logged Data 4.522 Mean	of logged Data	4.705								
	of logged Data	0.216								
71 Assuming Lognormal Distribution										
72 95% H-UCL 154.6 90% Chebyshe		148.7								
73 95% Chebyshev (MVUE) UCL 165.2 97.5% Chebyshe 74 99% Chebyshev (MVUE) UCL 232.8	v (MVUE) UCL	188								
75										
76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution										
78										
79 Nonparametric Distribution Free UCLs	D4-1 1101	NI/A								
	Bootstrap UCL Bootstrap-t UCL	N/A N/A								
82 95% Hall's Bootstrap UCL N/A 95% Percentile		N/A								

	Α	В	С	D	E	F	G	Н	ı	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	151.2		95% Chebyshev(Mean, Sd) UCL 168.7					
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	193	99% Chebyshev(Mean, Sd) UCL 240.7						
85													
86	Suggested UCL to Use												
87				95% Stu	dent's-t UCL	142.8							
88							•					-	
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL		
90													
91	Но	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
92													

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	1:55:18 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
10				
11	SH-WRA-0.5-1			
12 13		General	Statistics	
14	Total Number of Observations	4		3
15 16	Minimum	0		0
17	Minimum Maximum	9 13		11.5 12
18	SD	1.732	Std. Error of Mean	0.866
19 20	Coefficient of Variation	0.151	Skewness -	1.54
21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7).	
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	110101 10 110 1 10002 0.2 100		·	
27 28	Observed MPRITE COLUMN		GOF Test	
28	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic	0.364	Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
33			: 1% Significance Level eliable for small sample sizes	
34				
35 36		suming Nor	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	13.54	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	12.21
38	30% Stadonts 1902	10.01	·	13.43
39				
40 41	A-D Test Statistic	0.554	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance L	_evel
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level	_evel
46			eliable for small sample sizes	
47 48		•	OLD BUILDING	
48	k hat (MLE)	53.64	Statistics k star (bias corrected MLE)	13.58
50	Theta hat (MLE)	1	Theta star (bias corrected MLE)	0.847
51 52	nu hat (MLE)			08.6
53	MLE Mean (bias corrected)	11.5		3.121 85.56
54	Adjusted Level of Significance	N/A		N/A
55 56				
56	Ase 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL N	N/A
58	30 % Approximate damind OCL	17.0	30 /0 Adjusted Gaillina OCL	W/T\
59 60			GOF Test	
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
62	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value	0.346	Data Not Lognormal at 10% Significance Level	
64 65			ormal at 10% Significance Level	
66	Note GOF tests	may be unife	manie ivi sitiali sattipie sižes	
67			Statistics	
68 69	Minimum of Logged Data Maximum of Logged Data			2.433 0.162
70	waximum oi Logged Data	2.000	SD OI logged Data	U. 1UZ
71	Assı		rmal Distribution	
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	14.39 15.55		14.29 17.3
74	95% Chebyshev (MVUE) UCL	20.74	37.3% Chebyshev (MVUE) UCL	17.3
75		•		
76 77			tion Free UCL Statistics	
78		ai to lollow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL 95% Standard Bootstrap UCL			N/A
	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	1		N/A N/A
82	90 /0 Hall'S DUDISHAD OCA			

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	14.1			95% Ch	ebyshev(Me	an, Sd) UCL	15.27	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	16.91			99% Ch	ebyshev(Me	an, Sd) UCL	20.12	
85													
86						Suggested	UCL to Use						
87				95% Stu	dent's-t UCL	13.54							
88				Red	commended	UCL exceed	is the maxim	num observa	ition				
89													
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.		
92	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
93													
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be		
95			reliable.	Chen's and J	ohnson's me	ethods provi	<u>de adjustme</u>	nts for posit	vely skewed	data sets.			
96													

1	A B C D E	F	G H I J K	L
2	UCL Stati	istics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	1:56:58 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10				
12	SH-WRA-0.5-2			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	12	Mean	15.25
17 18	Maximum		Median	14
19	SD Coefficient of Variation		Std. Error of Mean Skewness	2.016 1.469
20		,		
21 22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend t	he t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean.	
26	Reier to the Prouct 5.2 Te	cillical Guid	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic		Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36	95% Normal UCL	ssuming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Student's-t UCL	19.99	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	20.15
38 39			95% Modified-t UCL (Johnson-1978)	20.24
40		Gamma	GOF Test	
41	A-D Test Statistic	0.368	Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value K-S Test Statistic		Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	e Level
44	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
45	Detected data appea	r Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE)		k star (bias corrected MLE)	5.422
51	Theta hat (MLE) nu hat (MLE)	_	Theta star (bias corrected MLE) nu star (bias corrected)	2.812 43.38
52	MLE Mean (bias corrected)	15.25	MLE Sd (bias corrected)	6.549
53 54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	29.28 N/A
55	Aujusteu Level of Signification	/ IN//N	Aujusteu Cili Squale Value	13/73
56 57			ma Distribution	NI/A
58	95% Approximate Gamma UCL	_ 22.6	95% Adjusted Gamma UCL	N/A
59	<u> </u>		GOF Test	
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
62	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
63 64	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level	
64 65			at 10% Significance Level Bliable for small sample sizes	
66	Hote GOT lests			
67 68	Mining on all and ID		I Statistics	2 701
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	2.701 0.247
70		,		
71 72		uming Logno 22.25	prmal Distribution 90% Chebyshev (MVUE) UCL	20.85
73	95% Chebyshev (MVUE) UCL		90% Chebyshev (MVUE) UCL	26.93
74 75	99% Chebyshev (MVUE) UCL			
75 76	Nonnaram	etric Distribu	tion Free UCL Statistics	
77			Discernible Distribution	
78				
			tribution Free UCLs 95% BCA Bootstrap UCL	N/A
78 79	Nonpa 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	18.57 N/A	### 15% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	21.3			95% Ch	ebyshev(Me	an, Sd) UCL	24.04
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	27.84			99% Ch	ebyshev(Me	an, Sd) UCL	35.3
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	19.99						
88							•					
89	ľ	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	ian.
92												

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:02:01 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	OLL WIDD OF 4			
12	SH-WRB-0.5-1			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	19	Mean	24.5
17 18	Maximum	30	Median Std. Error of Mean	24.5
19	SD Coefficient of Variation	4.655 0.19	Sta. Error of Mean Skewness	2.327
20	-			
21 22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend th	e t-UCL or t	the Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean.	
26	Neier to the Prouct 5.2 Tec	annear Guid	e for a discussion of the Chebyshev UCL.	
27	<u> </u>		GOF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	N/A 0.687	Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level	
30	Lilliefors Test Statistic	0.131	Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level rmal at 1% Significance Level	
33			rmai at 1% Significance Level Bliable for small sample sizes	
34				
35 36	Ass 95% Normal UCL	suming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Normal OCE 95% Student's-t UCL	29.98	95% Adjusted for Skewness)	28.33
38			95% Modified-t UCL (Johnson-1978)	29.98
39 40		Gamma	GOF Test	
41	A-D Test Statistic	0.194	Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value K-S Test Statistic	0.656 0.171	Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	e Level
44	5% K-S Critical Value	0.171	Detected data appear Gamma Distributed at 5% Significance	e Level
45			stributed at 5% Significance Level	
46 47	Note GOF tests i	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE) Theta hat (MLE)	36.22 0.676	k star (bias corrected MLE) Theta star (bias corrected MLE)	9.223 2.656
51	nu hat (MLE)	289.8	nu star (bias corrected)	73.78
52 53	MLE Mean (bias corrected)	24.5	MLE Sd (bias corrected)	8.067
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	55 N/A
55				
56 57	Ass 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A
58	95 % Approximate Gamina UCL	JZ.0/	35 % Aujusteu Gamma UCL	IN/A
59 60	Objection WEB To a Control		I GOF Test	
61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.995 0.792	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
62	Lilliefors Test Statistic	0.149	Lilliefors Lognormal GOF Test	
63 64	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level at 10% Significance Level	
65			at 10% Significance Level Bliable for small sample sizes	
66		•	•	
67 68	Minimum of Logged Data	Lognorma 2.944	Il Statistics Mean of logged Data	3.185
69	Maximum of Logged Data	3.401	SD of logged Data	0.194
70 71				
71 72	Assu 95% H-UCL	uming Logno 32.36	prmal Distribution 90% Chebyshev (MVUE) UCL	31.6
73	95% Chebyshev (MVUE) UCL	34.81	97.5% Chebyshev (MVUE) UCL	39.27
74 75	99% Chebyshev (MVUE) UCL	48.03		
76	Nonparame	etric Distribu	tion Free UCL Statistics	
77			Discernible Distribution	
78 79	Namo	rametric Dic	tribution Free UCLs	
80	95% CLT UCL	28.33	95% BCA Bootstrap UCL	N/A
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н		J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	31.48			95% Ch	nebyshev(Me	an, Sd) UCL	34.64
84		97.5% Chebyshev(Mean, Sd) UCL 39.03 99% Chebyshev(Mean, Sd) UCL 4							47.66			
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	29.98						
88												
89			Wher	a data set fo	ollows an app	oroximate dis	stribution pas	sing only on	e of the GOF	tests,		
90			it is su	ggested to us	se a UCL bas	sed upon a d	istribution pa	ssing both G	OF tests in	ProUCL		
91												
92	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCI	
93		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fro	m simulation	studies.	
94	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
95												

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	2:03:41 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10				
12	SH-WRB-0.5-2			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations 4 Number of Missing Observations 0	1
16	Minimum	59		3
17 18	Maximum			3.5
19	SD Coefficient of Variation			1.581).632
20		•		
21			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend the	he t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean.	
26	Reler to the Prouct 5.2 190	ciiiicai Guid	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic		Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36	As 95% Normal UCL	suming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Normal OCL 95% Student's-t UCL	66.72		5.07
38			·	6.64
39 40		Gamma	GOF Test	
41	A-D Test Statistic		Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Le	evel
43	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Le	evel
45	Detected data appea	r Gamma Di	stributed at 5% Significance Level	5701
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE)	523	k star (bias corrected MLE) 13	0.9
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 0 nu star (bias corrected) 104	0.481
52	MLE Mean (bias corrected)			5.506
53				3.3
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/	/A
56			ma Distribution	
57 58	95% Approximate Gamma UCL			/A
59		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.938	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67			I Statistics	
68 69	Minimum of Logged Data	4.078	Mean of logged Data 4	4.142
70	Maximum of Logged Data	4.19	SD of logged Data 0	.0506
71	Ass	uming Logno	rmal Distribution	
72 73	95% H-UCL			7.79
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 7.	2.96
75				
76 77			tion Free UCL Statistics Discernible Distribution	
78	Data appea	ai to ioliow a	DISCOTTIBUTE DISCUDUTION	
79			tribution Free UCLs	
80 81	95% CLT UCL 95% Standard Bootstrap UCL			/A /A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL N/	

	Α	В	С	D	E	F	G	Н	I	J	K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	67.74		-	95% Ch	ebyshev(Me	an, Sd) UCL	69.89
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	72.87			99% Ch	ebyshev(Me	an, Sd) UCL	78.73
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	66.72						
88				Red	commended	UCL exceed	ds the maxim	num observa	ition			
89												
90		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Но	wever, simu	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	0.0E.E0 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 : From File ProUCL Input.xls	2:05:52 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations (2000			
10 11	SH-WRC-0.5-1			
12	01-W10-0.5-1			
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	3
15	Total Nulliber of Observations	4	Number of Missing Observations	0
16 17	Minimum	12 21	Mean	17 17.5
18	Maximum SD	4.69	Median Std. Error of Mean	2.345
19	Coefficient of Variation	0.276	Skewness	-0.155
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Normal	POE Toet	
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appe	ar Normal at	1% Significance Level	
33 34	Note GOF tests	may be unre	eliable for small sample sizes	
35		suming Nor	mal Distribution	
36 37	95% Normal UCL 95% Student's-t UCL	T	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	20.66
38	95% Students-t UCL	22.52	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	20.66
39 40		0		
41	A-D Test Statistic	Gamma 0.51	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48			Statistics	
49 50	k hat (MLE) Theta hat (MLE)	16.85 1.009	k star (bias corrected MLE) Theta star (bias corrected MLE)	4.38 3.881
51	nu hat (MLE)	134.8	nu star (bias corrected MLE)	35.04
52 53	MLE Mean (bias corrected)	17	MLE Sd (bias corrected)	8.123
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	22.5 N/A
55		!		
56 57	Ase 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A
58	CONTRACTOR			
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level	
65 66			liable for small sample sizes	
66 67		Lognorma	I Statistics	
68	Minimum of Logged Data	2.485	Mean of logged Data	2.803
69 70	Maximum of Logged Data	3.045	SD of logged Data	0.286
71	Assu	uming Logno	ormal Distribution	
72 73	95% H-UCL	26.94	90% Chebyshev (MVUE) UCL	24.25
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	27.53 41.03	97.5% Chebyshev (MVUE) UCL	32.08
75		•		
76 77			tion Free UCL Statistics Discernible Distribution	
78				
79 80			tribution Free UCLs	NI/A
81	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A N/A
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	24.04		-	95% Ch	ebyshev(Me	an, Sd) UCL	27.22
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	31.65			99% Ch	ebyshev(Me	an, Sd) UCL	40.33
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	22.52						
88				Red	commended	UCL exceed	ds the maxim	num observa	ition			
89												
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Но	wever, simul	lations result	s will not cov	er all Real V	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:10:09 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	011111000000			
12	SH-WRC-0.5-2			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	14	Mean	18
17 18	Maximum		Median Std. Error of Mean	18.5
19	SD Coefficient of Variation		Sta. Error of Mean Skewness	1.78 -0.266
20		,		
21 22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend th	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean.	
26	Refer to the Prouct 5.2 Tec	ATTICAL GUID	e for a discussion of the Chebyshev UCL.	
27			OF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic	0.3	Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level	
33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36	Ass 95% Normal UCL	suming Norr	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Normal OCL 95% Student's-t UCL	22.19	95% OCLS (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	20.67
38			95% Modified-t UCL (Johnson-1978)	22.15
39 40		Gamma	GOF Test	
41	A-D Test Statistic		Anderson-Darling Gamma GOF Test	
42 43	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
43	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	l evel
45	Detected data appear	r Gamma Dis	stributed at 5% Significance Level	, LCVCI
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49	k hat (MLE)	33.06	k star (bias corrected MLE)	8.432
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	2.135 67.46
52	MLE Mean (bias corrected)	18	MLE Sd (bias corrected)	6.199
53			Approximate Chi Square Value (0.05)	49.56
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56			ma Distribution	
57 58	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A
59		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.85	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67			I Statistics	
68 69	Minimum of Logged Data	2.639	Mean of logged Data	2.875
70	Maximum of Logged Data	3.045	SD of logged Data	0.203
71	Assı	uming Logno	rmal Distribution	
72 73	95% H-UCL		90% Chebyshev (MVUE) UCL	23.47
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	29.38
75				
76 77			tion Free UCL Statistics	
78	Data appea	ir to follow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A
	22.0			

	Α	В	С	D	E	F	G	Н	I	J	K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	23.34			95% Ch	ebyshev(Me	an, Sd) UCL	25.76
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	29.11			99% Ch	ebyshev(Me	an, Sd) UCL	35.71
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	22.19						
88				Red	commended	UCL exceed	ds the maxim	num observa	ation			
89												
90		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) i	may not be	
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

	A B C D E	F	G H I J K L							
2	UCL Statis	stics for Unc	ensored Full Data Sets							
3	User Selected Options	0-44-20 DM								
5	Date/Time of Computation ProUCL 5.2 10/31/2024 : From File ProUCL Input.xls	2:44:38 PIVI								
6	Full Precision OFF									
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000									
9	Number of Bootstrap Operations (2000									
10 11	TL-WRA-0.5-1									
12	11-44174-0.3-1									
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations 4							
15	Total Number of Observations	4	Number of Missing Observations 0							
16 17	Minimum		Mean 153.5 Median 153.5							
18	Maximum SD	18.41	Median 153.5 Std. Error of Mean 9.206							
19	Coefficient of Variation	0.12	Skewness 0							
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,							
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,							
23 24	but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7).									
25	Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshey UCL.									
26 27		Normal	POE Tost							
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test							
29 30	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level							
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level							
32	Data appe	ar Normal at	1% Significance Level							
33 34										
35	Assuming Normal Distribution									
36 37	95% Normal UCL 95% Student's-t UCL	175.2	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 168.6							
38	95% Student S-f UCL	1/3.2	95% Adjusted-CLT UCL (Chen-1995) 168.6 95% Modified-t UCL (Johnson-1978) 175.2							
39 40		0								
41	A-D Test Statistic									
42	5% A-D Critical Value	0.656	0.656 Detected data appear Gamma Distributed at 5% Significance Level							
43 44	K-S Test Statistic 5% K-S Critical Value	0.226 Kolmogorov-Smirnov Gamma GOF Test 0.394 Detected data appear Gamma Distributed at 5% Significance Level								
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level							
46 47	Note GOF tests	may be unre	eliable for small sample sizes							
48			Statistics							
49 50	k hat (MLE) Theta hat (MLE)	91.85 1.671	k star (bias corrected MLE) 23.13 Theta star (bias corrected MLE) 6.637							
51	nu hat (MLE)		nu star (bias corrected) 185							
52 53	MLE Mean (bias corrected)		MLE Sd (bias corrected) 31.92							
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) 154.6 Adjusted Chi Square Value N/A							
55		!								
56 57	Ase 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL N/A							
58	CONTRACTOR									
59 60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test							
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level							
62 63	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test							
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level							
65 66			liable for small sample sizes							
66 67		Lognorma	I Statistics							
68	Minimum of Logged Data	4.875	Mean of logged Data 5.028							
69 70	Maximum of Logged Data	5.17	SD of logged Data 0.121							
71			ormal Distribution							
72 73	95% H-UCL	180.2	90% Chebyshev (MVUE) UCL 181.3							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	193.9 245.8	97.5% Chebyshev (MVUE) UCL 211.4							
75			, , , , , , , , , , , , , , , , , , ,							
76 77			tion Free UCL Statistics Discernible Distribution							
78										
79 80			tribution Free UCLs							
81	95% CLT UCL 95% Standard Bootstrap UCL	168.6 N/A	95% BCA Bootstrap UCL N/A 95% Bootstrap-t UCL N/A							
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL N/A							

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Mea	n, Sd) UCL	181.1	95% Chebyshev(Mean, Sd) UCL 193.6						
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	211	99% Chebyshev(Mean, Sd) UCL 245.1						
85													
86	Suggested UCL to Use												
87		95% Student's-t UCL 175.2											
88													
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	n simulation	studies.		
91	Ho	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	an.	
92													

	A B C D E	F	G H I J K L								
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/31/2024	0:40:0E DM									
5	Date/Time of Computation ProUCL 5.2 10/31/2024 : From File ProUCL Input.xls	2:48:35 PIVI									
6 7	Full Precision OFF Confidence Coefficient 95%										
8	Number of Bootstrap Operations 2000										
9											
10 11	TL-WRA-0.5-1-DS										
12	12 11111 0.5 1 50										
13 14	Total Number of Observations		Statistics Number of Distinct Observations 4								
15	Total Number of Observations		Number of Missing Observations 0								
16 17	Minimum Maximum		Mean 166.5 Median 165.5								
18	SD		Std. Error of Mean 8.15								
19 20	Coefficient of Variation	0.0979	Skewness 0.2								
21	Note: Sample size is small (e.g., <10), if data a	are collected	I using incremental sampling methodology (ISM) approach,								
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,								
23 24	but note that ITRC may recommend the t-UCL or the Chebyshey UCL for small sample sizes (n < 7).										
25			e for a discussion of the Chebyshev UCL.								
26 27		Normal (GOF Test								
28	Shapiro Wilk Test Statistic	0.931	Shapiro Wilk GOF Test								
29 30	1% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test								
31	1% Lilliefors Critical Value	-	Data appear Normal at 1% Significance Level								
32 33			1% Significance Level								
34	4										
35	Assuming Normal Distribution										
36 37	95% Normal UCL 95% Student's-t UCL	185.7	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 180.8								
38	50% Gladding (60E	100.7	95% Modified-t UCL (Johnson-1978) 185.8								
39 40		Gamma	GOF Test								
41	A-D Test Statistic		Anderson-Darling Gamma GOF Test								
42 43	5% A-D Critical Value K-S Test Statistic		Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test								
44	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level								
45 46			stributed at 5% Significance Level								
47	Note GOF tests	may be unre	eliable for small sample sizes								
48 49	11.045		Statistics								
50	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) 35.06 Theta star (bias corrected MLE) 4.75								
51	nu hat (MLE)	1116	nu star (bias corrected) 280.4								
52 53	MLE Mean (bias corrected)	166.5	MLE Sd (bias corrected) 28.12 Approximate Chi Square Value (0.05) 242.7								
54	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A								
55 56	Δο	sumina Gar	nma Distribution								
57	95% Approximate Gamma UCL		95% Adjusted Gamma UCL N/A								
58 59		Loanormo	I GOF Test								
60	Shapiro Wilk Test Statistic	0.931	Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level								
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
64 65	Data appear	Lognormal a	at 10% Significance Level								
66	Note GOF tests	may be unre	eliable for small sample sizes								
67			Statistics								
68 69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 5.111 SD of logged Data 0.0977								
70		•									
71 72	Ass i 95% H-UCL	uming Logno	ormal Distribution								
73	95% Chebyshev (MVUE) UCL		90% Chebyshev (MVUE) UCL 190.9 97.5% Chebyshev (MVUE) UCL 217.3								
74 75	99% Chebyshev (MVUE) UCL		,,								
76	Nonnarame	etric Distribu	tion Free UCL Statistics								
77			Discernible Distribution								
78 79	Nonno	rametric Dic	tribution Free UCLs								
80	95% CLT UCL	179.9	95% BCA Bootstrap UCL N/A								
81 82	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL N/A								
62	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL N/A								

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	190.9			95% Ch	ebyshev(Me	an, Sd) UCL	202	1
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	217.4			99% Ch	ebyshev(Me	an, Sd) UCL	247.6]
85]	
86		Suggested UCL to Use]	
87		95% Student's-t UCL 185.7										1	
88				Red	commended	UCL exceed	ds the maxim	num observa	tion				1
89													
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
92	Но	wever, simu	lations result	s will not cov	er all Real V	/orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.	
93		-	•			•							1

	A B C D E	F	G H I J K L							
2	UCL Statis	stics for Unc	ensored Full Data Sets							
3	User Selected Options	0.50.44.514								
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 : From File ProUCL Input.xls	2:50:44 PM								
6	Full Precision OFF									
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000									
9	Number of Bootstrap Operations 2000									
10	TI WOA OF A DOO									
12	TL-WRA-0.5-1-DS-2									
13			Statistics							
14 15	Total Number of Observations	4	Number of Distinct Observations 4 Number of Missing Observations 0							
16	Minimum	161	Mean 175.3							
17 18	Maximum		Median 177.5							
19	SD Coefficient of Variation	10.14 0.0579	Std. Error of Mean 5.072 Skewness -1.239							
20										
21			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,							
23			the Chebyshev UCL for small sample sizes (n < 7).							
24 25	The Chebyshev UCL o	ften results	in gross overestimates of the mean.							
26	Refer to the ProUCL 5.2 Led	chnical Guid	e for a discussion of the Chebyshev UCL.							
27			GOF Test							
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level							
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test							
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level							
32 33			t 1% Significance Level							
34										
35	Assuming Normal Distribution									
36 37	95% Normal UCL 95% Student's-t UCL	187.2	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 180.2							
38	3370 Ottacht 3-1 OOL	107.2	95% Modified-t UCL (Johnson-1978) 186.7							
39 40										
41	A-D Test Statistic	0.412	GOF Test Anderson-Darling Gamma GOF Test							
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Level							
43 44	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test							
45	5% K-S Critical Value Detected data appear		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level							
46			eliable for small sample sizes							
47 48		Gamma	Statistics							
49	k hat (MLE)		k star (bias corrected MLE) 97.1							
50 51	Theta hat (MLE)		Theta star (bias corrected MLE) 1.805							
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 776.8 MLE Sd (bias corrected) 17.79							
53			Approximate Chi Square Value (0.05) 713.1							
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A							
56	As	suming Gam	nma Distribution							
57 50	95% Approximate Gamma UCL		95% Adjusted Gamma UCL N/A							
58 59		Lognorma	I GOF Test							
60	Shapiro Wilk Test Statistic	0.889	Shapiro Wilk Lognormal GOF Test							
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level							
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level							
64	Data appear	Lognormal a	at 10% Significance Level							
65 66	Note GOF tests	may be unre	eliable for small sample sizes							
67		Lognorma	I Statistics							
68	Minimum of Logged Data	5.081	Mean of logged Data 5.165							
69 70	Maximum of Logged Data	5.22	SD of logged Data 0.059							
71	Ass	uming Logno	ormal Distribution							
72 73	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL 190.8							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	197.8 226.7	97.5% Chebyshev (MVUE) UCL 207.6							
75										
76 77			tion Free UCL Statistics							
78	Data appea	ar to follow a	Discernible Distribution							
79			tribution Free UCLs							
80 81	95% CLT UCL	183.6	95% BCA Bootstrap UCL N/A							
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	1	95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A							
	35 /0 Hall 5 DOUISHAP UCL	1107	35 /0 1 GICCHILIC DOUGLIAP OCE 14/A							

	Α	В	С	D	E	F	G	Н	I	J	K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	190.5			95% Ch	ebyshev(Me	an, Sd) UCL	197.4
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	206.9			99% Ch	ebyshev(Me	an, Sd) UCL	225.7
85												
86	Suggested UCL to Use											
87	95% Student's-t UCL 187.2											
88	Recommended UCL exceeds the maximum observation											
89												
90	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
92	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) i	may not be	
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

	A B C D E	F	G H I J K L								
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options	0.40.04.504									
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 ProUCL Input.xls	2:46:21 PM									
6	Full Precision OFF										
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Bootstrap Operations 2000										
10	TL-WRA-0.5-1-DUP										
12	IL-WRA-0.5-1-DUP										
13 14	T. IN 1 (0)		Statistics								
15	Total Number of Observations	4	Number of Distinct Observations 4 Number of Missing Observations 0								
16	Minimum		Mean 159								
17 18	Maximum SD		Median 161 Std. Error of Mean 10								
19	Coefficient of Variation		Skewness -0.56								
20 21	Note: Comple size is small (a.g. <10) if date	ara callacted	Lucing incremental compling methodology (ICM) approach								
22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23	but note that ITRC may recommend the	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).								
24 25	The Chebyshey UCL often results in gross overestimates of the mean.										
26	1,000, 10 110 1 1000 2 0.2 100		•								
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test								
29	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level								
30 31	Lilliefors Test Statistic		Lilliefors GOF Test								
32	1% Lilliefors Critical Value Data appe		Data appear Normal at 1% Significance Level t 1% Significance Level								
33			eliable for small sample sizes								
34 35											
36	95% Normal UCL		95% UCLs (Adjusted for Skewness)								
37 38	95% Student's-t UCL	182.5	95% Adjusted-CLT UCL (Chen-1995) 172.5								
39		95% Modified-t UCL (Johnson-1978) 182.1									
40 41	ABTIONS		GOF Test								
42	A-D Test Statistic 5% A-D Critical Value	0.656 Detected data appear Gamma Distributed at 5% Significance Level									
43	K-S Test Statistic	0.219	0.219 Kolmogorov-Smirnov Gamma GOF Test								
44 45	5% K-S Critical Value Detected data appea		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level								
46			eliable for small sample sizes								
47 48		Cammo	Statistics								
49	k hat (MLE)	81.54	k star (bias corrected MLE) 20.55								
50 51	Theta hat (MLE)	1.95	Theta star (bias corrected MLE) 7.737								
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 164.4 MLE Sd (bias corrected) 35.07								
53			Approximate Chi Square Value (0.05) 135.8								
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A								
56			ma Distribution								
57 58	95% Approximate Gamma UCL	192.6	95% Adjusted Gamma UCL N/A								
59			GOF Test								
60 61	Shapiro Wilk Test Statistic	0.968	Shapiro Wilk Lognormal GOF Test								
62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test								
63	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level								
64 65	Data appear Note GOF tests	may be upre	at 10% Significance Level eliable for small sample sizes								
66	Hote GOT tests										
67 68	Minimum of Logged Data		I Statistics Mean of logged Data 5.063								
69	Maximum of Logged Data Maximum of Logged Data		SD of logged Data 0.129								
70 71		•									
71 72	Assi 95% H-UCL	uming Logno 189	prmal Distribution 90% Chebyshev (MVUE) UCL 189.8								
73	95% Chebyshev (MVUE) UCL	203.7	97.5% Chebyshev (MVUE) UCL 223.1								
74 75	99% Chebyshev (MVUE) UCL	261.1									
76	Nonparame	etric Distribu	tion Free UCL Statistics								
77 78	Data appea	ar to follow a	Discernible Distribution								
78 79	Nonna	rametric Dis	tribution Free UCLs								
80	95% CLT UCL	175.4	95% BCA Bootstrap UCL N/A								
81 82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A								
υŁ	95% Hall'S BOOISTIAD UCL	IN/A	95% Percentile Bootstrap UCL N/A								

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Mea	an, Sd) UCL	189			95% Ch	ebyshev(Me	an, Sd) UCL	202.6
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	221.4			99% Ch	ebyshev(Me	an, Sd) UCL	258.5
85												
86	Suggested UCL to Use											
87	95% Student's-t UCL											
88				Red	commended	UCL exceed	ds the maxim	num observa	ition			
89												
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
92	Ho	wever, simu	lations result	s will not cov	er all Real W	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

\Box	A B C D E	F	G H I J K L								
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options	0 F0 00 DM									
5	Date/Time of Computation ProUCL 5.2 10/31/2024 : From File ProUCL Input.xls	2:52:38 PIVI									
6	Full Precision OFF										
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Bootstrap Operations 2000										
10	TL-WRA-0.5-2										
12	IL-WRA-0.5-2										
13			Statistics								
14 15	Total Number of Observations	4	Number of Distinct Observations 3 Number of Missing Observations 0								
16	Minimum		Mean 278								
17 18	Maximum	299 24.47	Median 280 Std. Error of Mean 12.23								
19	SD Coefficient of Variation		Sta. Error of Mean 12.23 Skewness -0.0918								
20		•									
21 22	I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,										
23			the Chebyshev UCL for small sample sizes (n < 7).								
24 25			in gross overestimates of the mean.								
26	Refer to the ProucL 5.2 Tec	cnnicai Guid	e for a discussion of the Chebyshev UCL.								
27			GOF Test								
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test								
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test								
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level								
32 33			t 1% Significance Level								
34	Note GOF tests may be unreliable for small sample sizes										
35	Assuming Normal Distribution										
36 37	95% Normal UCL 95% Student's-t UCL	306.8	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 297.5								
38	95 % Students-t OCL	300.6	95% Adjusted-CET OCE (Cheri-1993) 297.3 95% Modified-t UCL (Johnson-1978) 306.7								
39											
40 41	A-D Test Statistic	0.564	GOF Test Anderson-Darling Gamma GOF Test								
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Level								
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test								
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level								
46			eliable for small sample sizes								
47 48		•	OLUMBIA.								
49	k hat (MLE)	171.3	Statistics k star (bias corrected MLE) 42.99								
50	Theta hat (MLE)	1.623	Theta star (bias corrected MLE) 6.467								
51 52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 343.9 MLE Sd (bias corrected) 42.4								
53	MLE Mean (bias corrected)	270	Approximate Chi Square Value (0.05) 301.9								
54	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A								
55 56	Ac	sumina Gam	nma Distribution								
57	95% Approximate Gamma UCL		95% Adjusted Gamma UCL N/A								
58 59											
60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test								
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level								
62 63	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test								
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level								
65			eliable for small sample sizes								
66 67		Loancer	Il Statistics								
68	Minimum of Logged Data		Il Statistics Mean of logged Data 5.625								
69	Maximum of Logged Data		SD of logged Data 0.0884								
70 71	Aggs	umina Loans	ormal Distribution								
72	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL 314.8								
73	95% Chebyshev (MVUE) UCL	331.5	97.5% Chebyshev (MVUE) UCL 354.7								
74 75	99% Chebyshev (MVUE) UCL	400.2									
76	Nonparame	etric Distribu	tion Free UCL Statistics								
77 70			Discernible Distribution								
78 79	Nonna	rametric Die	tribution Free UCLs								
80	95% CLT UCL		95% BCA Bootstrap UCL N/A								
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL N/A								
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL N/A								

	Α	В	С	D	Е	F	G	Н	I	J	K	L	Γ
83			90% Ch	ebyshev(Me	an, Sd) UCL	314.7			95% Ch	ebyshev(Me	an, Sd) UCL	331.3	1
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	354.4			99% Ch	ebyshev(Me	an, Sd) UCL	399.7]
85													
86						Suggested	UCL to Use						
87				95% Stu	dent's-t UCL	306.8							
88				Red	commended	UCL exceed	ds the maxim	num observa	ation				
89													
90	l	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
92	Ho	wever, simu	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
93													
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be		
95			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.			
96													1

1	A B C D E	F	G ensored Full Data	H ta Sets		J	K		L
2		ilica ioi orio	Chisored I dii Dali	ia ocis					
3	User Selected Options	0.E4.00 DN4							
5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:54:29 PIVI							
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Number of Bootstrap Operations 2000								
10									
	TL-WRA-0.5-3								
12		General	Statistics						
14	Total Number of Observations	10			Number	r of Distin	ct Observatio	ns	10
15 16	Minimo	201			Number	of Missin	g Observatio		0
17	Minimum Maximum	321 438					Me Medi	_	371 369
18	SD	35.16				Sto	l. Error of Me	an	11.12
19 20	Coefficient of Variation	0.0948					Skewne	SS	0.551
21		Normal (GOF Test						
22	Shapiro Wilk Test Statistic	0.976			hapiro Wi				
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.781 0.143	Da		Normal a Lilliefors		ificance Leve		
25	1% Lilliefors Critical Value	0.304	Da				ificance Leve		
26 27	Data appea	ar Normal a	t 1% Significance	e Level					
28	Δει	sumina Nor	mal Distribution						
29	95% Normal UCL						Skewness)		
30 31	95% Student's-t UCL	391.4					CL (Chen-199 (Johnson-197		391.4 391.7
32			1	95	o ∕o IVIOQITI€	eu-ι UCL (JUIIISON-197	0)	381./
33	,		GOF Test						
34 35	A-D Test Statistic 5% A-D Critical Value	0.146 0.724	Detected dat				GOF Test	ana	a Levol
36	K-S Test Statistic	0.128					at 5% Signific a GOF Test	ance	FEAGI
37	5% K-S Critical Value	0.266	Detected dat	ta appear C	amma Di			ance	e Level
38 39	Detected data appear	Gamma Di	stributed at 5% S	significance	e Level				
40			Statistics						
41	k hat (MLE)	126.2					corrected ML		88.42
43	Theta hat (MLE) nu hat (MLE)	2.939 2524			r neta s		corrected ML (bias correcte		4.196 1768
44	MLE Mean (bias corrected)					MLE Sd	(bias correcte	ed)	39.45
45 46	Adjusted Level of Significance	0.0267		Ap			are Value (0.0 ni Square Val		1672 1655
47	Aujusteu Level of Signification	0.0207			A(ajusi c u Ol	Oquale Val	u u	1000
48 49			ma Distribution			O/ A -1:. :			206.2
50	95% Approximate Gamma UCL	392.5	1		95	% Adjuste	ed Gamma U	JL	396.3
51			GOF Test						
52 53	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.986 0.869	Deta		Wilk Log			vol	
54	Lilliefors Test Statistic	0.869	Data		ors Logno		gnificance Le F Test	vei	
55	10% Lilliefors Critical Value	0.241		a appear Lo			gnificance Le	vel	
56 57	Data appear	<u>Lognormal</u> :	at 10% Significan	nce Level					
58		Lognorma	l Statistics						
59 60	Minimum of Logged Data	5.771					of logged Da		5.912
61	Maximum of Logged Data	6.082	1			50	of logged Da	ıld	0.0935
62			rmal Distribution	n					
63 64	95% H-UCL 95% Chebyshev (MVUE) UCL	N/A 418.8					ev (MVUE) U(ev (MVUE) U(403.9
65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	480.2			37.3%	CHEDYSHE	ov (IVIVUE) U	⊅ L	439.5
66									
67 68			tion Free UCL St Discernible Distr						
69									
70 71			tribution Free UC	CLs		0E0/ DOA	Doctor- 11	- ا اد	200.2
72	95% CLT UCL 95% Standard Bootstrap UCL	389.3 388.3					Bootstrap UG Bootstrap-t UG		390.2 394.5
73	95% Hall's Bootstrap UCL	395.2				Percentile	Bootstrap U	CL	388.6
74 75	90% Chebyshev(Mean, Sd) UCL	404.4					Mean, Sd) U(419.5
76	97.5% Chebyshev(Mean, Sd) UCL	440.4	<u> </u>		99% CN	ienysnev(Mean, Sd) U	∠ L	481.6
77			UCL to Use						
78 79	95% Student's-t UCL	391.4							
80	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the	e user to se	elect the m	nost appro	priate 95% U	CL.	
81	Recommendations are based upon data size,	data distrib	ution, and skewne	ess using r	esults fror	m simulati	on studies.		
82	However, simulations results will not cover all Real W	orld data se	ts; tor additional in	ınsight the ı	user may	want to co	onsult a statis	ticiar	٦.

83 B C D E F G H I J K L

	Α	В	С	D	E LIOL Otatio	F	G H I J K	L				
2					UCL Statis	Stics for Unc	ensored Full Data Sets					
3	D-t-		cted Options		10/01/0004	0.E0.00 DM						
5	Date	e/Time of Co	From File	ProUCL 5.2 ProUCL Inpu		2:56:02 PM						
6			I Precision	OFF								
7 8		Confidence Bootstrap (95% 2000								
9	Trainber of	Воогонар (Орогацопо	12000								
10 11	TL-WRA-0.5	_1										
12	IL-VVINA-U.S											
13 14			Total	Number of Ol	haanuationa	General 4	Statistics Number of Distinct Observations	4				
15			TOLAI	Number of Or	<u>uservalions</u>	4	Number of Missing Observations	0				
16 17					Minimum Maximum			59 59				
18					SD			14.72				
19 20				Coefficient	of Variation	0.185	Skewness	0				
21		Note: Sar	mple size is :	small (e.g., <	10). if data a	are collected	using incremental sampling methodology (ISM) approach,					
22			refer also to	o ITRC Tech I	Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,					
23 24		b	out note that				he Chebyshev UCL for small sample sizes (n < 7). In gross overestimates of the mean.					
25			Ref				e for a discussion of the Chebyshev UCL.					
26 27						Normal (GOF Test					
28				hapiro Wilk Te		0.991	Shapiro Wilk GOF Test					
29 30				hapiro Wilk Cr		0.687	Data appear Normal at 1% Significance Level Lilliefors GOF Test					
31			1	Lilliefors 16 % Lilliefors Cr			Data appear Normal at 1% Significance Level					
32 33					Data appe	ar Normal at	1% Significance Level					
34	Note GOF tests may be unreliable for small sample sizes											
35		Assuming Normal Distribution										
36 37			95% No	ormal UCL 95% Stud	lent's-t UCL	193.6	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 1	83.2				
38				55 /6 Stuu	OIII 3-I UUL	100.0		93.6				
39 40						Comme	POE Toot					
41					est Statistic	0.208	GOF Test Anderson-Darling Gamma GOF Test					
42 43				5% A-D Cr	ritical Value	0.656	Detected data appear Gamma Distributed at 5% Significance I	Level				
44					est Statistic ritical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance I	Level				
45				Detected (data appea	r Gamma Di	stributed at 5% Significance Level					
46 47				Note	GOF tests	may be unre	liable for small sample sizes					
48						Gamma						
49 50					<u>k hat (MLE)</u> a hat (MLE)	38.25 4.157	k star (bias corrected MLE) Theta star (bias corrected MLE)	9.729 16.34				
51				nı	u hat (MLE)	306	nu star (bias corrected)	77.83				
52 53			MI	LE Mean (bias	corrected)	159	MLE Sd (bias corrected)	50.98 58.51				
54			Adjus	sted Level of S	Significance	N/A		58.51 N/A				
55 56			•									
57			95% A	pproximate G			ma Distribution 95% Adjusted Gamma UCL N	N/A				
58			23.071									
59 60			S	hapiro Wilk Te	est Statistic		GOF Test Shapiro Wilk Lognormal GOF Test					
61				hapiro Wilk Cr	ritical Value	0.792	Data appear Lognormal at 10% Significance Level					
62 63			10	Lilliefors Te % Lilliefors Cr	est Statistic		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level					
64			10	D	ata appear	Lognormal a	nt 10% Significance Level					
65 66				Note	GOF tests	may be unre	liable for small sample sizes					
67						Lognorma	Statistics					
68				Minimum of Lo		4.828	Mean of logged Data	5.056				
69 70			N	Maximum of Lo	ogged Data	5.263	SD of logged Data	0.188				
71					Assı	uming Logno	rmal Distribution					
72 73			Q5% (<u> </u>	95% H-UCL	208 224.1		203.8 252.2				
74				Chebyshev (N			37.378 Chebyshev (Wiv CL) CCL 2					
75 76					Nonnarama	atric Distrib	tion Free UCL Statistics					
77							Discernible Distribution					
78 79												
80				959	Nonpa CLT UCL %		ribution Free UCLs 95% BCA Bootstrap UCL N	N/A				
81				Standard Boo	otstrap UCL	N/A	95% Bootstrap-t UCL N	N/A				
82			9	5% Hall's Boo	otstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A				

	Α	В	С	D	E	F	G	Н		J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	203.2	95% Chebyshev(Mean, Sd) UCL 22					
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	250.9			99% Ch	ebyshev(Me	an, Sd) UCL	305.5
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	193.6						
88				Red	commended	UCL exceed	ds the maxim	num observa	tion			
89												
90		Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
91		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.										
92	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												

	A B C D E	F	G H I J K	L							
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options										
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2	2:57:47 PM									
6	Full Precision OFF										
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Bootstrap Operations 2000										
10	TI WOR OF A										
12	TL-WRB-0.5-1										
13			Statistics								
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0							
16	Minimum	67	Mean	69.75							
17 18	Maximum		Median	69.5							
19	SD Coefficient of Variation	3.202 0.0459	Std. Error of Mean Skewness	1.601 0.0838							
20		,		0.000							
21 22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23			the Chebyshev UCL for small sample sizes (n < 7).								
24 25	The Chebyshev UCL o	ften results	in gross overestimates of the mean.								
26	Refer to the ProUCL 5.2 Tec	ennical Guid	e for a discussion of the Chebyshev UCL.								
27			GOF Test								
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level								
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test								
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level								
32 33	Pata appear resimal at 170 organization 2010.										
34	Note GOF tests may be unreliable for small sample sizes										
35 36	Assuming Normal Distribution										
37	95% Normal UCL 95% Student's-t UCL	73.52	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	72.45							
38	30% Statistics (002	70.02	95% Modified-t UCL (Johnson-1978)	73.53							
39 40		Commo	GOF Test								
41	A-D Test Statistic	0.579	Anderson-Darling Gamma GOF Test								
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level							
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level							
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	Level							
46 47	Note GOF tests	may be unre	eliable for small sample sizes								
48		Gamma	Statistics								
49	k hat (MLE)			158.5							
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected) 1	0.44 268							
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	5.54							
53			Approximate Chi Square Value (0.05) 1	186							
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A							
56	As	suming Gam	nma Distribution								
57 58	95% Approximate Gamma UCL			N/A							
59		Lognorma	I GOF Test								
60	Shapiro Wilk Test Statistic	0.798	Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level								
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
64	Data appear	Lognormal a	at 10% Significance Level								
65 66	Note GOF tests	may be unre	eliable for small sample sizes								
67		Lognorma	I Statistics								
68	Minimum of Logged Data	4.205	Mean of logged Data	4.244							
69 70	Maximum of Logged Data	4.29	SD of logged Data	0.0459							
71	Assı	uming Logno	ormal Distribution								
72 73	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	74.55							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	76.72 85.67	97.5% Chebyshev (MVUE) UCL	79.74							
75											
76 77			tion Free UCL Statistics								
78	Data appea	ir to follow a	Discernible Distribution								
79			tribution Free UCLs								
80 81	95% CLT UCL	72.38	95% BCA Bootstrap UCL	N/A							
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	N/A N/A	•	N/A N/A							
	20 /0 Hall 5 DOUISHAP UCL	11//	1 30 /0 L GLOGHING DOORNAD OCT	14//7							

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	74.55			95% Ch	ebyshev(Me	an, Sd) UCL	76.73	1
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	79.75			99% Ch	ebyshev(Me	an, Sd) UCL	85.68	
85]
86						Suggested	UCL to Use]
87		95% Student's-t UCL 73.52											1
88				Red	commended	UCL exceed	ds the maxim	num observa	ition				1
89]
90	1	Note: Sugge:	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		1
91		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
92	Но	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.	
93													1

	A B C D E	F	G H I J K	L							
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options										
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 2 From File ProUCL Input.xls	2:59:12 PM									
6	Full Precision OFF										
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Bootstrap Operations 2000										
10	TI WOD 0.5.0										
12	TL-WRB-0.5-2										
13			Statistics								
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0							
16	Minimum	106		129.5							
17 18	Maximum		Median Std. Error of Mean	127.5							
19	SD Coefficient of Variation	20.98 0.162	Sta. Error of Mean Skewness	10.49 0.561							
20		,									
21 22			using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23	but note that ITRC may recommend th	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).								
24 25			in gross overestimates of the mean.								
26	Refer to the Prouct 5.2 Tec	innical Guid	e for a discussion of the Chebyshev UCL.								
27			OF Test								
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level								
30	Lilliefors Test Statistic		Lilliefors GOF Test								
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level								
33			t 1% Significance Level								
34	Note GOF tests may be unreliable for small sample sizes										
35 36	Assuming Normal Distribution										
37	95% Normal UCL 95% Student's-t UCL	154.2	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	149.9							
38	2270 31111011101110111011101110111011101110			154.7							
39 40		Gamma	GOF Test								
41	A-D Test Statistic	0.279	Anderson-Darling Gamma GOF Test								
42 43	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level							
43	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	level							
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	20101							
46 47	Note GOF tests	may be unre	eliable for small sample sizes								
48		Gamma	Statistics								
49	k hat (MLE)	51.52	k star (bias corrected MLE)	13.05							
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	9.926 104.4							
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	35.85							
53			Approximate Chi Square Value (0.05)	81.8							
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A							
56			ma Distribution								
57 58	95% Approximate Gamma UCL	165.2	95% Adjusted Gamma UCL	N/A							
59		Lognorma	GOF Test								
60	Shapiro Wilk Test Statistic	0.967	Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test								
63	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level								
64 65	Data appear	Lognormal a	at 10% Significance Level								
66	Note GOF tests	may be unre	eliable for small sample sizes								
67			I Statistics								
68 69	Minimum of Logged Data	4.663	Mean of logged Data	4.854							
70	Maximum of Logged Data	5.056	SD of logged Data	0.161							
71			rmal Distribution								
72 73	95% H-UCL	_		160.7							
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	174.8 232.9	97.5% Chebyshev (MVUE) UCL	194.4							
75			·								
76 77			tion Free UCL Statistics								
78	Data appea	ir to follow a	Discernible Distribution								
79			tribution Free UCLs								
80 81	95% CLT UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A							
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL			N/A N/A							
	30 /0 Figil 3 Doolstrap OCL	. 1// 1	, John Greenine Bootshap GCE								

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	161	95% Chebyshev(Mean, Sd) UCL 175.						
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	195	99% Chebyshev(Mean, Sd) UCL 233.9						
85													
86						Suggested	UCL to Use						
87				95% Stu	dent's-t UCL	154.2							
88						•	•						
89	ľ	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL		
90		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
91	Но	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
92													

\Box	A B C D E	F	G H I J K L								
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options	0.00.40 DM									
5	Date/Time of Computation ProUCL 5.2 10/31/2024 ProUCL Input.xls	3:00:48 PIVI									
6	Full Precision OFF										
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000										
9	Number of Booletiap Operations (2000										
10 11	TL-WRB-0.5-3										
12	TE-WNB-0.3-3										
13 14	Total Number of Observations		Statistics Number of Distinct Observations 4								
15	Total Nulliber of Observations	4	Number of Missing Observations 0								
16 17	Minimum		Mean 124.5 Median 123.5								
18	Maximum SD		Median 123.5 Std. Error of Mean 5.454								
19	Coefficient of Variation	0.0876	Skewness 0.419								
20 21	Note: Sample size is small (e.g., <10), if data:	are collected	using incremental sampling methodology (ISM) approach,								
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,								
23 24			the Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.								
25			e for a discussion of the Chebyshev UCL.								
26 27		Nlaw! 4	20E Took								
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test								
29	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level								
30 31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32	Data appe	ar Normal at	1% Significance Level								
33 34	Note GOF tests	may be unre	eliable for small sample sizes								
35	Assuming Normal Distribution										
36 37	95% Normal UCL		95% UCLs (Adjusted for Skewness)								
38	95% Student's-t UCL	137.3	95% Adjusted-CLT UCL (Chen-1995) 134.7 95% Modified-t UCL (Johnson-1978) 137.5								
39			· · · · · · · · · · · · · · · · · · ·								
40 41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test								
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Level								
43 44	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test								
45	5% K-S Critical Value Detected data appea		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level								
46 47			eliable for small sample sizes								
48		Gamma	Statistics								
49	k hat (MLE)	175.2	k star (bias corrected MLE) 43.96								
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 2.832 nu star (bias corrected) 351.7								
52	MLE Mean (bias corrected)		MLE Sd (bias corrected) 18.78								
53 54	Adjusted Lavel of Claufferen	N/A	Approximate Chi Square Value (0.05) 309.2								
55	Adjusted Level of Significance	IN/A	Adjusted Chi Square Value N/A								
56 57			nma Distribution								
58	95% Approximate Gamma UCL	141.6	95% Adjusted Gamma UCL N/A								
59			GOF Test								
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
62	Lilliefors Test Statistic	0.186	Lilliefors Lognormal GOF Test								
63 64	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level at 10% Significance Level								
65			eliable for small sample sizes								
66 67		-	·								
68	Minimum of Logged Data		I Statistics Mean of logged Data 4.821								
69	Maximum of Logged Data		SD of logged Data 0.0871								
70 71	Λοοι	umina I cana	ormal Distribution								
72	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL 140.8								
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 158.3								
75	33 % Criebystiev (IVIVOE) UCL	170.4									
76 77			tion Free UCL Statistics								
78	Data appea	ar to tollow a	Discernible Distribution								
79			tribution Free UCLs								
80 81	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL N/A 95% Bootstrap-t UCL N/A								
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL N/A								

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	140.9	95% Chebyshev(Mean, Sd) UCL 148.3							
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	158.6	99% Chebyshev(Mean, Sd) UCL 178.8							
85														
86						Suggested	UCL to Use							
87				95% Stu	dent's-t UCL	137.3								
88						•	•							
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL			
90		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.												
91	Но	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.												
92														

	A B C D E	F	G H I J K L								
2	UCL Statis	stics for Unc	ensored Full Data Sets								
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/31/2024	2.02.21 DM									
5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	3:02:31 PIVI									
6 7	Full Precision OFF Confidence Coefficient 95%										
8	Number of Bootstrap Operations 2000										
9											
11	TL-WRB-0.5-4										
12 13		General	Statistics								
14	Total Number of Observations		Number of Distinct Observations 8								
15 16	Minimum	105	Number of Missing Observations 0 Mean 153.1								
17	Maximum	184	Median 165.5								
18 19	SD Coefficient of Variation		Std. Error of Mean 11.35 Skewness -0.637								
20		•									
21 22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23	but note that ITRC may recommend the	he t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).								
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.								
26			•								
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test								
29 30	1% Shapiro Wilk Critical Value	0.749	Data appear Normal at 1% Significance Level								
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32 33	Data appe	ear Normal at	1% Significance Level								
34	Note GOF tests	may be unre	eliable for small sample sizes								
35 36	Assuming Normal Distribution										
37	95% Normal UCL 95% Student's-t UCL	. 174.6	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 169.1								
38 39			95% Modified-t UCL (Johnson-1978) 174.2								
40		Gamma	GOF Test								
41 42	A-D Test Statistic 5% A-D Critical Value		Anderson-Darling Gamma GOF Test								
43	K-S Test Statistic		Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test								
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level								
46			eliable for small sample sizes								
47 48		Gamma	Statistics								
49	k hat (MLE)	23.7	k star (bias corrected MLE) 14.9								
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) 10.28 nu star (bias corrected) 238.3								
52	MLE Mean (bias corrected)		MLE Sd (bias corrected) 39.67								
53 54	Adjusted Level of Significance	0.0195	Approximate Chi Square Value (0.05) 203.6 Adjusted Chi Square Value 195.5								
55		•									
56 57	As 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL 186.7								
58 59	CO.S. Ipproximate Gamma COL										
60	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test								
61 62	10% Shapiro Wilk Critical Value	0.851	Data Not Lognormal at 10% Significance Level								
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level								
64 65	Data appear Appro	ximate Logn	ormal at 10% Significance Level								
66	Note GOF tests	inay be unre	eliable for small sample sizes								
67 68	Minimum of Laur 15.		I Statistics								
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data 5.01 SD of logged Data 0.226								
70 71		*									
72	95% H-UCL	181.9	prmal Distribution 90% Chebyshev (MVUE) UCL 190.1								
73 74	95% Chebyshev (MVUE) UCL	. 206.7	97.5% Chebyshev (MVUE) UCL 229.9								
75	99% Chebyshev (MVUE) UCL	. 2/5.3									
76 77			tion Free UCL Statistics								
78	Data appea	ar io toliow a	Discernible Distribution								
79 80			tribution Free UCLs								
81	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 168.4 95% Bootstrap-t UCL 171.1								
82	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL 169.8								

	Α	В	С	D	Е	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Mea	n, Sd) UCL	187.2			95% Ch	ebyshev(Me	an, Sd) UCL	202.6
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	224			99% Ch	ebyshev(Me	an, Sd) UCL	266.1
85												
86 Suggested UCL to Use												
87				95% Stu	dent's-t UCL	174.6						
88												
89		Note: Sugge:	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	m simulation	studies.	
91	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.
92												
93	Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be											
94			reliable.	Chen's and J	ohnson's me	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
95	reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.											

1	A B C D E UCL Statis	F stics for Unc	G H I J K L ensored Full Data Sets
2			
3	User Selected Options		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 3	3:03:54 PM	
6	From File ProUCL Input.xls Full Precision OFF		
7	Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9			
10			
12	TL-WRC-0.5-1		
13		General	Statistics
14	Total Number of Observations	4	Number of Distinct Observations 3
15			Number of Missing Observations 0
16 17	Minimum	99	Mean 132.8
18	Maximum SD	145 22.54	Median 143.5 Std. Error of Mean 11.27
19	Coefficient of Variation	_	Skewness -1.977
20	Occincion of variation	0.17	OKOWIIC35 -1.077
21			l using incremental sampling methodology (ISM) approach,
22			C 2020 and ITRC 2012) for additional guidance,
23 24			the Chebyshev UCL for small sample sizes (n < 7).
25	I DE CHEDYSNEY UCL O	hnical Guide	in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.
26	Troid to the Frode 5.2 Tec	ui duiu	5 15. G GLOUDOIGH OF GIO CHODYSHOT COL.
27			GOF Test
28	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test
29 30	1% Shapiro Wilk Critical Value	0.687	Data Not Normal at 1% Significance Level
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.409 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level
32			rmal at 1% Significance Level
33			eliable for small sample sizes
34			
35		suming Norr	mal Distribution
36 37	95% Normal UCL 95% Student's-t UCL	159.3	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 139.4
38	95% Students-t OCL	139.3	95% Adjusted-CET OCE (Cheri-1995) 139.4 95% Modified-t UCL (Johnson-1978) 157.4
39			SO 70 MICAMICA COSE (COMMISSIN 1070)
40		r	GOF Test
41	A-D Test Statistic	0.852	Anderson-Darling Gamma GOF Test
42	5% A-D Critical Value	0.656	Data Not Gamma Distributed at 5% Significance Level
44	K-S Test Statistic 5% K-S Critical Value	0.437 0.394	Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level
45			ed at 5% Significance Level
46			
47			Statistics
48 49	k hat (MLE) Theta hat (MLE)	40.61 3.269	k star (bias corrected MLE) 10.32 Theta star (bias corrected MLE) 12.87
50	nu hat (MLE)		nu star (bias corrected) 82.54
51	MLE Mean (bias corrected)	132.8	MLE Sd (bias corrected) 41.33
52			Approximate Chi Square Value (0.05) 62.61
53	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A
54 55	Acc	eumina Ca	ama Distribution
56	95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL N/A
57			5579 Fidjusted Gaining OOL 1974
58			GOF Test
59	Shapiro Wilk Test Statistic	0.669	Shapiro Wilk Lognormal GOF Test
60 61	10% Shapiro Wilk Critical Value	0.792	Data Not Lognormal at 10% Significance Level
62	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.415 0.346	Lilliefors Lognormal GOF Test Data Not Lognormal at 10% Significance Level
63			10% Significance Level
64			
65			Statistics
66 67	Minimum of Logged Data	4.595	Mean of logged Data 4.876
68	Maximum of Logged Data	4.977	SD of logged Data 0.188
69	Δοοι	ımina Loana	ormal Distribution
70	95% H-UCL	173.6	90% Chebyshev (MVUE) UCL 170.1
71	95% Chebyshev (MVUE) UCL	187	97.5% Chebyshev (MVUE) UCL 210.5
72	99% Chebyshev (MVUE) UCL	256.5	
73 74	Mannauana	strio Diotelle	tion Fron LICI. Statistics
75			tion Free UCL Statistics Discernible Distribution
76		ii to follow a	Disconius Distribution
77		rametric Dis	tribution Free UCLs
78	95% CLT UCL	151.3	95% BCA Bootstrap UCL N/A
79 80	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL N/A
81	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	N/A 166.6	95% Percentile Bootstrap UCL N/A 95% Chebyshev(Mean, Sd) UCL 181.9
82	97.5% Chebyshev(Mean, Sd) UCL	203.1	99% Chebyshev(Mean, Sd) UCL 244.9
02	or.ord oncoyoner(inicall, ou) ool		OU / OTTODY OTTO (INCOME, OU) OOL ZTT. 3

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83														
84						Suggested	UCL to Use							
85				95% Stu	dent's-t UCL	159.3								
86	Recommended UCL exceeds the maximum observation													
87														
88	When a data set follows an approximate distribution passing only one of the GOF tests,													
89			it is su	ggested to us	se a UCL ba	sed upon a d	istribution pa	ssing both G	OF tests in	ProUCL				
90														
91	1	Note: Sugge:	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the n	nost appropri	ate 95% UC	L.		
92		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness using	g results fro	m simulation	studies.			
93	Ho	wever, simu	lations result	ts will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	e user may	want to cons	ult a statistic	cian.		
94														
95		Note: For	highly negat	tively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	gnormal, a	nd Gamma)	may not be			
96			reliable.	Chen's and .	lohnson's m	ethods provi	de adjustme	nts for posity	ely skewed	l data sets.				
97														

1	A B C D E	F stics for Unc	G H I J K L ensored Full Data Sets
2	,		
3	User Selected Options	0.05.00.51	
5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	3:05:32 PM	
6	Full Precision OFF		
7	Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9 10			
	TL-WRC-0.5-2		
12	1L-WRG-0.3-2		
13		General	Statistics
14	Total Number of Observations	4	Number of Distinct Observations 4
15 16	Minimum	100	Number of Missing Observations 0
17	Minimum Maximum		Mean 200 Median 203.5
18	SD		Std. Error of Mean 4.021
19	Coefficient of Variation		Skewness -1.938
20			
21 22			d using incremental sampling methodology (ISM) approach,
23			C 2020 and ITRC 2012) for additional guidance, the Chebyshev UCL for small sample sizes (n < 7).
24			in gross overestimates of the mean.
25			e for a discussion of the Chebyshev UCL.
26 27		A	
28	Shapiro Wilk Test Statistic		GOF Test Shanira Wilk GOF Test
29	Snapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	_	Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level
30	Lilliefors Test Statistic		Lilliefors GOF Test
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level
32			t 1% Significance Level
33 34	Note GOF tests	may be unre	eliable for small sample sizes
35	Δς	suming Nor	mal Distribution
36	95% Normal UCL	Summy Non	95% UCLs (Adjusted for Skewness)
37	95% Student's-t UCL	209.5	95% Adjusted-CLT UCL (Chen-1995) 202.4
38			95% Modified-t UCL (Johnson-1978) 208.8
39 40		Commo	COF Took
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test
42	5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test
44 45	5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level
46	Data Not Gami	ma Distribute	ed at 5% Significance Level
47		Gamma	Statistics
48	k hat (MLE)	802.9	k star (bias corrected MLE) 200.9
49 50	Theta hat (MLE)		Theta star (bias corrected MLE) 0.996
51	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) 1607 MLE Sd (bias corrected) 14.11
52	INILE Mean (bias corrected)	200	Approximate Chi Square Value (0.05) 1515
53	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A
54			
55 56			nma Distribution
57	95% Approximate Gamma UCL	<u> </u>	95% Adjusted Gamma UCL N/A
58		Lognorma	I GOF Test
59	Shapiro Wilk Test Statistic	0.72	Shapiro Wilk Lognormal GOF Test
60	10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level
61 62	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test
63	10% Lilliefors Critical Value Data Not L		Data Not Lognormal at 10% Significance Level 10% Significance Level
64		-gnomarat	1070 Organico Ector
65			Statistics
66	Minimum of Logged Data		Mean of logged Data 5.298
67 68	Maximum of Logged Data	5.323	SD of logged Data 0.041
69	Δεε	umina I oanc	ormal Distribution
70	95% H-UCL		90% Chebyshev (MVUE) UCL 212.3
71	95% Chebyshev (MVUE) UCL	217.9	97.5% Chebyshev (MVUE) UCL 225.6
72	99% Chebyshev (MVUE) UCL	240.8	
73 74	Namasan	etric Dietrik	tion Free LICL Statistics
75			tion Free UCL Statistics Discernible Distribution
76		1011011 0	
77			tribution Free UCLs
78 79	95% CLT UCL		95% BCA Bootstrap UCL N/A
79 80	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A
81	95% Hall's Bootstrap OCL 90% Chebyshev(Mean, Sd) UCL		95% Percentile Bootstrap UCL N/A 95% Chebyshev(Mean, Sd) UCL 217.5
82	97.5% Chebyshev(Mean, Sd) UCL		99% Chebyshev(Mean, Sd) UCL 240

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83														
84	Suggested UCL to Use													
85	95% Student's-t UCL 209.5													
86		Recommended UCL exceeds the maximum observation												
87		· · · · · · · · · · · · · · · · · · ·												
88	١	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the me	ost appropria	ate 95% UCI	L.		
89		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	n simulation	studies.			
90	Ho	wever, simul	ations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may v	want to consi	ult a statistic	ian.		
91														
92		Note: For	highly negat	ively-skewer	data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	d Gamma) r	nay not be			
93			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posity	vely skewed	data sets.				
94														

19		A B C D E	F	G H I J K L
Date Policy Policy 12 12 13 13 14 15 15 15 15 15 15 15	2	UCL Statis	stics for Unc	ensored Full Data Sets
Firm File			10.04.50.514	
Fig. 1 Precision OFF Number of Bootstrap Operations 2000			12:04:58 PM	
Number of Bootstrap Operations 2000		Full Precision OFF		
UMM-TLA-0,5-1 UMM-TLA-0,5-				
Total Number of Observations Same Statistics Same Statistics	9	Number of Bookstap Operations 2000		
Total Number of Observations S		IIMM-TI A-0 5-1		
Total Number of Observations S	12	DIVINI-1 EA-0.0-1		
Minimum 53		Total Number of Observations		
Maximum 104	15	Total Number of Observations	3	
18				
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2012) for additional guidence, 123	18			
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer eas to ITRC 1921 and ITRC 2021 oand ITRC 2012 for additional guidance, and the state of the refer ease of the TRC of the Shaper Will (Garden), and the state of the refer to the ProUct, 5.2 Technical Guide for a discussion of the Chebyshev UCL. Section 1977		Coefficient of Variation	0.25	
		Note: Sample size is small (e.g., <10), if data	are collected	Lusing incremental sampling methodology (ISM) approach
The Chebyshev UCL often results in arose overestimates of the mean.	22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,
Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.	23			
Shapiro Wilk Test Statistic 0.89	25			
Shapiro Wilk Test Statistic 0.89			Normal C	======================================
1% Shapiro Wilk Critical Value 0.866	28	Shapiro Wilk Test Statistic		
1% Lilliefors Critical Value 0.396				
Data appear Normal at 1% Significance Level	31			
Second S	32	Data appe	ar Normal at	1% Significance Level
Assuming Normal Distribution 95% NOrmal UCL 95% Nor		Note GOF tests	may be unre	eliable for small sample sizes
95% Normal UCL	35		suming Nor	
Samma GOF Test		95% Normal UCL		95% UCLs (Adjusted for Skewness)
Comman C	38	95% Students-t OCL	104.1	
A-D Test Statistic				
1		A-D Test Statistic		
141	42	5% A-D Critical Value	0.679	Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level				
A	45	Detected data appea	r Gamma Di	stributed at 5% Significance Level
Age	46 47	Note GOF tests	may be unre	eliable for small sample sizes
Theta hat (MLE)	48			Statistics
Triangle				
S2	51			
Adjusted Level of Significance 0.0086 Adjusted Chi Square Value 45.9	52			MLE Sd (bias corrected) 31.48
Assuming Gamma Distribution 95% Adjusted Gamma UCL 130.3 95% Adjusted Gamma UCL 130.3 130.3 95% Adjusted Gamma UCL 130.3 130.3 95% Adjusted Gamma UCL 130.3 13	ეკ 54	Adjusted Level of Significance	0.0086	
S7	55			
Lognormal GOF Test				
Shapiro Wilk Test Statistic 0.863 Shapiro Wilk Lognormal GOF Test	58	93 /0 Арргохинате Gamina OCL	•	
61 10% Shapiro Wilk Critical Value 0.806 Data appear Lognormal at 10% Significance Level 62 Lilliefors Critical Value 0.307 Lilliefors Lognormal GOF Test 63 10% Lilliefors Critical Value 0.319 Data appear Lognormal at 10% Significance Level 64 Data appear Lognormal at 10% Significance Level 65 Note GOF tests may be unreliable for small sample sizes 66 Lognormal Statistics 68 Minimum of Logged Data 3.97 Mean of logged Data 4.402 69 Maximum of Logged Data 4.644 SD of logged Data 0.279 70 Assuming Lognormal Distribution 72 95% H-UCL 117.8 90% Chebyshev (MVUE) UCL 115.5 73 95% Chebyshev (MVUE) UCL 129.7 97.5% Chebyshev (MVUE) UCL 149.5 75 Nonparametric Distribution Free UCL Statistics 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% CLT UCL 99.47 95% BCA Bootstrap		Chanica Mills Took Chaticals		
62 Lilliefors Test Statistic 0.307 Lilliefors Lognormal GOF Test 63 10% Lilliefors Critical Value 0.319 Data appear Lognormal at 10% Significance Level 64 Data appear Lognormal at 10% Significance Level 65 Note GOF tests may be unreliable for small sample sizes 66 Lognormal Statistics 68 Mean of logged Data 4.402 69 Maximum of Logged Data 4.644 SD of logged Data 0.279 70 Assuming Lognormal Distribution 72 95% H-UCL 117.8 90% Chebyshev (MVUE) UCL 115.5 73 95% Chebyshev (MVUE) UCL 129.7 97.5% Chebyshev (MVUE) UCL 149.5 75 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL 96	61			
Data appear Lognormal at 10% Significance Level		Lilliefors Test Statistic	0.307	Lilliefors Lognormal GOF Test
Note GOF tests may be unreliable for small sample sizes	64			
Lognormal Statistics Minimum of Logged Data 3.97 Mean of logged Data 4.402	65			
68 Minimum of Logged Data 3.97 Mean of logged Data 4.402 69 Maximum of Logged Data 4.644 SD of logged Data 0.279 70 71 Assuming Lognormal Distribution 72 95% H-UCL 117.8 90% Chebyshev (MVUE) UCL 115.5 73 95% Chebyshev (MVUE) UCL 129.7 97.5% Chebyshev (MVUE) UCL 149.5 74 99% Chebyshev (MVUE) UCL 188.2 75 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% BCA Bootstrap UCL 96			Lognorma	I Statistics
To	68		3.97	Mean of logged Data 4.402
T1		Maximum of Logged Data	4.644	SD of logged Data 0.279
72 95% H-UCL 117.8 90% Chebyshev (MVUE) UCL 115.5 73 95% Chebyshev (MVUE) UCL 129.7 97.5% Chebyshev (MVUE) UCL 149.5 74 99% Chebyshev (MVUE) UCL 188.2 189.2 188.2 189	71	Ass	uming Loand	ormal Distribution
74 99% Chebyshev (MVUE) UCL 188.2 75 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 Nonparametric Distribution Free UCLs 80 95% CLT UCL 99.47 95% BCA Bootstrap UCL 96	72	95% H-UCL	117.8	90% Chebyshev (MVUE) UCL 115.5
75 76 Nonparametric Distribution Free UCL Statistics 77 Data appear to follow a Discernible Distribution 78 79 Nonparametric Distribution Free UCLs 80 95% CLT UCL 99.47 95% BCA Bootstrap UCL 96	74			97.5% Chebyshev (MVUE) UCL 149.5
77 Data appear to follow a Discernible Distribution 78 79 80 Nonparametric Distribution Free UCLs 80 95% CLT UCL 99.47 95% BCA Bootstrap UCL 96	75			ı
78				
80 95% CLT UCL 99.47 95% BCA Bootstrap UCL 96	78	Data appea	ai to ioliow a	DISCELLINE DISHIBULION
	79			
81 95% Standard Bootstrap UCL 97.86 95% Bootstrap-t UCL 100.1				
82 95% Hall's Bootstrap UCL 93.81 95% Percentile Bootstrap UCL 97.6				

	Α	В	С	D	Е	F	G	Н	I	J	K	L	Г
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	112.2			95% Ch	ebyshev(Me	an, Sd) UCL	125	1
84			97.5% Ch	ebyshev(Mea	an, Sd) UCL	142.7			99% Ch	ebyshev(Me	an, Sd) UCL	177.6	
85													
86	Cuggotta CCL to CCC												
87	00 /0 Ottadorito t OCE 104:1												
88													
89													
90	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
92	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
93													
94	Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be												
95			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.			
96													1

1	A B C D E	F stics for Unc	G H I J K L ensored Full Data Sets
2			
3	User Selected Options	40 F0 47 DM	
5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	12:53:47 PM	1
6	Full Precision OFF		
7	Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9 10			
	UMM-TLA-0.5-2		
12	OMM-1LA-0.3-2		
13		General	Statistics
14	Total Number of Observations	4	Number of Distinct Observations 4
15 16		040	Number of Missing Observations 0
17	Minimum Maximum		Mean 335.8 Median 319.5
18	SD		Std. Error of Mean 17.47
19	Coefficient of Variation		Skewness 1.967
20			
21 22			d using incremental sampling methodology (ISM) approach,
23			C 2020 and ITRC 2012) for additional guidance, the Chebyshev UCL for small sample sizes (n < 7).
24			in gross overestimates of the mean.
25			e for a discussion of the Chebyshev UCL.
26 27			
28	Shapiro Wilk Test Statistic		GOF Test Shapira Wilk GOF Test
29	Snapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level
30	Lilliefors Test Statistic		Lilliefors GOF Test
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level
32 33			t 1% Significance Level
34	Note GOF tests	may be unre	eliable for small sample sizes
35	Δο	suming Nor	mal Distribution
36	95% Normal UCL	Summy Non	95% UCLs (Adjusted for Skewness)
37	95% Student's-t UCL	376.9	95% Adjusted-CLT UCL (Chen-1995) 382.8
38			95% Modified-t UCL (Johnson-1978) 379.7
39 40		Commo	COF Test
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test
42	5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test
44 45	5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level
46	Data Not Gami	ma Distribut	ed at 5% Significance Level
47		Gamma	Statistics
48	k hat (MLE)	131.2	k star (bias corrected MLE) 32.96
49	Theta hat (MLE)		Theta star (bias corrected MLE) 10.19
50 51	nu hat (MLE)		nu star (bias corrected) 263.7
52	MLE Mean (bias corrected)	335.8	MLE Sd (bias corrected) 58.48 Approximate Chi Square Value (0.05) 227.1
53	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A
54			
55			nma Distribution
56 57	95% Approximate Gamma UCL	389.9	95% Adjusted Gamma UCL N/A
58		Loanorma	I GOF Test
59	Shapiro Wilk Test Statistic	0.698	Shapiro Wilk Lognormal GOF Test
60	10% Shapiro Wilk Critical Value	0.792	Data Not Lognormal at 10% Significance Level
61 62	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test
63	10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level 10% Significance Level
64	Daid NOLL	ognomiai at	1070 Organication Level
65			l Statistics
66	Minimum of Logged Data	5.756	Mean of logged Data 5.813
67 68	Maximum of Logged Data	5.961	SD of logged Data 0.0993
69	Λοοι	ımina Loana	ormal Distribution
70	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL 385.7
71	95% Chebyshev (MVUE) UCL	408.3	97.5% Chebyshev (MVUE) UCL 439.7
72	99% Chebyshev (MVUE) UCL	501.4	
73 74	Nap	stria Diatelle -	tion Eros LICI Statistics
75			tion Free UCL Statistics Discernible Distribution
76		to ronow a	Disconnible Distribution
77			tribution Free UCLs
78	95% CLT UCL	364.5	95% BCA Bootstrap UCL N/A
79 80	95% Standard Bootstrap UCL		95% Bootstrap-t UCL N/A
81	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	N/A 388.1	95% Percentile Bootstrap UCL N/A 95% Chebyshev(Mean, Sd) UCL 411.9
82	97.5% Chebyshev(Mean, Sd) UCL	444.8	99% Chebyshev(Mean, Sd) UCL 509.5
02			

	Α	В	С	D	E	F	G	Н	I	J	K	L
83												
84	Suggested UCL to Use											
85	95% Student's-t UCL 376.9											
86												
87	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
88	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.											
89	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
90												

1	Α	В	С	D	E	F	G	Н		J	K	L
2					UCL Statis	Stics for Unc	ensored Full D	ata Sets				
3	Date	User Sele e/Time of Co	cted Options	ProUCL 5.2	10/21/2024	12·56·07 DM						
5	Date		From File	ProUCL Inpu		12.30.071 1						
6 7			Il Precision Coefficient	OFF 95%								
8		Bootstrap		2000								
9 10												
11	UMM-TLA-0.	.5-3										
12 13						General	Statistics					
14			Total	Number of Ol	bservations	10					Observations	9
15 16					Minimum	11			Number	of Missing	Observations Mean	0 80.2
17 18					Maximum					04-1	Median	81.5
19				Coefficient	SD of Variation	57.15 0.713				Sta. I	Error of Mean Skewness	18.07 -0.00761
20 21						Normal (COE Took					
22			S	Shapiro Wilk Te	est Statistic	0.877	GOF Test	S	hapiro Wi	lk GOF Tes	t	
23 24				hapiro Wilk Cr	ritical Value	0.781		Data appear			cance Level	
25			1	% Lilliefors Cr	est Statistic ritical Value			Data appear		GOF Test t 1% Signific	cance Level	
26 27					Data appe	ar Normal a	1% Significan					
28					As	suming Nori	mal Distribution					
29 30			95% No	ormal UCL	lent's-t UCL	113.3		95% U		sted for Ske		109.9
31					ieni s-l UCL	113.3		95	∧ Aujuste √ Modifie	ed-t UCL (Jo	(Chen-1995) hnson-1978)	113.3
32 33						Gamma	GOF Test					
34				A-D T	est Statistic	0.694				Gamma GO		
35 36					ritical Value est Statistic	0.741 0.213	Detected d			stributed at v Gamma (5% Significan	ce Level
37				5% K-S Cr	ritical Value	0.272		data appear C	Gamma Di		5% Significan	ce Level
38 39				Detected	data appeai	r Gamma Di	stributed at 5%	Significance	e Level			
40							Statistics					
41 42					k hat (MLE) a hat (MLE)	1.415 56.69					rrected MLE) rrected MLE)	1.057 75.88
43				nı	u hat (MLE)	28.29			mota	nu star (bi	as corrected)	21.14
44 45			M	LE Mean (bias	s corrected)	80.2		An	proximate		as corrected) Value (0.05)	78.01 11.7
46 47			Adjus	sted Level of S	Significance	0.0267			Ac	djusted Chi	Square Value	10.49
48					Ass	sumina Gam	ıma Distributio	n				
49 50			95% A	pproximate G					95'	% Adjusted	Gamma UCL	161.6
51						Lognorma	GOF Test					
52 53				Shapiro Wilk To		0.813				normal GO		
54			10% 5	hapiro Wilk Cr Lilliefors Te	est Statistic	0.869 0.216		Data Not Log Lillief		ormal GOF		
55 56			10	% Lilliefors Cr			Da ormal at 10% S			at 10% Sign	ificance Level	
57				рака ар	pear Approx			<u>agrinicatice i</u>	FOAGI			
58 59				Minimum of Lo	ogged Data		l Statistics			Mean	f logged Data	3.991
60				Maximum of Lo		5.024					f logged Data	1.078
61 62					Δεει	ımina Loana	ormal Distributi	on .				
63					95% H-UCL	312.7	a. Disamuli				(MVUE) UCL	185.3
64 65				Chebyshev (M Chebyshev (M					97.5%	Chebyshev	(MVUE) UCL	289.1
66			33 /0									
67 68							tion Free UCL Discernible Di					
69												
70 71				95°	Nonpai % CLT UCL		tribution Free U	JCLS		95% BCA B	ootstrap UCL	107.7
72 73				Standard Boo	otstrap UCL	108.4				95% Bo	otstrap-t UCL	113.4
74				95% Hall's Boo nebyshev(Mea							ootstrap UCL ean, Sd) UCL	107.3 159
75 76				nebyshev(Mea		193.1					ean, Sd) UCL	260
77						Suggested	UCL to Use					
78 79				95% Stud	lent's-t UCL	113.3						
80	N	lote: Sugge	stions regard	ling the select	ion of a 95%	<u>6 UCL a</u> re pr	ovided to help t	the user to se	elect the m	nost appropr	riate 95% UCL	
81 82		Recom	mendations	are based upo	on data size	, data distrib	ution, and skew	vness using r	esults fror	n simulation	n studies.	
02	<u>Hov</u>	vever, simu	<u>liations result</u>	s will not cove	er all Real W	voria data se	ts; for additiona	ıı ınsıght the ı	user may	want to cons	suit a statistici	an.

	Α	В	С	D	E	F	G	Н		J	K	L
83												
84		Note: For	highly negat	ively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	id Gamma) r	nay not be	
85			reliable. (Chen's and J	lohnson's me	ethods provi	de adjustme	nts for posity	vely skewed	data sets.		
86												

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/31/2024 ProUCL Input.xls	12:57:45 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10				
12	UMM-TLA-0.5-4			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	59	Mean	75.5
17 18	Maximum		Median	78.5
19	SD Coefficient of Variation		Std. Error of Mean Skewness	6.357 -0.817
20		,		0.017
21 22			I using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23			the Chebyshev UCL for small sample sizes (n < 7).	
24 25	The Chebyshev UCL o	often results	in gross overestimates of the mean.	
26	Refer to the ProUCL 5.2 Tec	nnical Guide	e for a discussion of the Chebyshev UCL.	
27			GOF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test	
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test	
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32 33			t 1% Significance Level eliable for small sample sizes	
34				
35 36		suming Norr	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	90.46	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	83.18
38	30% Statistics (002	00.10	95% Modified-t UCL (Johnson-1978)	90.03
39 40			COF Took	
41	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	a Lovol
45			stributed at 5% Significance Level	; Level
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
47		Gamma	Statistics	
49	k hat (MLE)		k star (bias corrected MLE)	11.24
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	6.718
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	89.91 22.52
53			Approximate Chi Square Value (0.05)	69.05
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56	As	suming Garr	nma Distribution	
57 58	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A
58		Lognorma	I GOF Test	
60	Shapiro Wilk Test Statistic	0.879	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level	
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68	Minimum of Logged Data	4.078	Mean of logged Data	4.313
69 70	Maximum of Logged Data	4.454	SD of logged Data	0.177
71			ormal Distribution	
72 73	95% H-UCL	96.84	90% Chebyshev (MVUE) UCL	95.48
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	117.1
75				
76 77			tion Free UCL Statistics	
78	Data appea	<u>ir to follow a</u>	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL	85.96	95% BCA Bootstrap UCL	N/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A
	30 /0 Fiall 5 DOUISHAP UCL	1.11/7.1	1 30 /0 1 GLOGHAIG DOUISHAD OCL	11//3

	Α	В	С	D	Е	F	G	Н	I	J	K	L
83		-	90% Ch	ebyshev(Me	an, Sd) UCL	94.57			95% Ch	ebyshev(Me	an, Sd) UCL	103.2
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	115.2			99% Ch	ebyshev(Me	an, Sd) UCL	138.8
85												
86	Cuggootou COL to COC											
87				95% Stu	dent's-t UCL	90.46						
88				Red	commended	UCL exceed	ds the maxim	num observa	ation			
89												
90	l	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
92	Ho	wever, simu	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.
93												
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be	
95			reliable.	Chen's and J	ohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	data sets.		
96												

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	10-F0-20 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	12:59:36 PIVI		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations (2000			
10 11	UMM-TLA-0.5-4-DUP			
12	<u> </u>			
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	4
15	Total Number of Observations	4	Number of Missing Observations	0
16 17	Minimum	64 81	Mean	72.5 72.5
18	Maximum SD	6.952	Median Std. Error of Mean	3.476
19	Coefficient of Variation		Skewness	0
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	I using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide of	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			the Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Names -1.4		
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level	
30 31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appe	ar Normal at	1% Significance Level	
33 34	Note GOF tests	may be unre	eliable for small sample sizes	
35	As	suming Nor	mal Distribution	
36 37	95% Normal UCL	T	95% UCLs (Adjusted for Skewness)	70.00
38	95% Student's-t UCL	80.68	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	78.22 80.68
39				00.00
40 41	A-D Test Statistic	Gamma 0.274	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	Lavel
45	5% K-S Critical Value Detected data appear		Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	Level
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
47		Gamma	Statistics	
49	k hat (MLE)	144.2	k star (bias corrected MLE)	36.21
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	2.002 289.7
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	12.05
53 54	Adjusted Level of Classification	N/A		251.3
55	Adjusted Level of Significance	IN/A	Adjusted Chi Square Value	N/A
56 57			ma Distribution	N1/A
58	95% Approximate Gamma UCL	83.59	95% Adjusted Gamma UCL	N/A
59			GOF Test	
60 61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
62	Lilliefors Test Statistic	0.236	Lilliefors Lognormal GOF Test	
63 64	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
65	Note GOF tests	may be unre	eliable for small sample sizes	
66 67				
68	Minimum of Logged Data		Il Statistics Mean of logged Data	4.28
69	Maximum of Logged Data		SD of logged Data	0.0964
70 71	Λοοι	umina Loana	ormal Distribution	
72	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	82.98
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	87.73 107.3	97.5% Chebyshev (MVUE) UCL	94.31
75	33 % Chebyshev (MVOE) UCL	107.3		
76 77			tion Free UCL Statistics	
78	Data appea	ir to tollow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL 95% Standard Bootstrap UCL	78.22 N/A		N/A N/A
82	95% Hall's Bootstrap UCL			N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L
83	90% Chebyshev(Mean, Sd) UCL 82.93 95% Chebyshev(Mean, Sd) UCL											87.65
84	97.5% Chebyshev(Mean, Sd) UCL 94.21 99% Chebyshev(Mean, Sd) UCL										107.1	
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	80.68						
88						•	•					
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.	
91		wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistici	ian.
92												

1		
Date/Time of Computation		
Statistics From File ProUCL Input.xls		
7 Confidence Coefficient 95% 8 Number of Bootstrap Operations 2000 9 10 11 UMM-TLA-0.5-5 12 3 14 Total Number of Observations 4 15 Number of Distinct 15 Number of Missing 16 Minimum 31		
8 Number of Bootstrap Operations 2000 9 10 11 UMM-TLA-0.5-5 12 3 13 General Statistics 14 Total Number of Observations 4 Number of Distinct 15 Number of Missing 16 Minimum 31		
9 10 11 UMM-TLA-0.5-5 12 13 General Statistics 14 Total Number of Observations 4 Number of Distinct 15 Number of Missing 16 Minimum 31 31 31 31 31 31 31 3		
11 UMM-TLA-0.5-5 12 General Statistics 13 General Statistics 14 Total Number of Observations 4 Number of Distinct 15 Number of Missing 16 Minimum 31		
12 13 General Statistics 14 Total Number of Observations 4 Number of Distinct 15 Number of Missing 16 Minimum 31		
14Total Number of Observations4Number of Distinct15Number of Missing16Minimum31		
15 Number of Missing 16 Minimum 31	Observations	4
		0
	Mean Median	38.5 38.5
18 SD 6.137 Std.	Error of Mean	3.069
19 Coefficient of Variation 0.159	Skewness	0
Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM	approach.	
refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance,		
but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < The Chebyshev UCL often results in gross overestimates of the mean.	7).	
Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.		
26 27 Normal GOF Test		
28 Shapiro Wilk Test Statistic 0.971 Shapiro Wilk GOF Tes		
29 1% Shapiro Wilk Critical Value 0.687 Data appear Normal at 1% Signification 1% Significa	cance Level	
31 1% Lilliefors Critical Value 0.413 Data appear Normal at 1% Signific	cance Level	
Data appear Normal at 1% Significance Level		
Note GOF tests may be unreliable for small sample sizes 34		
35 Assuming Normal Distribution		
36 95% Normal UCL 95% UCLs (Adjusted for Sk 37 95% Student's-t UCL 45.72 95% Adjusted-CLT UCL		43.55
38 95% Modified-t UCL (Jo		45.72
39 40 Gamma GOF Test		
40 Gamma GOF Test 41 A-D Test Statistic 0.27 Anderson-Darling Gamma GO	OF Test	
42 5% A-D Critical Value 0.656 Detected data appear Gamma Distributed at	5% Significand	e Level
K-S Test Statistic 0.231 Kolmogorov-Smirnov Gamma (44) 5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at		e l evel
45 Detected data appear Gamma Distributed at 5% Significance Level	576 Olgrinicario	O LCVOI
Note GOF tests may be unreliable for small sample sizes 47		
48 Gamma Statistics		
49 k hat (MLE) 51.64 k star (bias co		13.08
Theta hat (m22)	as corrected)	2.944 104.6
52 MLE Mean (bias corrected) 38.5 MLE Sd (bi	as corrected)	10.65
53 Approximate Chi Square 54 Adjusted Level of Significance N/A Adjusted Chi Adjusted Chi		82.01 N/A
55	oqualo valuo	13//3
Second	Camma LICI	N/A
58	uaninia UUL	111/71
59 Lognormal GOF Test 60 Shapiro Wilk Test Statistic 0.966 Shapiro Wilk Lognormal GO	E Tost	
61 10% Shapiro Wilk Critical Value 0.792 Data appear Lognormal at 10% Sign		
62 Lilliefors Test Statistic 0.242 Lilliefors Lognormal GOF	Test	
63 10% Lilliefors Critical Value 0.346 Data appear Lognormal at 10% Sign 64 Data appear Lognormal at 10% Significance Level	ITICANCE Level	
Note GOF tests may be unreliable for small sample sizes		
66 67 Lognormal Statistics		
68 Minimum of Logged Data 3.434 Mean o	f logged Data	3.641
69 Maximum of Logged Data 3.829 SD o	f logged Data	0.162
71 Assuming Lognormal Distribution		
72 95% H-UCL 48.17 90% Chebyshev		47.83
73 95% Chebyshev (MVUE) UCL 52.06 97.5% Chebyshev 74 99% Chebyshev (MVUE) UCL 69.44	(MVUE) UCL	57.92
75		
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution		
78		
79 Nonparametric Distribution Free UCLs		N1/0
	ootstrap UCL otstrap-t UCL	N/A N/A
82 95% Hall's Bootstrap UCL N/A 95% Percentile B		N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	47.71		51.88				
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	57.66			99% Ch	ebyshev(Me	an, Sd) UCL	69.03
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	45.72						
88												
89		Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.	
91		wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.
92												

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	1.0E:22 DM		
5	Date/Time of Computation ProUCL 5.2 10/31/2024 From File ProUCL Input.xls	1:05:33 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Booleting Operations (2000			
10 11	UMM-TLA-0.5-5-DUP			
12	OMMI-1 LA-0.5-5-DOP			
13 14	Total Number of Observations		Statistics Number of Distinct Observations	
15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	33	Mean	39.75
17 18	Maximum SD	47 6.801	Median Std. Error of Mean	39.5 3.4
19	Coefficient of Variation		Skewness	0.0914
20 21	Note: Sample size is small (e.g. <10) if date (ara collected	using incremental sampling methodology (ISM) approach,	
22			C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7).	
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	110101 10 110 1 100 0 1 1 1 1 0 0		•	
27 28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level	
30 31	Lilliefors Test Statistic		Lilliefors GOF Test	
32	1% Lilliefors Critical Value Data apper		Data appear Normal at 1% Significance Level 1 1% Significance Level	
33			eliable for small sample sizes	
34 35	Δο	suming Non	mal Distribution	
36	95% Normal UCL	Summy Non	95% UCLs (Adjusted for Skewness)	
37 38	95% Student's-t UCL	47.75	95% Adjusted-CLT UCL (Chen-1995)	45.51
39			95% Modified-t UCL (Johnson-1978)	47.78
40			GOF Test	
41 42	A-D Test Statistic 5% A-D Critical Value	0.396 0.656	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e l evel
43	K-S Test Statistic	0.285	Kolmogorov-Smirnov Gamma GOF Test	
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	e Level
46	Note GOF tests	may be unre	eliable for small sample sizes	
47 48		Commo	Ctatistica	
49	k hat (MLE)	45.37	Statistics k star (bias corrected MLE)	11.51
50 51	Theta hat (MLE)		Theta star (bias corrected MLE)	3.454
52	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	92.07 11.72
53			Approximate Chi Square Value (0.05)	70.94
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
56			ma Distribution	
57 58	95% Approximate Gamma UCL	51.59	95% Adjusted Gamma UCL	N/A
59		Lognorma	GOF Test	
60 61	Shapiro Wilk Test Statistic	0.892	Shapiro Wilk Lognormal GOF Test	
62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level	
64 65	Data appear	Lognormal a	at 10% Significance Level Bliable for small sample sizes	
66	NOTE GOT LESTS			
67 68	Minimum of Long 1 Date		I Statistics	2 672
69	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	3.672 0.172
70 71				
71 72	Assı 95% H-UCL		prmal Distribution 90% Chebyshev (MVUE) UCL	49.98
73	95% Chebyshev (MVUE) UCL	54.62	97.5% Chebyshev (MVUE) UCL	61.05
74 75	99% Chebyshev (MVUE) UCL	73.68		
76	Nonparame	etric Distribu	tion Free UCL Statistics	
77 70			Discernible Distribution	
78 79	Nonna	rametric Dis	tribution Free UCLs	
80	95% CLT UCL	45.34	95% BCA Bootstrap UCL	N/A
81 82	95% Standard Bootstrap UCL		95% Bootstrap-t UCL	N/A
UΖ	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	49.95		95% Chebyshev(Mean, Sd) UCL 54					
84		97.5% Chebyshev(Mean, Sd) U(99% Ch	ebyshev(Me	an, Sd) UCL	73.58	
85]
86						Suggested	UCL to Use]
87				95% Stu	dent's-t UCL	47.75							
88				Red	commended	UCL exceed	ds the maxim	num observa	ition]
89													
90	1	Note: Sugge:	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL		1
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
92	Но	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	an.	
93													1

1	Α	В	С	D	E LIOL Obstic	F	G	H	I	J	K	L
2					UCL Statis	Stics for Unc	ensored Full D	Jata Sets				
3	Dr	User Selection User S	ected Options	ProUCL 5.2 1	0/31/2024 -	1·16·// DM						
5	Da		From File	ProUCL Input		1. 10.44 F W						
6 7			Ill Precision Coefficient	OFF 95%								
8	Number	of Bootstrap		2000								
9												
11	UMM-TLA-	0.5-6										
12 13						General	Statistics					
14			Total	Number of Ob	servations	10					Observations	10
15 16					Minimum	2576			Numbe	r of Missing	Observations Mean	3074
17					Maximum	3402					Median	3083
18 19				Coefficient o	SD of Variation					Std.	Error of Mean Skewness	80.46 -0.618
20					variation						OKOWNOOD	
21 22			S	Shapiro Wilk Te	st Statistic	Normal 0 0.962	GOF Test		Shaniro W	ilk GOF Tes	et .	
23				hapiro Wilk Cri	tical Value	0.781			r Normal a	at 1% Signifi	icance Level	
24 25			1	Lilliefors Te % Lilliefors Cri		0.113 0.304		Data annea		GOF Test	icance Level	
26			ı				1% Significan			170 Olgilli		
27 28					Δe	sumina Nor	mal Distribution					
29			95% No	ormal UCL				95% U		usted for Sk		
30 31				95% Stude	ent's-t UCL	3221		95 c	5% Adjuste 5% Modifi	ed-CLT UCL ed-t UCL (.)	_(Chen-1995) ohnson-1978)	3190 3219
32					ļ							
33 34				A-D Te	st Statistic	Gamma 0.218	GOF Test	Anders	on-Darling	Gamma G	OF Test	
35				5% A-D Cri	tical Value	0.724	Detected of	data appear	Gamma D	istributed at	t 5% Significan	ce Level
36 37				K-S Te 5% K-S Cri	st Statistic	0.12 0.266	Detected (ov Gamma	GOF Test t 5% Significan	ce I evel
38							stributed at 5%					
39 40						Gamma	Statistics					
41					hat (MLE)	156.7					orrected MLE)	109.8
42 43					hat (MLE)				Theta		orrected MLE) ias corrected)	28 2196
44			M	LE Mean (bias		0.00				MLE Sd (b	ias corrected)	293.4
45 46			Adius	sted Level of Si	ianificance	0.0267		A	pproximate A	<u>e Chi Square</u> diusted Chi	e Value (0.05) Square Value	2088
47 48							B' L' L' L'					
48			95% A	pproximate Ga			nma Distributio	<u>n</u>	95	5% Adjusted	Gamma UCL	3261
50 51					•		LOOF Took			•		
52			S	Shapiro Wilk Te	st Statistic	0.949	I GOF Test	Shapir	o Wilk Log	gnormal GC	OF Test	
53 54			10% S	hapiro Wilk Cri		0.869	D:				nificance Level	
55			10	Lilliefors Te 1% Lilliefors Cri		0.129 0.241	D			ormal GOF at 10% Sigr	ı est nificance Level	
56 57							at 10% Signific					
58						Lognorma	l Statistics					
59 60				Minimum of Lo							of logged Data	8.028
61				Maximum of Lo	yyeu Data	0.132				2D (of logged Data	0.085
62 63					Assu 5% H-UCL		rmal Distributi	ion	009/	Chohycha	(M)/HE) HO	3322
64			95%	Stephen (M)		N/A 3435					(MVUE) UCL (MVUE) UCL	
65 66				Chebyshev (M)								
67							tion Free UCL					
68 69					Data appea	r to follow a	Discernible Di	istribution				
70							tribution Free I	UCLs				
71 72			05%	95% Standard Boot	CLT UCL						Bootstrap UCL ootstrap-t UCL	
73			9	5% Hall's Boot	tstrap UCL	3195				Percentile E	Bootstrap UCL	3196
74 75				nebyshev(Mear nebyshev(Mear	, ,						lean, Sd) UCL lean, Sd) UCL	
76			37.370 UI	ioby of lev (IVIEd)	i, Guj UCL				J3 /0 UI	iobyoniev(IVI	ioan, ou <i>j</i> ool	3070
77 78				95% Stude	ent's-t UCL		UCL to Use					
79												
80 81				ding the selection are based upon								
82	H			ts will not cover								an.
		·				·						

	Α	В	С	D	E	F	G	Н		J	K	L
83												
84		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	id Gamma) r	nay not be	
85			reliable. (Chen's and J	lohnson's me	ethods provi	de adjustme	nts for posity	vely skewed	data sets.		
86												

1	Α	В	С	D	E LIOL Objetion	F	G	H	ı	J	K	L
2					UCL Statis	Stics for Unc	ensored Full D	vata Sets				
3	Do	User Selection User S	ected Options	ProUCL 5.2 1	0/31/2024 :	1.20.34 DM						
5	Da		From File	ProUCL Input		1.20.34 F W						
6 7			III Precision Coefficient	OFF 95%								
8	Number	of Bootstrap		2000								
9												
11	UMM-TLB-	0.5-1										
12 13						General	Statistics					
14			Total	Number of Ob	servations	10					Observations	10
15 16					Minimum	2731			Numbe	r of Missing	Observations Mean	3120
17					Maximum	3822				0:1	Median	3002
18 19				Coefficient c	SD of Variation	381.3 0.122				Std.	Error of Mean Skewness	120.6 0.827
20												
21 22			S	Shapiro Wilk Te	st Statistic	0.889	GOF Test	<u></u>	Shapiro W	ilk GOF Tes	st	
23				hapiro Wilk Cri	itical Value	0.781			r Normal a	at 1% Signifi	icance Level	
24 25			1	Lilliefors Te % Lilliefors Cri		0.227 0.304		Data appea		GOF Test at 1% Signifi	cance Level	
26			<u>'</u>				1% Significan	ice Level		J Grgriiii		
27 28					Ass	sumina Nori	mal Distribution					
29			95% No	ormal UCL				95% U		sted for Sk		2252
30 31				95% Stude	ent's-t UCL	3341		95 9	5% Adjuste 5% Modifi	ed-t UCL (.).	_(Chen-1995) ohnson-1978)	3352 3346
32							2057				,	
34				A-D Te	est Statistic	Gamma 0.485	GOF Test	Anderso	on-Darling	Gamma G	OF Test	
35				5% A-D Cri	itical Value	0.724	Detected of	data appear (Gamma D	istributed at	t 5% Significan	ce Level
36 37				K-S Te 5% K-S Cri	est Statistic itical Value	0.236 0.266	Detected of			ov Gamma istributed at	GOF Test t 5% Significan	ce Level
38							stributed at 5%					
39 40						Gamma	Statistics					
41					hat (MLE)	77.73					orrected MLE)	54.48
42 43					hat (MLE) hat (MLE)	40.14 1555			Theta		orrected MLE) ias corrected)	57.27 1090
44			M	LE Mean (bias						MLE Sd (b	ias corrected)	422.7
45 46			Adius	sted Level of S	ianificance	0.0267		Ap	oproximate A	<u>e Chi Square</u> diusted Chi	e Value (0.05) Square Value	1014
47 48							D '					
48			95% A	pproximate Ga			ma Distributio	<u>in</u>	95	5% Adjusted	Gamma UCL	3395
50 51					•		LOOF Took			•		
52			S	Shapiro Wilk Te	est Statistic	0.9	GOF Test	Shapir	o Wilk Log	gnormal GC	OF Test	
53 54			10% S	hapiro Wilk Cri		0.869	Da	ata appear L	.ognormal	at 10% Sigr	nificance Level	
55			10	Lilliefors Te 1% Lilliefors Cri		0.224 0.241	Di			ormal GOF at 10% Sigr	ı est nificance Level	
56 57		-					at 10% Signific					
58						Lognorma	l Statistics					
59 60				Minimum of Lo							of logged Data	8.039 0.118
61				Maximum of Lo	yyeu Data	0.249				2D C	of logged Data	U.116
62 63					Assu 5% H-UCL		rmal Distributi	ion	000/	Chohycha	(M)/HE) HO	3470
64			95%	Chebyshev (M							(MVUE) UCL (MVUE) UCL	
65 66				Chebyshev (M								
67							tion Free UCL					
68 69					Data appea	r to follow a	Discernible Di	istribution				
70							tribution Free I	UCLs				
71 72			05%	95% Standard Boot	6 CLT UCL						Bootstrap UCL ootstrap-t UCL	
73			9	5% Hall's Boo	tstrap UCL	3361				Percentile E	Bootstrap UCL	3316
74 75				nebyshev(Mear nebyshev(Mear							lean, Sd) UCL lean, Sd) UCL	
76			37.370 UI	CDYSHEV(IVIEDI	i, Guj UCL				J3 /0 UI	iobyoniev(IVI	ioan, ou <i>j</i> ool	TULU
77 78				95% Stude	ent's-t UCL		UCL to Use					
79							1					
80 81							ovided to help to the skever of the skever o					
82	He						ts; for additiona					an.
_		·		-		-					-	

83 B C D E F G H I J K L

1	Α	В	С	D	E	F	G	Н	ı	J	K	L
2					UCL Statis	Stics for Unc	ensored Full Da	ata Sets				
3	Date	User Sele	cted Options	ProUCL 5.2 1	0/31/2024 -	1.27.22 DM						
5	Date		From File	ProUCL Input		1.27.321 1						
6 7	(Ful Confidence	Precision Coefficient	OFF 95%								
8		Bootstrap		2000								
9 10												
11	UMM-TLB-0	.5-2										
12 13						General	Statistics					
14			Total	Number of Ob	servations	10					Observations	10
15 16					Minimum	221			Number	of Missing (Observations Mean	1034
17 18					Maximum	2865				0.1.5	Median	562.5
19				Coefficient o	SD f Variation	945.7 0.915				Std. E	Error of Mean Skewness	299.1 1.152
20 21												
22			S	hapiro Wilk Te	st Statistic	Normal 0 0.775	GOF Test	S	hapiro Wi	lk GOF Tes	t	
23				hapiro Wilk Cri	tical Value	0.781		Data Not N	lormal at 1	% Significa		
24 25			1	Lilliefors Te % Lilliefors Cri		0.347 0.304				GOF Test Significa	nce Level	
26			·				% Significance			g-miou		
27 28					Ass	sumina Nori	mal Distribution	<u> </u>				
29			95% No	ormal UCL				95% U		sted for Ske		1010
30 31				95% Stude	ent's-t UCL	1582		95°	<u>% Adjuste</u> 5% Modifie	a-CLI UCL ed-t UCL (Ja	(Chen-1995) hnson-1978)	1642
32												
34				A-D Te	st Statistic	Gamma 0.747	GOF Test	Anderso	n-Darling	Gamma GC	OF Test	
35				5% A-D Cri	tical Value	0.739	Data	a Not Gamma	a Distribut	ed at 5% Sig	gnificance Lev	el
36 37				K-S Te	st Statistic	0.284 0.271	Data			v Gamma C ed at 5% Sid	3OF Test gnificance Lev	el
38							ed at 5% Signif			<u> </u>	J00 LOV	
39 40						Gamma	Statistics					
41					hat (MLE)	1.537					rrected MLE)	1.143
42 43					hat (MLE) hat (MLE)	672.6 30.74	rrected MLE) as corrected)	904.8 22.85				
44			MI	LE Mean (bias			as corrected)	967.1				
45 46			Adius	sted Level of Si	anificance	0.0267		Ap	proximate Ac	Chi Square	Value (0.05) Square Value	12.98 11.7
47			, tajac	7.00 20101 01 01					7.00	ijaotoa om c	oquaio vaiuo	
48 49			95% A	pproximate Ga			ma Distributior	<u>n</u>	95	% Adjusted	Gamma UCL	2018
50				, pp. 0						70 7 14 40104		
51 52			S	hapiro Wilk Te	st Statistic	Lognorma 0.899	I GOF Test	Shapiro	wilk Log	normal GO	F Test	
53				hapiro Wilk Cri	tical Value	0.869	Da	ata appear Lo	ognormal a	at 10% Sign	ificance Level	
54 55			10	Lilliefors Te % Lilliefors Cri		0.23 0.241	Da			ormal GOF	<u>Test</u> ificance Level	
56							at 10% Significa					
57 58						Lognorma	I Statistics					
59 60				Minimum of Lo		5.398					f logged Data	6.582
61			N	Maximum of Lo	gged Data	7.96				SD of	f logged Data	0.882
62 63				27			rmal Distribution	on	000/	Oh a k · · - ¹	/M/// IE/ 110: 1	1007
64			95%	95 Chebyshev (M	5% H-UCL VUE) UCL						(MVUE) UCL (MVUE) UCL	1897 2854
65				Chebyshev (M)						,	,	
66 67				N	lonparame	tric Distribu	tion Free UCL	Statistics				
68 69							Discernible Dis					
70					Nonpar	rametric Dis	tribution Free U	JCLs				
71 72			0501		CLT UCL	1526			Ç		ootstrap UCL	1585
73				Standard Boot 5% Hall's Boot					95% F		otstrap-t UCL ootstrap UCL	1784 1519
74 75			90% Ch	ebyshev(Mear	, Sd) UCL	1931			95% Ch	ebyshev(Me	ean, Sd) UCL	2337
76			97.5% Ch	ebyshev(Mear	ı, Sa) UCL	2901			99% Ch	epysnev(Me	ean, Sd) UCL	4009
77 78							UCL to Use					
79				95	5% H-UCL	24/3						
80	N						ovided to help t					
81 82	Hov						ution, and skew ts; for additiona					an.
	1101						, additiona					

1	Α	В	С	D	E LICI Statis	F	G Full De	H eta Cata		J	K	L
2				1	OCL Statis	SUCS TOT UNC	ensored Full Da	ala sets				
3	Dot	User Sele e/Time of Ce	cted Options	ProUCL 5.2 1	10/21/2024 :	1.22.20 DM						
5	Dati	e/Time of Ci	From File	ProUCL 5.2		1.32.39 FIVI						
6 7			Il Precision	OFF								
8		Confidence f Bootstrap		95% 2000								
9		. 200:0::: ap	0 00.00.0	12000								
10 11	UMM-TLB-0	5-3										
12	OWNER TED C											
13 14			Total	Number of Ob	nearyations	General 10	Statistics		Number	r of Distinct	Observations	10
15			TOtal	Number of Or	JSEI VALIOIIS	10					Observations Observations	0
16 17					Minimum Maximum	367 1143					Mean Median	629.1 515
18					SD	285.1				Std. I	Error of Mean	90.17
19 20				Coefficient of	of Variation	0.453					Skewness	1.121
21						Normal (GOF Test					
22				hapiro Wilk Te		0.829				lk GOF Tes		
23 24			1% S	hapiro Wilk Cr Lilliefors Te	ritical Value est Statistic	0.781 0.241	l	Data appear		t 1% Signific GOF Test	cance Level	
25			1	% Lilliefors Cr	itical Value	0.304		Data appear			cance Level	
26 27					Data appea	ar Normal at	1% Significand	ce Level				
28					As	suming Nor	mal Distribution					
29 30			95% No	ormal UCL	ent's-t UCL	794.4				sted for Ske	ewness) (Chen-1995)	811.6
31				90 /0 Studi	onto-t UCL	7 34.4		95	% Modifie	ed-t UCL (Jo	ohnson-1978)	
32 33						Gamera	GOF Test					
34				A-D Te	est Statistic	0.535	GOF TEST	Anderso	n-Darling	Gamma G	OF Test	
35 36					itical Value	0.728	Detected da	ata appear G	amma Di	stributed at	5% Significan	ce Level
37					est Statistic ritical Value	0.218 0.267	Detected da			ov Gamma (stributed at	OF Test 5% Significan	ce Level
38							stributed at 5%				o to organican	50 2010.
39 40						Gamma	Statistics					
41					k hat (MLE)	6.262	Otationes				rrected MLE)	4.45
42 43					a hat (MLE) u hat (MLE)	100.5 125.2		rrected MLE) as corrected)	141.4 89			
44			MI	LE Mean (bias	/			as corrected)	298.2			
45 46			۸ ما:،،،	-td -f O	`:-:::::::::::::::::::::::::::::::::::	0.0067		Ap	proximate	Chi Square	Value (0.05) Square Value	68.25
47			Adjus	sted Level of S	oignificance	0.0267			AC	ajustea Chi s	Square value	65.1
48 49			050/ 4				ma Distributior	n	05	0/ 4 !'	0 1101	000.4
50			95% A	pproximate Ga	amma UCL	820.4			95	% Adjusted	Gamma UCL	860.1
51							GOF Test					
52 53				<u>Shapiro Wilk Te</u> hapiro Wilk Cr		0.897 0.869	Da			Inormal GO	F Test ificance Level	
54				Lilliefors Te	est Statistic	0.193		Lillief	ors Logno	ormal GOF	Test	
55 56			10	% Lilliefors Cr		0.241 Lognormal a	Da at 10% Significa		gnormal	at 10% Sign	ificance Level	
57					аш аррсаі		-	#1100 F6461				
58 59				Minimum of Lo	naged Data	Lognorma 5.905	l Statistics			Mean	f logged Data	6.362
60				Maximum of Lo		7.041					f logged Data	0.415
61 62					A = = -	ımina Lasırı	rmal Distribution					
63				9	ASSU 95% H-UCL	<u>1ming Logno</u> 845.1	ormal Distributio	<u> </u>	90%	Chebyshev	(MVUE) UCL	875.2
64 65				Chebyshev (N	IVUE) UCL	988.1					(MVUE) UCL	
66			99%	Chebyshev (N	IVUE) UCL	1453						
67							tion Free UCL					
68 69					Data appea	r to follow a	Discernible Dis	stribution				
70							tribution Free U	JCLs				
71 72			Q5%	95% Standard Boo	6 CLT UCL	777.4 774.5					ootstrap UCL otstrap-t UCL	814.1 912.7
73			9	5% Hall's Boo	tstrap UCL	944.5				Percentile B	ootstrap UCL	787.4
74 75				nebyshev(Mea nebyshev(Mea							ean, Sd) UCL ean, Sd) UCL	1022 1526
76			97.3% CN	ienysi iev(iviėa	ıı, ou) UCL	1132			99% CN	ienysnev(IVI	ean, Su) UCL	1020
77 78			-	OEO/ Care-l	ontic + LICI		UCL to Use			-		
79				95% Stud	ent's-t UCL	794.4	<u> </u>					
80	N						ovided to help the					
81 82	Hov						ution, and skew ts; for additional					an
	110	vvovci, Siiilu	iidiioiio iESUll	S WIII HOL COVE	ı un ricai VV	ona aata se	io, ioi audilioila	i irrorgini tire t	addi iilay	vant to COII	oun a statistici	٠١١٠.

4	A B C D E	F	G H I J K	L
2		stics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/31/2024	1.27.00 DM		
5	From File ProUCL Input.xls	1.37.00 FIVI		
6 7	Full Precision OFF Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
11	UMM-TLB-0.5-4			
12 13		General	Statistics	
14 15	Total Number of Observations		Number of Distinct Observations	10
16	Minimum	1127	Number of Missing Observations Mean	0 1475
17 18	Maximum	2033	Median	1364
19	SD Coefficient of Variation		Std. Error of Mean Skewness	91.54 0.798
20 21				
22	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
23 24	1% Shapiro Wilk Critical Value	0.781	Data appear Normal at 1% Significance Level	
25	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
26			: 1% Significance Level	
27 28	As	sumina Nori	mal Distribution	
29 30	95% Normal UCL	1	95% UCLs (Adjusted for Skewness)	1050
31	95% Student's-t UCL	1642	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	1650 1646
32				
34	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
35	5% A-D Critical Value	0.724	Detected data appear Gamma Distributed at 5% Significant	e Level
36 37	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	ce Level
38 39			stributed at 5% Significance Level	
40		Gamma	Statistics	
41	k hat (MLE)	30.49	k star (bias corrected MLE)	21.41
42 43	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	68.87 428.2
44 45	MLE Mean (bias corrected)		MLE Sd (bias corrected)	318.7
46	Adjusted Level of Significance	0.0267	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	381.3 373.5
47 48				
49	95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	1690
50 51		Lognormo	I COE Toot	
52	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test	
53 54	10% Shapiro Wilk Critical Value		Data appear Lognormal at 10% Significance Level	
55	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.241	Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
56 57	Data appear	Lognormal a	at 10% Significance Level	
58			I Statistics	
59 60	Minimum of Logged Data Maximum of Logged Data	7.027	Mean of logged Data SD of logged Data	7.28 0.189
61			·	0.103
62 63	Ass : 95% H-UCL		ormal Distribution 90% Chebyshev (MVUE) UCL	1739
64	95% Chebyshev (MVUE) UCL	1859	97.5% Chebyshev (MVUE) UCL	2026
65 66	99% Chebyshev (MVUE) UCL	2354		
67			tion Free UCL Statistics	
68 69	Data appea	ar to follow a	Discernible Distribution	
70			tribution Free UCLs	
71 72	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	1646 1716
73	95% Hall's Bootstrap UCL	1660	95% Percentile Bootstrap UCL	1628
74 75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1749 2046	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	1874 2385
76	77.576 Shobyshov(Modif, 50) GOE			
77 78	95% Student's-t UCL		UCL to Use	
79		'		
80 81			ovided to help the user to select the most appropriate 95% UCL. ution, and skewness using results from simulation studies.	
82			ts; for additional insight the user may want to consult a statisticia	an.

-1	Α	В	С	D	E LIOL Obstic	F	G	H Data Oata	ı	J	K	L
2					UCL Statis	sucs for Unc	ensored Full D	vata Sets				
3	Dat	User Sele e/Time of C	cted Options	ProUCL 5.2	10/31/2024	1·39·34 PM						
5	- But		From File	ProUCL Inpu		1.00.011 10						
6 7	1	<u>Fu</u> Confidence	Il Precision Coefficient	OFF 95%								
8		f Bootstrap		2000								
9 10												
11 12	UMM-TLC-0).5-1										
13						General	Statistics					
14 15			Total	Number of O	bservations	10					Observations	10 0
16					Minimum	410			Numbe	roriviissing	Observations Mean	1073
17 18					Maximum SD					C+d	Median Error of Mean	973.5 143.6
19				Coefficient	of Variation					otu.	Skewness	0.577
20 21						Normal (GOF Test					
22				Shapiro Wilk T		0.959				ilk GOF Tes		
23 24			1% S	hapiro Wilk C	ritical Value est Statistic	0.781 0.175		Data appea		at 1% Signifi GOF Test	cance Level	
25			1	% Lilliefors C	ritical Value	0.304					icance Level	
26 27					Data appea	ar Normal at	t 1% Significan	ice Level				
28			A=		As	suming Nor	mal Distribution		101 11 11			
29 30			95% No	ormal UCL 95% Stud	dent's-t UCL	1336				usted for Sk ed-CLT UCL	(Chen-1995)	1337
31 32								9	5% Modifi	ed-t UCL (J	ohnson-1978)	1340
33						Gamma	GOF Test					
34 35					est Statistic	0.207				Gamma G		
36					ritical Value est Statistic	0.729 0.161	Detected d			ov Gamma	t 5% Significan GOF Test	ce Level
37 38					ritical Value		Detected d			istributed at	t 5% Significan	ce Level
39				Detected	иата арреат			<u>s Significano</u>	e Levei			
40 41					k hat (MLE)	Gamma 5.938	Statistics		k	etar (hiae co	orrected MLE)	4.223
42					ta hat (MLE)						orrected MLE)	254
43 44			M	n LE Mean (bias	u hat (MLE)		oias corrected)	84.46 522				
45				,				Aŗ	oproximate	Chi Square	e Value (0.05)	64.28
46 47			Adjus	sted Level of S	Significance	0.0267			A	djusted Chi	Square Value	61.23
48							ma Distributio	'n				
49 50			95% A	pproximate G	amma UCL	1410			95	% Adjusted	Gamma UCL	1480
51 52				No and in a MARILLA T			I GOF Test	Oh i	- \A#II-1 -		\C T+	
53				<u>Shapiro Wilk T</u> hapiro Wilk C		0.969 0.869	Da			gnormal GC at 10% Sigr	or Test nificance Level	
54 55					est Statistic	0.156		Lillie	fors Logn	ormal GOF		
56			10				at 10% Signific		.ognoniidi	at 10 10 Sigi	micarice Level	
57 58						Lognorma	I Statistics					
59				Minimum of L		6.016	. 5443463				of logged Data	6.891
60 61			N	Maximum of L	ogged Data	7.585				SD c	of logged Data	0.453
62							rmal Distributi	ion			(A. A. (A)	4540
63 64			95%	Chebyshev (N	95% H-UCL MVUE) UCL						(MVUE) UCL (MVUE) UCL	1548 2057
65				Chebyshev (N					37.070	555,51104	, 32, 002	
66 67					Nonparame	etric Distribu	tion Free UCL	Statistics				
68 69							Discernible Di					
70					Nonpai	rametric Dis	tribution Free U	UCLs				
71 72			OE0/		% CLT UCL	1309					Bootstrap UCL botstrap-t UCL	1331
73			9	Standard Boo 95% Hall's Boo	otstrap UCL	1387				Percentile E	Bootstrap UCL	1313
74 75				nebyshev(Meanebyshev(Mea							lean, Sd) UCL lean, Sd) UCL	
76			97.3% CF	ienystiev(IVIea	an, ou) UCL		<u> </u>		33% Cl	iebysnev(IVI	i c an, Suj UCL	Z30 I
77 78				Q5% C+	dent's-t UCL		UCL to Use					
79												
80 81	N						ovided to help t ution, and skew					
82	Ho						ts; for additiona					an.

1	Α	В	С	D	E HOL Oberia	F	G	H	I	J	K	L
2					UCL Statis	Stics for Unc	ensored Full D	Jata Sets				
3	Dr	User Sele te/Time of C	ected Options	ProUCL 5.2 1	10/31/2024	1·/2·21 DM						
5	Da		From File	ProUCL Inpu		1.42.31 F W						
6 7		Fu Confidence	III Precision	OFF 95%								
8	Number	of Bootstrap		2000								
9												
11	UMM-TLC-	-0.5-2										
12 13						General	Statistics					
14			Total	Number of Ob	oservations	10					Observations	10
15 16					Minimum	1794			Numbe	r of Missing	Observations Mean	0 2621
17					Maximum	3389				0.1	Median	2662
18 19				Coefficient of	SD of Variation	440.6 0.168				Std.	Error of Mean Skewness	139.3 -0.312
20												
21 22			S	hapiro Wilk Te	est Statistic	Normal 0 0.971	GOF Test	<u></u>	Shapiro W	ilk GOF Tes	st	
23				hapiro Wilk Cr	itical Value	0.781			r Normal a	at 1% Signifi	cance Level	
24 25			1	Lilliefors Le % Lilliefors Cr	est Statistic	0.148 0.304		Data appea		GOF Test	cance Level	
26			· · · · · · · · · · · · · · · · · · ·				1% Significar	nce Level				
27 28					As	sumina Norr	mal Distribution					
29			95% No	ormal UCL				95% U		sted for Sk		0000
30 31				95% Stude	ent's-t UCL	2877		95	o% Adjuste 15% Modifi	ed-t UCL (.)((Chen-1995) ohnson-1978)	2836 2874
32							2057				32.7 .37.01	
33 34				A-D Te	est Statistic	0.306	GOF Test	Anderso	on-Darling	Gamma G	OF Test	
35				5% A-D Cr	itical Value	0.724	Detected of	data appear (Gamma D	istributed at	5% Significan	ce Level
36 37					est Statistic ritical Value	0.169 0.266	Detected of			ov Gamma of the contract of th	GOF Test ∶5% Significan	ce l evel
38							stributed at 5%			iotributou ut	. o 70 Olgrinioan	00 20101
39 40						Gamma	Statistics					
41					k hat (MLE)	36.94		orrected MLE)	25.93			
42 43					hat (MLE) u hat (MLE)	70.95 738.9			Theta		orrected MLE) ias corrected)	101.1 518.5
44			MI	LE Mean (bias						MLE Sd (b	ias corrected)	514.8
45 46			Adius	sted Level of S	Significance	0.0267		Ar	pproximate A	e Chi Square diusted Chi	e Value (0.05) Square Value	466.7 458.2
47			7.0,00	7.00 20.0.0.0						<u> </u>		
48 49			95% A	pproximate Ga			ma Distributio	n	95	5% Adjusted	Gamma UCL	2967
50												
51 52			S	hapiro Wilk Te	est Statistic	Lognorma 0.944	GOF Test	Shapir	o Wilk Loc	gnormal GO	F Test	
53				hapiro Wilk Cr	itical Value	0.869	D	ata appear L	ognormal	at 10% Sign	nificance Level	
54 55			10	Lilliefors Le % Lilliefors Cr	est Statistic itical Value	0.181 0.241	D			ormal GOF at 10% Sign	Test nificance Level	
56 57			· •				at 10% Signific					
58						Lognorma	l Statistics					
59 60				Minimum of Lo		7.492					of logged Data	7.858
61			N	Maximum of Lo	ogged Data	8.128				SD o	of logged Data	0.177
62 63							rmal Distributi	ion	0001	Oh alassa i	/M///IE/ !!O'	2065
63 64			95%	9 Chebyshev (M	95% H-UCL (IVUE) UCL						(MVUE) UCL	3065 3543
65				Chebyshev (M					21.70.70	, 55	,	
66 67					Nonparame	tric Distribu	tion Free UCL	. Statistics				
68 69							Discernible D					
70					Nonpai	ametric Dis	tribution Free	UCLs				
71 72			0501		% CLT UCL	2850					Bootstrap UCL	2832
73				Standard Boo 5% Hall's Boo					95%		ootstrap-t UCL Bootstrap UCL	2851 2836
74 75			90% Ch	ebyshev(Mea	n, Sd) UCL	3039			95% Cł	nebyshev(M	ean, Sd) UCL	3228
76			97.5% Ch	ebyshev(Mea	n, Sa) UCL	3491			99% Ct	iebysnev(M	ean, Sd) UCL	4007
77 78				0E0/ 0: 1	ontic + LIO		UCL to Use					
79				95% Stud	ent's-t UCL	28//						
80							ovided to help					
81 82	H						ution, and skev ts; for additiona					an.
		اااال	alationio result	***** 1101 0010	, un rical VV	ona data se	, ioi additione	ar molynt tile	acci illay	Traint to COII	oun a statistici	wiii.

	Α	В	С	D	E	F	G	Н		J	K	L
83												
84		Note: For	highly negat	ively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	id Gamma) r	nay not be	
85			reliable. (Chen's and J	lohnson's me	ethods provi	de adjustme	nts for posity	vely skewed	data sets.		
86												

1	A B C D E UCL Stati	F stics for Unc	G H I J K L ensored Full Data Sets
2			
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024	4.42.20 DM	
5	From File WorkSheet.xls	4.42.30 FIVI	
6	Full Precision OFF		
7	Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
10			
	UMM-WRA-0.5-1		
12		0	On-Mi-Mi
14	Total Number of Observations		Statistics Number of Distinct Observations 10
15	Total Number of Observations	10	Number of Missing Observations 0
16	Minimum		Mean 905.9
17 18	Maximum		Median 692 Std. Error of Mean 129.1
19	SD Coefficient of Variation		Skewness 1.737
20	000	00	S.Co.m.sco in C.
21			GOF Test
23	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level
24	Lilliefors Test Statistic		Lilliefors GOF Test
25	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level
26 27	Data appear App	roximate No	rmal at 1% Significance Level
28	As	sumina Nori	mal Distribution
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)
30	95% Student's-t UCL	1143	95% Adjusted-CLT UCL (Chen-1995) 1194
31			95% Modified-t UCL (Johnson-1978) 1154
33		Gamma	GOF Test
34	A-D Test Statistic	0.793	Anderson-Darling Gamma GOF Test
35 36	5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level
37	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level
38			ed at 5% Significance Level
39			
40	k hat (MLE)		Statistics k star (bias corrected MLE) 4.976
42	Theta hat (MLE)		Theta star (bias corrected MLE) 182.1
43	nu hat (MLE)	140.3	nu star (bias corrected) 99.52
44	MLE Mean (bias corrected)	905.9	MLE Sd (bias corrected) 406.1
46	Adjusted Level of Significance	0.0267	Approximate Chi Square Value (0.05) 77.51 Adiusted Chi Square Value 74.14
47	Adjusted Estat of eighnicaries	0.0207	rajustou em equale value 7 i.i.i
48 49			nma Distribution
50	95% Approximate Gamma UCL	1163	95% Adjusted Gamma UCL 1216
51		Lognorma	I GOF Test
52	Shapiro Wilk Test Statistic	0.844	Shapiro Wilk Lognormal GOF Test
53 54	10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level
55	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data Not Lognormal at 10% Significance Level
56			10% Significance Level
57 58			I Statistica
59	Minimum of Logged Data		Il Statistics Mean of logged Data 6.736
60	Maximum of Logged Data Maximum of Logged Data		SD of logged Data 0.730
61			District Co.
62 63			prmal Distribution 90% Chebyshev (MVUE) UCL 1228
64	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 1584
65	99% Chebyshev (MVUE) UCL	_	, , , , , , , , , , , , , , , , , , , ,
66 67	Mannauau	otrio Diotelle	tion Fron LICI Statistics
68			tion Free UCL Statistics Discernible Distribution
69			
70 71			tribution Free UCLs
71 72	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 1192 95% Bootstrap-t UCL 1347
73	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL 1119
74	90% Chebyshev(Mean, Sd) UCL	1293	95% Chebyshev(Mean, Sd) UCL 1469
75 76	97.5% Chebyshev(Mean, Sd) UCL	1712	99% Chebyshev(Mean, Sd) UCL 2191
77		Suggested	UCL to Use
78	95% Student's-t UCL		
79			(1) 005
80 81			stribution passing only one of the GOF tests, istribution passing both GOF tests in ProUCL
82	it is suggested to use a OCL Da	ocu up∪ii d (I	iourbandii paooing bour GOL teolo III F1000L

	Α	В	С	D	E	F	G	Н		J	K	L
83	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
84		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fron	n simulation	studies.	
85	Но	wever, simul	ations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may v	want to cons	ult a statistici	an.
86									-			

	A B C	D E	F	G H	1	J K	L
1		UCL Statis	Stics for Unce	ensored Full Data Sets			
2	User Selected Options						
3	Date/Time of Computation	ProUCL 5.2 10/28/2024 4	1·46·10 PM				
4	From File	WorkSheet.xls					
5 6	Full Precision	OFF					
7	Confidence Coefficient	95%					
8	Number of Bootstrap Operations	2000					
9		1					
10							
11	UMM-WRA-0.5-1-DS						
12							
13			General	Statistics			
14	Total	Number of Observations	7			f Distinct Observations	
15					Number of	f Missing Observations	
16		Minimum	30			Mear	
17		Maximum SD	75 15.49			Mediar	
18		Coefficient of Variation	0.298			Std. Error of Mear	
19		Coemicient of Variation	0.230			Skewness	0.133
20	Note: Sample size is	small (e.g., <10), if data a	re collected	using incremental sample	ling methodol	ogy (ISM) approach	
21 22	=	o ITRC Tech Reg Guide o		-	-		
23		ITRC may recommend th	•	•	-	•	
24				n gross overestimates of		. ,	
25	Ref	fer to the ProUCL 5.2 Tec				CL.	
26							
27			Normal G	OF Test			
28	S	Shapiro Wilk Test Statistic	0.94		Shapiro Wilk		
29	1% S	hapiro Wilk Critical Value	0.73	Data appea		% Significance Level	
30		Lilliefors Test Statistic	0.246		Lilliefors G		
31	1	% Lilliefors Critical Value	0.35		ar Normal at 1	% Significance Level	
32				1% Significance Level			
33		Note GOF lesis	may be unre	liable for small sample si	izes		
34		Δοσ	sumina Norn	nal Distribution			
35	95% N	ormal UCL	January 140111		UCLs (Adiusto	ed for Skewness)	
36 37	3570110	95% Student's-t UCL	63.38			CLT UCL (Chen-1995	62.09
38			-		<u>-</u>	-t UCL (Johnson-1978	
39							
40			Gamma C	OF Test			
41		A-D Test Statistic	0.344	Anders	son-Darling G	amma GOF Test	
42		5% A-D Critical Value	0.708			ributed at 5% Significa	nce Level
43		K-S Test Statistic	0.23			Gamma GOF Test	
44		5% K-S Critical Value	0.312			ributed at 5% Significa	nce Level
45				tributed at 5% Significan			
46		Note GOF tests I	may be unre	liable for small sample si	izes		
47			Comment	Statistica			
48		k hat (MLE)	Gamma 9 12.68	oladSUCS	lv oto	ar (bias corrected MLE	7.339
49		Theta hat (MLE)	4.102			ar (bias corrected MLE	
50		nu hat (MLE)	177.5			nu star (bias corrected	
51	M	LE Mean (bias corrected)	52			ILE Sd (bias corrected	
52 53	IVI	(5145 501166164)	<i>52</i>	Α		thi Square Value (0.05	
54	Adjus	sted Level of Significance	0.0158	<u> </u>		sted Chi Square Value	
55		3 /	-			,	
JJ							

	Α		В		С		D		Е	F		G	Н		I		J		K		L
56										suming Ga	amma	Distribu	tion								
57					95% /	Appro	ximate	Gamn	na UCL	66.49					9	5% /	Adjusted	d Gam	nma UCL		71.82
58																					
59										Lognorm	nal GC	F Test									
60									Statistic					•	o Wilk Lo						
61					10% 5				l Value				Data app		ognorma		•			əl 	
62									Statistic						fors Log						
63					10	0% Li	lliefors		l Value						ognorma	ıl at 1	10% Sig	nifica	nce Leve	əl ——	
64										Lognorma		_									
65							No	te GO	F tests	may be un	reliab	le for sn	nall samp	le siz	zes						
66																					
67										Lognorn	nal Sta	atistics									
68									ed Data										ged Data		3.911
69						Maxir	num of	Logge	ed Data	4.317							SD	of log	ged Data	э	0.31
70																					
71										uming Log	norma	l Distrib	ution								
72									H-UCL	69.53							•	•	UE) UCL		70.41
73							•	`	E) UCL	78.72					97.5%	6 Ch	ebyshe	v (MV	UE) UCL	- !	90.26
74					99%	o Chel	oyshev	(MVU	E) UCL	112.9											
75																					
76									=	etric Distrik											
77								Data	a appe	ar to follow	a Dis	cernible	Distribut	ion							
78																					
79										rametric D	istribu	tion Fre	e UCLs								
80									LT UCL							959			trap UCL		61.29
81									ap UCL	61.08									ap-t UCL		64.82
82									ap UCL										trap UCL		61
83					90% C	-	-		-	69.57									Sd) UCL		77.52
84				9	7.5% C	hebys	shev(M	ean, S	d) UCL	88.57					99% C	Cheb	yshev(N	/lean,	Sd) UCL	_ 1	10.3
85																					
86										Suggeste	d UCL	to Use									
87							95% St	udent's	s-t UCL	63.38											
88																					
89		Note:								6 UCL are _l	•		•							L	
90										, data distr											
91	Ho	oweve	er, simu	ulatio	ns resu	ılts wil	I not co	ver all	l Real V	Vorld data s	sets; fo	or additic	nal insigl	ht the	user ma	y wa	nt to co	nsult a	ı statistic	cian.	
92																					
	·																				

4	A B C D E	F	G H I J K	L
2		Stics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024	4.40.17 DM		
5	From File WorkSheet.xls	4.40.17 FIVI		
6 7	Full Precision OFF Confidence Coefficient 95%			
8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9 10				
	UMM-WRA-0.5-2			
12				
13 14	Total Number of Observations		Statistics Number of Distinct Observations	9
15	rotal Number of Observations		Number of Missing Observations	0
16 17	Minimum Maximum		Mean Median	395.1 354.5
18	SD		Std. Error of Mean	47.71
19 20	Coefficient of Variation	0.382	Skewness	1.916
21		Normal (GOF Test	
22	Shapiro Wilk Test Statistic	0.805	Shapiro Wilk GOF Test	
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Normal at 1% Significance Level Lilliefors GOF Test	
25	1% Lilliefors Critical Value	0.304	Data appear Normal at 1% Significance Level	
26 27	Data appe	ar Normal at	1% Significance Level	
28		suming Nor	mal Distribution	
29 30	95% Normal UCL 95% Student's-t UCL	482.6	95% UCLs (Adjusted for Skewness)	504.5
31	95% Student S-t UCL	402.0	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	487.4
32 33		0		
34	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
35	5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significano	e Level
36 37	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	o Lovol
38			stributed at 5% Significance Level	e Level
39 40			Chatiatian	
41	k hat (MLE)		Statistics k star (bias corrected MLE)	6.841
42 43	Theta hat (MLE)	40.83	Theta star (bias corrected MLE)	57.76
43	nu hat (MLE) MLE Mean (bias corrected)		nu star (bias corrected) MLE Sd (bias corrected)	136.8 151.1
45			Approximate Chi Square Value (0.05)	110.8
46 47	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	106.7
48			ma Distribution	
49 50	95% Approximate Gamma UCL	487.9	95% Adjusted Gamma UCL	506.5
51		Lognorma	GOF Test	
52 53	Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
55 56	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level	
57	Data appear	Lognormal a	at 10% Significance Level	——
58			Statistics	
59 60	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	5.927 0.325
61		•	-	
62 63	Assi 95% H-UCL		ormal Distribution 90% Chebyshev (MVUE) UCL	515.3
64	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	647.6
65 66	99% Chebyshev (MVUE) UCL	798.5		
67	Nonparame	etric Distribu	tion Free UCL Statistics	
68			Discernible Distribution	
69 70	Nonna	rametric Dis	tribution Free UCLs	
71	95% CLT UCL	473.6	95% BCA Bootstrap UCL	510.6
72 73	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	471.2 868.1	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	574.9 477.6
74	90% Chebyshev(Mean, Sd) UCL	538.2	95% Percentile Bootstrap OCL 95% Chebyshev(Mean, Sd) UCL	603.1
75 76	97.5% Chebyshev(Mean, Sd) UCL	693	99% Chebyshev(Mean, Sd) UCL	869.8
77		Suggested	UCL to Use	
78 79	95% Student's-t UCL			
79 80	Note: Suggestions regarding the selection of a 95%	6 UCL are nr	ovided to help the user to select the most appropriate 95% UCL.	
81	Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
82	However, simulations results will not cover all Real V	Vorld data se	ts; for additional insight the user may want to consult a statisticia	n.

4	A B C D E	F	G H I J K	L
2	UCL Statis	tics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024 4	4.E1.00 DM		
5	Date/Time of Computation ProUCL 5.2 10/28/2024 4 From File WorkSheet.xls	4:51:09 PIVI		
6 7	Full Precision OFF Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9 10				
11	UMM-WRA-0.5-2-DS			
12 13		General	Statistics	
14	Total Number of Observations	4	Number of Distinct Observations	4
15 16	Minimum	51	Number of Missing Observations Mean	0 57.25
17	Maximum	68	Median	55
18 19	SD Coefficient of Variation	7.805 0.136	Std. Error of Mean Skewness	3.902 1.197
20				
21 22	Note: Sample size is small (e.g., <10), if data a	are collected on ISM (ITR	l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23 24	but note that ITRC may recommend th	e t-UCL or t	the Chebyshev UCL for small sample sizes (n < 7).	
25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26			-	
27 28	Shapiro Wilk Test Statistic	Normal 0 0.881	GOF Test Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level	
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.249 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32 33	Data appea	ar Normal at	t 1% Significance Level	
34	Note GOF tests	may be unre	eliable for small sample sizes	
35 36		suming Nor	mal Distribution	
37	95% Normal UCL 95% Student's-t UCL	66.43	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	66.17
38 39			95% Modified-t UCL (Johnson-1978)	66.82
40		Gamma	GOF Test	
41 42	A-D Test Statistic 5% A-D Critical Value	0.379 0.656	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e l evel
43	K-S Test Statistic	0.283	Kolmogorov-Smirnov Gamma GOF Test	
44 45	5% K-S Critical Value	0.394 Gamma Di	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	e Level
46			eliable for small sample sizes	
47 48		Gamma	Statistics	
49	k hat (MLE)	75.1	k star (bias corrected MLE)	18.94
50 51	Theta hat (MLE) nu hat (MLE)	0.762 600.8	Theta star (bias corrected MLE) nu star (bias corrected)	3.022 151.5
52 53	MLE Mean (bias corrected)		MLE Sd (bias corrected)	13.15
54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	124.1 N/A
55 56				
57	Ass 95% Approximate Gamma UCL	69.92	mma Distribution 95% Adjusted Gamma UCL	N/A
58 59				
60	Shapiro Wilk Test Statistic	0.894	I GOF Test Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.792 0.251	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value	0.346	Data appear Lognormal at 10% Significance Level	
64 65			at 10% Significance Level eliable for small sample sizes	
66	Note GOF lests			
67 68	Minimum of Logged Data	Lognorma 3.932	Il Statistics Mean of logged Data	4.041
69	Maximum of Logged Data	4.22	SD of logged Data	0.132
70 71	Δεει	ımina I oana	ormal Distribution	
72	95% H-UCL	68.3	90% Chebyshev (MVUE) UCL	68.55
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	73.68 94.76	97.5% Chebyshev (MVUE) UCL	80.79
75				
76 77			tion Free UCL Statistics Discernible Distribution	
78				
79 80	Nonpar 95% CLT UCL	rametric Dis 63.67	tribution Free UCLs 95% BCA Bootstrap UCL	N/A
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L
83			90% Ch	ebyshev(Me	an, Sd) UCL	68.96			95% Ch	74.26		
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	000 0000 0000 0000 0000 0000 0000 0000 0000						
85												
86						Suggested	UCL to Use					
87				95% Stu	dent's-t UCL	66.43						
88						•	•					
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	m simulation	studies.	
91											an.	
92												

1	Α	В	С	D	E LICL Static	F	11	G H I J K	L
2					UCL Statis	SUCS TOP	unc	ensored Full Data Sets	
3			cted Options		10/00/0004	4.53.04	D. 1		
4 5	Dat	te/Time of Co	omputation From File	ProUCL 5.2 WorkSheet.		4:57:34	rivi		
6			I Precision	OFF					
7 8	Number	Confidence of Bootstrap (95% 2000					
9	140111DEL	л Бооганар (operations .	12000					
10 11	UMM-WRA	-0.5-4							
12	UIVIIVI-VVKA	-0.5-4							
13 14			.	N 1 10	\1		eral	Statistics	
15			ı otal	Number of O	<u>Ibservations</u>	5		Number of Distinct Observations 5 Number of Missing Observations 0	
16					Minimum			Mean 282	2
17 18					<u>Maximum</u> SD		7	Median 278 Std. Error of Mean 14	3 4.52
19				Coefficient	of Variation				.153
20 21		Note: Cor	unio oleo io i	-mall /a a -d	(10) if data	ana aalla		using ingremental compling methodology (ICM) approach	
22		Note: Sar	refer also to	smail (e.g., < o ITRC Tech	Rea Guide	are colle on ISM	(ITR	using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23		b		ITRC may re	commend the	ne t-UCI	L or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			Ref					in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26			I.GI	or to the FIU	JUL 0.2 160			•	
27 28	<u> </u>			hapiro Wilk T	Tact Statistic			GOF Test Shapiro Wilk GOF Test	
29				hapiro Wilk C				Data appear Normal at 1% Significance Level	
30 31				Lilliefors T	est Statistic	0.20	06	Lilliefors GOF Test	
32	 		1	% Lilliefors C				Data appear Normal at 1% Significance Level 1% Significance Level	
33				Note				eliable for small sample sizes	
34 35					۸.	eumina	Non	mal Distribution	
36			95% No	ormal UCL		Summy	INUII	95% UCLs (Adjusted for Skewness)	
37 38					dent's-t UCL	313		95% Adjusted-CLT UCL (Chen-1995) 306	
38						<u> </u>		95% Modified-t UCL (Johnson-1978) 313	5.1
40								GOF Test	
41 42	<u> </u>				Test Statistic Critical Value			Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Le	evel
43				K-S T	est Statistic	0.23	34	Kolmogorov-Smirnov Gamma GOF Test	
44 45					ritical Value			Detected data appear Gamma Distributed at 5% Significance Lestributed at 5% Significance Level	evel
46								stributed at 5% Significance Level	
47 48									
49					k hat (MLE)			Statistics k star (bias corrected MLE) 37	7.92
50				Thet	ta hat (MLE)	2.98	85	Theta star (bias corrected MLE) 7	.437
51 52	<u> </u>		ŊΛI	<u>n</u> LE Mean (bia	nu hat (MLE)		<u> </u>	nu star (bias corrected) 379 MLE Sd (bias corrected) 45	9.2 5.8
53				,	•	•		Approximate Chi Square Value (0.05) 335	
54 55			Adjus	sted Level of	Significance	0.00	86	Adjusted Chi Square Value 316	6.7
56					As	<u>su</u> mina	Gam	ma Distribution	
57			95% A	pproximate G				95% Adjusted Gamma UCL 337	7.6
58 59	 					Loana	orma	GOF Test	
60				hapiro Wilk T		0.92	21	Shapiro Wilk Lognormal GOF Test	
61 62			10% SI	hapiro Wilk C	ritical Value est Statistic			Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63			10	% Lilliefors C	ritical Value	0.3	19	Data appear Lognormal at 10% Significance Level	
64 65					Data appear	Lognor	mal a	at 10% Significance Level	
66	 			Note	e GUF tests	may be	unre	liable for small sample sizes	
67								Statistics	
68 69				Minimum of L Maximum of L					.637 .115
70			IV	nazimum Ui L					.110
71 72					Ass	uming L		ormal Distribution	
73			95%	Chebyshev (I	95% H-UCL MVUE) UCL			90% Chebyshev (MVUE) UCL 325 97.5% Chebyshev (MVUE) UCL 372	
74				Chebyshev (I				3.1.2.1 2.1.2., 5.1.5 (1.1.5 2.)	-
75 76					Nonnarame	atric Die	tribu	tion Free UCL Statistics	
77								Discernible Distribution	
78 79									
80				95	Nonpa CLT UCL			tribution Free UCLs 95% BCA Bootstrap UCL 305	5.2
81				Standard Bo	otstrap UCL	303.8	}	95% Bootstrap-t UCL 325	5.1
82			9	5% Hall's Bo	otstrap UCL	315.7	1	95% Percentile Bootstrap UCL 305	5.2

	Α	В	С	D	E	F	G	Н	H I J K						
83											345.3				
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	372.7			99% Ch	ebyshev(Me	an, Sd) UCL	426.5			
85															
86						Suggested	UCL to Use								
87				95% Stu	dent's-t UCL	313									
88						•	•					-			
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL				
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.				
91	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.														
92															

4	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options			
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 4 From File WorkSheet.xls	4:55:41 PM		
6	Full Precision OFF			
7 8	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10	INAMAWDA OF 4 DO			
12	UMM-WRA-0.5-4-DS			
13			Statistics	
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0
16	Minimum	53	Mean	57
17 18	Maximum SD	60 2.944	Median Std. Error of Mean	57.5 1.472
19	Coefficient of Variation			-0.941
20	N . 0 . 1 . 1 . 1 . 1			
21 22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23	but note that ITRC may recommend th	ne t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).	
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.	
26	Neiel to the F1000L 3.2 Tec	Jiiiicai Guiu	e for a discussion of the Chebyshev OCL.	
27 28	Objection MESS, Total Care of the		GOF Test	
29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	Lilliefors Test Statistic	0.25	Lilliefors GOF Test	
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level 1 1% Significance Level	
33			eliable for small sample sizes	
34 35	A -	oumina Na-	mal Distribution	
36	95% Normal UCL	surning Non	mal Distribution 95% UCLs (Adjusted for Skewness)	
37	95% Student's-t UCL	60.46	95% Adjusted-CLT UCL (Chen-1995)	58.68
38 39			95% Modified-t UCL (Johnson-1978)	60.35
40			GOF Test	
41 42	A-D Test Statistic 5% A-D Critical Value	0.291 0.657	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Lovel
43	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	Level
44 45	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
46			stributed at 5% Significance Level eliable for small sample sizes	
47				
48 49	k hat (MLE)		Statistics k star (bias corrected MLE)	122.9
50	Theta hat (MLE)		Theta star (bias corrected MLE)	0.464
51 52	nu hat (MLE)	3928		983.4
53	MLE Mean (bias corrected)	57	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	5.141 911.6
54 55	Adjusted Level of Significance	N/A		N/A
56	Δει	sumina Gam	nma Distribution	
57	95% Approximate Gamma UCL			N/A
58 59		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.945	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level	
63	Lilliefors Test Statistic 10% Lilliefors Critical Value		Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67			I Statistics	
68 69	Minimum of Logged Data	3.97	Mean of logged Data	4.042
70	Maximum of Logged Data	4.094	SD of logged Data	0.0524
71	Assu	uming Logno	ormal Distribution	
72 73	95% H-UCL 95% Chebyshev (MVUE) UCL	N/A 63.5	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	61.48 66.32
74	99% Chebyshev (MVUE) UCL	71.84	VI.ON CHODYSHOV (MIVOL) OCC	30.02
75 76	Na	stria Diatelle	tion Fron LICI Statistics	
77			tion Free UCL Statistics Discernible Distribution	
78				
79 80	Nonpar 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	N/A
81	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A

	Α	В	С	D	E	F	G H I J K							
83			90% Ch	ebyshev(Me	an, Sd) UCL	61.42		-	95% Ch	ebyshev(Me	an, Sd) UCL	63.42	1	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	66.19			99% Ch	ebyshev(Me	an, Sd) UCL	71.65		
85														
86		Suggested UCL to Use												
87		95% Student's-t UCL 60.46												
88				Red	commended	UCL exceed	ds the maxim	num observa	ition					
89														
90		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropri	ate 95% UCL			
91		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	m simulation	studies.			
92	Но	wever, simul	lations result	s will not cov	er all Real V	Vorld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.		
93														
94		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) ı	may not be			
95			reliable.	Chen's and J	lohnson's m	ethods provi	de adjustme	nts for posity	vely skewed	data sets.				
96													1	

1	Α	В	С	D	E LIOL Otatio	F	G Full Date	Н	I	J	K	L
2					UCL Statis	Stics for Unc	ensored Full Dat	ta Sets				
3	D	User Sele ate/Time of C	ected Options	ProUCL 5.2 1	10/28/2024 9	2:40:40 DM						
5	D.		From File	ProUCL Inpu		5.40.43 I W						
6 7		Fu Confidence	III Precision	OFF 95%								
8	Number	of Bootstrap		2000								
9 10												
11	UMM-WR/	\-0.5 - 6										
12 13						General	Statistics					
14			Total	Number of Ob	oservations	10					Observations	9
15 16					Minimum	304			Number	of Missing	Observations Mean	0 671.2
17 18					Maximum	1119				0.1.5	Median	663
19				Coefficient of	SD of Variation	248.1 0.37				Std. E	Error of Mean Skewness	78.44 0.384
20 21												
22			S	Shapiro Wilk Te	est Statistic	0.966	GOF Test	Sh	apiro Wil	k GOF Tes	t	
23				hapiro Wilk Cr	ritical Value	0.781	D	ata appear N	Normal at	1% Signific		
24 25			1	% Lilliefors Cr	est Statistic	0.187 0.304	D	L ata appear N		GOF Test 1% Signific	cance Level	
26							1% Significance		ai at	o.granic		
27 28					Ass	sumina Nori	mal Distribution					
29			95% No	ormal UCL						sted for Ske		010.4
30 31				95% Stud	ent's-t UCL	815		95% 95°	% Adjuste % Modifie	<u>a-CLT UCL</u> ed-t UCL (Jo	(Chen-1995) hnson-1978)	810.4 816.6
32						C -	005 7			100		
34				A-D To	est Statistic	0.2	GOF Test	Anderson	-Darling	Gamma GC	OF Test	
35 36				5% A-D Cr	ritical Value	0.727	Detected dat	ta appear Ga	amma Dis	stributed at	5% Significan	ce Level
37					est Statistic ritical Value	0.14 0.267	Detected dat	Kolmogorov ta appear Ga			<u>iOF Test</u> 5% Significan	ce Level
38 39						Gamma Di	stributed at 5% S					
40						Gamma	Statistics					
41 42					k hat (MLE)	7.779					rrected MLE)	5.512
43					a hat (MLE) u hat (MLE)	86.28 155.6			i neta s		rrected MLE) as corrected)	121.8 110.2
44 45			MI	LE Mean (bias	corrected)	671.2		A			as corrected)	285.9
46			Adjus	sted Level of S	Significance	0.0267		Арр	<u>roximate</u> Ad	Cni Square	Value (0.05) Square Value	87.01 83.43
47 48					٨٥٥	umina Com	ma Distribution					
49			95% A	pproximate G			ma Distribution		959	% Adjusted	Gamma UCL	887
50 51						Lognorma	I GOF Test					
52				Shapiro Wilk Te		0.97				normal GO		
53 54			10% S	hapiro Wilk Cr	ritical Value est Statistic	0.869 0.145	Data			at 10% Sign ormal GOF	ificance Level	
55			10	% Lilliefors Cr	ritical Value	0.241		a appear Log			ificance Level	
56 57				<u>D</u>	ata appear	Lognormal a	at 10% Significar	nce Level				
58					,		l Statistics					
59 60	}			Minimum of Lo Maximum of Lo		5.717 7.02					f logged Data f logged Data	6.443 0.392
61			ı'	naximum or Et			1			30 0	. logged Data	0.002
62 63	}			С	Assu 95% H-UCL	ı <mark>ming Logno</mark> 890.3	ormal Distribution	<u>n</u>	90% (Chehyshey	(MVUE) UCL	926.2
64				Chebyshev (M	IVUE) UCL	1041					(MVUE) UCL	
65 66	-		99%	Chebyshev (M	IVUE) UCL	1512						
67							tion Free UCL St					
68 69					Data appea	r to follow a	Discernible Dist	tribution				
70							tribution Free UC	CLs				
71 72			95%	95% Standard Boo	% CLT UCL otstrap UCL	800.2 793.7					ootstrap UCL otstrap-t UCL	806.2 840.9
73			9	5% Hall's Boo	tstrap UCL	838.3				Percentile B	ootstrap UCL	797.7
74 75				<u>nebyshev(Mea</u> nebyshev(Mea		906.5 1161					ean, Sd) UCL ean, Sd) UCL	1013 1452
76					,, 502					.,	, , , , , , , ,	
77 78				95% Stud	ent's-t UCL		UCL to Use					
79 80		Nata: O					audala de la 1000		4 1-		into 050/ 1101	
81							ovided to help the ution, and skewn					·
82	Н						ts; for additional i					an.

	A B C D E	F	G H I J K	L
2		Stics for Unc	ensored Full Data Sets	
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024 Prouck 5.2 10/28/2024 Prou	0.42.14 DM		
5	From File ProUCL Input.xls	0.43. 14 FIVI		
6 7	Full Precision OFF Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9 10				
11	UMM-WRA-0.5-7			
12 13		General	Statistics	
14	Total Number of Observations	10	Number of Distinct Observations	9
15 16	Minimum	326	Number of Missing Observations Mean	0 528
17 18	Maximum	975	Median	498
19	SD Coefficient of Variation		Std. Error of Mean Skewness	55.53 2.027
20		•		
21 22	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
23 24	1% Shapiro Wilk Critical Value	0.781	Data appear Normal at 1% Significance Level	
25	Lilliefors Test Statistic 1% Lilliefors Critical Value	1	Lilliefors GOF Test Data appear Normal at 1% Significance Level	
26 27			1% Significance Level	
28	As	suming Nor	nal Distribution	
29 30	95% Normal UCL		95% UCLs (Adjusted for Skewness)	CE7.4
31	95% Student's-t UCL	629.8	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	657.4 635.7
32 33		Comme	GOF Test	
34	A-D Test Statistic	0.568	Anderson-Darling Gamma GOF Test	
35 36	5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance	e Level
37	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	e Level
38 39	Detected data appear	r Gamma Di	stributed at 5% Significance Level	
40		Gamma	Statistics	
41 42	k hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) Theta star (bias corrected MLE)	8.829 59.81
43	nu hat (MLE)	250.3	nu star (bias corrected)	176.6
44 45	MLE Mean (bias corrected)	528	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	177.7 146.8
46	Adjusted Level of Significance	0.0267	Approximate ciri Square Value Adjusted Chi Square Value	
47 48	Δε	suming Gam	ma Distribution	
49	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	656
50 51		Lognorma	GOF Test	
52	Shapiro Wilk Test Statistic	0.91	Shapiro Wilk Lognormal GOF Test	
53 54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
55 56	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level	
57	Data appear	Lognormal a	at 10% Significance Level	
58 59	Minimum of Laure 15 :		I Statistics	6 220
60	Minimum of Logged Data Maximum of Logged Data		Mean of logged Data SD of logged Data	6.229 0.287
61 62			-	
63	ASSI 95% H-UCL	637.7	ormal Distribution 90% Chebyshev (MVUE) UCL	670.5
64 65	95% Chebyshev (MVUE) UCL	735.9 1005	97.5% Chebyshev (MVUE) UCL	826.6
66	99% Chebyshev (MVUE) UCL			
67 68			tion Free UCL Statistics Discernible Distribution	
69				
70 71	Nonpa 95% CLT UCL		tribution Free UCLs 95% BCA Bootstrap UCL	663.6
72	95% Standard Bootstrap UCL	615.4	95% Bootstrap-t UCL	714.1
73 74	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	1078 694.6	95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	630.5 770
75	97.5% Chebyshev(Mean, Sd) UCL	874.8	99% Chebyshev(Mean, Sd) UCL	1080
76 77		Suggested	UCL to Use	
78	95% Student's-t UCL			
79 80	Note: Suggestions regarding the selection of a 95%	6 UCL are nr	ovided to help the user to select the most appropriate 95% UCL.	
81	Recommendations are based upon data size	, data distrib	ution, and skewness using results from simulation studies.	
82	However, simulations results will not cover all Real W	Vorld data se	ts; for additional insight the user may want to consult a statisticia	n.

1	Α	В	С	;	D	E	F	G	H Data Cata	I	J		K	L
2						UCL Stati	Stics for Unc	ensored Full	Data Sets					
3	D	User Se ate/Time of	elected Opt		DrollCL 5.2	2 10/28/2024	9:45:25 DM							
5	Do		From F	File	ProUCL Inp		0.43.23 F W							
6 7			Full Precisi ce Coefficie		OFF 95%									
8	Number	of Bootstra			2000									
9 10														
11	UMM-WRA	A-0.5-8												
12 13							General	Statistics						
14				Total	Number of C	Observations						tinct Obse		9
15 16						Minimum	1 532			Numb	er of Miss	sing Obse	rvations Mean	0 645.6
17 18						Maximum	n 873					0	Median	601.5
19					Coefficien	SD t of Variation						Std. Error Sk	of Mean cewness	35 1.347
20 21														
22				Sł	napiro Wilk	Test Statistic		GOF Test		Shapiro V	Vilk GOF	Test		
23			1		napiro Wilk C	Critical Value	0.781		Data appe	ear Normal	at 1% Sig	gnificance	e Level	
24 25				19		Test Statistic Critical Value			Data appe	Lillietor ear Normal	s GOF To at 1% Sid		e Level	
26 27								t 1% Significa						
28						A:	ssuming Nor	mal Distribution	on_					
29 30			95	% No	rmal UCL				95%	UCLs (Ad				710.1
31					95% Stu	dent's-t UCL	709.8			95% Adjus 95% Modi	ified-t UC	CL (Johnso	on-1978)	719.1 712.2
32 33								COE Took				•		
34					A-D -	Test Statistic		GOF Test	Ander	rson-Darlin	ng Gamm	a GOF To	est	
35 36						Critical Value		Da	ata Not Gam	ıma Distrib	uted at 5°	% Signific	ance Lev	el
37						Test Statistic Critical Value		Detected	Kolmog d data appea	orov-Smir i ar Gamma l				ce Level
38 39					Detected da	ata follow Ar	pr. Gamma	Distribution a						
40							Gamma	Statistics						
41 42					The	k hat (MLE) eta hat (MLE)	MLE) 41.75 k star (bias correct							29.29 22.04
43						nu hat (MLE)				meta	nu sta	ar (bias co	rrected)	585.8
44 45				ML	.E Mean (bia	as corrected)	645.6			Approxima		6d (bias co		119.3 530.6
46				Adjust	ted Level of	Significance	0.0267			Арргохіпіа	Adjusted	Chi Squa	re Value	
47 48						Λ.	seuming Gan	nma Distributi	ion					
49			95	5% Ap	proximate (Gamma UCL			<u>1011</u>	9	5% Adjus	sted Gam	ma UCL	725.2
50 51							Lognorma	I GOF Test						
52						Test Statistic	0.867	GOI 163t		oiro Wilk Lo				
53 54			10	0% Sh		Critical Value Test Statistic			Data Not L	_ognormal : liefors Log			e Level	
55				109		Critical Value	0.241		Data Not L	ognormal			e Level	
56 57						Data Not L	<u>.ognormal at</u>	10% Significa	ance Level					
58					A::			l Statistics				()		0.450
59 60						<u>Logged Data</u> Logged Data						an of logg SD of logg		6.458 0.16
61 62											`			
63						Ass 95% H-UCL		ormal Distribu	TIOU	90%	% Chebys	shev (MVl	JE) UCL	743.2
64 65					Chebyshev (MVUE) UCL	787.6					shev (MVL		849.1
66				99% (_nebyshev (MVUE) UCL	970.1							
67 68								tion Free UC						
69						Data appe	ar to follow a	Discernible I	estribution					
70 71								tribution Free	UCLs		050/ 50	Λ D · ·	ror LICI	7147
72				95% :		5% CLT UCL ootstrap UCL						CA Bootst 6 Bootstra		714.7 786.3
73 74				95	5% Hall's Bo	ootstrap UCL	1077				6 Percent	tile Bootst	rap UCL	701.6
75						ean, Sd) UCL ean, Sd) UCL						ev(Mean, S ev(Mean, S		798.2 993.8
76 77														
78					95% Stu	dent's-t UCL	Suggested 709.8	UCL to Use						
79 80		Note: Com	gootions	المعتاد				ovided to beli	n the week		most ser	oronsists (DE0/ LIQI	
81								ovided to help ution, and ske						·-
82	H							ts; for addition						an.

1	Α	В	С	D	E	F	G	H	I	J	K	L
2					UCL Statis	Stics for Unc	ensored Full Da	ata Sets				
3			elected Option		2 10/28/2024	0·12·15 DM						
5			From File	e ProUCL In		3. 12. 13 F W						
6 7			Full Precision ce Coefficien									
8	Number		p Operation									
9	<u> </u>											
11	UMM-WR	B-0.5-1										
12 13						General	Statistics					
14			To	tal Number of	Observations	10					Observations	
15 16					Minimum	8550			Numbe	r of Missing	Observations Mean	0 12512
17					Maximum	16800					Median	13085
18 19				Coefficie	SD nt of Variation	2811 0.225				Std.	Error of Mean Skewness	
20												
21 22				Shapiro Wilk	Test Statistic		GOF Test	<u></u>	Shapiro W	ilk GOF Tes	st	
23			1%	Shapiro Wilk	Critical Value	0.781			r Normal a	at 1% Signifi	cance Level	
24 25					Test Statistic Critical Value	_		Data appea		GOF Test at 1% Signifi	cance Level	
26							1% Significan			J Ciginii		
27 28					As	sumina Nori	mal Distribution					
29			95%	Normal UCL				95% U		usted for Sk		10000
30 31				95% St	udent's-t UCL	14142		95 9	o% Adjuste 15% Modifi	ed-CLT UCL ed-t UCL (.)	<u>(Chen-1995)</u> ohnson-1978)	13980
32							0055					
34				A-D	Test Statistic		GOF Test	Anderso	on-Darling	Gamma G	OF Test	
35				5% A-D	Critical Value	0.725	Detected d	lata appear (Gamma D	istributed at	5% Significar	ice Level
36 37					Test Statistic Critical Value		Detected d			ov Gamma of the contract of th	<u>GOF Test</u> ∶5% Significar	nce Level
38							stributed at 5%					
39 40						Gamma	Statistics					
41					k hat (MLE)	21.3					orrected MLE)	
42 43				Th	eta hat (MLE) nu hat (MLE)				Theta		orrected MLE) ias corrected)	
44				MLE Mean (b	ias corrected)	_				MLE Sd (b	ias corrected)	3233
45 46			Ad	ljusted Level c	of Significance	0.0267		Ar	oproximate A	<u>e Chi Square</u> djusted Chi	e Value (0.05) Square Value	260.4 254.1
47 48							District of					
49			95%	Approximate	Gamma UCL		nma Distributior	<u>1</u>	95	5% Adjusted	Gamma UCL	14749
50 51						Lagramia	LOOF Tool			•		
52				Shapiro Wilk	Test Statistic		I GOF Test	Shapir	o Wilk Lo	gnormal GO	F Test	
53 54			10%		Critical Value		Da	ata appear L	.ognormal	at 10% Sign	nificance Leve	l
55					Test Statistic Critical Value		Da			ormal GOF at 10% Sign	ificance Leve	ı
56 57			-				at 10% Significa					
58						Lognorma	I Statistics					
59 60					f Logged Data	9.054					of logged Data	
61					f Logged Data	9.729	<u> </u>			2D 0	of logged Data	0.232
62 63					Assi 95% H-UCL		rmal Distribution	on	009/	Chobycha	(M)/[IE] [IO]	15204
64					(MVUE) UCL	16537					(MVUE) UCL (MVUE) UCL	
65 66					(MVUE) UCL							
67							tion Free UCL					
68 69					Data appea	r to follow a	Discernible Dis	stribution				
70							tribution Free L	JCLs				
71 72			OF		95% CLT UCL Bootstrap UCL						Bootstrap UCL ootstrap-t UCL	
73				95% Hall's E	Bootstrap UCL	13945				Percentile B	Bootstrap UCL	13931
74 75					ean, Sd) UCL ean, Sd) UCL						ean, Sd) UCL ean, Sd) UCL	
76			31.3/0	OTTODYSTIEV(IVI	our, our ook		I		J3 /6 CI	iony ariev (IVI	oan, ouj ool	21007
77 78				95% St	udent's-t UCL		UCL to Use					
79							I					
80 81							ovided to help to the control of the					<u></u>
82	ŀ						ts; for additiona					ian.
							·					

1	A B C D E	F stics for Unc	G H I J K L ensored Full Data Sets
2	JOE State	31100 101 0110	oneorou i dii bata ooto
3	User Selected Options		
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024	9:15:09 PM	
6	From File ProUCL Input.xls Full Precision OFF		
7	Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9			
10 11	LIMANA NAIDD O E O		
12	UMM-WRB-0.5-2		
13		General	Statistics
14	Total Number of Observations	10	Number of Distinct Observations 10
15 16	10.	1000	Number of Missing Observations 0
17	Minimum Maximum		Mean 1756 Median 1718
18	SD		Std. Error of Mean 122.2
19	Coefficient of Variation		Skewness 1.001
20			
21 22	Chanina Willy Took Chadiatia		GOF Test
23	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level
24	Lilliefors Test Statistic		Lilliefors GOF Test
25	1% Lilliefors Critical Value	0.304	Data appear Normal at 1% Significance Level
26	Data appe	ar Normal a	: 1% Significance Level
27 28	Λ.	eumina No-	mal Distribution
29	95% Normal UCL	summy NOF	mal Distribution 95% UCLs (Adjusted for Skewness)
30	95% Student's-t UCL	1980	95% Adjusted-CLT UCL (Chen-1995) 1998
31			95% Modified-t UCL (Johnson-1978) 1986
32			00F Took
33 34	A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test
35	5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Level
36	K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test
37	5% K-S Critical Value	0.266	Detected data appear Gamma Distributed at 5% Significance Level
38 39	Detected data appea	<u>r Gamma Di</u>	stributed at 5% Significance Level
40		Gamma	Statistics
41	k hat (MLE)		k star (bias corrected MLE) 17.4
42	Theta hat (MLE)	70.93	Theta star (bias corrected MLE) 100.9
43	nu hat (MLE)		nu star (bias corrected) 347.9
44 45	MLE Mean (bias corrected)	1/56	MLE Sd (bias corrected) 421 Approximate Chi Square Value (0.05) 305.7
46	Adjusted Level of Significance	0.0267	Approximate Chi Square Value (0.03) 303.7 Adjusted Chi Square Value 298.8
47			· injusted on equate value
48			ma Distribution
49 50	95% Approximate Gamma UCL	1998	95% Adjusted Gamma UCL 2044
51		Lognorma	GOF Test
52	Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test
53	10% Shapiro Wilk Critical Value	0.869	Data appear Lognormal at 10% Significance Level
54 55	Lilliefors Test Statistic		Lilliefors Lognormal GOF Test
56	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level
57	рака арреан	Eognomial (at 1070 digitification botton
58			Statistics
59 60	Minimum of Logged Data		Mean of logged Data 7.45
61	Maximum of Logged Data	7.85	SD of logged Data 0.209
62	Ass	umina Loand	ormal Distribution
63	95% H-UCL	2006	90% Chebyshev (MVUE) UCL 2104
64	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL 2483
65 66	99% Chebyshev (MVUE) UCL	2914	
67	Nonnarame	etric Distribu	tion Free UCL Statistics
68			Discernible Distribution
69			
70 71			tribution Free UCLs
71 72	95% CLT UCL 95% Standard Bootstrap UCL		95% BCA Bootstrap UCL 1997 95% Bootstrap-t UCL 2054
73	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL 1959
74	90% Chebyshev(Mean, Sd) UCL	2123	95% Chebyshev(Mean, Sd) UCL 2289
75 76	97.5% Chebyshev(Mean, Sd) UCL	2519	99% Chebyshev(Mean, Sd) UCL 2972
76 77		Suggested	UCL to Use
//		nation in it.	USE IO USE
78	95% Student's t HCL		
78 79	95% Student's-t UCL		
79 80	Note: Suggestions regarding the selection of a 959	1980 6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.
79	Note: Suggestions regarding the selection of a 959 Recommendations are based upon data size	1980 6 UCL are pr , data distrib	

1	A B C D E	F stics for Unc	G H I J K L ensored Full Data Sets
2	,		
3	User Selected Options	0.40.40.511	
5	Date/Time of Computation ProUCL 5.2 10/28/2024 From File ProUCL Input.xls	9:16:40 PM	
6	Full Precision OFF		
7	Confidence Coefficient 95%		
8	Number of Bootstrap Operations 2000		
9			
_	UMM-WRB-0.5-2-DS		
12	OMM-141 (D-0.0-2-DO		
13		General	Statistics
14	Total Number of Observations	4	Number of Distinct Observations 4
15 16	Minimum	65	Number of Missing Observations 0 Mean 69
17	Maximum		Median 66.5
18	SD	_	Std. Error of Mean 3.028
19	Coefficient of Variation	0.0878	Skewness 1.892
20 21	Notes Occupie des la constitute de 400 lé data		
22			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,
23			he Chebyshev UCL for small sample sizes (n < 7).
24	The Chebyshev UCL of	ften results	in gross overestimates of the mean.
25	Refer to the ProUCL 5.2 Tec	chnical Guid	e for a discussion of the Chebyshev UCL.
26 27		Nome at 4	POE Toet
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test
29	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level
30	Lilliefors Test Statistic	0.379	Lilliefors GOF Test
31 32	1% Lilliefors Critical Value		Data appear Normal at 1% Significance Level
33			t 1% Significance Level Bliable for small sample sizes
34	Note GOF tests	iliay be ullic	silable for Strian Sattiple Sizes
35	As	suming Nor	mal Distribution
36	95% Normal UCL		95% UCLs (Adjusted for Skewness)
37 38	95% Student's-t UCL	76.13	95% Adjusted-CLT UCL (Chen-1995) 77.04
39			95% Modified-t UCL (Johnson-1978) 76.6
40		Gamma	GOF Test
41	A-D Test Statistic		Anderson-Darling Gamma GOF Test
42 43	5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level
44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level
45			ed at 5% Significance Level
46			
47 48	k hat (MLE)	Gamma 182.3	Statistics k star (bias corrected MLE) 45.74
49	Theta hat (MLE)		Theta star (bias corrected MLE) 45.74
50	nu hat (MLE)		nu star (bias corrected) 365.9
51	MLE Mean (bias corrected)		MLE Sd (bias corrected) 10.2
52	A.F	N1/A	Approximate Chi Square Value (0.05) 322.6
53 54	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N/A
55	As	sumina Gam	ma Distribution
56	95% Approximate Gamma UCL		95% Adjusted Gamma UCL N/A
57 58			LOOFT
58	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk Lognormal GOF Test
60	10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level
61	Lilliefors Test Statistic	0.374	Lilliefors Lognormal GOF Test
62	10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level
63 64	Data Not L	ognormal at	10% Significance Level
65		Lognorma	I Statistics
66	Minimum of Logged Data	4.174	Mean of logged Data 4.231
67	Maximum of Logged Data		SD of logged Data 0.0845
68 69		umalm = 1 · · ·	annal Distribution
70	Assi 95% H-UCL	uming Logno N/A	prmal Distribution 90% Chebyshev (MVUE) UCL 77.73
71	95% Chebyshev (MVUE) UCL	81.69	97.5% Chebyshev (MVUE) UCL 87.18
72	99% Chebyshev (MVUE) UCL	97.98	
73			
74 75			tion Free UCL Statistics
76	Data appea	ii to tollow a	Discernible Distribution
77	Nonpa	rametric Dis	tribution Free UCLs
78	95% CLT UCL	73.98	95% BCA Bootstrap UCL N/A
79 80	95% Standard Bootstrap UCL		95% Bootstrap-t UCL N/A
81	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	N/A 78.08	95% Percentile Bootstrap UCL N/A 95% Chebyshev(Mean, Sd) UCL 82.2
		87.91	95% Chebyshev(Mean, Sd) UCL 82.2 99% Chebyshev(Mean, Sd) UCL 99.12
82	97.5% Chebyshev(Mean, Sd) UCL		

	Α	В	С	D	E	F	G	Н	ı	J	K	L	
83													
84						Suggested	UCL to Use						
85				95% Stu	dent's-t UCL	76.13							
86						•							
87	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL		
88		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	n simulation	studies.		
89		Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
90													

1	Α	В	С	D	E LICI Chair	F	G Full F	H Data Cata	I	J	K	L	
2		UCL Statistics for Uncensored Full Data Sets											
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/30/2024 9:26:54 PM												
5	From File ProUCL Input.xls												
6 7	Full Precision OFF Confidence Coefficient 95%												
8		Number of Bootstrap Operations 2000											
9 10													
11 12	UMM-WRB	JMM-WRB-0.5-3											
13						General	Statistics						
14 15	Total Number of Observation					10					Observations	10 0	
16	Minimu					683	Number of Missing Observations 0 Mean 878.5						
17 18	Maximu S					1206 162.4	Median 860.5 Std. Error of Mean 51.36						
19	Coefficient of Variatio									Siu.	Skewness	0.764	
20 21		Normal GOF Test											
22	Shapiro Wilk Test Statistic 0.938 Shapiro Wilk GOF Test												
23 24	1% Shapiro Wilk Critical Valu Lilliefors Test Statis												
25			1	% Lilliefors C	ritical Value	0.304 Data appear Normal at 1% Significance Level							
26 27		Data appear Normal at 1% Significance Level											
28			A=** * *		As	suming Nor	mal Distributio						
29 30		95% Normal UCL 95% Student's-t UC								<u>usted for Sk</u> ed-CLT UCL	<u>(ewness)</u> _ (Chen-1995)	976.2	
31 32		30% Statistics (30							95% Modif	ied-t UCL (J	ohnson-1978)		
33						Gamma	GOF Test						
34 35					est Statistic	0.251				Gamma G			
36					ritical Value est Statistic	0.724 0.168	Detected			ov Gamma	t 5% Significan GOF Test	ce Level	
37 38					ritical Value	0.266	Detected of stributed at 5%			istributed at	t 5% Significan	ce Level	
39				Detected	иата арреат	Gamma Di	stributed at 57	<u>% Signilican</u>	ice Levei				
40 41					k hat (MLE)	Gamma 34.07	Statistics		k	star (bias o	orrocted MLE)	23.92	
42		Theta hat (ML				25.79						36.73	
43 44	nu hat (MLI MLE Mean (bias correcte				u hat (MLE)	681.4 878.5					ias corrected)	478.3 179.6	
45								Α	Approximate	e Chi Squar	e Value (0.05)	428.6	
46 47	Adjusted Level of Significance 0.0267 Adjusted Chi Square Value 42									420.4			
48		Assuming Gamma Distribution											
49 50		95% Approximate Gamma UCL 980.4 95% Adjusted Gamma UCL 999.5											
51 52		Lognormal GOF Test											
53	Shapiro Wilk Test Statisti 10% Shapiro Wilk Critical Valu					0.959 0.869							
54 55	Lilliefors Test Statisti 10% Lilliefors Critical Valu					0.155 0.241	Lilliefors Lognormal GOF Test Data appear Lognormal at 10% Significance Level						
56			10				at 10% Signific			at 10 /0 SIGI	micarice Level		
57 58		Lognormal Statistics											
59	Minimum of Logged Dat					6.526 Mean of logged Data 6.763							
60 61			N	Maximum of L	ogged Data	7.095				SD o	of logged Data	0.179	
62		Assuming Lognormal Distribution											
63 64	95% H-UC 95% Chebyshev (MVUE) UC				95% H-UCL MVUE) UCL	983.4 1096						1028 1190	
65				Chebyshev (N					07.070	332,01101	, 52, 552		
66 67					Nonparame	tric Distribu	tion Free UCL	_ Statistics					
68 69		Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution											
70		Nonparametric Distribution Free UCLs											
71 72	95% CLT UC					963 95% BCA Bootstrap UCL							
73	95% Hall's Bootstrap UC				otstrap UCL	983.7						993.2 962.9	
74 75	90% Chebyshev(Mean, Sd) UC 97.5% Chebyshev(Mean, Sd) UC					1033 1199	95% Chebyshev(Mean, Sd) UCL 1102 99% Chebyshev(Mean, Sd) UCL 1390						
76			37.3% Cr	ienysnev(IVI68	ari, ou) UCL				99% C	nebysnev(IV	i c aii, Suj UCL	1380	
77 78		Suggested UCL to Use 95% Student's-t UCL 972.7											
79		Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
80 81							ovided to help ution, and skev						
82	Нс										n studies. Isult a statistici	an.	

-1	A B C D E	F	G ensored Full Da	H eta Sets		J	K		L
2		100 101 0110	ciisorca i ali be	ata Octo					
3	User Selected Options).20.02 D. 4							
5	Date/Time of Computation ProUCL 5.2 10/30/2024 9 From File ProUCL Input.xls	9:29:03 PIVI							
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Number of Bootstrap Operations 2000								
10									
11	UMM-WRB-0.5-4								
12 13		General	Statistics						
14	Total Number of Observations	10			Numbe	r of Distin	ct Observati	ons	10
15 16	Minimum	450			Numbe	r of Missir	ng Observati		0
17	Minimum Maximum	453 891					Med	ean lian	660.3 664.5
18	SD	139.3				Sto	d. Error of Me	ean	44.05
19 20	Coefficient of Variation	0.211					Skewn	ess	0.156
21		Normal (GOF Test						
22	Shapiro Wilk Test Statistic	0.977			Shapiro W				
23 24	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.781 0.123		Data appea			ificance Lev	el	
25	1% Lilliefors Critical Value	0.123	1 1	Data appea		GOF Tes at 1% Sign	ificance Lev	 el	
26			t 1% Significand						
27 28	And	sumina Non	mal Distribution						
29	95% Normal UCL	Summy Non			UCLs (Adjı	usted for S	Skewness)		
30	95% Student's-t UCL	741.1		9	5% Adjusto	ed-CLT U	CL (Chen-19		735.1
31 32			l	(95% Modifi	ed-t UCL	(Johnson-19	/8)	/41.4
33		Gamma	GOF Test						
34 35	A-D Test Statistic	0.173			on-Darling				- 1
36	5% A-D Critical Value K-S Test Statistic	0.725 0.135	Detected da				at 5% Signif a GOF Test	canc	e Level
37	5% K-S Critical Value	0.266	Detected da	ata appear	Gamma D		at 5% Signif	icanc	e Level
38 39	Detected data appear	Gamma Di	stributed at 5%	Significan	ce Level				
40		Gamma	Statistics						
41	k hat (MLE)	24.58					corrected M		17.27
42 43	Theta hat (MLE)	26.86			Theta		corrected M		38.23
44	nu hat (MLE) MLE Mean (bias corrected)						(bias correct (bias correct		345.5 158.9
45				Α		e Chi Squ	are Value (0.	05)	303.4
46 47	Adjusted Level of Significance	0.0267	<u> </u>		A	djusted C	hi Square Va	lue	296.5
48	Ass	suming Gan	nma Distribution	1					
49 50	95% Approximate Gamma UCL				95	% Adjuste	ed Gamma L	ICL	769.2
51		Lognorma	I GOF Test						
52	Shapiro Wilk Test Statistic	0.976			ro Wilk Lo				
53 54	10% Shapiro Wilk Critical Value	0.869	Da				gnificance L	evel	
55	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.121 0.241	Da		efors Logn Lognormal		gnificance L	evel	
56			at 10% Significa			. 3 . 3 0	,,		
57 58		Lognorma	al Statistics						
59	Minimum of Logged Data	6.116	า วเสนอแบร			Mear	n of logged D	ata	6.472
60	Maximum of Logged Data	6.792					of logged D		0.215
61 62	Λοοι	ımina Loana	ormal Distribution	n .					
63	95% H-UCL	758.2		/II	90%	Chebysh	ev (MVUE) L	ICL	795.6
64 65	95% Chebyshev (MVUE) UCL	856.8					ev (MVUE) L		941.7
66	99% Chebyshev (MVUE) UCL	1109	L						
67			tion Free UCL S						
68 69	Data appea	r to follow a	Discernible Dis	stribution					
70	Nonnar	ametric Dis	tribution Free U	ICLs					
71	95% CLT UCL	732.8					Bootstrap L		728.9
72 73	95% Standard Bootstrap UCL	728			OE0/		Bootstrap-t L		741
74	95% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	733.5 792.5	1				<u>Bootstrap L</u> Mean, Sd) L		727.7 852.3
75	97.5% Chebyshev(Mean, Sd) UCL	935.4					Mean, Sd) L		1099
76 77		Quaaata 1	LICI to Lie-						
78	95% Student's-t UCL	Suggested 741.1	UCL to Use						
79			1						
80 81	Note: Suggestions regarding the selection of a 95%							JCL.	
82	Recommendations are based upon data size, However, simulations results will not cover all Real W							sticia	n.
	, constant rooms from the coron direction from		.,	, , , , , , , , , , , , , , , , , , ,		10 0	u Jiuli		

User Selected Options ProUCL 62 1028/2004 8:47:57 PM	1	A B C D E	F tatistics for U	G H I J K L
Date Prior Prior			tatiotics for O	iconsored Full Data Octs
From File ProdUct Installation OFF	_			
Fig. Processor OFF			124 8:47:57 PI	
Number of Boostsea Operations 2000				
		Number of Bootstrap Operations 2000		
Total Number of Observations 10				
Camera Statistics Camera Statistics Camera Statistics Camera Camera Statistics Camera Cam		UUMM-WRA-0.5-1		
Total Number of Observations 10			Gonor	al Statistics
Minimum 911		Total Number of Observation		
			211	
Section 1.00				
Normal GOF Test	18			
Normal GOF Test Shapiro Wilk Test Statistic 0.962 Shapiro Wilk GOF Test 23 1% Shapiro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level Lillefors Test Statistic 0.18 Data appear Normal at 1% Significance Level 1 1 1 1 1 1 1 1 1		Coefficient of Variat	ion 0.107	Skewness -0.27
Shapiro Wilk Test Statistic 9.962 Shapiro Wilk Sparro Wilk Critical Value 0.781 Data appear Normal at 1% Significance Level			Norma	I GOF Test
			stic 0.962	Shapiro Wilk GOF Test
The common is a				
			Assuming N	ormal Distribution
	29	95% Normal UCL	rassuming N	
A-D Test Statistic 0.259			ICL 1170	95% Adjusted-CLT UCL (Chen-1995) 1160
Gamma QOF Test				95% Modified-t UCL (Johnson-1978) 1170
Sy A-D Critical Value 0.724 Detected data appear Gamma Distributed at 5% Significance Level Sy K-S Test Statistic 0.266 Detected data appear Gamma Distributed at 5% Significance Level Sy K-S Critical Value 0.266 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Sy Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Sy Gamma Distributed at 5% Significance Level Sy Gamma Distributed at 5% Significance Level 100 Sy Gamma Distributed at 5% Significance Level 100 Sy Gamma Distributed at 5% Significance Level 100 Sy Gamma Distributed at 5% Significance 16.55 Sy Gamma Distributed 16.55 Sy Gamma Distributed 16.55 Sy Gamma Distributed 100 Sy Gamma Distributed	33			
See See Statistic O.16 Kolmogorov-Smirnov Gamma GOF Test 55% K-S Critical Paleu 0.266 Detected data appear Gamma Distributed at 5% Significance Level 28 Detected data appear Gamma Distributed at 5% Significance Level 38 Detected data appear Gamma Distributed at 5% Significance Level 39 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics See Se				
Comma Statistics State	37	5% K-S Critical Va	lue 0.266	Detected data appear Gamma Distributed at 5% Significance Level
Gamma Statistics		Detected data app	oear Gamma	Distributed at 5% Significance Level
			Gamm	a Statistics
National Color Nati			LE) 95.06	k star (bias corrected MLE) 66.61
MLE Mean (bias corrected) 1102				Theta star (bias corrected MLE) 16.55
Adjusted Level of Significance 0.0267	44			
Assuming Gamma Distribution			0.000	Approximate Chi Square Value (0.05) 1248
Assuming Gamma Distribution 95% Approximate Gamma UCL 1176 95% Adjusted Gamma UCL 1190		Adjusted Level of Significan	nce 0.0267	Adjusted Chi Square Value 1234
Lognormal GOF Test Shapiro Wilk Test Statistic 0.953 Shapiro Wilk Lognormal GOF Test 0.953 Shapiro Wilk Lognormal GOF Test 0.969 Data appear Lognormal at 10% Significance Level 1.58 Lilliefors Lognormal GOF Test 1.58 Lilliefors Lognormal Active Lognormal at 10% Significance Level 1.56 Data appear Lognormal Statistics 1.56 Mean of logged Data 7 1.57 SD of logged Data 7 1.57 SD of logged Data 1.57 Data appear Lognormal Distribution 1.56 Data appear Lognormal Distribution 1.57 Data appear Lognormal Data Distribution 1.57 Data Data Data Data Data Data Data Da	48			
Description		95% Approximate Gamma U	ICL 1176	95% Adjusted Gamma UCL 1190
Shapiro Wilk Lognormal GOF Test 10% Shapiro Wilk Critical Value 0.869 Data appear Lognormal at 10% Significance Level			Lognorr	nal GOF Test
Lilliefors Test Statistic 0.158			stic 0.953	Shapiro Wilk Lognormal GOF Test
Data appear Lognormal at 10% Significance Level				
Lognormal Statistics Statistics Mean of logged Data 7	55			
Lognormal Statistics Statistics Mean of logged Data 7.147 SD of logged Data				
Minimum of Logged Data 6.815 Mean of logged Data 7	58		Loanori	nal Statistics
Assuming Lognormal Distribution System Sys	59		ata 6.815	Mean of logged Data 7
Assuming Lognormal Distribution 95% H-UCL 1178 90% Chebyshev (MVUE) UCL 1216 1216 95% Chebyshev (MVUE) UCL 1268 97.5% Chebyshev (MVUE) UCL 1340		Maximum of Logged D	ata 7.147	SD of logged Data 0.109
95% H-UCL 1178 90% Chebyshev (MVUE) UCL 1216	62			normal Distribution
Suggested UCL to Use Statistics Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. Statistics Stati		95% H-U	ICL 1178	90% Chebyshev (MVUE) UCL 1216
Nonparametric Distribution Free UCL Statistics				97.5% Chebyshev (MVUE) UCL 1340
Data appear to follow a Discernible Distribution Nonparametric Distribution Free UCLs Nonparametric Distribution Free UCLs Standard Bootstrap UCL 1163 95% BCA Bootstrap UCL 1162 95% Standard Bootstrap UCL 1160 95% Bootstrap-t UCL 1168 95% Bootstrap-t UCL 1168 95% Hall's Bootstrap UCL 1160 95% Percentile Bootstrap UCL 1161 95% Chebyshev(Mean, Sd) UCL 1214 95% Chebyshev(Mean, Sd) UCL 1265 97.5% Chebyshev(Mean, Sd) UCL 1335 99% Chebyshev(Mean, Sd) UCL 1473 99% Chebyshev(Mean, Sd) UCL 1473 95% Student's-t UCL 1170 99% Chebyshev(Mean, Sd) UCL 1473 PSW Suggested UCL to Use 95% Student's-t UCL 1170 PSW Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	66	33 /0 Chebyshev (INIVOE) C	1400	
Nonparametric Distribution Free UCLs 1163 95% BCA Bootstrap UCL 1162 1162 95% Standard Bootstrap UCL 1160 95% Bootstrap-t UCL 1168 1160 95% Percentile Bootstrap UCL 1161 11				
Nonparametric Distribution Free UCLs		Data ap	pear to follow	a Discernible Distribution
95% Standard Bootstrap UCL 1160 95% Bootstrap+t UCL 1168 95% Hall's Bootstrap UCL 1160 95% Percentile Bootstrap UCL 1161 90% Chebyshev(Mean, Sd) UCL 1214 95% Chebyshev(Mean, Sd) UCL 1265 97.5 97.5% Chebyshev(Mean, Sd) UCL 1335 99% Chebyshev(Mean, Sd) UCL 1473 95% Suggested UCL to Use 95% Student's-t UCL 1170 95% Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	70			
73 95% Hall's Bootstrap UCL 1160 95% Percentile Bootstrap UCL 1161 74 90% Chebyshev(Mean, Sd) UCL 1214 95% Chebyshev(Mean, Sd) UCL 1265 75 97.5% Chebyshev(Mean, Sd) UCL 1335 99% Chebyshev(Mean, Sd) UCL 1473 76 77 Suggested UCL to Use 78 95% Student's-t UCL 1170 79 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.				
90% Chebyshev(Mean, Sd) UCL 1214 95% Chebyshev(Mean, Sd) UCL 1265 97.5% Chebyshev(Mean, Sd) UCL 1335 99% Chebyshev(Mean, Sd) UCL 1473 76 Suggested UCL to Use 95% Student's-t UCL 1170 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	73			
Suggested UCL to Use Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	74	90% Chebyshev(Mean, Sd) U	ICL 1214	95% Chebyshev(Mean, Sd) UCL 1265
Suggested UCL to Use 95% Student's-t UCL 1170 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.		97.5% Chebyshev(Mean, Sd) U	ICL 1335	99% Chebyshev(Mean, Sd) UCL 1473
95% Student's-t UCL 1170 79 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.	77		Sugaeste	d UCL to Use
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.		95% Student's-t U		
81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.		Note: Suggestions regarding the solection of a	95% LICL ara	provided to help the user to select the most appropriate 05% LICI
	81			
	82			

	Α	В	С	D	E	F	G	Н		J	K	L
83												
84		Note: For	highly negat	ively-skewed	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	id Gamma) r	nay not be	
85			reliable. (Chen's and J	lohnson's me	ethods provi	de adjustme	nts for posity	vely skewed	data sets.		
86												

1	Α	В	С	D	E LICL Statis	F	G	H Data Sata	I	J	K	L
2					OUL Statis	SUCS TOF UNC	ensored Full D	Jata Sets				
3	Do		ected Options Computation	ProUCL 5.2	10/28/2024 :	8·50·02 DM						
5	Da		From File	ProUCL Inpu		5.30.02 F IVI						
6 7			ull Precision Coefficient	OFF 95%								
8	Number		Operations	2000								
9												
11	UUMM-WF	RA-0.5-2										
12 13						General	Statistics					
14			Total	Number of Ol	bservations	10					Observations	10
15 16					Minimum	1447			Numbe	er of Missing	Observations Mean	
17 18					Maximum	3092				0.1	Median	2062
19				Coefficient	SD of Variation					Std.	Error of Mean Skewness	176.9 0.549
20												
21 22			S	Shapiro Wilk Te	est Statistic	Normal 0 0.912	GOF Test		Shapiro W	ilk GOF Te	st	
23				hapiro Wilk Cr	ritical Value	0.781			ar Normal	at 1% Signif	icance Level	
24 25			1	% Lilliefors Cr	est Statistic	0.224 0.304		Data appe		GOF Test at 1% Signif	icance Level	
26			<u>'</u>				1% Significar	nce Level		o organi		
27 28					As	sumina Nori	mal Distributio					
29			95% No	ormal UCL				95%		usted for SI		0.405
30 31				95% Stud	lent's-t UCL	2435		9	95% Adjust 95% Modif	ea-CLT UC ied-t UCL (.)	L (Chen-1995) Iohnson-1978)	2435 2440
32							2055					
34				A-D To	est Statistic	Gamma 0.4	GOF Test	Anders	son-Darling	g Gamma G	OF Test	
35				5% A-D Cr	ritical Value	0.725	Detected (data appear	r Gamma D	Distributed a	t 5% Significan	ce Level
36 37					est Statistic ritical Value	0.193 0.266	Detected (ov Gamma	GOF Test t 5% Significan	ice I evel
38							stributed at 59			TOUT DUCCU U	t o 70 o igriiiloan	
39 40						Gamma	Statistics					
41					k hat (MLE)	16.33					orrected MLE)	11.5
42 43					a hat (MLE) u hat (MLE)			orrected MLE) bias corrected)				
44			М	LE Mean (bias						MLE Sd (b	oias corrected)	622.5
45 46			Adius	sted Level of S	Significance	0.0267			Approximat A	e Chi Squar diusted Chi	e Value (0.05) Square Value	195.9 190.4
47			, rajut	200 20101010					•	iajaotoa om	Oquaio vaiao	
48 49			95% A	pproximate G			ma Distributio	<u>nc</u>	9!	5% Adjusted	d Gamma UCL	2550
50			00707							70710 0000		
51 52			5	Shapiro Wilk Te	est Statistic	Lognorma 0.927	GOF Test	Shan	iro Wilk Lo	gnormal G0	OF Test	
53				hapiro Wilk Cr	ritical Value	0.869	D	ata appear	Lognormal	at 10% Sig	nificance Leve	ĺ
54 55			10	Lilliefors Te 1% Lilliefors Cr	est Statistic	0.177 0.241	D			ormal GOF at 10% Sig	Test nificance Leve	
56 57							at 10% Signific					
58						Lognorma	l Statistics					
59 60				Minimum of Lo		7.277					of logged Data	7.624
61			<u>r</u>	Maximum of Lo	ogged Data	8.037				SD	of logged Data	0.261
62 63							rmal Distribut	tion	0001	Obstant	. /M// / IE\ ! ! O'	2020
63 64			95%	Chebyshev (M	95% H-UCL MVUE) UCL						<u>/ (MVUE) UCL</u> / (MVUE) UCL	2636 3204
65				Chebyshev (M					3.1070	,		
66 67					Nonparame	etric Distribu	tion Free UCL	Statistics				
68 69							Discernible D					
70					Nonpa	rametric Dis	tribution Free	UCLs				
71 72			050		% CLT UCL	2402					Bootstrap UCL	
73				Standard Boo 95% Hall's Boo					95%		ootstrap-t UCL Bootstrap UCL	
74 75			90% Ch	nebyshev(Mea	ın, Sd) UCL	2642			95% C	hebyshev(M	lean, Sd) UCL	2882
76			97.5% Ch	nebyshev(Mea	ın, Sd) UCL	3216			99% C	nebyshev(N	lean, Sd) UCL	3871
77 78				050/ 0: :	ontic t LIO		UCL to Use					
79				95% Stud	lent's-t UCL	2435						
80											oriate 95% UCL	
81 82	H						ution, and skever ts: for addition				n studies. nsult a statistic	an.
		5770701, 3IIII		vv 1101 COVE	or un rical W	ona aata se	, ioi additioni	ar maignit till	o door may	**************************************	iouri a sidiisilo	G11.

1	A B C D E	F	G H I J K L censored Full Data Sets
2	- OCE GENERAL	ilica ioi oilic	censored i un pata cets
3	User Selected Options	0.E0.44 DN4	
5	Date/Time of Computation ProUCL 5.2 10/28/2024 8 From File ProUCL Input.xls	3:52:14 PIVI	
6	Full Precision OFF		
7	Confidence Coefficient 95%		
9	Number of Bootstrap Operations 2000		
10			
11	UUMM-WRA-0.5-3		
12		Canaral	I Ctatistics
14	Total Number of Observations	10	Statistics Number of Distinct Observations 10
15			Number of Missing Observations 0
16 17	Minimum	1382	Mean 1584
18	Maximum SD	1937 194.9	Median 1524 Std. Error of Mean 61.64
19	Coefficient of Variation	0.123	Skewness 0.697
20 21		NI I d	0057
22	Shapiro Wilk Test Statistic	0.899	GOF Test Shapiro Wilk GOF Test
23	1% Shapiro Wilk Critical Value	0.781	Data appear Normal at 1% Significance Level
24	Lilliefors Test Statistic	0.185	Lilliefors GOF Test
25 26	1% Lilliefors Critical Value	0.304 ar Normal a	Data appear Normal at 1% Significance Level at 1% Significance Level
27	рака аррек	ai itoiiilai a	at 170 organication beton
28		suming Nor	rmal Distribution
29 30	95% Normal UCL 95% Student's-t UCL	1697	95% UCLs (Adjusted for Skewness)
31	95% Student S-f UCL	וטש/	95% Adjusted-CLT UCL (Chen-1995) 1700 95% Modified-t UCL (Johnson-1978) 1699
32			
33 34	A.D. Tank Okasilati		Anderson Porling Commo COE Toot
35	A-D Test Statistic 5% A-D Critical Value	0.448 0.724	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level
36	K-S Test Statistic	0.187	Kolmogorov-Smirnov Gamma GOF Test
37 38	5% K-S Critical Value	0.266	Detected data appear Gamma Distributed at 5% Significance Level Distributed at 5% Significance Level
39	Detected data appear	чатта И	Distributed at 5% Significance Level
40			a Statistics
41	k hat (MLE) Theta hat (MLE)	76.07 20.82	k star (bias corrected MLE) 53.31 Theta star (bias corrected MLE) 29.71
43	nu hat (MLE)		nu star (bias corrected) 1066
44	MLE Mean (bias corrected)		MLE Sd (bias corrected) 216.9
45 46	Adjusted Level of Significance	0.0267	Approximate Chi Square Value (0.05) 991.5 Adjusted Chi Square Value 978.9
47	Aujusted Level of Significance	0.0207	Aujusteu Cili Square value 978.9
48			mma Distribution
49 50	95% Approximate Gamma UCL	1/03	95% Adjusted Gamma UCL 1725
51		Lognorma	al GOF Test
52	Shapiro Wilk Test Statistic	0.907	Shapiro Wilk Lognormal GOF Test
53 54	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.869 0.175	Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test
55	10% Lilliefors Critical Value	0.175	Data appear Lognormal at 10% Significance Level
56			at 10% Significance Level
57 58		Lognorma	al Statistics
59	Minimum of Logged Data	7.231	Mean of logged Data 7.361
60	Maximum of Logged Data	7.569	SD of logged Data 0.12
61 62	Ass	ımina Loana	normal Distribution
63	95% H-UCL	1704	90% Chebyshev (MVUE) UCL 1764
64	95% Chebyshev (MVUE) UCL	1846	97.5% Chebyshev (MVUE) UCL 1959
65 66	99% Chebyshev (MVUE) UCL	2182	
67	Nonparame	tric Distribu	ution Free UCL Statistics
68			a Discernible Distribution
69 70	Manna	ametric Di-	stribution Fron LICLs
71	Nonpar 95% CLT UCL		stribution Free UCLs 95% BCA Bootstrap UCL 1698
72	95% Standard Bootstrap UCL	1682	95% Bootstrap-t UCL 1718
73 74	95% Hall's Bootstrap UCL	1686	95% Percentile Bootstrap UCL 1685
74 75	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1769 1969	95% Chebyshev(Mean, Sd) UCL 1852 99% Chebyshev(Mean, Sd) UCL 2197
76	or.on onedyshov(mean, od) ode		
77 78	050/ 0: 1 11 1101		d UCL to Use
78 79	95% Student's-t UCL	1697	
80			provided to help the user to select the most appropriate 95% UCL.
81 82			bution, and skewness using results from simulation studies.
OΖ	However, simulations results will not cover all Real W	oria data se	ets; for additional insight the user may want to consult a statistician.

4	A B C D E	F	G H I J K	L									
2	UCL Statis	stics for Unc	ensored Full Data Sets										
3	User Selected Options												
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 8 From File ProUCL Input.xls	8:55:20 PM											
6	Full Precision OFF												
7	Confidence Coefficient 95%												
9	Number of Bootstrap Operations 2000												
10													
12	UUMM-WRA-0.5-3-DS												
13		General	Statistics										
14 15	Total Number of Observations	4	Number of Distinct Observations Number of Missing Observations	0									
16	Minimum	19	Mean	24.25									
17 18	Maximum		Median	21.5									
19	SD Coefficient of Variation	7.274 0.3	Std. Error of Mean Skewness	3.637 1.822									
20		,											
21 22	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,										
23			he Chebyshev UCL for small sample sizes (n < 7).										
24 25			in gross overestimates of the mean.										
26	Refer to the ProUCL 5.2 Tec	innical Guid	e for a discussion of the Chebyshev UCL.										
27			GOF Test										
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level										
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test										
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level										
32 33			t 1% Significance Level Bliable for small sample sizes										
34													
35 36	Assuming Normal Distribution												
37	95% Normal UCL 95% Student's-t UCL	32.81	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	33.77									
38	5575 Stateshie 1 60E		95% Modified-t UCL (Johnson-1978)	33.36									
39 40		Gammo	GOF Test										
41	A-D Test Statistic	0.555	Anderson-Darling Gamma GOF Test										
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level									
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	ı l evel									
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	, ECACI									
46 47	Note GOF tests	may be unre	eliable for small sample sizes										
48		Gamma	Statistics										
49	k hat (MLE)	17.07	k star (bias corrected MLE)	4.434									
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	5.469 35.47									
52	MLE Mean (bias corrected)	24.25	MLE Sd (bias corrected)	11.52									
53			Approximate Chi Square Value (0.05)	22.84									
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A									
56			ma Distribution										
57 58	95% Approximate Gamma UCL		95% Adjusted Gamma UCL	N/A									
59		Lognorma	GOF Test										
60	Shapiro Wilk Test Statistic	0.828	Shapiro Wilk Lognormal GOF Test										
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test										
63	10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level										
64	Data appear Approx	ximate Logn	ormal at 10% Significance Level										
65 66	Note GOF tests	may be unre	eliable for small sample sizes										
67			l Statistics										
68 69	Minimum of Logged Data	2.944	Mean of logged Data	3.159									
70	Maximum of Logged Data	3.555	SD of logged Data	0.271									
71			rmal Distribution										
72 73	95% H-UCL	_	90% Chebyshev (MVUE) UCL	33.99									
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	38.43 56.68	97.5% Chebyshev (MVUE) UCL	44.59									
75		•											
76 77			tion Free UCL Statistics										
78	Data appea	ir to follow a	Discernible Distribution										
79			tribution Free UCLs										
80 81	95% CLT UCL		95% BCA Bootstrap UCL 95% Bootstrap-t UCL	N/A									
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL		95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	N/A N/A									
	55 /6 Hall 5 Doolstrap OCL	13//3	3070 Forcentile Bootstrap OCE	. 1// 1									

	Α	В	С	D	E	F	G	Н	I	J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	35.16			95% Ch	ebyshev(Me	an, Sd) UCL	40.1	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	46.96			99% Ch	ebyshev(Me	an, Sd) UCL	60.44	
85													
86	Suggested UCL to Use												
87				95% Stu	dent's-t UCL	32.81							
88						•	•						
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results from	m simulation	studies.		
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	an.	
92													

1	A B C D E	F tics for Unc	G H I J K L censored Full Data Sets
2		101 0110	cerisored i dii bata oets
3	User Selected Options	0.E0.00 DN4	
5	Date/Time of Computation ProUCL 5.2 10/28/2024 8 From File ProUCL Input.xls	3:58:28 PIVI	
6	Full Precision OFF		
7	Confidence Coefficient 95%		
9	Number of Bootstrap Operations 2000		
10			
	UUMM-WRB-0.5-1		
12 13		General	Il Statistics
14	Total Number of Observations	10	Number of Distinct Observations 10
15 16		00	Number of Missing Observations 0
17	Minimum Maximum	96 202	Mean 137.8 Median 129
18	SD	37.42	Std. Error of Mean 11.83
19 20	Coefficient of Variation	0.272	Skewness 0.618
21		Normal (GOF Test
22	Shapiro Wilk Test Statistic	0.908	Shapiro Wilk GOF Test
23 24	1% Shapiro Wilk Critical Value	0.781	Data appear Normal at 1% Significance Level
25	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.179 0.304	Lilliefors GOF Test Data appear Normal at 1% Significance Level
26			at 1% Significance Level
27 28			
29	95% Normal UCL	suming Nor	rmal Distribution 95% UCLs (Adjusted for Skewness)
30	95% Student's-t UCL	159.5	95% Adjusted-CLT UCL (Chen-1995) 159.7
31 32			95% Modified-t UCL (Johnson-1978) 159.9
33		Gamma	a GOF Test
34	A-D Test Statistic	0.383	Anderson-Darling Gamma GOF Test
35	5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance Level
36 37	K-S Test Statistic 5% K-S Critical Value	0.191 0.266	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level
38	Detected data appear	Gamma Di	Distributed at 5% Significance Level
39 40			
40	k hat (MLE)	<u>Gamma</u> 15.8	k star (bias corrected MLE) 11.13
42	Theta hat (MLE)	8.721	Theta star (bias corrected MLE) 12.38
43	nu hat (MLE)		nu star (bias corrected) 222.5
44 45	MLE Mean (bias corrected)	137.8	MLE Sd (bias corrected) 41.31 Approximate Chi Square Value (0.05) 189
46	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value 183.6
47 48			
48	Ass 95% Approximate Gamma UCL		mma Distribution 95% Adjusted Gamma UCL 167
50	50% Approximate dumina 60E		
51 52	OL- 1 MPH T + C+ + + 1		al GOF Test
53	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.927 0.869	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level
54	Lilliefors Test Statistic	0.178	Lilliefors Lognormal GOF Test
55 56	10% Lilliefors Critical Value	0.241	Data appear Lognormal at 10% Significance Level
57	Data appear I	<u>Lognormal</u> :	at 10% Significance Level
58			nal Statistics
59 60	Minimum of Logged Data	4.564	Mean of logged Data 4.894
61	Maximum of Logged Data	5.308	SD of logged Data 0.264
62			normal Distribution
63 64	95% H-UCL	164	90% Chebyshev (MVUE) UCL 172.4
65	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	188.1 252.8	97.5% Chebyshev (MVUE) UCL 209.9
66			
67 68			ution Free UCL Statistics a Discernible Distribution
69		i to follow a	
70			stribution Free UCLs
71 72	95% CLT UCL 95% Standard Bootstrap UCL	157.3 156.7	95% BCA Bootstrap UCL 159.1 95% Bootstrap-t UCL 164.5
73	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	156.7	95% Bootstrap-t UCL 164.5 95% Percentile Bootstrap UCL 157.1
74	90% Chebyshev(Mean, Sd) UCL	173.3	95% Chebyshev(Mean, Sd) UCL 189.4
75 76	97.5% Chebyshev(Mean, Sd) UCL	211.7	99% Chebyshev(Mean, Sd) UCL 255.6
77		Suggested	d UCL to Use
78	95% Student's-t UCL	159.5	
79 80	Note: Cugastions regarding the calculation of a 05%	LICI are re-	provided to help the upprite acless the most energy into 050/ LIO
81			provided to help the user to select the most appropriate 95% UCL. bution, and skewness using results from simulation studies.
82			ets; for additional insight the user may want to consult a statistician.

1	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	0-00-10 DM		
5	Date/Time of Computation ProUCL 5.2 10/28/2024 9 From File ProUCL Input.xls	9:00:19 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations (2000			
10 11	UUMM-WRC-0.5-1			
12	OUMINI-VANC-0.3-1			
13 14	Total Number of Observations	General 4	Statistics Number of Distinct Observations	4
15	Total Indiliber of Observations	4	Number of Missing Observations	0
16 17	Minimum	16 20	Mean	17.75 17.5
18	Maximum SD	1.708	Median Std. Error of Mean	0.854
19	Coefficient of Variation	0.0962	Skewness	0.753
20 21	Note: Sample size is small (e.g., <10), if data a	are collected	using incremental sampling methodology (ISM) approach,	
22	refer also to ITRC Tech Reg Guide	on ISM (ITR	C 2020 and ITRC 2012) for additional guidance,	
23 24			he Chebyshev UCL for small sample sizes (n < 7). in gross overestimates of the mean.	
25			e for a discussion of the Chebyshev UCL.	
26 27		Normal	POE Toot	
28	Shapiro Wilk Test Statistic		GOF Test Shapiro Wilk GOF Test	
29 30	1% Shapiro Wilk Critical Value		Data appear Normal at 1% Significance Level	
31	Lilliefors Test Statistic 1% Lilliefors Critical Value		Lilliefors GOF Test Data appear Normal at 1% Significance Level	
32	Data appe	ar Normal at	1% Significance Level	
33 34	Note GOF tests	may be unre	eliable for small sample sizes	
35		suming Nor	mal Distribution	
36 37	95% Normal UCL 95% Student's-t UCL	19.76	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	10 F
38	95% Students-t OCL	19.76	95% Adjusted-CLT OCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	19.5 19.81
39				
40 41	A-D Test Statistic	0.227	GOF Test Anderson-Darling Gamma GOF Test	
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance	Level
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	Level
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	LCVCI
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	
49 50	k hat (MLE)	146.8	k star (bias corrected MLE)	36.88
51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected) 2	0.481 295
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	2.923
53 54	Adjusted Level of Significance	N/A		256.2 N/A
55		!		
56 57	Ase 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL	N/A
58	95 /0 Approximate damina OCL			11//
59 60	Chanica Wills Took Charlesia		GOF Test	
61	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value		Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 10% Significance Level	
62 63	Lilliefors Test Statistic	0.177	Lilliefors Lognormal GOF Test	
64	10% Lilliefors Critical Value Data appear		Data appear Lognormal at 10% Significance Level at 10% Significance Level	
65	Note GOF tests	may be unre	eliable for small sample sizes	
66 67		Lognorma	I Statistics	
68	Minimum of Logged Data	2.773	Mean of logged Data	2.873
69 70	Maximum of Logged Data	2.996	SD of logged Data	0.0949
71	Assı	uming Logno	ormal Distribution	
72	95% H-UCL	N/A	90% Chebyshev (MVUE) UCL	20.27
73 74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	21.42 26.13	97.5% Chebyshev (MVUE) UCL	23.01
75		•		
76 77			tion Free UCL Statistics Discernible Distribution	
78	рака арреа	ii to follow a		
79 80			tribution Free UCLs	NI/A
81	95% CLT UCL 95% Standard Bootstrap UCL			N/A N/A
82	95% Hall's Bootstrap UCL			N/A

	Α	В	С	D	E	F	G	Н	I	J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	20.31			95% Ch	ebyshev(Me	an, Sd) UCL	21.47		
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	23.08			99% Ch	ebyshev(Me	an, Sd) UCL	26.25		
85														
86		Suggested UCL to Use												
87				95% Stu	dent's-t UCL	19.76								
88						•	•					-		
89	ľ	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL			
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.			
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistici	ian.		
92														

	A B C D E	F	G H I J K L								
2	UCL Statis	tics for Unc	ensored Full Data Sets								
3	User Selected Options Date/Time of Computation ProUCL 5.2 10/28/2024 9	0.00.E0 DM									
5	Date/Time of Computation ProUCL 5.2 10/28/2024 9 From File ProUCL Input.xls	9:02:59 PIVI									
6 7	Full Precision OFF Confidence Coefficient 95%										
8	Number of Bootstrap Operations 2000										
9											
11	UUMM-WRD-0.5-1										
12 13		General	Statistics								
14	Total Number of Observations	4	Number of Distinct Observations 4								
15 16	Minimum	269	Number of Missing Observations 0 Mean 291								
17	Maximum	334	Median 280.5								
18 19	SD Coefficient of Variation	29.2 0.1	Std. Error of Mean 14.6 Skewness 1.778								
20											
21	Note: Sample size is small (e.g., <10), if data a	are collected on ISM (ITR	l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,								
23	but note that ITRC may recommend th	e t-UCL or t	he Chebyshev UCL for small sample sizes (n < 7).								
24 25			in gross overestimates of the mean. e for a discussion of the Chebyshev UCL.								
26	. 10.0. 10 110 1 100 0 10 100		•								
27 28	Shapiro Wilk Test Statistic	Normal 0 0.798	GOF Test Shapiro Wilk GOF Test								
29 30	1% Shapiro Wilk Critical Value	0.687	Data appear Normal at 1% Significance Level								
31	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.371 0.413	Lilliefors GOF Test Data appear Normal at 1% Significance Level								
32 33	Data appea	ar Normal at	1% Significance Level								
34	Note GOF tests	may be unre	eliable for small sample sizes								
35 36		suming Nor	mal Distribution								
37	95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 325.4 95% Adjusted-CLT UCL (Chen-1995) 328.9										
38 39			95% Modified-t UCL (Johnson-1978) 327.5								
40		Gamma	GOF Test								
41 42	A-D Test Statistic 5% A-D Critical Value	0.571 0.657	Anderson-Darling Gamma GOF Test								
43	K-S Test Statistic	0.884	Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test								
44 45	5% K-S Critical Value	0.394	Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level								
46	Note GOF tests	may be unre	eliable for small sample sizes								
47 48		Camma	Statistics								
49	k hat (MLE)	139.8	k star (bias corrected MLE) 35.12								
50 51	Theta hat (MLE) nu hat (MLE)	2.081	Theta star (bias corrected MLE) 8.286 nu star (bias corrected) 281								
52	MLE Mean (bias corrected)		MLE Sd (bias corrected) 49.1								
53 54	Adjusted Level of Significance	N/A	Approximate Chi Square Value (0.05) 243.1 Adjusted Chi Square Value N/A								
55											
56 57	Ass 95% Approximate Gamma UCL		ma Distribution 95% Adjusted Gamma UCL N/A								
58	oo /o / ggrozimulo dumina dol.										
59 60	Shapiro Wilk Test Statistic	Lognorma 0.813	GOF Test Shapiro Wilk Lognormal GOF Test								
61	10% Shapiro Wilk Critical Value	0.792	Data appear Lognormal at 10% Significance Level								
62 63	Lilliefors Test Statistic 10% Lilliefors Critical Value	0.364 0.346	Lilliefors Lognormal GOF Test Data Not Lognormal at 10% Significance Level								
64 65	Data appear Approx	cimate Logn	ormal at 10% Significance Level								
66	Note GOF tests	may be unre	eliable for small sample sizes								
67 68			Statistics								
69	Minimum of Logged Data Maximum of Logged Data	<u>5.595</u> 5.811	Mean of logged Data 5.67 SD of logged Data 0.0964								
70											
71 72	Assu 95% H-UCL	<u>ıming Logno</u> N/A	prmal Distribution 90% Chebyshev (MVUE) UCL 333								
73 74	95% Chebyshev (MVUE) UCL	352.1	97.5% Chebyshev (MVUE) UCL 378.5								
75	99% Chebyshev (MVUE) UCL	430.4									
76 77			tion Free UCL Statistics								
78	Data appea	r to tollow a	Discernible Distribution								
79 80			tribution Free UCLs								
81	95% CLT UCL 95% Standard Bootstrap UCL	315 N/A	95% BCA Bootstrap UCL N/A 95% Bootstrap-t UCL N/A								
82	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL N/A								

	Α	В	С	D	E	F	G	Н		J	K	L	
83			90% Ch	ebyshev(Me	an, Sd) UCL	334.8			95% Ch	ebyshev(Me	an, Sd) UCL	354.6	
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	382.2			99% Ch	ebyshev(Me	an, Sd) UCL	436.3	
85													
86		Suggested UCL to Use											
87				95% Stu	dent's-t UCL	325.4							
88						•	•						
89	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL		
90		Recom	mendations	are based up	on data size	, data distrib	ution, and sk	ewness usin	g results fror	m simulation	studies.		
91	Но	wever, simul	lations result	s will not cov	er all Real W	orld data se	ts; for addition	nal insight th	ne user may	want to cons	ult a statistic	ian.	
92													

	A B C D E	F	G H I J K	L
2	UCL Statis	stics for Unc	ensored Full Data Sets	
3	User Selected Options	0.04.50.504		
4 5	Date/Time of Computation ProUCL 5.2 10/28/2024 9 From File ProUCL Input.xls	9:04:56 PM		
6	Full Precision OFF			
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000			
9	Number of Bootstrap Operations 2000			
10				
12	UUMM-WRE-0.5-1			
13			Statistics	
14 15	Total Number of Observations	4		3 0
16	Minimum	24		24.75
17 18	Maximum			24.5
19	SD Coefficient of Variation	0.957 0.0387		0.479 0.855
20				
21			l using incremental sampling methodology (ISM) approach, C 2020 and ITRC 2012) for additional guidance,	
23			he Chebyshev UCL for small sample sizes (n < 7).	
24	The Chebyshev UCL o	ften results	in gross overestimates of the mean.	
25 26	Refer to the ProUCL 5.2 Tec	ennical Guid	e for a discussion of the Chebyshev UCL.	
27			GOF Test	
28 29	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value		Shapiro Wilk GOF Test Data appear Normal at 1% Significance Level	
30	1% Snapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test	
31	1% Lilliefors Critical Value	0.413	Data appear Normal at 1% Significance Level	
32 33			t 1% Significance Level Bliable for small sample sizes	
34				
35 36		suming Nor	mal Distribution	
36	95% Normal UCL 95% Student's-t UCL	25.88	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 2	25.76
38	35% Students-t OCL	_0.00		25.91
39 40		Comme	COE Toot	
41	A-D Test Statistic	0.427	GOF Test Anderson-Darling Gamma GOF Test	——
42	5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance L	evel
43 44	K-S Test Statistic 5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance L.	evel
45	Detected data appear	r Gamma Di	stributed at 5% Significance Level	U V U I
46 47	Note GOF tests	may be unre	eliable for small sample sizes	
48		Gamma	Statistics	——
49	k hat (MLE)	900.3	k star (bias corrected MLE) 22	25.2
50 51	Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) (nu star (bias corrected) 186	0.11
52	MLE Mean (bias corrected)		MLE Sd (bias corrected)	02 1.649
53			Approximate Chi Square Value (0.05) 170	04
54 55	Adjusted Level of Significance	N/A	Adjusted Chi Square Value N	/A
56			ma Distribution	
57 58	95% Approximate Gamma UCL			/A
59		Lognorma	GOF Test	
60	Shapiro Wilk Test Statistic	0.865	Shapiro Wilk Lognormal GOF Test	
61 62	10% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
63	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Level	
64	Data appear	Lognormal a	at 10% Significance Level	
65 66	Note GOF tests	may be unre	eliable for small sample sizes	
67		Lognorma	I Statistics	
68 69	Minimum of Logged Data	3.178	Mean of logged Data	3.208
70	Maximum of Logged Data	3.258	SD of logged Data 0	0.0384
71	Assı	uming Logno	rmal Distribution	
72 73	95% H-UCL			26.17
74	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	26.82 29.48	97.5% Chebyshev (MVUE) UCL 2	27.72
75		•		
76 77			tion Free UCL Statistics	
78		ir to follow a	Discernible Distribution	
79			tribution Free UCLs	
80 81	95% CLT UCL			/A
82	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	N/A N/A		/A /A
	30 /0 Fidil 3 Doolottap OOL	13//3	, CO 70 1 Greening Douglap COL N	···

	Α	В	С	D	E	F	G	Н		J	K	L		
83			90% Ch	ebyshev(Me	an, Sd) UCL	26.19	95% Chebyshev(Mean, Sd) UCL 26.8							
84			97.5% Ch	ebyshev(Me	an, Sd) UCL	27.74			99% Ch	ebyshev(Me	an, Sd) UCL	29.51		
85														
86						Suggested	UCL to Use							
87														
88							•							
89	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
90	Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.													
91	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	ian.		
92														

1	Α	В	С	D	E E	F	G	H	I	J	K	L
2					UCL Statis	Stics for Unc	ensored Full D	Jata Sets				
3	Date		cted Options omputation	ProUCL 5.2	10/28/2024 (0.00.10 DM						
5	Date		From File	ProUCL Inpu		9.09.19 F W						
6 7			Il Precision Coefficient	OFF 95%								
8			Operations	2000								
9												
11	UUMM-WRF	- -0.5-1										
12 13						General	Statistics					
14			Total	Number of O	bservations	10					Observations	10
15 16					Minimum	290			Numbe	r of Missing	Observations Mean	0 509.4
17					Maximum	786					Median	501
18 19				Coefficient	SD of Variation	140.5 0.276				Std.	Error of Mean Skewness	44.42 0.491
20					or variation						CROWNOOD	
21 22			S	Shapiro Wilk T	est Statistic	Normal 0 0.98	GOF Test	5	Shaniro W	ilk GOF Tes	et	
23				hapiro Wilk C	ritical Value	0.781			r Normal a	at 1% Signifi	cance Level	
24 25			1	Lilliefors T % Lilliefors C	est Statistic	0.136 0.304		Data annea		GOF Test	cance Level	
26				Limololo O			t 1% Significan			170 Olgilill	231100 20101	
27 28					Δο	sumina Nor	mal Distribution					
29			95% No	ormal UCL				95% U		usted for Sk		
30 31				95% Stuc	dent's-t UCL	590.8		95 9	5% Adjuste 5% Modifi	ed-CLT UCL ed-t UCL (.)((Chen-1995) ohnson-1978)	589.8 592
32												
33 34				A-D T	est Statistic	Gamma 0.143	GOF Test	Anderso	on-Darling	Gamma G	OF Test	
35				5% A-D C	ritical Value	0.725	Detected of	data appear (Gamma D	istributed at	5% Significan	ce Level
36 37					est Statistic critical Value	0.106 0.266	Detected (ov Gamma of the contract of th	GOF Test ∶5% Significan	ce l evel
38							stributed at 5%			iotributou ut	o 70 Olgriiiloari	50 20 701
39 40						Gamma	Statistics					
41					k hat (MLE)	14.5					orrected MLE)	10.22
42 43					ta hat (MLE) nu hat (MLE)	35.13 290			Theta		orrected MLE) ias corrected)	49.86 204.3
44			MI	LE Mean (bia:						MLE Sd (b	ias corrected)	159.4
45 46			Adius	sted Level of S	Significance	0.0267		Ar	pproximate A	e Chi Square diusted Chi	e Value (0.05) Square Value	172.3 167.1
47			7.0,00							<u> </u>		
48 49			95% A	pproximate G			ma Distributio	n	95	5% Adjusted	Gamma UCL	622.8
50												
51 52			S	Shapiro Wilk T	est Statistic	Lognorma 0.988	I GOF Test	Shapir	o Wilk Loc	gnormal GO	F Test	
53				hapiro Wilk C	ritical Value	0.869	D:	ata appear L	ognormal	at 10% Sign	nificance Level	
54 55			10	<u>Lilliefors 1</u> 1% Lilliefors C	est Statistic critical Value	0.116 0.241	D			ormal GOF at 10% Sign	Test nificance Level	
56 57							at 10% Signific					
58						Lognorma	I Statistics					
59 60				Minimum of L		5.67					of logged Data	6.198
61			<u>N</u>	Maximum of L	.ogged Data	6.667				SD o	of logged Data	0.282
62 63							rmal Distributi	ion	0001	Oh alassa	/M/// IE/ : : 0: 1	640.0
64			95%	Chebyshev (N	95% H-UCL MVUE) UCL						(MVUE) UCL (MVUE) UCL	646.8 795.1
65				Chebyshev (M		964.3				,	,	
66 67					Nonparame	etric Distribu	tion Free UCL	. Statistics				
68 69							Discernible Di					
70					Nonpai	rametric Dis	tribution Free I	UCLs				
71 72			0501		% CLT UCL	582.5					Bootstrap UCL	589.2
73				Standard Boo 95% Hall's Boo		579.6 612.7			95%		ootstrap-t UCL Bootstrap UCL	602.8 580.1
74 75			90% Ch	nebyshev(Mea	an, Sd) UCL	642.6			95% Cl	nebyshev(M	ean, Sd) UCL	703
76			97.5% Ch	nebyshev(Mea	an, Sd) UCL	786.8			99% Cl	nebyshev(M	ean, Sd) UCL	951.3
77 78				0E0/ 0:	dontie + LO		UCL to Use					
79				95% Stud	dent's-t UCL	590.8						
80	N						ovided to help					
81 82	Hov						ution, and skev ts; for additiona					an.
	1100	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nanono result	www. 110t COV	or un rical W	ona aata se	, ioi additione	ar molynt tile	acci illay	Traint to COII	יים ביים היים היים היים היים היים היים ה	w11.

Appendix C

Laboratory Analytical Reports

Don Malkemus Terraphase Engineering Inc. 610 SW Broadway, Suite 405 Portland, OR 97205

Laboratory Results for: Upper Granite Creek Mines

Dear Don.

Enclosed are the results of the sample(s) submitted to our laboratory October 08, 2024 For your reference, these analyses have been assigned our service request number **K2410639**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oak

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: Terraphase Engineering Inc. Service Request: K2410639

Project: Upper Granite Creek Mines Date Received: 10/08/2024

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twenty soil samples were received for analysis at ALS Environmental on 10/08/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Method 6020B, 10/22/2024: The Relative Percent Difference (RPD) for the replicate analysis of Total Lead in sample UUMM-WRA-0.5-2 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Method 7471B, 10/15/2024: The Relative Percent Difference (RPD) for the replicate analysis of Mercury in sample UMM-WRB-0.5-1 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Approved by Mol D. Oak

Date 10/23/2024

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: LMM-WRB-0.5-3-DS		Lab	ID: K2410	639-001						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	29.1		0.05	0.41	mg/Kg	6020B				
Solids, Total	95.4				Percent	160.3 Modified				
CLIENT ID: UUMM-WRA-0.5-2										
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	1940		1.1	8.8	mg/Kg	6020B				
Solids, Total	95.2				Percent	160.3 Modified				
CLIENT ID: UUMM-WRF-0.5-1		Lab	ID: K2410	639-003						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	715		0.05	0.44	mg/Kg	6020B				
Solids, Total	95.8				Percent	160.3 Modified				
CLIENT ID: UUMM-WRD-0.5-1		Lab	ID: K2410	639-004						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	269		0.05	0.45	mg/Kg	6020B				
Solids, Total	96.4				Percent	160.3 Modified				
CLIENT ID: UUMM-WRA-0.5-3	Lab ID: K2410639-005									
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	1710		1.1	9.1	mg/Kg	6020B				
Arsenic	3440		0.6	4.9	mg/Kg	6020B				
Arsenic	176		0.2	1.9	mg/Kg	6020B				
Lead	12.6		0.08	0.19	mg/Kg	6020B				
Lead	340		0.20	0.49	mg/Kg	6020B				
Solids, Total	94.9				Percent	160.3 Modified				
CLIENT ID: UUMM-WRA-0.5-3-DUP		Lab	ID: K2410	0639-006						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	162		0.2	2.0	mg/Kg	6020B				
Arsenic	1470		1.0	8.0	mg/Kg	6020B				
Arsenic	3280		0.6	5.0	mg/Kg	6020B				
Lead	340		0.20	0.50	mg/Kg	6020B				
Lead	7.14		0.08	0.20	mg/Kg	6020B				
Solids, Total	94.6				Percent	160.3 Modified				
CLIENT ID: UUMM-WRA-0.5-3-DS		Lab	ID: K2410	639-007						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	16.0		0.05	0.44	mg/Kg	6020B				
Solids, Total	89.4				Percent	160.3 Modified				
CLIENT ID: UMM-WRB-0.5-2		Lab	ID: K2410							
Analyte	Results	Flag	MDL	MRL	Units	Method				
Arsenic	1800		1.0	8.2	mg/Kg	6020B				

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: UMM-WRB-0.5-2		Lab	ID: K2410	0639-008								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Solids, Total	95.4				Percent	160.3 Modified						
CLIENT ID: UMM-WRB-0.5-2-DS		Lab ID: K2410639-009										
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	79.2		0.05	0.45	mg/Kg	6020B						
Solids, Total	80.9				Percent	160.3 Modified						
CLIENT ID: LMM-WRB-0.5-1		Lab	ID: K2410	0639-010								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	1090		0.05	0.42	mg/Kg	6020B						
Solids, Total	96.1				Percent	160.3 Modified						
CLIENT ID: LMM-WRB-0.5-1-DUP		Lab	ID: K2410	0639-011								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	802		0.05	0.42	mg/Kg	6020B						
Solids, Total	96.6				Percent	160.3 Modified						
CLIENT ID: CM-WRC-0.5-4		Lab	ID: K2410	0639-012								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	650		0.6	4.9	mg/Kg	6020B						
Arsenic	292		0.05	0.42	mg/Kg	6020B						
Arsenic	33.1		0.2	1.9	mg/Kg	6020B						
Lead	2.95		0.08	0.19	mg/Kg	6020B						
Lead	10.3		0.20	0.49	mg/Kg	6020B						
Solids, Total	95.6				Percent	160.3 Modified						
CLIENT ID: UMM-WRA-0.5-1		Lab	ID: K2410	0639-013	639-013							
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	1300		1.0	8.4	mg/Kg	6020B						
Arsenic	1590		0.6	4.9	mg/Kg	6020B						
Arsenic	12.7		0.2	2.0	mg/Kg	6020B						
Lead	66.0		0.08	0.20	mg/Kg	6020B						
Lead	249		0.19	0.49	mg/Kg	6020B						
Solids, Total	95.2				Percent	160.3 Modified						
CLIENT ID: UMM-WRA-0.5-3		Lab	ID: K2410	0639-014								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	1210		0.05	0.45	mg/Kg	6020B						
Solids, Total	91.5				Percent	160.3 Modified						
CLIENT ID: UMM-WRA-0.5-1-DS												
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	37.5		0.05	0.41	mg/Kg	6020B						
Solids, Total	94.4				Percent	160.3 Modified						

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: UMM-WRA-0.5-1-DS		Lab	ID: K2410	639-015		
Analyte	Results	Flag	MDL	MRL	Units	Method
CLIENT ID: LMM-WRA-0.5-3		Lab	ID: K2410	0639-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic	16.6		0.2	2.0	mg/Kg	6020B
Arsenic	125		0.05	0.44	mg/Kg	6020B
Arsenic	328		0.6	4.9	mg/Kg	6020B
Lead	10.8		0.08	0.20	mg/Kg	6020B
Lead	32.0		0.19	0.49	mg/Kg	6020B
Solids, Total	91.0				Percent	160.3 Modified
CLIENT ID: LMM-WRA-0.5-3-DS		Lab	ID: K2410	639-017		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic	21.6		0.05	0.44	mg/Kg	6020B
Solids, Total	92.2				Percent	160.3 Modified
CLIENT ID: LMM-WRA-0.5-4						
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic	2290		1.1	8.8	mg/Kg	6020B
Solids, Total	93.8				Percent	160.3 Modified
CLIENT ID: LMM-WRA-0.5-4-DUP		Lab	ID: K2410	639-019		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic	2570		1.0	8.5	mg/Kg	6020B
Solids, Total	93.7				Percent	160.3 Modified
CLIENT ID: UMM-WRB-0.5-1		Lab	ID: K2410	639-020		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic	14000		5	41	mg/Kg	6020B
Lead	5210		1.6	4.1	mg/Kg	6020B
Mercury	0.663		0.010	0.098	mg/Kg	7471B
	96.3				Percent	160.3 Modified

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com **Project:** Upper Granite Creek Mines/0031.005.001

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2410639-001	LMM-WRB-0.5-3-DS	10/3/2024	1050
K2410639-002	UUMM-WRA-0.5-2	10/2/2024	1330
K2410639-003	UUMM-WRF-0.5-1	10/2/2024	1400
K2410639-004	UUMM-WRD-0.5-1	10/2/2024	1350
K2410639-005	UUMM-WRA-0.5-3	10/2/2024	1345
K2410639-006	UUMM-WRA-0.5-3-DUP	10/2/2024	1344
K2410639-007	UUMM-WRA-0.5-3-DS	10/2/2024	1335
K2410639-008	UMM-WRB-0.5-2	10/2/2024	1320
K2410639-009	UMM-WRB-0.5-2-DS	10/2/2024	1325
K2410639-010	LMM-WRB-0.5-1	10/3/2024	1035
K2410639-011	LMM-WRB-0.5-1-DUP	10/3/2024	1036
K2410639-012	CM-WRC-0.5-4	10/3/2024	1627
K2410639-013	UMM-WRA-0.5-1	10/2/2024	1215
K2410639-014	UMM-WRA-0.5-3	10/2/2024	1150
K2410639-015	UMM-WRA-0.5-1-DS	10/2/2024	1205
K2410639-016	LMM-WRA-0.5-3	10/3/2024	0930
K2410639-017	LMM-WRA-0.5-3-DS	10/3/2024	0925
K2410639-018	LMM-WRA-0.5-4	10/3/2024	0945
K2410639-019	LMM-WRA-0.5-4-DUP	10/3/2024	0946
K2410639-020	UMM-WRB-0.5-1	10/2/2024	1310

140510

CHAIN OF CUSTODY

001,	002,	003	 	****	

S	R#	-			 		
COC	Set_	1	_of_	8	 	***************************************	
\sim	\sim 4						

(ALS) the with the sent at	1317 Sou	th 13th	Ave, k	(elso,	WA 9						800-6	695-72	222/	FAX (360)	636-1068		OC#
Project Name UN1 Gone Car Mins Project Number 031,005. 001	T	Т,	_						obal.co	om				T		7	Page 1 of 1
roject Manager Don Malkems	_	6	797		180D			CIRRE									. 7 (-
ompany Tellyphic Enjoying Inc.	₂₂							Γ	†			Γ		1		KILIC	DC 20(
	CONTAINERS			Total)				Cak								VU	
hone # (503) 943-0314 email don. malking @ telephik.com				eved	tract			dness									
ampler Signature Sampler Printed Name	b	1		3A (Si	A Ex	/ Metals T	GrindSub	/ Han									
Don Mallemy	NUMBER	7470A / Hg	7471B / Hg	50208 / IVBA (Sieved	SO20B / IVBA Extract	3020B / Me	Srind / Grin	SM 2340 B / Hardness Calc		7	•		10	Re	emarks		
CLIENT SAMPLE ID LABID Date Time State	х										****					_	
. LMM-683-015-3-DS 1013 1056 5171	2					X								+ 6:	<u>ز</u>		
.VUMM-WFA-0.5-2 10/2 1330 So.7	2					Х											•
S:11 1012 1400 S:11	2					λ											
.UUMM - WRE -0.5-1 1012 1355 Soil	2													+ 60	19 HOLD		
. UMM_URD-0.5-1 10/2 1350 50:1	ک					X								tba	1		
1012 1345 Soil	£			×	×	^								+ bay			
WMM-WRA-0.5-3-DUP 10/2 1344 Soll	2			×	⋋	X								F-Peid			
LUMM-WRB-0.5-1 10/2 1320 Soil	2													,	HOLD		
. WMM-WRX-0.5-3-05 10[2 1335 562]	2					X								+ 645)		
D. DVMM-TLB-0.5-3 1012 1640 5011	Z													7 217	HOLD		
Report Requirements Invoice Information P.O.#												2	Circle	which met	als are to be an	alyzed	
I. Routine Report: Method Blank, Surrogate, as required P.U.# Bill To: 9(2) to have a common to the common to th																	Se Sr TI Sn V Zn Hg
II. Report Dup., MS, MSD		Di	ssolve	ed Me	etals:	Al	As	Sb	Ba	Be I	3 C	a Co	i Co	o Cr Cu	Fe Pb N	1g Mn Mo Ni K Ag Na	Se Sr Tl Sn V Zn Hg
as required Turnaround Requirements	Specia	Instr	uctio	ns/C	Comi	ment	s:				*Inc	dicat	e St	ate Hyd	rocarbon Pi	ocedure: AK CA WI N	orthwest Other(Circle One)
	,																
(No law data) 5 Day [V. Data Validation Report Standard																	
V. EDD Requested Report Date																	,
Relinquished By: Received By:	Re	ling	ish	ed E	Зу:			armaran district	7 ^F	Rece	ive	d By	<i>i</i> :		Re	linquished By:	Received By:
J. H. V. Duch	nature		7]				S	gnat	ture	n i	8	20	ll	R.	Signature		Signature
DON MAIRING FOURTH LOBING F	nted Na Con K		1	at	3.0	4	P		d Na		X-		<u></u>	***	Printed Na	me	Printed Name
TEI FimALS	AZ	_ 5	`					rm- 1 ()	181	20		4	1	5	Firm	***************************************	Firm
ate/Time 10/8 1306 Date/Time 10/0x/24 /3010 Da	te/Time	/0/	28/	24	1	14.	J D	ate/T	Time		· · · ·				Date/Time		Date/Time

ALS

140510

CHAIN OF CUSTODY

140510

001, 002, 003

SR#	
COC Set_2	_of_ 8
COC#	

									WW	w.alsgl	obal.c	om	000 0	00 / 22	-/	or (out)	000-1000						Page	e 1 of 1
	Project Number:	200 SAO - 1886			28D		ç	000	T	G666	T				T		***************************************							
roject Manager Ook Mallems						\perp	, ,	<u>.</u>	_	66	<u> </u>	·									, 2	7		
ompany Terrophax Enjacory In	•			ERS			E E		1	Calc	İ									MV	003	•		
ddress, City, State G W Sh Britishing S.	ik 405			CONTAINERS		ı	of De	4		SS C				l					K	U				
none # (503) 948 -0384		allemse terrapi	M CON	ĝ			Sieve	Yage -	g	ardne														
ampler Signature	Sampler Printed N			õ	± 6,1	္နာ	VBA	Velak	Spui	B/H														
M	Dan MI			NUMBER	7470A / Hg	7471B / Hg	5020B / IVBA (Sieved Total)	5020B / Metals T	Grind / GrindSub	SM 2340 B / Hardness		~		4	2	Re	emarks							
		AMPLING Time State	Matrix														1/1/hh.							
EB-2029 1003	10/5	0130	H20	1				X	1		1							-						
EB-5054100A	اواد	0300	H20	١		T		×	T													•		
EB-2024 1005	tals	0830	H20	1		7		X		T			1				*							
UMM-623-05-4	10	2 1335	50.01	2		T			1	T						F bg	HOLL	5						
CMM-4RB-0.5-2	lol 2	1320	50.1	2				X		1							Pot	A.						
TWW-P159-0-2-5	1013	1045	50:1	2					T	T						+ 69	1 HOLD	-						
VAM - 628-0.5-2-05	10/2	1325	Sail	2				X					\neg			t ba	<u> </u>							
LMM-WRB-0.5-1	10/3	1035	50-1	2		T		X	1							+ long	14060	PLN						
LMM-WR3 -0.5-3	1013	1055	Soci	Z.									1			1 b49	HOLD	_						
). LMM - 6RB -0.5-1-DUP	10/3	103 £	5411	2		Т		λ																
Report Requirements		nformation												Cit	rcle wi	hich met	als are to be a	naivzed			*****			
I. Routine Report: Method Blank, Surrogate, as required	.O.#_ Bill To: <u>^₹</u> ₽	termhou-con												Od C	o C	r Cu	Fe Pb M	Mn Mo						
★ II. Report Dup., MS, MSD ———————————————————————————————————			L							Sb	Ва	Be I						Mg Mn Mo					Zn Hg	
as required	urnaround	Requireme	nts	pecia	Instru	ction	ıs/Coı	mme	nts:				*Ind	icate	Stat	te Hyd	rocarbon f	rocedure:	AK CA	WIN	orthwest	Other	(Circle	e One)
III. CLP Like Summary (no raw data)	24 hr	48 hr.																						
IV. Data Validation Report	5 Day Standard																							
V, EDD																							•	
Relinguished By:		d Report Date /ed By:		Re	lingui	she	d Bv	:	Т		7	Rece	ivee	HSV:			R	elinquish	ad Rv		T	Possi	red By:	
		,				Λ					1	. Commission of the Contract o	erez de	, .				Jiii iqui 311	ca by.			Recen	rea by:	
	gnature)			ature 	7	7	44r.		5	Signa) (M	Re	d	Q.E	Sh.	Signature				Signatu	'e		
Um Malkemas 7		Bile	Tr	ed Na		<u> </u>	×B;	d _{re}		Printe And	ed Na 🎗					1	Printed N	ame	 		Printed	Name	· · · · · · · · · · · · · · · · · · ·	
m TEI Fir	ALS".		Firm	H	5,						3/6	171	1	14	40	<u>, </u>	Firm	<u> </u>	***************************************		Firm			
te/Time 16/9 1355 Da	ite/Time 10/05	124 1306	Date.	/Time	10/08	12	7]	<i>94</i> 5		Date/	Time				-	,	Date/Time	3			Date/Tir	ne		

140510

CHAIN OF CUSTODY

1, 002, 003	SR#
	COC Set_3_of_8
	COC#

(AL3) VIII (AL)							,				www.e	isgiot	bal.cor	n			2,17	x (000)	000 1000						Pag	ge 1 of 1
Project Name Upper Grant Creek A	hus Project N	iumber: 0	031-005.001		Ī	٦	2		008		0000						T									3 . .
Project Manager Don Malkey	MUS	······································			1	2	3		<u></u>		Ö	3					╝			l				<i>/</i> ~,		
Company Tellaphax Enginee	syd	***************************************			ERS			ag)				Calc												39		
Address, City, State Gla She Bre-	Jury Suik	405	***************************************		CONTAINERS			rd Total)	_ [ĺ		ı	- 1			1		4	11	67		
Phone # (563) 943 -0384	email d	m, malke	muc fermin	l.can	8			(Sieved	Extract		Ę.	ardne								l		17	γ_{\prime}	*		
Sampler Signature		Printed Nam			ő	<u> </u>	5	/BA (AB I	lefals	indSi	H/B										V				
Cel	Don	MAIR			NUMBER	7470A / Hg T	7471B / Hg	3020B / IVBA	SOZOB / IVBA	5020B / Metals T	Grind / GrindSub	SM 2340 B / Hardness		21	_			Re	emarks							
CLIENT SAMPLE ID	LABID		MPLING Time State	Matrix																						
1. CM - WRC - 0.5 -4		tols	1627	Soil	Ž			×	λ	X						T		t bi	١							
2. UMM -WRA-0.5-1		10 2	1215	Soil	2_			4	4	4				T				+ b	1)							
3. LAM - LA - 0.5-3		10(2	1150	Seil	2					X							1	· · ·								
4.6MM-WFA -0.5-1-05		to 2	1501	Sect	5				ヿ	7						1	1	•								
5. LMM-WRA -0.5 -3		1013	0130	5.81	2			4	\mathbf{x}	4								t ba	{							
6. LMA-WZA-05-3-DS		10(3	0925	١٧٥٤	2					X		T														
7.6MM-WPA-0.5-4		613	0945	Soil	2				7	$\overline{\chi}$		7	1			1	T		***************************************							
8.6MM-6FA -05-4- DUP		10[3	०१५६	Sit	2					X					ľ	<u> </u>	1									
9. LMM-1688-0.5-1		10(2	13 14	17,05	2		λ		7	X		7					十	+ 60	3K							
10. LAN- LEB -0.5-3		16 2	1330	1118	2							1					1	1- bag	@11M	Has	•					
Report Requirements		oice Inf	ormation													Cir	cle w	nich met	als are to b	e analy	red					
I. Routine Report: Method Blank, Surrogate, as required	P.O.#_ Bill To:	ap@len	luc am				Total	Meta	is: Al	6) Sb	Ba	a Be	В	Ca C							li K Ag	Na Se	e Sr Tl Sn	V Zn Hg	
X II. Report Dup., MS, MSD as required				_	pecial	Inetr	uctio	ne/C	omn	nont	~				*Lock		Ctot	استارا حا		- D	_ 4	A14 OA 1	All No.	Se Sr Tl Sr	·	
III. CLP Like Summary (no raw data)	Turnare		equiremer	its	ş Α	13	qual	112 120	VIIII	Pb	+ 4	> 0	n s	(wh	t a	\ (V/M/	e nyu A - W(-(5 - 0 - 5	(-1)	More:	1. Kely	him	rthwest Othe	tim on th	rcle One) 3 አየካየ
IV. Data Validation Report	5	Day tandard			((€. `	7	100)						`			*	·	•	•	,			, -
V. EDD		Requested Re	eport Date																1927.			*.				
Relinquished By:		Receive	d By:		Rel	inqu	iishe	ed E	By:			A PORT OF THE PARTY OF THE PART	/R	ecei	ved	By:				Relin	quishe	d By:		Rei	eived By	/ :
Signature	Signature	TX		Signa	ature	حب ا	IJ	<u>()</u>		(Sig	nati	ure	Ni	. 0	2 7	20	BC1	Signatu	re				Signature		
Printed Name Mallumy	Printed Na Frank	Tin L	aBich	Printe Fro	ed Na	me	La	Bic	he			nted	l Nan	ne	<u>. Teni</u>				Printed	Name	!			Printed Name		
im TEI	FirmAL			Firm	AL	5					Fir	m	812	L(14	145	5		Firm					Firm		
Pate/Time 6/8 1306	Date/Time	10/08	124 1361	g Date/	Time,	10/0	8/2	4	140	15	Da	te/T	ime						Date/Ti	me				Date/Time		

S Prince of a magrees of the major will

140510

CHAIN OF CUSTODY

001, 002, 003	SR#
	COC Set_4_of_8_
	COC#

A man was a few or with the second of		into the same									www.	alsglo	bal.com								Page 1 of 1
Project Name UMA Ganik Clark Mi	اله Project N	lumber: ()	031.005.001			C ac	ġ l		30D		[7888					Т				· ago / or r
Project Manager Dn My(Kems)					1	<u>_</u> ~	Í		180	,	Š))	<u> </u>							af 1	
company Tellyhouse Engineery	Inc.			·	ERS			Total)				Calc								10631	
ddress, City, State 60 Sw Broadw	ey Suite 40	>			CONTAINERS				#			SS							(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
hone # (503) 143-0389			nus@ lerryly	May.)(- [Sieve	Extract	J	4	ardne									
ampler Signature		Printed Nam			R 0F	լը.	<u>_</u>	/BA (letals	GrindSub	B / H							•		
lell	Din	Malke	MA		NUMBER	470A7 Hg	7471B / Hg	3020B / IVBA (Sleved	020B / IVBA	020B / Metals	Grind / Gr	3M 2340 B / Hardness						Remarks			
			MPLING	Matrix				10	· · ·	-0		S		\sim		4	╁	ACHAINS			
CLIENT SAMPLE ID	LABID		Time State		-		_			-\.				_	_		۰,				
		1012		Soil	.2		X	X	$\stackrel{\times}{\mid}$	χ				_	_		_	t bast .			
.UMM - TLA - 0.5-3		IOLS	1530	Sill	2		_			_					_	_		- by HOLD			
. UMM - TLB -0.5-4		10 2	1645	5001	2					λ				_		_		- 693			
.CMM-TLA -OS-4	·	10(2	(535	Sil	2		_							4	_			CLIOH PRO-			
. UMM - TLC -0.5 -1		10(2	(900	5,00	7		4			X				4				- bag			
. UMM - TLC-05-2		loll	1715	5031	2		_			X				_			1+	bej			•
.UMM - TLB - 0.5 - Z		10(2	1635	Se. \	ζ.		_	_	_									by HOLD			
UMM - TLA -0.5-5		10(5	1540	5,1	L		_	_								\bot		- HOLD			
.VMM - TLA -OS-C		icl2	1545	58.1	J.		<u> </u>	$\times \mid$	×	×							<u> </u>	ben			
<u>0. </u>		<u></u>														<u>Ц</u>		<u> </u>			
Report Requirements	P.O.#	oice inf	ormation	İ												Circ	le whic	h metals are to be ana	yzed		
I. Routine Report: Method Blank, Surrogate, as required		ap@tel	aghox, can	_			Total	Meta	ıls: A	ı (Ag	≥ si	ь В	a Be	ВС	Ca C	d Co	Cr	Cu Fe Pb Mg	Mn Mo Ni K Ag Na	Se Sr Ti Sn V Z	in Hg
II. Report Dup., MS, MSD as required				_								Sb	Ва В						Mn Mo Ni K Ag Na		Zn Hg
III. CLP Like Summary	Turnar	ound R	equireme		pecial N.							i di sta a	i 1	7. L	*Indi	cate S	State	Hydrocarbon Pro	van-tra -0.5-6	orthwest Other	(Circle One)
(no raw data)	2	Day	48 hr.	1	H 170 .	11.2.1	L.C.	, .		7 %	. ;	الم من د	, Z	COW	,M(→ 1	L() -	- ۲،۵۰	1) and of (UMM-TUA -0.5-6)	
IV. Data Validation Report	_ X s	tandard																			
V. EDD		Requested Re	eport Date																		,
Relinquished By:		Receive			Rei	inqu	ish	ed E	Зу:		T		Re	cei	ved	Ву:		Reli	nquished By:	Receiv	red By:
								1						-							- · · · · · · · · · · · · · · · · · · ·
gnature	Signature	01	-		ature		7	<u> </u>				$\bigcup \langle$	ture LCO		Re	lei	Hi	Signature		Signature	
inted Name Myllemy	Printed Na Frank	in Lai	Bich		ed Na w <i>Kl</i>		La	\mathcal{B}_{i}	دمل	K.		inted 41º	d Nam	е				Printed Nam	ie	Printed Name	
m TEI	Firm	. 5	į	Firm	AL	_S					Ψi	rm ‴	812	U	10	14	5	Firm		Firm	
10/8 130 6	Date/Time	10/08	194 1704	p Date	/Time	10/9	×8/_	24	K	145	- D	ate/T	rime					Date/Time		Date/Time	
190 150			,	-			i.														

140510

CHAIN OF CUSTODY 140510

001, 002, 003

SR#			 	
COC Set	of_	8	 	
COC#		_		

(ALS) to the last						*******	,	.0,00,	.,,.				bal.com	22700	0-000-	12221	-AX (300	636-1068				Page 1 of
Project Name upper Granik Cree Project Manager 7		O. sedmina	100 : 200 150		.	٩	280		800		5	388										
1200 144/16] ,,	<u> </u>	N 1		=			55	ļ		-		-				ON	
Company Terrylmx Engin	lering Inc.				CONTAINERS			gg				Calc									(23)	
Address, City, State Glo Sw Dread	luy Svite 4	-			N TA			ed To	ŧ											. \	TO	
Phone # (503) 889-1067	email)	on-malk	imu @ Klapha	k. Gar] မှု			(Siev	Extra	⊥s	g	łardn								.10		
Sampler Signature		Printed Nar] e	Hg⊤	£	WBA	WBA	Metal	rindS	1 B / F										
CMC	Don	Malk	emus		NUMBER	7470A / Hg T	7471B / Hg	30208 / IVBA (Sieved Total)	5020B / IVBA Extraci	3020B / Metals T	Grind / GrindSub	3M 2340 B / Hardness					R	emarks		`		
. ON ITTAIT OAMED EID			MPLING	Matrix			-12		·		Ŭ			N 107	1 4	1 "					•	
CLIENT SAMPLE ID	LABID	tols	Time State	Se:\	2		\vdash	\dashv		₩.				_	4_	╀						
CEM-WR3-05-1		10[5	1300	Sa: (2				\dashv	X 2		15.		+	4_		ļ					
CEW-MBY -0.2-5		10/5	1705	<u> </u>	ļ					X					-	-						
CEM-WRC-05-1		1015	\	Sail	2			<u> </u>		X				4-	-	-	+ P	13				
GF-WRA-0.5-1		<u> </u>	0436	<u> </u>	7			_	[×		_										
		10/5		Soil	2					X				-	<u> </u>							
.GF - WRD -0.5 -6 .GF - WRD -0.5 -4-05		iols	1110	Sal	2			_	\dashv	×		_			<u> </u>	<u> </u>						-
-		10/5	1105	Sact	2			¥	*	×					\perp		t ba	5				
.6F - DR -0-5-1		10/5	1035	Sail	2			_		*					<u> </u>							
.GCS - WRA -0.5-3		16/4	1615	Sact	2			\perp	_	۲.												
0.GCS-WPA - 0.5-4	~ pro-	1014	१९९५	Sail	2			Щ.		*												
Report Requirements	P.O.#	oice In	formation													Circle	which me	tals are to be	analyzed			
 I. Routine Report: Method Blank, Surrogate, as required 		40 0 1	erulms -com																		Se Sr Tl Sn V ;	
LIL Report Dup., MS, MSD				L		Di	ssolve	ed Me	etals:	ΑI	As	Sb	Ba B								a Se Sr Tl Sn V	Zn Hg
as required	Turnar	ound F	Requiremen	nts S	pecial	Instr	uctio	ns/C	omr	nent	s:			*[ndica	te St	ate Hyd	rocarbon	Procedure:	AK CA WI N	Northwest Other	(Circle One)
III. CLP Like Summary (no raw data)	2.	4 hr.	48 hr.																			
IV. Data Validation Report	5 S	Day tandard																				
V. EDD																						
Relinquished By:		Requested F		\dashv	Pal		uish	a of E					n -			L. me	·	1 -				
reiniquished by.	· ·	.VECEIVE			Kei	mqı	non ∆	eu c	oy:				7 Ke	ceiv	eg.⊭	y:		1	Relinquish	ed By:	Recei	ved By:
gnature	Signature	48)	Sign	ature	- 1) (4				81	gnati	ure 1000	- Q	ابر 2	20 6	\$P.L.	Signatur	e		Signature	
inted Name (Don Mill(pmL)	Printed Na Fron H	and Lo	Bich		ed Na		Lo	B.	ch	4	1	inted 17 λ	Nam	• • • • • • • • • • • • • • • • • • •				Printed I	Vame		Printed Name	
m tel		5	****	Firm	4	<u> </u>	-		· · · · · · · · · · · · · · · · · · ·		1	m-2 018	S(21	and the same	LL	(5		Firm			Firm	
ate/Time	Date/Time	10/08/	124 1306	Date	/Time	10/0	os/:	24	19	45	Da	ate/⊤	ime					Date/Tin	ne		Date/Time	
10/8 1306							-	1														

ALS

140510

CHAIN OF CUSTODY

40510

001, 002, 003	

SR#			
COC Set 6	of_	8	
COC#			

(/~E-3 / 5 24 5 5 5 5											www.	alsglo	bal.com	m					- ,						Pag	e 1 of
Project Name Upper Granik Creek N	Project I	Number: O	031.005.001			1	CRZ		80D		ξ	7888													. ~3	
roject Manager Dan Myllew	(V)			,	7		~		<u>~</u>	г	5)) 	ļ,													
tompany Terraphys Eng	inevity Inc	a.			CONTAINERS			Total)				Calc												201		
ddress, City, State Glo SW On	advay Suite (] §				ਲ			Sss					İ						7	つし		
hone # (50) 943-0394	email)	on, mylk	enus Othyh	De-Com				(Sieved	Extract	ΣŢ	q	lardn										aU	I_{IOO}	/		
ampler Signature	Sampler	Printed Na	me		18 PR	Į.	£	IVBA	VBA	/ Metals T	GrindSub	B/F		l	-					ĺ		VV				
	Don	Malle			NUMBER	7470A / Hg	7471B / Hg	5020B / IVBA	BOZOB / IVBA	5020B / I	Grind / G	SM 2340 B / Hardness		~	_	-		F	Remark	s		*		331		
CLIENT SAMPLE ID	LABID		MPLING Time State	Matrix					-															·		
.GCS - WRA -0.5-4-03		10/4	isss	S = ? \	2			×	*	¥								+ p	15							
.GCG - WAA - 0.5 - 2	***************************************	1014		50.1	2			Y	×	×								t pa	3					•		
.GC6 - WRX -0.5-1			1045	11.62	2					١																
GC7 - WH - 0.5-3		10 4	1150	50:1	2					X																
.GC7-WRB-0.5-1		1014	ms	Seil	2_					۲																
T L - VRA - 0.5 -3		10/4	1405	\$0.\	2					×																
96-618-05-4		10/4	1425	Sail	2					*				_												
4 L - WEB -0.5-1-05-2	**************************************	13/4	1400	5.71	2			4	}	7				_			_	+ 6	U							
		10/4	1005	11.02	2			_	_	X					\perp											
). SH-WRC- 0.5-1		1014	1015	50 1	2			l		×																
Report Requirements	P.O.#	oice in	formation													<u>C</u>	ircle v	which m	etals are to	be analy	zed					
 I. Routine Report: Method Blank, Surrogate, as required 	Bill To	doco fe	IMPHIX- CON	<u> </u>																				Sr Tl Sn \		
II. Report Dup., MS, MSD	***************************************	·····		_								Sb	Ba I	Be E											V Zn Hg	
as requirediii. CLP Like Summary	Turnar	ound F	Requireme	nts	pecial	Insti	ructio	ns/C	comr	nent	ts:				*Ind	licate	Sta	ate Hy	drocarbo	on Proc	cedure: A	K CA W	I Northy	west Other	(Circ	cle One)
(no raw data)	2	4 hr. Day tandard	48 hr.																							,
IV. Data Validation Report	 s	tandard																								
V. EDD		Renuested	Report Date																						·	
Relinquished By:		Receive			Re	linqı	uish	ed E	Зу:		Т		∠¬ R	ece	ivec	By	î.			Relir	quished	By:	T	Rec	eived By	•
		- A					- 1	t				and the second	1_	and the second	and the same of th						•				on da by	·
gnature /	Signature Printed,Na	F	pe		ature		<u> </u>				Si	gnat VL	ture	116		lo	Æ	1	Signat	ure			Sig	nature		
inted Name Ow Myllumy		ed Na Sun K	£ ,	Ĺ	La	Bi	he		rinted 7 Ŝ	d Nan	ne T					Printed	Name)		Prir	ited Name					
m tel	Fron Fl.	. 5		Firm		.5					ffi	rm	<u>.</u> K12	U	\ 1	44	5		Firm				Firn	n		
ite/Time	Date/Time	3/0/01	1/24 /30	Date	/Time	10/	×5/2	24	19	45			lime		I		and the same of th		Date/T	ime			Dat	e/Time		
10/8 1306		, 0	- , —	,		F	(, -															***************************************			

140510

CHAIN OF CUSTODY 140510

001,	002,	003	 	·	

SR#_				
COC Set	i of	Q	_	
0004	•	•		

				15	17 0001	11 100	, , , , , , , , , , , , , , , , , , ,	rteisu,	YVA 3				bal.co		000-0	3J-12	2215	FAA ((sou) esc	-1000							F	age 1	of 1
Project Name Viter Grank Creek Mines Project Number 0031.05.001 Project Manager M. W. W. W. W. W. W. W. W. W. W. W. W. W.							780		80D			1888 1888	T					T											
DW LAMMO							. v T		- - - -			π I			т			-											
Company Terriphia Engineering Inc.								otal)				Calc						Ì								CA			
Address, City, State Clo Sur Broadury Suite 405								Pd Te	ಕ									1							•	つし			
Phone # (523) 943-0384 email on milk my @Kinghax (m					F CONTAINERS			(Siev	Extra	F SI	ą,	fardn												, \	$\mathcal{N}_{\mathcal{O}}$)			
Sampler Signature		Printed Nan			R OF	₽Ê	Ę	VBA	VBA	Meta	irind	B / H											,	1					
On Malkenus					NUMBER	7470A / Hg T	7471B / Hg	5020B / IVBA (Sieved Total)	60208 / IVBA Extract	5020B / Metals T	Grind / GrindSub	SM 2340 B / Hardness		~	e	4	ın		Rem	arks			V	V		31			
CLIENT SAMPLE ID	LABID		MPLING Time State	Matrix																									
1. Cs-54-1		10/5	1035 1004	HZO	1	X				X		X	П					T											
2. ('Ś-ŚV-Z		1013	1700 1700	Hzo	١	X				X		×																	
3.CS-5W-Z-DVP		1013	1701	420	\	X				χ		λ				1	コ				T)								
1. C5-54-3		10/3	1600	Hzo	1	À				x		λ				ĺ													
5. C5-5W-4		10/3	1419	H70	١	k				¥		λ																	
S. C5-5W-5		10/4	0925	H20	1	x				¥		\star						Γ											
1. C5-5W-6	***************************************	10/4	1523	HLO	1	×				\succ		<u>ኣ</u>																	
1. CS-SV-7		1014	1334	HL0	١	×				7		X																	
). C5-5W-8		iols	1035	Hzo	1	k				X		X																	
0.]																					
Report Requirements Invoice Information P.O.#						Circle which metals are to be analyzed																							
I. Routine Report: Method Blank, Surrogate, as required P.O.# Bill To: 40@ P(M) IL - GM					Total Metals: Al (As) (St) Ba Be B Ca (Cd) Co (Cr) Cu Fe (Pb) Mg Mn Mo Ni K (Ag) Na Se Sr Ti Sn V (Zr) (Hg)																								
X II. Report Dup., MS, MSD	· •							Dissolved Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn F															Hg						
as requiredIII. CLP Like Summary	Turnaround Requirements						pecial Instructions/Comments: *Indicate State Hydrocarbon Procedure: AK CA WI Northwest Other(Circ															Circle O	ne)						
(no raw data)	2	4 hr.	48 hr.																										
IV. Data Validation Report 5 Day Standard																													
V. EDD																													
Relinquished By:	Requested Report Date Received By:					Relinquished By:						A Received By:							T	Relinguished By:						R	eceived	Bv∙	
					Δ															Neimquistica by:							000.104	٠,.	
ignature	178				nature 7						Signature Mumi Perlessen							S	Signature				Si	Signature					
rinted Name Din Milkewij	Printed Name Printer				ed Name n.K. La.B. L.					Pr	Printed Name							P	Printed Name				Pi	Printed Name					
TE1	FIIM ALS											1018124 1445							Fi	Firm				Fi	Firm				
ate/Time	Date/Time/0/08/11 /306 Date											Date/Time							D	Date/Time				D	Date/Time				
10/8 1306		7				· -7	_	<i>t</i> ——	,	,																			

ALS

140510

CHAIN OF CUSTODY

140510

001, 002, 003	

SR#			 	 _
COC Set	of	Q	 	
COC# 0.		Ū		

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

	5 7 12 K 9 7		· .				-	·			www.	alsglot	bal.con	n													Page	e 1 of 1
Project Name Upper Grante (reck Mine)	Project N	lumber: 3031-045	.001	· · · · · · · · · · · · · · · · · · ·		28D				7000	2		***************************************			T	***************************************			1						9-		
Project Manager Dan Malkum	νċ]		7		₩.		8	2					_											
Company Terryphile Byineerin	1 Inc.				CONTAINERS			Total)				Calc					-								20	\		
Address, City, State Glo SW Brindw	ey Svite 40	5			Į				75			ss C					ı							,		1		
Phone # (543) 443 0384	email	·.malfinu C	Plerraphose.	øM	1 8			(Sievr	Extract	ř	g	ardne											, 1	\mathcal{O}_{II}	U			
Sampler Signature	Sampler	Printed Name			R OFF	₽g⊥	ρ̈́	VBA	VBA	detais	rindS	B/H											n	\\ \ \				
M	Um Com	MIKM			NUMBER	7470A / Hg	7471B / Hg	50208 / IVBA (Sieved	5020B / IVBA	5020B / Metals T	Grind / GrindSub	SM 2340 B / Hardness		2	3	*	2	R	emar	ks		`	P		3			
CLIENT SAMPLE ID	LABID	Date Tir	PLING ne State	Matrix										Ţ]							
1. C5-50-1		10 5 10	06 .	اتوك	2		X			X							1			****	1							
2. (5 - 50 - 2		1013 19		Sail	Z		×			7							丁				1							
3. CS-50-3			0900	\$1.1	2		¥			X											1							
4. CS-50 - 4		iol3	1424	٧٠٠٧	2		X			X					1						1							
5. Cs -30 -5		1014	0930	50? \	2		X			X									***************************************		1							
3. CS-SD-6		104	1521	Sall.	2		×			x			T			T	丁				1							
7. (S-SD-7-		10 4	1335	1:18	S		Y			$\boldsymbol{\chi}$											1							
3. CS-50-7-DUP		10 4 1	1340	1:05	গু		*		\neg	X							十				1							
9. C5-50-8		10/5 10	30	Seil	2		X	\neg		X						一					1							
10.															T	7					1							
Report Requirements		oice Info	rmation				·									Cir	cie wi	hich me	tais are	to be an	lvzed							
I. Routine Report: Method Blank, Surrogate, as required	P.O.#_ Bill To:	ap Qtin	aphise. Coa	_			Total	Meta	ıls: A	ı (As) (St	Ва	a Be	В	Ca (C							o Ni	K (Ag) N	Na Se	Sr Ti Sn	v (Z)		
✓ II. Report Dup., MS, MSD as required				_	pecial							Sb	Ba l												Se Sr TI			
III. CLP Like Summary			quirement	ts	peciai	HISU	ucuc)!!S/C	UIIII	nent	S.			Ĺ	"Inal	cate	Stai	е нус	rocan	oon Pr	ocedur	e: Ak	CA W	/I Nort	thwest Otl	her	(Circle	e One)
(no raw data)		Day	48 hr.																									
IV. Data Validation Report	_ X _St	tandard																										
V. EDD	ļ	Requested Repor	rt Date																									
Relinquished By:	<u>'</u>	Received			Rel	inqu	iish	ed E	Зу:		T		$_{\smallfrown}$ R	ecei	ived	Ву:		······································	T	Rel	inquis	shed	By:	T	Ŕ	eceive	d By:	
Construct Add		A)			Λ	1		U	2	<u>.</u>					·							
ignature	Signature	AX			ature	7	Y	<i>!</i> 		*****	$ \Lambda$	gnati <i>KU</i>	M	. 8	201	0	B	10	Signa					S	ignature			
rinted Name Allows	Printed Na		ih		ed Na xn /<	2)_	aBi	ch	٤	J	hS	i Nán	nė *				- T	Printe	ed Nar	ne			P	rinted Nar	ne		
irm TEI	Firm		······································	Firm	HL	2		3 +	1			01	81	24	14	44	5		Firm					F	im			
Pate/Time	Date/Time	10/08/2	9 1306	Date	/Time	10/0	5/2	24	144	15	Da	ate/T	ime						Date	Time				D	ate/Time	***************************************		
1618 1306						•																						

· ·	TP cro. c	A &	Cooler Receipt	and	Prese				01.79	4		
ent	18124	4000	1016124			-Sei	vice Requ	10.1	<u>UU2</u>	 	N F	
ceived: 10	18124	Opened: _	1018124	By:	Δ	4	_ Unloade	ed: <u>///</u>	8129	By:		
Samples wo	ere received via?	USPS	Fed Ex	UPS	D	HL	PDX	Co	urier	Hand De	elivered	
~	ere received in: (cir	,	ooler Box	E	nvelope	•	Other_		·		NA	
Were custod	iy seals on coolers	?	NA Y (N)	If yes, h	iow mai	ny and	where?					
If present, w	vere custody seals i	ntact?	Y N	If prese	nt, were	they s	gned and d	lated?		Y	N	
	Ţ					Kara	A 200 - 2			***************************************		
	Article Colonia				Out c	of temp	N	PM otified	34 94	i Karan		
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID / N	<u> </u>	Indicate	with "	(" If ou	t of temp	Trac	king Numi	ber NA	File
<u> </u>	14.6	1601	140510				_					
4S_	5.7	<u> </u>			······································						·	
(0.0	4.4											
7.4	4.5											
4.3	4-5	4			· · · · · · · · · · · · · · · · · · ·							
Was a Tempe	erature Blank prese	nt in cooler?	NA (Y N	If yes, 1	otate th	e temp	erature in t	he appropri	ate column	above:		
If no, take th	he temperature of a	representativ	e sample bottle contair	ed with	in the c	ooler; n	otate in the	column "S	ample Tem	p":	7	
Were sample	s received within the	he method spe	ecified temperature ran	ges?					N/	4 (<u>Y</u>	\int N	
=		-	y as collected? If not, n	-	e conler	# abov	e and notif	v the PM.	KI.	Y	N	
	ssue samples were	·	Frozen Partially Ti		Thaw		0 4.74 1.01.1	, 4.0 - 1.1.	C		.,	
	-		•									
	aterial: Inserts	CONTRACTOR OF THE PROPERTY OF	ibble Wrap Gel Pack	s We	Ice 1	Dry Ice	Sleeves				7	
	dy papers properly		· -						NA	$\lambda \sim \lambda$, N	
	les received in good								N/	/	, N	
	mpie labels comple ple labels and tags		s, preservation, etc.)?						N/ N/	/	N N	
,	-	=	ames received for the t	ecte indi	cated?				N/		N	
	_		EN SOP) received at th			17 Ind	icate in the	table below			N	
-	-		c? Indicate in the table		mate pr	X. 4.700		,	(N/		N	
. Was C12/R		out neadspace	o. maicale in the lagit	c Deton.					>	3	N	
	_	tha mathad a	anified time limits to		4-41	b 1	aru and not	if the DM	(N	.3		
•		•	pecified time limit? If r	-		}		-	(N	ana marand	N O su-	
o. Were 100m	i sterile microbiolo	gy bottles fill	ed exactly to the 100m	I mark?	(_N	A	Y	N	Unde	erfilled	Overfille	a
Sa	ımple ID on Bott	ie	Sample	D on	COC				identifi	ed by:		

		·			· · · · · · · · · · · · · · · · · · ·						 	

				T		1			T			
	Sample ID		Bottle Count Bottle Type	Head-	Broke	На	Reagen	Volum t adder		ent Lot mber	Initials	Time
				1	T							
				1								·······
		J		 	 	 	·		+	, <u></u>	1	
		» 									1	
				<u> </u>	<u></u>			L_			<u> </u>	
otes, Discr	repancies, Resol	utions:		····								····
				CUD- 0	MO 0	EN:				orgenia -	. ND 4/2	/ana 4
G. ASIAIO	\2024 Forms			SOP: S	ט-טועוי	C14			К	eviewed	. INP 1/3,	2024

(ALS)				r Recei	ipt a	nd Pr	eserva	atio	n Form		0		
ient	lemo	brog	3C			<u> </u>	_Servi	ce F	Request K2	4	639		
Temp Blank	Sample Temp	IR Gun	Cooler#/C	OC ID / N	ia	Out	of tem	p Y	PM Notifie if out of i	ed temp	Tracking Nu	mber NA	File
A8. 7.8	3.8	1201							<u> </u>				
12.2	5.5	W_											
San	nple ID on Bottle			Sample II	D on C	soc				Id	entified by:		
	Sample ID		ttle Count	Out of Temp			рн		Reagent	Volume	Reagent Lot Number	Initials	Time
			-		***************************************								
otes, Discrep Samu India	ancies & Resolu ple 8 Te	mp	:	l U	cas						n top o		
	,2024 Forms				SOP-	SMO-0	CENI				Povisor	d: NP 1/3	2/2024

18 of 283

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Service Request: K2410639

Sample Name: LMM-WRB-0.5-3-DS

Lab Code: K2410639-001

Sample Matrix: Soil

Date Collected: 10/3/24 **Date Received:** 10/8/24

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: UUMM-WRA-0.5-2 Date Collected: 10/2/24

Lab Code: K2410639-002 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: UUMM-WRF-0.5-1 Date Collected: 10/2/24

Lab Code: K2410639-003 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: UUMM-WRD-0.5-1 Date Collected: 10/2/24

Lab Code: K2410639-004 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Service Request: K2410639

Sample Name: UUMM-WRA-0.5-3 Date Collected: 10/2/24

Lab Code: K2410639-005 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B MSOLADEY JCHAN 6020B KLAWSON JCHAN

Sample Name: UUMM-WRA-0.5-3-DUP Date Collected: 10/2/24

Lab Code: K2410639-006 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 6020B MSOLADEY JCHAN

Sample Name: UUMM-WRA-0.5-3-DS Date Collected: 10/2/24

Lab Code: K2410639-007 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: UMM-WRB-0.5-2 Date Collected: 10/2/24

Lab Code: K2410639-008 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Sample Name: UMM-WRB-0.5-2-DS

Lab Code: K2410639-009

Sample Matrix: Soil

Date Collected: 10/2/24 **Date Received:** 10/8/24

Service Request: K2410639

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: LMM-WRB-0.5-1 Date Collected: 10/3/24

Lab Code: K2410639-010 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: LMM-WRB-0.5-1-DUP Date Collected: 10/3/24

Lab Code: K2410639-011 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: CM-WRC-0.5-4 Date Collected: 10/3/24

Lab Code: K2410639-012 Date Received: 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B MSOLADEY JCHAN 6020B KLAWSON JCHAN

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Service Request: K2410639

Sample Name: UMM-WRA-0.5-1 Lab Code: K2410639-013

Sample Matrix: Soil **Date Collected:** 10/2/24 Date Received: 10/8/24

ZBIBI

Analyzed By Analysis Method Extracted/Digested By

160.3 Modified

ZBIBI 6020B **MSOLADEY JCHAN** 6020B **KLAWSON JCHAN**

Sample Name: UMM-WRA-0.5-3 **Date Collected:** 10/2/24 Lab Code: K2410639-014 Date Received: 10/8/24

Sample Matrix: Soil

Analyzed By Analysis Method Extracted/Digested By

160.3 Modified

6020B **KLAWSON JCHAN**

Sample Name: UMM-WRA-0.5-1-DS **Date Collected:** 10/2/24

Lab Code: K2410639-015 **Date Received:** 10/8/24

Sample Matrix: Soil

Analyzed By Analysis Method Extracted/Digested By

160.3 Modified **ZBIBI** 6020B **KLAWSON JCHAN**

Sample Name: Date Collected: 10/3/24 LMM-WRA-0.5-3 Lab Code: K2410639-016 Date Received: 10/8/24

Sample Matrix: Soil

Analyzed By Analysis Method Extracted/Digested By

160.3 Modified **ZBIBI**

6020B **KLAWSON JCHAN** 6020B **MSOLADEY JCHAN**

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Date Collected: 10/3/24

Date Received: 10/8/24

Service Request: K2410639

Sample Name: LMM-WRA-0.5-3-DS

Lab Code: K2410639-017

Sample Matrix: Soil

Analysis Method

Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: LMM-WRA-0.5-4 Date Collected: 10/3/24

Lab Code: K2410639-018 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: LMM-WRA-0.5-4-DUP Date Collected: 10/3/24

Lab Code: K2410639-019 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: UMM-WRB-0.5-1 Date Collected: 10/2/24

Lab Code: K2410639-020 Date Received: 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 10:50 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: LMM-WRB-0.5-3-DS Basis: Dry

Lab Code: K2410639-001

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	29.1	mg/Kg	0.41	0.05	5	10/22/24 09:54	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 13:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UUMM-WRA-0.5-2 **Sample Name:** Basis: Dry

Lab Code: K2410639-002

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1940	mg/Kg	8.8	1.1	100	10/22/24 10:47	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/02/24 14:00

Service Request: K2410639

Sample Matrix:

Project:

Soil

Date Received: 10/08/24 14:45

UUMM-WRF-0.5-1 **Sample Name:**

Lab Code: K2410639-003 Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	715	mg/Kg	0.44	0.05	5	10/22/24 09:55	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 13:50 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UUMM-WRD-0.5-1 Basis: Dry

Lab Code: K2410639-004

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	269	mg/Kg	0.45	0.05	5	10/22/24 09:57	10/10/24	

Analytical Report

Terraphase Engineering Inc. **Client:**

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 13:45 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UUMM-WRA-0.5-3 **Sample Name:** Basis: Dry

Lab Code: K2410639-005

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	3440	mg/Kg	4.9	0.6	50	10/22/24 16:04	10/17/24	
Lead	6020B	340	mg/Kg	0.49	0.20	50	10/22/24 16:04	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Project:

Sample Name:

UUMM-WRA-0.5-3

Lab Code: K2410639-005 Basis: Dry

Service Request: K2410639 **Date Collected:** 10/02/24 13:45

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	176	mg/Kg	1.9	0.2	20	10/17/24 11:41	10/16/24	
Lead	6020B	12.6	mg/Kg	0.19	0.08	20	10/17/24 11:41	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410639

Date Collected: 10/02/24 13:45

Sample Matrix:

Soil

Date Received: 10/08/24 14:45

Sample Name:

Project:

Lab Code:

UUMM-WRA-0.5-3

Basis: Dry

K2410639-005

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1710	mg/Kg	9.1	1.1	100	10/22/24 10:54	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 13:44 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UUMM-WRA-0.5-3-DUP **Sample Name:** Basis: Dry

Lab Code: K2410639-006

Project:

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	3280	mg/Kg	5.0	0.6	50	10/22/24 16:05	10/17/24	
Lead	6020B	340	mg/Kg	0.50	0.20	50	10/22/24 16:05	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 13:44 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UUMM-WRA-0.5-3-DUP Basis: Dry

Lab Code: K2410639-006

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	162	mg/Kg	2.0	0.2	20	10/17/24 11:43	10/16/24	
Lead	6020B	7.14	mg/Kg	0.20	0.08	20	10/17/24 11:43	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix:

Soil

UUMM-WRA-0.5-3-DUP

Sample Name: Lab Code:

Project:

K2410639-006

Service Request: K2410639

Date Collected: 10/02/24 13:44

Date Received: 10/08/24 14:45

Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1470	mg/Kg	8.0	1.0	100	10/22/24 10:56	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 13:35 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UUMM-WRA-0.5-3-DS Basis: Dry

Lab Code: K2410639-007

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	16.0	mg/Kg	0.44	0.05	5	10/22/24 10:04	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410639 **Date Collected:** 10/02/24 13:20

Sample Matrix:

Project:

Soil

Date Received: 10/08/24 14:45

UMM-WRB-0.5-2 **Sample Name:**

Lab Code: K2410639-008 Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1800	mg/Kg	8.2	1.0	100	10/22/24 10:57	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 13:25 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UMM-WRB-0.5-2-DS **Sample Name:** Basis: Dry

Lab Code: K2410639-009

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	79.2	mg/Kg	0.45	0.05	5	10/22/24 10:07	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 10:35 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

LMM-WRB-0.5-1 **Sample Name:** Basis: Dry

Lab Code: K2410639-010

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1090	mg/Kg	0.42	0.05	5	10/22/24 10:08	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Sample Name:

LMM-WRB-0.5-1-DUP Basis: Dry

Lab Code: K2410639-011

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	802	mg/Kg	0.42	0.05	5	10/22/24 10:09	10/10/24	

Service Request: K2410639 **Date Collected:** 10/03/24 10:36

Date Received: 10/08/24 14:45

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/03/24 16:27 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

CM-WRC-0.5-4 **Sample Name:** Basis: Dry

Lab Code: K2410639-012

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	650	mg/Kg	4.9	0.6	50	10/22/24 16:07	10/17/24	
Lead	6020B	10.3	mg/Kg	0.49	0.20	50	10/22/24 16:07	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/03/24 16:27 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CM-WRC-0.5-4 Basis: Dry

Lab Code: K2410639-012

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	33.1	mg/Kg	1.9	0.2	20	10/17/24 11:44	10/16/24	
Lead	6020B	2.95	mg/Kg	0.19	0.08	20	10/17/24 11:44	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 16:27 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CM-WRC-0.5-4 Basis: Dry

Lab Code: K2410639-012

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	292	mg/Kg	0.42	0.05	5	10/22/24 10:11	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 12:15 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UMM-WRA-0.5-1 **Sample Name:** Basis: Dry

Lab Code: K2410639-013

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1590	mg/Kg	4.9	0.6	50	10/22/24 16:08	10/17/24	
Lead	6020B	249	mg/Kg	0.49	0.19	50	10/22/24 16:08	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Sample Name: UMM-WRA-0.5-1

Lab Code: K2410639-013

Service Request: K2410639

Date Collected: 10/02/24 12:15

Date Received: 10/08/24 14:45

Basis: Dry

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	12.7	mg/Kg	2.0	0.2	20	10/17/24 11:46	10/16/24	
Lead	6020B	66.0	mg/Kg	0.20	0.08	20	10/17/24 11:46	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 12:15 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UMM-WRA-0.5-1 **Sample Name:** Basis: Dry

Lab Code: K2410639-013

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1300	mg/Kg	8.4	1.0	100	10/22/24 10:59	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 11:50 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRA-0.5-3 Basis: Dry

Lab Code: K2410639-014

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1210	mg/Kg	0.45	0.05	5	10/22/24 10:17	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 12:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRA-0.5-1-DS Basis: Dry

Lab Code: K2410639-015

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	37.5	mg/Kg	0.41	0.05	5	10/22/24 10:18	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/03/24 09:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: LMM-WRA-0.5-3 Basis: Dry

Lab Code: K2410639-016

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	328	mg/Kg	4.9	0.6	50	10/22/24 16:09	10/17/24	
Lead	6020B	32.0	mg/Kg	0.49	0.19	50	10/22/24 16:09	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix:

Project:

Sample Name:

Soil

Service Request: K2410639 **Date Collected:** 10/03/24 09:30

Date Received: 10/08/24 14:45

Basis: Dry

LMM-WRA-0.5-3

Lab Code: K2410639-016

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	16.6	mg/Kg	2.0	0.2	20	10/17/24 11:48	10/16/24	
Lead	6020B	10.8	mg/Kg	0.20	0.08	20	10/17/24 11:48	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/03/24 09:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: LMM-WRA-0.5-3 Basis: Dry

Lab Code: K2410639-016

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	125	mg/Kg	0.44	0.05	5	10/22/24 10:19	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 09:25 Upper Granite Creek Mines/0031.005.001

Project: Sample Matrix: Soil

Date Received: 10/08/24 14:45

Sample Name:

LMM-WRA-0.5-3-DS

Basis: Dry

Lab Code: K2410639-017

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	21.6	mg/Kg	0.44	0.05	5	10/22/24 10:21	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410639

Date Collected: 10/03/24 09:45

Sample Matrix:

Project:

Lab Code:

Soil

Date Received: 10/08/24 14:45

Sample Name: LMM-WRA-0.5-4 Basis: Dry

K2410639-018

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	2290	mg/Kg	8.8	1.1	100	10/22/24 11:00	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Sample Name:

LMM-WRA-0.5-4-DUP

Lab Code: K2410639-019 **Service Request:** K2410639

Date Collected: 10/03/24 09:46

Date Received: 10/08/24 14:45

Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	2570	mg/Kg	8.5	1.0	100	10/22/24 10:34	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 13:10 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRB-0.5-1 Basis: Dry

Lab Code: K2410639-020

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	14000	mg/Kg	41	5	500	10/22/24 10:35	10/10/24	
Lead	6020B	5210	mg/Kg	4.1	1.6	500	10/22/24 10:35	10/10/24	
Mercury	7471B	0.663	mg/Kg	0.098	0.010	5	10/15/24 12:04	10/14/24	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 10:50 Upper Granite Creek Mines/0031.005.001

Project:

Sample Matrix: Soil

Sample Name:

LMM-WRB-0.5-3-DS

Lab Code: K2410639-001 Basis: As Received

Date Received: 10/08/24 14:45

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	95.4	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 13:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UUMM-WRA-0.5-2 Basis: As Received

Lab Code: K2410639-002

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids Total	160.3 Modified	95.2	Percent	_	1	10/09/24 12:51	<u>.</u>

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 14:00 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Date Received: 10/08/24 14:45

Sample Name:

Project:

UUMM-WRF-0.5-1

Lab Code: K2410639-003 Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	95.8	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 13:50 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UUMM-WRD-0.5-1 Basis: As Received

Lab Code: K2410639-004

Project:

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	96.4	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 13:45 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UUMM-WRA-0.5-3 Basis: As Received

Lab Code: K2410639-005

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	94.9	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639

Date Collected: 10/02/24 13:44 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 14:45 **Sample Matrix:** Soil

UUMM-WRA-0.5-3-DUP **Sample Name:** Basis: As Received

Lab Code: K2410639-006

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	94.6	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/02/24 13:35

Sample Matrix:

Project:

Lab Code:

Soil

Date Received: 10/08/24 14:45

Service Request: K2410639

Sample Name:

UUMM-WRA-0.5-3-DS

K2410639-007

Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	89.4	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/02/24 13:20

Service Request: K2410639

Sample Matrix: Soil

~ ...

Date Received: 10/08/24 14:45

Sample Name:

Project:

UMM-WRB-0.5-2

Lab Code: K2410639-008

Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	95.4	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/02/24 13:25 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRB-0.5-2-DS Basis: As Received

Lab Code: K2410639-009

Project:

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	80.9	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 10:35 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: LMM-WRB-0.5-1 Basis: As Received

Lab Code: K2410639-010

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	96.1	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 10:36 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Sample Name: LMM-WRB-0.5-1-DUP Basis: As Received

Lab Code: K2410639-011

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	96.6	Percent	-	1	10/09/24 12:51	

Date Received: 10/08/24 14:45

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639

Date Collected: 10/03/24 16:27 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 14:45

Sample Matrix: Soil

CM-WRC-0.5-4 **Sample Name:** Basis: As Received

Lab Code: K2410639-012

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	95.6	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 12:15 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRA-0.5-1 Basis: As Received

Lab Code: K2410639-013

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	95.2	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 11:50 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRA-0.5-3 Basis: As Received

Lab Code: K2410639-014

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	91.5	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410639 **Date Collected:** 10/02/24 12:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRA-0.5-1-DS Basis: As Received

Lab Code: K2410639-015

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	94.4	Percent	=	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 09:30 Upper Granite Creek Mines/0031.005.001

Project:

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: LMM-WRA-0.5-3 Basis: As Received

Lab Code: K2410639-016

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	91.0	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/03/24 09:25

Service Request: K2410639

Sample Matrix:

Project:

Sample Name:

Soil

Date Received: 10/08/24 14:45

LMM-WRA-0.5-3-DS

Basis: As Received

Lab Code: K2410639-017

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	92.2	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Date Collected:** 10/03/24 09:45 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 Soil

Sample Matrix:

Sample Name: LMM-WRA-0.5-4 Basis: As Received

Lab Code: K2410639-018

Project:

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	93.8	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410639 **Date Collected:** 10/03/24 09:46

Project: Upper Grant
Sample Matrix: Soil

Date Received: 10/08/24 14:45

Sample Name:

Lab Code:

LMM-WRA-0.5-4-DUP

K2410639-019

Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	93.7	Percent	-	1	10/09/24 12:51	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410639

Date Collected: 10/02/24 13:10 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-WRB-0.5-1 Basis: As Received

Lab Code: K2410639-020

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	96.3	Percent	-	1	10/09/24 12:51	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410639

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416342-03

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 09:44	10/10/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/22/24 09:44	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410639

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416426-03

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7471B	ND U	mg/Kg	0.02	0.002	1	10/15/24 09:02	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410639

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416652-01

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 15:43	10/17/24	
Lead	6020B	0.043 J	mg/Kg	0.05	0.020	5	10/22/24 15:43	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410639

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416789-01

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/17/24 10:57	10/16/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/17/24 10:57	10/16/24	

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request:

K2410639

Project:

Upper Granite Creek Mines/0031.005.001

Date Collected:

10/02/24

Sample Matrix: Soil

Date Received:

10/08/24

Date Analyzed:

10/22/24

Date Extracted:

10/10/24

Matrix Spike Summary

Total Metals

Sample Name:

UUMM-WRA-0.5-2

Units: Basis:

mg/Kg Dry

Lab Code:

K2410639-002

Analysis Method: Prep Method:

6020B

EPA 3050B

Matrix Spike KQ2416342-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	1940	2330	88.4	440 #	75-125
Lead	94.3	195	88.4	114	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/23/2024 5:06:15 PM

QA/QC Report

Client: Terraphase Engineering Inc. **Service Request:**

K2410639

Sample Matrix:

Project:

Upper Granite Creek Mines/0031.005.001

Date Collected:

10/02/24

Soil

Date Received:

10/08/24

Date Analyzed: **Date Extracted:** 10/15/24 10/14/24

Matrix Spike Summary

Total Metals

UMM-WRB-0.5-1

Units:

mg/Kg

Lab Code:

K2410639-020

Basis:

Dry

Analysis Method: Prep Method:

Sample Name:

7471B Method

Matrix Spike

KQ2416426-02

Analyte Name Sample Result Result Spike Amount % Rec % Rec Limits 1.25 0.50 118 Mercury 0.66 80-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/23/2024 5:06:15 PM

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. **Service Request:** K2410639

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/02/24

Date Analyzed: 10/22/24

Soil **Sample Matrix:**

Date Received: 10/08/24

Replicate Sample Summary Total Metals

Sample Name: UUMM-WRA-0.5-2 Units: mg/Kg

Lab Code: K2410639-002 Basis: Dry

Duplicate

					Sample			
	Analysis			Sample	KQ2416342-01			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	6020B	9.2	1.1	1940	2170	2060	11	20
Lead	6020B	0.046	0.018	94.3	179	137	62 *	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410639

Project Upper Granite Creek Mines/0031.005.001 Date Collected: 10/02/24

Sample Matrix: Soil **Date Received:** 10/08/24

Date Analyzed: 10/15/24

Replicate Sample Summary

Total Metals

Sample Name: UMM-WRB-0.5-1 Units: mg/Kg Lab Code: K2410639-020

Basis: Dry

Duplicate

Sample

Analysis Sample KQ2416426-01 **Analyte Name** Method **MRL MDL** Result Result Average **RPD RPD Limit** 7471B Mercury 0.094 0.009 0.663 0.952 0.80836 * 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

> Units:mg/Kg Basis:Dry

Service Request: K2410639

Lab Control Sample

KQ2416342-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	107	100	107	80-120
Lead	6020B	111	100	111	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410639 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Analyzed:** 10/15/24

Sample Matrix: Soil

> **Lab Control Sample Summary Total Metals**

> > Units:mg/Kg Basis:Dry

Lab Control Sample KQ2416426-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	0.520	0.500	104	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals – IVBA Analysis

Units:mg/Kg
Basis:Dry

Service Request: K2410639

Lab Control Sample

KQ2416652-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	108	100	108	80-120
Lead	6020B	111	100	111	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/17/24

Sample Matrix: Soil

Lab Control Sample Summary
IVBA Metals

Units:mg/Kg
Basis:Dry

Service Request: K2410639

Lab Control Sample

KQ2416789-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	92.9	100	93	80-120
Lead	6020B	105	100	105	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc.

Date Collected: 10/03/24

Project Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24

Service Request: K2410639

Sample Matrix: Soil

Sample Name:

Lab Code:

Date Analyzed: 10/09/24

Replicate Sample Summary Inorganic Parameters

LMM-WRB-0.5-3-DS

Units: Percent

K2410639-001

Basis: As Received

Duplicate Sample

K2410639-

Sample

001DUP

Analyte Name Analysis Method Result **MRL** Result **RPD** RPD Limit Average Solids, Total 160.3 Modified 95.4 94.9 95.2

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410639

Project

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/02/24

Sample Matrix:

Soil

Date Received: 10/08/24

Date Analyzed: 10/09/24

Replicate Sample Summary

Inorganic Parameters

Sample Name:

Lab Code:

UMM-WRB-0.5-1

Units: Percent

K2410639-020

Basis: As Received

Duplicate

Sample

K2410639-

Sample

020DUP

Analyte Name

Analysis Method

MRL

Average

RPD

RPD Limit

Result Result Solids, Total 160.3 Modified 96.3 96.5 96.4

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/23/2024 5:06:18 PM

Superset Reference:24-0000711471 rev 00

November 01, 2024

Portland, OR 97205

Terraphase Engineering Inc. 610 SW Broadway, Suite 405

Don Malkemus

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K2410642

Revised Service Request No: K2410642.01

RE: Upper Granite Creek Mines / 0031.005.001

Dear Don,

Enclosed is the revised report of the sample(s) submitted to our laboratory October 08, 2024 For your reference, these analyses have been assigned our service request number **K2410642**.

The bio accessibility values are now included.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

We apologize for any inconvenience this may have created.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Daw

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client:Terraphase Engineering Inc.Service Request: K2410642Project:Upper Granite Creek MinesDate Received: 10/08/2024

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twenty soil samples were received for analysis at ALS Environmental on 10/08/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

Approved by Moe D. Daw

Date 11/01/2024

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS

140510

CHAIN OF CUSTODY

140510

001, 002, 003	***************************************

SR#	
COC Set_H	_of_ {
0004	-

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

Page 1 of 1

											** ** **	· mogre	JUG!.	Om							ľ	agelori
ect Name Upper Genik Creek Mine	Project No	umber: O	031.005.001		28D						Q666											
ect Manager Oon Myllems				,	}	<u> </u>	<u>γ</u>	—	, ~	γ	↓	<u>~</u>	<u> </u>	1	т						-1117-	
ipany Telliphose Engineery T					CONTAINERS			Total)				Catc								111	10642	
ress, City, State 60 SW Broadwy	Suite 405				Ī				7					}						I Wir	*	
ne# (503) 143-0384	email da	n imilkon	nuse length	N. CHA				yeis)	Extra	F.S	9	B / Hardness										
pler Signature		rinted Nam			NUMBER OF	470A / Hg T	7471B / Hg	₹ ¥	VBA	Metals	GrindSub	18										•
CM	Dan	Dan Malkemy						50208 / IVBA (Sieved	60208 / IVBA Extraci	80208 / 1	Grind / G	SM 2340	<u>.</u>		3	4	. 6	Re	marks			
CLIENT CAMPLE ID	LABID		MPLING Time State	Matrix					-		İ			İ								
CLIENT SAMPLE ID	JADIU	10 C		Soil	2	-	X	У	У	λ	-		-	1	-			+ 60	1A+			
MM - TLA - 0.5-3		1012	1530	Sil	12		- ` -	-			<u> </u>	-	├	├			\dashv		HOLD			
MM - TLB -0.5-4	2	10/5	1645	Suil	2	-		-	7	λ	-		-	-	-	-	┪	+ 69				
, MM-TLA -0.5 - 4		10 2	1535	50:1	2				 	 	 	-	 	-					HOLD			
MM-TLC-05-1	2	10(2	(900	50.1	え		- 1	-		X	-		-			_	-	1 ba4				
MM- TLC-05-2	u	16/2	1715	Soil	7	-			·	X							_	+ 699	111111111111			
MM = TLB - 0.5 -2		10 2	1635	1:12	2												1		HOLD			
MM - TLA -0.5-5		10(2	1540	Sil	2								l	П		一	┪	+694	Horo			
MM - TLA -05-C	5	102	1545	Spil	2		×	×	×	×					•	- 1		+ bay				
eport Requirements		ice Inf	ormation	1								Circle which metals are to be analyzed										
Routine Report: Method Blank, Surrogate, as	P.O.#	mton.	appercion				Total	Met	ais: /	al (Ā	e 6	Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg										_
required	Din 10.	~PC.	Thursday.	-																	a Se Sr Ti Sn V Zn A	_
II. Report Dup., MS, MSD as required				_ -	pecia							30	Da	De								
Itil. CLP Like Summary			equiremer									Samy	الو يا	E l'u	M.M	TLB	-0.	.C.I 6	ead Of Co	CEDUTE: AK CA WI I	Northwest Other (Circle One)
(no raw data)	24 5 [hr. Day	48 hr.	'	1	, ., ,				,		- "		- ('				-3 1 1		Ond: (-11 0.326)	
IV. Data Validation Report	X Sta	andard																				
V. EDD		Requested Re	eport Date																			
Relinquished By:		Receive			Re	linq	uish	ied	Ву:				لر	Rece	eive	d By			Reli	nquished By:	Received	By:
	Signatura			- Cian	atura			1			۱,	1000	·	_					Cianatura			
ature	Signature	1	•	Sign	ature		F 1	9			0	ignat	iui s Li	20n'	i R	2da	B	en	Signature		Signature	
ed Jame Mallemy	Printed Na	in La	Bich		ed Na Zn K		1	33	ch.		P	rinte AV	d Na	ame	-				Printed Nam	le	Printed Name	****
TEI	Firm AL	5		Firm		_S					F	1018124 1445						,	Firm		Firm	
Time 10/9 1306	Date/Time	10/08	194 1704	p Date	/Time	10/	°{√	27	K	142		ate/∖							Date/Time		Date/Time	
1017 150 0			,			*	t	- 1														

140510

CHAIN OF CUSTODY

140510

01,	002,	003

SR#	
COC Set 5	_of_ _g
000"	-

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

			· · · · · · · · · · · · · · · · · · ·		·						www.	arsgro	Dai.co	жn						Page 1	OT 1
ect Name upper Granite Creek	Minus Project N	iumber:00	31.005.001			1	28D		180D		1 5	7666						•		-	
ect Manager Don Mylkev	hω			,		<u> </u>	ζ.	<u> </u>	, 2	γ		"		T	 -					(استعر د	
pany Ternylox Enjine	rang Inc.	,			NUMBER OF CONTAINERS			Total)				Calc								X24101642	
ess, City, State 610 SW Otenh	ay Suite 4	70,	***************************************		7 §				75]								Í	V2410	
18 (503) 884-(067		in . malki	mu @ Planhar	(.CM	7 8			0208 / IVBA (Sieved	020B / IVBA Extract	Ļ	l g	B / Hardness						: !			
oler Signature	1	Printed Name			ا ق	누 타	무	VBA	VBA	O208 / Metals T	GrindSub	H/B							1	•	
	Don	Maller	MUS		Mar.	7470A / Hg	7471B / Hg	1 80	8	1/80	Grind / G	SM 2340									
				T	₹	747	44	802	902	902	٤	§.		a	m	-37	_ وز	Remarks			
CLIENT SAMPLE ID	LABID		MPLING Time State	Matrix						[ļ					ļ	•	
EM-LRA-05-4-05			1730	Sect	12	+-	╫	<u> </u>	<u> </u>	*	-		_								
EM-WR3-05-1	- 9		1300	Soil	2	-			_	Х		•							-	•	
EW-PBY -0-2-5	9	10/5	1205	Soil	2	╫	\vdash	-×	k	X								+ bag			
EM-WR6-05-1	9	1015	1240	Soil	7	╁				λ							-	~ 7	-		
F-WRA-0.5-1	7	10/5	0430	Soil	Z	1-	\vdash			X											
F-WRO-05-6	10	1015	HIO	Seil	12	╁──	\vdash			x							-		- 		
F-M2D-0.5-4-DS	13	10/5	1105	5,.(12	十	-	×	,	λ							_	+ 693	· ·		
F - DR -0.5-1	13	16/5	1035	Sail	12	╁	╁			J.			\dashv			-					
CS - WRA -0.5-3	14	16/4	1615	Soil	2	 				7			┪		_			er gereket			
3C5-WPA - 0.5-4	13	1014	1584	50.1	12	1				7			\neg								
eport Requirements		oice Inf	ormation	Ì	.1	<u></u>						1			1		1				
I. Routine Report: Method	P.O.#																	which metals are to be	•		
Blank, Surrogate, as required	Bill To:	Apo te	autions con	_						-		* "								a Se Sr Ti Sn V Zn Hg	l
II. Report Dup., MS, MSD				-]		D	issol	ed M	letals	: Al	As	Sb	Ва	Be	в с	a Co	Co	Cr Cu Fe Pb	Mg Mn Mo Ni K Ag	Na Se Sr Ti Sn V Zn Hg	
as required	Tires			=	Specia	ilnst	ructi	ons/(Com	men	s:				*Inc	dicat	e St	ate Hydrocarbon l	Procedure: AK CA W	Northwest Other(Circle O	ne)
III. CLP Like Summary			equiremer 48 hr.	ILS																	***************************************
(no raw data) IV. Data Validation Report	5 1 X St	4 hr. Day tandard																			
·				ĺ																,	
V. EDD	<u> </u>	Requested Re	·	=																	
Relinquished By:		Receive	d By:		Κe	linq	uist	ied i	Ву:				ገ ነ	₹ece	eive	d By	r:	R	elinquished By:	Received By:	
ature	Signature	- 0		Sign	ature		7/				8	gnat	ure		_			Signature	<u> </u>	Signature	
	_	18				0	1				$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		1 118	M_1	VP	d	Œ	Sen		Oignatuic	
ad Name On Millomi	Printed Na	itele	Q/	空中	ted N	ame	1	<u>~12</u>	1			rinte	ď Nai	me	-			Printed N	ame	Printed Name	
	Firm A	1/0	WICH	Firm	ant	<u> </u>		<u>u D</u>	ich	١ <u>٠</u>	- 7	4.8						Firm		Lim	
TEI	Firm AL	S		1000	<i>'</i> /	145	\hat{S}					ال 1112ء	512	u	14	44	5	12-11468		Firm	
Time	Date/Time	10/8/	24 1306	Date	e/Time	10	081	24	<u></u>	145	D	ate/	ime			<u> </u>		Date/Tim	е	Date/Time	
10/8 1306			7				7	7													
· U · · ·																					

A
(ALS)

140510

CHAIN OF CUSTODY

140510

001,	002,	003	 	

SR#	
COC Set 6	of_ _8
COC# _	

(ALS) (Secure	i Kurai Veresi			13	17 Sout	h 13th.	Ave, K	Celso, '	WA 9			e (360) alsglot			800-6	95-722	2/F/	AX (360) 63	6-1068	_		Page 1 of 1
Project Name Upple Grant Creek M. Project Manager D. AA. 16.	Project N	lumber: O	031.005.001			Cac	3		180D		8	3880									1063/	
Dan rallem	<u>ა</u>				1 ,,		-			Γ	-	<u>" </u>	—т	\neg	T		\dashv]	U/F	0
ompany Terinthan Enjoy	reer's Inc				CONTAINERS			Total)				Calc		ı							201	J\
ddress, City, State Glo Str Bro.					Ę	1 1	1	Per	텇			i i i i			1						TOT	
hone# (50))			centus Okumpha	k. Com	9 00 00			(Sleved	Extract	T SI	gng	Hardi		ı	l					1 74		
ampler Signature	1	Printed Na			1 8	탈	/ Hg	Z.	\B\	Mete	Frind) B 0		1]		1					
	Don	Malk	ėmus		NUMBER	'470A/Hg	471B/	020B / IVBA	3020B / IVBA	SOZOB / Metals T	Grind / GrindSub	SM 2340 B / Hardness		ļ	ļ			Rer	narks	7		
			AMPLING	Matrix					-6	Į6.	9	l "		~	~	*†	~	1101	IIOIICO			
CLIENT SAMPLE ID	LABID		Time State	ļ	 	1				_					_		_			4		
.GCS-WRA -0.5-4-03	<u>عا۱</u>	10 4	1222	5021	2		\Box	×	ኡ		<u> </u>						_	+ pal				
GCG - WFA - 0.5 - 2		1014		50:1	2			¥	۲.	×							_	+ 645				
1.GCG - WR4 -0.5-1	156	1614	1645	1:42	2					λ										_		
GC7-494-05-3	19	1014	1150	Suil	2					X												
.GC7-6-18-0-5-1	7.0	1014	ll12	50.1	2.					አ										_		
T L - 4RA - 0.5-3	7700	10 4	1405	50.1	2					×												•
- 71 - WRB - 0.5-4		1014	1425	Se. 1	2					¥												
- TL-WPA-0.5-1-05-2		13 4	1400	5.:1	7			+	¥	¥								+ 649				
5H-WKB-0.5-2		10 4	1005	1:02	2					X												
0.9H-LRC- 0.5-1		1014	lois	اد به	2					X												
Report Requirements		oice Ir	nformation													<u>Ç</u>	rcle v	which meta	s are to be ar	alvzed		
I. Routine Report: Method Blank, Surrogate, as	P.O.#_		eraphyx- cov	, 			Total	Mets	ale. Q	1 6	G .	h R	a Re	s R	Ca	Cd (ີກ ໃ	Or Ou F	e Ph Ma	Mn Mo Ni K Ag N	la Co Cr Ti Co	V 70 He
required	1 5111 10	· MACE !	-11-18-11-1	-							_											-
II. Report Dup., MS, MSD	***************************************			_								50	ьа	R6 I						Ag Mn Mo Ni K Ag		-
as required	Turnar	ound	Requireme	nts	pecia	IInst	ructio	ons/C	Jom	men	its:				"in	dicate	Sta	ate Hydr	ocarbon P	rocedure: AK CA W	/I Northwest Oth	er (Circle One)
III. CLP Like Summary (no raw data)	2	4 hr. Day	48 hr.	1	-																	
IV. Data Validation Report	X S	itandard																				
V. EDD		Conventor	! Report Date													,						
Relinquished By:		77774	red By:		Re	ling	uish	ed	Ву:		T		F	Rece	ive	d By	-	1	Re	linquished By:	R	eceived By:
	<u> </u>		1			_		1			\bot											
ignature	Signature	F		Sigr	ature	0	74				S	ignat V/2	lane Laya	اً ۲	>.	de	B	2n	Signature		Signature	
rinted Name Millemy	Printed, N		BiL	Prin	ted N			Lá	\mathcal{B}_{i}	he		rinte							Printed Na	ime	Printed Nan	ne
im tel	Firm /	5		Fim		_5	_	į			TF:	írm \()))ate/⊓		Ľ		44	5		Firm		Firm	
ate/Time	Date/Tim	e/0/0	8/24 /30	6 Date	e/Time		\\ / ₂	24	74	144		ate/	Time	······					Date/Time		Date/Time	
10/8 1306	_	7 7	-, ,			,-	,	- 1	·													

•										рм Л	1.11
Tearding	ooler Receipt	and F	rese				s .	~1 11"	Promp.	7-	
Client levaguese	01645		<u> </u>	Sei		Request /	(24)	2646		a F	
Received: 1018124 Opened:	018124	By: _	Δ	1_	Unl	oaded: _	1018	129	By: <u></u>	<u> </u>	
1. Samples were received via? USPS	Fed Ex	UPS	D	HL	P	DX.	Court	er) 1	and Deliv	ered	
2. Samples were received in: (circle) Caol	Box	E	ivelope		Ot	her	<u> </u>			NA .	
3. Were <u>custody seals</u> on coolers? NA	Y (N) I	f yes, h	ow mar	y and	where'	7	.,				
' If present, were custody seals intact?	YNI	f presen	it, were	they s	igned a	and dated?	?		Y	N	
				9.17.	1			· · · · · · · · · · · · · · · · · · ·			
			Outo	f temp		PM Notifie	a I	**			
	ooler #/COC ID / N/	1	indicate			if out of t		Trackii	ng Numbe	NA_	Filed
19.6 14.6 -1801 1	40510										
1.8 5.7										•	
(0.0 4.4											
a.u 14.5			<u>.</u>		1						
107 115		_			+						
4. Was a Temperature Blank present in cooler? NA	A (Y) N	If ves n	otate th	e temp	eratur	e in the an	propriate	column ab	ove:		
If no, take the temperature of a representative sa	_	•		-		-					
5. Were samples received within the method specifi	-						J	NA.	$\left(\mathbf{v} \right)$	N	
If no, were they received on ice and same day as		-	cooler	# abov	ve and	potify the	РМ	NA) v	N	
· · · · · · · · · · · · · · · · · · ·	zen Partially Th		Thaw		. •		- 2121)		
	•		*								
	le Wrap Gel Pack	Wet	Ice 1	ry Ice	Sle	eves					
7. Were custody papers properly filled out (ink, signature)	•							NA		N	
8. Were samples received in good condition (unbro								NA	> *	N	
 Were all sample labels complete (ie, analysis, p. Did all sample labels and tags agree with custod 			*					NA NA	Y	N N	
11. Were appropriate bottles/containers and volume		ete indi	cated?					NA	\sim	N	
12. Were the pH-preserved bottles (see SMO GEN.				17 Ind	licate i	n the table	e helow	NA	Y	N	
13. Were VOA vials received without headspace?	-		mute pr	4. 2,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			NA		N	
14. Was C12/Res negative?	maicale in the table	DEIUW,						NA NA	Y	N	
15. Were samples received within the method speci	ified time limit? If n	ot note	to the o	mor ha	low an	d notify th	e PM	(NA	Y	N	
16. Were 100ml sterile microbiology bottles filled			- /	}	Y Y	no monny a N	IC I IVI	Under	/	Overfille	.d
16. Were fooms sterne microbiology bottles filled t	exactly to the 100m	mark?	_(^N	A		14		Onder	- C		<u> </u>
Sample ID on Bottle	Sample	ID on	COC					Identifie	d by:		
			···								

	Bottle Count	Head-					Volume	Reager	t Lot		
Sample ID	Bottle Type	space	Broke	рН	Re	agent	added	Num		initials	Time
Notes, Discrepancies, Resolutions:											

109 of 283

SOP: SMO-GEN

Reviewed: NP 1/3/2024

G:\SMO\2024 Forms

Cooler Receipt and Preservation Form

	T	-	<u> </u>					e Request <i>K2</i>				
Temp Blank	Sample Temp	IR Gun	Cooler #/C	OC ID / N	iA	Out Indica	of temp te with ")	PM Notifie (" if out of t	d emp	Tracking Nur	nber NA	File
A8: 7.8	3.8	1801										
11.2	5.5	W_		···						(************************************		
			,									
									-		f ·	
Sar	mpie ID on Bottie			Sample li	D on C	OC			ld	entified by:	•	
												
						····						
			ottle Count	Out of			य संब	<u>. C</u> aranta da Santa da Caranta d	Volume	Reagent Lot	I I	
	Sample ID	В	ottle Type	Temp	space	Broke	pН	Reagent	added	Number	Initials	Time
				1	······································							······
					1 (1		<u></u>	
	ancies & Resol	utions: 10	<u>ا س</u>	is a	+ +	700	<u>04</u>	<u>coolers</u>	> 0)	a topo	<u> </u>	••••
tes, Discrep		2 ^ ^	blan	R C	<u>cas</u>	<u> </u>	nde	rtle	SUN	gles, r	<u>lot</u>	
stes, Discrep	ples. To	JAK -		5								·····
San judi	ples. Te	L S	mpl	ا ر ()	ten	AP_		······································				
Sam judi	ples. To	S S	ampl	ا <u> </u>	ten	P						
Sam judi	ples. To	S S	ampl	ا - رق	ten	P						
Sam judi	des. Te	sing S	ampl	ا <u>. وي</u>	ten	P						
Sam judi	des. Te	S S	anyol		tea 	AP						
Sam Sam	ples. To	S S	anyol		tea 	AP						
Sam Sam	ples. To	S S	anyol		ten	AP						
Sam Sam Indi	ples. To	S S	anyol		ten	AP						
San San	ples. To	S S	anyol		ten	AP						

G:\SMO\2024 Forms

SOP: SMO-GEN

Reviewed: NP 1/3/2024

110 of 283

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Date Collected: 10/02/24 - 10/05/24 **Project:** Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil **Date Received:** 10/8/24

Analysis Method: 160.3 Modified

Units: Percent **Prep Method:** Basis: As Received None

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
UMM-TLB-0.5-1	K2410642-001	86.4	-	1	10/10/24 10:19	
UMM-TLB-0.5-4	K2410642-002	91.8	-	1	10/10/24 10:19	
UMM-TLC-0.5-1	K2410642-003	79.3	-	1	10/10/24 10:19	
UMM-TLC-0.5-2	K2410642-004	76.8	-	1	10/10/24 10:19	
UMM-TLA-0.5-6	K2410642-005	91.8	-	1	10/10/24 10:19	
CEM-WRA-0.5-4-DS	K2410642-006	96.8	-	1	10/10/24 10:19	
CEM-WRB-0.5-1	K2410642-007	96.5	-	1	10/10/24 10:19	
CEM-WRA-0.5-2	K2410642-008	95.3	-	1	10/10/24 10:19	
CEM-WRC-0.5-1	K2410642-009	95.1	-	1	10/10/24 10:19	
GF-WRA-0.5-1	K2410642-010	97.0	-	1	10/10/24 10:19	
GF-WRD-0.5-6	K2410642-011	95.1	-	1	10/10/24 10:19	
GF-WRD-0.5-4-DS	K2410642-012	97.0	-	1	10/10/24 10:19	
GF-DR-0.5-1	K2410642-013	97.2	-	1	10/10/24 10:19	
GC5-WRA-0.5-3	K2410642-014	96.2	-	1	10/10/24 10:19	
GC5-WRA-0.5-4	K2410642-015	95.8	-	1	10/10/24 10:19	
GC5-WRA-0.5-4-DS	K2410642-016	96.0	-	1	10/10/24 10:19	
GC6-WRA-0.5-2	K2410642-017	94.4	-	1	10/10/24 10:19	
GC6-WRA-0.5-1	K2410642-018	93.7	-	1	10/10/24 10:19	
GC7-WRA-0.5-3	-3 K2410642-019 95.2		-	1	10/10/24 10:19	
GC7-WRB-0.5-1	K2410642-020	96.1	-	1	10/10/24 10:19	

Service Request: K2410642

QA/QC Report

Service Request: K2410642

Client: Terraphase Engineering Inc.

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:**10/02/24 - 10/04/24

Sample Matrix: Soil Date Received: 10/08/24

Analysis Method: 160.3 Modified Units: Percent

Prep Method: None Basis: As Received

Replicate Sample Summary Inorganic Parameters

Sample Name:	Lab Code:	MRL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
UMM-TLB-0.5-1	K2410642-001DUP	-	86.4	86.5	86.5	<1	20	10/10/24
GC7-WRB-0.5-1	K2410642-020DUP	-	96.1	96.3	96.2	<1	20	10/10/24

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/11/2024 8:28:22 AM Superset Reference:24-0000711613 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Service Request: K2410642 **Date Collected:** 10/2/2024 **Date Received:** 10/8/2024

Date Extracted: 10/16-10/17/2024 **Date Analyzed:** 10/17-10/22/2024

Bioaccessibility Value Analyte: Arsenic Units: Percent (%)

Sample Name	Lab Code	Result
UMM-TLB-0.5-1	K2410642-001	41.6
UMM-TLA-0.5-6	K2410642-005	24.3
CEM-WRA-0.5-2	K2410642-008	5.6
GF-WRD-0.5-4-DS	K2410642-012	9.0
GC5-WRA-0.5-4-DS	K2410642-016	4.7
GC6-WRA-0.5-2	K2410642-017	3.9

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Service Request: K2410642

Date Collected: 10/2/2024

Date Received: 10/8/2024

Date Extracted: 10/16-10/17/2024 **Date Analyzed:** 10/17-10/22/2024

Bioaccessibility Value Analyte: Lead Units: Percent (%)

Sample Name	Lab Code	Result
UMM-TLB-0.5-1	K2410642-001	28.7
UMM-TLA-0.5-6	K2410642-005	6.2
CEM-WRA-0.5-2	K2410642-008	27.9
GF-WRD-0.5-4-DS	K2410642-012	34.9
GC5-WRA-0.5-4-DS	K2410642-016	37.5
GC6-WRA-0.5-2	K2410642-017	41.7

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 16:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLB-0.5-1 Basis: Dry

Lab Code: K2410642-001

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	6130	mg/Kg	11	1	100	10/22/24 12:10	10/10/24	
Lead	6020B	1710	mg/Kg	1.1	0.4	100	10/22/24 12:10	10/10/24	
Mercury	7471B	387	mg/Kg	11	1	500	10/15/24 13:08	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 16:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UMM-TLB-0.5-1 **Sample Name:** Basis: Dry

Lab Code: K2410642-001

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	4420	mg/Kg	4.9	0.6	50	10/22/24 15:53	10/17/24	
Lead	6020B	840	mg/Kg	0.49	0.20	50	10/22/24 15:53	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 16:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLB-0.5-1 Basis: Dry

Lab Code: K2410642-001

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1840	mg/Kg	2.0	0.2	20	10/17/24 11:29	10/16/24	
Lead	6020B	241	mg/Kg	0.20	0.08	20	10/17/24 11:29	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642

Date Collected: 10/02/24 16:45 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 14:45 **Sample Matrix:** Soil

UMM-TLB-0.5-4 **Sample Name:** Basis: Dry

Lab Code: K2410642-002

Total Metals

	Analysis							Date		
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q	
Arsenic	6020B	1540	mg/Kg	8.0	1.0	100	10/22/24 12:18	10/10/24		

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 17:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLC-0.5-1 Basis: Dry

Lab Code: K2410642-003

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	5290	mg/Kg	9.9	1.2	100	10/22/24 12:19	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/02/24 17:15

Sample Matrix:

Project:

Lab Code:

Soil

Date Received: 10/08/24 14:45

Service Request: K2410642

Sample Name:

UMM-TLC-0.5-2 K2410642-004

Basis: Dry

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	4980	mg/Kg	10	1	100	10/22/24 12:21	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/02/24 15:45 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLA-0.5-6 Basis: Dry

Lab Code: K2410642-005

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	3270	mg/Kg	8.1	1.0	100	10/22/24 11:35	10/10/24	
Lead	6020B	589	mg/Kg	0.81	0.33	100	10/22/24 11:35	10/10/24	
Mercury	7471B	9.23	mg/Kg	0.19	0.02	10	10/15/24 10:28	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 15:45 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UMM-TLA-0.5-6 **Sample Name:** Basis: Dry

Lab Code: K2410642-005

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	5560	mg/Kg	4.9	0.6	50	10/22/24 15:46	10/17/24	
Lead	6020B	1110	mg/Kg	0.49	0.20	50	10/22/24 15:46	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/02/24 15:45 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLA-0.5-6 Basis: Dry

Lab Code: K2410642-005

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1350	mg/Kg	2.0	0.2	20	10/17/24 11:22	10/16/24	
Lead	6020B	69.2	mg/Kg	0.20	0.08	20	10/17/24 11:22	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/02/24 12:30 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-006

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	32.6	mo/Ko	0.40	0.05	5	10/22/24 12:03	10/10/24	

Analytical Report

Service Request: K2410642

Client: Terraphase Engineering Inc.

> **Date Collected:** 10/05/24 13:00 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRB-0.5-1 Basis: Dry

Lab Code: K2410642-007

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	151	mg/Kg	8.6	1.0	100	10/22/24 11:38	10/10/24	

Printed 10/22/2024 8:04:37 PM Superset Reference:

127 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/05/24 12:05 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

CEM-WRA-0.5-2 **Sample Name:** Basis: Dry

Lab Code: K2410642-008

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	794	mg/Kg	5.0	0.6	50	10/22/24 15:55	10/17/24	
Lead	6020B	78.5	mg/Kg	0.50	0.20	50	10/22/24 15:55	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/05/24 12:05 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRA-0.5-2 Basis: Dry

Lab Code: K2410642-008

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	44.5	mg/Kg	2.0	0.2	20	10/17/24 11:30	10/16/24	
Lead	6020B	21.9	mg/Kg	0.20	0.08	20	10/17/24 11:30	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/05/24 12:05

Service Request: K2410642

Sample Matrix:

Project:

Soil

Date Received: 10/08/24 14:45

Basis: Dry

CEM-WRA-0.5-2 **Sample Name:**

Lab Code:

K2410642-008

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	299	mg/Kg	8.3	1.0	100	10/22/24 11:39	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/05/24 12:40 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRC-0.5-1 Basis: Dry

Lab Code: K2410642-009

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	110	mg/Kg	8.0	1.0	100	10/22/24 11:41	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/05/24 09:30

Service Request: K2410642

Sample Matrix: Soil Date Received: 10/08/24 14:45

Sample Name: GF-WRA-0.5-1 Basis: Dry

Lab Code: K2410642-010

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	332	mg/Kg	7.8	0.9	100	10/22/24 11:42	10/10/24	

Analytical Report

Service Request: K2410642 **Date Collected:** 10/05/24 11:10

Date Received: 10/08/24 14:45

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Lab Code:

Sample Name:

GF-WRD-0.5-6 Basis: Dry K2410642-011

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	66.6	mg/Kg	7.9	0.9	100	10/22/24 11:44	10/10/24	

Printed 10/22/2024 8:04:37 PM Superset Reference:

133 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/05/24 11:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GF-WRD-0.5-4-DS Basis: Dry

Lab Code: K2410642-012

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	137	mg/Kg	4.9	0.6	50	10/22/24 15:56	10/17/24	
Lead	6020B	25.6	mg/Kg	0.49	0.19	50	10/22/24 15:56	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/05/24 11:05 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GF-WRD-0.5-4-DS Basis: Dry

Lab Code: K2410642-012

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	12.3	mg/Kg	2.0	0.2	20	10/17/24 11:32	10/16/24	
Lead	6020B	8.94	mg/Kg	0.20	0.08	20	10/17/24 11:32	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/05/24 11:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GF-WRD-0.5-4-DS Basis: Dry

Lab Code: K2410642-012

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	55.2	mo/Ko	8.5	1.0	100	10/22/24 11:45	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Date Collected: 10/05/24 10:35

Date Received: 10/08/24 14:45

Basis: Dry

Service Request: K2410642

Sample Name:

GF-DR-0.5-1

Lab Code:

Project:

K2410642-013

Total Metals

Analysis Date Analyte Name Method Result Units MRL MDL Dil. **Date Analyzed Extracted** Q 6020B Arsenic 58.3 mg/Kg 8.4 1.0 100 10/22/24 11:49 10/10/24

Printed 10/22/2024 8:04:37 PM Superset Reference:

137 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 16:15 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-3 Basis: Dry

Lab Code: K2410642-014

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	421	mg/Kg	8.0	1.0	100	10/22/24 11:51	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/04/24 15:54 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4 Basis: Dry

Lab Code: K2410642-015

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	160	mg/Kg	7.8	0.9	100	10/22/24 11:52	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 15:55 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-016

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	221	mg/Kg	5.0	0.6	50	10/22/24 16:01	10/17/24	
Lead	6020B	70.4	mg/Kg	0.50	0.20	50	10/22/24 16:01	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/04/24 15:55 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-016

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	10.4	mg/Kg	1.9	0.2	20	10/17/24 11:37	10/16/24	
Lead	6020B	26.4	mg/Kg	0.19	0.08	20	10/17/24 11:37	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 15:55 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-016

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	81.3	mg/Kg	7.9	0.9	100	10/22/24 11:54	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

GC6-WRA-0.5-2 **Sample Name:** Basis: Dry

Lab Code: K2410642-017

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	759	mg/Kg	4.9	0.6	50	10/22/24 16:02	10/17/24	
Lead	6020B	360	mg/Kg	0.49	0.20	50	10/22/24 16:02	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC6-WRA-0.5-2 Basis: Dry

Lab Code: K2410642-017

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	29.3	mg/Kg	2.0	0.2	20	10/17/24 11:39	10/16/24	
Lead	6020B	150	mg/Kg	0.20	0.08	20	10/17/24 11:39	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/04/24 14:00 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

GC6-WRA-0.5-2 **Sample Name:** Basis: Dry

Lab Code: K2410642-017

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	504	mg/Kg	8.5	1.0	100	10/22/24 11:55	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24 10:45

Basis: Dry

Service Request: K2410642

Sample Matrix:

Soil

Date Received: 10/08/24 14:45

Sample Name:

GC6-WRA-0.5-1

Lab Code:

Project:

K2410642-018

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	257	mg/Kg	8.5	1.0	100	10/22/24 11:57	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 11:50 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC7-WRA-0.5-3 Basis: Dry

Lab Code: K2410642-019

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	26.9	mg/Kg	8.5	1.0	100	10/22/24 11:58	10/10/24	
Arsenic	6020B	26.2	mg/Kg	0.43	0.05	5	10/22/24 12:04	10/10/24	

Printed 10/22/2024 8:04:38 PM Superset Reference:

147 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24 11:15

Basis: Dry

Service Request: K2410642

Sample Matrix:

Soil

Date Received: 10/08/24 14:45

Sample Name:

GC7-WRB-0.5-1

Lab Code:

Project:

K2410642-020

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	7.43	mg/Kg	0.43	0.05	5	10/22/24 12:09	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416652-01

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 15:43	10/17/24	
Lead	6020B	0.043 J	mg/Kg	0.05	0.020	5	10/22/24 15:43	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416789-01

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/17/24 10:57	10/16/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/17/24 10:57	10/16/24	

Printed 10/22/2024 8:04:36 PM Superset Reference:

150 of 283

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416391-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	0.07 J	mg/Kg	0.5	0.06	5	10/22/24 11:05	10/10/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/22/24 11:05	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416426-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercurv	7471B	ND U	mg/Kg	0.02	0.002	1	10/15/24 09:02	10/14/24	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project Upper Granite Creek Mines/0031.005.001 Date Collected: 10/02/24

Sample Matrix: Soil Date Received: 10/08/24

Date Analyzed: 10/22/24

Replicate Sample Summary Total Metals – IVBA Analysis

Sample Name: UMM-TLA-0.5-6 Units: mg/Kg

Basis: Dry

Lab Code: K2410642-005

Basis

Duplicate

Sample

					Sample			
	Analysis			Sample	KQ2416652-03			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	6020B	5.0	0.6	5560	6460	6010	15	20
Lead	6020B	0.50	0.20	1110	1280	1200	14	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. **Service Request:** K2410642

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/02/24

Soil **Sample Matrix:**

Lab Code:

Date Received: 10/08/24

Date Analyzed: 10/17/24

Replicate Sample Summary

IVBA Metals

Sample Name: UMM-TLA-0.5-6 Units: mg/Kg

Basis: Dry

K2410642-005

Duplicate

	Analysis			Sample	Sample KQ2416789-04			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	6020B	2.0	0.2	1350	1360	1360	<1	20
Lead	6020B	0.20	0.08	69.2	72.3	70.8	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc.

Project

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/02/24

Soil **Date Received:** 10/08/24 **Sample Matrix:**

Date Analyzed: 10/22/24

Service Request: K2410642

Replicate Sample Summary

Total Metals

Sample Name: UMM-TLB-0.5-1 Units: mg/Kg Lab Code: K2410642-001

Basis: Dry

					Duplicate			
					Sample			
	Analysis			Sample	KQ2416391-01			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
		111111	1,122	2105620	Itebair	riveruge	111 12	
Arsenic	6020B	11	1	6130	7400	6770	19	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Terraphase Engineering Inc. **Project:**

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Service Request: Date Collected:

K2410642

10/02/24

Date Received: Date Analyzed: 10/08/24 10/22/24

Date Extracted:

10/17/24

Matrix Spike Summary

Total Metals – IVBA Analysis

Sample Name:

UMM-TLA-0.5-6

Lab Code: K2410642-005

Analysis Method: Prep Method:

6020B

EPA 3050B

Units: Basis: mg/Kg

Dry

Matrix Spike

KQ2416652-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	5560	5980	97.0	435 #	75-125
Lead	1110	1250	97.0	145 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request:

K2410642

Project:

Upper Granite Creek Mines/0031.005.001

Date Collected:

10/02/24

Sample Matrix: Soil

1 1

Date Received: Date Analyzed: 10/08/24

Date Extracted:

10/22/24 10/10/24

Matrix Spike Summary

Total Metals

Sample Name: UMM-TLB-0.5-1

Units: Basis:

mg/Kg Dry

Lab Code: Analysis Method: K2410642-001

Prep Method:

6020B

EPA 3050B

Matrix Spike

KQ2416391-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6130	5760	11	-3268#	75-125
Lead	1710	1750	5.6	557 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals – IVBA Analysis

> Units:mg/Kg Basis:Dry

Service Request: K2410642

Lab Control Sample

KQ2416652-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	108	100	108	80-120
Lead	6020B	111	100	111	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Analyzed:** 10/17/24

Sample Matrix: Soil

> **Lab Control Sample Summary IVBA Metals**

> > Units:mg/Kg Basis:Dry

Lab Control Sample

KQ2416789-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	92.9	100	93	80-120
Lead	6020B	105	100	105	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Project:** Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

> **Lab Control Sample Summary Total Metals**

> > Units:mg/Kg Basis:Dry

Lab Control Sample

KQ2416391-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	107	100	107	80-120
Lead	6020B	113	100	113	80-120

Printed 10/22/2024 8:04:38 PM Superset Reference:

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/15/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K2410642

Lab Control Sample KQ2416426-04

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsMercury7471B0.5200.50010480-120

Printed 10/22/2024 8:04:38 PM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected:NALCS Matrix:SoilDate Received:NA

Date Extracted: 10/16/2024 **Date Analyzed:** 10/17/2024

Standard Reference Material (SRM) Summary

Bioaccessible Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Basis: Dry

Test Notes: Montana II Solids = 97.8%

KQ2416789-03

Lab Code:

Source: NIST 2711a - Montana II Soil

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits (%)	Result Notes
Lead	EPA 1340	6020B	1300	1250	96	75.2 - 96.2	

Don Malkemus Terraphase Engineering Inc. 610 SW Broadway, Suite 405 Portland, OR 97205

Laboratory Results for: Upper Granite Creek Mines

Dear Don.

Enclosed are the results of the sample(s) submitted to our laboratory October 08, 2024 For your reference, these analyses have been assigned our service request number **K2410643**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oak

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines Date Received: 10/08/2024

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Fourteen soil samples were received for analysis at ALS Environmental on 10/08/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Method 6020B, 10/22/2024: The Relative Percent Difference (RPD) for the replicate analysis of Silver in sample TL-WRA-0.5-3 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Method 6020B, 10/22/2024: Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Despite anticipated low recoveries, the method is still generally prescribed because of its versatility for general metals analysis. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The matrix spike recovery of Antimony for sample TL-WRA-0.5-3 was below the ALS control criterion. Since low recoveries resulted from a method defect and were possibly magnified by certain matrix components, no corrective action was appropriate. Alternative procedures that specifically target Antimony are available but were not specified for this project. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control.

Method 6020B, 10/22/2024: The matrix spike recovery of Lead for sample TL-WRA-0.5-3 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

	1 (OE V. () OUX			
Approved by		Date _	10/23/2024	

× -00000

CLIENT ID: CS-SD-1		Lab	ID: K2410	643-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.26		0.05	0.13	mg/Kg	6020B
Arsenic	5.8		0.2	1.3	mg/Kg	6020B
Cadmium	0.234		0.019	0.053	mg/Kg	6020B
Chromium	7.81		0.16	0.53	mg/Kg	6020B
Lead	4.12		0.05	0.13	mg/Kg	6020B
Mercury	0.031	J	0.005	0.053	mg/Kg	7471B
Silver	0.282		0.011	0.053	mg/Kg	6020B
Solids, Total	34.2				Percent	160.3 Modified
Zinc	45.0		0.5	1.3	mg/Kg	6020B
CLIENT ID: CS-SD-2		Lab	ID: K2410	643-007		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.038	J	0.022	0.054	mg/Kg	6020B
Arsenic	4.52		0.07	0.54	mg/Kg	6020B
Cadmium	0.038		0.008	0.022	mg/Kg	6020B
Chromium	2.49		0.07	0.22	mg/Kg	6020B
Lead	0.927		0.022	0.054	mg/Kg	6020B
Silver	0.043		0.004	0.022	mg/Kg	6020B
Solids, Total	76.9				Percent	160.3 Modified
Zinc	16.9		0.22	0.54	mg/Kg	6020B
					0 0	
CLIENT ID: CS-SD-3			ID: K2410			
	Results	Lab Flag	MDL	MRL	Units	Method
CLIENT ID: CS-SD-3 Analyte Antimony	Results 0.069		MDL 0.025	MRL 0.063	Units mg/Kg	6020B
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic	Results 0.069 11.7		MDL 0.025 0.08	MRL 0.063 0.63	Units mg/Kg mg/Kg	6020B 6020B
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic Cadmium	Results 0.069 11.7 0.062		MDL 0.025 0.08 0.009	MRL 0.063 0.63 0.025	Units mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic Cadmium Chromium	Results 0.069 11.7 0.062 4.90		MDL 0.025 0.08 0.009 0.08	MRL 0.063 0.63 0.025 0.25	Units mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic Cadmium Chromium Lead	Results 0.069 11.7 0.062 4.90 1.53		MDL 0.025 0.08 0.009 0.08 0.025	MRL 0.063 0.63 0.025 0.25 0.063	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury	Results 0.069 11.7 0.062 4.90 1.53 0.923		MDL 0.025 0.08 0.009 0.08 0.025 0.003	MRL 0.063 0.63 0.025 0.25 0.063 0.027	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112		MDL 0.025 0.08 0.009 0.08 0.025	MRL 0.063 0.63 0.025 0.25 0.063	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1		MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112		MDL 0.025 0.08 0.009 0.08 0.025 0.003	MRL 0.063 0.63 0.025 0.25 0.063 0.027	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 0 ID: K2410 MDL	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0.63	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 0 ID: K2410 MDL 0.023	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0643-009 MRL 0.058	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 DID: K2410 MDL 0.023 0.07	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0.63 0.63 0.63 0.63	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Mg/Kg Percent mg/Kg Units mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic Cadmium	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 DID: K2410 MDL 0.023 0.07 0.008	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0643-009 MRL 0.058 0.58 0.023	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Percent mg/Kg Units mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09 9.05	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 DID: K2410 MDL 0.023 0.07	MRL 0.063 0.63 0.025 0.025 0.063 0.027 0.025 0.63 0.63 0.63 0.58 0.58 0.023 0.23	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Mg/Kg Percent mg/Kg Units mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic Cadmium Chromium Lead	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09 9.05 25.6	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 MDL 0.023 0.07 0.008 0.07 0.023	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0.63 0.058 0.058 0.023 0.058	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Percent mg/Kg Units mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B 6020B 6020B 6020B
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic Cadmium Chromium Chromium	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09 9.05	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 MDL 0.023 0.07 0.008 0.07	MRL 0.063 0.63 0.025 0.025 0.063 0.027 0.025 0.63 0.63 0.63 0.58 0.58 0.023 0.23	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Percent mg/Kg Units mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B 6020B

CLIENT ID: CS-SD-4													
Analyte	Results	Flag	MDL	MRL	Units	Method							
Solids, Total	64.9				Percent	160.3 Modified							
Zinc	47.2		0.23	0.58	mg/Kg	6020B							
LIENT ID: CS-SD-5		Lab	ID: K2410	643-010									
Analyte	Results	Flag	MDL	MRL	Units	Method							
Antimony	0.146		0.020	0.051	mg/Kg	6020B							
Arsenic	14.1		0.06	0.51	mg/Kg	6020B							
Cadmium	0.169		0.007	0.020	mg/Kg	6020B							
Chromium	5.03		0.06	0.20	mg/Kg	6020B							
Lead	2.79		0.020	0.051	mg/Kg	6020B							
Mercury	0.056		0.002	0.025	mg/Kg	7471B							
Silver	0.582		0.004	0.020	mg/Kg	6020B							
Solids, Total	71.1				Percent	160.3 Modified							
Zinc	32.7		0.20	0.51	mg/Kg	6020B							
LIENT ID: CS-SD-6		Lab ID: K2410643-011											
Analyte	Results	Flag	MDL	MRL	Units	Method							
Antimony	0.147		0.018	0.045	mg/Kg	6020B							
Arsenic	16.6		0.05	0.45	mg/Kg	6020B							
Cadmium	0.146		0.006	0.018	mg/Kg	6020B							
Chromium	4.76		0.05	0.18	mg/Kg	6020B							
Lead	2.74		0.018	0.045	mg/Kg	6020B							
Mercury	0.033		0.002	0.021	mg/Kg	7471B							
Silver	0.200		0.004	0.018	mg/Kg	6020B							
Solids, Total	82.1				Percent	160.3 Modified							
Zinc	37.1		0.18	0.45	mg/Kg	6020B							
LIENT ID: CS-SD-7		Lab	ID: K2410	643-012									
Analyte	Results	Flag	MDL	MRL	Units	Method							
Antimony	0.355		0.019	0.048	mg/Kg	6020B							
Arsenic	24.2		0.06	0.48	mg/Kg	6020B							
Cadmium	0.538		0.007	0.019	mg/Kg	6020B							
Chromium	10.6		0.06	0.19	mg/Kg	6020B							
Lead	12.1		0.019	0.048	mg/Kg	6020B							
Mercury	0.097		0.002	0.023	mg/Kg	7471B							
Silver	1.10		0.004	0.019	mg/Kg	6020B							
Solids, Total	80.2				Percent	160.3 Modified							
Zinc	168		0.19	0.48	mg/Kg	6020B							
LIENT ID: CS-SD-7-DUP		Lab	ID: K2410	643-013									
Analyte	Results	Flag	MDL	MRL	Units	Method							
Antimony	0.334		0.022	0.054	mg/Kg	6020B							

CLIENT ID: CS-SD-7-DUP	Lab ID: K2410643-013											
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	24.3		0.06	0.54	mg/Kg	6020B						
Cadmium	0.446		0.008	0.022	mg/Kg	6020B						
Chromium	9.10		0.06	0.22	mg/Kg	6020B						
Lead	12.8		0.022	0.054	mg/Kg	6020B						
Mercury	0.099		0.002	0.024	mg/Kg	7471B						
Silver	1.62		0.004	0.022	mg/Kg	6020B						
Solids, Total	73.2				Percent	160.3 Modified						
Zinc	102		0.22	0.54	mg/Kg	6020B						
LIENT ID: CS-SD-8		Lab ID: K2410643-014										
Analyte	Results	Flag	MDL	MRL	Units	Method						
Antimony	0.406		0.023	0.058	mg/Kg	6020B						
Arsenic	35.2		0.07	0.58	mg/Kg	6020B						
Cadmium	0.316		0.008	0.023	mg/Kg	6020B						
Chromium	9.13		0.07	0.23	mg/Kg	6020B						
Lead	10.7		0.023	0.058	mg/Kg	6020B						
Mercury	0.096		0.003	0.026	mg/Kg	7471B						
Silver	1.26		0.005	0.023	mg/Kg	6020B						
Solids, Total	69.0				Percent	160.3 Modified						
Zinc	103		0.23	0.58	mg/Kg	6020B						
LIENT ID: TL-WRA-0.5-3	Lab ID: K2410643-001											
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	454		0.05	0.42	mg/Kg	6020B						
Solids, Total	95.0				Percent	160.3 Modified						
LIENT ID: TL-WRB-0.5-4		Lab	ID: K2410	643-002								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	194		0.05	0.42	mg/Kg	6020B						
Solids, Total	95.5				Percent	160.3 Modified						
LIENT ID: TL-WRA-0.5-1-DS-2		Lab	ID: K2410	643-003								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	550		0.6	4.9	mg/Kg	6020B						
Arsenic	14.4		0.2	1.9	mg/Kg	6020B						
Arsenic	267		0.05	0.44	mg/Kg	6020B						
Lead	218		0.19	0.49	mg/Kg	6020B						
Lead	83.3		0.08	0.19	mg/Kg	6020B						
Solids, Total	93.4				Percent	160.3 Modified						
LIENT ID: SH-WRB-0.5-2			ID: K2410	643-004								
Analyte	Results	Flag	MDL	MRL	Units	Method						
Arsenic	80.8		0.05	0.39	mg/Kg	6020B						

CLIENT ID: SH-WRB-0.5-2	Lab ID: K2410643-004												
Analyte	Results	Flag	MDL	MRL	Units	Method							
Solids, Total	94.1				Percent	160.3 Modified							
CLIENT ID: SH-WRC-0.5-1		Lab	ID: K2410	643-005									
Analyte	Results	Flag	MDL	MRL	Units	Method							
Arsenic	14.4		0.05	0.44	mg/Kg	6020B							

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines/0031.005.001

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2410643-001	TL-WRA-0.5-3	10/4/2024	1405
K2410643-002	TL-WRB-0.5-4	10/4/2024	1425
K2410643-003	TL-WRA-0.5-1-DS-2	10/4/2024	1400
K2410643-004	SH-WRB-0.5-2	10/4/2024	1005
K2410643-005	SH-WRC-0.5-1	10/4/2024	1015
K2410643-006	CS-SD-1	10/5/2024	1006
K2410643-007	CS-SD-2	10/3/2024	1505
K2410643-008	CS-SD-3	10/3/2024	0900
K2410643-009	CS-SD-4	10/3/2024	1424
K2410643-010	CS-SD-5	10/4/2024	0930
K2410643-011	CS-SD-6	10/4/2024	1521
K2410643-012	CS-SD-7	10/4/2024	1335
K2410643-013	CS-SD-7-DUP	10/4/2024	1340
K2410643-014	CS-SD-8	10/5/2024	1030

140510

CHAIN OF CUSTODY

001, 002, 003	SR#
	COC Se

SR#
COC Set 6 of 8
COC#

1317 South 13th Ave, Keisa, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

(ALS) testates								101001					obal.co				2116	~~ (300) u	XX-1000					Page 1 d
Project Name Upper Granit Creek Min	Project N		31.005.001		<u> </u>	9	707		80D			 0666								7				-
roject Manager Dan Millemy	S				1		7	<u> </u>	<u> </u>			8	igspace				_						_	
Company Terinihari Engin	eer'n Inc				ERS			(E	ĺ			Calc			ļ					j			200	
Address, City, State Glo Sty Grand		105			CONTAINERS			ad Total)	ļ "							ĺ						7	1001/2	
hone # (503) 943-0394	email)	on, my Ken	and Okligha	k-Com				(Sieved	Extract	يرا	9	ardu			ĺ	1]				7	γ_{I_O}	w 47	
ampler Signature		Printed Name			9	늘	우	VBA (MA MA	leta i	Sprin	HH			- 1	1	ļ				1/	J		
M	Don	Malkem		_	NUMBER	7470A / Hg T	74718 / Hg	3020B / IVBA	5020B / IVBA	5020B / Metals T	Grind / GrindSub	SM 2340 B / Hardness			_	Ā	۵	Re	narks		*		63/3	
CLIENT SAMPLE ID	LABID	Date T	/PLING ime State	Matrix					-														•	
.GCS - WRA -0.5-4-03	·		S22	5051	2			×	*		<u> </u>							+ pal		_			,	
GCG - WHA - 0.5 - 2		10/4 14		Seil	2	<u> </u>		×	N.	*				_	_			+ 647						
1.GCG - WH -0.5-1		<u> </u>	६५९	soil	2					7	<u> </u>						\perp			_				
1.GC7 - WHA - 0.5-3			1150	suil	2				<u> </u>	×	<u> </u>]									
i.GC7 - WRB -0.5-1			MZ	Soil	2.					٦	<u> </u>				_					_				
i. T L - VRA - 0.5 - 3	\	· · · · · · · · · · · · · · · · · · ·	1415	50.1	2	<u></u>			<u> </u>	×	<u> </u>	<u> </u>								_				•
: 9L-6123-05-4	7	lely	।५२५	Sail	2					<u> </u>	_									_				
: TL-WPA-0.5-1-05-2	3	1014	1400	5.11	2			*	7	7	<u> </u>							+ 649						
SH-WKB-0.5-2	Ч	1.4	1005	1:02	2					x	_]		_							
0.8H-WR(- 0.5-1	9	1014	lois	1:02	2				<u> </u>	×	L.									<u> </u>				
Report Requirements		oice Inf	ormation	Ī												C	ircle v	which meta	is are to be a	nalvzed				
I. Routine Report: Method Blank, Surrogate, as	P.O.#	· madei	MANIX-GOV	√			Total	Met	ais: A	AI 6	s G	Sb E	3a B	э В	Ca	Cd (Co (Cr Cu I	e Pb Mg	Mn Mo	Ni K Ag	Na Se	Sr Ti Sn V	/ Zn Ho
required	511110	<u> </u>				0																	Se Sr Ti Sn	
II. Report Dup., MS, MSD as required				_	pecia							30	- Da	DÇ.									thwest Other	
III. CLP Like Summary (no raw data)	2	ound Ro	equireme 48 hr.	nts	pecia	111121	IUCLI	Ulian	CON	II I ICI	ns.				Link	ncau	3 316	ate riyul	ocarbon r	rocedure.	AN CA	VVI NOI	triwest Other	(Circle On
IV. Data Validation Report	X s	itandard														-								
V. EDD			<u></u>													Ţ,								
Relinquished By:		Requested Re Receive			Re	ling	uish	ned	By:		7		\overline{a}	Rece	eive	d By	-		R	elinquisi	ned By:	1	Rec	eived By:
			r					1				_								•			·	
ignature	Signature	01			ature	2	1	<u> </u>			5	igna	ture LOO ed Na	ا نه	2	lo	BL.	n	Signature				Signature	
rinted Name Ow Milkwy		ame LaB	أنك		ted N			فه	Bi	دركم	<u>J</u>	419	ed Na	me	,				Printed N	ame			Printed Name	
im TEI		<u> </u>		Firm	40	_S						10) jun	812	24	_1	44	5		Firm				Firm	
)ate/Time	Date/Tim	e/0/08	124 130	Date	/Time	e/0/	× ₆ /	24		194		Date/	Time						Date/Tim	3			Date/Time	
120 1206			•			ŧ	•																	

140510

CHAIN OF CUSTODY

01, 002, 003	SR#
	COC Set 🛕 of 🛕
	COC#

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

(ALS) Employe										www.a	alsglo	bal.co	m					,						F	Page 1 of	1
Project Name (reck Mine)	Project N	umber: 0031-0+5.001			6	}		180D		C	2000]			7			
Project Manager Don Mal Kumvi]		i i		<u> </u>		5	<u> </u>	<u> </u>	T	—-г									122.			
Company Termphile Gyineering	Inc.			CONTAINERS			Total)	l			Calc			ı		l				ļ			2			
Address, City, State Glo SW Brailwy	Suite 40			Į Į			- To I	<u>ت</u>															10	ı		
Phone # (5%) 448 0384	email	··Malkinis Gleccalposs	·COM	8			(Siev	Extra	Ŀ \$	gng	-tardn				İ						_	1/10	00			
Sampler Signature		Printed Name		# # H	큠	₽	₹	₹	Meta	Srind	186			1	1	Ì					(I)	JU"				
111	Don	, MIKMU		NUMBER	7470A / Hg	7471B / Hg	020B / IVBA (Sieved	020B / IVBA Extract	020B / Metals T	Prind / GrindSub	3M 2340 B / Hardness					l	C	Remarl	ko		Ψ		0630			
		SAMPLING	Matrix	 	×	- 4	8	8	Ж.	Ö	ίδ	-	73		7	<u> </u>	Г	Ceman	7.5							
CLIENT SAMPLE ID	LABID	Date Time State	!	<u> </u>																						
1. (5-50-1	<u>6</u>	10/5 1006	Soil	2		X	\dashv		X						_	_										
2. CS - SO-2		1013 1505	Soil	2		×		_	7				_	_	ļ	_										
3. CS - SO -3	<u> </u>	10 3 0900	1518	13		×			X					}	_	\dashv			·							
4. C3-50 - 4	9	1013 1424	١٠٠٨	2	\vdash	শ			X			\sqcup			_	_										
5. Cs -50 - 5	10	1014 0130	Seil	2	-	X			x					_		_										
6. C S-SD-6		104 1521	1305	5	1	x		_	x						_											
7. Cs - S D - 7	12	10 4 1335	51:1	12		X			X					_	_	_										
8. CS - SD - 7 - DUP	13	10 4 1340	5021	2	1	X			X				_	_	-											
9. 5 - 50 - 8	14	10/5 1030	Seil	12		_		\dashv	X			\longrightarrow		_	_											
10.	· In	oice Information		<u> </u>	لبا					L			1	L						<u> </u>						7
Report Requirements 1. Routine Report: Method	P.O.#_	Oice miorination									_							etals are								ĺ
Blank, Surrogate, as required	Bill To	ep Q'timpuse.	34M			Total	Meta	is: A	1 6	9(S	9 B	a Be	8	Ca (<u>ල</u>	co ((ည္ င	Fe (P	gM (g	Mn Mo	Ni K	Ag) Na	Se Sr Tl Sr	1 N (5) (t)	ĺ
1. Report Dup., MS, MSD		and the second	<u> </u>		Di	ssolv	ed M	etais:	A!	As	Sb	Ва	Ве	B Ca	Cd	Co	Cr	Cu Fe	Pb M	g Mn M	10 Ni K	K Ag N	a Se Sr Ti	Sn V Zn	Hg	
as required	Turna	round Requireme	ents S	Specia	l Inst	uctio	ons/C	Comr	men	ts:				*Inc	licate	e Sta	ate Hy	/drocarl	on Pr	ocedure	: AK C	A WI	Northwest Ot	her	(Circle One)]
III. CLP Like Summary (no raw data)		2 4 hr4 8 hr.																								
IV. Data Validation Report	】 	5 Day Standard	1																							
V. EDD		Requested Report Date													,											
Relinquished By:		Received By:		Re	linq	ıish	ed l	Зу:		Τ.		F	Repe			/ :		T	Rel	inquisl	hed By	y:	Į ,F	Received	By:	ㅓ
		A		-6		_	}			1/2	\subseteq	K	<u> </u>	R	ئے	<u> </u>		<u> </u>					<u> </u>			_
Signature	Signature	A.X	Sign	ature	7	4	~			Ž	ignat V <i>Ci</i>	ture OSV	6	201	-00	B	e i	Signa	ature				Signature			
Printed Name A (GMY)	Printed N	iame la Bich		ed Na		1	aBî	ch	<u> </u>	4	rinte	o Na		}- -			عب البياد ا	Print	ed Nar	ne		*	Printed Na	me		1
Firm TEI	Firm	.5	Firm	AL	2	,				Æ	ım -	181	21	11	4	15	,	Firm					Firm	· · · · · · · · · · · · · · · · · · ·	<u> </u>	1
Date/Time 1	Date/Tim	e10]08 24 130	Date	/Time	ime/0/08/24 /445				Date/Time Date/Time							Date/Time										

РМ∫	1	H
E MI	. B.	1_/_

Toomy	Cooler Receipt a	nd Preser	vation F	orm			
Client Client	1016/100			Request K24		a F	<u> </u>
Received: 1018124 Opened:	1018124	Ву:	Uni	loaded: / O	8129By:_		
1. Samples were received via? USPS	Fed Ex UP	S Di	HL I	PDX (E6	urier Hand Del	ivered	
2. Samples were received in: (circle)	ler Box	Envelope	O	(her		NA	
3. Were <u>custody seals</u> on coolers?	A Y (N) If	es, how man	y and where	?		-	
If present, were custody seals intact?	Y N If	oresent, were	they signed	and dated?	Y	N	
	Cooler#/COC ID / NA	Out of indicate		PM Notified If out of temp	Tracking Numb	er NA	Filed
9.6 4.6 -1801	140510						
168 5.7	·						
(e.0 44							
9.4 4.5							
18.3 4.5							
4. Was a Temperature Blank present in cooler? N	A (Y) N If	yes, notate the	temperatur	e in the appropri	ate column above:		
If no, take the temperature of a representative	sample bottle contained	within the co	oler, notate	in the column "S	ample Temp":)	
5. Were samples received within the method speci	fied temperature ranges	?			NA (Y	N	
If no, were they received on ice and same day a	s collected? If not, nota	ite the cooler	# above and	notify the PM.	(NA) Y	N	
If applicable, tissue samples were received: Fr	ozen Partially Than	ved Thawe	d				
6. Packing material: Inserts Baggies Bubl	ole Wrap Gel Packs	Wet Ice D	ry Ice Sle	eves			
7. Were custody papers properly filled out (ink, s	igned, etc.)?				NA CY	N	
8. Were samples received in good condition (unb	•				NA SX.	N	
9. Were all sample labels complete (ie, analysis,	•				NA Y	, N	
10. Did all sample labels and tags agree with custo11. Were appropriate bottles/containers and volum		. idied0			NA Y NA Y	, N N	
12. Were the pH-preserved bottles (see SMO GEN			D Indicate	in the table helm		N N	
13. Were VOA vials received without headspace?			i maicale i	in the table betor	NA Y	N	
14. Was C12/Res negative?	matcase in the table be	etow.				N	
15. Were samples received within the method spe-	nified time limit? If not	matata tha ar	ear halanı or	nd notify the DM	NA Y	N	
16. Were 100ml sterile microbiology bottles filled	·		}	N		Overfille	A
16. Were foom sterne microbiology bottles fined	exactly to the 100mi m	iark? (N	4 J	IN	Ondermied	Overifine	u
Sample ID on Bottle	Sample II	on COC			Identified by:	·	
		<u></u>					
	<u>L</u>						
		<u> </u>				,	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sample ID		ead- pace Broke	pH Re	Volun eagent adde		initiais	Time
Notes, Discrepancies, Resolutions:	_ 		1			!	
G:\SMO\2024 Forms	SC	OP: SMO-G	EN		Reviewed:	NP 1/3	/2024

174 of 283

Cooler Receipt and Preservation Form

Temp Blank	Sample Temp	IR Gun	Cooler #/C	OC ID /	NA .	Out Indica	of tem ate with	Х.	PM Notifie If out of t		Tracking Nur	nber NA	File
12.2	3. \$ 5.5	1801											
												7	
San	nple ID on Bottle			Sample	ID on C	:oc		210		id ld	entified by:		
1941													
	Sample ID		ottle Count	Out of Temp	Head-	Broke	рН		Reagent	Volume added	Reagent Lot Number	Initials	Time
								_					
stes, Discrep Sum India	pancies & Resolution Te	utions: 10	blan blan	as a Ne (it is	HOP 3 L	of nd	er	coolers · He	sylv Sylv	n topo	Not	

G:\SMO\2024 Forms

SOP: SMO-GEN

Reviewed: NP 1/3/2024

175 of 283

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- $N \quad \text{ The result is presumptive. The analyte was tentatively identified, but \ a confirmation analysis was not performed.} \\$
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Date Collected: 10/4/24

Date Received: 10/8/24

Service Request: K2410643

Sample Name: TL-WRA-0.5-3 **Lab Code:** K2410643-001

Sample Matrix: Soil

Analysis Method

Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: TL-WRB-0.5-4 Date Collected: 10/4/24

Lab Code: K2410643-002 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: TL-WRA-0.5-1-DS-2 Date Collected: 10/4/24

Lab Code: K2410643-003 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN
6020B MSOLADEY JCHAN

Sample Name: SH-WRB-0.5-2 Date Collected: 10/4/24

Lab Code: K2410643-004 Date Received: 10/8/24 Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Analyst Summary report

Service Request: K2410643

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

 Sample Name:
 SH-WRC-0.5-1
 Date Collected:
 10/4/24

 Lab Code:
 K2410643-005
 Date Received:
 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: CS-SD-1 Date Collected: 10/5/24

Lab Code: K2410643-006 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-2 Date Collected: 10/3/24

Lab Code: K2410643-007 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-3 Date Collected: 10/3/24

Lab Code: K2410643-008 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Printed 10/23/2024 5:16:32 PM Superset Reference:24-0000711615 rev 00

Analyst Summary report

Service Request: K2410643

Analyzed By

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Sample Name: CS-SD-4 Date Collected: 10/3/24

Lab Code: K2410643-009 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-5 Date Collected: 10/4/24

Lab Code: K2410643-010 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-6 Date Collected: 10/4/24

Lab Code:K2410643-011Date Received:10/8/24Sample Matrix:Soil

Extracted/Digested By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-7 Date Collected: 10/4/24

Lab Code: K2410643-012 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Printed 10/23/2024 5:16:33 PM Superset Reference:24-0000711615 rev 00

Analyst Summary report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines/0031.005.001

 Sample Name:
 CS-SD-7-DUP
 Date Collected:
 10/4/24

 Lab Code:
 K2410643-013
 Date Received:
 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-8 Date Collected: 10/5/24

Lab Code: K2410643-014 Date Received: 10/8/24 Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24 14:05

Service Request: K2410643

Sample Matrix:

Project:

Soil

Date Received: 10/08/24 11:45

Sample Name: TL-WRA-0.5-3 Basis: Dry

Lab Code: K2410643-001

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	454	mg/Kg	0.42	0.05	5	10/22/24 13:49	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:25 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: TL-WRB-0.5-4 Basis: Dry

Lab Code: K2410643-002

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	194	mg/Kg	0.42	0.05	5	10/22/24 13:58	10/14/24	

Analytical Report

Terraphase Engineering Inc. **Client:**

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

TL-WRA-0.5-1-DS-2 **Sample Name:** Basis: Dry

Lab Code: K2410643-003

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	550	mg/Kg	4.9	0.6	50	10/22/24 16:11	10/17/24	
Lead	6020B	218	mg/Kg	0.49	0.19	50	10/22/24 16:11	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: TL-WRA-0.5-1-DS-2 Basis: Dry

Lab Code: K2410643-003

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	14.4	mg/Kg	1.9	0.2	20	10/17/24 11:50	10/16/24	
Lead	6020B	83.3	mg/Kg	0.19	0.08	20	10/17/24 11:50	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

TL-WRA-0.5-1-DS-2 **Sample Name:** Basis: Dry

Lab Code: K2410643-003

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	267	mg/Kg	0.44	0.05	5	10/22/24 14:00	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410643 **Date Collected:** 10/04/24 10:05

Sample Matrix: Soil

opper Grame Creek Willies, 0031.003.00

Date Received: 10/08/24 11:45

Sample Name:

SH-WRB-0.5-2

Lab Code:

Project:

K2410643-004

Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	80.8	mg/Kg	0.39	0.05	5	10/22/24 14:02	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix:

Soil

SH-WRC-0.5-1

Sample Name: Lab Code:

Project:

K2410643-005

Service Request: K2410643

Date Collected: 10/04/24 10:15

Date Received: 10/08/24 11:45

Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	14.4	mg/Kg	0.44	0.05	5	10/22/24 14:08	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/05/24 10:06 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-1 Basis: Dry

Lab Code: K2410643-006

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.26	mg/Kg	0.13	0.05	5	10/22/24 14:10	10/14/24	
Arsenic	6020B	5.8	mg/Kg	1.3	0.2	5	10/22/24 14:10	10/14/24	
Cadmium	6020B	0.234	mg/Kg	0.053	0.019	5	10/22/24 14:10	10/14/24	
Chromium	6020B	7.81	mg/Kg	0.53	0.16	5	10/22/24 14:10	10/14/24	
Lead	6020B	4.12	mg/Kg	0.13	0.05	5	10/22/24 14:10	10/14/24	
Mercury	7471B	0.031 J	mg/Kg	0.053	0.005	1	10/15/24 12:21	10/14/24	
Silver	6020B	0.282	mg/Kg	0.053	0.011	5	10/22/24 14:10	10/14/24	
Zinc	6020B	45.0	mg/Kg	1.3	0.5	5	10/22/24 14:10	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/03/24 15:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-2 Basis: Dry

Lab Code: K2410643-007

Project:

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.038 J	mg/Kg	0.054	0.022	5	10/22/24 14:12	10/14/24	
Arsenic	6020B	4.52	mg/Kg	0.54	0.07	5	10/22/24 14:12	10/14/24	
Cadmium	6020B	0.038	mg/Kg	0.022	0.008	5	10/22/24 14:12	10/14/24	
Chromium	6020B	2.49	mg/Kg	0.22	0.07	5	10/22/24 14:12	10/14/24	
Lead	6020B	0.927	mg/Kg	0.054	0.022	5	10/22/24 14:12	10/14/24	
Mercury	7471B	ND U	mg/Kg	0.024	0.002	1	10/15/24 12:22	10/14/24	
Silver	6020B	0.043	mg/Kg	0.022	0.004	5	10/22/24 14:12	10/14/24	
Zinc	6020B	16.9	mg/Kg	0.54	0.22	5	10/22/24 14:12	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/03/24 09:00 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-3 Basis: Dry

Lab Code: K2410643-008

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.069	mg/Kg	0.063	0.025	5	10/22/24 14:14	10/14/24	
Arsenic	6020B	11.7	mg/Kg	0.63	0.08	5	10/22/24 14:14	10/14/24	
Cadmium	6020B	0.062	mg/Kg	0.025	0.009	5	10/22/24 14:14	10/14/24	
Chromium	6020B	4.90	mg/Kg	0.25	0.08	5	10/22/24 14:14	10/14/24	
Lead	6020B	1.53	mg/Kg	0.063	0.025	5	10/22/24 14:14	10/14/24	
Mercury	7471B	0.923	mg/Kg	0.027	0.003	1	10/15/24 12:24	10/14/24	
Silver	6020B	0.112	mg/Kg	0.025	0.005	5	10/22/24 14:14	10/14/24	
Zinc	6020B	29.7	mg/Kg	0.63	0.25	5	10/22/24 14:14	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/03/24 14:24 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-4 Basis: Dry

Lab Code: K2410643-009

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.892	mg/Kg	0.058	0.023	5	10/22/24 14:16	10/14/24	
Arsenic	6020B	32.7	mg/Kg	0.58	0.07	5	10/22/24 14:16	10/14/24	
Cadmium	6020B	1.09	mg/Kg	0.023	0.008	5	10/22/24 14:16	10/14/24	
Chromium	6020B	9.05	mg/Kg	0.23	0.07	5	10/22/24 14:16	10/14/24	
Lead	6020B	25.6	mg/Kg	0.058	0.023	5	10/22/24 14:16	10/14/24	
Mercury	7471B	0.011 J	mg/Kg	0.029	0.003	1	10/15/24 12:26	10/14/24	
Silver	6020B	0.961	mg/Kg	0.023	0.005	5	10/22/24 14:16	10/14/24	
Zinc	6020B	47.2	mg/Kg	0.58	0.23	5	10/22/24 14:16	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 09:30 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-5 Basis: Dry

Lab Code: K2410643-010

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.146	mg/Kg	0.051	0.020	5	10/22/24 14:18	10/14/24	
Arsenic	6020B	14.1	mg/Kg	0.51	0.06	5	10/22/24 14:18	10/14/24	
Cadmium	6020B	0.169	mg/Kg	0.020	0.007	5	10/22/24 14:18	10/14/24	
Chromium	6020B	5.03	mg/Kg	0.20	0.06	5	10/22/24 14:18	10/14/24	
Lead	6020B	2.79	mg/Kg	0.051	0.020	5	10/22/24 14:18	10/14/24	
Mercury	7471B	0.056	mg/Kg	0.025	0.002	1	10/15/24 12:27	10/14/24	
Silver	6020B	0.582	mg/Kg	0.020	0.004	5	10/22/24 14:18	10/14/24	
Zinc	6020B	32.7	mg/Kg	0.51	0.20	5	10/22/24 14:18	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 15:21 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-6 Basis: Dry

Lab Code: K2410643-011

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.147	mg/Kg	0.045	0.018	5	10/22/24 14:20	10/14/24	
Arsenic	6020B	16.6	mg/Kg	0.45	0.05	5	10/22/24 14:20	10/14/24	
Cadmium	6020B	0.146	mg/Kg	0.018	0.006	5	10/22/24 14:20	10/14/24	
Chromium	6020B	4.76	mg/Kg	0.18	0.05	5	10/22/24 14:20	10/14/24	
Lead	6020B	2.74	mg/Kg	0.045	0.018	5	10/22/24 14:20	10/14/24	
Mercury	7471B	0.033	mg/Kg	0.021	0.002	1	10/15/24 12:29	10/14/24	
Silver	6020B	0.200	mg/Kg	0.018	0.004	5	10/22/24 14:20	10/14/24	
Zinc	6020B	37.1	mg/Kg	0.45	0.18	5	10/22/24 14:20	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 13:35 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-7 Basis: Dry

Lab Code: K2410643-012

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.355	mg/Kg	0.048	0.019	5	10/22/24 14:21	10/14/24	
Arsenic	6020B	24.2	mg/Kg	0.48	0.06	5	10/22/24 14:21	10/14/24	
Cadmium	6020B	0.538	mg/Kg	0.019	0.007	5	10/22/24 14:21	10/14/24	
Chromium	6020B	10.6	mg/Kg	0.19	0.06	5	10/22/24 14:21	10/14/24	
Lead	6020B	12.1	mg/Kg	0.048	0.019	5	10/22/24 14:21	10/14/24	
Mercury	7471B	0.097	mg/Kg	0.023	0.002	1	10/15/24 12:30	10/14/24	
Silver	6020B	1.10	mg/Kg	0.019	0.004	5	10/22/24 14:21	10/14/24	
Zinc	6020B	168	mg/Kg	0.48	0.19	5	10/22/24 14:21	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 13:40 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-7-DUP Basis: Dry

Lab Code: K2410643-013

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.334	mg/Kg	0.054	0.022	5	10/22/24 14:23	10/14/24	
Arsenic	6020B	24.3	mg/Kg	0.54	0.06	5	10/22/24 14:23	10/14/24	
Cadmium	6020B	0.446	mg/Kg	0.022	0.008	5	10/22/24 14:23	10/14/24	
Chromium	6020B	9.10	mg/Kg	0.22	0.06	5	10/22/24 14:23	10/14/24	
Lead	6020B	12.8	mg/Kg	0.054	0.022	5	10/22/24 14:23	10/14/24	
Mercury	7471B	0.099	mg/Kg	0.024	0.002	1	10/15/24 12:35	10/14/24	
Silver	6020B	1.62	mg/Kg	0.022	0.004	5	10/22/24 14:23	10/14/24	
Zinc	6020B	102	mg/Kg	0.54	0.22	5	10/22/24 14:23	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/05/24 10:30 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-8 Basis: Dry

Lab Code: K2410643-014

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.406	mg/Kg	0.058	0.023	5	10/22/24 14:25	10/14/24	
Arsenic	6020B	35.2	mg/Kg	0.58	0.07	5	10/22/24 14:25	10/14/24	
Cadmium	6020B	0.316	mg/Kg	0.023	0.008	5	10/22/24 14:25	10/14/24	
Chromium	6020B	9.13	mg/Kg	0.23	0.07	5	10/22/24 14:25	10/14/24	
Lead	6020B	10.7	mg/Kg	0.058	0.023	5	10/22/24 14:25	10/14/24	
Mercury	7471B	0.096	mg/Kg	0.026	0.003	1	10/15/24 12:37	10/14/24	
Silver	6020B	1.26	mg/Kg	0.023	0.005	5	10/22/24 14:25	10/14/24	
Zinc	6020B	103	mg/Kg	0.58	0.23	5	10/22/24 14:25	10/14/24	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:05 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil **Date Received:** 10/08/24 11:45

TL-WRA-0.5-3 **Sample Name:** Basis: As Received

Lab Code: K2410643-001

Inorganic Parameters

Analyte Name Analysis Method Result MRL Dil. **Date Analyzed** Q Units 95.0 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:25 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil **Date Received:** 10/08/24 11:45

TL-WRB-0.5-4 **Sample Name:** Basis: As Received

Lab Code: K2410643-002

Inorganic Parameters

Analyte Name Analysis Method Result MRL Dil. **Date Analyzed** Q Units 95.5 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Analytical Report

Terraphase Engineering Inc. **Client:**

K2410643-003

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Lab Code:

Date Received: 10/08/24 11:45

TL-WRA-0.5-1-DS-2 **Sample Name:**

Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids Total	160 3 Modified	93.4	Percent	_	1	10/10/24 15:28	<u>.</u>

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/04/24 10:05

Sample Matrix: Soil Date Received: 10/08/24 11:45

Sample Name: SH-WRB-0.5-2 Basis: As Received

Lab Code: K2410643-004

Inorganic Parameters

Analyte NameAnalysis MethodResultUnitsMRLDil.Date AnalyzedQSolids, Total160.3 Modified94.1Percent-110/10/24 15:28

Service Request: K2410643

Analytical Report

Client: Terraphase Engineering Inc.

> **Date Collected:** 10/04/24 10:15 Upper Granite Creek Mines/0031.005.001

Soil **Date Received:** 10/08/24 11:45

Sample Matrix:

Project:

SH-WRC-0.5-1 **Sample Name:** Basis: As Received

Lab Code: K2410643-005

Inorganic Parameters

Analyte Name Analysis Method Result MRL Dil. **Date Analyzed** Q Units 92.3 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Service Request: K2410643

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/05/24 10:06 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-1 Basis: As Received

Lab Code: K2410643-006

Project:

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	34.2	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/03/24 15:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

CS-SD-2 **Sample Name:** Basis: As Received

Lab Code: K2410643-007

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	76.9	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/03/24 09:00 **Date Received:** 10/08/24 11:45

Sample Matrix:

Soil

Basis: As Received

Service Request: K2410643

Sample Name:

Project:

CS-SD-3

Lab Code: K2410643-008

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	69.1	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/03/24 14:24

Sample Matrix: Soil Date Received: 10/08/24 11:45

Sample Name: CS-SD-4 Basis: As Received

Lab Code: K2410643-009

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	64.9	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/04/24 09:30

Sample Matrix: Soil Date Received: 10/08/24 11:45

Sample Name: CS-SD-5 Basis: As Received

Lab Code: K2410643-010

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	71.1	Percent	-	1	10/10/24 15:28	

Service Request: K2410643

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643

Date Collected: 10/04/24 15:21 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 11:45 **Sample Matrix:** Soil

CS-SD-6 **Sample Name:** Basis: As Received

Lab Code: K2410643-011

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	82.1	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410643

Date Collected: 10/04/24 13:35

Sample Matrix:

Soil

Date Received: 10/08/24 11:45

Sample Name:

Project:

CS-SD-7

Lab Code: K2410643-012 Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	80.2	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410643 **Date Collected:** 10/04/24 13:40

Sample Matrix:

Soil

Date Received: 10/08/24 11:45

Basis: As Received

Sample Name:

Project:

CS-SD-7-DUP

Lab Code:

K2410643-013

Inorganic Parameters

Analyte Name Analysis Method Result Units MRL Dil. **Date Analyzed** Q 73.2 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/05/24 10:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

CS-SD-8 **Sample Name:** Basis: As Received

Lab Code: K2410643-014

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	69.0	Percent	=	1	10/10/24 15:28	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416426-03

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7471B	ND U	mg/Kg	0.02	0.002	1	10/15/24 09:02	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416427-03

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	ND U	mg/Kg	0.05	0.020	5	10/22/24 14:55	10/14/24	
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 14:55	10/14/24	
Cadmium	6020B	ND U	mg/Kg	0.020	0.007	5	10/22/24 14:55	10/14/24	
Chromium	6020B	0.06 J	mg/Kg	0.20	0.06	5	10/22/24 14:55	10/14/24	
Lead	6020B	0.036 J	mg/Kg	0.05	0.020	5	10/22/24 14:55	10/14/24	
Silver	6020B	ND U	mg/Kg	0.020	0.004	5	10/22/24 14:55	10/14/24	
Zinc	6020B	0.27 J	mg/Kg	0.5	0.20	5	10/22/24 14:55	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416652-01

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 15:43	10/17/24	
Lead	6020B	0.043 J	mg/Kg	0.05	0.020	5	10/22/24 15:43	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416789-01

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/17/24 10:57	10/16/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/17/24 10:57	10/16/24	

QA/QC Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Service Request: Date Collected:

K2410643

Date Received:

10/04/24 10/08/24

Date Analyzed:

10/22/24

Date Extracted:

10/14/24

Matrix Spike Summary

Total Metals

TL-WRA-0.5-3 Sample Name: Lab Code: K2410643-001

Units: Basis: mg/Kg Dry

Analysis Method: Prep Method:

6020B **EPA 3050B**

Matrix Spike

KQ2416427-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Antimony	1.54	23.7	85.7	26 N	75-125
Arsenic	454	510	85.7	65 #	75-125
Cadmium	12.3	20.7	8.57	97	75-125
Chromium	2.38	38.0	34.3	104	75-125
Lead	183	244	85.7	71 N	75-125
Silver	2.80	11.4	8.57	101	75-125
Zinc	517	610	85.7	108 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/23/2024 5:16:36 PM

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. **Service Request:** K2410643

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/04/24 **Date Received:** 10/08/24

Soil **Sample Matrix:**

Date Analyzed: 10/22/24

Replicate Sample Summary

Total Metals

Duplicate

Sample Name: TL-WRA-0.5-3 Units: mg/Kg Lab Code: K2410643-001

Basis: Dry

Analyte Name	Analysis Method	MRL	MDL	Sample Result	Sample KQ2416427-01 Result	Average	RPD	RPD Limit
Antimony	6020B	0.043	0.017	1.54	1.76	1.65	13	20
Arsenic	6020B	0.43	0.05	454	453	454	<1	20
Cadmium	6020B	0.017	0.006	12.3	12.1	12.2	2	20
Chromium	6020B	0.17	0.05	2.38	2.33	2.36	2	20
Lead	6020B	0.043	0.017	183	177	180	4	20
Silver	6020B	0.017	0.003	2.80	3.57	3.19	24 *	20
Zinc	6020B	0.43	0.17	517	510	514	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/15/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K2410643

Lab Control Sample KQ2416426-04

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsMercury7471B0.5200.50010480-120

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Project:** Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Lab Control Sample

KQ2416427-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020B	99.4	100	99	80-120
Arsenic	6020B	105	100	105	80-120
Cadmium	6020B	10.3	10.0	103	80-120
Chromium	6020B	42.3	40.0	106	80-120
Lead	6020B	108	100	108	80-120
Silver	6020B	10.5	10.0	105	80-120
Zinc	6020B	105	100	105	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals – IVBA Analysis

Units:mg/Kg
Basis:Dry

Service Request: K2410643

Lab Control Sample

KQ2416652-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	108	100	108	80-120
Lead	6020B	111	100	111	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/17/24

Sample Matrix: Soil

Lab Control Sample Summary
IVBA Metals

Units:mg/Kg Basis:Dry

Service Request: K2410643

Lab Control Sample

KQ2416789-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	92.9	100	93	80-120
Lead	6020B	105	100	105	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410643

Project Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24

Sample Matrix: Soil

Lab Code:

Date Received: 10/08/24 **Date Analyzed:** 10/10/24

Replicate Sample Summary

Inorganic Parameters

Sample Name: TL-WRA-0.5-3

Units: Percent

Ba

Basis: As Received

K2410643-001 **Duplicate**

Sample

K2410643-

. 00

Sample

001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSolids, Total160.3 Modified-95.094.694.8<1</td>20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/05/24

Sample Matrix:

Soil

Date Received: 10/08/24

Date Analyzed: 10/10/24

Replicate Sample Summary

Inorganic Parameters

Sample Name:

CS-SD-8

Units: Percent

Lab Code:

K2410643-014

Basis: As Received

Duplicate

Sample

K2410643-

Sample

014DUP

Analyte Name Solids, Total

Analysis Method 160.3 Modified

MRL

Result 69.0

Result 69.5

Average 69.3

RPD

RPD Limit

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/23/2024 5:16:39 PM

Superset Reference:24-0000711615 rev 00

Don Malkemus Terraphase Engineering Inc. 610 SW Broadway, Suite 405 Portland, OR 97205

Laboratory Results for: Upper Granite Creek Mines

Dear Don.

Enclosed are the results of the sample(s) submitted to our laboratory October 08, 2024 For your reference, these analyses have been assigned our service request number **K2410651**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client:Terraphase Engineering Inc.Service Request: K2410651Project:Upper Granite Creek MinesDate Received: 10/08/2024

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twelve water samples were received for analysis at ALS Environmental on 10/08/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

Approved by Moe D. Dark

Date 10/22/2024

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: CS-SW-1		Lab	ID: K2410	651-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.036	J	0.020	0.050	ug/L	6020B
Arsenic	0.36	J	0.09	0.50	ug/L	6020B
Calcium	5590		6	20	ug/L	6020B
Chromium	0.11	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	18.1		0.023	0.09	mg/L	SM 2340 B
Lead	0.013	J	0.006	0.020	ug/L	6020B
Magnesium	996		2	10	ug/L	6020B
CLIENT ID: CS-SW-2		Lab	ID: K2410	651-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.025	J	0.020	0.050	ug/L	6020B
Arsenic	0.67		0.09	0.50	ug/L	6020B
Calcium	6070		6	20	ug/L	6020B
Chromium	0.11	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	19.7		0.023	0.09	mg/L	SM 2340 B
Lead	0.012	J	0.006	0.020	ug/L	6020B
Magnesium	1110		2	10	ug/L	6020B
LIENT ID: CS-SW-2-Dup		Lab	ID: K2410	651-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.031	J	0.020	0.050	ug/L	6020B
Arsenic	0.61		0.09	0.50	ug/L	6020B
Calcium	5920		6	20	ug/L	6020B
Chromium	0.11	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	19.3		0.023	0.09	mg/L	SM 2340 B
Lead	0.007	J	0.006	0.020	ug/L	6020B
Magnesium	1090		2	10	ug/L	6020B
LIENT ID: CS-SW-3		Lab	ID: K2410	651-007		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.038	J	0.020	0.050	ug/L	6020B
Arsenic	0.87		0.09	0.50	ug/L	6020B
Calcium	6490		6	20	ug/L	6020B
Chromium	0.12	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	21.0		0.023	0.09	mg/L	SM 2340 B
Lead	0.012	J	0.006	0.020	ug/L	6020B
Magnesium	1170		2	10	ug/L	6020B
LIENT ID: CS-SW-4		Lab	ID: K2410	651-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
······································						

0.09

0.50

ug/L

6020B

0.92

Arsenic

SAMPLE DETECTION SUMMARY

CLIENT ID: CS-SW-4		Lak	ID: K2410	651-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
Calcium	8410		6	20	ug/L	6020B
Chromium	0.14	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	27.5		0.023	0.09	mg/L	SM 2340 B
Magnesium	1590		2	10	ug/L	6020B
LIENT ID: CS-SW-5		Lak	ID: K2410			
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.098		0.020	0.050	ug/L	6020B
Arsenic	1.78		0.09	0.50	ug/L	6020B
Cadmium	0.010	J	0.008	0.020	ug/L	6020B
Calcium	9550		6	20	ug/L	6020B
Chromium	0.11	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	31.8		0.023	0.09	mg/L	SM 2340 B
Lead	0.018	J	0.006	0.020	ug/L	6020B
Magnesium	1930		2	10	ug/L	6020B
Zinc	1.8	J	0.5	2.0	ug/L	6020B
LIENT ID: CS-SW-6		Lak	ID: K2410	651-010		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.076		0.020	0.050	ug/L	6020B
Arsenic	2.04		0.09	0.50	ug/L	6020B
Calcium	9710		6	20	ug/L	6020B
Chromium	0.11	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	32.3		0.023	0.09	mg/L	SM 2340 B
Lead	0.013	J	0.006	0.020	ug/L	6020B
Magnesium	1960		2	10	ug/L	6020B
Zinc	0.7	J	0.5	2.0	ug/L	6020B
LIENT ID: CS-SW-7		Lat	ID: K2410	651-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.104		0.020	0.050	ug/L	6020B
Arsenic	1.99		0.09	0.50	ug/L	6020B
Cadmium	0.019	J	0.008	0.020	ug/L	6020B
Calcium	10900		6	20	ug/L	6020B
Chromium	0.09	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	36.3		0.023	0.09	mg/L	SM 2340 B
Lead	0.022		0.006	0.020	ug/L	6020B
Magnesium	2200		2	10	ug/L	6020B
Magneolam						

0.5

2.0

ug/L

6020B

8.0

Zinc

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

	Lab ID: K2410651-012											
Results	Flag	MDL	MRL	Units	Method							
0.108		0.020	0.050	ug/L	6020B							
2.21		0.09	0.50	ug/L	6020B							
0.020	J	0.008	0.020	ug/L	6020B							
10900		6	20	ug/L	6020B							
0.11	J	0.03	0.20	ug/L	6020B							
36.7		0.023	0.09	mg/L	SM 2340 B							
0.084		0.006	0.020	ug/L	6020B							
2310		2	10	ug/L	6020B							
0.8	J	0.5	2.0	ug/L	6020B							
	Lab ID: K2410651-001											
Results	Flag	MDL	MRL	Units	Method							
0.64		0.09	0.50	ug/L	6020B							
	Lab	ID: K2410	651-002									
Results	Flag	MDL	MRL	Units	Method							
3.12		0.09	0.50	ug/L	6020B							
	Lab	ID: K2410	651-003									
Results	Flag	MDL	MRL	Units	Method							
0.11	J	0.09	0.50	ug/L	6020B							
	0.108 2.21 0.020 10900 0.11 36.7 0.084 2310 0.8 Results 0.64 Results 3.12	Results Flag	Results Flag MDL 0.108 0.020 2.21 0.09 0.020 J 0.008 10900 6 0.11 J 0.03 36.7 0.023 0.084 0.006 2310 2 0.8 J 0.5 Lab ID: K2410	Results Flag MDL MRL 0.108 0.020 0.050 2.21 0.09 0.50 0.020 J 0.008 0.020 10900 6 20 0.11 J 0.03 0.20 36.7 0.023 0.09 0.084 0.006 0.020 2310 2 10 0.8 J 0.5 2.0 Lab ID: K2410651-001 Results Flag MDL MRL 3.12 0.09 0.50 Lab ID: K2410651-003 Results Flag MDL MRL 3.12 0.09 0.50	Results Flag MDL MRL Units							

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Terraphase Engineering Inc. Service Request:K2410651

Project: Upper Granite Creek Mines/0031.005.001

SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
EB-2024 1003	10/5/2024	0830
EB-2024 1004	10/4/2024	0800
EB-2024 1005	10/5/2024	0830
CS-SW-1	10/5/2024	1004
CS-SW-2	10/3/2024	1700
CS-SW-2-Dup	10/3/2024	1701
CS-SW-3	10/3/2024	1600
CS-SW-4	10/3/2024	1419
CS-SW-5	10/4/2024	0925
CS-SW-6	10/4/2024	1523
CS-SW-7	10/4/2024	1334
CS-SW-8	10/5/2024	1035
	EB-2024 1003 EB-2024 1004 EB-2024 1005 CS-SW-1 CS-SW-2 CS-SW-2-Dup CS-SW-3 CS-SW-4 CS-SW-5 CS-SW-6 CS-SW-7	EB-2024 1003 10/5/2024 EB-2024 1004 10/4/2024 EB-2024 1005 10/5/2024 CS-SW-1 10/5/2024 CS-SW-2 10/3/2024 CS-SW-2-Dup 10/3/2024 CS-SW-3 10/3/2024 CS-SW-4 10/3/2024 CS-SW-5 10/4/2024 CS-SW-6 10/4/2024 CS-SW-7 10/4/2024

ALS materials antak

140510

CHAIN OF CUSTODY

0510

(001, 002	2,003	***************************************	

SR#_/(24/06)
COC Set 2 of 8
COC#

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

Page 1 of 1

oject Name Upper Ganik Crack Mins Project Number: 0131. 015-801							28D 180D			C C C C C C C C C C C C C C C C C C C							1						•	r ugc	1 01 1			
oject Manager Oon Ma (6 MJ)					1	6	70		<u></u>		ä	n n								- [
	In.			· · · · · · · · · · · · · · · · · · ·	ERS			Total)				Calc								1								
dress, City, State 610 Sh Brigaling	5-16 405)			CONTAINERS			ed To	ซ				İ							1								
one # (503) 9us -0384	email o	dn.malk	emse terrapo	U. COM				(Siev	Extra	<u>ب</u>	ąŋ.	lardı								1								
npler Signature		rinted Nam			유	Hg H	윤	VBA	WBA	Meta	GrindSub	1/80																
M	Don	Malk			NUMBER	7470A1Hg	7471B / Hg	50208 / IVBA (Sieved	60208 / IVBA Extract	5020B / Metals	Grind / G	SM 2340 B / Hardness	<u> </u>			<u>v</u>		Re	marks									
CLIENT SAMPLE ID	LABID		MPLING Fime State	Matrix					·																			
EB-2029 1003		10/5	0830	H20	1					X																		
EB-20241004		1014	0800	H20	1					×															•			
EB-2024 1005		tal5	0830	H20	1					X																		
UMM-628-05-4		10(5	1335	50.11	7.													1- pJ.										
1MA-WRB-0.5-2		10 2	134	50.1	2					X										- 11								
-MA-620-0-5-2		1013	1045	Soil	2													+ 69	1 HOL	0								
1MM - 4RB-0.5-2-05		10/2	1325	Soil	٦					X								+ 690	<u> </u>									
MM - WRB - 0.5-1		10/3	1035	Sall	2					×								+ 1000	4106									
MM - WRB - 8.5 - 3		1013	1055	Sail	2													1 649	Hoi	O.								
LAM- WEB -0.5-1-04?		10/3		Seil	2					<u> </u>]			Ì											
leport Requirements		ice Inf	ormation													Ω	ircle	which met	als are to b	e analy	zed							
Routine Report: Method Blank, Surrogate, as required	P.O.#_ Bill To:	ape to	inhise con							-	_														TI Sn		-	
II. Report Dup., MS, MSD				_	····							Sb	Ва	Be											Sr TI S		n Hg	
as required III. CLP Like Summary (no raw data)	24 5 [hr. Day	equiremer 48 hr.	nts	pecia	i instr	uctio	ins/C	Jomr	neni	s;				rinc	dicat	e St	ate Hyd	rocarboi	n Proc	edure: /	AK CA	Wi	Northw	est Othe	€ [_(Circle	One)
IV. Data Validation Report	Sta	andard																										
V. EDD		Requested Re	eport Date																									
Relinquished By:	F	Receive	d By:		Re	linqı	ish.	ed I	Зу:		T		75	Rece	ive	el By	<i>ī</i> :			Relir	quishe	d By:		1	,Re	ceived	Ву:	
ature	Signature			Sign	ature						Si	gnat	ure) M	R	ed	Cer	Bly	Signatu	re				Sign	ature			
on Malkemo	Printed Na	me La	Bih		ed Na		<i></i>	cit	3; J	c		415	}	me				3	Printed	Name)			Prin	ted Name	9		
TEI	Firm ALS.					5,						Film 2 1018/24 1445						5	Firm					Firm				
Time 10/9 1306	Date/Time	10/08/	24 1306	Date	/Time	10/0	8/2	2/	19	15	D	ate/T	ime						Date/Ti	me				Date	e/Time			

140510

CHAIN OF CUSTODY

001, 002, 003	***************************************

	1/2/////
SR#_	1641067
COC Set_	1 of 4
COC#	• •

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

(MLS)		www.alsglobal.com														Р	'age 1	i of 1										
roject Name V Netz Gmik Creek Min roject Manager Dm MIKM	Project N	iumber:003	1.00 5.001			6	78 78 78		180D		Coco	282																
roject Manager On MJKmi	ა] "	 	\ 	<u> </u>				<u></u>				_												
ompany Terraphex Engineering	Inc				CONTAINERS			tal)				Calc																
dress, City, State GLO SW Group	un svite 41	2			N AT N			(Sieved Total)	ប																			
none # (503/ 943-0384	email d	nimallemi	·> GALVAINT	·{m				(Siev	Extra	<u>+</u>	g	ardı																
ampler Signature		1 P	무	₽	ΑBΑ	₩.	Veta	rindS	8/1																			
M		NUMBER (7470A / Hg	7471B/Hg	80208 / IVBA	BO20B / IVBA Extract	50208 / Metals T	Grind / GrindSub	SM 2340 B / Hardness	-		3	4	LO.	Re	emark	S											
CLIENT SAMPLE ID	LABID	SAM Date T	IPLING ime State																									
C5-5W-1			103E 1004	HZO	1	χ				Χ̈́		X																
(5-5V-2		10/3	\ 700 700	H20	١	X				X		፠																
C5-54-Z-1019		1013	1701	H20	1	X				X		λ]								
C5-5W-3		1013	1600	420	1	7				*		λ																
C5-56-4		10 3	1419	H70	1	X				4]	X																
C5-5W-5		10/4	0925	H20	1	k				4		አ																
C5-5W-6		10/4	1523	H20	1	X				x		ス																
C5-5W-7		1014	1334	HLO	1	x				+		x																
C5-5W-8		1015	1035	HŁO	1	<u>}</u>				X		×																
]]	<u> </u>																							
Report Requirements		oice Info	ormation													9	ircle:	which met	ais are to	be anal	/zed							
I. Routine Report: Method Blank, Surrogate, as required	P.O.#_ Bill To:	ap@tein	phole. com							_	-					-					/in Mo N	_	-					
						Di	ssolv	ed M	etals:	Af	As	Sb	Ba	Be I	B C	a Co	d Co	Cr C	u Fe P	b Mg	Mn Mo	Ni K	Ag N	a Se	Sr TI Sr	V Zn	Hg	
as required	Turnar	ound Re	equireme	nts S	pecia	ii insti	ructio	ons/C	Comr	ment	s:				*Inc	dica	e St	ate Hyd	rocarbo	n Pro	cedure: /	AK CA	WI I	Northwe	est Othe	r <u>(</u> (Circle C)ne)
_ III. CLP Like Summary (no raw data)	2	4 hr.	48 hr.	""																								
IV. Data Validation Report		Day tandard																										
_V. EDD																												
Relinquished By:		Requested Rep Received			Re	ling	uish	ed E	3v:		Т		F	₹ece	eive	d B	<i>-</i>		r ——	Reli	nquishe	d Bv:		Т	Red	eived	Rv.	
/ _ /	•		. .					A	- , .		1,	Λ	•	۔۔۔۔								· y ·			,110	,civca	y.	
nature	Signature Sig					Ź	7	2			$ \Lambda $	gnat Li	V (0)	. 0)e_	le	S5	en	Signat					Sign	ature			
					ed Ni	ame	Lat	د د ل	<i></i>		P	inted TV	d Na	me					Printed	Nam	e			Print	ed Name			***************************************
TEI Firm ALS Firm						_					Fi	m /	812	24	JL.	14	5		Firm					Firm	***************************************			
e/Time	Date/Time	10/08/	14 /306	ے Date	ite/Time 12/08/24 1445							ate/1	ime						Date/T	ime				Date	/Time			
10/8 1306			. ,			,																						

	Sample ID		Bottle Count Bottle Type	Head- space	ace Broke pi		Reagent	Volume leagent added		Lot er	nitiais	Time
Sa	mple ID on Bott	ile .	Sample	e ID on	COC	-			Identified	by:		
Were 100m	l sterile microbiolo	gy bottles fille	d exactly to the 100m	nl mark?	(N	A	Y N		Underfi	lled O	verfille	i
	***	the method sp	ecified time limit? If	not, nota	te the er	xor belo	ow and notify	the PM	(NA)	Y	N	
	es negative?								NA	Y	N	
-	-		? Indicate in the tabl		hi	A151651			(NA)	Y	N	
			mes received for the t N SOP) received at th			19 Indi	rate in the tah	le helow	NA NA	Y	N N	
`	ole labels and tags		- • "		nns Jn				NA NA	Y	N	
Were all sar	nple labels comple	te (ie, analysis	, preservation, etc.)?						NA	5	N	
	es received in good		-						NA	₹.	N	
-	iterial: <i>Inserts</i> ly papers properly		-	is we	<u>IÇE</u> YL	ry ice	Sleeves		NA	(v)	N	
-	-	_	bble Wrap Gel Pack		-		C/					
	sue samples were	-	rozen Partially Ti		Thaw		, min nonly u	O # 171.)	•	
•		•	as collected? If not, r	•	conier	# ahove	and notify th	e PM	MA	\ Y	N	
	_	-	ified temperature ran		iii die et	MICI, IN	Julic III IIIC CO	ignin sa	NA	$\left(\mathbf{v}\right)$	N	
-	erature Blank prese		NA (Y N sample bottle contain			_	rature in the a			ve:		
6.3	4.5	4		16		_ 4						
<u>.Ц</u>	4.5											
0.0	4.4						-					
·S	5.7						1				*	-
4_	7.0	1601	140510									
np Blank	Sample Temp	IR Gun	Cooler #/COC ID / N	A	indicate	with X	" If out of	temp	Trackin	g Number	NA_	Filed
	<u> </u>		*			ftemp	Notifi	23.00	*			
						् <i>र</i> ार ४.२.५५,७३,						T
f present, w	ere custody seals in	ntact?	Y N	If preser	it, were	they sig	aned and dated	1?		Y	N	
Vere <u>custod</u>	y seals on coolers?	?	NA Y (N)	If yes, h	ow man	y and w	here?		·			
Samples we	ere received in: (cir	cle) 🕜	oler Box	E	nvelope		Other				NA	
Samples we	re received via?	USPS	Fed Ex	UPS	D.	HL	PDX	Cour	rier) H	and Delive	ered	
eived: <u>10</u>	18124	Opened: _	1018124	By: _	Δ	K_	_Unioaded: _	1015	1129	By: <u></u>	4	
nt	iera,	nes	<u>e</u>			Sen	rice Request	K24 <u>/ (</u>	0651		1	>
	<u> </u>	~1	Cooler Receipt	t and F	orese	rvatio	n Form	_	~ >			7
											PM//	Ol Emm

Sample ID on Bottle	Sample	e ID on	COC			Identified by:									
Sample ID	Bottle Count Bottle Type	Head- space	Broke	На	Reagen	Volume added	Reagent Lot Number	initials	Time						
		-													
	<u> </u>	<u> </u>	<u> </u>	L	 				L						
Notes, Discrepancies, Resolutions:					···										
G:\SMO\2024 Forms		SOP: S	MO-G	EN			Reviewe	d: NP 1/3	/2024						

1.

Cooler Receipt and Preservation Form

ent	Terra	kna	<u> </u>				_Servi	ce F	Request K2	4	<u> </u>		
Temp Blank	Sample Temp	IR Gun	Cooler #/C	OC ID / I	NA	Out indica	of temp	x•	PM Notifie if out of t	d emp	Tracking Nur	nber NA	Filed
H8. 7.8	3.8	1801											
12.2	5.5	V		·							· · · · · · · · · · · · · · · · · · ·	NAME AND ADDRESS OF THE PARTY.	
												(
San	npie ID on Bottle			Sample	ID on C	OC				<u> </u>	dentified by:		
			ottle Count		Head-					Volume	Reagent Lot		
10.	Sample ID	B	ottle Type	Temp	space	Broke	рН		Reagent	added	Number	Initials	Time
otes, Discrep	ancies & Resol	utions: _\(د س	<u> </u> 25 a	<u></u>	TOP	0F	(Coolers	 >o	n topo	£	
Saw	ples. Te	mp	blan	RI	<u> </u>	<u> </u>	nd	er	- He	SUN	uples, 1	\ot_	
india	certire,	& S	gun	<u>()</u>	ten	MP.							
													
		···											
-						·····				······			
		· · · · · · · · · · · · · · · · · · ·				·	······································			·			
								.,,,,,,,					
G:\SMO'	\2024 Forms				SOP.	SMO-	GEN				Reviewe	d- ND 1/3	1/2024

243 of 283

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Service Request: K2410651

Sample Name: EB-2024 1003 Lab Code: K2410651-001

Sample Matrix: Water **Date Collected:** 10/5/24 Date Received: 10/8/24

Analyzed By Extracted/Digested By Analysis Method 6020B **MCHATTICK ABOYER**

Sample Name: EB-2024 1004 **Date Collected:** 10/4/24

Lab Code: K2410651-002 Date Received: 10/8/24

Sample Matrix: Water

Analyzed By Extracted/Digested By Analysis Method

6020B **MCHATTICK ABOYER**

Sample Name: EB-2024 1005 **Date Collected:** 10/5/24

Lab Code: K2410651-003 Date Received: 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B **MCHATTICK ABOYER**

Sample Name: CS-SW-1 **Date Collected:** 10/5/24

Lab Code: K2410651-004 Date Received: 10/8/24 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

6020B **MCHATTICK ABOYER** 7470A **KLINN KLINN**

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Service Request: K2410651

Sample Name: CS-SW-2

Lab Code: K2410651-005

Sample Matrix: Water **Date Collected:** 10/3/24

Date Received: 10/8/24

Analysis Method

6020B 7470A

Analyzed By Extracted/Digested By MCHATTICK ABOYER KLINN KLINN

Sample Name: CS-SW-2-Dup Lab Code: K2410651-006

Sample Matrix: Water **Date Collected:** 10/3/24 **Date Received:** 10/8/24

Analysis Method

6020B 7470A **Extracted/Digested By MCHATTICK**

ABOYER KLINN

Sample Name: CS-SW-3

Lab Code: K2410651-007 Water

KLINN

Sample Matrix:

Date Collected: 10/3/24 Date Received: 10/8/24

Analysis Method

6020B

7470A

Extracted/Digested By MCHATTICK KLINN

Analyzed By ABOYER KLINN

Analyzed By

CS-SW-4 **Sample Name:**

K2410651-008

Sample Matrix: Water **Date Collected:** 10/3/24 Date Received: 10/8/24

Analysis Method

6020B 7470A

Lab Code:

Extracted/Digested By

MCHATTICK **ABOYER KLINN KLINN**

Analyzed By

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Date Collected: 10/4/24

Date Received: 10/8/24

Service Request: K2410651

Sample Name: CS-SW-5

Lab Code: K2410651-009

Sample Matrix: Water

Analysis Method

Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Name: CS-SW-6 Date Collected: 10/4/24

Lab Code: K2410651-010 **Date Received:** 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Name: CS-SW-7 Date Collected: 10/4/24

Lab Code: K2410651-011 **Date Received:** 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Name: CS-SW-8 Date Collected: 10/5/24

Lab Code: K2410651-012 **Date Received:** 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410651

Date Collected: 10/05/24 08:30

Sample Matrix: Water

Date Received: 10/08/24 14:45

Sample Name:

EB-2024 1003

Basis: NA

Lab Code:

Project:

K2410651-001

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	0.64	ug/L	0.50	0.09	1	10/21/24 16:32	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410651 **Date Collected:** 10/04/24 08:00

Date Received: 10/08/24 14:45 Water

Sample Name: EB-2024 1004 Basis: NA

Lab Code: K2410651-002

Project:

Sample Matrix:

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	3.12	11g/L	0.50	0.09	1	10/21/24 16:34	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Sample Matrix:

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/05/24 08:30

Service Request: K2410651

Water **Date Received:** 10/08/24 14:45

Sample Name: EB-2024 1005 Basis: NA

Lab Code: K2410651-003

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	0.11 J	ug/L	0.50	0.09	1	10/21/24 16:36	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/05/24 10:04

Project: Upper Granite Creek Mines/0031.005.001 **Sample Matrix:** Water

Date Received: 10/08/24 14:45

CS-SW-1 **Sample Name:** Basis: NA

Lab Code: K2410651-004

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	18.1	mg/L	0.09	0.023	1	10/21/24 16:39	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/05/24 10:04 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-1 Basis: NA

Lab Code: K2410651-004

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.036 J	ug/L	0.050	0.020	1	10/21/24 16:39	10/18/24	
Arsenic	6020B	0.36 J	ug/L	0.50	0.09	1	10/21/24 16:39	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:39	10/18/24	
Calcium	6020B	5590	ug/L	20	6	1	10/21/24 16:39	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 16:39	10/18/24	
Lead	6020B	0.013 J	ug/L	0.020	0.006	1	10/21/24 16:39	10/18/24	
Magnesium	6020B	996	ug/L	10	2	1	10/21/24 16:39	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:17	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:39	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:39	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc. **Service Request:** K2410651

Project: Upper Granite Creek Mines/0031.005.001

K2410651-005

Date Collected: 10/03/24 17:00

Sample Matrix: Water **Date Received:** 10/08/24 14:45

Basis: NA

CS-SW-2 **Sample Name:** Lab Code:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	19.7	mg/L	0.09	0.023	1	10/21/24 16:53	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/03/24 17:00

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-2 Basis: NA

Lab Code: K2410651-005

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.025 J	ug/L	0.050	0.020	1	10/21/24 16:53	10/18/24	
Arsenic	6020B	0.67	ug/L	0.50	0.09	1	10/21/24 16:53	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:53	10/18/24	
Calcium	6020B	6070	ug/L	20	6	1	10/21/24 16:53	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 16:53	10/18/24	
Lead	6020B	0.012 J	ug/L	0.020	0.006	1	10/21/24 16:53	10/18/24	
Magnesium	6020B	1110	ug/L	10	2	1	10/21/24 16:53	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:22	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:53	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:53	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

Water

per Granite Creek Mines/0031.005.001 Service Request: K2410651

Date Collected: 10/03/24 17:01

Project: Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45

Sample Matrix:

Sample Name:

CS-SW-2-Dup Basis: NA

Lab Code: K2410651-006

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	19.3	mg/L	0.09	0.023	1	10/21/24 16:55	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/03/24 17:01 **Project:**

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-2-Dup Basis: NA

Lab Code: K2410651-006

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.031 J	ug/L	0.050	0.020	1	10/21/24 16:55	10/18/24	
Arsenic	6020B	0.61	ug/L	0.50	0.09	1	10/21/24 16:55	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:55	10/18/24	
Calcium	6020B	5920	ug/L	20	6	1	10/21/24 16:55	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 16:55	10/18/24	
Lead	6020B	0.007 J	ug/L	0.020	0.006	1	10/21/24 16:55	10/18/24	
Magnesium	6020B	1090	ug/L	10	2	1	10/21/24 16:55	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:23	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:55	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:55	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/03/24 16:00 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Date Received: 10/08/24 14:45 Water

CS-SW-3 **Sample Name:** Basis: NA

Lab Code: K2410651-007

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	21.0	mg/L	0.09	0.023	1	10/21/24 16:57	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/03/24 16:00 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-3 Basis: NA

Lab Code: K2410651-007

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.038 J	ug/L	0.050	0.020	1	10/21/24 16:57	10/18/24	
Arsenic	6020B	0.87	ug/L	0.50	0.09	1	10/21/24 16:57	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:57	10/18/24	
Calcium	6020B	6490	ug/L	20	6	1	10/21/24 16:57	10/18/24	
Chromium	6020B	0.12 J	ug/L	0.20	0.03	1	10/21/24 16:57	10/18/24	
Lead	6020B	0.012 J	ug/L	0.020	0.006	1	10/21/24 16:57	10/18/24	
Magnesium	6020B	1170	ug/L	10	2	1	10/21/24 16:57	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:25	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:57	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:57	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/03/24 14:19 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Date Received: 10/08/24 14:45 Water

CS-SW-4 **Sample Name:** Basis: NA

Lab Code: K2410651-008

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	27.5	mg/L	0.09	0.023	1	10/21/24 16:59	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/03/24 14:19

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-4 Basis: NA

Lab Code: K2410651-008

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.036 J	ug/L	0.050	0.020	1	10/21/24 16:59	10/18/24	
Arsenic	6020B	0.92	ug/L	0.50	0.09	1	10/21/24 16:59	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:59	10/18/24	
Calcium	6020B	8410	ug/L	20	6	1	10/21/24 16:59	10/18/24	
Chromium	6020B	0.14 J	ug/L	0.20	0.03	1	10/21/24 16:59	10/18/24	
Lead	6020B	ND U	ug/L	0.020	0.006	1	10/21/24 16:59	10/18/24	
Magnesium	6020B	1590	ug/L	10	2	1	10/21/24 16:59	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:27	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:59	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:59	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

aphase Engineering Inc. Service Request: K2410651

 Project:
 Upper Granite Creek Mines/0031.005.001
 Date Collected:
 10/04/24 09:25

 Sample Matrix:
 Water
 Date Received:
 10/08/24 14:45

Sample Name: CS-SW-5 Basis: NA

Lab Code: K2410651-009

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	31.8	mg/L	0.09	0.023	1	10/21/24 17:01	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/04/24 09:25

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-5 Basis: NA

Lab Code: K2410651-009

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.098	ug/L	0.050	0.020	1	10/21/24 17:01	10/18/24	
Arsenic	6020B	1.78	ug/L	0.50	0.09	1	10/21/24 17:01	10/18/24	
Cadmium	6020B	0.010 J	ug/L	0.020	0.008	1	10/21/24 17:01	10/18/24	
Calcium	6020B	9550	ug/L	20	6	1	10/21/24 17:01	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 17:01	10/18/24	
Lead	6020B	0.018 J	ug/L	0.020	0.006	1	10/21/24 17:01	10/18/24	
Magnesium	6020B	1930	ug/L	10	2	1	10/21/24 17:01	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:28	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:01	10/18/24	
Zinc	6020B	1.8 J	ug/L	2.0	0.5	1	10/21/24 17:01	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/04/24 15:23 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Date Received: 10/08/24 14:45 Water

CS-SW-6 **Sample Name:** Basis: NA

Lab Code: K2410651-010

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	32.3	mg/L	0.09	0.023	1	10/21/24 17:03	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/04/24 15:23 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-6 Basis: NA

Lab Code: K2410651-010

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.076	ug/L	0.050	0.020	1	10/21/24 17:03	10/18/24	
Arsenic	6020B	2.04	ug/L	0.50	0.09	1	10/21/24 17:03	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 17:03	10/18/24	
Calcium	6020B	9710	ug/L	20	6	1	10/21/24 17:03	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 17:03	10/18/24	
Lead	6020B	0.013 J	ug/L	0.020	0.006	1	10/21/24 17:03	10/18/24	
Magnesium	6020B	1960	ug/L	10	2	1	10/21/24 17:03	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:33	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:03	10/18/24	
Zinc	6020B	0.7 J	ug/L	2.0	0.5	1	10/21/24 17:03	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/04/24 13:34 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

CS-SW-7 Basis: NA **Sample Name:**

Lab Code: K2410651-011

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	36.3	mg/L	0.09	0.023	1	10/21/24 17:05	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/04/24 13:34

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-7 Basis: NA

Lab Code: K2410651-011

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.104	ug/L	0.050	0.020	1	10/21/24 17:05	10/18/24	
Arsenic	6020B	1.99	ug/L	0.50	0.09	1	10/21/24 17:05	10/18/24	
Cadmium	6020B	0.019 J	ug/L	0.020	0.008	1	10/21/24 17:05	10/18/24	
Calcium	6020B	10900	ug/L	20	6	1	10/21/24 17:05	10/18/24	
Chromium	6020B	0.09 J	ug/L	0.20	0.03	1	10/21/24 17:05	10/18/24	
Lead	6020B	0.022	ug/L	0.020	0.006	1	10/21/24 17:05	10/18/24	
Magnesium	6020B	2200	ug/L	10	2	1	10/21/24 17:05	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:35	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:05	10/18/24	
Zinc	6020B	0.8 J	ug/L	2.0	0.5	1	10/21/24 17:05	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651

Date Collected: 10/05/24 10:35 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 14:45 **Sample Matrix:** Water

CS-SW-8 **Sample Name:** Basis: NA

Lab Code: K2410651-012

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	36.7	mg/L	0.09	0.023	1	10/21/24 17:07	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/05/24 10:35 **Project:**

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-8 Basis: NA

Lab Code: K2410651-012

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.108	ug/L	0.050	0.020	1	10/21/24 17:07	10/18/24	
Arsenic	6020B	2.21	ug/L	0.50	0.09	1	10/21/24 17:07	10/18/24	
Cadmium	6020B	0.020 J	ug/L	0.020	0.008	1	10/21/24 17:07	10/18/24	
Calcium	6020B	10900	ug/L	20	6	1	10/21/24 17:07	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 17:07	10/18/24	
Lead	6020B	0.084	ug/L	0.020	0.006	1	10/21/24 17:07	10/18/24	
Magnesium	6020B	2310	ug/L	10	2	1	10/21/24 17:07	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:36	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:07	10/18/24	
Zinc	6020B	0.8 J	ug/L	2.0	0.5	1	10/21/24 17:07	10/18/24	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410651

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:WaterDate Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ2416479-01

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	ND U	ug/L	0.050	0.020	1	10/21/24 17:13	10/18/24	
Arsenic	6020B	ND U	ug/L	0.50	0.09	1	10/21/24 17:13	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 17:13	10/18/24	
Calcium	6020B	ND U	ug/L	20	6	1	10/21/24 17:13	10/18/24	
Chromium	6020B	ND U	ug/L	0.20	0.03	1	10/21/24 17:13	10/18/24	
Lead	6020B	ND U	ug/L	0.020	0.006	1	10/21/24 17:13	10/18/24	
Magnesium	6020B	ND U	ug/L	10	2	1	10/21/24 17:13	10/18/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:13	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 17:13	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410651

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:WaterDate Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ2416532-01

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7470A	ND U	119/[,	0.20	0.02	1	10/15/24 09:14	10/14/24	

QA/QC Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Water

Service Request:
Date Collected:

K2410651

Date Received:

10/05/24 10/08/24

Date Analyzed:

10/21/24

Date Extracted:

10/18/24

Matrix Spike Summary

Total Metals

Sample Name: CS-SW-1

Units: Basis: ug/L NA

Analysis Method:

6020B

Prep Method:

Lab Code:

Project:

EPA CLP ILM04.0

K2410651-004

Matrix Spike

KQ2416479-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Antimony	0.036 J	9.93	10.0	99	75-125
Arsenic	0.36 J	51.1	50.0	101	75-125
Cadmium	ND U	25.8	25.0	103	75-125
Calcium	5590	15900	10300	100	75-125
Chromium	0.11 J	10.6	10.0	105	75-125
Lead	0.013 J	51.9	50.0	104	75-125
Magnesium	996	11700	10300	104	75-125
Silver	ND U	13.4	12.5	107	75-125
Zinc	ND U	24.9	25.0	100	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/22/2024 4:18:38 PM

QA/QC Report

Client: Terraphase Engineering Inc. **Project:**

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Water

Service Request: Date Collected:

K2410651

Date Received:

10/05/24 10/08/24

Date Analyzed:

10/15/24

Date Extracted:

10/14/24

Matrix Spike Summary

Total Metals

CS-SW-1 Sample Name:

K2410651-004

7470A

Units: Basis:

ug/L NA

Analysis Method: Prep Method:

Lab Code:

Method

Matrix Spike

KQ2416532-04

Analyte Name Sample Result Result Spike Amount % Rec % Rec Limits ND U Mercury 4.91

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/22/2024 4:18:38 PM

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410651

Project Upper Granite Creek Mines/0031.005.001

Date Collected: 10/05/24

Sample Matrix: Water

Sample Name:

Date Received: 10/08/24 **Date Analyzed:** 10/21/24

Replicate Sample Summary
Total Metals

CS-SW-1

Units: ug/L

Lab Code: K2410651-004

Basis: NA

Duplicate Sample

	Analysis			Sample	Sample KQ2416479-03			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Antimony	6020B	0.050	0.020	0.036 J	0.027 J	0.032	29 #	20
Arsenic	6020B	0.50	0.09	0.36 J	0.33 J	0.35	9	20
Cadmium	6020B	0.020	0.008	ND U	ND U	ND	-	20
Calcium	6020B	20	6	5590	5530	5560	1	20
Chromium	6020B	0.20	0.03	0.11 J	0.12 J	0.12	9	20
Lead	6020B	0.020	0.006	0.013 J	0.008 J	0.011	48 #	20
Magnesium	6020B	10	2	996	1020	1010	2	20
Silver	6020B	0.020	0.009	ND U	ND U	ND	-	20
Zinc	6020B	2.0	0.5	ND U	ND U	ND	=	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410651

Project Upper Granite Creek Mines/0031.005.001 Date Collected: 10/05/24

Sample Matrix: Water Date Received: 10/08/24

Date Analyzed: 10/15/24

Replicate Sample Summary

Total Metals

Sample Name: CS-SW-1 Units: ug/L

Lab Code: K2410651-004 **Basis:** NA

Duplicate

Sample **VO2416532 03**

Analysis Sample KQ2416532-03 **Analyte Name** Method **MRL MDL** Result Result Average RPD **RPD Limit** 7470A ND U Mercury 0.20 0.02 ND U ND 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Analyzed:** 10/21/24

Sample Matrix: Water

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2416479-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020B	9.49	10.0	95	80-120
Arsenic	6020B	50.1	50.0	100	80-120
Cadmium	6020B	25.3	25.0	101	80-120
Calcium	6020B	10000	10300	98	80-120
Chromium	6020B	10.2	10.0	102	80-120
Lead	6020B	51.0	50.0	102	80-120
Magnesium	6020B	10600	10300	103	80-120
Silver	6020B	12.9	12.5	103	80-120
Zinc	6020B	25.4	25.0	101	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Analyzed:** 10/15/24

Sample Matrix: Water

> **Lab Control Sample Summary Total Metals**

> > Units:ug/L Basis:NA

Lab Control Sample

KQ2416532-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7470A	4.68	5.00	94	80-120

November 01, 2024

Portland, OR 97205

Terraphase Engineering Inc. 610 SW Broadway, Suite 405

Don Malkemus

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K2410642

Revised Service Request No: K2410642.01

RE: Upper Granite Creek Mines / 0031.005.001

Dear Don,

Enclosed is the revised report of the sample(s) submitted to our laboratory October 08, 2024 For your reference, these analyses have been assigned our service request number **K2410642**.

The bio accessibility values are now included.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

We apologize for any inconvenience this may have created.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Daw

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client:Terraphase Engineering Inc.Service Request: K2410642Project:Upper Granite Creek MinesDate Received: 10/08/2024

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twenty soil samples were received for analysis at ALS Environmental on 10/08/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

Approved by Moe D. Daw

Date 11/01/2024

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS

140510

CHAIN OF CUSTODY

140510

001, 002, 003	***************************************

SR#	
COC Set_H	_of_ {
0004	-

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

Page 1 of 1

											** ** **	· mogre	JUG!.	Om							ľ	agelori
ect Name Upper Genik Creek Mine	Project No	umber: O			28D 180D 389D																	
ect Manager Oon Myllems				,	}	<u> </u>	<u>γ</u>	—	, ~	γ	┦	<u>~</u>	<u> </u>	1	т						- (1)7-	
ipany Telliphose Engineery T					CONTAINERS			Total)				Catc								111	10642	
ress, City, State 60 SW Broadwy	Suite 405				Ī				7					}						I Wir	*	
ne# (503) 143-0384	email da	n imilkon	nuse length	N. CHA				yeis)	Extra	F	9	B / Hardness										
pler Signature		rinted Nam			Ĭ,	무	₽ .	₹ ¥	VBA	Metals	GrindSub	18										•
CM	Dan	Malk			NUMBER	7470A / Hg	7471B / Hg	50208 / IVBA (Sieved	60208 / IVBA Extraci	80208 / 1	Grind / G	SM 2340	<u>.</u>		3	4	.6	Re	marks			
CLIENT CAMPLE ID	LABID		MPLING Time State	Matrix					-					İ								
CLIENT SAMPLE ID	JADIU	10 C		Soil	2	-	X	У	У	λ	-		-	1	-			+ 60	1A+			
MM - TLA - 0.5-3		1012	1530	Sil	12		- ` -	-			<u> </u>	-	├	├			\dashv		HOLD			
MM - TLB -0.5-4	2	10/5	1645	Suil	2	-		-	7	λ	-		-	-	-	-	┪	+ 69				
, MM-TLA -0.5 - 4		10 2	1535	50:1	2				 	 	 	-	 	-					HOLD			
MM-TLC-05-1	2	10(2	(900	50.1	え		- 1	-		X	-		-			_	-	1 ba4				
MM- TLC-05-2	u	16/2	1715	Soil	7	-			·	X				1			_	+ 699	111111111111			
MM = TLB - 0.5 -2		10 2	1635	1:12	2												1		HOLD			
MM - TLA -0.5-5		10(2	1540	Sil	2								l	П		一	┪	+694	Horo			
MM - TLA -05-C	5	102	1545	Spil	2		×	×	×	×						- 1		+ bay				
eport Requirements		ice Inf	ormation	1												Ω	ircle v	which meta	Is are to be anai	y <u>zed</u>	· · · · · · · · · · · · · · · · · · ·	
Routine Report: Method Blank, Surrogate, as	P.O.#	mton.	appercion				Total	Met	ais: /	al (Ā	e 6	Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Tl Sn V Z.							Sa	_		
required	Din 10.	~PC.	Thursday.	-								s Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn						_				
II. Report Dup., MS, MSD as required				_ -	pecia							30	Da	De								
Itil. CLP Like Summary			equiremer									Samy	الو يا	E l'u	M.M	TLB	-0.	.C.I 6	ead Of Co	CEDUTE: AK CA WI I	Northwest Other (Circle One)
(no raw data)	24 5 [hr. Day	48 hr.	'	1	, ., ,				,		- "		- (-3 1 1		Ond: (-11 0.326)	
IV. Data Validation Report	X Ste	andard																				
V. EDD		Requested Re	eport Date																			
Relinquished By:		Receive			Re	linq	uish	ied	Ву:				لر	Rece	eive	d By			Reli	nquished By:	Received	By:
	Signatura			- Cian	atura			1			۱,	1000	·	_					Cianatura			
ature	Signature	1	•	Sign	ature		F 1	9			0	ignat	iui s Li	20n'	i R	2da	B	en	Signature		Signature	
ed Jame Mallemy	Printed Na	in La	Bich		inted Name Tonklin LaBicha							rinte AV	d Na	ame	-				Printed Nam	le	Printed Name	****
TEI	Firm AL	5		Firm ALS							F	irth =		 2.U)	راد	15	,	Firm		Firm	
Time 10/9 1306	Date/Time	10/08	194 1704	p Date	/Time	10/	°{√	27	K	142		ate/∖							Date/Time		Date/Time	
1017 150 0			,			*	t	- 1														

140510

CHAIN OF CUSTODY

140510

01,	002,	003

SR#	
COC Set 5	_of_ _g
000"	-

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

			· · · · · · · · · · · · · · · · · · ·		·						www.	arsgro	Dai.co	жn						Page 1	OT 1
ect Name upper Granite Creek	Minus Project N	iumber:00	31.005.001			1	28D		180D		1 5	7666						•		-	
ect Manager Don Mylkev	hω			,		<u> </u>	ζ.	<u> </u>	, 2	γ		"		T	 -					(استعر د	
pany Ternylox Enjine	rang Inc.	,			NUMBER OF CONTAINERS			Total)				Calc								X24101642	
ess, City, State 610 SW Otenh	ay Suite 4	70,	***************************************		7 §				75]								Í	V2410	
18 (503) 884-(067		in . malki	mu @ Planhar	(.CM	7 8			0208 / IVBA (Sieved	020B / IVBA Extract	Ļ	l g	B / Hardness						: !			
oler Signature	1	Printed Name			ا ق	누 타	무	VBA	VBA	O208 / Metals T	GrindSub	H/B							1	•	
	Don	Maller	MUS		Mar.	7470A / Hg	7471B / Hg	1 80	8	1/80	Grind / G	SM 2340									
				T	₹	747	44	802	902	902	٤	§.		a	m	-37	_ وز	Remarks			
CLIENT SAMPLE ID	LABID		MPLING Time State	Matrix						[ļ					ļ	•	
EM-LRA-05-4-05			1730	Sect	12	+-	╫	<u> </u>	<u> </u>	*	-		_								
EM-WR3-05-1	- 9		1300	Soil	2	-			_	Х		•							-	•	
EW-PBY -0-2-5	9	10/5	1205	Soil	2	╫	\vdash	-×	k	X								+ bag			
EM-WR6-05-1	9	1015	1240	Soil	7	╁				λ							-	~ 7	-		
F-WRA-0.5-1	7	10/5	0430	Soil	Z	1-	\vdash			X											
F-WRO-05-6	10	1015	HIO	Seil	12	╁──	\vdash			x							-		- 		
F-M2D-0.5-4-DS	13	10/5	1105	5,.(12	十	-	×	,	λ							_	+ 693	· ·		
F - DR -0.5-1	13	16/5	1035	Sail	12	╁	╁			J.			\dashv			-					
CS - WRA -0.5-3	14	16/4	1615	Soil	2	 				7			┪		_			er gereket			
3C5-WPA - 0.5-4	13	1014	1584	50.1	12	1				7			\neg			-					
eport Requirements		oice Inf	ormation	Ì	.1	<u></u>						1			1		1				
I. Routine Report: Method	P.O.#																	which metals are to be	•		
Blank, Surrogate, as required	Bill To:	Apo te	autions con	_						-		* "								a Se Sr Ti Sn V Zn Hg	l
II. Report Dup., MS, MSD				-]		D	issolv	ed M	letals	: Al	As	Sb	Ва	Be	в с	a Co	Co	Cr Cu Fe Pb	Mg Mn Mo Ni K Ag	Na Se Sr Ti Sn V Zn Hg	
as required	Tires				Specia	ilnst	ructi	ons/(Com	men	s:				*Inc	dicat	e St	ate Hydrocarbon l	Procedure: AK CA W	Northwest Other(Circle O	ne)
III. CLP Like Summary			equiremer 48 hr.	ILS																	***************************************
(no raw data) IV. Data Validation Report	5 1 X St	4 hr. Day tandard																			
·				ĺ																,	
V. EDD	<u> </u>	Requested Re	·	=																	
Relinquished By:		Receive	d By:		Κe	linq	uist	ied i	Ву:				ገ ነ	₹ece	eive	d By	r:	R	elinquished By:	Received By:	
ature	Signature	- 0		Sign	ature		7/				8	gnat	ure		_			Signature	<u> </u>	Signature	
	_	18				0	1				$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		1 118	M_1	VP	d	Œ	Sen		Oignatuic	
ad Name On Millomi	Printed Na	itele	Q/	空中	ted N	ame	1	<u>~12</u>	1			rinte	ď Nai	me	-			Printed N	ame	Printed Name	
	Firm A	1/0	WICH	Firm	ant	<u> </u>		<u>u D</u>	ich	١ <u>٠</u>	- 7	4.8						Firm		Lim	
TEI	Firm AL	S		1000	<i>'</i> /	145	\hat{S}					ال 1112ء	512	u	14	44	5	12-11468		Firm	
Time	Date/Time	10/8/	24 1306	Date	e/Time	10	081	24	<u></u>	145	D	ate/	ime			<u> </u>		Date/Tim	е	Date/Time	
10/8 1306			7				7	7											, , , , , , , , , , , , , , , , , , ,		
· U · · ·																					

A
(ALS)

140510

CHAIN OF CUSTODY

140510

001,	002,	003	 	

SR#	
COC Set 6	of_ _8
COC# _	

(ALS) (Secure	i Kurai Veresi			13	17 Sout	h 13th.	Ave, K	Celso, '	WA 9			e (360) alsglot			800-6	95-722	2/F/	AX (360) 63	6-1068	_		Page 1 of 1	
Project Name Upple Grant Creek M. Project Manager D. AA. 16.	Project N	lumber: O	031.005.001			Cac	3		180D		8	3880									1063/		
Dan radisent	<u>ა</u>				1 ,,		-			Γ	-	<u>" </u>	—т	\neg	T		\dashv]	U/F	0	
ompany Terinthan Enjoy	reer's Inc				CONTAINERS			Total)				Calc		ı							201	J\	
ddress, City, State Glo Str Bro.					Ę	1 1	1	Per	텇			i i i i			1						TOT		
hone# (50))			centus Okumpha	k. Com	9 00 00			Sleved	Extract	T SI	gng	Hardi		ı	l					1 74			
ampler Signature	1	Printed Na			1 8	탈	/ Hg	Z.	\B\	Mete	Frind) B 0		1]		1						
	Don	Malk	ėmus		NUMBER	'470A/Hg	471B/	020B / IVBA	3020B / IVBA	SOZOB / Metals T	Grind / GrindSub	SM 2340 B / Hardness		ļ	ļ			Rer	narks	7			
			AMPLING	Matrix					-6	Į6.	9	l "	-	~	~	*†	~	1101	IIOIICO				
CLIENT SAMPLE ID	LABID		Time State	ļ	 	1				_					_		_			4			
.GCS-WRA -0.5-4-03	<u>عا۱</u>	10 4	1222	5021	2		\Box	×	ኡ		<u> </u>						_	+ pal					
GCG - WFA - 0.5 - 2		1014		50:1	2			¥	۲.	×							_	+ 645					
1.GCG - WR4 -0.5-1	156	1614	1645	1:42	2					λ										_			
GC7-494-05-3	19	1014	1150	Suil	2					X													
.GC7-6-18-0-5-1	7.0	1014	ll12	50.1	2.					አ										_			
T L - 4RA - 0.5-3	7700	10 4	1405	50.1	2					×												•	
- 71 - WRB - 0.5-4		1014	1425	Se. 1	2					¥													
- TL-WPA-0.5-1-05-2		13 4	1400	5.:1	7			+	¥	¥								+ 649					
5H-WKB-0.5-2		10 4	1005	1:02	2					X													
0.9H-LRC- 0.5-1		1014	lois	ان به	2					X													
Report Requirements		oice Ir	nformation		Çircle which metals are to be analyzed												alvzed						
I. Routine Report: Method Blank, Surrogate, as	P.O.#_		eraphyx-bov	, 			Total	Mets	ale. Q	1 6	G .	h R	a Re	s R	Ca	Cd (ີກ ໃ	Or Ou F	e Ph Ma	Mn Mo Ni K Ag N	la Co Cr Ti Co	V 70 He	
required	1 5111 10	· MACE !	-11-18-11-1	-							_											-	
II. Report Dup., MS, MSD	***************************************			_								50	ьа	R6 I						Ag Mn Mo Ni K Ag		-	
as required	Turnar	ound	Requireme	nts	pecia	IInst	ructio	ons/C	Jom	men	its:				"in	dicate	Sta	ate Hydr	ocarbon P	rocedure: AK CA W	/I Northwest Oth	er(Circle One)	
III. CLP Like Summary (no raw data)	2	4 hr. Day	48 hr.	1	-																		
IV. Data Validation Report	X S	itandard																					
V. EDD		Conventor	! Report Date													,							
Relinquished By:		7777400	red By:		Re	ling	uish	ed	Ву:		T		F	Rece	ive	d By	-	1	Re	linquished By:	R	eceived By:	
	<u> </u>		1			_		1			\bot												
ignature	Signature	F		Sigr	ature	0	74				S	ignat V/2	lane Laya	اً ۲	>.	de	B	en	Signature		Signature		
rinted Name Millemy	Printed, N		BiL	Prin	ted N			Lá	\mathcal{B}_{i}	he		rinte							Printed Na	ime	Printed Nan	ne	
im tel	Firm /	5		Fim		_5	_	į			TF:	Firm 1018124 1445							Firm Firm				
ate/Time	Date/Tim	e/0/0	8/24 /30	6 Date	e/Time		\\ / ₂	24	74	144		ate/	Time	······					Date/Time		Date/Time		
10/8 1306	_	7 7	-, ,			,-	,	- 1	·														

•										рм Л	1.11
Tearding	ooler Receipt	and F	rese				s .	~1 11"	Promp.	7-	
Client levaguese	01645		<u> </u>	Sei		Request /	(24)	2646		a F	
Received: 1018124 Opened:	018124	By: _	Δ	1_	Unl	oaded: _	1018	129	By: <u></u>	<u> </u>	
1. Samples were received via? USPS	Fed Ex	UPS	D	HL	P	DX.	Court	er) 1	and Deliv	ered	
2. Samples were received in: (circle) Caol	Box	E	ivelope		Ot	her	<u> </u>			NA .	
3. Were <u>custody seals</u> on coolers? NA	Y (N) I	f yes, h	ow mar	y and	where	7	.,				
' If present, were custody seals intact?	YNI	f presen	it, were	they s	igned a	and dated?	?		Y	N	
				9.17.	1			· · · · · · · · · · · · · · · · · · ·			
			Outo	f temp		PM Notifie	a I	**			
	ooler #/COC ID / N/	1	indicate			if out of t		Trackii	ng Numbe	NA_	Filed
19.6 14.6 -1801 1	40510										
10.8 5.7										•	
(0.0 4.4											
a.u 14.5			<u>.</u>		1						
107 115		_			+						
4. Was a Temperature Blank present in cooler? NA	A (Y) N	If ves n	otate th	e temp	eratur	e in the an	propriate	column ab	ove:		
If no, take the temperature of a representative sa	_	•		-		-					
5. Were samples received within the method specifi	-						J	NA.	$\left(\mathbf{v} \right)$	N	
If no, were they received on ice and same day as		-	cooler	# abov	ve and	potify the	РМ	NA) v	N	
· · · · · · · · · · · · · · · · · · ·	zen Partially Th		Thaw		. •		- 2121)		
	•		*								
	le Wrap Gel Pack	Wet	Ice 1	ry Ice	Sle	eves					
7. Were custody papers properly filled out (ink, signature)	•							NA		N	
8. Were samples received in good condition (unbro								NA	> *	N	
 Were all sample labels complete (ie, analysis, p. Did all sample labels and tags agree with custod 			*					NA NA	Y	N N	
11. Were appropriate bottles/containers and volume		ete indi	cated?					NA	\sim	N	
12. Were the pH-preserved bottles (see SMO GEN.				17 Ind	licate i	n the table	e helow	NA	Y	N	
13. Were VOA vials received without headspace?	-		mute pr	4. 2,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			NA		N	
14. Was C12/Res negative?	maicale in the table	DEIUW,						NA NA	Y	N	
15. Were samples received within the method speci	ified time limit? If n	ot note	te the e	mor ha	low an	d notify th	e PM	(NA	Y	N	
16. Were 100ml sterile microbiology bottles filled			- /	}	Y Y	no monny a N	IC I IVI	Under	/	Overfille	.d
16. Were fooms sterne microbiology bottles filled t	exactly to the 100m	mark?	_(^N	A		14		Onder	- C		<u> </u>
Sample ID on Bottle	Sample	ID on	COC					Identifie	d by:		
			···								

	Bottle Count	Head-					Volume	Reager	t Lot		
Sample ID	Bottle Type	space	Broke	рН	Re	agent	added	Num		initials	Time
Notes, Discrepancies, Resolutions:											

109 of 283

SOP: SMO-GEN

Reviewed: NP 1/3/2024

G:\SMO\2024 Forms

Cooler Receipt and Preservation Form

		<u> </u>	<u> </u>					e Request <i>K2</i>		V		
Temp Blank	Sample Temp	IR Gun	Cooler #/C	OC ID / N	IA.	Out indica	of temp ite with ")	PM Notifie (" If out of t	emp	Tracking Nur	nber NA	File
A8: 7.8	3.8	1801										
11.2	5.5	W_								(************************************		
			,									
						2722	la asa		:		f ·	
Sar	mpie ID on Bottie			Sample li	D on C	OC			ld	entified by:	•	
												
						<u></u>						
			ottle Count	Out of			g giar		Volume	Reagent Lot	I I	
······································	Sample ID	E	ottle Type	Temp	space	Broke	рН	Reagent	added	Number	Initials	Time
												······
					1 1	<u> </u>			1		<u></u>	
	ancies & Resol	utions: \(<u>ا س</u>	2) a	* +	TOP	<u>04</u>	<u>coolers</u>	> 0)	a topo	<u> </u>	••••
tes, Discrep		2 ^ ^	blan	le L	<u>ias</u>	<u> </u>	nde	rtle	SUN	gles, r	<u>\ot</u>	
Sun	ples. To	JAK -										
otes, Discrep Sam India	ples. Te	E S	mpl	<u>ا</u> و ()	ten	4						
Sam judi	ples. To	£ 5	ampl	<u>۔ ر</u> ي	ten	AP.						
Sam judi	ples. To	ST S	ampl	-0	ten	AP.						
Sam judi	des. Te	Se S	ampl	ا وي	ten	4						
Sam judi	des. Te	sing S	anyol		ten	AP						
Sam judi	ples. To	S S	anyol		ten	AP						
Sam Sam	ples. To	S S	anyol		Hen	AP						
Sam Sam Indi	ples. To	S S	anyol		Hen	AP						
Sam Sam Indi	ples. To	S S	anyol		Hen	AP						

G:\SMO\2024 Forms

SOP: SMO-GEN

Reviewed: NP 1/3/2024

110 of 283

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Date Collected: 10/02/24 - 10/05/24 **Project:** Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil **Date Received:** 10/8/24

Analysis Method: 160.3 Modified

Units: Percent **Prep Method:** Basis: As Received None

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
UMM-TLB-0.5-1	K2410642-001	86.4	-	1	10/10/24 10:19	
UMM-TLB-0.5-4	K2410642-002	91.8	-	1	10/10/24 10:19	
UMM-TLC-0.5-1	K2410642-003	79.3	-	1	10/10/24 10:19	
UMM-TLC-0.5-2	K2410642-004	76.8	-	1	10/10/24 10:19	
UMM-TLA-0.5-6	K2410642-005	91.8	-	1	10/10/24 10:19	
CEM-WRA-0.5-4-DS	K2410642-006	96.8	-	1	10/10/24 10:19	
CEM-WRB-0.5-1	K2410642-007	96.5	-	1	10/10/24 10:19	
CEM-WRA-0.5-2	K2410642-008	95.3	-	1	10/10/24 10:19	
CEM-WRC-0.5-1	K2410642-009	95.1	-	1	10/10/24 10:19	
GF-WRA-0.5-1	K2410642-010	97.0	-	1	10/10/24 10:19	
GF-WRD-0.5-6	K2410642-011	95.1	-	1	10/10/24 10:19	
GF-WRD-0.5-4-DS	K2410642-012	97.0	-	1	10/10/24 10:19	
GF-DR-0.5-1	K2410642-013	97.2	-	1	10/10/24 10:19	
GC5-WRA-0.5-3	K2410642-014	96.2	-	1	10/10/24 10:19	
GC5-WRA-0.5-4	K2410642-015	95.8	-	1	10/10/24 10:19	
GC5-WRA-0.5-4-DS	K2410642-016	96.0	-	1	10/10/24 10:19	
GC6-WRA-0.5-2	K2410642-017	94.4	-	1	10/10/24 10:19	
GC6-WRA-0.5-1	K2410642-018	93.7	-	1	10/10/24 10:19	
GC7-WRA-0.5-3	K2410642-019	95.2	-	1	10/10/24 10:19	
GC7-WRB-0.5-1	K2410642-020	96.1	-	1	10/10/24 10:19	

Service Request: K2410642

QA/QC Report

Service Request: K2410642

Client: Terraphase Engineering Inc.

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:**10/02/24 - 10/04/24

Sample Matrix: Soil Date Received: 10/08/24

Analysis Method: 160.3 Modified Units: Percent

Prep Method: None Basis: As Received

Replicate Sample Summary Inorganic Parameters

Sample Name:	Lab Code:	MRL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
UMM-TLB-0.5-1	K2410642-001DUP	-	86.4	86.5	86.5	<1	20	10/10/24
GC7-WRB-0.5-1	K2410642-020DUP	_	96.1	96.3	96.2	<1	20	10/10/24

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/11/2024 8:28:22 AM Superset Reference:24-0000711613 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Service Request: K2410642 **Date Collected:** 10/2/2024 **Date Received:** 10/8/2024

Date Extracted: 10/16-10/17/2024 **Date Analyzed:** 10/17-10/22/2024

Bioaccessibility Value Analyte: Arsenic Units: Percent (%)

Sample Name	Lab Code	Result
UMM-TLB-0.5-1	K2410642-001	41.6
UMM-TLA-0.5-6	K2410642-005	24.3
CEM-WRA-0.5-2	K2410642-008	5.6
GF-WRD-0.5-4-DS	K2410642-012	9.0
GC5-WRA-0.5-4-DS	K2410642-016	4.7
GC6-WRA-0.5-2	K2410642-017	3.9

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Service Request: K2410642

Date Collected: 10/2/2024

Date Received: 10/8/2024

Date Extracted: 10/16-10/17/2024 **Date Analyzed:** 10/17-10/22/2024

Bioaccessibility Value Analyte: Lead Units: Percent (%)

Sample Name	Lab Code	Result
UMM-TLB-0.5-1	K2410642-001	28.7
UMM-TLA-0.5-6	K2410642-005	6.2
CEM-WRA-0.5-2	K2410642-008	27.9
GF-WRD-0.5-4-DS	K2410642-012	34.9
GC5-WRA-0.5-4-DS	K2410642-016	37.5
GC6-WRA-0.5-2	K2410642-017	41.7

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 16:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLB-0.5-1 Basis: Dry

Lab Code: K2410642-001

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	6130	mg/Kg	11	1	100	10/22/24 12:10	10/10/24	
Lead	6020B	1710	mg/Kg	1.1	0.4	100	10/22/24 12:10	10/10/24	
Mercury	7471B	387	mg/Kg	11	1	500	10/15/24 13:08	10/14/24	

Printed 10/22/2024 8:04:34 PM Superset Reference:

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 16:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UMM-TLB-0.5-1 **Sample Name:** Basis: Dry

Lab Code: K2410642-001

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	4420	mg/Kg	4.9	0.6	50	10/22/24 15:53	10/17/24	
Lead	6020B	840	mg/Kg	0.49	0.20	50	10/22/24 15:53	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 16:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLB-0.5-1 Basis: Dry

Lab Code: K2410642-001

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1840	mg/Kg	2.0	0.2	20	10/17/24 11:29	10/16/24	
Lead	6020B	241	mg/Kg	0.20	0.08	20	10/17/24 11:29	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642

Date Collected: 10/02/24 16:45 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 14:45 **Sample Matrix:** Soil

UMM-TLB-0.5-4 **Sample Name:** Basis: Dry

Lab Code: K2410642-002

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1540	mg/Kg	8.0	1.0	100	10/22/24 12:18	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 17:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLC-0.5-1 Basis: Dry

Lab Code: K2410642-003

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	5290	mg/Kg	9.9	1.2	100	10/22/24 12:19	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/02/24 17:15

Sample Matrix:

Project:

Lab Code:

Soil

Date Received: 10/08/24 14:45

Service Request: K2410642

Sample Name:

UMM-TLC-0.5-2 K2410642-004

Basis: Dry

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	4980	mg/Kg	10	1	100	10/22/24 12:21	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/02/24 15:45 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLA-0.5-6 Basis: Dry

Lab Code: K2410642-005

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	3270	mg/Kg	8.1	1.0	100	10/22/24 11:35	10/10/24	
Lead	6020B	589	mg/Kg	0.81	0.33	100	10/22/24 11:35	10/10/24	
Mercury	7471B	9.23	mg/Kg	0.19	0.02	10	10/15/24 10:28	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/02/24 15:45 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

UMM-TLA-0.5-6 **Sample Name:** Basis: Dry

Lab Code: K2410642-005

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	5560	mg/Kg	4.9	0.6	50	10/22/24 15:46	10/17/24	
Lead	6020B	1110	mg/Kg	0.49	0.20	50	10/22/24 15:46	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/02/24 15:45 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: UMM-TLA-0.5-6 Basis: Dry

Lab Code: K2410642-005

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	1350	mg/Kg	2.0	0.2	20	10/17/24 11:22	10/16/24	
Lead	6020B	69.2	mg/Kg	0.20	0.08	20	10/17/24 11:22	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/02/24 12:30 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-006

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	32.6	mo/Ko	0.40	0.05	5	10/22/24 12:03	10/10/24	

Analytical Report

Service Request: K2410642

Client: Terraphase Engineering Inc.

> **Date Collected:** 10/05/24 13:00 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRB-0.5-1 Basis: Dry

Lab Code: K2410642-007

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	151	mg/Kg	8.6	1.0	100	10/22/24 11:38	10/10/24	

Printed 10/22/2024 8:04:37 PM Superset Reference:

127 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/05/24 12:05 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

CEM-WRA-0.5-2 **Sample Name:** Basis: Dry

Lab Code: K2410642-008

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	794	mg/Kg	5.0	0.6	50	10/22/24 15:55	10/17/24	
Lead	6020B	78.5	mg/Kg	0.50	0.20	50	10/22/24 15:55	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/05/24 12:05 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRA-0.5-2 Basis: Dry

Lab Code: K2410642-008

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	44.5	mg/Kg	2.0	0.2	20	10/17/24 11:30	10/16/24	
Lead	6020B	21.9	mg/Kg	0.20	0.08	20	10/17/24 11:30	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/05/24 12:05

Service Request: K2410642

Sample Matrix:

Project:

Soil

Date Received: 10/08/24 14:45

Basis: Dry

CEM-WRA-0.5-2 **Sample Name:**

Lab Code:

K2410642-008

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	299	mg/Kg	8.3	1.0	100	10/22/24 11:39	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/05/24 12:40 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: CEM-WRC-0.5-1 Basis: Dry

Lab Code: K2410642-009

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	110	mg/Kg	8.0	1.0	100	10/22/24 11:41	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/05/24 09:30

Service Request: K2410642

Sample Matrix: Soil Date Received: 10/08/24 14:45

Sample Name: GF-WRA-0.5-1 Basis: Dry

Lab Code: K2410642-010

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	332	mg/Kg	7.8	0.9	100	10/22/24 11:42	10/10/24	

Analytical Report

Service Request: K2410642 **Date Collected:** 10/05/24 11:10

Date Received: 10/08/24 14:45

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Lab Code:

Sample Name:

GF-WRD-0.5-6 Basis: Dry K2410642-011

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	66.6	mg/Kg	7.9	0.9	100	10/22/24 11:44	10/10/24	

Printed 10/22/2024 8:04:37 PM Superset Reference:

133 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/05/24 11:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GF-WRD-0.5-4-DS Basis: Dry

Lab Code: K2410642-012

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	137	mg/Kg	4.9	0.6	50	10/22/24 15:56	10/17/24	
Lead	6020B	25.6	mg/Kg	0.49	0.19	50	10/22/24 15:56	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/05/24 11:05 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GF-WRD-0.5-4-DS Basis: Dry

Lab Code: K2410642-012

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	12.3	mg/Kg	2.0	0.2	20	10/17/24 11:32	10/16/24	
Lead	6020B	8.94	mg/Kg	0.20	0.08	20	10/17/24 11:32	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/05/24 11:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GF-WRD-0.5-4-DS Basis: Dry

Lab Code: K2410642-012

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	55.2	mo/Ko	8.5	1.0	100	10/22/24 11:45	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Date Collected: 10/05/24 10:35

Date Received: 10/08/24 14:45

Basis: Dry

Service Request: K2410642

Sample Name:

GF-DR-0.5-1

Lab Code:

Project:

K2410642-013

Total Metals

Analysis Date Analyte Name Method Result Units MRL MDL Dil. **Date Analyzed Extracted** Q 6020B Arsenic 58.3 mg/Kg 8.4 1.0 100 10/22/24 11:49 10/10/24

Printed 10/22/2024 8:04:37 PM Superset Reference:

137 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 16:15 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-3 Basis: Dry

Lab Code: K2410642-014

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	421	mg/Kg	8.0	1.0	100	10/22/24 11:51	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/04/24 15:54 Upper Granite Creek Mines/0031.005.001

Project: Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4 Basis: Dry

Lab Code: K2410642-015

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	160	mg/Kg	7.8	0.9	100	10/22/24 11:52	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 15:55 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-016

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	221	mg/Kg	5.0	0.6	50	10/22/24 16:01	10/17/24	
Lead	6020B	70.4	mg/Kg	0.50	0.20	50	10/22/24 16:01	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/04/24 15:55 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-016

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	10.4	mg/Kg	1.9	0.2	20	10/17/24 11:37	10/16/24	
Lead	6020B	26.4	mg/Kg	0.19	0.08	20	10/17/24 11:37	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 15:55 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC5-WRA-0.5-4-DS Basis: Dry

Lab Code: K2410642-016

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	81.3	mg/Kg	7.9	0.9	100	10/22/24 11:54	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

GC6-WRA-0.5-2 **Sample Name:** Basis: Dry

Lab Code: K2410642-017

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	759	mg/Kg	4.9	0.6	50	10/22/24 16:02	10/17/24	
Lead	6020B	360	mg/Kg	0.49	0.20	50	10/22/24 16:02	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC6-WRA-0.5-2 Basis: Dry

Lab Code: K2410642-017

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	29.3	mg/Kg	2.0	0.2	20	10/17/24 11:39	10/16/24	
Lead	6020B	150	mg/Kg	0.20	0.08	20	10/17/24 11:39	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Date Collected:** 10/04/24 14:00 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

GC6-WRA-0.5-2 **Sample Name:** Basis: Dry

Lab Code: K2410642-017

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	504	mg/Kg	8.5	1.0	100	10/22/24 11:55	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24 10:45

Basis: Dry

Service Request: K2410642

Sample Matrix:

Soil

Date Received: 10/08/24 14:45

Sample Name:

GC6-WRA-0.5-1

Lab Code:

Project:

K2410642-018

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	257	mg/Kg	8.5	1.0	100	10/22/24 11:57	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410642 **Date Collected:** 10/04/24 11:50 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Soil

Sample Name: GC7-WRA-0.5-3 Basis: Dry

Lab Code: K2410642-019

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	26.9	mg/Kg	8.5	1.0	100	10/22/24 11:58	10/10/24	
Arsenic	6020B	26.2	mg/Kg	0.43	0.05	5	10/22/24 12:04	10/10/24	

Printed 10/22/2024 8:04:38 PM Superset Reference:

147 of 283

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24 11:15

Basis: Dry

Service Request: K2410642

Sample Matrix:

Soil

Date Received: 10/08/24 14:45

Sample Name:

GC7-WRB-0.5-1

Lab Code:

Project:

K2410642-020

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	7.43	mg/Kg	0.43	0.05	5	10/22/24 12:09	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416652-01

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 15:43	10/17/24	
Lead	6020B	0.043 J	mg/Kg	0.05	0.020	5	10/22/24 15:43	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416789-01

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/17/24 10:57	10/16/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/17/24 10:57	10/16/24	

Printed 10/22/2024 8:04:36 PM Superset Reference:

150 of 283

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416391-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	0.07 J	mg/Kg	0.5	0.06	5	10/22/24 11:05	10/10/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/22/24 11:05	10/10/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416426-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercurv	7471B	ND U	mg/Kg	0.02	0.002	1	10/15/24 09:02	10/14/24	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project Upper Granite Creek Mines/0031.005.001 Date Collected: 10/02/24

Sample Matrix: Soil **Date Received:** 10/08/24

Date Analyzed: 10/22/24

Replicate Sample Summary Total Metals – IVBA Analysis

Sample Name: UMM-TLA-0.5-6 Units: mg/Kg Lab Code: K2410642-005

Basis: Dry

Duplicate Sample **Analysis** Sample KQ2416652-03 Method **Analyte Name MRL MDL** Result Result Average RPD **RPD Limit** Arsenic 6020B 5.0 0.6 5560 6460 6010 15 20 Lead 6020B0.50 0.20 1110 1280 1200 14 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. **Service Request:** K2410642

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/02/24

Soil **Sample Matrix:**

Lab Code:

Date Received: 10/08/24

Date Analyzed: 10/17/24

Replicate Sample Summary

IVBA Metals

Sample Name: UMM-TLA-0.5-6 Units: mg/Kg

Basis: Dry

K2410642-005

Duplicate

	Analysis			Sample	Sample KQ2416789-04			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Arsenic	6020B	2.0	0.2	1350	1360	1360	<1	20
Lead	6020B	0.20	0.08	69.2	72.3	70.8	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/22/2024 8:04:36 PM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc.

Project

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/02/24

Soil **Date Received:** 10/08/24 **Sample Matrix:**

Date Analyzed: 10/22/24

Service Request: K2410642

Replicate Sample Summary

Total Metals

Sample Name: UMM-TLB-0.5-1 Units: mg/Kg Lab Code: K2410642-001

Basis: Dry

					Duplicate			
					Sample			
	Analysis			Sample	KQ2416391-01			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
	112001100	171141	MIDE	resure	Result	mittinge	MD	111 2 2111111
Arsenic	6020B	11	1	6130	7400	6770	19	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/22/2024 8:04:38 PM Superset Reference:

QA/QC Report

Client: Terraphase Engineering Inc. **Project:**

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Service Request: Date Collected:

K2410642

10/02/24

Date Received: Date Analyzed: 10/08/24 10/22/24

Date Extracted:

10/17/24

Matrix Spike Summary

Total Metals – IVBA Analysis

Sample Name:

UMM-TLA-0.5-6

Lab Code: K2410642-005

Analysis Method: Prep Method:

6020B

EPA 3050B

Units: Basis: mg/Kg

Dry

Matrix Spike

KQ2416652-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	5560	5980	97.0	435 #	75-125
Lead	1110	1250	97.0	145 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/22/2024 8:04:36 PM Superset Reference:

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request:

K2410642

Project:

Upper Granite Creek Mines/0031.005.001

Date Collected:

10/02/24

Sample Matrix: Soil

1 1

Date Received: Date Analyzed: 10/08/24

Date Extracted:

10/22/24 10/10/24

Matrix Spike Summary

Total Metals

Sample Name: UMM-TLB-0.5-1

Units: Basis:

mg/Kg Dry

Lab Code: Analysis Method: K2410642-001

Prep Method:

6020B

EPA 3050B

Matrix Spike

KQ2416391-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6130	5760	11	-3268#	75-125
Lead	1710	1750	5.6	557 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/22/2024 8:04:38 PM Superset Reference:

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals – IVBA Analysis

> Units:mg/Kg Basis:Dry

Service Request: K2410642

Lab Control Sample

KQ2416652-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	108	100	108	80-120
Lead	6020B	111	100	111	80-120

Printed 10/22/2024 8:04:36 PM Superset Reference:

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Analyzed:** 10/17/24

Sample Matrix: Soil

> **Lab Control Sample Summary IVBA Metals**

> > Units:mg/Kg Basis:Dry

Lab Control Sample

KQ2416789-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	92.9	100	93	80-120
Lead	6020B	105	100	105	80-120

Printed 10/22/2024 8:04:36 PM Superset Reference:

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410642 **Project:** Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

> **Lab Control Sample Summary Total Metals**

> > Units:mg/Kg Basis:Dry

Lab Control Sample

KQ2416391-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	107	100	107	80-120
Lead	6020B	113	100	113	80-120

Printed 10/22/2024 8:04:38 PM Superset Reference:

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/15/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K2410642

Lab Control Sample KQ2416426-04

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsMercury7471B0.5200.50010480-120

Printed 10/22/2024 8:04:38 PM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410642

Project:Upper Granite Creek Mines/0031.005.001Date Collected:NALCS Matrix:SoilDate Received:NA

Date Extracted: 10/16/2024 **Date Analyzed:** 10/17/2024

Standard Reference Material (SRM) Summary

Bioaccessible Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Basis: Dry

Test Notes: Montana II Solids = 97.8%

KQ2416789-03

Lab Code:

Source: NIST 2711a - Montana II Soil

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits (%)	Result Notes
Lead	EPA 1340	6020B	1300	1250	96	75.2 - 96.2	

Don Malkemus Terraphase Engineering Inc. 610 SW Broadway, Suite 405 Portland, OR 97205

Laboratory Results for: Upper Granite Creek Mines

Dear Don.

Enclosed are the results of the sample(s) submitted to our laboratory October 08, 2024 For your reference, these analyses have been assigned our service request number **K2410643**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oak

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines Date Received: 10/08/2024

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Fourteen soil samples were received for analysis at ALS Environmental on 10/08/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Method 6020B, 10/22/2024: The Relative Percent Difference (RPD) for the replicate analysis of Silver in sample TL-WRA-0.5-3 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Method 6020B, 10/22/2024: Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Despite anticipated low recoveries, the method is still generally prescribed because of its versatility for general metals analysis. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The matrix spike recovery of Antimony for sample TL-WRA-0.5-3 was below the ALS control criterion. Since low recoveries resulted from a method defect and were possibly magnified by certain matrix components, no corrective action was appropriate. Alternative procedures that specifically target Antimony are available but were not specified for this project. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control.

Method 6020B, 10/22/2024: The matrix spike recovery of Lead for sample TL-WRA-0.5-3 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

	1 (OE V. () Our			
Approved by		Date _	10/23/2024	

× -00000

CLIENT ID: CS-SD-1		Lab	Lab ID: K2410643-006					
Analyte	Results	Flag	MDL	MRL	Units	Method		
Antimony	0.26		0.05	0.13	mg/Kg	6020B		
Arsenic	5.8		0.2	1.3	mg/Kg	6020B		
Cadmium	0.234		0.019	0.053	mg/Kg	6020B		
Chromium	7.81		0.16	0.53	mg/Kg	6020B		
Lead	4.12		0.05	0.13	mg/Kg	6020B		
Mercury	0.031	J	0.005	0.053	mg/Kg	7471B		
Silver	0.282		0.011	0.053	mg/Kg	6020B		
Solids, Total	34.2				Percent	160.3 Modified		
Zinc	45.0		0.5	1.3	mg/Kg	6020B		
CLIENT ID: CS-SD-2		Lab	ID: K2410	643-007				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Antimony	0.038	J	0.022	0.054	mg/Kg	6020B		
Arsenic	4.52		0.07	0.54	mg/Kg	6020B		
Cadmium	0.038		0.008	0.022	mg/Kg	6020B		
Chromium	2.49		0.07	0.22	mg/Kg	6020B		
Lead	0.927		0.022	0.054	mg/Kg	6020B		
Silver	0.043		0.004	0.022	mg/Kg	6020B		
Solids, Total	76.9				Percent	160.3 Modified		
Zinc	16.9		0.22	0.54	mg/Kg	6020B		
					0 0			
CLIENT ID: CS-SD-3			ID: K2410					
	Results	Lab Flag	MDL	MRL	Units	Method		
CLIENT ID: CS-SD-3 Analyte Antimony	Results 0.069		MDL 0.025	MRL 0.063	Units mg/Kg	6020B		
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic	Results 0.069 11.7		MDL 0.025 0.08	MRL 0.063 0.63	Units mg/Kg mg/Kg	6020B 6020B		
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic Cadmium	Results 0.069 11.7 0.062		MDL 0.025 0.08 0.009	MRL 0.063 0.63 0.025	Units mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B		
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic Cadmium Chromium	Results 0.069 11.7 0.062 4.90		MDL 0.025 0.08 0.009 0.08	MRL 0.063 0.63 0.025 0.25	Units mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B		
CLIENT ID: CS-SD-3 Analyte Antimony Arsenic Cadmium Chromium Lead	Results 0.069 11.7 0.062 4.90 1.53		MDL 0.025 0.08 0.009 0.08 0.025	MRL 0.063 0.63 0.025 0.25 0.063	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury	Results 0.069 11.7 0.062 4.90 1.53 0.923		MDL 0.025 0.08 0.009 0.08 0.025 0.003	MRL 0.063 0.63 0.025 0.25 0.063 0.027	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112		MDL 0.025 0.08 0.009 0.08 0.025	MRL 0.063 0.63 0.025 0.25 0.063	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1		MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112		MDL 0.025 0.08 0.009 0.08 0.025 0.003	MRL 0.063 0.63 0.025 0.25 0.063 0.027	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 0 ID: K2410 MDL	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0.63	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 0 ID: K2410 MDL 0.023	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0643-009 MRL 0.058	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 DID: K2410 MDL 0.023 0.07	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0.63 0.63 0.63 0.63	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Mg/Kg Percent mg/Kg Units mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic Cadmium	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 DID: K2410 MDL 0.023 0.07 0.008	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0643-009 MRL 0.058 0.58 0.023	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Percent mg/Kg Units mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09 9.05	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 DID: K2410 MDL 0.023 0.07	MRL 0.063 0.63 0.025 0.025 0.063 0.027 0.025 0.63 0.63 0.63 0.58 0.58 0.023 0.23	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Mg/Kg Percent mg/Kg Units mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic Cadmium Chromium Lead	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09 9.05 25.6	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 MDL 0.023 0.07 0.008 0.07 0.023	MRL 0.063 0.63 0.025 0.25 0.063 0.027 0.025 0.63 0.63 0.058 0.058 0.023 0.058	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Percent mg/Kg Units mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B 6020B 6020B 6020B		
Analyte Antimony Arsenic Cadmium Chromium Lead Mercury Silver Solids, Total Zinc CLIENT ID: CS-SD-4 Analyte Antimony Arsenic Cadmium Chromium Chromium	Results 0.069 11.7 0.062 4.90 1.53 0.923 0.112 69.1 29.7 Results 0.892 32.7 1.09 9.05	Flag	MDL 0.025 0.08 0.009 0.08 0.025 0.003 0.005 0.25 MDL 0.023 0.07 0.008 0.07	MRL 0.063 0.63 0.025 0.025 0.063 0.027 0.025 0.63 0.63 0.63 0.58 0.58 0.023 0.23	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Percent mg/Kg Units mg/Kg mg/Kg mg/Kg	6020B 6020B 6020B 6020B 6020B 7471B 6020B 160.3 Modified 6020B Method 6020B 6020B 6020B		

CLIENT ID: CS-SD-4		Lab	ID: K2410	643-009		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	64.9				Percent	160.3 Modified
Zinc	47.2		0.23	0.58	mg/Kg	6020B
CLIENT ID: CS-SD-5		Lab	ID: K2410	643-010		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.146		0.020	0.051	mg/Kg	6020B
Arsenic	14.1		0.06	0.51	mg/Kg	6020B
Cadmium	0.169		0.007	0.020	mg/Kg	6020B
Chromium	5.03		0.06	0.20	mg/Kg	6020B
Lead	2.79		0.020	0.051	mg/Kg	6020B
Mercury	0.056		0.002	0.025	mg/Kg	7471B
Silver	0.582		0.004	0.020	mg/Kg	6020B
Solids, Total	71.1				Percent	160.3 Modified
Zinc	32.7		0.20	0.51	mg/Kg	6020B
CLIENT ID: CS-SD-6		Lab	ID: K2410	643-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.147		0.018	0.045	mg/Kg	6020B
Arsenic	16.6		0.05	0.45	mg/Kg	6020B
Cadmium	0.146		0.006	0.018	mg/Kg	6020B
Chromium	4.76		0.05	0.18	mg/Kg	6020B
Lead	2.74		0.018	0.045	mg/Kg	6020B
Mercury	0.033		0.002	0.021	mg/Kg	7471B
Silver	0.200		0.004	0.018	mg/Kg	6020B
Solids, Total	82.1				Percent	160.3 Modified
Zinc	37.1		0.18	0.45	mg/Kg	6020B
LIENT ID: CS-SD-7		Lab	ID: K2410	643-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.355		0.019	0.048	mg/Kg	6020B
Arsenic	24.2		0.06	0.48	mg/Kg	6020B
Cadmium	0.538		0.007	0.019	mg/Kg	6020B
Chromium	10.6		0.06	0.19	mg/Kg	6020B
Lead	12.1		0.019	0.048	mg/Kg	6020B
Mercury	0.097		0.002	0.023	mg/Kg	7471B
Silver	1.10		0.004	0.019	mg/Kg	6020B
Solids, Total	80.2				Percent	160.3 Modified
Zinc	168		0.19	0.48	mg/Kg	6020B
CLIENT ID: CS-SD-7-DUP		Lab	ID: K2410	0643-013		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.334		0.022	0.054	mg/Kg	6020B

CLIENT ID: CS-SD-7-DUP		Lab	ID: K2410	643-013)13			
Analyte	Results	Flag	MDL	MRL	Units	Method		
Arsenic	24.3		0.06	0.54	mg/Kg	6020B		
Cadmium	0.446		0.008	0.022	mg/Kg	6020B		
Chromium	9.10		0.06	0.22	mg/Kg	6020B		
Lead	12.8		0.022	0.054	mg/Kg	6020B		
Mercury	0.099		0.002	0.024	mg/Kg	7471B		
Silver	1.62		0.004	0.022	mg/Kg	6020B		
Solids, Total	73.2				Percent	160.3 Modified		
Zinc	102		0.22	0.54	mg/Kg	6020B		
CLIENT ID: CS-SD-8		Lab	ID: K2410	643-014				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Antimony	0.406		0.023	0.058	mg/Kg	6020B		
Arsenic	35.2		0.07	0.58	mg/Kg	6020B		
Cadmium	0.316		0.008	0.023	mg/Kg	6020B		
Chromium	9.13		0.07	0.23	mg/Kg	6020B		
Lead	10.7		0.023	0.058	mg/Kg	6020B		
Mercury	0.096		0.003	0.026	mg/Kg	7471B		
Silver	1.26		0.005	0.023	mg/Kg	6020B		
Solids, Total	69.0				Percent	160.3 Modified		
Zinc	103		0.23	0.58	mg/Kg	6020B		
CLIENT ID: TL-WRA-0.5-3		Lab	ID: K2410	643-001				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Arsenic	454		0.05	0.42	mg/Kg	6020B		
Solids, Total	95.0				Percent	160.3 Modified		
LIENT ID: TL-WRB-0.5-4		Lab	ID: K2410	643-002				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Arsenic	194		0.05	0.42	mg/Kg	6020B		
Solids, Total	95.5				Percent	160.3 Modified		
LIENT ID: TL-WRA-0.5-1-DS-2		Lab	ID: K2410	643-003				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Arsenic	550		0.6	4.9	mg/Kg	6020B		
Arsenic	14.4		0.2	1.9	mg/Kg	6020B		
Arsenic	267		0.05	0.44	mg/Kg	6020B		
Lead	218		0.19	0.49	mg/Kg	6020B		
Lead	83.3		0.08	0.19	mg/Kg	6020B		
Solids, Total	93.4				Percent	160.3 Modified		
CLIENT ID: SH-WRB-0.5-2		Lab	ID: K2410	643-004				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Arsenic	80.8		0.05	0.39	mg/Kg	6020B		

CLIENT ID: SH-WRB-0.5-2		Lab	ID: K2410	643-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total	94.1				Percent	160.3 Modified
CLIENT ID: SH-WRC-0.5-1		Lab	ID: K2410	643-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Arsenic	14.4		0.05	0.44	mg/Kg	6020B

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines/0031.005.001

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K2410643-001	TL-WRA-0.5-3	10/4/2024	1405
K2410643-002	TL-WRB-0.5-4	10/4/2024	1425
K2410643-003	TL-WRA-0.5-1-DS-2	10/4/2024	1400
K2410643-004	SH-WRB-0.5-2	10/4/2024	1005
K2410643-005	SH-WRC-0.5-1	10/4/2024	1015
K2410643-006	CS-SD-1	10/5/2024	1006
K2410643-007	CS-SD-2	10/3/2024	1505
K2410643-008	CS-SD-3	10/3/2024	0900
K2410643-009	CS-SD-4	10/3/2024	1424
K2410643-010	CS-SD-5	10/4/2024	0930
K2410643-011	CS-SD-6	10/4/2024	1521
K2410643-012	CS-SD-7	10/4/2024	1335
K2410643-013	CS-SD-7-DUP	10/4/2024	1340
K2410643-014	CS-SD-8	10/5/2024	1030

140510

CHAIN OF CUSTODY

001, 002, 003	SR#
	COC Se

SR#
COC Set 6 of 8
COC#

1317 South 13th Ave, Keisa, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

(ALS) tissues								101001					obal.co				2116	~~ (300) u	XX-1000					Page 1 d
Project Name Upper Granit Creek Min	Project N		31.005.001		<u> </u>	9	707		80D			 0666								7				-
roject Manager Dan Millemy	S				1		7	<u> </u>	<u> </u>			8	igspace				_						_	
Company Terinihari Engin	eer'n Inc				ERS			(E	ĺ			Calc			ļ					j			200	
Address, City, State Glo Sty Orange		105			CONTAINERS			d Total)	ļ "							ĺ						7	1001/2	
hone # (503) 943-0394	email)	on, my Ken	and Okligha	k-Com				(Sieved	Extract	يرا	9	ardu			ĺ	1]				7	γ_{I_O}	w 47	
ampler Signature		Printed Name			9	늘	우	VBA (MA MA	leta i	Sprin	HH			- 1	1	ļ				1/	J		
M	Don	Malkem		_	NUMBER	7470A / Hg T	74718 / Hg	3020B / IVBA	5020B / IVBA	5020B / Metals T	Grind / GrindSub	SM 2340 B / Hardness			_	Ā	۵	Re	narks		*		63/3	
CLIENT SAMPLE ID	LABID	Date T	/PLING ime State	Matrix					-														•	
.GCS - WRA -0.5-4-03	·		S22	50:1	2			×	*		<u> </u>							+ pal		_			,	
GCG - WHA - 0.5 - 2		10/4 14		Seil	2	<u> </u>		×	N.	*				_	_			+ 647						
1.GCG - WH -0.5-1		<u> </u>	६५९	soil	2					7	<u> </u>						\perp			_				
1.GC7 - WHA - 0.5-3			1150	suil	2				<u> </u>	×	<u> </u>]									
i.GC7 - WRB -0.5-1			MZ	Soil	2.					٦	<u> </u>				_					_				
i. T L - VRA - 0.5 - 3	\	· · · · · · · · · · · · · · · · · · ·	1415	50.1	2	<u></u>			<u> </u>	×	<u> </u>	<u> </u>								_				•
: 9L-6123-05-4	7	lely	।५२५	Sail	2					1	_									_				
: TL-WPA-0.5-1-05-2	3	1014	1400	5.11	2			*	7	7	<u> </u>							+ 649						
SH-WKB-05-3	Ч	1.4	1005	1:02	2					x	_]		_							
0.8H-WR(- 0.5-1	9	1014	lois	1:02	2				<u> </u>	×	L.									<u> </u>				
Report Requirements		oice Inf	ormation	Ī												C	ircle v	which meta	is are to be a	nalvzed				
I. Routine Report: Method Blank, Surrogate, as	P.O.#	· madei	MANIX-GOV	√			Total	Met	ais: A	AI 6	s G	Sb E	3a B	э В	Са	Cd (Co (Cr Cu I	e Pb Mg	Mn Mo	Ni K Ag	Na Se	Sr Ti Sn V	/ Zn Ho
required	511110	<u> </u>				0																	Se Sr Ti Sn	
II. Report Dup., MS, MSD as required				_	pecia							30	- Da	DÇ.									thwest Other	
III. CLP Like Summary (no raw data)	2	ound Ro	equireme 48 hr.	nts	pecia	111121	IUCLI	Ulian	CON	II I ICI	ns.				Link	ncau	3 316	ate riyul	ocarbon r	rocedure.	AN CA	VVI NOI	triwest Other	(Circle On
IV. Data Validation Report	X s	itandard														-								
V. EDD			<u></u>													Ţ,								
Relinquished By:		Requested Re Receive			Re	ling	uish	ned	By:		7		\overline{a}	Rece	eive	d By	-		R	elinquisi	ned By:	1	Rec	eived By:
			r					1				_								•			·	
ignature	Signature	01			ature	2	1	<u> </u>			5	igna	ture LOO ed Na	ا نه	2	lo	BL.	n	Signature				Signature	
					ted N			فه	Bi	دركم	<u>J</u>	419	ed Na	me	,				Printed N	ame			Printed Name	
im TEI		<u> </u>		Firm	40	_S						10) jun	812	24	_1	44	5		Firm				Firm	
)ate/Time	Date/Tim	e/0/08	124 130	Date	/Time	e/0/	× ₆ /	24		194		Date/	Time						Date/Tim	3			Date/Time	
120 1206			•			ŧ	•																	

140510

CHAIN OF CUSTODY

01, 002, 003	SR#
	COC Set 🛕 of 🛕
	COC#

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

(ALS) Employe										www.a	alsglo	bal.co	m					,						F	Page 1 of	1
Project Name (reck Mine)	Project N	umber: 0031-0+5.001			6	}		180D		C	2000]			7			
Project Manager Don Mal Kumvi]		i i		<u> </u>		5	<u> </u>	<u> </u>	T	—-г									122.			
Company Termphile Gyineering	Inc.			CONTAINERS			Total)	l			Calc			ı		l				ļ			2			
Address, City, State Glo SW Brailwy	Suite 40			Į Į				<u>ت</u>															10	ı		
Phone # (5%) 448 0384	email	··Malkinis Gleccalposs	·COM	8			(Siev	Extra	Ŀ \$	gng	-tardn				İ						_	1/10	00			
Sampler Signature		Printed Name		# # H	큠	₽	₹	₹	Meta	Srind	186			1	1	Ì					(I)	JU"				
111	Don	, MIKMU		NUMBER	7470A / Hg	7471B / Hg	020B / IVBA (Sieved	020B / IVBA Extract	020B / Metals T	Prind / GrindSub	3M 2340 B / Hardness					l	C	Remarl	ko		Ψ		0630			
		SAMPLING	Matrix	 	×	- 4	8	8	Ж.	Ö	ίδ	-	73		7	<u> </u>	Г	Ceman	7.5							
CLIENT SAMPLE ID	LABID	Date Time State	!	<u> </u>																						
1. (5-50-1	<u>6</u>	10/5 1006	Soil	2		X	\dashv		X						_	_										
2. CS - SO-2		1013 1505	Soil	2		×		_	7				_	_	ļ	_										
3. CS - SO -3	<u> </u>	10 3 0900	1518	13		×			X					}	_	\dashv			·							
4. C3-50 - 4	9	1013 1424	١٠٠٨	2	\vdash	শ			X			\sqcup			\dashv	_										
5. Cs -50 - 5	10	1014 0130	Seil	2	-	X			x					_		_										
6. C S-SD-6		104 1521	1305	5	1	x		_	x						_											
7. Cs - S D - 7	12	10 4 1335	51:1	12		X			X					_	_	_										
8. CS - SD - 7 - DUP	13	10 4 1340	5021	2	1	X	-		X				_	_	-											
9. 5 - 50 - 8	14	10/5 1030	Seil	12		_		\dashv	X			\longrightarrow		_	_											
10.	· In	oice Information		<u> </u>	لبا					L			1	L						<u> </u>						7
Report Requirements 1. Routine Report: Method	P.O.#_	Oice miorination									_							etals are								ĺ
Blank, Surrogate, as required	Bill To	ep Q'timpuse.	34M			Total	Meta	is: A	1 6	9(S	9 B	a Be	8	Ca (<u>ල</u>	co ((ည္ င	Fe (P	gM (g	Mn Mo	Ni K	Ag) Na	Se Sr Tl Sr	1 N (5) (tg)	ĺ
1. Report Dup., MS, MSD		and the second	<u> </u>		Di	ssolv	ed M	etais:	A!	As	Sb	Ва	Ве	B Ca	Cd	Co	Cr	Cu Fe	Pb M	g Mn M	10 Ni K	K Ag N	a Se Sr Ti	Sn V Zn	Hg	
as required	Turna	round Requireme	ents S	Specia	l Inst	uctio	ons/C	Comr	men	ts:				*Inc	licate	e Sta	ate Hy	/drocarl	on Pr	ocedure	: AK C	A WI	Northwest Ot	her	(Circle One)]
III. CLP Like Summary (no raw data)		24 hr48 hr.																								
IV. Data Validation Report	】 	5 Day Standard	1																							
V. EDD		Requested Report Date													,											
Relinquished By:		Received By:		Re	linq	ıish	ed l	Зу:		Τ.		F	Repe			/ :		T	Rel	inquisl	hed By	y:	Į ,F	Received	By:	ㅓ
		A		-6		_	}			1/2	\subseteq	K	<u> </u>	R	ئے	<u> </u>		<u> </u>					<u> </u>			_
Signature	Signature	A.X	Sign	ature	7	4	~			Ž	ignat V <i>Ci</i>	ture OSV	6	201	-00	B	e i	Signa	ature				Signature			
Printed Name A (GMY)	Printed N	lame la Bill		ed Na		1	aBî	ch	<u> </u>	4	rinte	o Na		}- -			عب البياد ا	Print	ed Nar	ne		*	Printed Na	me		1
Firm TEI	Firm	.5	Firm	AL	2	,				Æ	ım -	181	21	11	4	15	,	Firm					Firm	· · · · · · · · · · · · · · · · · · ·	<u> </u>	1
Date/Time 1	Date/Tim	e10]08 24 130	Date	/Time	10/0	8/2	24	149	15			Time						Date	/Time				Date/Time			

РМ∫	1	H
E MI	. B.	1_/_

Toomy	Cooler Receipt a	nd Preser	vation F	orm			
Client Client	1016/100			Request K24		a F	<u> </u>
Received: 1018124 Opened:	1018124	Ву:	Uni	loaded: / O	8129By:_		
1. Samples were received via? USPS	Fed Ex UP	S Di	HL I	PDX (E6	urier Hand Del	ivered	
2. Samples were received in: (circle)	ler Box	Envelope	O	(her		NA.	
3. Were <u>custody seals</u> on coolers?	A Y (N) If	es, how man	y and where	?		-	
If present, were custody seals intact?	Y N If	oresent, were	they signed	and dated?	Y	N	
	Cooler#/COC ID / NA	Out of indicate		PM Notified If out of temp	Tracking Numb	er NA	Filed
9.6 4.6 -1801	140510						
168 5.7	·						
(e.0 44							
9.4 4.5							
18.3 4.5							
4. Was a Temperature Blank present in cooler? N	A (Y) N If	yes, notate the	temperatur	e in the appropri	ate column above:		
If no, take the temperature of a representative	sample bottle contained	within the co	oler, notate	in the column "S	ample Temp":)	
5. Were samples received within the method speci	fied temperature ranges	?			NA (Y	N	
If no, were they received on ice and same day a	s collected? If not, nota	ite the cooler	# above and	notify the PM.	(NA) Y	N	
If applicable, tissue samples were received: Fr	ozen Partially Than	ved Thawe	d				
6. Packing material: Inserts Baggies Bubl	ole Wrap Gel Packs	Wet Ice D	ry Ice Sle	eves			
7. Were custody papers properly filled out (ink, s	igned, etc.)?				NA CY	N	
8. Were samples received in good condition (unb	•				NA SX.	N	
9. Were all sample labels complete (ie, analysis,	•				NA Y	, N	
10. Did all sample labels and tags agree with custo11. Were appropriate bottles/containers and volum		. idied0			NA Y NA Y	, N N	
12. Were the pH-preserved bottles (see SMO GEN			D Indicate	in the table helm		N N	
13. Were VOA vials received without headspace?			i maicale i	in the table betor	NA Y	N	
14. Was C12/Res negative?	matcase in the table be	etow.				N	
15. Were samples received within the method spe-	nified time limit? If not	matata tha ar	ear halanı or	nd notify the DM	NA Y	N	
16. Were 100ml sterile microbiology bottles filled	·		}	N		Overfille	A
16. Were foom sterne microbiology bottles fined	exactly to the 100mi m	iark? (N	4 J	IN	Ondermied	Overifine	u
Sample ID on Bottle	Sample II	on COC			Identified by:	·	
		<u></u>					
	<u>L</u>						
		<u> </u>				,	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sample ID		ead- pace Broke	pH Re	Volun eagent adde		initiais	Time
Notes, Discrepancies, Resolutions:	_ 		1			!	
G:\SMO\2024 Forms	SC	DP: SMO-G	EN		Reviewed:	NP 1/3	/2024

174 of 283

Cooler Receipt and Preservation Form

Temp Blank	Sample Temp	IR Gun	Cooler #/C	OC ID /	NA .	Out Indica	of tem ate with	Х.	PM Notifie If out of t		Tracking Nur	nber NA	File
12.2	3. \$ 5.5	1801											
												7	
San	nple ID on Bottle			Sample	ID on C	:oc		210		id ld	entified by:		
1941													
	Sample ID		ottle Count	Out of Temp	Head-	Broke	рН		Reagent	Volume added	Reagent Lot	Initials	Time
								_					
stes, Discrep Sum India	pancies & Resolution Te	utions: 10	blan blan	as a Ne (it is	HOP 3 L	of nd	er	coolers · He	sylv Sylv	n topo	Not	

G:\SMO\2024 Forms

SOP: SMO-GEN

Reviewed: NP 1/3/2024

175 of 283

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- $N \quad \text{ The result is presumptive. The analyte was tentatively identified, but \ a confirmation analysis was not performed.} \\$
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Date Collected: 10/4/24

Date Received: 10/8/24

Service Request: K2410643

Sample Name: TL-WRA-0.5-3 **Lab Code:** K2410643-001

Sample Matrix: Soil

Analysis Method

Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: TL-WRB-0.5-4 Date Collected: 10/4/24

Lab Code: K2410643-002 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: TL-WRA-0.5-1-DS-2 Date Collected: 10/4/24

Lab Code: K2410643-003 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN
6020B MSOLADEY JCHAN

Sample Name: SH-WRB-0.5-2 Date Collected: 10/4/24

Lab Code: K2410643-004 Date Received: 10/8/24 Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Analyst Summary report

Service Request: K2410643

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

 Sample Name:
 SH-WRC-0.5-1
 Date Collected:
 10/4/24

 Lab Code:
 K2410643-005
 Date Received:
 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN

Sample Name: CS-SD-1 Date Collected: 10/5/24

Lab Code: K2410643-006 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-2 Date Collected: 10/3/24

Lab Code: K2410643-007 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-3 Date Collected: 10/3/24

Lab Code: K2410643-008 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Printed 10/23/2024 5:16:32 PM Superset Reference:24-0000711615 rev 00

Analyst Summary report

Service Request: K2410643

Analyzed By

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Sample Name: CS-SD-4 Date Collected: 10/3/24

Lab Code: K2410643-009 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-5 Date Collected: 10/4/24

Lab Code: K2410643-010 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-6 Date Collected: 10/4/24

Lab Code:K2410643-011Date Received:10/8/24Sample Matrix:Soil

Extracted/Digested By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-7 Date Collected: 10/4/24

Lab Code: K2410643-012 **Date Received:** 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Printed 10/23/2024 5:16:33 PM Superset Reference:24-0000711615 rev 00

Analyst Summary report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines/0031.005.001

 Sample Name:
 CS-SD-7-DUP
 Date Collected:
 10/4/24

 Lab Code:
 K2410643-013
 Date Received:
 10/8/24

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Name: CS-SD-8 Date Collected: 10/5/24

Lab Code: K2410643-014 Date Received: 10/8/24 Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

160.3 Modified ZBIBI

6020B KLAWSON JCHAN 7471B KLINN KLINN

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24 14:05

Service Request: K2410643

Sample Matrix:

Project:

Soil

Date Received: 10/08/24 11:45

Sample Name: TL-WRA-0.5-3 Basis: Dry

Lab Code: K2410643-001

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	454	mg/Kg	0.42	0.05	5	10/22/24 13:49	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:25 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: TL-WRB-0.5-4 Basis: Dry

Lab Code: K2410643-002

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	194	mg/Kg	0.42	0.05	5	10/22/24 13:58	10/14/24	

Analytical Report

Terraphase Engineering Inc. **Client:**

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

TL-WRA-0.5-1-DS-2 **Sample Name:** Basis: Dry

Lab Code: K2410643-003

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	550	mg/Kg	4.9	0.6	50	10/22/24 16:11	10/17/24	
Lead	6020B	218	mg/Kg	0.49	0.19	50	10/22/24 16:11	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: TL-WRA-0.5-1-DS-2 Basis: Dry

Lab Code: K2410643-003

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	14.4	mg/Kg	1.9	0.2	20	10/17/24 11:50	10/16/24	
Lead	6020B	83.3	mg/Kg	0.19	0.08	20	10/17/24 11:50	10/16/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

TL-WRA-0.5-1-DS-2 **Sample Name:** Basis: Dry

Lab Code: K2410643-003

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	267	mg/Kg	0.44	0.05	5	10/22/24 14:00	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410643 **Date Collected:** 10/04/24 10:05

Sample Matrix: Soil

opper Grame Creek Willies, 0031.003.00

Date Received: 10/08/24 11:45

Sample Name:

SH-WRB-0.5-2

Lab Code:

Project:

K2410643-004

Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	80.8	mg/Kg	0.39	0.05	5	10/22/24 14:02	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix:

Soil

SH-WRC-0.5-1

Sample Name: Lab Code:

Project:

K2410643-005

Service Request: K2410643

Date Collected: 10/04/24 10:15

Date Received: 10/08/24 11:45

Basis: Dry

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	14.4	mg/Kg	0.44	0.05	5	10/22/24 14:08	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/05/24 10:06 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-1 Basis: Dry

Lab Code: K2410643-006

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.26	mg/Kg	0.13	0.05	5	10/22/24 14:10	10/14/24	
Arsenic	6020B	5.8	mg/Kg	1.3	0.2	5	10/22/24 14:10	10/14/24	
Cadmium	6020B	0.234	mg/Kg	0.053	0.019	5	10/22/24 14:10	10/14/24	
Chromium	6020B	7.81	mg/Kg	0.53	0.16	5	10/22/24 14:10	10/14/24	
Lead	6020B	4.12	mg/Kg	0.13	0.05	5	10/22/24 14:10	10/14/24	
Mercury	7471B	0.031 J	mg/Kg	0.053	0.005	1	10/15/24 12:21	10/14/24	
Silver	6020B	0.282	mg/Kg	0.053	0.011	5	10/22/24 14:10	10/14/24	
Zinc	6020B	45.0	mg/Kg	1.3	0.5	5	10/22/24 14:10	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/03/24 15:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-2 Basis: Dry

Lab Code: K2410643-007

Project:

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.038 J	mg/Kg	0.054	0.022	5	10/22/24 14:12	10/14/24	
Arsenic	6020B	4.52	mg/Kg	0.54	0.07	5	10/22/24 14:12	10/14/24	
Cadmium	6020B	0.038	mg/Kg	0.022	0.008	5	10/22/24 14:12	10/14/24	
Chromium	6020B	2.49	mg/Kg	0.22	0.07	5	10/22/24 14:12	10/14/24	
Lead	6020B	0.927	mg/Kg	0.054	0.022	5	10/22/24 14:12	10/14/24	
Mercury	7471B	ND U	mg/Kg	0.024	0.002	1	10/15/24 12:22	10/14/24	
Silver	6020B	0.043	mg/Kg	0.022	0.004	5	10/22/24 14:12	10/14/24	
Zinc	6020B	16.9	mg/Kg	0.54	0.22	5	10/22/24 14:12	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/03/24 09:00 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-3 Basis: Dry

Lab Code: K2410643-008

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.069	mg/Kg	0.063	0.025	5	10/22/24 14:14	10/14/24	
Arsenic	6020B	11.7	mg/Kg	0.63	0.08	5	10/22/24 14:14	10/14/24	
Cadmium	6020B	0.062	mg/Kg	0.025	0.009	5	10/22/24 14:14	10/14/24	
Chromium	6020B	4.90	mg/Kg	0.25	0.08	5	10/22/24 14:14	10/14/24	
Lead	6020B	1.53	mg/Kg	0.063	0.025	5	10/22/24 14:14	10/14/24	
Mercury	7471B	0.923	mg/Kg	0.027	0.003	1	10/15/24 12:24	10/14/24	
Silver	6020B	0.112	mg/Kg	0.025	0.005	5	10/22/24 14:14	10/14/24	
Zinc	6020B	29.7	mg/Kg	0.63	0.25	5	10/22/24 14:14	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/03/24 14:24 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-4 Basis: Dry

Lab Code: K2410643-009

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.892	mg/Kg	0.058	0.023	5	10/22/24 14:16	10/14/24	
Arsenic	6020B	32.7	mg/Kg	0.58	0.07	5	10/22/24 14:16	10/14/24	
Cadmium	6020B	1.09	mg/Kg	0.023	0.008	5	10/22/24 14:16	10/14/24	
Chromium	6020B	9.05	mg/Kg	0.23	0.07	5	10/22/24 14:16	10/14/24	
Lead	6020B	25.6	mg/Kg	0.058	0.023	5	10/22/24 14:16	10/14/24	
Mercury	7471B	0.011 J	mg/Kg	0.029	0.003	1	10/15/24 12:26	10/14/24	
Silver	6020B	0.961	mg/Kg	0.023	0.005	5	10/22/24 14:16	10/14/24	
Zinc	6020B	47.2	mg/Kg	0.58	0.23	5	10/22/24 14:16	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 09:30 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-5 Basis: Dry

Lab Code: K2410643-010

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.146	mg/Kg	0.051	0.020	5	10/22/24 14:18	10/14/24	
Arsenic	6020B	14.1	mg/Kg	0.51	0.06	5	10/22/24 14:18	10/14/24	
Cadmium	6020B	0.169	mg/Kg	0.020	0.007	5	10/22/24 14:18	10/14/24	
Chromium	6020B	5.03	mg/Kg	0.20	0.06	5	10/22/24 14:18	10/14/24	
Lead	6020B	2.79	mg/Kg	0.051	0.020	5	10/22/24 14:18	10/14/24	
Mercury	7471B	0.056	mg/Kg	0.025	0.002	1	10/15/24 12:27	10/14/24	
Silver	6020B	0.582	mg/Kg	0.020	0.004	5	10/22/24 14:18	10/14/24	
Zinc	6020B	32.7	mg/Kg	0.51	0.20	5	10/22/24 14:18	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 15:21 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-6 Basis: Dry

Lab Code: K2410643-011

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.147	mg/Kg	0.045	0.018	5	10/22/24 14:20	10/14/24	
Arsenic	6020B	16.6	mg/Kg	0.45	0.05	5	10/22/24 14:20	10/14/24	
Cadmium	6020B	0.146	mg/Kg	0.018	0.006	5	10/22/24 14:20	10/14/24	
Chromium	6020B	4.76	mg/Kg	0.18	0.05	5	10/22/24 14:20	10/14/24	
Lead	6020B	2.74	mg/Kg	0.045	0.018	5	10/22/24 14:20	10/14/24	
Mercury	7471B	0.033	mg/Kg	0.021	0.002	1	10/15/24 12:29	10/14/24	
Silver	6020B	0.200	mg/Kg	0.018	0.004	5	10/22/24 14:20	10/14/24	
Zinc	6020B	37.1	mg/Kg	0.45	0.18	5	10/22/24 14:20	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 13:35 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-7 Basis: Dry

Lab Code: K2410643-012

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.355	mg/Kg	0.048	0.019	5	10/22/24 14:21	10/14/24	
Arsenic	6020B	24.2	mg/Kg	0.48	0.06	5	10/22/24 14:21	10/14/24	
Cadmium	6020B	0.538	mg/Kg	0.019	0.007	5	10/22/24 14:21	10/14/24	
Chromium	6020B	10.6	mg/Kg	0.19	0.06	5	10/22/24 14:21	10/14/24	
Lead	6020B	12.1	mg/Kg	0.048	0.019	5	10/22/24 14:21	10/14/24	
Mercury	7471B	0.097	mg/Kg	0.023	0.002	1	10/15/24 12:30	10/14/24	
Silver	6020B	1.10	mg/Kg	0.019	0.004	5	10/22/24 14:21	10/14/24	
Zinc	6020B	168	mg/Kg	0.48	0.19	5	10/22/24 14:21	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/04/24 13:40 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-7-DUP Basis: Dry

Lab Code: K2410643-013

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.334	mg/Kg	0.054	0.022	5	10/22/24 14:23	10/14/24	
Arsenic	6020B	24.3	mg/Kg	0.54	0.06	5	10/22/24 14:23	10/14/24	
Cadmium	6020B	0.446	mg/Kg	0.022	0.008	5	10/22/24 14:23	10/14/24	
Chromium	6020B	9.10	mg/Kg	0.22	0.06	5	10/22/24 14:23	10/14/24	
Lead	6020B	12.8	mg/Kg	0.054	0.022	5	10/22/24 14:23	10/14/24	
Mercury	7471B	0.099	mg/Kg	0.024	0.002	1	10/15/24 12:35	10/14/24	
Silver	6020B	1.62	mg/Kg	0.022	0.004	5	10/22/24 14:23	10/14/24	
Zinc	6020B	102	mg/Kg	0.54	0.22	5	10/22/24 14:23	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/05/24 10:30 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-8 Basis: Dry

Lab Code: K2410643-014

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.406	mg/Kg	0.058	0.023	5	10/22/24 14:25	10/14/24	
Arsenic	6020B	35.2	mg/Kg	0.58	0.07	5	10/22/24 14:25	10/14/24	
Cadmium	6020B	0.316	mg/Kg	0.023	0.008	5	10/22/24 14:25	10/14/24	
Chromium	6020B	9.13	mg/Kg	0.23	0.07	5	10/22/24 14:25	10/14/24	
Lead	6020B	10.7	mg/Kg	0.058	0.023	5	10/22/24 14:25	10/14/24	
Mercury	7471B	0.096	mg/Kg	0.026	0.003	1	10/15/24 12:37	10/14/24	
Silver	6020B	1.26	mg/Kg	0.023	0.005	5	10/22/24 14:25	10/14/24	
Zinc	6020B	103	mg/Kg	0.58	0.23	5	10/22/24 14:25	10/14/24	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:05 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil **Date Received:** 10/08/24 11:45

TL-WRA-0.5-3 **Sample Name:** Basis: As Received

Lab Code: K2410643-001

Inorganic Parameters

Analyte Name Analysis Method Result MRL Dil. **Date Analyzed** Q Units 95.0 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/04/24 14:25 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil **Date Received:** 10/08/24 11:45

TL-WRB-0.5-4 **Sample Name:** Basis: As Received

Lab Code: K2410643-002

Inorganic Parameters

Analyte Name Analysis Method Result MRL Dil. **Date Analyzed** Q Units 95.5 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Analytical Report

Terraphase Engineering Inc. **Client:**

K2410643-003

Service Request: K2410643 **Date Collected:** 10/04/24 14:00 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Lab Code:

Date Received: 10/08/24 11:45

TL-WRA-0.5-1-DS-2 **Sample Name:**

Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids Total	160 3 Modified	93.4	Percent	_	1	10/10/24 15:28	<u>.</u>

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/04/24 10:05

Sample Matrix: Soil Date Received: 10/08/24 11:45

Sample Name: SH-WRB-0.5-2 Basis: As Received

Lab Code: K2410643-004

Inorganic Parameters

Analyte NameAnalysis MethodResultUnitsMRLDil.Date AnalyzedQSolids, Total160.3 Modified94.1Percent-110/10/24 15:28

Service Request: K2410643

Analytical Report

Client: Terraphase Engineering Inc.

> **Date Collected:** 10/04/24 10:15 Upper Granite Creek Mines/0031.005.001

Soil **Date Received:** 10/08/24 11:45

Sample Matrix:

Project:

SH-WRC-0.5-1 **Sample Name:** Basis: As Received

Lab Code: K2410643-005

Inorganic Parameters

Analyte Name Analysis Method Result MRL Dil. **Date Analyzed** Q Units 92.3 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Service Request: K2410643

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Date Collected:** 10/05/24 10:06 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

Sample Name: CS-SD-1 Basis: As Received

Lab Code: K2410643-006

Project:

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	34.2	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/03/24 15:05 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

CS-SD-2 **Sample Name:** Basis: As Received

Lab Code: K2410643-007

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	76.9	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/03/24 09:00 **Date Received:** 10/08/24 11:45

Sample Matrix:

Soil

Basis: As Received

Service Request: K2410643

Sample Name:

Project:

CS-SD-3

Lab Code: K2410643-008

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	69.1	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Terraphase Engineering Inc. Service Request: K2410643

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/03/24 14:24

Sample Matrix: Soil Date Received: 10/08/24 11:45

Sample Name: CS-SD-4 Basis: As Received

Lab Code: K2410643-009

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	64.9	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/04/24 09:30

Sample Matrix: Soil Date Received: 10/08/24 11:45

Sample Name: CS-SD-5 Basis: As Received

Lab Code: K2410643-010

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	71.1	Percent	-	1	10/10/24 15:28	

Service Request: K2410643

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24 15:21

Service Request: K2410643

Sample Matrix:

Soil

Date Received: 10/08/24 11:45

Sample Name:

Lab Code:

Project:

CS-SD-6

K2410643-011

Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	82.1	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410643

Date Collected: 10/04/24 13:35

Sample Matrix:

Soil

Date Received: 10/08/24 11:45

Sample Name:

Project:

CS-SD-7

Lab Code: K2410643-012 Basis: As Received

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	80.2	Percent	-	1	10/10/24 15:28	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410643 **Date Collected:** 10/04/24 13:40

Sample Matrix:

Soil

Date Received: 10/08/24 11:45

Basis: As Received

Sample Name:

Project:

CS-SD-7-DUP

Lab Code:

K2410643-013

Inorganic Parameters

Analyte Name Analysis Method Result Units MRL Dil. **Date Analyzed** Q 73.2 Solids, Total 160.3 Modified Percent 10/10/24 15:28

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Service Request: K2410643 **Date Collected:** 10/05/24 10:30 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 11:45 **Sample Matrix:** Soil

CS-SD-8 **Sample Name:** Basis: As Received

Lab Code: K2410643-014

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total	160.3 Modified	69.0	Percent	=	1	10/10/24 15:28	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416426-03

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7471B	ND U	mg/Kg	0.02	0.002	1	10/15/24 09:02	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416427-03

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	ND U	mg/Kg	0.05	0.020	5	10/22/24 14:55	10/14/24	
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 14:55	10/14/24	
Cadmium	6020B	ND U	mg/Kg	0.020	0.007	5	10/22/24 14:55	10/14/24	
Chromium	6020B	0.06 J	mg/Kg	0.20	0.06	5	10/22/24 14:55	10/14/24	
Lead	6020B	0.036 J	mg/Kg	0.05	0.020	5	10/22/24 14:55	10/14/24	
Silver	6020B	ND U	mg/Kg	0.020	0.004	5	10/22/24 14:55	10/14/24	
Zinc	6020B	0.27 J	mg/Kg	0.5	0.20	5	10/22/24 14:55	10/14/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416652-01

Total Metals – IVBA Analysis

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/22/24 15:43	10/17/24	
Lead	6020B	0.043 J	mg/Kg	0.05	0.020	5	10/22/24 15:43	10/17/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:SoilDate Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ2416789-01

IVBA Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	ND U	mg/Kg	0.5	0.06	5	10/17/24 10:57	10/16/24	
Lead	6020B	ND U	mg/Kg	0.05	0.020	5	10/17/24 10:57	10/16/24	

QA/QC Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Soil

Project:

Service Request: Date Collected:

K2410643

Date Received:

10/04/24 10/08/24

Date Analyzed:

10/22/24

Date Extracted:

10/14/24

Matrix Spike Summary

Total Metals

TL-WRA-0.5-3 Sample Name: Lab Code: K2410643-001

Units: Basis: mg/Kg Dry

Analysis Method: Prep Method:

6020B **EPA 3050B**

Matrix Spike

KQ2416427-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Antimony	1.54	23.7	85.7	26 N	75-125
Arsenic	454	510	85.7	65 #	75-125
Cadmium	12.3	20.7	8.57	97	75-125
Chromium	2.38	38.0	34.3	104	75-125
Lead	183	244	85.7	71 N	75-125
Silver	2.80	11.4	8.57	101	75-125
Zinc	517	610	85.7	108 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/23/2024 5:16:36 PM

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. **Service Request:** K2410643

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/04/24 **Date Received:** 10/08/24

Soil **Sample Matrix:**

Date Analyzed: 10/22/24

Replicate Sample Summary

Total Metals

Duplicate

Sample Name: TL-WRA-0.5-3 Units: mg/Kg Lab Code: K2410643-001

Basis: Dry

Analyte Name	Analysis Method	MRL	MDL	Sample Result	Sample KQ2416427-01 Result	Average	RPD	RPD Limit
Antimony	6020B	0.043	0.017	1.54	1.76	1.65	13	20
Arsenic	6020B	0.43	0.05	454	453	454	<1	20
Cadmium	6020B	0.017	0.006	12.3	12.1	12.2	2	20
Chromium	6020B	0.17	0.05	2.38	2.33	2.36	2	20
Lead	6020B	0.043	0.017	183	177	180	4	20
Silver	6020B	0.017	0.003	2.80	3.57	3.19	24 *	20
Zinc	6020B	0.43	0.17	517	510	514	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/15/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K2410643

Lab Control Sample KQ2416426-04

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsMercury7471B0.5200.50010480-120

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410643 **Project:** Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Lab Control Sample

KQ2416427-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020B	99.4	100	99	80-120
Arsenic	6020B	105	100	105	80-120
Cadmium	6020B	10.3	10.0	103	80-120
Chromium	6020B	42.3	40.0	106	80-120
Lead	6020B	108	100	108	80-120
Silver	6020B	10.5	10.0	105	80-120
Zinc	6020B	105	100	105	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/22/24

Sample Matrix: Soil

Lab Control Sample Summary Total Metals – IVBA Analysis

Units:mg/Kg
Basis:Dry

Service Request: K2410643

Lab Control Sample

KQ2416652-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	108	100	108	80-120
Lead	6020B	111	100	111	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Analyzed: 10/17/24

Sample Matrix: Soil

Lab Control Sample Summary
IVBA Metals

Units:mg/Kg
Basis:Dry

Service Request: K2410643

Lab Control Sample

KQ2416789-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	6020B	92.9	100	93	80-120
Lead	6020B	105	100	105	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410643

Project Upper Granite Creek Mines/0031.005.001

Date Collected: 10/04/24

Sample Matrix: Soil

Lab Code:

Date Received: 10/08/24 **Date Analyzed:** 10/10/24

Replicate Sample Summary

Inorganic Parameters

Sample Name: TL-WRA-0.5-3

Units: Percent

Ba

Basis: As Received

K2410643-001 **Duplicate**

Sample

K2410643-

. 00

Sample

001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSolids, Total160.3 Modified-95.094.694.8<1</td>20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410643

Project Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/05/24

Sample Matrix:

Date Received: 10/08/24

Soil

Date Analyzed: 10/10/24

Replicate Sample Summary

Inorganic Parameters

Sample Name:

CS-SD-8

Units: Percent

Lab Code:

K2410643-014

Basis: As Received

Duplicate

Sample

K2410643-

Sample

014DUP

Analyte Name Analysis Method

Result **MRL**

Result

RPD RPD Limit Average

Solids, Total

160.3 Modified

69.0

69.5

69.3

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/23/2024 5:16:39 PM

Superset Reference:24-0000711615 rev 00

Don Malkemus Terraphase Engineering Inc. 610 SW Broadway, Suite 405 Portland, OR 97205

Laboratory Results for: Upper Granite Creek Mines

Dear Don.

Enclosed are the results of the sample(s) submitted to our laboratory October 08, 2024 For your reference, these analyses have been assigned our service request number **K2410651**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

noe D. Oar

ALS Group USA, Corp. dba ALS Environmental

Mark Harris

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client:Terraphase Engineering Inc.Service Request: K2410651Project:Upper Granite Creek MinesDate Received: 10/08/2024

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twelve water samples were received for analysis at ALS Environmental on 10/08/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

Approved by Moe D. Dark

Date 10/22/2024

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: CS-SW-1		Lab ID: K2410651-004								
Analyte	Results	Flag	MDL	MRL	Units	Method				
Antimony	0.036	J	0.020	0.050	ug/L	6020B				
Arsenic	0.36	J	0.09	0.50	ug/L	6020B				
Calcium	5590		6	20	ug/L	6020B				
Chromium	0.11	J	0.03	0.20	ug/L	6020B				
Hardness, Total as CaCO3	18.1		0.023	0.09	mg/L	SM 2340 B				
Lead	0.013	J	0.006	0.020	ug/L	6020B				
Magnesium	996		2	10	ug/L	6020B				
CLIENT ID: CS-SW-2		Lab	ID: K2410	651-005						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Antimony	0.025	J	0.020	0.050	ug/L	6020B				
Arsenic	0.67		0.09	0.50	ug/L	6020B				
Calcium	6070		6	20	ug/L	6020B				
Chromium	0.11	J	0.03	0.20	ug/L	6020B				
Hardness, Total as CaCO3	19.7		0.023	0.09	mg/L	SM 2340 B				
Lead	0.012	J	0.006	0.020	ug/L	6020B				
Magnesium	1110		2	10	ug/L	6020B				
LIENT ID: CS-SW-2-Dup	Lab ID: K2410651-006									
Analyte	Results	Flag	MDL	MRL	Units	Method				
Antimony	0.031	J	0.020	0.050	ug/L	6020B				
Arsenic	0.61		0.09	0.50	ug/L	6020B				
Calcium	5920		6	20	ug/L	6020B				
Chromium	0.11	J	0.03	0.20	ug/L	6020B				
Hardness, Total as CaCO3	19.3		0.023	0.09	mg/L	SM 2340 B				
Lead	0.007	J	0.006	0.020	ug/L	6020B				
Magnesium	1090		2	10	ug/L	6020B				
LIENT ID: CS-SW-3		Lab	ID: K2410	651-007						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Antimony	0.038	J	0.020	0.050	ug/L	6020B				
Arsenic	0.87		0.09	0.50	ug/L	6020B				
Calcium	6490		6	20	ug/L	6020B				
Chromium	0.12	J	0.03	0.20	ug/L	6020B				
Hardness, Total as CaCO3	21.0		0.023	0.09	mg/L	SM 2340 B				
Lead	0.012	J	0.006	0.020	ug/L	6020B				
Magnesium	1170		2	10	ug/L	6020B				
LIENT ID: CS-SW-4		Lab	ID: K2410	651-008						
Analyte	Results	Flag	MDL	MRL	Units	Method				
······································										

0.09

0.50

ug/L

6020B

0.92

Arsenic

SAMPLE DETECTION SUMMARY

CLIENT ID: CS-SW-4		Lak	ID: K2410	651-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
Calcium	8410		6	20	ug/L	6020B
Chromium	0.14	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	27.5		0.023	0.09	mg/L	SM 2340 B
Magnesium	1590		2	10	ug/L	6020B
LIENT ID: CS-SW-5		Lak	ID: K2410	651-009		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.098		0.020	0.050	ug/L	6020B
Arsenic	1.78		0.09	0.50	ug/L	6020B
Cadmium	0.010	J	0.008	0.020	ug/L	6020B
Calcium	9550		6	20	ug/L	6020B
Chromium	0.11	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	31.8		0.023	0.09	mg/L	SM 2340 B
Lead	0.018	J	0.006	0.020	ug/L	6020B
Magnesium	1930		2	10	ug/L	6020B
Zinc	1.8	J	0.5	2.0	ug/L	6020B
LIENT ID: CS-SW-6		Lak	ID: K2410	651-010		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.076		0.020	0.050	ug/L	6020B
Arsenic	2.04		0.09	0.50	ug/L	6020B
Calcium	9710		6	20	ug/L	6020B
Chromium	0.11	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	32.3		0.023	0.09	mg/L	SM 2340 B
Lead	0.013	J	0.006	0.020	ug/L	6020B
Magnesium	1960		2	10	ug/L	6020B
Zinc	0.7	J	0.5	2.0	ug/L	6020B
LIENT ID: CS-SW-7		Lat	ID: K2410	651-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
Antimony	0.104		0.020	0.050	ug/L	6020B
Arsenic	1.99		0.09	0.50	ug/L	6020B
Cadmium	0.019	J	0.008	0.020	ug/L	6020B
Calcium	10900		6	20	ug/L	6020B
Chromium	0.09	J	0.03	0.20	ug/L	6020B
Hardness, Total as CaCO3	36.3		0.023	0.09	mg/L	SM 2340 B
Lead	0.022		0.006	0.020	ug/L	6020B
Magnesium	2200		2	10	ug/L	6020B
Magneolam						

0.5

2.0

ug/L

6020B

8.0

Zinc

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

	Lab	ID: K2410	651-012						
Results	Flag	MDL	MRL	Units	Method				
0.108		0.020	0.050	ug/L	6020B				
2.21		0.09	0.50	ug/L	6020B				
0.020	J	0.008	0.020	ug/L	6020B				
10900		6	20	ug/L	6020B				
0.11	J	0.03	0.20	ug/L	6020B				
36.7		0.023	0.09	mg/L	SM 2340 B				
0.084		0.006	0.020	ug/L	6020B				
2310		2	10	ug/L	6020B				
0.8	J	0.5	2.0	ug/L	6020B				
	Lab ID: K2410651-001								
Results	Flag	MDL	MRL	Units	Method				
0.64		0.09	0.50	ug/L	6020B				
	Lab	ID: K2410	651-002						
Results	Flag	MDL	MRL	Units	Method				
3.12		0.09	0.50	ug/L	6020B				
	Lab	ID: K2410	651-003						
Results	Flag	MDL	MRL	Units	Method				
0.11	J	0.09	0.50	ug/L	6020B				
	0.108 2.21 0.020 10900 0.11 36.7 0.084 2310 0.8 Results 0.64 Results 3.12	Results Flag	Results Flag MDL 0.108 0.020 2.21 0.09 0.020 J 0.008 10900 6 0.11 J 0.03 36.7 0.023 0.084 0.006 2310 2 0.8 J 0.5 Lab ID: K2410	0.108 0.020 0.050 2.21 0.09 0.50 0.020 J 0.008 0.020 10900 6 20 0.11 J 0.03 0.20 36.7 0.023 0.09 0.084 0.006 0.020 2310 2 10 0.8 J 0.5 2.0 Lab ID: K2410651-001 Results Flag MDL MRL 3.12 0.09 0.50 Lab ID: K2410651-003 Results Flag MDL MRL MRL MRL MRL MRL	Results Flag MDL MRL Units				

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Terraphase Engineering Inc. Service Request:K2410651

Project: Upper Granite Creek Mines/0031.005.001

SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
EB-2024 1003	10/5/2024	0830
EB-2024 1004	10/4/2024	0800
EB-2024 1005	10/5/2024	0830
CS-SW-1	10/5/2024	1004
CS-SW-2	10/3/2024	1700
CS-SW-2-Dup	10/3/2024	1701
CS-SW-3	10/3/2024	1600
CS-SW-4	10/3/2024	1419
CS-SW-5	10/4/2024	0925
CS-SW-6	10/4/2024	1523
CS-SW-7	10/4/2024	1334
CS-SW-8	10/5/2024	1035
	EB-2024 1003 EB-2024 1004 EB-2024 1005 CS-SW-1 CS-SW-2 CS-SW-2-Dup CS-SW-3 CS-SW-4 CS-SW-5 CS-SW-6 CS-SW-7	EB-2024 1003 10/5/2024 EB-2024 1004 10/4/2024 EB-2024 1005 10/5/2024 CS-SW-1 10/5/2024 CS-SW-2 10/3/2024 CS-SW-2-Dup 10/3/2024 CS-SW-3 10/3/2024 CS-SW-4 10/3/2024 CS-SW-5 10/4/2024 CS-SW-6 10/4/2024 CS-SW-7 10/4/2024

ALS materials antak

140510

CHAIN OF CUSTODY

0510

(001, 002	2,003	***************************************	

SR#_/(24/06)
COC Set 2 of 8
COC#

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

Page 1 of 1

oject Name Upper Gamile Crack Mines	Project No	umber: 01	31.005-001		1		2		180D		,	<u>5</u>			************					1						•	r ugc	1 01 1
oject Manager Oon Ma (6 MJ)						6	700		<u></u>		0000	n n								- [
	Inc.			· · · · · · · · · · · · · · · · · · ·	ERS			Total)				Calc								1								
dress, City, State 610 Sh Brigaling	5-16 405	CONTAINERS			ed To	ਰ				İ							1											
one # (503) 9us -0384	email o	dn.malk	emse terrapo	U. COM				(Siev	Extra	<u>ب</u>	ąŋ.	lardı								1								
npler Signature		rinted Nam			유	Hg H	윤	VBA	WBA	Meta	GrindSub	1/80																
M	Don	Malk			NUMBER	7470A1Hg	7471B / Hg	50208 / IVBA (Sieved	60208 / IVBA Extract	5020B / Metals	Grind / G	SM 2340 B / Hardness	<u> </u>			<u>v</u>		Re	marks									
CLIENT SAMPLE ID	LABID		MPLING Fime State	Matrix					·																			
EB-2029 1003		10/5	0830	H20	1					X																		
EB-20241004		1014	0800	H20	1					×															•			
EB-2024 1005		tal5	0830	H20	1					X																		
UMM-628-05-4		10(5	1335	50.11	7.													1- pJ.										
1MA-WRB-0.5-2		10 2	134	50.1	2					X										- 11								
-MA-620-0-5-2		1013	1045	Soil	2													+ 69	1 HOL	0								
1MM - 4RB-0.5-2-05		10/2	1325	Soil	٦					X								+ 690	<u> </u>									
MM - WRB - 0.5-1		10/3	1035	Sall	2					×								+ 1000	4106									
MM - WRB - 8.5 - 3		1013	1055	Sail	2													1 649	Hoi	O.								
LAM- WEB -0.5-1-04?		10/3		Seil	2					<u> </u>]			Ì											
leport Requirements		ice Inf	ormation													Ω	ircle	which met	als are to b	e analy	zed							
Routine Report: Method Blank, Surrogate, as required	P.O.#_ Bill To:	ape to	inhise con							-	_														TI Sn		-	
II. Report Dup., MS, MSD				_	····							Sb	Ва	Be											Sr TI S		n Hg	
as required III. CLP Like Summary (no raw data)	24 5 [hr. Day	equiremer 48 hr.	nts	pecia	i instr	uctio	ins/C	Jomr	neni	s;				rinc	dicat	e St	ate Hyd	rocarboi	n Proc	edure: /	AK CA	Wi	Northw	est Othe	€ [_(Circle	One)
IV. Data Validation Report	Sta	andard																										
V. EDD		Requested Re	eport Date																									
Relinquished By:	F	Receive	d By:		Re	linqı	ish.	ed I	Зу:		T		75	Rece	ive	el By	<i>ī</i> :			Relir	quishe	d By:		1	,Re	ceivec	Ву:	
ature	Signature			Sign	ature						Si	gnat	ure) M	R	ed	Cer	BCh	Signatu	re				Sign	ature			
on Malkemo	Printed Na	me La	Bih		ed Na		<i></i>	cit	3; J	c		Signature Naw Redesce Printed Name A18					3	Printed	Name)			Prin	ted Name	9			
TEI	Firm AL			Firm	AL								2/c	(12)	4	١٢	14	5	Firm					Firm				
Time 10/9 1306	Date/Time	10/08/	24 1306	Date	/Time	10/0	8/2	2/	19	15	D	ate/T	ime						Date/Ti	me				Date	e/Time			

140510

CHAIN OF CUSTODY

140510

001, 002, 003	44,

	1/2//1/
SR#	10001
COC Set_	1 of 4
0004	

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

Page 1 of 1

· · · · · · · · · · · · · · · · · · ·		·							١	ww.a	isgiol	pai.com												Г	aye 1	1 (1)
roject Name Utter Graik Creek Min	Project)	iumber:0031.005.001			6	787		1800		0666				-												
DON WATER	Ů] "		T	_	=		- 5i	-		Т													
ompany Terraphex Engineering				CONTAINERS	1		Total)		1	-	Carc							ļ								
dress, City, State 610 SW Ground	way Svite 4	5		Z Z	ł		ad Te	ij										j								
none # (53) 943-0384	email d	nimile mu @kiriher	·{m	8	ļ		(Sieved	Extra	<u>-</u>	g	ard							1								
ampler Signature	l "	Printed Name		R P	₽₽	₽	VBA	IVBA	Meta	Srinds	18/															
M	100	n Malkinus	<u> </u>	NUMBER	7470A / Hg T	7471B / Hg	80208 / IVBA	8020B / IVBA Extraci	5020B / Metals	Grind / GrindSub	SM 2340 B / Hardness			L	ع	Re	emarks	_								
CLIENT SAMPLE ID	LABID	SAMPLING Date Time State	Matrix																							
C5-5W-1		10/5 1035 1004		I	χ				X		X							·								
(5-5W-Z		10/3 1700	H20	١	X				X		×															
CS-5W-Z-100P		1013 1701	HLO	1	X				X		X															
<u>C5-Sw-3</u>		10/3 1600	420	1	1				*		λ															
C5-5W-4		10/3 1419	H20	1	X				4	_	لد		_													
C5-5W-5		10/4 0925	H20	1	k				*		논														•	
C5-5W-6		10/4 1523	H20	1	x				X		<u>\ </u>		_													
C5-SW-7		1014 1334	HLO	1	x				X		x															
C5-5W-8		1015 1035	HŁO	<u> </u>	×			_	<u>X</u>	\dashv	×		╀-	<u> </u>												
		<u> </u>		<u> </u>										<u> </u>										······································		
Report Requirements	P.O.#	oice Information												9	<u>Circle v</u>	which me	tais are to l	be analy	zed							
_ I. Routine Report: Method Blank, Surrogate, as required	Bill To	ap@temphil. Com							_	, -				-						_	-		TI Sn V		•	
II. Report Dup., MS, MSD			_								Sb	ва ве											ir TI Sn			
as required III. CLP Like Summary	Turnar	ound Requireme	nts	pecia	inst	ructio	ons/C	Jomr	nent	s:			-11	ldica	te Sta	ate Hyc	irocarbo	n Pro	cedure: /	AK CA	VVI I	Northwe	st Other	((Circle C)ne)
(no raw data)	2	4 hr48 hr.																								
_ IV. Data Validation Report	-X-s	tandard																								
_V. EDD		Requested Report Date																								
Relinquished By:		Received By:		Re	ling	uish	ed	Ву:			1	Re	ceive	d B	y:			Reli	nquishe	d By:			Rec	eived	Ву:	
nature	Signature	,	Sign	ature		7				810	anat Vi	UTE OM 1	00	el o	ſs.	PIA	Signati	иге				Signa	ture	<u>.</u>		
Don Mikemy	Printed N.	ame ,	Print	ed Na	ame	Late	 } .,	~		Pri	inte	d Name				-	Printed	Nam	e			Printe	d Name			
TEI	Firm AL	S.	Firm			<u> </u>			-	Eir	m	8124	1 1	4	5	**************************************	Firm	· · · · · · · · · · · · · · · · · · ·	•			Firm	·		-	
e/Time	Date/Time	10/08/14 1300	Date	/Time	77	/08	124	1]	444	∱Da	ite/T	ime					Date/T	ime				Date/	Time			
10/8 306		•			•	,	7	, -																	-	

	Sample ID		Bottle Count Bottle Type	Head- space	Broke	Нф	Reagent	Volume added	Reagent Numb		nitiais	Time
Sa	mple ID on Bott	ile .	Sample	e ID on	COC	-			Identified	by:		
Were 100m	l sterile microbiolo	gy bottles fille	d exactly to the 100m	nl mark?	(N	A	Y N		Underfi	lled O	verfille	i
	***	the method sp	ecified time limit? If	not, nota	te the er	xor belo	ow and notify	the PM	(NA)	Y	N	
	es negative?								NA	Y	N	
-	-		? Indicate in the tabl		hi	A151651			(NA)	Y	N	
			mes received for the t N SOP) received at th			19 Indi	rate in the tah	le helow	NA NA	Y	N N	
`	ole labels and tags		- • "		nns do				NA NA	Y	N	
Were all sar	nple labels comple	te (ie, analysis	, preservation, etc.)?						NA	5	N	
	es received in good		-						NA	₹.	N	
-	iterial: <i>Inserts</i> ly papers properly		-	is we	<u>IÇE</u> YL	ry ice	Sleeves		NA	(v)	N	
-	-	_	bble Wrap Gel Pack		-		C/					
	sue samples were	-	rozen Partially Ti		Thaw		, min nonly u	O # 171.)	•	
•		•	as collected? If not, r	•	conier	# ahove	and notify th	e PM	NA	\ Y	N	
	_	-	ified temperature ran		iii die et	MICI, IN	Julic III IIIC CO	ignin isa	NA	$\left(\mathbf{v}\right)$	N	
-	erature Blank prese		NA (Y N sample bottle contain			_	rature in the a			ve:		
6.3	4.5	4		16		_ 4						
<u>.Ц</u>	4.5											
0.0	4.4						-					
·S	5.7										*	-
4_	7.0	1601	140510									
np Blank	Sample Temp	IR Gun	Cooler #/COC ID / N	A	indicate	with X	" If out of	temp	Trackin	g Number	NA_	Filed
	<u> </u>		*			ftemp	Notifi	23.00	*			
						् <i>र</i> ार ४.२.५५,७३,						T
f present, w	ere custody seals in	ntact?	Y N	If preser	it, were	they sig	aned and dated	1?		Y	N	
Vere <u>custod</u>	y seals on coolers?	?	NA Y (N)	If yes, h	ow man	y and w	here?		·			
Samples we	ere received in: (cir	cle) 🕜	oler Box	E	nvelope		Other				NA	
Samples we	re received via?	USPS	Fed Ex	UPS	D.	HL	PDX	Cour	rier) H	and Delive	ered	
eived: <u>10</u>	18124	Opened: _	1018124	By: _	Δ	K_	_Unioaded: _	1015	1129	By: <u></u>	4	
nt	iera,	nes	<u>e</u>			Sen	rice Request	K24 <u>/ (</u>	0651		1	>
	<u> </u>	~1	Cooler Receipt	t and F	orese	rvatio	n Form	_	~ >			7
											PM//	Ol Emm

Sample ID	Bottle Count Bottle Type	Head- space	Broke	рН	Reagent	Volume added	Reagent Lot Number	initials	Time	
							· · · · · · · · · · · · · · · · · · ·	1		-
						 		+		_
		<u> </u>		i	 					

G:\SMO\2024 Forms

1.

SOP: SMO-GEN

Reviewed: NP 1/3/2024

Cooler Receipt and Preservation Form

ent	Terra	kna	<u> </u>				_Servi	ce F	Request K2	4	<u> </u>		
Temp Blank	Sample Temp	IR Gun	Cooler #/C	OC ID /	NA	Out indica	of temp	x•	PM Notifie if out of t	d emp	Tracking Nur	nber NA	Filed
Hr. 7.8	3.8	1801											
12.2	5.5	V		·							· · · · · · · · · · · · · · · · · · ·	NAME AND ADDRESS OF THE PARTY.	
												(
San	npie ID on Bottle			Sample	ID on C	OC				<u> </u>	dentified by:		
			ottle Count		Head-					Volume	Reagent Lot		
10.	Sample ID	B	ottle Type	Temp	space	Broke	рН		Reagent	added	Number	Initials	Time
otes, Discrep	ancies & Resol	utions: _\(د س	<u> </u> 25 a	<u></u>	TOP	0F	(Coolers	 >o	n topo	£	
Saw	ples. Te	mp_	blan	RI	<u> </u>	<u> </u>	nd	er	- He	SUN	uples, 1	\ot_	
india	certire,	& S	gun	<u>()</u>	ten	MP.							
													
		···											
-						······································				······			
		· · · · · · · · · · · · · · · · · · ·				·	······································			·			
								.,,,,,,,					
G:\SMO'	\2024 Forms				SOP.	SMO-	GEN				Reviewe	d- ND 1/3	1/2024

243 of 283

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Service Request: K2410651

Sample Name: EB-2024 1003 Lab Code: K2410651-001

Sample Matrix: Water **Date Collected:** 10/5/24 Date Received: 10/8/24

Analyzed By Extracted/Digested By Analysis Method 6020B **MCHATTICK ABOYER**

Sample Name: EB-2024 1004 **Date Collected:** 10/4/24

Lab Code: K2410651-002 Date Received: 10/8/24

Sample Matrix: Water

Analyzed By Extracted/Digested By Analysis Method

6020B **MCHATTICK ABOYER**

Sample Name: EB-2024 1005 **Date Collected:** 10/5/24

Lab Code: K2410651-003 Date Received: 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B **MCHATTICK ABOYER**

Sample Name: CS-SW-1 **Date Collected:** 10/5/24

Lab Code: K2410651-004 Date Received: 10/8/24 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

6020B **MCHATTICK ABOYER** 7470A **KLINN KLINN**

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Service Request: K2410651

Sample Name: CS-SW-2

Lab Code: K2410651-005

Sample Matrix: Water **Date Collected:** 10/3/24

Date Received: 10/8/24

Analysis Method

6020B 7470A

Analyzed By Extracted/Digested By MCHATTICK ABOYER KLINN KLINN

Sample Name: CS-SW-2-Dup Lab Code: K2410651-006

Sample Matrix: Water **Date Collected:** 10/3/24 **Date Received:** 10/8/24

Analysis Method

6020B 7470A **Extracted/Digested By MCHATTICK**

ABOYER KLINN

Sample Name: CS-SW-3

Lab Code: K2410651-007 Water

KLINN

Sample Matrix:

Date Collected: 10/3/24 Date Received: 10/8/24

Analysis Method

6020B

7470A

Extracted/Digested By MCHATTICK KLINN

Analyzed By ABOYER KLINN

Analyzed By

CS-SW-4 **Sample Name:**

K2410651-008

Sample Matrix: Water **Date Collected:** 10/3/24 Date Received: 10/8/24

Analysis Method

6020B 7470A

Lab Code:

Extracted/Digested By

MCHATTICK **ABOYER KLINN KLINN**

Analyzed By

Analyst Summary report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001

Date Collected: 10/4/24

Date Received: 10/8/24

Service Request: K2410651

Sample Name: CS-SW-5

Lab Code: K2410651-009

Sample Matrix: Water

Analysis Method

Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Name: CS-SW-6 Date Collected: 10/4/24

Lab Code: K2410651-010 **Date Received:** 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Name: CS-SW-7 Date Collected: 10/4/24

Lab Code: K2410651-011 **Date Received:** 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Name: CS-SW-8 Date Collected: 10/5/24

Lab Code: K2410651-012 **Date Received:** 10/8/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

6020B MCHATTICK ABOYER 7470A KLINN KLINN

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410651

Date Collected: 10/05/24 08:30

Sample Matrix: Water

Date Received: 10/08/24 14:45

Sample Name:

EB-2024 1003

Basis: NA

Lab Code:

Project:

K2410651-001

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	0.64	ug/L	0.50	0.09	1	10/21/24 16:32	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Service Request: K2410651 **Date Collected:** 10/04/24 08:00

Date Received: 10/08/24 14:45 Water

Sample Name: EB-2024 1004 Basis: NA

Lab Code: K2410651-002

Project:

Sample Matrix:

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	3.12	11g/L	0.50	0.09	1	10/21/24 16:34	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Project:

Sample Matrix:

Upper Granite Creek Mines/0031.005.001

Date Collected: 10/05/24 08:30

Service Request: K2410651

Water **Date Received:** 10/08/24 14:45

Sample Name: EB-2024 1005 Basis: NA

Lab Code: K2410651-003

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	6020B	0.11 J	ug/L	0.50	0.09	1	10/21/24 16:36	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/05/24 10:04

Project: Upper Granite Creek Mines/0031.005.001 **Sample Matrix:** Water

Date Received: 10/08/24 14:45

CS-SW-1 **Sample Name:** Basis: NA

Lab Code: K2410651-004

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	18.1	mg/L	0.09	0.023	1	10/21/24 16:39	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/05/24 10:04 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-1 Basis: NA

Lab Code: K2410651-004

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.036 J	ug/L	0.050	0.020	1	10/21/24 16:39	10/18/24	
Arsenic	6020B	0.36 J	ug/L	0.50	0.09	1	10/21/24 16:39	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:39	10/18/24	
Calcium	6020B	5590	ug/L	20	6	1	10/21/24 16:39	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 16:39	10/18/24	
Lead	6020B	0.013 J	ug/L	0.020	0.006	1	10/21/24 16:39	10/18/24	
Magnesium	6020B	996	ug/L	10	2	1	10/21/24 16:39	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:17	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:39	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:39	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc. **Service Request:** K2410651

Project: Upper Granite Creek Mines/0031.005.001

K2410651-005

Date Collected: 10/03/24 17:00

Sample Matrix: Water **Date Received:** 10/08/24 14:45

Basis: NA

CS-SW-2 **Sample Name:** Lab Code:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	19.7	mg/L	0.09	0.023	1	10/21/24 16:53	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/03/24 17:00

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-2 Basis: NA

Lab Code: K2410651-005

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.025 J	ug/L	0.050	0.020	1	10/21/24 16:53	10/18/24	
Arsenic	6020B	0.67	ug/L	0.50	0.09	1	10/21/24 16:53	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:53	10/18/24	
Calcium	6020B	6070	ug/L	20	6	1	10/21/24 16:53	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 16:53	10/18/24	
Lead	6020B	0.012 J	ug/L	0.020	0.006	1	10/21/24 16:53	10/18/24	
Magnesium	6020B	1110	ug/L	10	2	1	10/21/24 16:53	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:22	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:53	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:53	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

Water

per Granite Creek Mines/0031.005.001 Service Request: K2410651

Date Collected: 10/03/24 17:01

Project: Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45

Sample Matrix:

Sample Name:

CS-SW-2-Dup Basis: NA

Lab Code: K2410651-006

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	19.3	mg/L	0.09	0.023	1	10/21/24 16:55	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/03/24 17:01 **Project:**

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-2-Dup Basis: NA

Lab Code: K2410651-006

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.031 J	ug/L	0.050	0.020	1	10/21/24 16:55	10/18/24	
Arsenic	6020B	0.61	ug/L	0.50	0.09	1	10/21/24 16:55	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:55	10/18/24	
Calcium	6020B	5920	ug/L	20	6	1	10/21/24 16:55	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 16:55	10/18/24	
Lead	6020B	0.007 J	ug/L	0.020	0.006	1	10/21/24 16:55	10/18/24	
Magnesium	6020B	1090	ug/L	10	2	1	10/21/24 16:55	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:23	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:55	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:55	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/03/24 16:00 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Date Received: 10/08/24 14:45 Water

CS-SW-3 **Sample Name:** Basis: NA

Lab Code: K2410651-007

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	21.0	mg/L	0.09	0.023	1	10/21/24 16:57	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/03/24 16:00 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-3 Basis: NA

Lab Code: K2410651-007

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.038 J	ug/L	0.050	0.020	1	10/21/24 16:57	10/18/24	
Arsenic	6020B	0.87	ug/L	0.50	0.09	1	10/21/24 16:57	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:57	10/18/24	
Calcium	6020B	6490	ug/L	20	6	1	10/21/24 16:57	10/18/24	
Chromium	6020B	0.12 J	ug/L	0.20	0.03	1	10/21/24 16:57	10/18/24	
Lead	6020B	0.012 J	ug/L	0.020	0.006	1	10/21/24 16:57	10/18/24	
Magnesium	6020B	1170	ug/L	10	2	1	10/21/24 16:57	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:25	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:57	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:57	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/03/24 14:19 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Date Received: 10/08/24 14:45 Water

CS-SW-4 **Sample Name:** Basis: NA

Lab Code: K2410651-008

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	27.5	mg/L	0.09	0.023	1	10/21/24 16:59	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/03/24 14:19

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-4 Basis: NA

Lab Code: K2410651-008

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.036 J	ug/L	0.050	0.020	1	10/21/24 16:59	10/18/24	
Arsenic	6020B	0.92	ug/L	0.50	0.09	1	10/21/24 16:59	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 16:59	10/18/24	
Calcium	6020B	8410	ug/L	20	6	1	10/21/24 16:59	10/18/24	
Chromium	6020B	0.14 J	ug/L	0.20	0.03	1	10/21/24 16:59	10/18/24	
Lead	6020B	ND U	ug/L	0.020	0.006	1	10/21/24 16:59	10/18/24	
Magnesium	6020B	1590	ug/L	10	2	1	10/21/24 16:59	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:27	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 16:59	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 16:59	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

aphase Engineering Inc. Service Request: K2410651

 Project:
 Upper Granite Creek Mines/0031.005.001
 Date Collected:
 10/04/24 09:25

 Sample Matrix:
 Water
 Date Received:
 10/08/24 14:45

Sample Name: CS-SW-5 Basis: NA

Lab Code: K2410651-009

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	31.8	mg/L	0.09	0.023	1	10/21/24 17:01	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/04/24 09:25

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-5 Basis: NA

Lab Code: K2410651-009

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.098	ug/L	0.050	0.020	1	10/21/24 17:01	10/18/24	
Arsenic	6020B	1.78	ug/L	0.50	0.09	1	10/21/24 17:01	10/18/24	
Cadmium	6020B	0.010 J	ug/L	0.020	0.008	1	10/21/24 17:01	10/18/24	
Calcium	6020B	9550	ug/L	20	6	1	10/21/24 17:01	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 17:01	10/18/24	
Lead	6020B	0.018 J	ug/L	0.020	0.006	1	10/21/24 17:01	10/18/24	
Magnesium	6020B	1930	ug/L	10	2	1	10/21/24 17:01	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:28	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:01	10/18/24	
Zinc	6020B	1.8 J	ug/L	2.0	0.5	1	10/21/24 17:01	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/04/24 15:23 Upper Granite Creek Mines/0031.005.001

Sample Matrix: Date Received: 10/08/24 14:45 Water

CS-SW-6 **Sample Name:** Basis: NA

Lab Code: K2410651-010

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	32.3	mg/L	0.09	0.023	1	10/21/24 17:03	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/04/24 15:23 **Project:** Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-6 Basis: NA

Lab Code: K2410651-010

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.076	ug/L	0.050	0.020	1	10/21/24 17:03	10/18/24	
Arsenic	6020B	2.04	ug/L	0.50	0.09	1	10/21/24 17:03	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 17:03	10/18/24	
Calcium	6020B	9710	ug/L	20	6	1	10/21/24 17:03	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 17:03	10/18/24	
Lead	6020B	0.013 J	ug/L	0.020	0.006	1	10/21/24 17:03	10/18/24	
Magnesium	6020B	1960	ug/L	10	2	1	10/21/24 17:03	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:33	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:03	10/18/24	
Zinc	6020B	0.7 J	ug/L	2.0	0.5	1	10/21/24 17:03	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Date Collected:** 10/04/24 13:34 Upper Granite Creek Mines/0031.005.001

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

CS-SW-7 Basis: NA **Sample Name:**

Lab Code: K2410651-011

Project:

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	36.3	mg/L	0.09	0.023	1	10/21/24 17:05	

Analytical Report

Client: Terraphase Engineering Inc.

Project: Upper Granite Creek Mines/0031.005.001 Date Collected: 10/04/24 13:34

Sample Matrix: Water Date Received: 10/08/24 14:45

Sample Name: CS-SW-7 Basis: NA

Lab Code: K2410651-011

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.104	ug/L	0.050	0.020	1	10/21/24 17:05	10/18/24	
Arsenic	6020B	1.99	ug/L	0.50	0.09	1	10/21/24 17:05	10/18/24	
Cadmium	6020B	0.019 J	ug/L	0.020	0.008	1	10/21/24 17:05	10/18/24	
Calcium	6020B	10900	ug/L	20	6	1	10/21/24 17:05	10/18/24	
Chromium	6020B	0.09 J	ug/L	0.20	0.03	1	10/21/24 17:05	10/18/24	
Lead	6020B	0.022	ug/L	0.020	0.006	1	10/21/24 17:05	10/18/24	
Magnesium	6020B	2200	ug/L	10	2	1	10/21/24 17:05	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:35	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:05	10/18/24	
Zinc	6020B	0.8 J	ug/L	2.0	0.5	1	10/21/24 17:05	10/18/24	

Service Request: K2410651

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651

Date Collected: 10/05/24 10:35 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Received:** 10/08/24 14:45 **Sample Matrix:** Water

CS-SW-8 **Sample Name:** Basis: NA

Lab Code: K2410651-012

Hardness by ICP-AES Calculation 20th Ed.

Analysis

Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Hardness, Total as CaCO3	SM 2340 B	36.7	mg/L	0.09	0.023	1	10/21/24 17:07	

Analytical Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 Upper Granite Creek Mines/0031.005.001 **Date Collected:** 10/05/24 10:35 **Project:**

Date Received: 10/08/24 14:45 **Sample Matrix:** Water

Sample Name: CS-SW-8 Basis: NA

Lab Code: K2410651-012

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	0.108	ug/L	0.050	0.020	1	10/21/24 17:07	10/18/24	
Arsenic	6020B	2.21	ug/L	0.50	0.09	1	10/21/24 17:07	10/18/24	
Cadmium	6020B	0.020 J	ug/L	0.020	0.008	1	10/21/24 17:07	10/18/24	
Calcium	6020B	10900	ug/L	20	6	1	10/21/24 17:07	10/18/24	
Chromium	6020B	0.11 J	ug/L	0.20	0.03	1	10/21/24 17:07	10/18/24	
Lead	6020B	0.084	ug/L	0.020	0.006	1	10/21/24 17:07	10/18/24	
Magnesium	6020B	2310	ug/L	10	2	1	10/21/24 17:07	10/18/24	
Mercury	7470A	ND U	ug/L	0.20	0.02	1	10/15/24 09:36	10/14/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:07	10/18/24	
Zinc	6020B	0.8 J	ug/L	2.0	0.5	1	10/21/24 17:07	10/18/24	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410651

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:WaterDate Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ2416479-01

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Antimony	6020B	ND U	ug/L	0.050	0.020	1	10/21/24 17:13	10/18/24	
Arsenic	6020B	ND U	ug/L	0.50	0.09	1	10/21/24 17:13	10/18/24	
Cadmium	6020B	ND U	ug/L	0.020	0.008	1	10/21/24 17:13	10/18/24	
Calcium	6020B	ND U	ug/L	20	6	1	10/21/24 17:13	10/18/24	
Chromium	6020B	ND U	ug/L	0.20	0.03	1	10/21/24 17:13	10/18/24	
Lead	6020B	ND U	ug/L	0.020	0.006	1	10/21/24 17:13	10/18/24	
Magnesium	6020B	ND U	ug/L	10	2	1	10/21/24 17:13	10/18/24	
Silver	6020B	ND U	ug/L	0.020	0.009	1	10/21/24 17:13	10/18/24	
Zinc	6020B	ND U	ug/L	2.0	0.5	1	10/21/24 17:13	10/18/24	

Analytical Report

Client: Terraphase Engineering Inc. Service Request: K2410651

Project:Upper Granite Creek Mines/0031.005.001Date Collected: NASample Matrix:WaterDate Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ2416532-01

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7470A	ND U	119/[,	0.20	0.02	1	10/15/24 09:14	10/14/24	

QA/QC Report

Client: Terraphase Engineering Inc.

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Water

Service Request: Date Collected:

K2410651

10/05/24

Date Received: Date Analyzed: 10/08/24 10/21/24

Date Extracted:

Basis:

10/18/24

Matrix Spike Summary

Total Metals

Sample Name: CS-SW-1 **Units:**

ug/L NA

Lab Code: **Analysis Method:**

Project:

K2410651-004 6020B

Prep Method:

EPA CLP ILM04.0

Matrix Spike

KQ2416479-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Antimony	0.036 J	9.93	10.0	99	75-125
Arsenic	0.36 J	51.1	50.0	101	75-125
Cadmium	ND U	25.8	25.0	103	75-125
Calcium	5590	15900	10300	100	75-125
Chromium	0.11 J	10.6	10.0	105	75-125
Lead	0.013 J	51.9	50.0	104	75-125
Magnesium	996	11700	10300	104	75-125
Silver	ND U	13.4	12.5	107	75-125
Zinc	ND U	24.9	25.0	100	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/22/2024 4:18:38 PM

QA/QC Report

Client: Terraphase Engineering Inc. **Project:**

Upper Granite Creek Mines/0031.005.001

Sample Matrix: Water

Service Request: Date Collected:

K2410651

Date Received:

10/05/24 10/08/24

Date Analyzed:

10/15/24

Date Extracted:

10/14/24

Matrix Spike Summary

Total Metals

CS-SW-1 Sample Name:

K2410651-004

7470A

Units: Basis:

ug/L NA

Analysis Method: Prep Method:

Lab Code:

Method

Matrix Spike

KQ2416532-04

Analyte Name Sample Result Result Spike Amount % Rec % Rec Limits ND U Mercury 4.91

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Printed 10/22/2024 4:18:38 PM

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410651

Project Upper Granite Creek Mines/0031.005.001

Date Collected: 10/05/24

Sample Matrix: Water

Sample Name:

Date Received: 10/08/24 **Date Analyzed:** 10/21/24

Replicate Sample Summary
Total Metals

CS-SW-1

Units: ug/L

Lab Code: K2410651-004

Basis: NA

Duplicate Sample

	Analysis			Sample	Sample KQ2416479-03			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Antimony	6020B	0.050	0.020	0.036 J	0.027 J	0.032	29 #	20
Arsenic	6020B	0.50	0.09	0.36 J	0.33 J	0.35	9	20
Cadmium	6020B	0.020	0.008	ND U	ND U	ND	-	20
Calcium	6020B	20	6	5590	5530	5560	1	20
Chromium	6020B	0.20	0.03	0.11 J	0.12 J	0.12	9	20
Lead	6020B	0.020	0.006	0.013 J	0.008 J	0.011	48 #	20
Magnesium	6020B	10	2	996	1020	1010	2	20
Silver	6020B	0.020	0.009	ND U	ND U	ND	-	20
Zinc	6020B	2.0	0.5	ND U	ND U	ND	=	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Terraphase Engineering Inc. Service Request: K2410651

Project Upper Granite Creek Mines/0031.005.001 Date Collected: 10/05/24

Sample Matrix: Water Date Received: 10/08/24

Date Analyzed: 10/15/24

Replicate Sample Summary

Total Metals

Sample Name: CS-SW-1 Units: ug/L

Lab Code: K2410651-004 **Basis:** NA

Duplicate

Sample **VO2416532 03**

Analysis Sample KQ2416532-03 **Analyte Name** Method **MRL MDL** Result Result Average RPD **RPD Limit** 7470A ND U Mercury 0.20 0.02 ND U ND 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Analyzed:** 10/21/24

Sample Matrix: Water

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2416479-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020B	9.49	10.0	95	80-120
Arsenic	6020B	50.1	50.0	100	80-120
Cadmium	6020B	25.3	25.0	101	80-120
Calcium	6020B	10000	10300	98	80-120
Chromium	6020B	10.2	10.0	102	80-120
Lead	6020B	51.0	50.0	102	80-120
Magnesium	6020B	10600	10300	103	80-120
Silver	6020B	12.9	12.5	103	80-120
Zinc	6020B	25.4	25.0	101	80-120

QA/QC Report

Client: Terraphase Engineering Inc.

Service Request: K2410651 **Project:** Upper Granite Creek Mines/0031.005.001 **Date Analyzed:** 10/15/24

Sample Matrix: Water

> **Lab Control Sample Summary Total Metals**

> > Units:ug/L Basis:NA

Lab Control Sample

KQ2416532-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7470A	4.68	5.00	94	80-120

Appendix D

Data Validation Reports

Data Validation Report

Project Name: Upper Granite Creek Mines Lab Reference Number: K2410639

Project Number: 0031.005.001	Laboratory: ALS Environmental Laboratory
Validated by: Marie Mueller	Matrix: Soil
Sampling Date: 10/2/2024 & 10/3/2024	Number of Samples: 20
Data Validation Report Date: 11/13/2024	Analytical Report Date: 10/23/2024

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	1
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	٧	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	1
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	1
Continuing Calibration	NE	Reference Material Analysis	NE
Method Blank Analysis	1	Compound Quantitation	٧
Laboratory Control Samples	٧		

^{√ –} Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

NA – Not applicable

NE – Not evaluated

P – Pending

Overall Assessment

All data, as qualified, are acceptable for use.

Data Package Completeness

The data package included the required elements: chain-of-custody, sample receipt checklist, case narrative, results, and QC results.

Verification of EDD to Hardcopy Data Package

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

^{1 –} Quality control results are discussed below, but no data were qualified.

^{2 –} Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

Chain-of-Custody

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the EDD and hardcopy data package. Several samples listed in the chain-of-custody report include samples that were held and not analyzed by the laboratory.

Chain-of-custody 140510 includes sample IDs for laboratory reports K2410639, K2410642, K2410643, and K2410651.

Chain-of-custody 140510 erroneously notes that equipment blank sample, EB-2024 1003, was sampled on 10/5/2024, however it was sampled on 10/3/2024.

Sample Preservation

Samples were received intact, at temperatures of 4.6, 5.7, 4.4, 4.5, and 4.5 degrees Celsius. Proper preservation includes samples chilled to ≤6.0 degrees Celsius.

Laboratory staff observed temperature blanks at 9.6, 16.8, 6.0, 9.4, and 18.3 degrees Celsius. In the Cooler Receipt Form, laboratory staff noted that ice was at the top of coolers on top of samples and that the temperature blank was under the samples and is not necessarily indicative of sample temperature.

Holding Times

All samples were analyzed within the holding time.

Retention Time Windows

Not evaluated.

Initial Calibration

Not evaluated.

Initial Calibration Verification

Not evaluated.

Continuing Calibration

Not evaluated.

Method Blank Analysis

The method blank sample (lab code KQ2416652-01) had a lead detection of 0.043 mg/kg between the method detection limit (MDL) and the method reporting limit (MRL); the detection was flagged "J" because it was between the MDL and MRL, but project sample data was not qualified.

No other target compounds were detected in the method blank samples.

Laboratory Control Samples

All percent recovery values and relative percent differences (RPDs) for laboratory control samples were within acceptable criteria established by the laboratory for the respective testing methods.

Surrogate Compound Recovery

Surrogate compound recovery was not performed for this sample batch.

Sample Duplicate Analysis

The RPD for sample duplicate of UUMM-WRA-0.5-2 (lab code K2410639-002) analyte lead was calculated by the lab to be above the laboratory limits, and the RPD result was flagged with "*" indicating values were outside control criteria. The laboratory noted in the case narrative that, "the variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used but were not sufficient for complete homogenization of this sample."

The RPD for sample duplicate of UMM-WRB-0.5-1 (lab code K2410639-002) analyte mercury was calculated by the lab to be above the laboratory limits, and the RPD result was flagged with "*" indicating values were outside control criteria. The laboratory noted in the case narrative that, "the variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used but were not sufficient for complete homogenization of this sample."

All other RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

Blank Spike/Blank Spike Duplicate Sample Analyses

Blank spike and blank spike duplicate sample analyses were not performed for this sample batch.

Matrix Spike/Matrix Spike Duplicate Sample Analyses

All percent recoveries and RPDs for matrix spikes (MSs) and matrix spike duplicates (MSDs) were within acceptable criteria established by the laboratory for the respective testing methods, except for the following:

 High recovery was observed for Arsenic in the MS (sample UUMM-WRA-0.5-2 lab code K2410639-002 test batch ID 446350). The result was flagged "#" indicating the control criteria was not applicable.

The laboratory report notes that "Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits."

Trip Blank Sample Analysis

A trip blank sample was not collected for this sample batch.

Equipment Blank Sample Analysis

Equipment blank sample "EB-2024 1003" was collected on October 3, 2024 and is associated with all samples collected in this sample delivery group. This equipment blank sample was analyzed in report K2410651. The following analyte was detected in the equipment blank sample:

Equipment Blank Analysis

Analyte	Detection	Discussion
Arsenic	0.64 μg/L	Arsenic was detected in project samples at concentrations greater than 5 times the associated blank; therefore no results were qualified.

Field Duplicate Analyses

Samples UUMM-WRA-0.5-3-DUP, LMM-WRA-0.5-4-DUP, and LMM-WRB-0.5-1-DUP were collected as field duplicates of UUMM-WRA-0.5-3, LMM-WRA-0.5-4, and LMM-WRB-0.5-1, respectively. All RPDs were within the accepted 50% limit except for the following:

Lead, in analysis of Total Metals – IVBA was detected in UUMM-WRA-0.5-3 and UUMM-WRA-0.5-3-DUP at concentrations of 12.6 and 7.14 mg/Kg, respectively. The calculated RPD is 55.5%.

Reference Material Analysis

No reference material analysis was performed.

Compound Quantitation

The laboratory did not apply any flags to project samples in this sample batch.

Sample Index

Sample Name	Lab ID	Matrix	Date Collected
LMM-WRB-0.5-3-DS	K2410639-001	Soil	10/3/2024
UUMM-WRA-0.5-2	K2410639-002	Soil	10/2/2024
UUMM-WRF-0.5-1	K2410639-003	Soil	10/2/2024
UUMM-WRD-0.5-1	K2410639-004	Soil	10/2/2024
UUMM-WRA-0.5-3	K2410639-005	Soil	10/2/2024
UUMM-WRA-0.5-3-DUP	K2410639-006	Soil	10/2/2024
UUMM-WRA-0.5-3-DS	K2410639-007	Soil	10/2/2024
UMM-WRB-0.5-2	K2410639-008	Soil	10/2/2024
UMM-WRB-0.5-2-DS	K2410639-009	Soil	10/2/2024
LMM-WRB-0.5-1	K2410639-010	Soil	10/3/2024
LMM-WRB-0.5-1-DUP	K2410639-011	Soil	10/3/2024
CM-WRC-0.5-4	K2410639-012	Soil	10/3/2024
UMM-WRA-0.5-1	K2410639-013	Soil	10/2/2024

Data Validation Report

Sample Name	Lab ID	Matrix	Date Collected
UMM-WRA-0.5-3	K2410639-014	Soil	10/2/2024
UMM-WRA-0.5-1-DS	K2410639-015	Soil	10/2/2024
LMM-WRA-0.5-3	K2410639-016	Soil	10/3/2024
LMM-WRA-0.5-3-DS	K2410639-017	Soil	10/3/2024
LMM-WRA-0.5-4	K2410639-018	Soil	10/3/2024
LMM-WRA-0.5-4-DUP	K2410639-019	Soil	10/3/2024
UMM-WRB-0.5-1	K2410639-020	Soil	10/2/2024

END OF REPORT

Data Validation Report

Project Name: Upper Granite Creek Mines Lab Reference Number: K2410642

Project Number: 0031.005.001	Laboratory: ALS Environmental Laboratory
Validated by: Marie Mueller	Matrix: Soil
Sampling Date: 10/2/2024 - 10/5/2024	Number of Samples: 20
Data Validation Report Date: 11/13/2024	Analytical Report Date: 11/01/2024

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	٧	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	1
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NE
Method Blank Analysis	1	Compound Quantitation	٧
Laboratory Control Samples	٧		

V − Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

NA – Not applicable

NE – Not evaluated

P – Pending

Overall Assessment

All data, as qualified, are acceptable for use.

Data Package Completeness

The data package included the required elements: chain-of-custody, sample receipt checklist, case narrative, results, and QC results.

Verification of EDD to Hardcopy Data Package

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

^{1 –} Quality control results are discussed below, but no data were qualified.

^{2 –} Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

Chain-of-Custody

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the EDD and hardcopy data package. Several samples listed in the chain-of-custody report include samples that were held and not analyzed by the laboratory.

Chain-of-custody 140510 includes sample IDs for laboratory reports K2410639, K2410642, K2410643, and K2410651.

Chain-of-custody 140510 erroneously notes that equipment blank sample, EB-2024 1003, was sampled on 10/5/2024, however it was sampled on 10/3/2024.

Sample Preservation

Samples were received intact, at temperatures of 4.6, 5.7, 4.4, 4.5, and 4.5 degrees Celsius. Proper preservation includes samples chilled to ≤6.0 degrees Celsius.

Laboratory staff observed temperature blanks at 9.6, 16.8, 6.0, 9.4, and 18.3 degrees Celsius. In the Cooler Receipt Form, laboratory staff noted that ice was at the top of coolers on top of samples and that the temperature blank was under the samples and is not necessarily indicative of sample temperature.

Holding Times

All samples were analyzed within the holding time.

Retention Time Windows

Not evaluated.

Initial Calibration

Not evaluated.

Initial Calibration Verification

Not evaluated.

Continuing Calibration

Not evaluated.

Method Blank Analysis

Arsenic and Lead were detected between the MDL and the RL in the method blank in lab codes KQ2416652-01 and KQ2416391-03. This analyte was detected in project samples at a level at least 10 times that of the method blank therefore no data as qualified.

No other target compounds were detected in the method blank samples.

Laboratory Control Samples

All percent recovery values and relative percent differences (RPDs) for laboratory control samples (LCSs) were within acceptable criteria established by the laboratory for the respective testing methods.

Surrogate Compound Recovery

Surrogate compound recovery was not performed for this sample batch.

Sample Duplicate Analysis

All RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

Blank Spike/Blank Spike Duplicate Sample Analyses

Blank spike and blank spike duplicate sample analyses were not performed for this sample batch.

Matrix Spike/Matrix Spike Duplicate Sample Analyses

All percent recoveries and RPDs for matrix spikes (MSs) and matrix spike duplicates (MSDs) were within acceptable criteria established by the laboratory for the respective testing methods, except for the following:

- High recovery was observed for arsenic and lead in the MS (sample UMM-TLA-0.5-6 lab code K2410642-005. The results were flagged "#" indicating the control criteria was not applicable.
- Recovery outside of the laboratory criteria was observed for arsenic and lead in the MS (sample UMM-TLB-0.5-1 lab code K2410642-001. The results were flagged "#" indicating the control criteria was not applicable.

The laboratory report notes that "Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits."

Trip Blank Sample Analysis

A trip blank sample was not collected for this sample batch.

Equipment Blank Sample Analysis

Equipment blank samples EB-2024 1003, EB-2024 1004 and EB-2024 1005 were collected on October 3, 4, and 5, 2024 and are associated with all samples collected on those dates. These equipment blank samples were analyzed in report K2410651. The following analyte was detected in the equipment blank samples:

Equipment Blank Analysis

Equipment Blank ID	Analyte	Detection	Discussion
EB-2024 1003	Arsenic	0.64 μg/L	Arsenic was detected in project samples at concentrations greater than 5 times the associated blank; therefore no results were qualified.
EB-2024 1004	Arsenic	3.12 μg/L	Arsenic was detected in project samples at concentrations greater than 5 times the associated blank; therefore no results were qualified.
EB-2024 1005	Arsenic	0.11 μg/L	Arsenic was detected in project samples at concentrations greater than 5 times the associated blank; therefore no results were qualified.

Field Duplicate Analyses

A field duplicate sample was not collected for this sample batch.

Reference Material Analysis

No reference material analysis was performed.

Compound Quantitation

The laboratory did not apply any flags to project samples in this sample batch.

Sample Index

Sample Name	Lab ID	Matrix	Date Collected
UMM-TLB-0.5-1	K2410642-001	Soil	10/2/2024
UMM-TLB-0.5-4	K2410642-002	Soil	10/2/2024
UMM-TLC-0.5-1	K2410642-003	Soil	10/2/2024
UMM-TLC-0.5-2	K2410642-004	Soil	10/2/2024
UMM-TLA-0.5-6	K2410642-005	Soil	10/2/2024
CEM-WRA-0.5-4-DS	K2410642-006	Soil	10/5/2024
CEM-WRB-0.5-1	K2410642-007	Soil	10/5/2024
CEM-WRA-0.5-2	K2410642-008	Soil	10/5/2024
CEM-WRC-0.5-1	K2410642-009	Soil	10/5/2024
GF-WRA-0.5-1	K2410642-010	Soil	10/5/2024
GF-WRD-0.5-6	K2410642-011	Soil	10/5/2024
GF-WRD-0.5-4-DS	K2410642-012	Soil	10/5/2024
GF-DR-0.5-1	K2410642-013	Soil	10/5/2024
GC5-WRA-0.5-3	K2410642-014	Soil	10/4/2024
GC5-WRA-0.5-4	K2410642-015	Soil	10/4/2024
GC5-WRA-0.5-4-DS	K2410642-016	Soil	10/4/2024
GC6-WRA-0.5-2	K2410642-017	Soil	10/4/2024
GC6-WRA-0.5-1	K2410642-018	Soil	10/4/2024
GC7-WRA-0.5-3	K2410642-019	Soil	10/4/2024

END OF REPORT

Data Validation Report

Project Name: Upper Granite Creek Mines Lab Reference Number: K2410643

Project Number: 0031.005.001	Laboratory: ALS Environmental Laboratory
Validated by: Marie Mueller	Matrix: Soil
Sampling Date: 10/3/2024 - 10/5/2024	Number of Samples: 14
Data Validation Report Date: 11/13/2024	Analytical Report Date: 10/23/2024

The quality control (QC) elements that were reviewed are listed below.

٧	Surrogate Compound Recovery	NA
٧	Sample Duplicate Analysis	1
1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
٧	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
NE	Trip Blank Sample Analysis	NA
NE	Equipment Blank Sample Analysis	1
NE	Field Duplicate Sample Analysis	٧
NE	Reference Material Analysis	NE
1	Compound Quantitation	2
٧		
	V 1 V NE NE NE NE 1	V Sample Duplicate Analysis 1 Blank Spike/Blank Spike Duplicate Sample Analyses V Matrix Spike/Matrix Spike Duplicate Sample Analyses NE Trip Blank Sample Analysis NE Equipment Blank Sample Analysis NE Field Duplicate Sample Analysis NE Reference Material Analysis 1 Compound Quantitation

V-Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

NA – Not applicable

NE – Not evaluated

P – Pending

Overall Assessment

All data, as qualified, are acceptable for use.

Data Package Completeness

The data package included the required elements: chain-of-custody, sample receipt checklist, case narrative, results, and QC results.

Verification of EDD to Hardcopy Data Package

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

^{1 –} Quality control results are discussed below, but no data were qualified.

^{2 –} Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

Chain-of-Custody

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the EDD and hardcopy data package. Several samples listed in the chain-of-custody report include samples that were held and not analyzed by the laboratory.

Chain-of-custody 140510 includes sample IDs for laboratory reports K2410639, K2410642, K2410643, and K2410651.

Chain-of-custody 140510 erroneously notes that equipment blank sample, EB-2024 1003, was sampled on 10/5/2024, however it was sampled on 10/3/2024.

Sample Preservation

Samples were received intact, at temperatures of 4.6, 5.7, 4.4, 4.5, and 4.5 degrees Celsius. Proper preservation includes samples chilled to ≤6.0 degrees Celsius.

Laboratory staff observed temperature blanks at 9.6, 16.8, 6.0, 9.4, and 18.3 degrees Celsius. In the Cooler Receipt Form, laboratory staff noted that ice was at the top of coolers on top of samples and that the temperature blank was under the samples and is not necessarily indicative of sample temperature.

Holding Times

All samples were analyzed within the holding time.

Retention Time Windows

Not evaluated.

Initial Calibration

Not evaluated.

Initial Calibration Verification

Not evaluated.

Continuing Calibration

Not evaluated.

Method Blank Analysis

The method blank sample (lab code KQ2416427-03) had chromium, lead, and zinc detections of 0.06, 0.036, and 0.27 mg/kg which were flagged "J" between the corresponding method detection limit (MDL) and the method reporting limit (MRL); project sample data was not qualified.

The method blank sample (lab code KQ2416652-01) had a lead detection of 0.043 mg/kg between the MDL and the MRL; the detection was flagged "J" because it was between the MDL and MRL, but project sample data was not qualified.

No other target compounds were detected in the method blank samples.

Laboratory Control Samples

All percent recovery values and relative percent differences (RPDs) for laboratory control samples (LCSs) were within acceptable criteria established by the laboratory for the respective testing methods.

Surrogate Compound Recovery

Surrogate compound recovery was not performed for this sample batch.

Sample Duplicate Analysis

All RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods except for the following:

• Sample TL-WRA-0.5-3, sample code K2410643-001, RPD for Duplicate Sample KQ2416427-01 analyte silver was flagged "*" indicating the RPD is outside of the laboratory criteria.

Blank Spike/Blank Spike Duplicate Sample Analyses

Blank spike and blank spike duplicate sample analyses were not performed for this sample batch.

Matrix Spike/Matrix Spike Duplicate Sample Analyses

All percent recoveries and RPDs for matrix spikes (MSs) and matrix spike duplicates (MSDs) were within acceptable criteria established by the laboratory for the respective testing methods, except for the following:

Low recovery was observed for arsenic and zinc in the MS of KQ2416427-02 (sample TL-WRA-0.5-3 lab code K2410643-001. The result was flagged "#" indicating the control criteria was not applicable.

The laboratory report notes that "Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits."

Trip Blank Sample Analysis

A trip blank sample was not collected for this sample batch.

Equipment Blank Sample Analysis

Equipment blank samples EB-2024 1003, EB-2024 1004 and EB-2024 1005 were collected on October 3, 4, and 5, 2024 and are associated with all samples collected on those dates. These equipment blank samples were analyzed in report K2410651. The following analyte was detected in the equipment blank samples:

Equipment Blank Analysis

Equipment Blank ID	Analyte	Detection	Discussion
EB-2024 1003	Arsenic	0.64 μg/L	Arsenic was detected in project samples at concentrations greater than 5 times the associated blank; therefore no results were qualified.
EB-2024 1004	Arsenic	3.12 μg/L	Arsenic was detected in project samples at concentrations greater than 5 times the associated blank; therefore no results were qualified.
EB-2024 1005	Arsenic	0.11 μg/L	Arsenic was detected in project samples at concentrations greater than 5 times the associated blank; therefore no results were qualified.

Field Duplicate Analyses

Sample CS-SD-7-DUP was collected as a field duplicate of CS-SD-7, respectively. All RPDs were within the accepted 50% limit.

Reference Material Analysis

No reference material analysis was performed.

Compound Quantitation

The laboratory applied the following flags:

J Estimated value

Results for the following samples were J-flagged:

Sample Name	Analyte
CS-SD-1	Mercury
CS-SD-2	Antimony
CS-SD-4	Mercury

Sample Index

Sample Name	Lab ID	Matrix	Date Collected
TL-WRA-0.5-3	K2410643-001	Soil	10/4/2024
TL-WRB-0.5-4	K2410643-002	Soil	10/4/2024
TL-WRA-0.5-1-DS-2	K2410643-003	Soil	10/4/2024
SH-WRB-0.5-2	K2410643-004	Soil	10/4/2024
SH-WRC-0.5-1	K2410643-005	Soil	10/4/2024
CS-SD-1	K2410643-006	Soil	10/5/2024
CS-SD-2	K2410643-007	Soil	10/3/2024
CS-SD-3	K2410643-008	Soil	10/3/2024
CS-SD-4	K2410643-009	Soil	10/3/2024
CS-SD-5	K2410643-010	Soil	10/4/2024
CS-SD-6	K2410643-011	Soil	10/4/2024
CS-SD-7	K2410643-012	Soil	10/4/2024
CS-SD-7-DUP	K2410643-013	Soil	10/4/2024
CS-SD-8	K2410643-014	Soil	10/5/2024

END OF REPORT

Data Validation Report

Project Name: Upper Granite Creek Mines Lab Reference Number: K2410651

Project Number: 0031.005.001	Laboratory: ALS Environmental Laboratory
Validated by: Marie Mueller	Matrix: Water
Sampling Date: 10/3/2024 - 10/5/2024	Number of Samples: 12
Data Validation Report Date: 11/13/2024	Analytical Report Date: 10/22/2024

The quality control (QC) elements that were reviewed are listed below.

٧	Surrogate Compound Recovery	NA
٧	Sample Duplicate Analysis	1
1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
٧	Matrix Spike/Matrix Spike Duplicate Sample Analyses	٧
NE	Trip Blank Sample Analysis	NA
NE	Equipment Blank Sample Analysis	NA
NE	Field Duplicate Sample Analysis	1
NE	Reference Material Analysis	NE
٧	Compound Quantitation	2
٧		
	V 1 V NE NE NE NE V	V Sample Duplicate Analysis 1 Blank Spike/Blank Spike Duplicate Sample Analyses V Matrix Spike/Matrix Spike Duplicate Sample Analyses NE Trip Blank Sample Analysis NE Equipment Blank Sample Analysis NE Field Duplicate Sample Analysis NE Reference Material Analysis V Compound Quantitation

^{√ –} Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

NA – Not applicable

NE – Not evaluated

P-Pending

Overall Assessment

All data, as qualified, are acceptable for use.

Data Package Completeness

The data package included the required elements: chain-of-custody, sample receipt checklist, case narrative, results, and QC results.

Verification of EDD to Hardcopy Data Package

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

^{1 –} Quality control results are discussed below, but no data were qualified.

^{2 –} Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

Chain-of-Custody

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the EDD and hardcopy data package. Several samples listed in the chain-of-custody report include samples that were held and not analyzed by the laboratory.

Chain-of-custody 140510 includes sample IDs for laboratory reports K2410639, K2410642, K2410643, and K2410651.

Chain-of-custody 140510 erroneously notes that equipment blank sample, EB-2024 1003, was sampled on 10/5/2024, however it sampled on 10/3/2024.

Sample Preservation

Samples were received intact, at temperatures of 4.6, 5.7, 4.4, 4.5, and 4.5 degrees Celsius. Proper preservation includes samples chilled to ≤6.0 degrees Celsius.

Laboratory staff observed temperature blanks at 9.6, 16.8, 6.0, 9.4, and 18.3 degrees Celsius. In the Cooler Receipt Form, laboratory staff noted that ice was at the top of coolers on top of samples and that the temperature blank was under the samples and is not necessarily indicative of sample temperature.

Holding Times

All samples were analyzed within the holding time.

Retention Time Windows

Not evaluated.

Initial Calibration

Not evaluated.

Initial Calibration Verification

Not evaluated.

Continuing Calibration

Not evaluated.

Method Blank Analysis

No target compounds were detected in the method blank samples.

Laboratory Control Samples

All percent recovery values and relative percent differences (RPDs) for laboratory control samples were within acceptable criteria established by the laboratory for the respective testing methods.

Surrogate Compound Recovery

Surrogate compound recovery was not performed for this sample batch.

Sample Duplicate Analysis

All RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods, except for the following:

- Sample Duplicate RPDs for sample name CS-SW-1 and lab code K2410651-004 analytes
 antimony and lead RPDs were calculated to be above the acceptable criteria established by the
 laboratory for the respective testing methods.
- Sample Duplicate RPDs for sample name CS-SW-1 and lab code K2410651-004 analytes Cadmium, Silver, Zinc and Mercury could not be calculated because results were below reporting limits.

Blank Spike/Blank Spike Duplicate Sample Analyses

Blank spike and blank spike duplicate sample analyses were not performed for this sample batch.

Matrix Spike/Matrix Spike Duplicate Sample Analyses

All percent recoveries and RPDs for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

The laboratory report notes that "Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits."

Trip Blank Sample Analysis

A trip blank sample was not collected for this sample batch.

Equipment Blank Sample Analysis

Equipment blank samples EB-2024 1003, EB-2024 1004 and EB-2024 1005 collected on October 3, 4, and 5, 2024 were not associated with the samples analyzed in this report.

Field Duplicate Analyses

Sample CS-SW-2-DUP was collected as a field duplicate of CS-SW-2, respectively. All RPDs were within the accepted 30% limit, except:

• Lead was detected in CS-SW-2 and CS-SW-2-DUP at concentrations of 0.012 and 0.007 μ g/L, respectively. The calculated RPD is 52.6%.

Reference Material Analysis

No reference material analysis was performed.

Compound Quantitation

The laboratory applied the following flags:

J Estimated value

Results for the following samples were J-flagged:

Sample Name	Analytes
EB-2024 1005	Arsenic
CS-SW-1	Antimony, Arsenic, Chromium, Lead
CS-SW-2	Antimony, Chromium, Lead
CS-SW-2-DUP	Antimony, Chromium, Lead
CS-SW-3	Antimony, Chromium, Lead
CS-SW-4	Antimony, Chromium
CS-SW-5	Cadmium, Chromium, Lead, Zinc
CS-SW-6	Chromium, Lead, Zinc
CS-SW-7	Cadmium, Chromium, Zinc
CS-SW-8	Cadmium, Chromium, Zinc

Sample Index

Sample Name	Lab ID	Matrix	Date Collected
EB-2024 1003	K2410642-001	Water	10/3/2024
EB-2024 1004	K2410642-002	Water	10/4/2024
EB-2024 1005	K2410642-003	Water	10/5/2024
CS-SW-1	K2410642-004	Water	10/5/2024
CS-SW-2	K2410642-005	Water	10/3/2024
CS-SW-2-DUP	K2410642-006	Water	10/3/2024
CS-SW-3	K2410642-007	Water	10/3/2024
CS-SW-4	K2410642-008	Water	10/3/2024
CS-SW-5	K2410642-009	Water	10/4/2024
CS-SW-6	K2410642-010	Water	10/4/2024
CS-SW-7	K2410642-011	Water	10/4/2024
CS-SW-8	K2410642-012	Water	10/5/2024

END OF REPORT

Appendix C

Human Health and Ecological Risk Assessment

Human Health and Ecological Risk Assessment Upper Granite Creek Mines Wallowa-Whitman National Forest

May 2011

Conserving Resources. Improving Life

Cascade Earth Sciences 12720 E. Nora Avenue, Suite A Spokane, WA 99216 (509) 921-0290 www.cascade-earth.com

Human Health and Ecological Risk Assessment Upper Granite Creek Mines Wallowa-Whitman National Forest

Prepared for:	USDA Forest Service Wallowa-Whitman National Forest
Site Location:	Granite Creek Mines Wallowa Whitman National Forest Grant County, Oregon
Prepared by:	Cascade Earth Sciences 12720 E. Nora Avenue, Suite A Spokane, Washington 99216 (509) 921-0290
Principal Author and Investigator:	Rone Brewer, Senior Ecologist, CES Associate Regina Skarzinskas, Senior Toxicologist, CES Associate
Reviewed By:	Dustin G. Wasley, PE, Principal Engineer
Report Date:	May 2011
Project Number:	2723018

Cover Photo: Monumental Mine Millsite

Disclaimer: The contents of this document are confidential to the intended recipient at the location to which it has been addressed. The contents may not be changed, edited, and/or deleted. The information contained in this document is only valid on the date indicated on the original project file report retained by CES. By accepting this document, you understand that neither CES nor its parent company, Valmont Industries, Inc. (Valmont) accepts any responsibility for liability resulting from unauthorized changes, edits, and/or deletions to the information in this document.

CONTENTS

1.0	INTRO	DUCTION	1
2.0	RISK A	SSESSMENT DATA AND INITIAL SCREENING	1
3.0	3.1 H 3.2 E 3.3 T 3.4 R 3.5 C 3.6 D	N HEALTH RISK ASSESSMENT azard Identification and Selection of COPCS xposure Assessment oxicity Assessment isk Characterization alculation of Cleanup Goals etermination of Potential Hot Spots ummary of Human Health Risks	3 7 9 12
4.0	4.1 P 4.2 E 4.3 E	OGICAL RISK ASSESSMENT	13 15
5.0	CONCI	LUSIONS	23
6.0	REFER	ENCES	24
Appe Appe Appe	ndix A. ndix B. ndix C. ndix D.	FIGURES Conceptual Human Health Exposure Model Conceptual Ecological Exposure Model APPENDICES Initial Screening Results (Forest Service Project File) Human Health Risk Calculations (Forest Service Project File) Ecological Scoping Checklist (Forest Service Project File) Ecological Risk-Based Screening Tables (Forest Service Project File)	
		ACRONYMS	
CEEN COI COPI ODE ERA ERBS HHR PRG SI RTE 90UC USEN	C EC Q SC A	conceptual ecological exposure model chemical of interest chemical of potential concern for human health chemical of potential ecological concern Oregon Department of Environmental Quality ecological risk assessment ecological risk-based screening concentration human health risk assessment Preliminary Remediation Goals Site Inspection rare, threatened, or endangered 90 th percentile upper confidence limit on the arithmetic mean United States Environmental Protection Agency	

Cascade Earth Sciences - Spokane, WA PN: 2723018

Doc: 2723018 Granite Creek Removal Action HHRA.docx

1.0 INTRODUCTION

- Potential human health and ecological risks associated with mining-related contamination at the Monumental, Cap Martin, Sheridan, Tillicum, Central Mines, Golden Fraction; and Granite Creek (GC)-5, GC-6, and GC-7 (unnamed) Mines (collectively referred to as the Granite Creek Mines) within the Upper Granite Creek Watershed (Site) were assessed through a streamlined risk assessment process.
- The mines are located in the upper portion of the Granite Creek watershed, approximately 5 to 8 aerial miles north of Granite, Oregon in Grant County in the Wallowa-Whitman National Forest (WWNF).
- The risk assessment process follows Oregon Department of Environmental Quality (ODEQ) and U.S. Environmental Protection Agency (USEPA) guidelines.
- Potential risks and hazards were evaluated using site-specific concentrations of chemicals of interest (COIs), selected human and ecological receptors and respective exposure pathways, and appropriate risk-based screening concentrations.

2.0 RISK ASSESSMENT DATA AND INITIAL SCREENING

- This section describes the data set used in this risk analysis and the initial screening for the human health risk assessment (HHRA) and ecological risk assessment (ERA).
- Data were selectively collected in areas where contamination was known or suspected to occur; therefore, the data set is skewed towards an understanding of the magnitude of contamination on Site rather than a full characterization of the Site.
- The data used in the risk assessment are from soil, vegetation, waste rock, surface water, pore water, and sediment samples collected during the Site Inspection (SI) conducted by EA Engineering, Science, and Technology, Inc. (EA) in January 2004 (EA, 2004) and the 2007 data gap investigation conducted by Cascade Earth Sciences (CES). The following samples were collected from five mines within the watershed:
 - o 12 background soil samples
 - o 48 surface and subsurface waste rock samples
 - 35 surface soil samples for the HHRA at 0-1.5 feet below the ground surface,
 - 38 surface soil samples for the ERA at 0-3 feet below the ground surface, and
 - 10 subsurface soil samples at greater than 1.5 feet below the ground surface for the HHRA.
 - o 4 background vegetation samples
 - o 6 vegetation samples
 - o 3 background surface water samples
 - o 17 surface water samples
 - o 3 background pore water samples
 - o 14 pore water samples
 - o 3 background sediment samples
 - o 27 sediment samples
- Overall, the data are likely to overestimate the concentrations found across the Site because samples were located to represent the areas of highest chemical of interest (COI) concentrations, not areas representative of overall human and ecological receptor exposure at and surrounding the Site. This is a conservative approach that is appropriate for screening level risk assessments.
- Initially, all data collected during the SI and deemed appropriate for use in the risk assessment were used to calculate the 90th percentile upper confidence level on the arithmetic mean (90UCL) for each medium:

- The 90UCL is an upper-bound (i.e., conservative) estimate of mean chemical concentration and is specified as an appropriate exposure point concentration (EPC) in Oregon's Revised Cleanup Rules (OAR 340-122-084).
- o If fewer than 10 samples are available in a given medium, it is inappropriate to calculate a 90UCL (USEPA, 2003b). In these cases and if an appropriately calculated 90UCL exceeded the maximum detected concentration, the maximum detected concentrations was used as a substitute for the 90UCL.
- The data were screened using the ODEQ's Guidance for Conduct of Deterministic Risk Assessments (1998), which allows for prescreening of COIs based on the following criteria:
 - o **Essential Nutrients:** calcium, magnesium, potassium, and sodium were removed from further assessment because they are considered to be essential nutrients.
 - **Frequency of Detection:** COIs in each medium that were detected in 5% or less of the samples Site-wide were removed from further assessment.
 - o **Background:** 90UCL or maximum (as described above) concentrations of naturally-occurring chemicals that were present at concentrations less than maximum background concentrations were eliminated from further assessment.
- The results of these initial screening procedures for each potential exposure medium are also shown in Appendices A1 through A7. These appendices also show a sample reporting limit screening to ensure that undetected chemicals had reporting limits below background and below the lowest applicable medium-specific risk-based screening concentrations. If they did not, then that COI was conservatively included for further assessment at one-half the maximum sample reporting limit.
- The selected COIs for the HHRA and ERA are shown in Table 2-1.

Table 2-1. Chemicals of Interest Remaining Following the Initial Screening

COI	Soi Waste M		Vegetation	Surface Water		Pore Water	Sediment	
	HHRA	ERA	ERA	HHRA	ERA	ERA	HHRA	ERA
Aluminum				X	X	X	X	X
Antimony	X	X		X	X		X	X
Arsenic, total	X	X	X	X	X	X	X	X
Barium	X	X		X	X	X	X	X
Beryllium			X				X	X
Cadmium	X	X	X	X	X		X	X
Chromium, total			X	X	X		X	X
Cobalt							X	X
Copper	X	X	X	X	X		X	X
Iron	X	X	X	X	X		X	X
Lead	X	X	X	X	X	X	X	X
Manganese	X	X		X	X		X	X
Mercury	X	X	X	X	X	X	X	X
Nickel							X	X
Selenium	X	X		X	X	X		
Silver	X	X		X	X	X	X	X
Thallium	X	X				X	X	X
Vanadium	X	X	X				X	X
Zinc	X	X	X	X	X	X	X	X

NOTE: X = COI selected for further screening

3.0 HUMAN HEALTH RISK ASSESSMENT

- A HHRA is an analysis of the potential adverse health effects that could result from current or future
 exposures to hazardous substances released from a site, in the absence of any action to control or
 mitigate these releases.
- The objective of this HHRA is to incorporate analytical data and information on potential human exposure to the COIs in order to provide a baseline assessment of the potential for human health risks to be realized due to Site-related contamination.
- The following are primary elements of the HHRA:
 - Hazard Identification and Selection of Contaminants of Potential Concern: Evaluation of site
 data and identification of elevated concentrations of COIs in human exposure media, resulting in a
 list of contaminants of potential concern (COPCs) for the HHRA.
 - o **Exposure assessment**: Identification of areas that pose human health risks under current or potential future site uses and conservative estimation of exposure.
 - Toxicity assessment: Quantification of the relationship between chemical exposure and adverse effects.
 - o **Risk characterization:** Development of quantitative risk estimates using exposure and toxicity information previously developed for the COPCs.

3.1 Hazard Identification and Selection of COPCS

- This section presents the rationale for the selection of the COPCs; prescreening of the COIs was described in Section 2.0.
- The media of interest for human health included soil, waste rock, surface water, and sediment.
- The COIs retained for further assessment following the initial screening included aluminum, antimony, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, selenium, silver, thallium, vanadium and zinc as shown in Appendices A1, A2, A4, and A6 for surface soil, subsurface soil, surface water, and sediment, respectively.
- Maximum concentrations of these COIs were screened against USEPA Region IX Preliminary Remediation Goals (PRGs).
 - o Industrial PRGs were selected as most appropriate screening criteria for soils and sediment.
 - o Tap water PRGs represent a very conservative screen for surface water.
 - o Appendix B1 presents the preliminary remediation goal (PRG) screening and results.
- Arsenic and lead were identified as COPCs for the Site.

3.2 Exposure Assessment

Assessing the exposure at a given site includes the identification of potentially exposed populations, the selection of relevant exposure pathways, and the calculation of exposure point concentrations and chronic daily intakes.

3.2.1 Potentially Exposed Population

- Maps and Figures of the Site are provided in the SI report (EA, 2004). The following is a brief summary of the rational for the potentially exposed population:
 - o The Site consists of five mines located within the Granite Creek watershed.

Monumental Mine

- Monumental Mine, located near the headwaters of Granite Creek, includes two open adits, a shaft, three settling ponds, three waste rock piles, and a former mill site. Access to the mine is by way of FR 7345.
- The mine is situated on moderate to steep hillsides at the headwaters of Granite Creek.

Cascade Earth Sciences – Spokane, WA PN: 2723018 Doc: 2723018 Granite Creek Removal Action HHRA.docx • Water flows from an upper seep into a series of three settling ponds, all of which are connected by surface water flow. In addition, water seeps from the lower adit through a constructed ditch to the lower settling pond. No outlet for the settling pond was observed during SI activities.

Cap Martin Mine

- The Cap Martin Mine is situated approximately 1.4 miles downstream from the headwaters of Granite Creek and contains two observed collapsed adits, one additional reported adit, three waste rock piles, and an outwash fan from the south waste rock pile.
- The mine is located on both sides of Granite Creek and is accessed via FR 7345.

GC-7 Mine

- The GC-7 Mine is situated approximately 0.25 miles downstream from the Cap Martin Mine at the confluence with an unnamed tributary originating from the monumental Mine.
- The mine contains one observed collapsed adit and two waste rock piles.
- A former canal or placer ditch is located just upslope from the mine.
- The mine is located on moderately steep hillsides on the north side of Granite Creek and is accessed via FR 680.

Sheridan Mine

- Sheridan Mine is located about 0.40 miles downstream of the Cap Martin Mine, east of the bank of an unnamed tributary of Granite Creek. The mine includes two possible adits, one of which is collapsed at the portal and contains a seep that discharges into a marshy area. No acid mine drainage (AMD) was observed in the seep. In addition, there is one waste rock pile downgradient from the collapsed adit.
- The mine is situated on moderately steep slopes on the south side of Granite Creek and is accessed by way of FR 7345.

GC-6 Mine

- The GC-6 Mine is situated approximately 0.10 miles downstream from the Sheridan Mine, on the north side of Granite Creek, and contains one partially collapsed adit, and a waste rock pile.
- The mine is located on moderately steep hillsides on the north side of Granite Creek and is accessed via FR 680.

Tillicum Mine

- The Tillicum Mine is located approximately 0.25 miles downstream of the Sheridan Mine along Granite Creek and contains two primary collapsed adits and associated waste rock piles, and reportedly several additional adits. No water emanated from the adits during SI field activities.
- The Mine is situated on moderately steep slopes along the north bank of Granite Creek and is accessed by way of FR 7345.

GC-5 Mine

- The GC-5 Mine is located about 0.25 miles downstream of the Tillicum Mine, and contains one collapsed adit and two waste rock piles.
- FR 680, which accesses the mine, is cut through the larger waste rock pile adjacent to Granite Creek.
- Water was observed flowing from the collapsed adit during the CES data gap field investigation.
- The mine is situated on a moderately steep slope north of Granite Creek.

Golden Fraction Mine

- The Golden Fraction Mine is located about 0.125 miles downstream of the GC-5 Mine.
- The upper portion of the mine, situated just downslope from FR 7345, has an open adit, shaft, collapsed cabin, one large waste rock pile, and four smaller waste rock piles.
- The lower portion of the mine, just upslope from FR 680 along Granite Creek, contains one collapsed adit and two waste rock piles.
- FR 680, which accesses the mine, is cut through the larger waste rock pile adjacent to Granite Creek.
- Water was observed flowing from the collapsed lower adit during the CES data gap field investigation.
- The mine is situated on a moderately steep slope north of Granite Creek.

Central Mine

- The Central Mine is located about 0.125 miles downstream of the Golden Fraction Mine, southeast of the intersection of FR 73 (Elkhorn Drive Scenic Byway) and FR 7345.
- The mine contains two observed adits and one reported adit. The adits did not have water emanating from them at the time of the SI field investigation. Additionally, three waste rock piles are located at the mine. A waste rock berm, created as a result of hydraulic mining activities, runs in east-west direction about 75 to 100 feet upslope of Granite Creek.
- The mine is situated on a moderately steep slope north of Granite Creek.
- Given the types of human uses expected, the potential for long-term exposure to Site-related contaminants is considered very low.
- There are no onsite workers, or occupied structures on the Site or within 200 feet of the Site.
- Access is currently not restricted by fencing, nor were any "No Trespassing" signs observed. In general, land uses in this area are limited to recreation (hiking, fishing, camping, hunting, etc.) and possibly some minerals prospecting on nearby claims.
- The ingestion, dermal contact, and air exposure pathways are considered complete, because hikers, hunters, and campers have the potential to access the Site.
- The most likely pathway of exposure at the Site is inhalation of particulates.
- Fish consumption was eliminated as a potential pathway of concern because, with the exception of tribal fishing, all recreational fishing in Granite Creek and its tributaries was prohibited by the Oregon Department of Fish and Wildlife in 1997 (EA, 2004). The number and size of fish present also severely limits any potential for a recreational or subsistence fishing scenario.

3.2.2 Identification of Potential Exposure Pathways

- The conceptual human exposure model is presented in Figure 3-1.
- Exposures to COPCs were evaluated for all complete pathways for which there was a receptor. These pathways were determined to be:
 - o Inhalation of soil/waste rock particulates.
 - o Dermal contact with soil/waste rock.
 - o Incidental ingestion of surface soil/waste rock,
 - o Dermal contact with surface water
 - o Incidental ingestion of surface water
 - o Dermal contact with sediment, and
 - o Incidental ingestion of sediment by current and future recreational receptors.

3.2.3 Current and Potential Future Receptors

- The Site is not currently occupied, nor is it expected to be occupied in the future.
- The only likely current and future receptors identified for the Site are hikers, campers, and hunters.

Based on the Site topography and its isolated location within the WWNF, it is highly unlikely that
recreational users would engage in activities at the Site that could result in significant ingestion or
contact with soil, sediment or surface water. Therefore, the most likely pathway of exposure at the Site
is inhalation of particulates.

3.2.4 Exposure Assumptions

- Exposure assumptions include factors such as body weight, averaging time, exposure frequency, exposure duration, and chemical bioavailability.
- Separate assumptions are made for both average or central tendency exposure (CTE) and reasonable maximum exposure (RME).
- In general, CTE represents a less conservative model of the Site risk, using exposure factors that are more indicative of the average recreational user rather than a maximally exposed user.
 - The exposure factors and assumptions used in this risk assessment are presented in Appendix B2.

3.2.5 Exposure Point Concentrations

- An EPC is used in coordination with the exposure factors to calculate the Average Daily Dose (ADD) of a chemical of potential concern (COPC).
- The EPC can be the maximum concentration detected or a statistical average.
- It is not reasonable to assume long-term contact with the maximum concentration.
- When sufficient data exists, an upper-bound estimate of average concentrations (i.e., the 90UCL) are
 used because an average concentration is most representative of the concentration contacted over this
 time period.
- As per the USEPA (1997), when data for a particular exposure medium were limited to less than 10 samples, the maximum detected concentration was used as the EPC. Where the data set contained greater than 10 samples, 90UCL was calculated and used as the EPC.
- The EPCs are presented in Table 3-1 and Appendix B3.

Table 3-1. Exposure Point Concentrations

СОРС	N	Maximum	Central Tendency Exposure ¹	Reasonable Maximum Exposure ²	Comments
Surface Soil (mg/kg)					
Total Arsenic	35	11,400	853	2,250	90UCL
Sediment (mg/kg)					
Total Arsenic	27	303	54.4	73.9	90UCL
Surface Water (mg/L)					
Total Arsenic	17	0.0818	0.00988	0.0188	90UCL

NOTES:

3.2.6 Exposure Doses

• The EPCs are then entered into exposure dose calculations to calculate the ADD of a contaminant for each receptor type. While presented individually in the equations, USEPA Region X allows for the calculation of Summary Intake Factors (Intake Factors) as follows:

¹ Average concentration

² 90UCL if greater than 10 data points; Maximum concentration if less than 10 data points.

Abbreviations: $EPC = Exposure\ point\ concentration,\ mg/kg = milligrams\ per\ kilogram,\ mg/L = milligrams\ per\ liter,\ N = Number\ of\ samples,\ UCL = Upper\ confidence\ Limit.$

- o Intake Factors represent the sum lifetime exposure to contaminated soil, water, or air through the pathway. The Intake Factors are presented in Appendix B4.
- o Dermal absorption factors are required to calculate dermal exposures to surface water and these are shown in Appendices B5 and B6.
- o The Intake Factors when multiplied by the EPC provide the ADD for each chemical.

3.3 Toxicity Assessment

- The purpose of the toxicity assessment is to present the critical toxicity values for the COPCs. Toxicity is defined as the ability of a chemical to induce adverse effects at some dosage in biological systems. The purpose of the toxicity assessment is twofold:
 - To identify the carcinogenic (cancer) and non-carcinogenic (non-cancer) effects that may arise from direct or indirect exposure of humans to the COPCs; and
 - To provide an estimate of the quantitative relationship between the magnitude and duration of exposure, and the probability or severity of adverse effects.

3.3.1 Toxicity Values

- Toxicity values are used to quantitatively describe the relationship between the extent of exposure to a COPC and the potential increased likelihood, or severity, of adverse effects.
- Where toxicity values are available, the following USEPA sources have been used to obtain this information.
 - o Integrated Risk Information System (IRIS) computer database (USEPA, 2004b)
 - o Health Effects Assessment Summary Table (USEPA, 1997)
- Both carcinogenic and non-carcinogenic effects were quantitatively evaluated as noted below:
 - The endpoints for these two different types of effects are assessed differently because the mechanisms by which chemicals cause cancer are assumed to be fundamentally different from the processes that cause non-carcinogenic effects.
 - The principal difference reflects the assumption that non-carcinogenic effects are assumed to exhibit a threshold dose below which no adverse effects occur, where USEPA assumes no such threshold exists for carcinogenic effects.
 - Because exposure to some chemicals may result in both carcinogenic and non-carcinogenic effect, both endpoints associated with a COPC were evaluated quantitatively when sufficient toxicity data are available.

3.3.2 Categorization of Chemicals as Non-Carcinogens or Carcinogen

- Chemicals are classified into those that cause cancer (carcinogens) and those that cause other, non-cancer, health effects (non-carcinogens).
- The methods for assessing the potential for these two different types of health effects are different. Where a chemical can cause both cancer and non-cancer health effects, the risk evaluation calculates the potential for both types of effects.
- The following sections provide background information on the toxicity values for carcinogenic and non-carcinogenic chemicals, how they are determined, and how they are used in the risk analysis.

Potential Adverse Non-carcinogenic Health Effect

- The following summarizes the purpose and usage of reference doses (RfDs):
 - o Reference doses are critical toxicity factors for chemicals that can cause non-carcinogenic health effects.
 - o An RfD represents an estimated intake rate that is unlikely to produce measurable adverse effects over a lifetime of exposure (USEPA, 1989).

- o RfDs are determined by the USEPA RfD Work Group or from the health effects assessment documents developed by the USEPA Office of Research and Development.
- An RfD, expressed in units of milligrams per kilogram per day (mg/kg-day), assumes a threshold for adverse non-carcinogenic effects. An ADD below the RfD is considered unlikely to cause adverse health effects.
- o RfDs are route-specific; that is, RfDs may be different for ingestion, inhalation, or other routes of exposure.
- o RfDs are derived using uncertainty factors and modifying factors.
- The Critical Toxicity Factors for the non-carcinogenic COPCs are presented in Table 3-2 and Appendix B7.

Table 3-2. Critical Toxicity Values for the Non-carcinogenic COPCs

СОРС	Oral Chronic Reference Dose* (mg/kg-day)	Confidence in Reference Dose	Endpoint
Arsenic	0.0003	Medium	hyperpigmentation, vascular

NOTE: * Reference Dose value from Region IX PRG Tables.

Potential Carcinogenic Effects

- Carcinogenic toxicity is not assumed to have a threshold concentration below which adverse effects do
 not occur; therefore, carcinogenic risk from exposure to a COPC is expressed in terms of the probability
 that an exposed receptor will develop cancer over their lifetime.
- Contaminant-specific dose response curves are used to establish slope factors that represent an upperbound excess cancer risk from a lifetime exposure.
- Dose response curves for human carcinogens are developed from tumorgenic and laboratory studies; the slope factor is generated from the 90UCL of the extrapolated dose curve using probabilistic methods and represents a conservative upper-bound estimate of the potential risk associated with exposure.
- Based on USEPA guidelines documents, critical toxicity data for arsenic and chromium are presented in Table 3-3 and Appendix B8 (refer to USEPA 1999 for additional information).

Table 3-3. Critical Toxicity Values for the Carcinogenic COPCs

СОРС	Slope Factor (mg/kg-day)-1		Weight of Evidence Classification *	Type of Cancer	Basis of Slope Factor	
	Oral	Inhalation	Ingestion/Inhalation	Ingestion/ Inhalation	Oral/Inhalation	
Arsenic	1.5E+00	1.5E+01	A	Skin	Epidemiologic Studies	

NOTE: A = Known human carcinogen.

Lead Critical Toxicity Values

- Meaningful oral and inhalation critical toxicity values have not been developed for lead.
- Many of the non-carcinogenic effects associated with lead may not exhibit a threshold, especially in young children.
- USEPA considers lead to be a probable human carcinogen based on sufficient animal data (i.e., a class B2 carcinogen). In lieu of a reference dose or slope factor, USEPA has developed the Integrated Exposure Uptake/Biokinetic Model (IEUBK) and the Adult Lead Model (ALM) which correlate dose with blood lead levels.
- The Federal Action Level for Lead in drinking water is 0.015 mg/L.

Cascade Earth Sciences – Spokane, WA PN: 2723018

Upper Granite Creek Removal Action Human Health and Ecological Risk Assessment May 2011 / Page 8

- Lead exposure levels are as follows:
 - O The lowest-observed adverse effect level (LOAEL) of lead is considered to be 10 micrograms per deciliter (μg/dl) in children and fetuses and 30 μg/dl in adults.
 - Empirically-derived ratios of 0.16 and 0.04 µg/dl per micrograms per day (µg/day) ingested by children and adults respectively, recommended by USEPA (1986) and FDA (1990), are used to predict concentrations in young children and adults.
 - O Applying an uncertainty factor of 10 results in provisional tolerable intake levels of 6 μg/day for children six or less, 15 μg/day for children over six, 25 μg/day for pregnant women, and 75 μg/day for men.

3.4 Risk Characterization

- Potential human health impacts associated with exposure to COPCs at the Site were evaluated by estimating the potential for both non-carcinogenic and carcinogenic health effects.
- The following sections discuss the assessment of non-carcinogenic hazards, carcinogenic risks, and lead risk associated with exposure to COPCs at the Site.
- The sampling locations were selected as locations where levels of concentrations were suspected to be the highest.
- Targeted sampling identifies the worst-case situations and is intended to be a conservative data set that is sufficient for the specific purposes of risk assessment.

3.4.1 Non-Carcinogenic Hazard Assessment

- Non-carcinogenic hazard is estimated as the ratio of the ADD of the non-carcinogenic chemical through a specific exposure route to the chronic (or subchronic) RfD for that exposure route.
- For example, intakes from the ingestion route are compared to oral RfDs.
- The assessment is done as follows:
 - o The ADD divided by the RfD for an individual chemical is termed the Hazard Quotient (HQ).
 - o HQs greater than 1.0 indicate the potential for adverse health effects because the intake exceeds the RfD (USEPA, 1989).
 - o An HQ is calculated for each chemical that elicits a non-carcinogenic health effect if an RfD is available for the chemical and exposure route.
 - o The sum of all individual chemical-specific HQs is termed the Hazard Index (HI) and is calculated under each exposure pathway.
 - o The HI considers exposure to a mixture of chemicals having non-carcinogenic effects based on the assumption that the effects of chemical mixtures are additive (USEPA, 1986b).
 - An HI greater than 1.0 indicates the potential for adverse non-carcinogenic effects. When the HI is greater than 1.0, the USEPA guidance allows for segregating HIs by critical effect categories.
 Major categories of critical effects include neurotoxicity, developmental effects, and effects on target organs to name a few.

3.4.2 Excess Cancer Risk Assessment

- Carcinogenic risk is an estimate of the probability that a COPC will produce a carcinogenic effect.
- The excess lifetime carcinogenic risk is the incremental increase in the probability of developing cancer compared to the background incremental probability of developing cancer with no exposure to site contaminants.
- An excess cancer risk (ECR) of 1 x 10⁻⁶, represents an increase of one additional case of cancer (above background) in one million people exposed to a carcinogen over their lifetime (70 years).
- Estimates of carcinogenic risk using the slope factors developed by USEPA are generally upper-bound estimates; actual risks from exposures to chemical constituents at the Sites would likely be lower than the risks estimated herein.

• For estimating carcinogenic risk from exposure to more than one carcinogenic chemical from a single exposure route, risks from each individual chemical are summed to estimate total ECR.

3.4.3 Potential Non-carcinogenic Hazards and Excess Cancer Risks

Discussion of Non-carcinogenic Hazards

- Soils/Waste Rock
 - o Arsenic and lead were identified as COPCs.
 - o Arsenic is the only COPC that can be quantitatively evaluated.
 - o The average concentration and the 90UCL concentration was used as the EPC.
 - o None of the individual constituents exceeded the regulatory standard of 1.0 under CTE and RME exposure conditions (Appendix B9).
- Sediments
 - o Arsenic and lead were identified as the COPCs.
 - o Arsenic is the only COPC that can be quantitatively evaluated
 - o The HQs are below the regulatory standard of 1.0 for both the RME and CTE exposure scenarios (Appendix B9).
- Surface water
 - Arsenic and lead identified as COPCs.
 - o No toxicity values are available for lead in surface water, groundwater, or drinking water.
 - The EPC for lead in surface water, which is also the maximum concentration detected is 0.009 mg/L.
 - o The Federal Action Level for lead in drinking water is 0.015 mg/L.
 - o The HQs are below the regulatory standard of 1.0 for both the RME and CTE exposure scenarios (ppendix B9).

Discussion of Potential Excess Cancer Risks

- Soil/Waste Rock
 - o The only carcinogenic constituent identified was arsenic.
 - o The average concentration and the 90UCL concentration were used as the EPCs for the CTE and RME exposures, respectively.
 - o The ECR exceeded the regulatory standard of 1 x 10⁻⁶ under both CTE and RME exposure conditions (Appendix B10).
 - o For the CTE exposure conditions, ECRs for ingestion (2×10^{-6}) did not exceed the EPA risk range of 1×10^{-6} to 1×10^{-6} but did exceed Oregon's regulatory standard of 1×10^{-6} .
 - o For the RME exposure condition, ECRs for ingestion (2 x 10⁻⁵) and dermal contact (2 x 10⁻⁵) did not exceed the EPA risk range of 1 x 10⁻⁴ to 1 x 10⁻⁶ but did exceed Oregon's regulatory standard of 1 x 10⁻⁶.
 - o Therefore, a carcinogenic risk is possible for exposure to arsenic impacted soil/waste rock under the CTE and the RME exposure scenarios.
 - o Inhalation of particulates did not exceed the regulatory standard 1 x 10⁻⁶ under both CTE and RME exposure conditions (Appendix B10).
- Sediments
 - o The only carcinogenic constituent identified in sediment is arsenic.
 - The ECRs for arsenic in sediment did not exceed the regulatory standard 1 x 10⁻⁶ under both CTE and RME exposure conditions (Appendix B10).
- Surface Water
 - Arsenic was the only carcinogenic constituent identified in surface water, for which exposure could be quantified.

- o The ECRs for arsenic in surface water did not exceed the regulatory stand 1 x 10⁻⁶ under both the CTE and the RME exposure conditions (Appendix B10).
- Lead was identified as a COPC in surface water on the basis of no PRG, and is considered to be carcinogenic, but no toxicity values are available. Therefore it cannot be quantitatively addressed in the same manner as arsenic and is addressed qualitatively below.

Estimation of Potential Human Health Impacts from Exposure to Lead

- The USEPA's lead models simulate soil lead exposures at a single location. Two models have been developed, the IEUBK model and the ALM:
 - o These models require a minimum of three months of continuous exposure of at least one day per week.
 - o Three months exposure is the minimum to produce a quasi-steady-state lead concentration.
 - The reliability of the models for predicting lead concentrations for exposure durations shorter than three months has not been assessed.
 - In order to address non-continuous exposures, the USEPA Office of Solid Waste and Emergency Response has developed a guidance document for evaluating intermittent exposures to lead for scenarios such as recreational users and trespassers.
 - o Since the exposure frequency is less than three months, predicted intake values were compared with the provisional values discussed in Section 3.3.2.3.
 - Table 3-5 present the results of the lead intake calculations and lead screening. Only the ingestion pathway is quantified.

Table 3-5. Lead Intake Screening

Exposure Point Concentrations		Intake		Predicted Intake		USEPA Provisional Intake Value	USEPA Provisional Intake Value			
mg	/kg	kg/	day	μg/day						
CTE	RME	CTE	RME	CTE RME		Men	Children <6			
Soil										
375.8143 661.61739		6.7E-07	2.7E-06	0.25	1.786	75	6			
Sediment	Sediment									
24.24 39.3502		2.6E-07	2.1E-06	.006 0.083		75	6			
	_	TOTA	L INTAKE	0.256	1.869	75	6			

• Summary of Lead Risks:

- O Soil and Waste Rock: The predicted intake was calculated to be 0.25 $\mu g/day$ (CTE) and 1.786 $\mu g/day$ (RME). The USEPA provisional ingestion intake value for men (most likely receptor) is 75 $\mu g/day$ and children under six (least likely receptor) is 6 $\mu g/day$. If you assume that the total intake from dermal exposure and inhalation is equal to the intake from ingestion, no risk is expected for exposure to lead in soil and waste rock.
- O Sediment: The predicted intake was calculated to be 0.006 μg/day (CTE) and 0.083 μg/day (RME). Using the USEPA provisional ingestion intake listed above, no risk is expected for exposure to lead in sediment for the most likely recreational receptor (men), but a risk is possible for exposure to children under six using the RME EPC. Given the steep terrain and remote nature of the Site, children less than six are not expected to spend extended periods of time at the Site; therefore, a risk is not expected from exposure to lead impacted sediment.
- O Surface Water: The maximum concentration of lead in surface water was 9 micrograms per liter (μg/L), which is less than the USEPA National Primary Drinking Water Standard, Maximum

Containment Level of 15 μ g/L (USEPA, 2003b). Therefore, exposure to lead in drinking water is not expected to be a risk.

3.5 Calculation of Cleanup Goals

- Site specific cleanup goals protective of the RME recreational users were calculated for soil/waste rock and sediment based on the regulatory standard of 1 x 10⁻⁶ ECR.
- The site-specific cleanup goals were calculated to be 143 mg/kg for soil/waste rock
- These clean-up goals are used to calculate hot spot concentrations in soil/waste rock

3.6 Determination of Potential Hot Spots

- The 1995 amendments to Oregon Revised Statute [ORS 465.315] and 1997 amendments to the Hazardous Substance Remedial Action Rules [OAR 340-122], commonly referred to as the Environmental Cleanup Rules, require that certain actions be taken for "hot spots" of contamination. These actions are:
 - o The identification of hot spots as part of the Remedial Investigation and Feasibility Study, and
 - The treatment of hot spots, to the extent feasible, as part of a remedial action selected or approved by the Director of the ODEQ.
- The intent of the hot spot rule is to require treatment only for the worst contamination, as opposed to preferring treatment for all contamination at the Site.
- A hot spot in soil is generically defined as an area where the contamination is highly concentrated, highly mobile or cannot be reliably contained. The assessment of "highly concentrated" hot spots is performed by comparing the concentration of each individual site contaminant to its "highly concentrated" hot spot level as follows:
 - o The "highly concentrated" hot spot levels correspond to a lifetime ECR of 1 x 10⁻⁴ for carcinogens and a hazard quotient of 10 for non-carcinogens.
 - Arsenic in surface soil/waste rock exceeded the regulatory standards for carcinogenic health effects.
 - The results of the hot spot evaluations are presented in Appendix B11. Using an ECR of 1 x 10⁻⁴ a hot spot concentration for arsenic in soil/waste rock was calculated to be 14,330 mg/kg.

3.7 Summary of Human Health Risks

- Arsenic was identified as the only COPCs in surface soil/waste rock, surface water, and sediment for non-carcinogenic effects.
- Lead was identified as a COPCs in surface water because there is no PRG for lead in this medium.
- Based on current and future land use, hunters, hikers, and campers were identified as potential receptors.
- No unacceptable non-carcinogenic health effects are anticipated from contact with sediment or soil/waste rock, nor from contact with surface water under CTE conditions.
- Arsenic was the only carcinogenic COPC identified at the Site.
- Risks due to ingestion under CTE exposure conditions, and due to ingestion and dermal contact with arsenic impacted soil under the RME exposure conditions exceeded the ODEQ's regulatory standard of 1 x 10⁻⁶ ECR.
- Based on the Site topography and its isolated location within the Wallowa Whitman National Forest, it
 is highly unlikely that recreational users would engage in activities at the Site that could result in
 significant ingestion of soil, thus, the most likely pathway of exposure at the Site is inhalation of
 particulates.
- The quantitative risk assessment determined that the inhalation pathway did not result in unacceptable health impacts.
- No hot spots were identified at the Site.

4.0 ECOLOGICAL RISK ASSESSMENT

- The goal of the ERA is to provide an understanding of the potential for ecological risks due to Siterelated contamination and to allow a determination of whether remediation or more detailed ecological risk assessment are warranted. This ERA report consists of:
 - O Description of the Site ecology and likely ecological receptors (including rare, threatened or endangered [RTE] species) at or near the Site;
 - o Presentation of the conceptual ecological exposure model (CEEM), which provides a summary of potential and likely exposure media and pathways;
 - o Delineation of assessment endpoints and measures;
 - o Ecological risk-based screening; and
 - o Risk characterization to assess the potential for ecological effects due to Site related COIs.
- An ecological survey was conducted as part of the SI (EA, 2004), which documented ecological features
 and conditions at and near the Site.
- The potential for Site-related ecological impacts were also assessed via an examination of stream benthic macroinvertebrate abundance and diversity.
- The ecological information collected during the SI has been incorporated into this risk assessment as appropriate.
- An ODEQ ecological scoping checklist was completed for this ERA, based on the SI ecological survey, and is provided in Appendix C.

4.1 Problem Formulation

- Problem formulation was completed as follows:
 - o The physical and chemical characteristics of the Site and the important ecological habitats, plants, invertebrates, fish, and wildlife that exist are described.
 - o This information is utilized to identify the COIs, the ecological receptors of concern, exposure pathways, and the exposure media.
 - This in turn, allows development of the CEEM which graphically depicts the expected fate and transport of chemicals at the Site, the potential exposure media, and likely exposure pathways for ecological receptor types of concern.
 - o The problem formulation concludes with identification of the ecological endpoints that delineate the objectives of the remainder of the ERA.
 - o Generally, problem formulation includes a description of the Site and summary of previous investigations; however, this information is provided in the SI, and is not repeated herein.

4.1.1 Ecological Stressors

- Ecological receptors may be affected through exposure to chemicals (i.e., toxicity), physical stresses (i.e., destruction of habitat), and biological stresses (i.e., viruses and bacteria).
- Biological stressors were assessed as follows:
 - While biological stressors may affect ecological receptors, they are more frequently associated with waste food or human waste and in areas where wildlife congregate in large numbers. Because the remote nature of the Site limits human presence and wastes, they are not considered to pose a threat to ecological receptors. Because of the lack of suitable habitat, ecological receptors are also unlikely to congregate in the vicinity of the Site in numbers that could result in significant biological infection or passage of wildlife diseases. Thus, biological stressors are unlikely to be a significant factor and are not considered further.
- Physical stressors were assessed as follows:
 - Past physical disturbances include development and operation of the mines and supporting structures, and possibly historic as well as current logging operations. Because the Site has been abandoned for decades, current physical disturbance is reduced to a relatively low number of

Cascade Earth Sciences – Spokane, WA PN: 2723018 recreational users that visit or drive by the Site. Given the relatively remote nature of the Site within the Wallowa Whitman National Forest, the ecological impacts of ongoing current physical disturbances are limited.

4.1.2 Ecological Setting

- The regional and Site-specific ecology are briefly described in this section to provide an understanding of the climate, plants, invertebrates, wildlife, and fish that may inhabit the Site and surrounding region:
 - Other than RTE species that must be considered on an individual level, a particular species must be potentially present on or utilize the Site in numbers adequate to allow an exposure level that may result in effects to the species' population. Such significant exposure to Site related COIs will only occur for those species known or expected to use the Site on a regular basis and in high numbers or that bioaccumulated metals to a significant degree.
 - More detailed information on the regional and Site ecology, sensitive environments, and RTE species is presented in the SI.
 - O Bull trout (Salvelinus confluentus) and the mid-Columbia steelhead (Oncorhynchus mykiss) were the only threatened or endangered (i.e., protected) species observed or expected at or in the vicinity of the Site (EA, 2005). Bull trout were identified in Granite Creek. Steelhead are expected primarily downstream of the site.
 - Four distinct habitat types were observed at the Site by EA. These include; drier south facing slopes, moister north facing slopes, riparian zones along Granite Creek, and spruce forest at Monumental Mine.
 - A lack of understory ground species was noted during SI activities and logging, fire, and insect infestations have likely occurred in areas surrounding the Site. Waste Rock piles typically contained early-successional coniferous species.
 - Overall, the relatively large number of species identified during this limited ecological survey suggested that numerous species are present in the vicinity of the Site and that they utilize varied habitat and foraging methods.
 - o Granite Creek flows throughout the Site and is generally less than one meter wide, with a riparian area less than 20 meters wide. EA described the riparian vegetation as being dominated by red alder (EA, 2004), although it is more likely mountain alder that was observed.

4.1.3 Conceptual Ecological Exposure Model

- The CEEM (Figure 4-1) graphically depicts the sources of contamination, contaminant release and transport mechanisms, impacted exposure media, and exposure routes for ecological receptor types observed or expected at the Site. Based on current understanding of Site conditions, the potentially contaminated exposure media for ecological receptors include:
 - o Surface soil/waste rock in the vicinity of the Site;
 - o Vegetation at the Site;
 - o Surface water in Granite Creek, adit and waste rock seep drainages;
 - o Pore water within Granite Creek; and
 - o Sediment in Granite Creek.
- Given these exposure media, the possible and likely ecological receptor groups include:
 - o Terrestrial plants exposed to COIs in soil/waste rock;
 - o Terrestrial invertebrates exposed to COIs in soil/waste rock;
 - Terrestrial and semi-aquatic wildlife (including birds, mammals, and reptiles) exposed to COIs in soil/waste rock, surface/adit water, pore water, and sediment;
 - o Aquatic life (including aquatic plants, aquatic invertebrates, fish, and amphibians) exposed to COIs in surface/adit water, and pore water; and
 - o Benthic invertebrates, birds, and mammals exposed to COIs in sediment.

4.1.4 Assessment Endpoints and Measures

Assessment Endpoints

- Assessment endpoints represent the ecological aspects to be protected at a site and link the ERA to risk management decisions.
- Within a screening level ERA, assessment endpoints are generalized to reflect the risk-based screening process and protective ecological risk-based screening concentrations (ERBSCs). The assessment endpoints for this ERA include:
 - o Protection of the reproduction and survival of plants, terrestrial invertebrates, birds, mammals, and reptiles exposed to COIs in surface soil/waste rock and vegetation at the Site;
 - o Protection of aquatic life reproduction survival exposed to COIs in water within the adit/seep drainages and Granite Creek;
 - Protection of the reproduction and survival of birds and mammals that may drink water from adit/seep drainages and Granite creek;
 - o Protection of the reproduction and survival of aquatic life exposed to COIs in pore water within Granite Creek:
 - o Protection of reproduction and survival of benthic macroinvertebrates exposed to COIs in sediment within Granite Creek; and
 - Protection of reproduction and survival of birds and mammals exposed via the aquatic/benthic food chain to COIs in sediment within Granite Creek.

Assessment Measures

- Assessment measures are characteristics of the Site, selected ecological receptors, or ecosystem aspects
 that are measured through monitoring or sampling activities and then related qualitatively or
 quantitatively to the selected assessment endpoint(s) to determine whether an ecological effect is
 occurring. For this ERA, the assessment measures are comprised of the following:
 - o Measured concentrations in soil/waste rock, surface water, pore water, and sediment; and
 - o Readily-available ERBSCs.

4.2 Ecological Risk-Based Screening

- Ecological risk-based screening begins with a list of COIs in the media of concern, a determination of EPCs, and a comparison of the EPCs to ERBSCs with consideration of exposure to multiple chemicals and media, reporting limit adequacy, and the inordinate contribution of individual chemicals to the overall receptor group risk.
- The result is a list of Site-related chemicals of potential ecological concern (COPECs) with the potential to pose risks to ecological receptors at the Site.
- The initial screening was completed in Section 2.0 and the chemicals retained as ecological COIs were presented in Table 2-1.
- The ERBSCs used in the risk-based screening were provided by ODEQ (ODEQ, 2001).
 - When a screening level value was not available for a given COI, then an alternative ecological riskbased screening concentration (ERBSC) was selected from peer-reviewed literature or a surrogate chemical ERBSC was substituted.
 - The ERBSCs are presented in Appendix D1.
- As per ODEQ guidance (2001), the EPCs for each medium were compared to the ERBSCs for each chemical and receptor group in each medium, resulting in chemical/receptor group-specific risk ratios (R_{ii} in Appendices D2 through D5). Assessment of risk ratios was as follows:
 - o Risk ratios were summed for all chemicals within a receptor group to obtain receptor group-specific risk ratios (R_i in Appendices D2 through D5).
 - The potential for bioaccumulation of each COI was assessed, reporting limit adequacy was checked for undetected COIs, and the inordinate contribution of any given chemical to the overall receptor

- group risk was determined. Risk ratios greater than 1 were considered unacceptable and indicative of potential risks for protected ecological receptors (bull trout and steelhead), aquatic life, and benthic macroinvertebrates.
- o Risk ratios greater than 5 were considered unacceptable for other ecological receptors.
- o The COIs for which potential ecological risks were indicated became COPECs for the Site.
- No ERBSCs are available for vegetation, so a risk-based screening was not conducted for vegetation. The potential for COPECs in vegetation to result in ecological risks is discussed further in the risk characterization section below.
- The risk ratios for receptor groups exposed to COPECs are shown in Tables 4-1 through 4-4.

Table 4-1. Chemicals of Potential Ecological Concern and Risk Ratios for Surface Soil/Waste Rock

COPEC Terrestr Plants (R _{ij})		n*	Terrestrial Invertebrates (R _{ij})	n*	Birds (R _{ij})	n*	Mammals (R _{ij})	n*
Antimony	ony 8 4 0.5 0 No ERBSC		0	3	0			
Total Arsenic	99	25	30	9	42	25	39	16
Cadmium	m 1 0 0.2 0 0.8 Bioaccumulation			0	0.04 Bioaccumulation	0		
Iron	2,782	17	139	17	No ERBSC	0	No ERBSC	0
Lead	12	6	1	0	37	12	0.1	0
Manganese	1	0	6	8	0.1	0	0.05	0
Mercury	208	4	625	5	42	2	0.9	0
Selenium	0.7	0	0.01	0	0.4 Bioaccumulation	0	0.03 Bioaccumulation	0
Silver	23	7	0.9	0	No ERBSC	0	No ERBSC	0
Vanadium	22	5	No ERBSC	0	1	0	2	0
Zinc	7	11	2	1	6	8	0.02	0
Total Receptor Group Risk (R _i)	3,168		807		131		46	

NOTES:

Bold = COPEC with risk ratio greater than acceptable levels; (>1 for protected species - none are expected; >5 for unprotected species) Non-bold = selected as COPECs for reasons other than exceedance of an ERBSC.

^{*} n = number of stations with an unacceptable risk ratio.

Table 4-2. Chemicals of Potential Ecological Concern and Risk Ratios For Surface Water

COPEC	Aquatic Life (R _{ij})	n*	Birds (R _{ij})	n*	Mammals (R _{ij})	n*
Antimony 0.0006		0	0 No ERBSC		0.0009	0
Arsenic, Total 0.1		0	0.001 Bioaccumulation	0	0.003 Bioaccumulation	0
Barium	16	13	0.0004	0.0004 0		0
Cadmium	Cadmium 0.2 0		0.00004 Bioaccumulation	0	0.00006 Bioaccumulation	0
Iron	0.6	0	No ERBSC		No ERBSC	
Lead	0.9	0	0.00008 Bioaccumulation	0	0.000007 Bioaccumulation	0
Mercury	0.1	0	0.00002 Bioaccumulation	0	0.000008 Bioaccumulation	0
Selenium	0.3	0	0.0003 Bioaccumulation	0	0.0008 Bioaccumulation	0
Silver	0.8 Reporting Limit Too High	0	No ERBSC		No ERBSC	
Zinc	2	1	0.002	0	0.0002	0
Total Receptor Group Risk (R _j)	22		0.004		0.01	

NOTES:

Bold = COPEC with risk ratio greater than acceptable levels (>1 for aquatic life; >5 for other species).

Non-bold = selected as COPECs for reasons other than exceedance of an ERBSC.

Table 4-3. Chemicals of Potential Ecological Concern and Risk Ratios for Pore Water

COPEC	Aquatic Life (R _{ij})	n*
	0.04	0
Arsenic, Total	Bioaccumulation	
Barium	12	11
	0.5	0
Lead	Bioaccumulation	
	0.07	0
Mercury	Bioaccumulation	
	0.3	0
Selenium	Bioaccumulation	
Silver	Reporting Limit Too High	0
Total Receptor Group Risk (R _i)	13	

NOTES:

Bold = COPEC with risk ratio greater than acceptable levels

(>1 for aquatic life; >5 for other species).

Non-bold = selected as COPECs for reasons other than exceedance of an ERBSC.

^{*} n = number of stations with an unacceptable risk ratio.

^{*} n = number of stations with an unacceptable risk ratio.

Table 4-4. Chemicals of Potential Ecological Concern in Sediment

СОРЕС	$\begin{array}{c} \text{Benthic} \\ \text{Macroinvertebrates} \\ (R_{ii}) \end{array}$	n*	Birds and Mammals (\mathbf{R}_{ij})	n*
Aluminum	Aluminum No ERBSC		No ERBSC	
Arsenic, Total	13	8	19	8
Barium	No ERBSC		No ERBSC	
Cadmium	1	0	216	9
Cobalt	No ERBSC		No ERBSC	
Iron	No ERBSC		No ERBSC	
		0	No ERBSC	
Mercury	0.5		Bioaccumulation	
Selenium	No ERBSC	0	5	0
Thallium	No ERBSC		1	0
Vanadium	Vanadium No ERBSC		No ERBSC	
Zinc 0.7		1	28	19
Total Receptor Group Risk (R _j)	18		265	

NOTES:

Bold = COPEC with risk ratio greater than acceptable levels (>1 for benthic invertebrates; >5 for other species).

Non-bold = selected as COPECs for reasons other than exceedance of an ERBSC.

4.3 **Ecological Risk Characterization**

4.3.1 Risk Description

• Risk description involves examining the predicted risks in each medium to determine whether they are likely, or artifacts of the risk assessment process.

Surface Soil/Waste Rock

- The COPECs for soil/waste rock were listed in Table 4-1.
- Nine of 11 COPECs had at least one exceedance of an ERBSC but only 6 COPECs had exceedances at more than 5 sample locations. Total arsenic was the only COPEC with ERBSC exceedances at more than half of the sample locations. This suggests that other than total arsenic, the COPECs are not at consistently elevated concentrations across all of the mines.
 - Cadmium and selenium were selected as COPECs solely due to their potential to bioaccumulate. However, the synthetic precipitation leaching procedure results for these two COPECs (EA, 2005) suggest that they are strongly bound to soil/waste rock particles, and thus, are not readily bioavailable. As such, it is unlikely they will bioaccumulate to any significant degree in birds or mammals. Given this argument and the lack of an exceedance of ERBSCs at the EPC, cadmium and selenium are not considered to present a significant risk to ecological receptors.
 - O Total arsenic, iron, and mercury risk ratios were inordinately high for at least one receptor group. Mercury only exceeded ERBSCs at 5 out of 38 sample locations. The highest three of these exceedances were in samples collected at the Monumental Mine. The largest exceedances of ERBSCs by mercury were for plants and invertebrates with the only other exceedances being for birds at two sample locations and mammals at one sample location, all at the Monumental Mine. While iron exceeded ERBSCs at 17 sample locations, it exceeded 2 times its background concentration in only one sample (GF-WR-2). Overall, predicted risks for total arsenic are spread across receptor groups and sampling locations, whereas predicted risks for mercury and iron are limited primarily to plants and invertebrates at the Monumental Mine.

^{*} n = number of stations with an unacceptable risk ratio.

- Total arsenic, iron, lead, manganese, silver, vanadium, and zinc had unacceptable risk ratios at more than five sample locations. Potential risks due to iron were discussed above. Total arsenic had multiple unacceptable risk ratios for multiple receptors at all the mines with a majority at the Monumental Mine, but the Tillicum and Golden Fraction Mines also had unacceptable risk ratios for all receptors. Lead had unacceptable risk ratios (six for plants and 12 for birds) an 12 sample locations at five of the mines. Manganese had exceedances of ERBSCs for invertebrates at six Monumental and Tillicum Mine sample locations and in two samples (WR-01 and WR-02) collected at GC-5, but did not exceed its background concentration by more than a factor of two. Silver had only eight unacceptable risk ratios (seven plant and one invertebrate) in four samples collected at the Monumental Mine and one each at GC-7, GC-3, and Golden Fraction Mine (GF-WR-2). Vanadium had five unacceptable risk ratios for plants spread across the Monumental, Tillicum, Cap Martin, Central, and Sheridan mines but only exceeded its background concentration by more than a factor of two in one sample from the Central Mine. Zinc had 19 unacceptable risk ratios (11 for plants, one for invertebrates, and 8 for birds), in samples located at the Monumental, Tillicum, Cap Martin, Central and Golden Fraction Mines, and at GC-3.
- Based on the magnitude of the risk ratio and the number and locations of samples where the
 unacceptable exceedances of ERBSCs and background concentrations occurred, the results of the riskbased screening suggest that:
 - O Total arsenic, lead, and zinc are the COPECs with the highest predicted potential to present risks at more than a few localized areas. The majority of risks were predicted for samples collected at the Monumental and Tillicum Mines. Mercury may also present a relatively high risk to plants and invertebrates in a few very limited areas.
- As discussed above, individual birds or small mammals that inhabit or feed within the waste rock piles have been indicated to be at risk due to exposure to the COPECs. However, given the small size of the waste rock piles in comparison to the surrounding high quality habitat, and the relatively large home range of most wildlife species, populations of mobile and wide-ranging wildlife are unlikely to spend large amounts of time on or around any one mine area. Thus, other than for their possible exposure to total arsenic, which has elevated concentrations at all the mines, wildlife species are considered unlikely to be impacted by the COPECs.

Vegetation

- Vegetation samples were collected from four background and six locations likely to be impacted by Site-related COPECs.
- The COPECs present in vegetation above background concentrations were total arsenic, beryllium, cadmium, total chromium, copper, iron, lead, mercury, vanadium, and zinc (See Appendix A4).
- The maximum ratios of on-Site concentrations to background concentrations were total arsenic, (10), beryllium (1), cadmium (7), total chromium (5), copper (1), iron (2), lead (2), mercury (2), vanadium (1), and zinc (3).
- Beryllium, copper, iron, lead, mercury, and vanadium are present at less than or approximately
 equivalent to two times the background concentration, and thus are not considered to present a
 significant potential for ecological impacts.
- Zinc is a essential nutrient in the environment that only moderately elevated in vegetation compared to its background concentrations. This diminishes the predicted potential for impacts due to zinc.
- Total arsenic and cadmium significantly exceeded background concentrations at the Monumental Mine, while total chromium significantly exceeded background concentrations at the Central Mine.
- Overall, total arsenic, cadmium, and total chromium are the COPECs of most concern in vegetation.
- There is a very limited amount of vegetation on or near the waste rock piles at the Site. This also significantly reduces the potential exposure of herbivores to site-related contamination.

Surface Water

- The COPECs for surface water are listed in Table 4-2. The only exceedance of ERBSCs was for barium. No background concentrations were determined for barium. Given that the differences between the highest and lowest detected barium concentrations was less than a factor of three, barium is not considered to be significantly elevated at the Site.
- Antimony and iron were selected as a COPECs due solely to a lack of ERBSCs. Iron concentrations exceeded background by a factor of more than two at four adit seep sample locations (CMM-AS-01, 02, GC5-AS-01, and GF-AS-01). Antimony was not detected (0.4 μg/L) in background samples but was detected in only two adit seep samples (GC5-AS-01 and GF-AS-01) at concentrations less than 2 times the background detection limit. Silver also had no ERBSCs for birds and mammals, and for data collected in 2003 had elevated reporting limits compared to the ERBSC for aquatic life. However, new data with adequate detection limits were collected in 2007 and none of these new samples had concentrations that exceeded the ERBSCs and were very near the detection limits for background samples. Given these arguments, antimony, iron, and silver are not considered to present a significant risk in surface water at the Site.
- Total arsenic, lead, mercury, and selenium concentrations did not exceed ERBSCs, but were selected as COPECs due solely to their potential to bioaccumulate. Out of 17 total samples, total arsenic was detected in 7 samples; lead was detected in 6 samples; mercury in 6 samples; and selenium in 2 samples. These detections occurred primarily in two adit seeps (GC5-AS-01 and GF-AS-01), at the Monumental Mine (MM-SP-SFW-18, MM-SP-SFW-19, and MM-SP-SFW-51), downstream in Granite Creek (GC-ST-SFW-53 and 54). These represent some of the farthest upstream and/or the farthest downstream samples. While the limited number of detections suggests that these COPECs are not widespread and thus, are not likely to bioaccumulate significantly, the fact that they are present at the Monumental Mine area and then reappear downstream of the last mine suggests a potential for the Monumental Mine and Central Mine to be sources of these COPECs to Granite Creek.
- Overall, slightly elevated concentrations of a few COPECs were noted primarily at upstream and downstream stations, but are not consistently elevated, suggesting that widespread (i.e., significant population level) direct or bioaccumulation-related ecological impacts are unlikely due to COPECs in surface water.

Pore Water

- The COPECs for pore water were listed above in Table 4-3. Barium was the only detected COPEC that exceeded an ERBSC. Similar to surface water, barium was not analyzed in background pore water and so, did not have a respective background concentration determined. However, the difference between the lowest and highest detected concentrations was less than a factor of 2 across the 11 samples, all of which had detected concentrations of barium. Thus, barium is not considered to be significantly elevated at the Site.
- Total arsenic, lead, mercury, and selenium concentrations did not exceed ERBSCs, but were selected as COPECs due solely to their potential to bioaccumulate. However, similar to surface water, their presence in only a few sample locations at very low concentrations strongly suggests their presence is not likely to result in population level ecological impacts. However, the highest detected total arsenic concentrations were at the two farthest downstream stations.
- Silver was not detected in pore water at the site, but one-half the maximum reporting limit exceeds the ERBSC by a maximum factor of 12. Given that silver was not detected in any surface water nor pore water samples and the detection limits are still relatively low (2.9 μg/L), it is deemed unlikely that silver contributes to ecological risks at the site.

Sediment

- The COPECs for sediment were listed above in Table 4-4. Total arsenic, cadmium, and zinc were the only COPECs with unacceptable risk ratios. Concentrations of total arsenic, cadmium, and zinc exceeded background concentration by more than a factor of 2 at 5, 8, 7, and 10 samples (out of 27 possible), respectively. Most of the concentrations of these COPECS that exceeded ERBSCs were downstream from the Cap Martin Mine, with the highest concentrations at or downstream of the Tillicum Mine.
- Hazard quotients for aluminum (3), barium (4), cobalt (5), iron (7), thallium (14), and vanadium (12) were selected solely due to a lack of ERBSCs. Iron was the only one of these COPECs with a respective background concentrations and exceeded this by more than a factor of two in only four samples, including a maximum background exceedences factor of three at GC-ABS-3. With no background concentrations for comparison, the difference between the highest detection and lowest detection limit was examined for the remaining COPECs. Aluminum, barium, cobalt, and iron all had differences of less than a factor of 10. Thallium and vanadium had differences that were factors of 14 and 12, respectively. Three stations (SM-ST-PSD-06, TM-ST-PSD-08, and TM-ST-RSD-07) had high concentrations of aluminum, barium, and cobalt. Aluminum was also high at GC-ST-RSD-53 and GC-ST-PSD-53. Three different stations (CMM-ST-PSD-03, SM-ST-RSD-06, and CM-ST-RSD-10) contained the highest concentrations of thallium and vanadium. However, these 6 stations do not correspond to the locations of the highest concentrations of total arsenic and cadmium which are more likely related to past mining activities.
- Mercury was selected as a COPEC due to the lack of a bird/mammal ERBSC and its potential for bioaccumulation. The maximum mercury detection is approximately 34 times higher than the lowest detection at station GC-ST-PSD-54 and 24 times higher at GC-ABS-1. The remainder of the highest detected concentrations were approximately a factor of 4 greater than the lowest detected concentrations, located at or downstream from the Tillicum Mine.
- Overall, iron, selenium, thallium, vanadium, and zinc had a few elevated concentrations that were spread
 along Granite Creek, while elevated concentrations of total arsenic and cadmium and mercury were
 detected primarily at multiple downstream locations. Aluminum, barium, and cobalt had elevated
 concentrations in the vicinity of the Sheridan and Tillicum Mines.

4.3.2 Ecological Hot Spots

- For this ERA, hot spot levels corresponded to a chemical concentrations that exceed both ERBSCs and background concentrations by a factor of 10 or more. For COPECs without corresponding background concentrations, the hot spot analysis is based solely upon exceedance of the ERBSC by a factor of 10 or more.
- There are ecological hot spots in waste rock for antimony, total arsenic, copper, lead, mercury, silver, and zinc. Hot spot concentrations for these were 50, 180, 500, 160, 3, 20, and 905 mg/kg, respectively for waste rock.
- Ecological hot spots were identified for barium and silver in surface water and pore water. A hot spots for zinc also was identified in surface water. The hot spot concentrations (based on exceedance of the ERBSC only) for barium and silver were 40 and 1.2 μg/L, respectively. The hot spot screening for these two COPECs in these two media should not be used for removal action decisions without prior consideration for the lack of background concentrations. A hot spot was also identified for zinc in surface water, with a hot spot concentration of 1,200 μg/L.
- One ecological hot spot was identified for cadmium in sediment. The hot spot concentration for cadmium was 2.2 mg/kg. Aluminum, barium, cobalt, and vanadium could not be assessed for hot spots because no background concentrations were determined for them and no sediment ERBSCs were available.

Table 4-5. Locations of Ecological Hot Spots

Soil	Surface Water	Pore Water	Sediment
MM-ML-SS-12	See text above prior to upore water hot spots decision n	GC-ST-PSD-54	
MM-ML-SSS-16	MM-SP-SFW-18	TM-ST-PWP-07	
MM-ML-SSS-38	MM-SP-SFW-19	TM-ST-PWP-08	
MM-WP-SSS-13	MM-SP-SFW-51	CM-ST-PWP-09	
MM-WP-SSS-14	SM-ST-SFW-06	CM-ST-PWP-10	
MM-WP-SSS-15	TM-ST-SFW-07	CM-ST-PWR-10	
MM-WP-SSS-17	TM-ST-SFW-08	GC-ST-PWP-53	
CMM-WP-SUS-21	CM-ST-SFW-09	GC-ST-PWP-54	
CM-WP-SSS-31	CM-ST-SFW-10		
GF-WR-2	GC-ST-SFW-53		
TILL-WR-1	GC-ST-SFW-54		
CMM-WR4-1	CMM-AS-01		
GC3-WR-01			
GC7-WR-03			

4.3.3 Uncertainty Analysis

- The uncertainty analysis lists the common uncertainties associated with ecological risk-based screening and assesses whether they are likely to over- or underestimate the potential for ecological risks to be realized at the Site.
- This information is combined with that provided above in the risk description section to present
 conclusions regarding ecological risks. The primary uncertainties associated with this ecological riskbased screening and the impacts on the prediction of the potential for ecological risks are discussed
 below:
 - The lack of background concentrations for some COIs in surface water, pore water, and sediment, may result in the inclusion of COIs as COPECs that would otherwise be excluded, and increases the number of chemicals and sample locations predicted as hot spots.
 - The risk-based screening assumes the receptors are constantly exposed to the chemical at a concentration equal to the EPC. While this may be true for immobile species such as plants and some terrestrial invertebrates, unless the contamination is widely and evenly spread, it is not realistic for wildlife species. Because the metals are primarily located around waste rock piles and small centers of mining activity, the risks calculated above overestimate the actual risks posed to wildlife.
 - The use of maximum detected concentration or 90UCL as the EPC is a conservative approach that
 is purposefully designed to result in some overestimation of the potential for ecological risks.
 Because of this, the risks predicted are likely to overestimate actual ecological risks.
 - Including a sample reporting limit screening is a conservative approach that includes COIs as COPECs when they are actually not detected. Because the undetected COI is likely present at concentrations less than the reporting limit, possibly much less, including the COI as a COPEC result in an overestimation of the potential for ecological risks.
 - The lack of site specific bioavailability data does not allow for a formal assessment of risks due to some COPECs for upper trophic level receptors (i.e., birds and mammals). However, the fact that many metals, especially those that have been exposed to the surface for many years, tend to bind strongly to soil and sediment particles suggesting that many of the metals may not be readily bioavailable. Given this evidence, risks due to the bioaccumulation of COPECs are likely overestimated.
 - Except for aquatic life and benthic macroinvertebrates, the ERBSCs used for this ERA are intended to be no-observed-adverse-effect-levels (NOAELs). Because actual ecological effects occur at an unknown concentration somewhere between the NOAEL and the LOAEL, simply exceeding an

- ERBSC does not necessarily indicate the potential for significant ecological effects. Thus, the use of NOAEL-based ERBSCs likely results in an overestimation of the potential for ecological risk.
- o The lack of ERBSCs for some receptors precludes the calculation of risk for those receptors. This may result in an over- or underestimation of the potential for ecological risks. The use of a bioaccumulation screening is a conservative measure used to assess the potential for risks posed to upper trophic level ecological receptors when appropriate ERBSCS are missing.
- Within this ERA, predictions are made regarding the significance of ecological exposures under current conditions at the Site. Overall, the risk-based screening is designed to overestimate the potential for ecological risks.

4.4 Summary Of Ecological Risks

- Predicted risks due to total arsenic in waste rock piles were predicted at all nine mines, but are especially prevalent at the Monumental, Tillicum, and Golden Fraction Mines, and in waste rock sample collected along Granite Creek. Antimony, lead, mercury, silver, and zinc also contributed notably to the overall predicted risks, but to a lesser extent than total arsenic. It is likely that immobile receptors such as terrestrial plants and invertebrates are adversely impacted within and near waste rock piles. Individual birds and small mammals are likely to be exposed to COPECs in the waste rock piles and may be impacted, but population level impacts are not expected to these terrestrial species because of the relatively limited distribution of the COPECs compared to the home ranges of these more wide-ranging species. The most hot spots were noted for total arsenic at the Monumental Mine. Antimony, lead, mercury, and silver also had hot spots spread primarily across the Monumental Mine, but also present at the Tillicum, Golden Fraction, Cap Martin, and Central Mines and in a couple sample collected from waste rock along Granite Creek.
- Total arsenic, cadmium, and total chromium in vegetation were the only COPECs present at concentrations greater than five times higher than in background vegetation. Only total arsenic was elevated more than 10 times higher than background.
- The only elevated risk ratios for COPECs in surface water and pore water were for barium and zinc. Silver also had elevated risk ratios in pore water. The risks attributed to barium and silver likely would not have been as pronounced if background COPEC concentrations were available for these media. All other COPECs other than barium were selected solely due to their potential to bioaccumulate or a lack of ERBSCs. While barium and silver were indicated as having hot spots in both surface water and pore water, these hot spots may be solely related to the lack of background concentrations for barium and the elevated detection limits for silver. The farthest upstream and farthest downstream stations have the highest concentrations of several COPECs in surface water and pore water. This suggests Monumental Mine and Tillicum Mine (or other downstream source) may be contributing a majority of the COPECs to the Creek.
- Total arsenic, cadmium, and zinc in sediment had elevated risk ratios. These appear likely to have the
 potential to impact immobile receptors or those that are frequently exposed to COPECs in sediment.
 Cadmium was the only COPEC that had a hot spot that exceeded both the ERBSC and background
 concentrations by a factor of more than 10.

5.0 CONCLUSIONS

- The following conclusions were developed from the human health risk assessment:
 - The risk assessment determined that there are no unacceptable non-carcinogenic human health risks from exposure to waste rock, and sediment.
 - Ingestion of arsenic in waste rock exceeded the regulatory standard for ECR under CTE exposure conditions.
 - Risks from ingestion and dermal contact with arsenic impacted soil under the RME exposure conditions exceeded the ODEQ's regulatory standard of 1×10^{-6} .

- O Based on the Site topography and its isolated location within the WWNF, it is highly unlikely that recreational users would engage in activities at the Site that could result in significant ingestion of soil, thus, the most likely pathway of exposure at the Site is inhalation of particulates. The quantitative risk assessment determined that the inhalation pathway did not result in unacceptable health impacts.
- o No hot spots were identified at the Site.
- The following conclusions were developed from the ecological risk assessment:
 - Ecological impacts were predicted primarily for terrestrial plants and terrestrial invertebrates (i.e., immobile species), due to COPECs in soil/waste rock at several of the mines. Local and regional populations of these and other terrestrial species are unlikely to be significantly impacted.
 - Likely insignificant ecological impacts were predicted for aquatic life and wildlife exposed to COPECs in surface water and pore water. However, the lack of background concentrations for some COPECs in these media made it difficult to predict the potential for impacts.
 - o Benthic invertebrates and wildlife appear to have the potential to be impacted due primarily to total arsenic, cadmium, and zinc, which are present at elevated concentrations in many sediment sample locations, but are particularly prevalent in the downstream portions of the creek.
 - o The Monumental and Tillicum Mines appear to have more locations with elevated COPEC concentrations in waste rock than the other mines and, in general, the sediment sample locations near and downstream of the Tillicum Mine had the highest COPEC concentrations.

6.0 REFERENCES

- CCME, 1999. Canadian Soil Quality Guidelines. Canadian Council of Resource and Environmental Ministers. Canadian Council of Ministers of the Environment. Winnipeg.
- EA, 2004. Site Inspection Report. Granite Creek Mines. Wallowa Whitman National Forest. January. EA, Engineering, Science, and Technology. Bellevue, Washington.
- Efroymson, R.A., M.E. Will, and G.W. Suter II, 1997a. Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. ES/ER/TM-126/R2. Prepared for the U.S. Department of Energy, Office of Environmental Management.
- Efroymson, R.A., G.W. Suter II, B.E. Sample, and D.S. Jones, 1997b. Preliminary Remediation Goals for Ecological Endpoints. ES/ER/TM-162/R2. Prepared for the U.S. Department of Energy, Office of Environmental Management.
- FDA, 1990. Contaminants Team, Division of Toxicological Review and Evaluation, Food and Drug Administration, Public Health Service, U.S. Department of Health and Human services; Memorandum to Elizabeth Campbell, Division of Regulatory Guidance as cited in State of California Guidance, Office of the Science Advisor. Assessment of Health Risks from Inorganic Lead in Soil. August.
- ODEQ, 1998. Guidance for Conduct of Deterministic Human Health Risk Assessment, Final. Waste Management and Cleanup Division Cleanup Policy and Program Development. Oregon Department of Environmental Quality.
- ODEQ, 2001. Guidance for Ecological Risk Assessment. Waste Management and Cleanup Division, Oregon Department of Environmental Quality. December. Oregon Department of Environmental Quality.
- USEPA, 1986. Environmental Criteria And Assessment Office, U.S. Environmental Protection Agency. Air Quality Criteria for Lead, EPA 600/8-83-028, June 1986.

- USEPA, 1989. Risk Assessment Guidance for Superfund (RAGS) Human Health Evaluation Manual. Part A Office of Emergency and Remedial Response. EPA/540/1-89/002. United States Environmental Protection Agency. December 1989
- USEPA, 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Environmental Response Team. Edison, New Jersey. United States Environmental Protection Agency. June 1997.
- USEPA, 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Solid Waste and Emergency Response. EPA530-D-99-001C. Table E-1, Page E-13. United States Environmental Protection Agency.
- USEPA, 2003b. National Primary Drinking Water Standards. Office of Water (4606M). EPA 816-F-03-016. United States Environmental Protection Agency.
- USEPA, 2005a. Ecological Soil Screening Levels for Antimony Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-61. February.
- USEPA, 2005b. Ecological Soil Screening Levels for Arsenic Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-62. March.
- USEPA, 2005c. Ecological Soil Screening Levels for Beryllium Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-64. February.
- USEPA, 2005d. Ecological Soil Screening Levels for Cobalt Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-67. March.

Figure 3-1. Conceptual Human Health Exposure Model

Figure 4-1. Conceptual Ecological Exposure Model

Appendix A. Data Summary and Initial Screening

Appendix A1. Data Summary and Initial Ecological Screening for Surface Soil
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest	Number of Analyses	Number of Detections	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	90% Upper Confidence Limit	Exposure Point Concentration ¹	Half of Minimum Sample Reporting Limit mg/kg	Half of Maximum Sample Reporting Limit	Minimum Soil Ecological Risk-Based Screening Concentration	Minimum Human Health Risk-Based Screening Concentration	Maximum Background Concentration 1	Exceeds 5% Frequency of Detection?	Reporting Limit Too High For Ecological Receptors?	Reporting Limit Too High for Human Health?	Maximum Concentration Exceeds Background?	Ecological Chemical of Interest?	Human Health Chemical of Interest?
Metals																		
Aluminum	17	17	100%	1.11E+03	1.75E+04	1.06E+04	1.06E+04	NA	NA	5.00E+01	1.00E+05	3.12E+04	Yes	No	No	No	No	No
Antimony	38	31	82%	3.00E-01	3.68E+02	4.11E+01	4.11E+01	1.00E-01	5.00E-01	5.00E+00	4.09E+02	8.40E-01	Yes	No	No	Yes	Yes	Yes
Arsenic, total	38	38	100%	1.70E+00	1.14E+04	1.79E+03	1.79E+03	NA	NA	1.00E+01	1.59E+00	4.35E+01	Yes	No	No	Yes	Yes	Yes
Barium	17	17	100%	3.28E+01	3.22E+02	1.82E+02	1.82E+02	NA	NA	8.50E+01	6.66E+04	3.19E+02	Yes	No	No	Yes	Yes	Yes
Beryllium	38	31	82%	3.30E-02	7.00E-01	3.40E-01	3.40E-01	1.00E-01	1.00E-01	1.00E+01	1.94E+03	1.20E+00	Yes	No	No	No	No	No
Cadmium	38	34	89%	1.70E-01	2.34E+01	4.77E+00	4.77E+00	1.25E-02	3.20E-02	4.00E+00	4.51E+02	2.03E+00	Yes	No	No	Yes	Yes	Yes
Chromium, Total	38	37	97%	1.40E+00	2.00E+01	8.64E+00	8.64E+00	5.00E-01	5.00E-01	4.00E-01	4.48E+02	7.00E+01	Yes	No	No	No	No	No
Cobalt	17	17	100%	6.00E-01	1.05E+01	7.49E+00	7.49E+00	NA	NA	2.00E+01	1.92E+03	1.13E+01	Yes	No	No	No	No	No
Copper	38	38	100%	3.00E+00	6.98E+02	5.21E+01	5.21E+01	NA	NA	5.00E+01	4.09E+04	6.70E+01	Yes	No	No	Yes	Yes	Yes
Iron	38	38	100%	2.65E+03	9.73E+04	2.78E+04	2.78E+04	NA	NA	1.00E+01	1.00E+05	3.53E+04	Yes	No	No	Yes	Yes	Yes
Lead	38	38	100%	8.50E-01	2.43E+03	5.95E+02	5.95E+02	NA	NA	1.60E+01	8.00E+02	8.40E+00	Yes	No	No	Yes	Yes	Yes
Manganese	38	38	100%	2.53E+01	1.26E+03	5.85E+02	5.85E+02	NA	NA	1.00E+02	1.95E+04	1.06E+03	Yes	No	No	Yes	Yes	Yes
Mercury	38	33	87%	4.80E-02	7.84E+02	6.25E+01	6.25E+01	2.00E-02	2.50E-02	1.00E-01	3.07E+02	1.40E-01	Yes	No	No	Yes	Yes	Yes
Nickel	38	37	97%	4.00E-01	9.60E+00	4.97E+00	4.97E+00	5.00E-01	5.00E-01	3.00E+01	2.04E+04	7.00E+01	Yes	No	No	No	No	No
Selenium	38	38	100%	1.70E-01	3.26E+00	7.21E-01	7.21E-01	NA	NA	1.00E+00	5.11E+03	7.60E-01	Yes	No	No	Yes	Yes	Yes
Silver	38	37	97%	8.00E-02	3.19E+02	4.70E+01	4.70E+01	1.05E-01	1.05E-01	2.00E+00	5.11E+03	6.30E-01	Yes	No	No	Yes	Yes	Yes
Thallium	17	13	76%	3.40E-01	3.30E+00	1.52E+00	1.52E+00	1.15E-01	2.30E-01	1.00E+00	6.75E+01	9.70E-01	Yes	No	No	Yes	Yes	Yes
Vanadium	17	17	100%	5.10E+00	9.61E+01	4.49E+01	4.49E+01	NA	NA	2.00E+00	1.02E+03	4.78E+01	Yes	No	No	Yes	Yes	Yes
Zinc	38	38	100%	4.00E+00	2.41E+03	3.67E+02	3.67E+02	NA	NA	5.00E+01	1.00E+05	1.45E+02	Yes	No	No	Yes	Yes	Yes

Abbreviations: mg/kg = milligrams per kilogram, NA = not applicable.

1 90th percentile upper confidence limit on the mean or maximum (whichever is lower).

Appendix A2. Data Summary and Initial Human Health Screening for Surface Soil

Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest	Number of Analyses	Number of Detections	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	90% Upper Confidence Limit	Exposure Point Concentration ¹	Half of Minimum Sample Reporting Limit mg/kg	Half of Maximum Sample Reporting Limit	Minimum Soil Ecological Risk-Based Screening Concentration	Minimum Human Health Risk-Based Screening Concentration	Maximum Background Concentration 1	Exceeds 5% Frequency of Detection?	Reporting Limit Too High For Ecological Receptors?	Reporting Limit Too High for Human Health?	Maximum Concentration Exceeds Background?	Ecological Chemical of Interest?	Human Health Chemical of Interest?
Metals																		
Aluminum	14	14	100%	1.11E+03	1.75E+04	1.03E+04	1.03E+04	NA	NA	5.00E+01	1.00E+05	3.12E+04	Yes	No	No	No	No	No
Antimony	35	28	80%	3.00E-01	3.68E+02	4.44E+01	4.44E+01	1.00E-01	5.00E-01	5.00E+00	4.09E+02	8.40E-01	Yes	No	No	Yes	Yes	Yes
Arsenic, total	35	35	100%	1.70E+00	1.14E+04	2.25E+03	2.25E+03	NA	NA	1.00E+01	1.59E+00	4.35E+01	Yes	No	No	Yes	Yes	Yes
Barium	14	14	100%	3.28E+01	3.22E+02	1.86E+02	1.86E+02	NA	NA	8.50E+01	6.66E+04	3.19E+02	Yes	No	No	Yes	Yes	Yes
Beryllium	35	28	80%	3.30E-02	7.00E-01	3.33E-01	3.33E-01	1.00E-01	1.00E-01	1.00E+01	1.94E+03	1.20E+00	Yes	No	No	No	No	No
Cadmium	35	32	91%	1.70E-01	2.34E+01	4.51E+00	4.51E+00	1.35E-02	3.20E-02	4.00E+00	4.51E+02	2.03E+00	Yes	No	No	Yes	Yes	Yes
Chromium, Total	35	34	97%	1.40E+00	2.00E+01	8.81E+00	8.81E+00	5.00E-01	5.00E-01	4.00E-01	4.48E+02	7.00E+01	Yes	No	No	No	No	No
Cobalt	14	14	100%	6.00E-01	1.05E+01	7.36E+00	7.36E+00	NA	NA	2.00E+01	1.92E+03	1.13E+01	Yes	No	No	No	No	No
Copper	35	35	100%	3.00E+00	6.98E+02	5.46E+01	5.46E+01	NA	NA	5.00E+01	4.09E+04	6.70E+01	Yes	No	No	Yes	Yes	Yes
Iron	35	35	100%	2.65E+03	9.73E+04	2.84E+04	2.84E+04	NA	NA	1.00E+01	1.00E+05	3.53E+04	Yes	No	No	Yes	Yes	Yes
Lead	35	35	100%	8.50E-01	2.43E+03	7.19E+02	7.19E+02	NA	NA	1.60E+01	8.00E+02	8.40E+00	Yes	No	No	Yes	Yes	Yes
Manganese	35	35	100%	2.53E+01	1.26E+03	5.92E+02	5.92E+02	NA	NA	1.00E+02	1.95E+04	1.06E+03	Yes	No	No	Yes	Yes	Yes
Mercury	35	30	86%	4.80E-02	7.84E+02	6.78E+01	6.78E+01	2.00E-02	2.50E-02	1.00E-01	3.07E+02	1.40E-01	Yes	No	No	Yes	Yes	Yes
Nickel	35	34	97%	4.00E-01	9.60E+00	5.03E+00	5.03E+00	5.00E-01	5.00E-01	3.00E+01	2.04E+04	7.00E+01	Yes	No	No	No	No	No
Selenium	35	35	100%	1.70E-01	3.26E+00	7.28E-01	7.28E-01	NA	NA	1.00E+00	5.11E+03	7.60E-01	Yes	No	No	Yes	Yes	Yes
Silver	35	34	97%	8.00E-02	3.19E+02	6.33E+01	6.33E+01	1.05E-01	1.05E-01	2.00E+00	5.11E+03	6.30E-01	Yes	No	No	Yes	Yes	Yes
Thallium	14	11	79%	3.40E-01	3.30E+00	1.60E+00	1.60E+00	1.30E-01	2.30E-01	1.00E+00	6.75E+01	9.70E-01	Yes	No	No	Yes	Yes	Yes
Vanadium	14	14	100%	5.10E+00	9.61E+01	4.58E+01	4.58E+01	NA	NA	2.00E+00	1.02E+03	4.78E+01	Yes	No	No	Yes	Yes	Yes
Zinc	35	35	100%	4.00E+00	2.41E+03	3.61E+02	3.61E+02	NA	NA	5.00E+01	1.00E+05	1.45E+02	Yes	No	No	Yes	Yes	Yes

Abbreviations: mg/kg = milligrams per kilogram, NA = not applicable.

Doc: App A Initial Screening-Calcs.xlsx (A2 HHRA SurfSoil)

^{1 90}th percentile upper confidence limit on the mean or maximum (whichever is lower).

Appendix A3. Data Summary and Initial Human Health Screening for Subsurface Soil
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest	Number of Analyses	Number of Detections	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	90% Upper Confidence Limit	Exposure Point Concentration ¹	Half of Minimum Sample Reporting Limit mg/kg	Half of Maximum Sample Reporting Limit	Minimum Soil Ecological Risk-Based Screening Concentration	Minimum Human Health Risk-Based Screening Concentration	Maximum Background Concentration 1	Exceeds 5% Frequency of Detection?	Reporting Limit Too High For Ecological Receptors?	Reporting Limit Too High for Human Health?	Maximum Concentration Exceeds Background?	Human Health Chemical of Interest?
Metals																	
Aluminum	10	10	100%	4.68E+03	1.76E+04	1.30E+04	1.30E+04	NA	NA	5.00E+01	1.00E+05	3.12E+04	Yes	No	No	No	No
Antimony	10	10	100%	3.80E-01	6.00E+00	3.74E+00	3.74E+00	NA	NA	5.00E+00	4.09E+02	8.40E-01	Yes	No	No	Yes	Yes
Arsenic, total	10	10	100%	1.01E+01	5.44E+02	2.41E+02	2.41E+02	NA	NA	1.00E+01	1.59E+00	4.35E+01	Yes	No	No	Yes	Yes
Barium	10	10	100%	1.38E+02	2.25E+02	1.91E+02	1.91E+02	NA	NA	8.50E+01	6.66E+04	3.19E+02	Yes	No	No	No	No
Beryllium	10	10	100%	2.10E-01	5.00E-01	FALSE	5.00E-01	NA	NA	1.00E+01	1.94E+03	1.20E+00	Yes	No	No	No	No
Cadmium	10	8	80%	5.20E-01	1.41E+01	5.35E+00	5.35E+00	1.25E-02	1.35E-02	4.00E+00	4.51E+02	2.03E+00	Yes	No	No	Yes	Yes
Chromium, Total	10	10	100%	3.30E+00	1.33E+01	8.42E+00	8.42E+00	NA	NA	4.00E-01	4.48E+02	7.00E+01	Yes	No	No	No	No
Cobalt	10	10	100%	6.40E+00	9.90E+00	8.62E+00	8.62E+00	NA	NA	2.00E+01	1.92E+03	1.13E+01	Yes	No	No	No	No
Copper	10	10	100%	5.50E+00	4.35E+01	FALSE	4.35E+01	NA	NA	5.00E+01	4.09E+04	6.70E+01	Yes	No	No	No	No
Iron	10	10	100%	1.88E+04	2.82E+04	2.34E+04	2.34E+04	NA	NA	1.00E+01	1.00E+05	3.53E+04	Yes	No	No	No	No
Lead	10	10	100%	3.60E+00	1.20E+02	5.37E+01	5.37E+01	NA	NA	1.60E+01	8.00E+02	8.40E+00	Yes	No	No	Yes	Yes
Manganese	10	10	100%	2.70E+02	8.33E+02	6.82E+02	6.82E+02	NA	NA	1.00E+02	1.95E+04	1.06E+03	Yes	No	No	No	No
Mercury	10	10	100%	2.60E-02	6.10E-01	2.96E-01	2.96E-01	NA	NA	1.00E-01	3.07E+02	1.40E-01	Yes	No	No	Yes	Yes
Nickel	10	10	100%	3.90E+00	9.70E+00	6.54E+00	6.54E+00	NA	NA	3.00E+01	2.04E+04	7.00E+01	Yes	No	No	No	No

Abbreviations: mg/kg = milligrams per kilogram, NA = not applicable.

^{1 90}th percentile upper confidence limit on the mean or maximum (whichever is lower).

Data Summary and Initial Ecological Screening for Vegetation Appendix A4. Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest	Number of Analyses	Number of Detections	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	90% Upper Confidence Limit	Exposure Point Concentration ¹	Half of Minimum Sample Reporting Limit	Half of Maximum Sample Reporting Limit	Minimum Terrestrial Ecological Risk-Based Screening Concentration	Maximum Background Concentration ¹	Exceeds 5% Frequency of Detection?	Reporting Limit Too High For Ecological Receptors?	Maximum Concentration Exceeds Background?	Ecological Chemical of Interest?
							mg/kg	<u> </u>							
Metals	1 .		1000/	1.725.02	2047-02		2045 02		37.		2.125.02	T		.,	
Aluminum	6	6	100%	1.53E+02	2.84E+02	NA	2.84E+02	NA	NA	No Data	3.12E+02	Yes	No	No	No
Antimony	6	0	0%	ND	ND	NA	0.00E+00	4.70E-01	6.50E-01	No Data	0.00E+00	No	No	No	No
Arsenic, total	6	3	50%	1.00E+00	1.06E+01	NA	1.06E+01	6.00E-01	7.00E-01	No Data	0.00E+00	Yes	No	Yes	Yes
Barium	6	6	100%	5.19E+01	2.90E+02	NA	2.90E+02	NA	NA	No Data	5.05E+02	Yes	No	No	No
Beryllium	6	6	100%	8.70E-02	1.60E-01	NA	1.60E-01	NA	NA	No Data	1.20E-01	Yes	No	Yes	Yes
Cadmium	6	5	83%	5.00E-01	2.60E+00	NA	2.60E+00	7.50E-02	7.50E-02	No Data	3.70E-01	Yes	No	Yes	Yes
Chromium, Total	6	2	33%	4.80E-01	1.70E+00	NA	1.70E+00	1.80E-01	1.90E-01	No Data	0.00E+00	Yes	No	Yes	Yes
Cobalt	6	0	0%	ND	ND	NA	0.00E+00	2.00E-01	2.85E-01	No Data	0.00E+00	No	No	No	No
Copper	6	6	100%	4.60E+00	6.10E+00	NA	6.10E+00	NA	NA	No Data	5.70E+00	Yes	No	Yes	Yes
Iron	6	6	100%	1.97E+02	6.42E+02	NA	6.42E+02	NA	NA	No Data	3.15E+02	Yes	No	Yes	Yes
Lead	6	6	100%	5.00E-01	2.70E+00	NA	2.70E+00	NA	NA	No Data	1.10E+00	Yes	No	Yes	Yes
Manganese	6	6	100%	1.18E+02	2.91E+02	NA	2.91E+02	NA	NA	No Data	3.24E+02	Yes	No	No	No
Mercury	6	4	67%	5.00E-02	9.20E-02	NA	9.20E-02	2.30E-02	2.60E-02	No Data	0.00E+00	Yes	No	Yes	Yes
Nickel	6	0	0%	ND	ND	NA	0.00E+00	2.10E-01	3.00E-01	No Data	0.00E+00	No	No	No	No
Selenium	6	2	33%	7.00E-01	9.10E-01	NA	9.10E-01	4.35E-01	4.85E-01	No Data	1.40E+00	Yes	No	No	No
Silver	6	0	0%	ND	ND	NA	0.00E+00	2.20E-01	3.15E-01	No Data	0.00E+00	No	No	No	No
Thallium	6	0	0%	ND	ND	NA	0.00E+00	5.50E-01	8.00E-01	No Data	0.00E+00	No	No	No	No
Vanadium	6	6	100%	7.60E-01	1.20E+00	NA	1.20E+00	NA	NA	No Data	9.40E-01	Yes	No	Yes	Yes
Zinc	6	6	100%	1.67E+01	7.02E+01	NA	7.02E+01	NA	NA	No Data	2.14E+01	Yes	No	Yes	Yes

Abbreviations: mg/kg = milligrams per kilogram, NA = not applicable, ND = not detected.

1 90th percentile upper confidence limit on the mean or maximum (whichever is lower).

Doc: App A Initial Screening-Calcs.xlsx (A4 Veg)

Appendix A5. Data Summary and Initial Screening for Surface Water

Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest	Number of Analyses	Number of Detections	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	90% Upper Confidence Limit	Exposure Point Concentration ¹	Half of Minimum Sample Reporting Limit mg/L	Half of Maximum Sample Reporting Limit	Minimum Surface Water Ecological Risk-Based Screening Concentration	Minimum Human Health Risk-Based Screening Concentration	Maximum Background Concentration ¹	Exceeds 5% Frequency of Detection?	Reporting Limit Too High For Ecological Receptors?	Reporting Limit Too High for Human Health?	Maximum Concentration Exceeds Background?	Ecological Chemical of Interest?	Human Health Chemical of Interest?
Metals																		
Aluminum	13	3	23%	2.64E-02	1.26E-01	4.87E-02	4.87E-02	1.18E-02	3.16E-02	8.70E-02	3.65E+01	0.00E+00	Yes	No	No	Yes	Yes	Yes
Antimony	17	2	12%	7.00E-04	9.00E-04	2.27E-03	9.00E-04	2.00E-04	2.50E-03	1.00E+00	1.46E-02	0.00E+00	Yes	No	No	Yes	Yes	Yes
Arsenic, Total	17	7	41%	1.30E-03	8.18E-02	1.78E-02	1.78E-02	2.50E-04	3.00E-03	1.50E-01	4.48E-05	6.00E-04	Yes	No	Yes	Yes	Yes	Yes
Barium	13	13	100%	3.49E-02	9.95E-02	6.22E-02	6.22E-02	NA	NA	4.00E-03	2.55E+00	0.00E+00	Yes	No	No	Yes	Yes	Yes
Beryllium	17	0	0%	ND	ND	1.53E-04	0.00E+00	5.00E-05	2.00E-04	5.30E-03	7.30E-02	0.00E+00	No	No	No	No	No	No
Cadmium	17	2	12%	1.00E-04	7.00E-04	4.47E-04	4.47E-04	5.00E-05	6.00E-04	2.20E-03	1.82E-02	0.00E+00	Yes	No	No	Yes	Yes	Yes
Chromium, Total	17	1	6%	7.40E-04	7.40E-04	2.37E-03	7.40E-04	7.00E-04	5.00E-03	1.10E-02	No Data	0.00E+00	Yes	No	No	Yes	Yes	Yes
Cobalt	13	0	0%	ND	ND	1.62E-03	0.00E+00	9.00E-04	1.85E-03	2.30E-02	7.30E-01	0.00E+00	No	No	No	No	No	No
Copper	17	2	12%	7.00E-04	3.80E-03	1.56E-03	1.56E-03	2.50E-04	1.65E-03	9.00E-03	1.46E+00	0.00E+00	Yes	No	No	Yes	Yes	Yes
Iron	17	6	35%	3.23E-02	2.03E+00	6.43E-01	6.43E-01	8.40E-03	3.34E-02	1.00E+00	1.09E+01	1.00E-01	Yes	No	No	Yes	Yes	Yes
Lead	17	6	35%	1.00E-04	9.00E-03	2.13E-03	2.13E-03	5.00E-05	7.50E-04	2.50E-03	No Data	1.00E-04	Yes	No	No	Yes	Yes	Yes
Manganese	17	13	76%	7.20E-04	3.74E-01	1.01E-01	1.01E-01	3.50E-04	9.50E-04	1.20E-01	8.76E-01	0.00E+00	Yes	No	No	Yes	Yes	Yes
Mercury	17	6	35%	9.50E-07	2.00E-04	7.57E-05	7.57E-05	5.00E-05	5.00E-05	7.70E-04	1.09E-02	4.80E-07	Yes	No	No	Yes	Yes	Yes
Nickel	17	0	0%	ND	ND	2.88E-03	0.00E+00	1.00E-03	5.00E-03	5.20E-02	7.30E-01	0.00E+00	No	No	No	No	No	No
Selenium	17	2	12%	5.00E-04	2.60E-03	1.26E-03	1.26E-03	5.00E-05	1.70E-03	5.00E-03	1.82E-01	0.00E+00	Yes	No	No	Yes	Yes	Yes
Silver	17	1	6%	9.00E-05	9.00E-05	1.20E-03	9.00E-05	2.50E-05	1.45E-03	1.20E-04	1.82E-01	0.00E+00	Yes	Yes	No	Yes	Yes	Yes
Thallium	13	0	0%	ND	ND	2.22E-03	0.00E+00	1.40E-03	2.85E-03	4.00E-02	2.41E-03	0.00E+00	No	No	Yes	No	No	Yes
Vanadium	13	0	0%	ND	ND	1.52E-03	0.00E+00	1.00E-03	1.80E-03	2.00E-02	3.65E-02	0.00E+00	No	No	No	No	No	No
Zinc	17	14	82%	2.00E-03	1.31E+00	2.31E-01	2.31E-01	2.85E-03	5.00E-03	1.20E-01	1.09E+01	1.00E-02	Yes	No	No	Yes	Yes	Yes

Abbreviations: mg/L = milligrams per liter, NA = not applicable, ND = not detected.

1 90th percentile upper confidence limit on the mean or maximum (whichever is lower).

Appendix A6. Data Summary and Initial Screening for Pore Water
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest	Number of Analyses	Number of Detections	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	90% Upper Confidence Limit	Exposure Point Concentration 1	Half of Minimum Sample Reporting Limit	Half of Maximum Sample Reporting Limit	Minimum Surface Water Ecological Risk-Based Screening Concentration	Maximum Background Concentration ¹	Exceeds 5% Frequency of Detection?	Reporting Limit Too High For Ecological Receptors?	Maximum Concentration Exceeds Background?	Ecological Chemical of Interest?
Metals							mg/L	4							
Aluminum	11	2	18%	4.57E-02	6.05E-02	3.17E-02	3.17E-02	1.18E-02	3.16E-02	8.70E-02	0.00E+00	Yes	No	Yes	Yes
Antimony	14	0	0%	ND	ND	2.24E-03	0.00E+00	2.00E-04	2.50E-03	1.00E+00	0.00E+00	No	No	No	No
Arsenic, Total	14	7	50%	8.00E-04	1.67E-02	6.49E-03	6.49E-03	2.40E-03	3.00E-03	1.50E-01	3.40E-03	Yes	No	Yes	Yes
Barium	11	11	100%	3.10E-02	6.08E-02	4.85E-02	4.85E-02	NA	NA	4.00E-03	0.00E+00	Yes	No	Yes	Yes
Beryllium	14	0	0%	ND	ND	4.42E-04	0.00E+00	1.00E-04	1.00E-03	5.30E-03	0.00E+00	No	No	No	No
Cadmium	14	0	0%	ND	ND	3.75E-04	0.00E+00	5.00E-05	6.00E-04	2.20E-03	0.00E+00	No	No	No	No
Chromium, Total	14	3	21%	1.00E-02	1.00E-02	4.41E-03	4.41E-03	7.00E-04	9.50E-04	1.10E-02	1.00E-02	Yes	No	No	No
Cobalt	11	0	0%	ND	ND	1.39E-03	0.00E+00	1.00E-03	1.85E-03	2.30E-02	0.00E+00	No	No	No	No
Copper	14	0	0%	ND	ND	2.79E-03	0.00E+00	1.20E-03	5.00E-03	9.00E-03	0.00E+00	No	No	No	No
Iron	14	2	14%	2.33E-02	5.56E+00	1.21E+00	1.21E+00	8.40E-03	3.34E-02	1.00E+00	5.56E+00	Yes	No	No	No
Lead	14	6	43%	2.00E-04	2.40E-03	1.16E-03	1.16E-03	6.50E-04	6.50E-04	2.50E-03	3.00E-04	Yes	No	Yes	Yes
Manganese	14	11	79%	7.00E-04	2.59E-01	5.61E-02	5.61E-02	9.50E-04	2.50E-03	1.20E-01	2.59E-01	Yes	No	No	No
Mercury	14	3	21%	2.40E-07	1.20E-04	5.74E-05	5.74E-05	5.00E-08	5.00E-05	7.70E-04	6.60E-07	Yes	No	Yes	Yes
Nickel	14	0	0%	ND	ND	2.70E-03	0.00E+00	1.05E-03	5.00E-03	5.20E-02	0.00E+00	No	No	No	No
Selenium	14	1	7%	3.50E-03	3.50E-03	1.47E-03	1.47E-03	5.00E-05	1.70E-03	5.00E-03	0.00E+00	Yes	No	Yes	Yes
Silver	14	0	0%	ND	ND	1.12E-03	0.00E+00	2.50E-05	1.45E-03	1.20E-04	0.00E+00	No	Yes	No	Yes
Thallium	11	1	9%	4.10E-03	4.10E-03	2.76E-03	2.76E-03	1.40E-03	2.85E-03	4.00E-02	0.00E+00	Yes	No	Yes	Yes
Vanadium	11	0	0%	ND	ND	1.36E-03	0.00E+00	1.00E-03	1.80E-03	2.00E-02	0.00E+00	No	No	No	No
Zinc	14	11	79%	1.70E-03	5.90E-03	4.52E-03	4.52E-03	5.00E-03	5.00E-03	1.20E-01	0.00E+00	Yes	No	Yes	Yes

Abbreviations: mg/L = milligrams per liter, NA = not applicable, ND = not detected.

1 90th percentile upper confidence limit on the mean or maximum (whichever is lower).

Doc: App A Initial Screening-Calcs.xlsx (A6 PoreWatDissolved)

Appendix A7. Data Summary and Initial Screening for Sediment

Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest	Number of Analyses	Number of Detections	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	90% Upper Confidence Limit	Exposure Point Concentration ¹	Half of Minimum Sample Reporting Limit mg/kg	Half of Maximum Sample Reporting Limit	Minimum Sediment Ecological Risk-Based Screening Concentration	Minimum Human Health Risk-Based Screening Concentration	Maximum Background Concentration ¹	Exceeds 5% Frequency of Detection?	Reporting Limit Too High For Ecological Receptors?	Reporting Limit Too High for Human Health?	Maximum Concentration Exceeds Background?	Ecological Chemical of Interest?	Human Health Chemical of Interest?
Metals																		
Aluminum	20	20	100%	3.82E+03	1.17E+04	7.89E+03	7.89E+03	NA	NA	No Data	1.00E+05	0.00E+00	Yes	No	No	Yes	Yes	Yes
Antimony	27	16	59%	3.00E-01	5.10E+00	1.43E+00	1.43E+00	1.00E-01	2.75E-01	3.00E+00	4.09E+02	3.00E-01	Yes	No	No	Yes	Yes	Yes
Arsenic, total	27	27	100%	6.30E+00	3.03E+02	7.71E+01	7.71E+01	NA	NA	4.00E+00	1.59E+00	3.65E+01	Yes	No	No	Yes	Yes	Yes
Barium	20	20	100%	5.23E+01	2.17E+02	1.35E+02	1.35E+02	NA	NA	No Data	6.66E+04	0.00E+00	Yes	No	No	Yes	Yes	Yes
Beryllium	27	25	93%	1.10E-01	8.00E-01	3.50E-01	3.50E-01	1.00E-01	1.00E-01	1.22E+02	1.94E+03	8.00E-01	Yes	No	No	No	No	No
Cadmium	27	15	56%	6.90E-02	2.80E+00	6.47E-01	6.47E-01	2.65E-02	4.30E-02	3.00E-03	4.51E+02	2.20E-01	Yes	No	No	Yes	Yes	Yes
Chromium, Total	27	27	100%	2.30E+00	4.56E+01	1.71E+01	1.71E+01	NA	NA	3.70E+01	4.48E+02	1.00E+01	Yes	No	No	Yes	Yes	Yes
Cobalt	20	20	100%	1.90E+00	9.60E+00	6.72E+00	6.72E+00	NA	NA	No Data	1.92E+03	0.00E+00	Yes	No	No	Yes	Yes	Yes
Copper	27	27	100%	1.30E+00	3.00E+01	9.92E+00	9.92E+00	NA	NA	1.00E+01	4.09E+04	0.00E+00	Yes	No	No	Yes	Yes	Yes
Iron	27	27	100%	5.65E+03	5.46E+04	2.46E+04	2.46E+04	NA	NA	No Data	1.00E+05	1.66E+04	Yes	No	No	Yes	Yes	Yes
Lead	27	27	100%	1.89E+00	1.48E+02	3.39E+01	3.39E+01	NA	NA	3.50E+01	8.00E+02	2.63E+00	Yes	No	No	Yes	Yes	Yes
Manganese	27	27	100%	1.00E+02	6.11E+02	3.03E+02	3.03E+02	NA	NA	1.10E+03	1.95E+04	2.98E+02	Yes	No	No	Yes	Yes	Yes
Mercury	27	18	67%	2.70E-02	3.20E-01	1.14E-01	1.14E-01	9.50E-03	2.50E-02	2.00E-01	3.07E+02	1.00E-01	Yes	No	No	Yes	Yes	Yes
Nickel	27	25	93%	1.00E+00	7.60E+00	4.43E+00	4.43E+00	5.00E-01	5.00E-01	1.80E+01	2.04E+04	1.00E+00	Yes	No	No	Yes	Yes	Yes
Selenium	27	27	100%	9.00E-02	8.80E-01	5.06E-01	5.06E-01	NA	NA	1.00E-01	5.11E+03	3.10E-01	Yes	No	No	Yes	Yes	Yes
Silver	27	24	89%	5.00E-02	7.90E+00	2.02E+00	2.02E+00	4.70E-02	5.00E-02	4.50E+00	5.11E+03	1.30E-01	Yes	No	No	Yes	Yes	Yes
Thallium	20	12	60%	3.00E-01	1.80E+00	7.89E-01	7.89E-01	1.25E-01	3.35E-01	7.00E-01	6.75E+01	0.00E+00	Yes	No	No	Yes	Yes	Yes
Vanadium	20	20	100%	1.30E+01	1.54E+02	7.10E+01	7.10E+01	NA	NA	No Data	1.02E+03	0.00E+00	Yes	No	No	Yes	Yes	Yes
Zinc	27	27	100%	2.07E+01	1.86E+02	8.28E+01	8.28E+01	NA	NA	3.00E+00	1.00E+05	3.60E+01	Yes	No	No	Yes	Yes	Yes

Abbreviations: mg/kg = milligrams per kilogram, NA = not applicable.

1 90th percentile upper confidence limit on the mean or maximum (whichever is lower).

Appendix B. Human Health Risk-Based Screening Tables

Appendix B1. Selection of Human Health Chemicals of Potential Concern Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

		Media	: Surface So	oil			Media: S	Subsurface	soil			Medi	a: Sedimen	t			Media: Surface	e Water		All Expos	sure Media
Chemical of Interest	Preliminary Remediation Goal	Exposure Point Concentration	Risk Ratio (Rij)	Chemical of Potential Concern?	Inordinate Contribution to Medium- Specific Risks?	Preliminary Remediation Goal	Exposure Point Concentration	Risk Ratio (Rij)	Chemical of Potential Concern?	Inordinate Contribution to Medium- Specific Risks?	Goal	Exposure Point Concentration	Risk Ratio (Rij)	Chemical of Potential Concern?	Inordinate Contribution to Medium- Specific Risks?	Goal	Exposure Point Concentration	Risk Ratio (Rij)	Chemical of Potential Concern?	Sum of Medium- Specific Risk Ratios	Chemical of Potential Concern?
Aluminum		-									1.00E+05	7.89E+03	7.89E-02	No	No	3.65E+04	4.87E-02	1.33E-06	No	7.89E-02	No
Antimony	4.09E+02	4.44E+01	1.08E-01	No	No	4.09E+02	3.74E+00	9.14E-03	No	No	4.09E+02	1.43E+00	3.49E-03	No	No	1.46E+01	9.00E-04	6.16E-05	No	1.21E-01	No
Arsenic	1.59E+00	2.25E+03	1.42E+03	YES	YES	1.59E+00	2.41E+02	1.51E+02	YES	YES	1.59E+00	7.71E+01	4.85E+01	YES	YES	4.48E-02	1.78E-02	3.97E-01	No	1.62E+03	YES
Barium	6.66E+04	1.86E+02	2.80E-03	No	No						6.66E+04	1.35E+02	2.02E-03	No	No	2.55E+03	6.22E-02	2.43E-05	No	4.84E-03	No
Beryllium											1.94E+03	3.50E-01	1.80E-04	No	No					1.80E-04	No
Cadmium	4.50E+02	4.51E+00	1.00E-02	No	No	4.50E+02	5.35E+00	1.19E-02	No	No	4.50E+02	6.47E-01	1.44E-03	No	No	1.82E+01	4.47E-04	2.45E-05	No	2.34E-02	No
Chromium											2.10E+02	1.71E+01	8.12E-02	No	No	5.47E+04	7.40E-04	1.35E-08	No	8.12E-02	No
Cobalt											1.92E+03	6.72E+00	3.50E-03	No	No					3.50E-03	No
Copper	4.09E+04	5.46E+01	1.34E-03	No	No						4.09E+04	9.92E+00	2.43E-04	No	No	1.46E+03	1.56E-03	1.07E-06	No	1.58E-03	No
Iron	1.00E+05	2.84E+04	2.84E-01	No	No						1.00E+05	2.46E+04	2.46E-01	No	No	1.09E+04	6.43E-01	5.87E-05	No	5.30E-01	No
Lead	8.00E+02	7.19E+02	8.99E-01	No	No	8.00E+02	5.37E+01	6.71E-02	No	No	8.00E+02	3.39E+01	4.24E-02	No	No	1.50E+01	2.13E-03	1.42E-04	No	1.01E+00	YES
Manganese	1.95E+04	5.92E+02	3.04E-02	No	No						1.95E+04	3.03E+02	1.55E-02	No	No	8.76E+02	1.01E-01	1.16E-04	No	4.61E-02	No
Mercury	3.07E+02	6.78E+01	2.21E-01	No	No	3.07E+02	2.96E-01	9.67E-04	No	No	3.07E+02	1.14E-01	3.73E-04	No	No	1.09E+01	7.57E-05	6.91E-06	No	2.22E-01	No
Nickel											1.60E+03	4.43E+00	2.77E-03	No	No					2.77E-03	No
Selenium	5.11E+03	7.28E-01	1.42E-04	No	No	5.11E+03	8.37E-01	1.64E-04	No	No						1.82E+02	1.26E-03	6.90E-06	No	3.13E-04	No
Silver	5.11E+03	6.33E+01	1.24E-02	No	No	5.11E+03	1.18E+01	2.31E-03	No	No	5.11E+03	2.02E+00	3.96E-04	No	No	1.82E+02	9.00E-05	4.93E-07	No	1.51E-02	No
Thallium	6.75E+01	1.60E+00	2.37E-02	No	No	6.75E+01	1.65E+00	2.45E-02	No	No	6.75E+01	7.89E-01	1.17E-02	No	No	2.41E+00	2.85E-03	1.18E-03	No	6.11E-02	No
Vanadium	1.02E+03	4.58E+01	4.48E-02	No	No	1.02E+03	5.31E+01	5.20E-02	No	No	1.02E+03	7.10E+01	6.94E-02	No	No					1.66E-01	No
Zinc	1.00E+05	3.61E+02	3.61E-03	No	No	1.00E+05	2.43E+02	2.43E-03	No	No	1.00E+05	8.28E+01	8.28E-04	No	No	1.09E+04	2.31E-01	2.11E-05	No	6.89E-03	No

Sum of Rij: 1.4E+03 Sum of Rij: 1.5E+02 Sum of Rij: 4.9E+01 Sum of Rij: 4.0E-01 No. of Samples: 1.4E+01 No. of Samples: 1.0E+01 No. of Samples: 1.8E+01 No. of Samples: 1.5E+01 1/No. of Samples: 7.1E-02 1/No. of Samples: 1.0E-01 1/No. of Samples: 5.6E-02 1/No. of Samples 6.7E-02

NOTE:

Abbreviation: mg/kg = milligrams per kilogram.

Appendix B2. Chemical Exposure and Intake Factors
Upper Granite Creek Mines Human Health and Ecological Risk Assessment
Wallowa-Whitman National Forest, Oregon

		Recreation	al Receptor		
	Ch	ild	Ac	lult	
Exposure Factors	Central	Reasonable	Central	Reasonable	Source
	Tendency	Maximum	Tendency	Maximum	
	Exposure	Exposure	Exposure	Exposure	
Body Weight (kg)	15	15	70	70	EPA, 1997
Exposure Frequency (d/yr) soil	6	12	6	24	Site Specific
Exposure Frequency (d/yr) sediment	6	12	6	24	Site Specific
Exposure Frequency (d/yr) surface water	6	12	6	24	Site Specific
Event time (hrs/event) soil	1	2	2	2	Site Specific
Event Frequency (events per day)	1	1	1	1	Site Specific
Exposure Duration (yr)	6	6	9	24	EPA, 1997
Averaging Time (d) ¹					
carcinogens	25,550	25,550	25,550	25,550	EPA, 1989
noncarcinogens	2,190	2,190	3,285	8,760	EPA, 1989
Intake Factors					
Ingestion of soil (mg/d)	100	200	50	100	EPA, 1997
Incidental ingestion of sediment (mg/d)	50	100	25	50	EPA, 1997
Incidental surface water ingestion (L/hr)	0.05	0.05	0.05	0.05	EPA, 1997
Exposed skin surface area (cm ²)	6,600	7,300	18,000	22,000	EPA, 2004a
Inhalation rate (m ³ /d)	8.3	8.3	15.2	15.2	EPA, 1997
Dermal absorption factor					
volatile vp> 12000 Pa	0.0005	0.0005	0.0005	0.0005	EPA, 2004a
volatile vp< 12000 Pa	0.03	0.03	0.03	0.03	EPA, 2004a
inorganics	0.1	0.01	0.01	0.01	EPA, 2004a
Soil Adherence Factor (mg/cm ² -event)	0.01	0.07	0.01	0.07	EPA, 2004a
PEF (mg ³ /kg)	1.32E+09	1.32E+09	1.32E+09	1.32E+09	EPA, 2004a

Abbreviations: cm^2 = square centimeters, d = day, d/yr = days per year, kg = kilograms, L/hr = liters per hour, $m^3/d = cubic$ meters per day, $mg/cm^2 = milligrams$ per square centimeter, $mg^3/kg = cubic$ milligrams per kilogram, mg/d = milligrams per day, Pa = Pascal, PEF = Particulate Emission Factor, vp = vapor pressure, vp = vapor press

SOURCES:

EPA, 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A). EPA/540/1-89/002.

EPA, 1997. "Exposure Factors Handbook". Volumes I - III. EPA Office of Research and Development. August

EPA, 2004a. "Risk Assessment Guide for Superfund, Part E, Supplemental Guidance for Dermal Risk Assessment." July

EPA, 2004b. "Region IV Preliminary Remediation Goals". 2004 Update. EPA. December

Cascade Earth Sciences - Spokane, WA

PN: 2723018

Doc: App B GraniteCrk AppB-PRG Screening.xlsx (B2 Exposure Factors)

May 2011

¹ Averaging Time = Exposure Duration (yrs) X 365 days per year.

Appendix B3. Exposure Point Concentrations
Upper Granite Creek Mines Human Health and Ecological Risk Assessment
Wallowa-Whitman National Forest, Oregon

Chemical of Potential Concern	n	Maximum Concentrations	Central Tendency Exposure ¹	Reasonable Maximum Exposure ²
Surface Soil (mg/kg)				
Arsenic	35	1.14E+04	8.53E+02	2.25E+03
Sediment (mg/kg)				
Arsenic	27	3.03E+02	5.44E+01	7.71E+01
Surface Water (mg/L)				
Arsenic	17	8.18E-02	9.88E-03	1.78E-02

Abbreviations: mg/kg = milligrams per kilogram, mg/L = milligrams per liter, n = number of samples.

¹ Average Concentration

^{2 90%} Upper Confidence Limit on the mean if greater then 10 datapoints or maximum concentration if less than 10 datapoints.

	Carci	nogen	Noncar	cinogen
Scenario	Central	Reasonable	Central	Reasonable
(Recreational)	Tendency	Maximum	Tendency	Maximum
(Recreational)	Exposure	Exposure	Exposure	Exposure
		mg/k	g-day	
Surface Soil				
Ingestion	9.1E-10	5.8E-09	1.0E-08	4.4E-08
Inhalation of particulates	1.29E-12	9.78E-12	1.23E-11	4.92E-11
Dermal	5.43E-01	7.09E+00	4.23E+00	2.07E+01
Sediments				
Ingestion	1.1E-09	2.9E-09	5.1E-09	2.2E-08
Dermal	5.43E-01	7.09E+00	4.23E+00	2.07E+01
Surface Water				
Ingestion	2.2E-07	1.0E-06	6.3E-08	6.7E-07
Dermal	8.01E-01	2.01E+00	7.23E+00	1.60E+01

Abbreviation: mg/kg-day = milligrams per kilogram per day.

Appendix B5. Human Health Dermal Absorption Factors for Soil Non-Carcinogenic Dermal Exposure Upper Granite Creek Mines Human Health and Ecological Risk Assessment Wallowa-Whitman National Forest, Oregon

Chemical of	Dermal	C .	Adharana	ational ce Factors	Recrea Dermal A	ational bsorption
Potential Concern	Absorption Factor	Conversion Factor	Central Tendency Exposure	Reasonable Maximum Exposure	Central Tendency Exposure	Reasonable Maximum Exposure
Arsenic	0.01	0.000001	1.00E-02	7.00E-02	1.00E-10	7.00E-10

Appendix B6. Human Health Dermal Absorption Factors for Carinogens
Upper Granite Creek Mines Human Health and Ecological Risk Assessment
Wallowa-Whitman National Forest, Oregon

Chemical of	Dermal	Commonsion	Adharana	ational ce Factors	Recrea Dermal A	ational bsorption
Potential Concern	Absorption Factor	Conversion Factor	Central Reasonabl Tendency Maximum Exposure Exposure		Central Tendency Exposure	Reasonable Maximum Exposure
Arsenic	0.01	0.000001	1.00E-02	7.00E-02	1.00E-10	7.00E-10

Appendix B7. Critical Toxicity Factors for Non-Carcinogenic Chemicals of Potential Concern Upper Granite Creek Mines Human Health and Ecological Risk Assessment Wallowa-Whitman National Forest, Oregon

Contaminant	CAS Number	Chronic Oral RfD ¹ Oral Inhalation mg/kg-day		Oral Inhalation		Confidence in RfD	Endpoint
Arsenic	7440-38-2	0.0003	NA	Medium	hyperpigmentation, vascular		

Abbreviations: CAS = chemical abstracts scientific (registration), mg/kg-day = milligrams per kilograms per day, RfD = non-cancer reference dose.

1 RfD value from Region IX Preliminarty Remediation goal tables.

Appendix B8. Critical Toxicity Factors for Carcinogenic Chemicals of Potential Concern
Upper Granite Creek Mines Human Health and Ecological Risk Assessment
Wallowa-Whitman National Forest, Oregon

Contaminant	CAS	Slope Factor (mg/kg-day)-1		•		Weight of Evidence Classification	Type of Cancer	Basis of Slope Factor
Contaminant	Number	Oral	Inhalation	Oral/Inhalation	Oral/ Inhalation	Oral/ Inhalation		
Arsenic	7440-38-2	1.5E+00	1.5E+01	A	skin	EPI studies		

Abbreviations: A = known human carcinogen, CAS = chemical abstracts scientific (registration), mg/kg-day = milligrams per kilograms per day.

Appendix B9. Hazard Quotients for Non-Carcinogenic Chemicals of Potential Concern - Recreation Scenario
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Dente	Chemicals	-	re Point ntration	Average D	Daily Dose 1	Oral	Oral Hazard Quotient ²	
Route of Exposure	of Potential Concern	Central Tendency Exposure	Reasonable Maximum Exposure	Central Tendency Exposure	Reasonable Maximum Exposure	Reference Dose	Central Tendency Exposure	Reasonable Maximum Exposure
Soil		mg	/kg		mg/kg-day			
Ingestion	Arsenic	6.82E+02	1.80E+03	1.01E-08	4.44E-08	3.00E-04	2.E-02	3.E-01
Dermal	Arsenic	6.82E+02	1.80E+03	4.23E-10	1.45E-08	3.00E-04	1.E-03	9.E-02
Sediments		mg	/kg	mg/kg-day				
Ingestion	Arsenic	4.35E+01	6.17E+01	5.06E-09	2.22E-08	3.00E-04	7.E-04	5.E-03
Dermal	Arsenic	4.35E+01	6.17E+01	4.23E-10	1.45E-08	3.00E-04	6.E-05	3.E-03
Surface Water		m	g/L		mg/L-day			
Ingestion	Arsenic	7.90E-03	1.42E-02	6.29E-08	6.71E-07	3.00E-04	2.E-06	3.E-05
Dermal	Arsenic	7.90E-03	1.42E-02	7.23E-06	1.60E-05	3.00E-04	2.E-04	8.E-04
						Total HI ³	2.E-02	4.E-01

Abbreviations: HI = Hazard Index, mg/kg = milligrams per kilogram, mg/kg-day = milligrams per kilogram per day, mg/L = milligrams per liter, mg/L-day = milligrams per liter per day.

¹ Average Daily Dose = Exposure Point Concentration x Intake (Appendix B4).

² Hazard quotient = Average Daily Dose / Oral Reference Dose (RfDo).

³ Hazard Index = sum of all Hazard Quotients.

Appendix B10. Excess Cancer Ricks for Carcinogenic Chemicals of Potential Concern - Recreational Scenario
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

	Chemicals	-	re Point ntration	Average 1	Daily Dose	Oral	Inhalation	Excess Cancer Risk ¹	
Route of Exposure	of Potential Concern	Central Tendency Exposure	Reasonable Maximum Exposure	Central Tendency Exposure	Reasonable Maximum Exposure	Slope Factor	Slope Factor	Central Tendency Exposure	Reasonable Maximum Exposure
Soil		mg	g/kg		mg/k	g-day			
Ingestion	Arsenic	6.82E+02	1.80E+03	9.09E-10	5.81E-09	1.5E+00		9.E-07	2.E-05
dermal	Arsenic	6.82E+02	1.80E+03	5.43E-11	4.96E-09	1.5E+00		6.E-08	1.E-05
Inhalation of particulates	Arsenic	6.82E+02	1.80E+03	1.29E-12	9.78E-12		1.5E+01	1.E-08	3.E-07
Sediments		mg	g/kg	mg/kg-day					
Ingestion	Arsenic	4.35E+01	6.17E+01	1.15E-09	2.91E-09	1.5E+00		7.E-08	3.E-07
dermal	Arsenic	4.35E+01	6.17E+01	5.43E-11	4.96E-09	1.5E+00		4.E-09	5.E-07
Surface Water		m	g/L		mg/l	L-day			
Ingestion	Arsenic	7.90E-03	1.42E-02	2.17E-07	1.03E-06	1.5E+00		3.E-09	2.E-08
dermal	Arsenic	7.90E-03	1.42E-02	8.01E-07	2.01E-06	1.5E+00		9.E-09	4.E-08
						Total Excess	Cancer Risk	1.E-06	3.E-05

Abbreviations: mg/kg = milligrams per kilogram, mg/kg-day = milligrams per kilogram per day, mg/L = milligrams per liter.

Bold = Unacceptable Excess Cancer Risk

1 Excess Cancer Risk = Exposure Point Concentration x Average Daily Dose x Slope Factor (Sfo or Sfi).

Upper Granite Creek Removal Action

Appendix B11. Human Health Hotspot Evaluation
Upper Granite Creek Mines Human Health and Ecological Risk
Assessment, Wallowa-Whitman National Forest, Oregon

	Sampling	Arsenic,	Hotspot	
Sample Number	Depth	Total	Concentration	Hotspot?
F-10-1-10-10-10-10-10-10-10-10-10-10-10-1	feet		ng/kg	F
GF-WR-01		2.9E+01	1.43E+04	No
GF-WR-2		1.3E+03	1.43E+04	No
GF-WR-3		8.9E+01	1.43E+04	No
TILL-WR-01		1.4E+02	1.43E+04	No
TM-TA-SSS-30	0.4	7.3E+01	1.43E+04	No
CMM-WR1-1-0.5'	0.5	7.5E+03	1.43E+04	No
CMM-WR2-1-0.5'	0.5	4.5E+03	1.43E+04	No
CMM-WR2-2-0.5'	0.5	8.6E+02	1.43E+04	No
CMM-WR3-1-0.5'	0.5	6.2E+02	1.43E+04	No
CMM-WR4-1-0.5'	0.5	5.7E+02	1.43E+04	No
CM-WP-SSS-31	0.5	1.1E+04	1.43E+04	No
GC3-WR-01	0.5	2.0E+01	1.43E+04	No
GC5-WR-01	0.5	9.7E+00	1.43E+04	No
GC5-WR-02	0.5	2.7E+01	1.43E+04	No
GC6-WR-01	0.5	1.3E+02	1.43E+04	No
GC6-WR-02	0.5	2.6E+02	1.43E+04	No
GC6-WR-03	0.5	6.3E+00	1.43E+04	No
GC7-WR-01	0.5	1.7E+01	1.43E+04	No
GC7-WR-02	0.5	2.6E+01	1.43E+04	No
GC7-WR-03	0.5	3.7E+02	1.43E+04	No
GC7-WR-04	0.5	5.9E+01	1.43E+04	No
GF-WR2-1-0.5'	0.5	8.8E+01	1.43E+04	No
MM-ML-SSS-16	0.5	1.8E+02	1.43E+04	No
MM-ML-SSS-38	0.5	2.7E+01	1.43E+04	No
MM-WP-SSS-15	0.5	3.0E+02	1.43E+04	No
SM-WR2-1-0.5'	0.5	3.4E+02	1.43E+04	No
MM-ML-SSS-12	0.7	1.6E+02	1.43E+04	No
MM-WP-SSS-14	0.7	1.7E+02	1.43E+04	No
TM-WP-SSS-27	0.8	9.3E+00	1.43E+04	No
TM-WP-SSS-28	0.8	6.6E+00	1.43E+04	No
MM-WP-SSS-13	1	1.7E+00	1.43E+04	No
MM-WP-SSS-17	1	1.9E+02	1.43E+04	No
CMM-TA-SUS-22	1.5	1.4E+02	1.43E+04	No
CM-TA-SUS-33	1.5	2.2E+02	1.43E+04	No
SM-TA-SUS-25	1.5	2.3E+01	1.43E+04	No

Abbreviation: mg/kg = milligrams per kilogram.

Doc: App B GraniteCrk AppB-PRG Screening.xlsx (B11 Hotspot Eval)

Appendix C. Ecological Scoping Checklist

Ecological Scoping Checklist

Site Name	Granite Creek Mines
Date of Site Inspection	Summer 2005
Site Location	Wallowa Whitman National Forest; Granite, Oregon
Site Visit Conducted by	EA Engineering, Science, and Technology

Part **①**

CONTAMINANTS OF INTEREST Types, Classes, Or Specific Hazardous Substances [‡] Known Or Suspected	Onsite	Adjacent to or in locality of the facility [†]
Metals	Yes	Yes

[‡] As defined by OAR 340-122-115(34) [†] As defined by OAR 340-122-115(38)

Part 2

OBSERVED IMPACTS ASSOCIATED WITH THE SITE	Finding
Onsite vegetation (None, Limited, Extensive)	Е
Vegetation in the locality of the site (None, Limited, Extensive)	L
Onsite wildlife such as macroinvertebrates, reptiles, amphibians, birds, mammals, other	N
(None, Limited, Extensive)	
Wildlife such as macroinvertebrates, reptiles, amphibians, birds, mammals, other in the	L
locality of the site (None, Limited, Extensive)	
Other readily observable impacts (None, Discuss below)	D
Discussion:	
Drainage from several adits.	
Vegetation is sparse on waste material piles and in the vicinity of the disturbed mine areas.	
Past forest cutting surrounding mines	

Ecological Scoping Checklist (cont'd) Part ❸

SPECIFIC EVALUATION OF ECOLOGICAL RECEPTORS / HABITAT	Finding
Terrestrial – Wooded	
Percentage of site that is wooded	82
Dominant vegetation type (Evergreen, Deciduous, Mixed)	Е
Prominent tree size at breast height, i.e., four feet (<6", 6" to 12", >12")	6"- 12"
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,	Ma, B, M
Mammals, Other)	
Terrestrial – Natural Scrub/Shrub/Grasses	
Percentage of site that is scrub/shrub/Grass	3
Dominant vegetation type (Scrub, Shrub, Grasses, Other)	G
Prominent height of vegetation (<2', 2' to 5', >5')	2'-5'
Density of vegetation (Dense, Patchy, Sparse)	P
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,	Ma, B
Mammals, Other)	
Terrestrial – Ruderal	
Percentage of site that is ruderal	10
Dominant vegetation type (Landscaped, Agriculture, Bare ground)	B, Successional
Prominent height of vegetation (0', >0' to <2', 2' to 5', >5')	<2 and >5'
Density of vegetation (Dense, Patchy, Sparse)	S
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,	Ma, B
Mammals, Other)	
Aquatic – Non-flowing (lentic)	
Percentage of site that is covered by lakes or ponds	0
Type of water bodies (Lakes, Ponds, Vernal pools, Impoundments, Lagoon, Reservoir,	
Canal)	
Size (acres), average depth (feet), trophic status of water bodies	
Source water (River, Stream, Groundwater, Industrial discharge, Surface water runoff)	
Water discharge point (None, River, Stream, Groundwater, Wetlands impoundment)	
Nature of bottom (Muddy, Rocky, Sand, Concrete, Other)	
Vegetation present (Submerged, Emergent, Floating)	
Obvious wetlands present (Yes / No)	
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,	
Mammals, Other)	

Aquatic - Flowing (lotic)		
Percentage of site that is covered by rivers, streams (brooks, creeks), intermittent streams, dry wash, arroyo, ditches, or channel waterway	2	
Type of water bodies (Rivers, Streams, Intermittent Streams, Dry Wash, Arroyo, Ditches, Channel waterway)	Adit Drainage into stream	
Size (acres), average depth (feet), approximate flow rate (cfs) of water bodies	~1-5 ft wide, 0.1- 0.5 ft deep, 1-5 cfs	
Bank environment (cover: Vegetated, Bare / slope: Steep, Gradual / height (in feet))	B/G to $S0 - 2 ft.$	
Source water (River, Stream, Groundwater, Industrial discharge, Surface water runoff)	Adit, groundwater, and surface runoff,	
Tidal influence (Yes / No)	N	
Water discharge point (None, River, Stream, Groundwater, Wetlands impoundment)	River	
Nature of bottom (Muddy, Rocky, Sand, Concrete, Other)	Rocky, Sand	
Vegetation present (Submerged, Emergent, Floating)	None	
Obvious wetlands present (Yes / No)	Y	
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Fish, Birds, Mammals, Other)	Ma, Fish	
Aquatic – Wetlands		
Obvious or designated wetlands present (Yes / No)	3	
Wetlands suspected at site is/has (Adjacent to water body, in Floodplain, Standing water, Dark wet soils, Mud cracks, Debris line, Water marks)	, Adj.; Fl.; St. Wat.; Veg.	
Vegetation present (Submerged, Emergent, Scrub/shrub, Wooded)	Emergent	
Size (acres) and depth (feet) of suspected wetlands	<1 acre/0.5 ft	
Source water (River, Stream, Groundwater, Industrial discharge, Surface water runoff)	Str.; Grdwat.; Surf Wat.	
Water discharge point (None, River, Stream, Groundwater, Impoundment)	Stream	
Tidal influence (Yes / No)	No	
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds, Mammals, Other)	Ma; B	

^{*} P: Photographic documentation of these features is highly recommended.

Part **4**

ECOLOGICALLY IMPORTANT SPECIES / HABITATS OBSERVED

Evaluation of Receptor-Pathway Interactions

EVALUATION OF RECEPTOR-PATHWAY INTERACTIONS	Y	N	U
Are hazardous substances present or potentially present in surface waters?	X		
AND			
Are ecologically important species or habitats present?	X		
AND			
Could hazardous substances reach receptors via surface water?	X		
When answering the above questions, consider the following:			
Known or suspected presence of hazardous substances in surface waters.			
Ability of hazardous substances to migrate to surface waters.			
Terrestrial organisms may be dermally exposed to water-borne contaminants as a result of			
wading or swimming in contaminated waters. Aquatic receptors may be exposed through			
osmotic exchange, respiration or ventilation of surface waters.			
Contaminants may be taken-up by terrestrial plants whose roots are in contact with surface			
waters.			
Terrestrial receptors may ingest water-borne contaminants if contaminated surface waters are			
used as a drinking water source.			
Are hazardous substances present or potentially present in groundwater?			X
AND			
Are ecologically important species or habitats present?		X	
AND			
Could hazardous substances reach these receptors via groundwater?		X	
When answering the above questions, consider the following:			
Known or suspected presence of hazardous substances in groundwater.			
Ability of hazardous substances to migrate to groundwater.			
Potential for hazardous substances to migrate via groundwater and discharge into habitats			
and/or surface waters.			
Contaminants may be taken-up by terrestrial and rooted aquatic plants whose roots are in			
contact with groundwater present within the root zone (~1m depth).			
Terrestrial wildlife receptors generally will not contact groundwater unless it is discharged to			
the surface.			

[&]quot;Y" = yes; "N" = No, "U" = Unknown (counts as a "Y")

ATTACHMENT 2

Evaluation of Receptor-Pathway Interactions (cont'd)

EVALUATION OF RECEPTOR-PATHWAY INTERACTIONS	Y	N	U
Are hazardous substances present or potentially present in sediments?	X		
AND			
Are ecologically important species or habitats present?	X		
AND			
Could hazardous substances reach these receptors via contact with sediments?	X		
When answering the above questions, consider the following:			
Known or suspected presence of hazardous substances in sediment.			
Ability of hazardous substances to leach or erode from surface soils and be carried into sediment via surface runoff.			
Potential for contaminated groundwater to upwell through, and deposit contaminants in, sediments.			
If sediments are present in an area that is only periodically inundated with water, terrestrial			
species may be dermally exposed during dry periods. Aquatic receptors may be directly			
exposed to sediments or may be exposed through osmotic exchange, respiration or ventilation			
of sediment pore waters.			
Terrestrial plants may be exposed to sediment in an area that is only periodically inundated			
with water.			
If sediments are present in an area that is only periodically inundated with water, terrestrial			
species may have direct access to sediments for the purposes of incidental ingestion. Aquatic receptors may regularly or incidentally ingest sediment while foraging.			
Are hazardous substances present or potentially present in prey or food items of ecologically			X
important receptors?			
AND			
Are ecologically important species or habitats present?	X		
AND			
Could hazardous substances reach these receptors via consumption of food items?	X		
When answering the above questions, consider the following:			
Higher trophic level terrestrial and aquatic consumers and predators may be exposed through			
consumption of contaminated food sources.			
In general, organic contaminants with log $K_{ow} > 3.5$ may accumulate in terrestrial mammals			
and those with a log $K_{ow} > 5$ may accumulate in aquatic vertebrates.			

[&]quot;Y" = yes; "N" = No, "U" = Unknown (counts as a "Y")

ATTACHMENT 2

Evaluation of Receptor-Pathway Interactions (cont'd)

EVALUATION OF RECEPTOR-PATHWAY INTERACTIONS	Y	N	U
Are hazardous substances present or potentially present in surficial soils?	X		
AND			
Are ecologically important species or habitats present?	X		
AND			
Could hazardous substances reach these receptors via incidental ingestion of or dermal contact	X		
with surficial soils?			
When answering the above questions, consider the following:			
Known or suspected presence of hazardous substances in surficial (~1m depth) soils.			
Ability of hazardous substances to migrate to surficial soils.			
Significant exposure via dermal contact would generally be limited to organic contaminants			
which are lipophilic and can cross epidermal barriers.			
Exposure of terrestrial plants to contaminants present in particulates deposited on leaf and			
stem surfaces by rain striking contaminated soils (i.e., rain splash).			
Contaminants in bulk soil may partition into soil solution, making them available to roots.			
Incidental ingestion of contaminated soil could occur while animals grub for food resident in			
the soil, feed on plant matter covered with contaminated soil or while grooming themselves			
clean of soil.			
Are hazardous substances present or potentially present in subsurface soils?	X		
AND		3.7	
Are ecologically important species or habitats present?		X	
AND			
Could hazardous substances reach these receptors via vapors or fugitive dust carried in surface		v	
air or confined in burrows?		X	
When answering the above questions, consider the following:			
Volatility of the hazardous substance (volatile chemicals generally have Henry's Law constant $> 10^{-5}$ atm-m ³ /mol and molecular weight < 200 g/mol).			
Exposure via inhalation is most important to organisms that burrow in contaminated soils,			
given the limited amounts of air present to dilute vapors and an absence of air movement to			
disperse gases.			
Exposure via inhalation of fugitive dust is particularly applicable to ground-dwelling species			
that could be exposed to dust disturbed by their foraging or burrowing activities or by wind			
movement.			
Foliar uptake of organic vapors would be limited to those contaminants with relatively high			
vapor pressures.			
Exposure of terrestrial plants to contaminants present in particulates deposited on leaf and			
stem surfaces.			

[&]quot;Y" = yes; "N" = No, "U" = Unknown (counts as a "Y")

Appendix D. Ecological Risk-Based Screening Tables

Appendix D1. Ecological Risk-Based Screening Concentrations

Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical		Oregon Soil Sci	reening Level Values		Oregon	Freshwater Screening Lev	el Values	Oregon Sediment Sc	reening Level Values
of	Plants	Invertebrates	Birds	Mammals	Aquatic Life	Birds	Mammals	Freshwater	Bioaccumulation
Interest		1	mg/kg			mg/L		mş	g/kg
Aluminum	5.0E+01 pH<5.5	6.0E+02 pH<5.5	4.5E+02 pH<5.5	1.07E+02 pH<5.5	8.70E-02	7.97E+02	8.00E+00	No Data	No Data
Antimony	5.0E+00	7.80E+01 USEPA, 2005a	No Data	1.50E+01	1.60E+00	No Data	1.00E+00	3.00E+00	1.00E+01
Arsenic, Total	1.8E+01 USEPA, 2005b	6.0E+01 Arsenic III	4.3E+01 USEPA, 2005b	4.6E+01 USEPA, 2005b	1.50E-01 Arsenic III	1.80E+01 Arsenic III	6.00E+00 Arsenic III	6.00E+00 Arsenic III	4.00E+00 Arsenic III
Barium	5.0E+02	3.0E+03	8.5E+01	6.4E+02	4.00E-03	1.50E+02	3.90E+01	No Data	No Data
Beryllium	1.0E+01	4.0E+01 USEPA, 2005c	1.0E+01 Efroymsen et. al., 1997	8.3E+01	5.30E-03	No Data	No Data	No Data	1.22E+02
Cadmium	4.0E+00	2.0E+01	6.0E+00	1.3E+02	2.20E-03	1.00E+01	8.00E+00	6.00E-01	3.00E-03
Chromium, Total	1.0E+00 Chromium III	4.0E-01 Chromium III	4.0E+00 Chromium III	4.1E+02 Chromium VI	1.10E-02 Chromium VI	7.20E+00 Chromium III	2.50E+01 Chromium VI	3.70E+01 Chromium, Total	4.20E+03 Chromium, Total
Cobalt	2.0E+01	1.0E+03	1.2E+02 USEPA, 2005d	1.5E+02	2.30E-02	No Data	9.00E+00	No Data	No Data
Copper	1.0E+02	5.0E+01	1.9E+02	3.9E+02	9.00E-03	3.41E+02	5.30E+01	3.60E+01	1.00E+01
Iron	1.0E+01	2.0E+02	No Data 5>pH>8	No Data 5>pH>8	1.00E+00	No Data	No Data	No Data	No Data
Lead	5.0E+01	5.0E+02	1.6E+01	4.0E+03	2.50E-03	2.80E+01	3.23E+02	3.50E+01	1.28E+02
Manganese	5.0E+02	1.0E+02	4.1E+03	1.1E+04	1.20E-01	7.24E+03	6.76E+02	1.10E+03	No Data
Mercury	3.0E-01	1.0E-01	1.5E+00	7.3E+01	7.70E-04	3.30E+00	1.00E+01	2.00E-01	No Data
Nickel	3.0E+01	2.0E+02	3.2E+02	6.3E+02	5.20E-02	5.62E+02	3.80E+01	1.80E+01	3.16E+02
Selenium	1.0E+00	7.0E+01	2.0E+00	2.5E+01	5.00E-03	3.60E+00	1.50E+00	No Data	1.00E-01
Silver	2.0E+00	5.0E+01	No Data	No Data	1.20E-04	No Data	No Data	4.50E+00	No Data
Thallium	1.0E+00	1.0E+00 CCME, 1999	No Data	1.0E+00	4.00E-02	No Data	6.00E-02	No Data	7.00E-01
Vanadium	2.0E+00	No Data	4.7E+01	2.5E+01	2.00E-02	8.20E+01	1.60E+00	No Data	No Data
Zinc	5.0E+01	2.0E+02	6.0E+01	2.0E+04	1.20E-01	1.05E+02	1.23E+03	1.23E+02	3.00E+00

Use of surrogate chemical toxicity data indicated by chemical name adjacent to concentration.

Abbreviations: mg/kg = milligrams per kilogram, mg/L = milligrams per liter.

SOURCES:

CCME, 1999. Canadian Soil Quality Guidelines. Canadian Council of Resource and Environmental Ministers. Canadian Council of Ministers of the Environment, Winnipeg.

Efroymson, R.A., G.W. Suter II, B.E. Sample, and D.S. Jones, 1997. Preliminary Remediation goals for Ecological Endpoints. ES/ER/TM-162/R2. Prepared for the U.S. Department of Energy, Office of Environmental Management.

USEPA, 2005a. Ecological Soil Screening Levels for Antimony - Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-61. February.

USEPA, 2005b. Ecological Soil Screening Levels for Arsenic - Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-62. March.

USEPA, 2005c. Ecological Soil Screening Levels for Beryllium - Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-64. February.

USEPA, 2005d. Ecological Soil Screening Levels for Cobalt – Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-67. March.

Appendix D2. Ecological Risk-Based Screening for Surface Soil/Waste Rock
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

	3.6		TT 10 034		Risk-Based Sc	reening Value			Risk Ra	tio for		
Chemical of Interest ¹	Maximum Detected Concentration	Exposure Point Concentration ²	Half of Maximum Sample Reporting Limit	Plants	Invertebrates	Birds	Mammals	Plants (Rij) ³	Invertebrates (Rij) ³	Birds (Rij) ³	Mammals (Rij) 3	Potential Bioaccumulator? ⁴
				mg/kg								
Metals												
Antimony	3.68E+02	4.11E+01	5.00E-01	5.00E+00	7.80E+01	No Data	1.50E+01	8E+00	5E-01	0E+00	3E+00	No
Arsenic, Total	1.14E+04	1.79E+03	NA	1.80E+01	6.00E+01	4.30E+01	4.60E+01	9.9E+01	3.0E+01	4.2E+01	3.9E+01	Yes
Barium	3.22E+02	1.82E+02	NA	5.00E+02	3.00E+03	8.50E+01	6.38E+02	4E-01	6E-02	2E+00	3E-01	No
Cadmium	2.34E+01	4.77E+00	3.20E-02	4.00E+00	2.00E+01	6.00E+00	1.25E+02	1E+00	2E-01	8E-01	4E-02	Yes
Copper	6.98E+02	5.21E+01	NA	1.00E+02	5.00E+01	1.90E+02	3.90E+02	5E-01	1E+00	3E-01	1E-01	No
Iron	9.73E+04	2.78E+04	NA	1.00E+01	2.00E+02	No Data	No Data	2.782E+03	1.39E+02	0E+00	0E+00	No
Lead	2.43E+03	5.95E+02	NA	5.00E+01	5.00E+02	1.60E+01	4.00E+03	1.2E+01	1E+00	3.7E+01	1E-01	Yes
Manganese	1.26E+03	5.85E+02	NA	5.00E+02	1.00E+02	4.13E+03	1.10E+04	1E+00	6E+00	1E-01	5E-02	No
Mercury	7.84E+02	6.25E+01	2.50E-02	3.00E-01	1.00E-01	1.50E+00	7.30E+01	2.08E+02	6.25E+02	4.2E+01	9E-01	Yes
Selenium	3.26E+00	7.21E-01	NA	1.00E+00	7.00E+01	2.00E+00	2.50E+01	7E-01	1E-02	4E-01	3E-02	Yes
Silver	3.19E+02	4.70E+01	1.05E-01	2.00E+00	5.00E+01	No Data	No Data	2.3E+01	9E-01	0E+00	0E+00	No
Thallium	3.30E+00	1.52E+00	2.30E-01	1.00E+00	1.00E+00	No Data	1.00E+00	2E+00	2E+00	0E+00	2E+00	No
Vanadium	9.61E+01	4.49E+01	NA	2.00E+00	No Data	4.70E+01	2.50E+01	2.2E+01	0E+00	1E+00	2E+00	No
Zinc	2.41E+03	3.67E+02	NA	5.00E+01	2.00E+02	6.00E+01	2.00E+04	7E+00	2E+00	6E+00	2E-02	No

Abbreviations: **Bold** = indicates chemcials of potential concern that may require further assessment at the site, mg/kg = milligrams per kilogram, NA = not applicable, NC = not calculated, Unknown = chemical was detected but no screening criterial are available.

- b) The chemical of interest is a bioaccumulator.
- c) No SLV or bioaccumulation vaule is available.
- d) Not Calculated = Risk was not calculated for analytes with no screening criteria or bioaccumulation data.

Cascade Earth Sciences - Spokane, WA

PN: 2723018

Doc: App D Level II Ecorisk Tables-Calcs.xlsx (D2 SurfSoil COPECs)

3.168E+03

1.4E+01

7E-02

8.07E+02

1.4E+01

7E-02

1.31E+02

1.4E+01

7E-02

4.6E+01

1.4E+01

7E-02

:Sum of Rij (Rj)

:1/Nij

:Number of COIs (Nij)

¹ Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.

² Upper confidence limit on the mean or maximum (whichever is lower).

³ The risk ratio is the exposure point concentration divided by the Screening Level Values (SLV).

⁴ As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).

⁵ The chemical of interest is considered a chemical of potential ecological concern if:

a) The risk ratio (Rij) is greater than 5 (non-protected) or 1 (protected).

Appendix D2. Ecological Risk-Based Screening for Surface Soil/Waste Rock (continued)

Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

		Risked Posed to	Non-Protecte	d		Risks Posed t	to Protected			Risks Posed to	Non-Protected			Risks Posed to Protected			
Chemical of Interest ¹	Plants (Rij>5) 5	Invertebrates (Rij>5) 5	Birds (Rij>5) ⁵	Mammals (Rij>5) 5	Plants (Rij>1) ⁵	Invertebrates (Rij>1) 5	Birds (Rij>1) ⁵	Mammals (Rij>1) 5	Plants	Invertebrates	Birds	Mammals	Plants	Invertebrates	Birds	Mammals	
]	Due to Elevated	Reporting Lin	nit	I	Due to Elevated I	Reporting Lin	nit	
Metals																	
Antimony	Yes	No	NC	No	Yes	No	NC	Yes	No	No	No	No	No				
Arsenic, Total	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No			
Barium	No	No	No	No	No	No	Yes	No	No	No	No	No	No	No	No	No	
Cadmium	No	No	Yes	Yes	No	No	Yes	Yes	No	No	No	No	No	No	No	No	
Copper	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	
Iron	Yes	Yes	NC	NC	Yes	Yes	NC	NC	No	No	No	No	No	No	No	No	
Lead	Yes	No	Yes	Yes	Yes	No	Yes	Yes	No	No	No	No	No	No	No	No	
Manganese	No	Yes	No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	
Mercury	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No	No	
Selenium	No	No	Yes	Yes	No	No	Yes	Yes	No	No	No	No	No	No	No	No	
Silver	Yes	No	NC	NC	Yes	No	NC	NC	No	No	No	No	No	No	No	No	
Thallium	No	No	NC	No	Yes	Yes	NC	Yes	No	No	No	No	No	No	No	No	
Vanadium	Yes	NC	No	No	Yes	NC	No	Yes	No	No	No	No	No	No	No	No	
Zinc	Yes	No	Yes	No	Yes	Yes	Yes	No	No	No	No	No	No	No	No	No	

Abbreviations: **Bold** = indicates chemcials of potential concern that may require further assessment at the site, mg/kg = milligrams per kilogram, NA = not applicable, NC = not calculated, Unknown = chemical was detected but no screening criterial are available.

- 1 Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.
- 2 Upper confidence limit on the mean or maximum (whichever is lower).
- 3 The risk ratio is the exposure point concentration divided by the Screening Level Values (SLV).
- 4 As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).
- 5 The chemical of interest is considered a chemical of potential ecological concern if:
- a) The risk ratio (Rij) is greater than 5 (non-protected) or 1 (protected).
- b) The chemical of interest is a bioaccumulator.
- c) No SLV or bioaccumulation vaule is available.
- d) Not Calculated = Risk was not calculated for analytes with no screening criteria or bioaccumulation data.

Cascade Earth Sciences - Spokane, WA

PN: 2723018

Doc: App D Level II Ecorisk Tables-Calcs.xlsx (D2 SurfSoil COPECs)

Appendix D2. Ecological Risk-Based Screening for Surface Soil/Waste Rock (continued)

Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest ¹		Inordinate Cor Overall R Protected (R _{ij} /R _j >	lisk for Species			Inordinate Cor Overall $(R_{ij}/R_j >$	Risks		Risks Posed to Protected Species				Risks Posed to Non-Protected Species				
	Plants	Invertebrates	Birds	Mammals	Plants	Invertebrates	Birds	Mammals	Plants	Invertebrates	Birds	Mammals	Plants	Invertebrates	Birds	Mammals	
Metals																	
Antimony	No	No	Unkown	No	No	No	Unkown	No	Yes	No	No	Yes	Yes	No	No	No	
Arsenic, Total	No	No	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Barium	No	No	No	No	No	No	No	No	No	No	Yes	No	No	No	No	No	
Cadmium	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	No	Yes	Yes	
Copper	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	
Iron	Yes	Yes	Unkown	Unkown	Yes	No	Unkown	Unkown	Yes	Yes	No	No	Yes	Yes	No	Yes	
Lead	No	No	Yes	No	No	No	No	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	
Manganese	No	No	No	No	No	No	No	No	No	Yes	No	No	No	Yes	No	No	
Mercury	No	Yes	Yes	No	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Selenium	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	No	Yes	Yes	
Silver	No	No	Unkown	Unkown	No	No	Unkown	Unkown	Yes	No	No	No	Yes	No	No	No	
Thallium	No	No	Unkown	No	No	No	Unkown	No	Yes	Yes	No	Yes	No	No	No	No	
Vanadium	No	Unkown	No	No	No	Unkown	No	No	Yes	Unknown	No	Yes	Yes	Unknown	No	No	
Zinc	No	No	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	No	Yes	No	

Abbreviations: **Bold** = indicates chemcials of potential concern that may require further assessment at the site, mg/kg = milligrams per kilogram, NA = not applicable, NC = not calculated, Unknown = chemical was detected but no screening criterial are available.

- 1 Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.
- 2 Upper confidence limit on the mean or maximum (whichever is lower).
- 3 The risk ratio is the exposure point concentration divided by the Screening Level Values (SLV).
- 4 As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).
- 5 The chemical of interest is considered a chemical of potential ecological concern if:
- a) The risk ratio (Rij) is greater than 5 (non-protected) or 1 (protected).
- b) The chemical of interest is a bioaccumulator.
- c) No SLV or bioaccumulation vaule is available.
- d) Not Calculated = Risk was not calculated for analytes with no screening criteria or bioaccumulation data.

Cascade Earth Sciences - Spokane, WA

PN: 2723018

Doc: App D Level II Ecorisk Tables-Calcs.xlsx (D2 SurfSoil COPECs)

Appendix D3. **Ecological Risk-Based Screening for Surface Wate** Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

			Freshwater I	Risk-Based Scr	eening Value		Risk Ratio			Risks Posed				
Chemical of Interest (COI) ¹	Exposure Point Concentration ²	Half of Maximum Sample Reporting Limit	Aquatic Life	Birds	Mammals	Aquatic Life (Rij) ²	Birds (Rij) ²	Mammals (Rij) ²	Bioaccumulator? ³	Aquatic Life (Rij>1) 4	Protected Birds (Rij>1) 4	Non- Protected Birds (Rij>5) 4	Protected Mammals (Rij>1) 4	Non- Protected Mammals (Rij>5) 4
7.5		m	g/L											
Metals	T	T	T				T	ľ				ľ	•	
Aluminum	4.87E-02	3.16E-02	8.70E-02	7.97E+02	8.00E+00	6E-01	6E-05	6E-03	No	No	No	No	No	No
Antimony	9.00E-04	2.50E-03	1.60E+00	No Data	1.00E+00	6E-04	0E+00	9E-04	No	No	NC	NC	No	No
Arsenic, Total	1.78E-02	3.00E-03	1.50E-01	1.80E+01	6.00E+00	1E-01	1E-03	3E-03	Yes	No	Yes	Yes	Yes	Yes
Barium	6.22E-02	NA	4.00E-03	1.50E+02	3.90E+01	1.6E+01	4E-04	2E-03	No	Yes	No	No	No	No
Cadmium	4.47E-04	6.00E-04	2.20E-03	1.00E+01	8.00E+00	2E-01	4E-05	6E-05	Yes	No	Yes	Yes	Yes	Yes
Chromium, Total	7.40E-04	5.00E-03	1.10E-02	7.20E+00	2.50E+01	7E-02	1E-04	3E-05	No	No	No	No	No	No
Copper	1.56E-03	1.65E-03	9.00E-03	3.41E+02	5.30E+01	2E-01	5E-06	3E-05	No	No	No	No	No	No
Iron	6.43E-01	3.34E-02	1.00E+00	No Data	No Data	6E-01	0E+00	0E+00	No	No	NC	NC	NC	NC
Lead	2.13E-03	7.50E-04	2.50E-03	2.80E+01	3.23E+02	9E-01	8E-05	7E-06	Yes	No	Yes	Yes	Yes	Yes
Manganese	1.01E-01	9.50E-04	1.20E-01	7.24E+03	6.76E+02	8E-01	1E-05	1E-04	No	No	No	No	No	No
Mercury	7.57E-05	5.00E-05	7.70E-04	3.30E+00	1.00E+01	1E-01	2E-05	8E-06	Yes	No	Yes	Yes	Yes	Yes
Selenium	1.26E-03	1.70E-03	5.00E-03	3.60E+00	1.50E+00	3E-01	3E-04	8E-04	Yes	No	Yes	Yes	Yes	Yes
Silver	9.00E-05	1.45E-03	1.20E-04	No Data	No Data	8E-01	0E+00	0E+00	No	No	NC	NC	NC	NC
Zinc	2.31E-01	5.00E-03	1.20E-01	1.05E+02	1.23E+03	2E+00	2E-03	2E-04	No	Yes	No	No	No	No

Abbreviations: **Bold** = indicates chemicals of potential ecological concern that may require further assessment at the site was detected but no screening criteria are available, mg/L = milligrams per liter, NA = not applicable, Unknown = Chemical was detected but no screening criteria are available.

² The risk ratio is the exposure point concentration divided by the Screening Level Values (SLV).

3 As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).	2.2E+01	4E-03	1E-02	:Sum of Rij (Rj)
4 The chemical of interest is considered a chemical of potential ecological concern if:	14	14	14	:Number of COIs (Nij)
a) The risk ratio (Rij) is greater than 1 for protected species and aquatic life.	7E-02	7E-02	7.1E-02	:1/Nij

b) The risk ratio (Rij) is greater than 5 for other species.

¹ Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.

² Upper confidence limit on the mean or maximum (whichever is lower).

c) The chemical of interest is a bioaccumulator.

d) The chemical of interest has an elevated detection limit.

e) No risk-based screening or bioaccumulation vaule is available.

f) Inordinate contribution to overall risk (Rj).

Appendix D3. Ecological Risk-Based Screening for Surface Water (continued Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

			Risks Posed to)		T 1'	4 0 4 1	4.	T 1' 4	G 4 7	4.						
Chemical of Interest (COI) 1	Aquatic Life	Protected Birds	Non- Protected Birds	Protected Mammals	Non- Protected Mammals	to Ove Prote	te Contrib erall Risk f ected Speci /R _j > 1/N _{ij})	for es	Over Non-Pr	ee Contribucall Risks for otected Spendor, p. 5/N _{ij})	or ecies	Risks Posed to Protected Species			Risks Posed to Non-Protected Species		
		Due to E	levated Report	ting Limit		Aquatic Life	Birds	Mammals	Aquatic Life	Birds	Mammals	Aquatic Life	Birds	Mammals	Aquatic Life	Birds	Mammals
Metals																	
Aluminum	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Antimony	No	No	No	No	No	No	No	No	No	No	No	No	Unknown	No	No	Unknown	No
Arsenic, Total	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Barium	No	No	No	No	No	Yes	No	No	Yes	No	No	Yes	No	No	Yes	No	No
Cadmium	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Chromium, Total	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Copper	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Iron	No	No	No	No	No	No	No	No	No	No	No	No	Unknown	Unknown	No	Unknown	Unknown
Lead	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Manganese	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Mercury	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Selenium	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Silver	Yes	No	No	No	No	No	No	No	No	No	No	Yes	Unknown	Unknown	Yes	Unknown	Unknown
Zinc	No	No	No	No	No	No	No	No	No	No	No	Yes	No	No	Yes	No	No

Abbreviations: **Bold** = indicates chemicals of potential ecological concern that may require further assessment at the site was detected but no screening criteria are available, mg/L = milligrams per liter, NA = not applicable, Unknown = Chemical was detected but no screening criteria are available.

- 1 Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.
- 2 Upper confidence limit on the mean or maximum (whichever is lower).
- 2 The risk ratio is the exposure point concentration divided by the Screening Level Values (SLV).
- 3 As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).
- 4 The chemical of interest is considered a chemical of potential ecological concern if:
- a) The risk ratio (Rij) is greater than 1 for protected species and aquatic life.
- b) The risk ratio (Rij) is greater than 5 for other species.
- c) The chemical of interest is a bioaccumulator.
- d) The chemical of interest has an elevated detection limit.
- e) No risk-based screening or bioaccumulation vaule is available.
- f) Inordinate contribution to overall risk (Rj).

Doc: App D Level II Ecorisk Tables-Calcs.xlsx (D3 SWTotal COPECs)

Appendix D4. Ecological Risk-Based Screening for Pore Water
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

			Freshwater I	Risk-Based Scr	eening Value		Risk Ratio					Risks Posed		
Chemical of Interest (COI) ¹	Exposure Point Concentration ²	Half of Maximum Sample Reporting Limit	Aquatic Life g/L	Birds	Mammals	Aquatic Life (Rij) ²	Birds (Rij) ²	Mammals (Rij) ²	Bioaccumulator? ³	Aquatic Life (Rij>1) 4	Protected Birds (Rij>1) 4	Non- Protected Birds (Rij>5) 4	Protected Mammals (Rij>1) 4	Non- Protected Mammals (Rij>5) 4
Metals)								·			
Aluminum	3.17E-02	3.16E-02	8.70E-02	7.97E+02	8.00E+00	4E-01	4E-05	4E-03	No	No	No	No	No	No
Arsenic, Total	6.49E-03	3.00E-03	1.50E-01	1.80E+01	6.00E+00	4E-02	4E-04	1E-03	Yes	No	Yes	Yes	Yes	Yes
Barium	4.85E-02	NA	4.00E-03	1.50E+02	3.90E+01	1.2E+01	3E-04	1E-03	No	Yes	No	No	No	No
Lead	1.16E-03	6.50E-04	2.50E-03	2.80E+01	3.23E+02	5E-01	4E-05	4E-06	Yes	No	Yes	Yes	Yes	Yes
Mercury	5.74E-05	5.00E-05	7.70E-04	3.30E+00	1.00E+01	7E-02	2E-05	6E-06	Yes	No	Yes	Yes	Yes	Yes
Selenium	1.47E-03	1.70E-03	5.00E-03	3.60E+00	1.50E+00	3E-01	4E-04	1E-03	Yes	No	Yes	Yes	Yes	Yes
Silver	0.00E+00	1.45E-03	1.20E-04	No Data	No Data	0E+00	0E+00	0E+00	No	No	No	NC	NC	NC
Thallium	2.76E-03	2.85E-03	4.00E-02	No Data	6.00E-02	7E-02	0E+00	5E-02	No	No	No	NC	NC	No
Zinc	4.52E-03	5.00E-03	1.20E-01	1.05E+02	1.23E+03	4E-02	4E-05	4E-06	No	No	No	No	No	No

Abbreviations: **Bold** = indicates chemicals of potential ecological concern that may require further assessment at the site was detected but no screening criteria are available, mg/L = milligrams per liter, NA = not applicable, NC = not calculated, Unknown = Chemical was detected but no screening criteria are available.

² The risk ratio is the exposure point concentration divided by the Screening Level Values (SLV).

3 As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).	1.3E+01	1E-03	5E-02	:Sum of Rij (Rj)
4 The chemical of interest is considered a chemical of potential ecological concern if:	9.0.E+00	9.0.E+00	9.0.E+00	:Number of COIs (Nij)
a) The risk ratio (Rij) is greater than 1 for protected species and aquatic life.	1.1.E-01	1.1.E-01	1.1.E-01	:1/Nij

- b) The risk ratio (Rij) is greater than 5 for other species.
- c) The chemical of interest is a bioaccumulator.
- d) The chemical of interest has an elevated detection limit.
- e) No risk-based screening or bioaccumulation vaule is available.
- f) Inordinate contribution to overall risk (Rj).

Doc: App D Level II Ecorisk Tables-Calcs.xlsx (D4 PoreWat COPECs)

¹ Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.

² Upper confidence limit on the mean or maximum (whichever is lower).

Appendix D4. Ecological Risk-Based Screening for Pore Water (continued Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

)	Inordinate Contribution			Inordinate Contribution to											
Chemical of Interest (COI) ¹	Aquatic Life	Protected Birds	Non- Protected Birds	Protected Mammals	Non- Protected Mammals	to Overall Risk for Protected Species			Overall Risks for Non-Protected Species $(R_{ij}/R_j > 5/N_{ij})$			Risks Posed to Protected Species			Risks Posed to Non-Protected Species		
		Due to E	ting Limit	Aquatic Life	Birds	Mammals	Aquatic Life	Birds	Mammals	Aquatic Life	Birds	Mammals	Aquatic Life	Birds	Mammals		
Metals																	
Aluminum	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Arsenic, Total	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Barium	No	No	No	No	No	Yes	No	No	Yes	No	No	Yes	No	No	Yes	No	No
Lead	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Mercury	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Selenium	No	No	No	No	No	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Silver	Yes	No	No	No	No	Unknown	No	No	Unknown	No	No	Yes	No	Unknown	Yes	Unknown	Unknown
Thallium	No	No	No	No	No	No	No	No	No	No	No	No	No	Unknown	No	Unknown	No
Zinc	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No

Abbreviations: **Bold** = indicates chemicals of potential ecological concern that may require further assessment at the site was detected but no screening criteria are available,

mg/L = milligrams per liter, NA = not applicable, NC = not calculated, Unknown = Chemical was detected but no screening criteria are available.

- 1 Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.
- 2 Upper confidence limit on the mean or maximum (whichever is lower).
- 2 The risk ratio is the exposure point concentration divided by the Screening Level Values (SLV).
- 3 As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).
- 4 The chemical of interest is considered a chemical of potential ecological concern if:
- a) The risk ratio (Rij) is greater than 1 for protected species and aquatic life.
- b) The risk ratio (Rij) is greater than 5 for other species.
- c) The chemical of interest is a bioaccumulator.
- d) The chemical of interest has an elevated detection limit.
- e) No risk-based screening or bioaccumulation vaule is available.
- f) Inordinate contribution to overall risk (Rj).

Doc: App D Level II Ecorisk Tables-Calcs.xlsx (D4 PoreWat COPECs)

Appendix D5. Ecological Risk-Based Screening for Sediment
Upper Granite Creek Mines Human Health and Ecological Risk Assessment, Wallowa-Whitman National Forest, Oregon

Chemical of Interest (COI) 1	Maximum Detected Concentration	Sediment Exposure Point Concentration ²	Maximum Sample Reporting Limit	Freshwater Sediment Risk-Based Screening Value		Risk Ratio			Risks Posed to		R	isks Posed	Inordinate Contribution to Overall Risks		Risks Posed?	
				Benthic Invertebrates	Bioaccumulation	Benthic Invertebrates	Birds and Mammals	Bioaccumulator? ⁴	Invertebrates	Non-Protected Birds and	Invertebrates	Non-Protected Birds and Mammals	$(\mathbf{R_{ij}/R_{j}} > 5/\mathbf{N_{ij}})$			
		mg/kg			(Rij) ³ (Rij) ³		(Rij>1) ⁵	Mammals (Rij>5) ⁵	Due to Elevated Reporting Limit		Benthic Invertebrates	Birds, and Mammals	Benthic Invertebrates	Birds and Mammals		
Metals																
Aluminum	1.17E+04	7.89E+03	NA	No Data	No Data	0.E+00	0.E+00	No	NC	No	No	No	Unknown	Unknown	Unknown	No
Antimony	5.10E+00	1.43E+00	2.75E-01	3.00E+00	1.00E+01	5E-01	1E-01	Not Required	No	No	No	No	No	No	No	No
Arsenic, Total	3.03E+02	7.71E+01	NA	6.00E+00	4.00E+00	1.3E+01	1.9E+01	Not Required	Yes	Yes	No	No	No	No	Yes	Yes
Barium	2.17E+02	1.35E+02	NA	No Data	No Data	0E+00	0E+00	No	NC	No	No	No	No	No	Unknown	No
Cadmium	2.80E+00	6.47E-01	4.30E-02	6.00E-01	3.00E-03	1E+00	2.16E+02	Not Required	No	Yes	No	Yes	No	No	No	Yes
Chromium, Total	4.56E+01	1.71E+01	NA	3.70E+01	4.20E+03	5E-01	4.1E-03	Not Required	No	No	No	No	No	No	No	No
Cobalt	9.60E+00	6.72E+00	NA	No Data	No Data	0E+00	0E+00	No	NC	No	No	No	No	No	Unknown	No
Copper	3.00E+01	9.92E+00	NA	3.60E+01	1.00E+01	3E-01	9.9E-01	Not Required	No	No	No	No	No	No	No	No
Iron	5.46E+04	2.46E+04	NA	No Data	No Data	0E+00	0.00E+00	No	NC	No	No	No	No	No	Unknown	No
Lead	1.48E+02	3.39E+01	NA	3.50E+01	1.28E+02	1E+00	3E-01	Not Required	No	No	No	No	No	No	No	No
Manganese	6.11E+02	3.03E+02	NA	1.10E+03	No Data	3E-01	0E+00	No	No	No	No	No	No	No	No	No
Mercury	3.20E-01	1.14E-01	2.50E-02	2.00E-01	No Data	6E-01	0E+00	Yes	No	Yes	No	No	No	No	No	Yes
Nickel	7.60E+00	4.43E+00	5.00E-01	1.80E+01	3.16E+02	2E-01	1E-02	Not Required	No	No	No	No	No	No	No	No
Selenium	8.80E-01	5.06E-01	NA	No Data	1.00E-01	0E+00	5E+00	Not Required	NC	No	No	No	No	No	Unknown	No
Silver	7.90E+00	2.02E+00	5.00E-02	4.50E+00	No Data	4E-01	0E+00	No	No	No	No	No	No	No	No	No
Thallium	1.80E+00	7.89E-01	3.35E-01	No Data	7.00E-01	0E+00	1E+00	Not Required	NC	No	No	No	No	No	Unknown	No
Vanadium	1.54E+02	7.10E+01	NA	No Data	No Data	0E+00	0E+00	No	NC	No	No	No	No	No	Unknown	No
Zinc	1.86E+02	8.28E+01	NA	1.23E+02	3.00E+00	7E-01	2.8E+01	No	No	Yes	No	No	No	No	No	Yes

Abbreviations: **Bold** = indicates chemcials of potential concern that may require further assessment at the site, mg/kg = milligrams per kilogram, NA = not applicable, NC = not calculated, Unknown = chemical was detected but no screening criterial are available.

- 1 Chemicals remaining following the frequency of detection, essential nutrient, and background concentrations screening procedures.
- 2 Upper confidence limit on the mean or maximum (whichever is lower)
- $3 \ The \ risk \ ratio \ is \ the \ exposure \ point \ concentration \ \ divided \ by \ the \ Screening \ Level \ Values \ (SLV).$
- 4 As listed in the Draft Sediment Evaluation Framework (USACE et al., 2005).

 Bioaccumulation screening not required when a bioaccumulation screening value is available.

 18 18 :Number of COIs (Nij)

 5 The chemical of interest is considered a chemical of potential ecological concern if:

 0.1 :1/Nij
- a) The risk ratio (Rij) is greater than 1 for protected species and benthic invertebrates.
- b) The risk ratio (Rij) is greater than 5 for other species.
- c) The chemical of interest is a bioaccumulator.
- d) The chemical of interest has an elevated detection limit.
- e) No risk-based screening or bioaccumulation vaule is available.
- f) Inordinate contribution to overall risk (Rj).