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Abstract

The theory, methodology and implementation for an ecological and spatially constrained classification are pre-
sented. Ecological and spatial relationships among several landscape variables are analyzed in order to define a
new approach for a landscape classification. Using ecological and geostatistical analyses, several ecological and
spatial weights are derived to recreate landscape pattern and structure in a classification model. An ecological
and spatial constrained classification is obtained such that it describes the forms of scale and spatial variation of
several ecological variables. As an example, several ecological factors are identified applying multivariate analy-
sis methods on a collection of variables (remotely sensed measures of vegetation activity and water balance var-
iables) to define ecological weights. Posteriorly, by analyzing the forms of spatial variation and scales through
semivariogram analysis, several necessary spatial weights are derived to spatially constrain the classification.
Ecological and spatial information derived from previous analysis is used as GIS mapping tools (i.e, constrained
rules) to recreate patterns of regional ecosystems. The approach is successfully implemented for the analysis of
tropical forest ecosystems in Mexico.

Introduction

The process of identifying large homogeneous zones,
highly similar in landscape characteristics, is the one
of the main goals of an ecological landscape classifi-
cation. The stratification of the landscape into concep-
tually homogeneous zones (or landscape units) has
been a premise for helping to deal with landscape
complexity (i.e., heterogeneity) in decision-making
and planning (Barnes et al. 1982; Host et al. 1996;
Mora 1994; Moss 1983; Schlueter 1987). Classifica-
tion into ecologically homogeneous units (e.g., ecore-
gions) has been an important task for some time, both
with manual approaches (Bailey 1996; Gallant et al.
1989) and more recently, automated approaches (Har-
grove and Hoffman 1999; Mora and Iverson 1997).

When a landscape is ecologically classified, an un-
derlying spatial structure is identified, and the land-

scape heterogeneity, which interacts regionally at dif-
ferent scale domains, is stratified according to the
variability of ecological processes. Because ecologi-
cal processes have recurrent patterns in space and
time, the spatio-temporal dimensionality of landscape
variables can be reduced to several ecological rela-
tionships that are formalized in a classification
scheme, and later on, used as mapping rules (Mora
1994). A landscape classification then becomes a sim-
plified description of the underlying processes that
create landscape heterogeneity, and the landscape
structure that is identified with the ecological analy-
sis is imposed throughout the classification process.

Landscape classifications stem from the analysis of
landscape structure and landscape heterogeneity at
different scales. However, landscape structure (i.e.,
the spatial arrangement of the objects), is not self-
evident from landscape heterogeneity. In order to ob-

153Plant Ecology 158: 153–169, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.



tain an adequate description of the landscape hetero-
geneity, at least two structural landscape components
have to be considered within a classification process,
i.e., the landscape composition and the landscape pat-
tern. Landscape composition refers to those features
associated with the presence and amount of patchi-
ness of a particular type within a landscape (e.g. the
amount of forest patches vs. grassland patches in a
landscape mosaic). Landscape pattern refers to the
features associated with the spatial distribution of
those patches (e.g., contiguous vs. fragmented mosa-
ics). Clearly, the identification of both components,
landscape composition and pattern, depends not only
at which scale (landscape context) the patches are
identified, but also on which criteria are used for the
definition of the patches.

Landscape ecologists have analyzed the composi-
tion and pattern of landscapes based on the identifi-
cation of patches (as structural landscape units) in
many different ways. Landscape patches can be de-
fined in relation to ecological processes that sustain
an ecosystem (e.g., patterns of vegetation productiv-
ity and climate), the functional response of organisms
to the habitat (e.g., “reproductive patches”, “food re-
source patches”), population trends (e.g., “sink” and
“sources” patches), or simply a priori by automated
(remotely sensed) methods.

Whatever the method and criteria used, the repre-
sentation of a spatial landscape structure, particularly
the arrangement of patches in geographical space, re-
sults not only from the way in which patterns are
identified, but also from the methods of analysis. The
application of numerous multivariate classification
techniques, such as cluster analysis or discriminant
analysis can result in quite diverse representations of
pattern when applied to spatial data, depending
largely upon the amount of spatial autocorrelation
present. Autocorrelation is a statistical property of
ecological variables observed across geographic
space, mostly observed as patchiness and gradients
(Legendre 1993). Therefore, spatial information, es-
pecially that related to location and context, should
play a major role defining the way in which the rela-
tionships among ecological variables are established,
and consequently, in the way in which patches are
identified.

Recently, new quantitative approaches are being
developed for the characterization and mapping of
ecosystems at different scales (Hargrove and Hoffman
1999; Host et al. 1996). However, spatial information
is still not widely considered in a landscape structure

analysis, and rarely is used for classification purposes.
Furthermore, patches identified by automated meth-
ods do not use their context or location to define
“clusters” in the resulting “classified” landscapes.

One way to integrate spatial information in a clas-
sification process is by using spatial constraints or
spatial weights (Lefkovitch 1980; Legendre 1987; Ol-
iver and Webster 1989b). When building a classifica-
tion, spatial constraints are necessary to impose a
structure in the patterns identified with spatial data,
and also to define homogeneous zones when the pat-
terns of interest are mapped. In fact, the main purpose
of a constrained clustering (or classification) is to de-
limit homogeneous regions on a multivariate surface
forming blocks (or “patches”) that are adjacent in
space or time (Legendre 1987).

Spatially constrained classification methods that
use cluster analyses in defining homogeneous zones
have been widely used in the soil analysis literature.
Oliver and Webster (1989a, 1989b) have offered the
rationale for the application of constrained cluster
analysis, and have developed a geostatistical ap-
proach. As “space” has been identified as an impor-
tant variable to explain the variation of response var-
iables in ecological studies, several techniques that
“constrain” environmental ordinations are now used
in ecology to evaluate the simultaneous contribution
of both environmental and spatial variables (Borcard
et al. 1992; Okland and Odd 1994).

Throughout this paper, we present the rationale
and methodology to develop a spatially constrained,
ecological classification that could be implemented in
landscape ecological studies. First, the theory behind
this approach is presented. Later on, the approach is
illustrated with its application a particular data set.
The method is applied to a regionally “small” area in
Mexico, where the distribution of rainforest ecosys-
tem types has been identified and mapped using
multi-temporal satellite imagery and ancillary ecolog-
ical information (Mora and Iverson 1997). In this ap-
plied part of the paper, we test the usefulness of the
approach in defining more homogeneous zones when
patterns of ecological variation and landscape units
are mapped with spatial and ecological constraints.
Finally, the usefulness of the approach is evaluated by
comparing the resulting rainforest landscape structure
with the structure previously obtained via traditional
classification techniques.
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Developing an approach for a spatially constrained
landscape classification

Several steps are necessary to develop a spatially con-
strained ecological classification (Figure 1). This ap-
proach is based on the integration of ecological infor-
mation gathered via remotely sensed methods and im-
plemented into a GIS, and subsequently analyzed
with geostatistical methods. The implementation of
this methodology requires three main methodological
phases: (1) exploratory data analysis, (2) the defini-
tion of ecological and spatial constraints, and (3) a
classification procedure.

During the first phase, exploratory data analysis
defines the body of the classification by identifying
landscape ecological variables that can be used as
mapping elements. Several landscape variables are in-
tegrated as ecological components or factors that are
obtained from linear or non-linear combinations of
landscape attributes of interest. Secondly, geostatisti-
cal tools analyze their respective forms of spatial vari-
ation and scale, which are subsequently used as eco-
logical and spatial constraints for the classification. In
order to define these constraints, a similarity matrix
of ecological variables (attributes) is weighted by the
importance of ecological factors (amount of variance
explained) from which the classification is built. Later
on, a dissimilarity matrix among objects (patches) is
also weighted by the spatial location and scale param-
eters derived from semivariograms. The similarity-
dissimilarity matrices are transformed into measures
of spatial arrangement via principal coordinate analy-
sis in the final phase, and finally the principal coor-
dinates are classified with cluster analysis to define
the final classification scheme.

Phase 1: Exploratory data analysis

Identification of mapping elements: Definition of
ecological factors

Landscape attributes are generally highly spatial au-
tocorrelated and, for that reason, are indicative of
similar landscape processes. Spatial autocorrelation in
ecological variables is functional in ecological analy-
sis because it often reveals complex interactions be-
tween a target-set of ecological variables (e.g., spe-
cies, plant type distributions) and the environment
(Legendre 1993). Spatial autocorrelation (e.g., things
more similar when close together) is the basis for

geographical patchiness and the identification of eco-
logical classes.

The spatial interaction of several environmental
variables defines ecological gradients on which natu-
ral communities can be distributed. When target var-
iables respond to forms of variation in environmental
datasets, pattern analysis can be analyzed with ordi-
nation techniques. Ordination is the collective term
for multivariate techniques that arrange sites along
axes on the basis of data on species composition (ter
Braak 1987c). The core of ordination analysis is to
identify “combinations” of variables on which spe-
cies, vegetation types, and other ecological variables
respond to ecological gradients (ter Braak 1987b).
Then, combinations of landscape attributes (vegeta-
tion, climate, terrain, and soils) can be used as surro-
gates of certain ecological processes (e.g., primary
productivity) that are summarized in a few variables
or components. Such variables can be derived assum-
ing linear or non-linear relationships among variables,
depending upon the methods used for analysis
(Anand and Orloci 1996; Okland 1996; Orloci 1988;
Palmer 1993; ter Braak 1987a, 1987b, 1987c; ter
Braak and Prentice 1988).

One of the methods used for detecting ecological
gradients as combinations of variables or “compo-
nents” is Principal Component Analysis (PCA). PCA
is an ordination technique that involves eigenanalysis
of the correlation matrix or the covariance matrix of
several environmental or space (i.e., principal coordi-
nate analysis) variables (Gower 1967, 1987). In some
cases PCA is appropriate for the analysis of samples
in environmental space because it is likely for most
environmental variables to be monotonically related
to underlying factors, and to each other. Also, PCA
allows the use of variables that are not measured in
the same units (e.g. elevation, concentration of nutri-
ents, temperature, pH) (Shi 1993).

Although PCA is often useful for the ordination
analysis of samples in species space, it is also re-
stricted for the “horseshoe effect”, e.g. a distortion in
ordination diagrams (Palmer 1993). The definition of
ecological gradients by applying Detrended Corre-
spondence Analysis (DCA) and Canonical Corre-
spondence Analysis (CCA) can also result in the defi-
nition of ecological gradients (Hill and Gauch 1980;
Jackson and Summers 1991; Palmer 1993). CCA is
particularly appropriate when the main objective is to
describe the community variation with respect to a
particular set of measured environmental variables
(McCune 1997).
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Figure 1. A methodological approach for implementing a spatially constrained ecological landscape classification.
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In this paper, variations of vegetation activity,
combined with variations in climate, water balance
and terrain can be reduced to a few, but meaningful
ecological factors by applying multivariate PCA, but
can be flexible to integrate other ordination tech-
niques such as DCA and CCA.

Within a classification, certain combinations of
landscape attributes can be more important than other
combinations, simply because they convey more in-
formation about the ecological characteristics of the
landscape. A classification scheme describing land-
scape heterogeneity can be derived primarily on fac-
tors that explain most of the variability in landscape
variables. Several multivariate methods that are use-
ful to obtain ecological factors (as a combination of
individual variables) are also helpful in deciding their
relative importance. Multivariate methods based on
eigenanalysis (e.g., principal component analysis, ca-
nonical discriminant analysis, and canonical corre-
spondence analysis) generally produce combinations
of variables, which contain more information than the
original variables (Jongman et al. 1987; Mora and
Iverson 1997; ter Braak and Prentice 1988). The “fac-
tors” (or combinations) obtained are interpreted based
on their information content, and the amount of var-
iance they convey from the original variables. Eigen-
values permit the evaluation of each newly obtained
factor, ranking their importance according to the
amount of variance explained. Later on, ecological
weights based on eigenvalues can be applied to a
classification by using the information derived from
multivariate methods. Similar efforts that measure the
relative contribution of sets of explanatory variables
by using eigenvalues are found in constrained and
partial ordinations (Borcard et al. 1992).

Forms of spatial variation and scales

Because several ecological processes take place si-
multaneously over a particular area, landscape at-
tributes often co-vary spatially in the landscape, and
operate at similar scales. Due to spatial autocorrela-
tion effects, the analysis of ecological factors for clas-
sification purposes should include a description of
their forms of spatial variability and an evaluation of
their scale domains. The analysis of the forms of spa-
tial variation among landscape variables is the second
step of analysis in deriving a constrained ecological
classification.

Forms of spatial variation in continuous landscape
variables can be modeled with geostatistics. Semivar-

iograms have been used extensively to describe and
interpolate the spatial variation of landscape variables
(McBratney and Webster 1986). Semivariogram mod-
els include parameters that not only describe the
forms of spatial variation in ecological variables, but
also identify the scale domain at which certain fac-
tors (or landscape attributes) operate when several ob-
servations are made. Generally, the grain and extent
at which ecological processes occur, delineate their
“scale domain” (Turner 1989; Wiens 1989) and these,
in turn, determine ecological levels within a hierar-
chy (Kotliar and Wiens 1990). Semivariogram param-
eters can be linked to elements of scale and landscape
heterogeneity by offering a quantitative measure of
the scale domain at which ecological factors operate.

In a semivariogram model, autocorrelation can be
used to quantify the magnitude of similarity in the
spatial variation of the factors considered, and defines
the spatial scale of the variation. Autocorrelation can
be seen as the minimum spatial variation of an eco-
logical variable, and for that reason, can be associated
with the “grain”, or minimal resolution. Additionally,
the semivariogram parameter called “range” indicates
the distance at which the variation is no longer auto-
correlated, e.g., the limit of spatial dependence. The
range is similar to the scale concept of “extent”. Con-
sequently, the scale at which ecological factors pro-
duce their effects can be evaluated quantitatively by
semivariogram parameters. For a spatially con-
strained classification, semivariogram parameters can
be also used as spatial weights to constrain a land-
scape classification (Oliver and Webster 1989a,
1989b).

Phase 2: Definition of ecological and spatial
constraints

Ecological constraints are used in order to make the
classification process dependent upon certain (i.e., the
most important) factors under consideration. Basi-
cally, ecological constraints place more weight on
those variables that convey more information about
the landscape process of interest. Frequently, land-
scape categories defining a landscape structure have
diffuse boundaries and are difficult to delineate. Spa-
tial weights make possible that “classes” or patches
can be identified as a function of spatial properties in
addition to ecological criteria. Spatially “constrained”
means that a classification is obtained by the effect of
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spatial proximity in the response of landscape varia-
bles or processes.

For the definition of ecological weights it is nec-
essary to obtain a matrix of similarities S* among
landscape attributes, in which factors that convey
more information about the ecological processes of
interest will have more weight in the final clustering.
On the S* matrix, each element represents a similar-
ity coefficient sij (Gower 1971) obtained as:

sij � ���1 � �zik � zjk�/rk�Wijk�/��wijk� (1)

where: sij = similarities between objects, rk = range
of attribute variable k, |zik− zjk| = absolute value of
the difference between object ith and object jth for at-
tribute k, Wijk = weight for variable k �wijk = sum
of all variable weights

Posteriorly, the statistical ranges for ecological
components have to be calculated, and each ecologi-
cal factor is weighted according to its variance ex-
plained in the multivariate method used (e.g., PCA,
DCA or CCA) by using the eigenvalues in the Wijk

and �wijk terms for equation [1].
Spatial constraints make use of the spatial infor-

mation derived from the geostatistical analysis by in-
tegrating the scales and forms of spatial variation of
the ecological factors, and are applied to a dissimilar-
ity matrix D*. The D* dissimilarity matrix is calcu-
lated from a similarity matrix S*. First, dissimilarity
[d] elements are calculated as:

d � �2�1 � sij�� (2)

and the dissimilarities are weighted geostatistically
according with the semivariogram parameters of the
ecological factor of interest. The weighted [d*] dis-
similarities can be obtained by using (Oliver and
Webster 1989a):

dij
* � dijC/Co � C�1 � exp� � uij/a�	 � dijC/Co � C

(3)

where: uij = physical distances between landscape
patches, a = range (maximum distance over which
variation is spatially correlated), C = difference be-
tween the total and nugget variance, Co = nugget var-
iance.

Phase 3: Principal coordinate analysis and
classification

Spatially modified similarities (dissimilarities) can be
grouped together by several multivariate classifica-
tion (cluster) techniques. Hierarchical agglomerative
methods (e.g., cluster analysis) can be applied directly
to the matrix of dissimilarities when hierarchical re-
lationships are suspected among landscape elements.
Oliver and Webster (1989a, 1989b) recommended the
use of non-hierarchical agglomerative methods for el-
ements that are not hierarchically structured. In this
case, D* can be transformed to principal coordinate
variates that represent linear combinations of locali-
ties (Gower 1966, 1967). Then, hierarchical or non-
hierarchical cluster algorithms can be applied to these
new variates.

An example using rainforest patches in Mexico

Deriving interrelationships in the landscape:
Definition of ecological factors

A geoecological landscape dataset for Mexico (Mora
1994) was used to test the spatially constrained meth-
odology proposed in this paper. The data consisted of
landscape attributes that describe vegetation activity,
water balance, and terrain (Table 1). Measures of veg-
etation activity were derived from satellite data by
using multitemporal vegetation index imagery, which
are associated with vegetation productivity and sea-
sonality (Mora and Iverson 1997). Water balance var-
iables were modeled with GIS, and elevation was ob-
tained from digital elevation models. All information
was implemented in a cartographic ARC/INFO GIS
raster model with an 8 km spatial resolution.

From this information, an ecological classification
has been previously obtained for the landscape of
Mexico without applying spatial constraints (Mora
1994). This ecological classification system stratified
the landscape at two ecological scales, identifying 6
ecoregions and 40 ecosystem types distributed among
1743 landscape patches. For illustration purposes,
105 patches associated with the rainforest ecoregion
(“selvas”) were used for the constrained classification
analysis presented here.

The rainforest ecoregion contained five types of
“selvas”, mostly distributed in the Yucatan peninsula
and the border with Guatemala. These types were dif-
ferentiated in terms of their productivity, seasonal
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variation and vegetation response to water balance
(Mora 1998). Regions (or patches) for each class
were identified using GIS overlaying procedures, and
every landscape element (or patch) was used as a
sample to describe the spatial rainforest heterogene-
ity. Several GIS functions permitted us to character-
ize each rainforest patch with the ecological informa-
tion, and zonal statistics (mean values) of each land-
scape attribute were obtained for each landscape
patch in order to use them in the subsequent numeri-
cal analysis.

Exploratory data analysis showed that several orig-
inal ecological variables characterizing each “selva”
patch were highly correlated. Particularly, there were
significant correlation between actual evapotranspira-
tion with precipitation (r = 0.87, p < 0.005) and soil
moisture (r = 0.82, p < 0.005); vegetation productiv-
ity with maximum photosynthetic activity (r = 0.80,
p < 0.005) and minimum photosynthetic activity (r =
0.79, p < 0.005); and between elevation and potential
evapotranspiration (r = − 0.78, p < 0.005).

Principal component analysis [PCA] was used to
reduce the dimensionality of landscape attributes and
to identify components of variation in the ecological
data set by obtaining ecologically meaningful factors
or components. A scree test on the obtained PCA
eigenvalues indicated that 4 components accounted
for almost 88% of the total variance in the untrans-
formed ecological variables (Table 2). The first prin-
cipal component explained more than 51% of the to-
tal variance in the entire data set. The second compo-

nent explained � 17%, and the third and fourth com-
ponent explained � 14% and � 6% of the total
variance respectively. Since the remaining compo-
nents had more unexplained than explained variance
(eigenvalues < 1), these were not used during subse-
quent analyses. A varimax orthogonal rotated solution
was applied to obtain the scores for four principal
components.

The simple structure criterion in PCA was used as
an aid for ecological interpretation of the components
(Figure 2). Simple structure showed that the first prin-
cipal component (PC1) could be interpreted as a veg-
etation activity component. PC1 was mostly associ-
ated to annual vegetation productivity (VP) (mea-
sured indirectly through integrated NDVI values), and
minimum and maximum photosynthetic activity lev-
els (MinPA, MaxPA), which scored high in their re-
spective loadings. The second principal component
(PC2) showed a strong and inverse relationship be-
tween elevation (ELEV) and adjusted potential
evapotranspiration (ADPE). The PC2 indicates that

Table 1. Landscape ecological data set used for a spatially constrained classification.

Vegetation: Indexes derived from multitemporal AVHRR imagery

VP Vegetation Productivity Index

VS Vegetation Seasonality Index

MinPA Minimum Photosynthetic Activity

MaxPA Maximum Photosynthetic Activity

PLP Photosynthetic Level at Peak of Growing Season

PLO Photosynthetic Level at Onset of Growing Season

Water Balance: Modeled variables with GIS

APE Adjusted Potential Evapotranspiration (mm/year)

AE Actual Evapotranspiration (mm/year)

WD Deficit of Water (mm/year)

P Precipitation (mm/year)

SM Soil Moisture (mm/year)

WS Surplus of Water (mm/year)

ELEV Mean Elevation above Sea Level

Table 2. Principal component analysis results for the geoecologi-
cal dataset of 1743 patches in the Mexican landscape. Four princi-
pal components were used to constrain ecologically the final clas-
sification.

Factor Eigenvalue % Exp. Cum. %

1 6.668436 51.29566 51.30

2 2.253472 17.3344 68.63

3 1.763812 13.56778 82.20

4 0.747967 5.75359 87.95
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high potential evapotranspiration rates occur at lower
elevations, and/or lower potential evapotranspiration
rates at higher elevations. The third principal compo-
nent (PC3) was interpreted as a major humidity gra-
dient component, integrating the effects of water sur-
plus (WS), precipitation (P) and soil moisture (SM).
Finally, the last obtained principal component (PC4),
was almost exclusively associated with vegetation
seasonality (VS). The four principal components were
thus designed as: Vegetation productivity, ADPE/

ELEV, humidity gradient, and vegetation seasonality
in the subsequent analysis.

Analyzing forms of variation and scale in ecological
factors

The spatial variation of each of these ecological fac-
tors was analyzed through semivariogram models,
and their respective surfaces were krigged using GIS.
Two kriging models, spherical and exponential, were
used to model the spatial variation of ecological com-

Figure 2. Simple structure for principal component scores of the ecological components derived from the geoecological data set.
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ponents (Oliver and Webster 1986, 1990). Their re-
spective semivariograms were estimated with the
ARC/INFO GIS software (Environmental Systems
Research Institute 1995).

The spherical models, as compared to the expo-
nential models, resulted in better fits to the actual
semivariance and were used to represent the spatial
variation of each of the four ecological components
(Figure 3). The parameters of the spherical model for
the first ecological factor (vegetation productivity)
were used to constrain the classification geostatisti-
cally. The semivariogram parameters for all the fac-
tors obtained with the spherical model in this analy-
sis are shown in Table 3.

Ecologically constrained dissimilarities

In order to ecologically constrain the classification,
the matrix of ecological similarities S* is first ob-
tained according to equation {1} as illustrated in the
following example. Let’s assume that the classifica-
tion for selvas is going to be constrained by two fac-
tors (vegetation productivity and ADPE/ELEV). Let’s
also assume hypothetical values for vegetation pro-
ductivity (factor 1) in patches 1 and 2 being equal to
45 and 50; and 50 and 65 for ADPE/ELEV (factor 2)
respectively. The similarities between patches 1 and
2 are calculated from the absolute difference between
the mean attribute value (e.g., the mean vegetation
productivity and ADPE/ELEV). So, |z11 − z21| = 5
and |z12 − z22| = 15 for these two patches and these

Figure 3. Spatial variation modeled with spherical semivariogram models for the ecological components.
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two attributes. The Wijk value for vegetation produc-
tivity is 0.513, and 0.173 for ADPE/ELEV according
to the eigenvalues and their explanatory power, as
obtained previously by applying PCA (Table 2). The
sum of these two factors determines the �wijk =
0.686 value. Values for the ranges in the attributes for
all factors considered are necessary for defining the
rk term, so statistical ranges for each ecological com-
ponent are calculated, let’s assume values of 30 and
47, respectively. Then, the multivariate similarity co-
efficient for these two patches will be:

S12 � �1 � �5/30�*0.5129� � �1

� �15/47�*0.1733�/0.686

� 2.709

An analysis for the totality of landscape patches in
Mexico (1743) imposes serious restrictions in the
constrained cluster analysis methodology. The dimen-
sion for the transposed matrix of similarity and phys-
ical distance (1743×1743) is very difficult to manage
for numerical analysis. For that reason, rainforest ec-
osystem landscape patches were selected as an exam-
ple for the following analysis. According to a previ-
ously obtained classification scheme, 105 patches of
5 ecosystem rainforest ecosystems were identified. To
spatially constrain the ecological classification of
these patches, a similarity S* matrix (with 105×105
dimension) was obtained. Four ecological factors and
their eigenvalues were used for deriving the ecologi-
cally constrained similarities.

Spatially constrained dissimilarities

Similarities were then transformed to a D* dissimi-
larity matrix with the correspondent d* elements by
using equations {2} and {3}. Following the previous
example, the equation {2} gives as a result d = − 3.41.
Let’s assume a physical distance value of 50 between
the two patches so equation {3} becomes:

d12
* � � 3.41*1.806/0.318 � 1.806�1 � exp�

� 50/3055000�	 � � 3.41*1.806/0.318

� 1.806

� � 36.93,

using the numerical values from the semivariogram
parameters of the vegetation factor presented in Ta-
ble 3.

For comparison purposes an additional unweighted
dissimilarity matrix was transformed to their respec-
tive principal coordinates, and dynamically clustered
with a k-means’ method to provide an unconstrained
classification of reference (below). This classification
of reference evaluates the improvement of the con-
strained classification.

Principal coordinate analysis

The distances in the D* dissimilarity matrix represent
“ecological distances” among objects (samples)
weighted by semivariogram functions, but they are
still referred to “ecological” principal axes. Some of
these ecological distances may not exist in a real
(physical plane) because the resulting matrix may
have negative roots (Gower 1967). In order to con-
strain the classification spatially, actual physical dis-
tances should be used to express the dissimilarities
D* in a physical plane.

In order to do this, the physical distances among
centroids of the 105 landscape patches were calcu-
lated with the POINTDISTANCE command in ARC/
INFO. Then, the dissimilarity D* matrix with ele-
ments d* was transformed into principal coordinate
analysis (Gower 1966), where latent roots and vec-
tors Q* were determined and arranged as columns in
a nxn matrix representing the new coordinates of the
sampling points (point centroids). This was accom-
plished by applying principal component analysis
over the D* matrix. Then, all distances in Q* meet
the sufficient and necessary conditions for real coor-

Table 3. Semivariogram parameters that describe the spatial variation of the ecological components used for the classification. Ecological
factors were obtained by applying PCA on individual variables described in Table 1.

Ecological Factor Nugget Variance [Co] Range [C] Autocorrelation parameter [a] sill

Vegetation productivity 0.318 1.806 3055000 2.124

ADPE-Elevation 0.000 0.791 275421 0.791

Humidity gradient 0.052 2.507 3055000 2.559

Vegetation seasonality 0.710 0.536 2371089 1.247
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dinates (Gower 1967). Principal coordinate analysis
on unweighted and weighted dissimilarities resulted
in 6 principal coordinates that capture 94% and 96%
of the variance from the complete set of unweighted
and weighted dissimilarities, respectively.

Final classification process: cluster analysis

A k-means clustering method requesting 5 final clus-
ters was applied to the principal coordinates of both,
spatially weighted and unweighted dissimilarity ma-
trices. A non-hierarchical cluster algorithm was used.
The cluster groups for the rainforest landscape
patches, displayed as 95% (two standard deviations)
ellipses in the plane of the first two ecological fac-
tors, are shown in Figure 4. The cases (patches) cor-
responding to each cluster were identified and spa-
tially mapped to compare their distribution (Figure 5).
Unweighted (unconstrained) and spatially weighted
(constrained) classifications were directly compared
with the actual distribution of all five selva ecosys-
tem types (Table 4). Kappa coefficients and Tau sta-
tistics (Zhenkui and Redmond 1995) were used to
evaluate the similarity between the two obtained clas-
sification (Table 5).

Both unconstrained and constrained classifications
identified 4 of the five previously identified rainforest
classes. Cluster 1 (unweighted) and clusters 3 and 5
(weighted) were associated 57% and 54% (average of
cluster 3 and 5) with the hyperwet perennial selva
patches, respectively. Cluster 2 (unweighted) and
cluster 4 (weighted) were 42% and 45% associated
with the submountainous perennial selva. Cluster 3
(unweighted) and cluster 2 (weighted) were 83% and
82% associated with the highest productive perennial
selva patches; and finally, cluster 5 (unweighted) and
cluster 1 (weighted) were 71% and 69% associated
with the subperennial selva patches. None of the two
methods was able to clearly (> 50%) identify patches
of the less productive subperennial selva.

A direct comparison of the map obtained with the
multitemporal analysis of GVI images and the one
obtained with the spatially constrained classification
was performed based on Kappa and Tau statistics.
The overall percentage of agreement between the two
maps is � 65% with the less productive subperennial
selva, the hyperwet perennial selva and the submoun-
tainous perennial selva being the classes less accu-
rately represented by the spatially constrained classi-
fication (see producer’s accuracy values, Table 5).
However, the classification resulted in � 54% fewer

errors than would be expected by a random alloca-
tion of classes (Tau p < 0.001). The coefficient of
agreement (kappa) is considered “good” according to
the scale presented by Monserud and Leemans
(1992).

A similar analysis between the ecologically con-
strained and the spatially constrained classifications
revealed that no significant differences existed be-
tween the two classifications (kappa = 0.930, p <
0.001; Tau = 0.941, p < 0.001). However, there were
significant differences in the spatial patterns depicted
for the two maps that can be directly attributable to

Figure 4. Rainforest landscape patches groups, displayed as 95%
(two standard deviations) ellipses in the plane of the first two eco-
logical factors.
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the spatial constraints. These differences are evalu-
ated in the next section.

Classification evaluation

Multi-temporal vegetation patterns have been ana-
lyzed and used previously for classifying the Mexi-
can landscape, showing that different levels of veg-
etation productivity and seasonality of particular
land-cover types can be related to water balance var-
iables such as soil moisture and actual evapotranspi-
ration to define landscape units (Mora and Iverson
1998). All these variables were used to derive an eco-
logical classification where vegetation response is
common to different combinations of environmental
variables, and can be used to stratify landscape het-

erogeneity. The mechanisms that produce a particular
ecosystem water balance involve vegetation activity
(photosynthetic activity and biomass production) in
relation to variations in available water (evapotrans-
piration) and climate (amount of precipitation). For
that reason, it is reasonable to assume that regional
environmental factors control the distribution of veg-
etation types at the landscape scale, rather than intra-
community relationships, and these vegetation types
can be delineated when ecological gradients are iden-
tified as linear combinations of landscape variables.

However, spatial location is also a considerably
important factor in explaining ecological gradients as
linear relationships among environmental variables.
When applying partial correlation analysis to test for
the contribution of environmental and spatial varia-
tion in vegetation activity, more than 40% of the re-

Table 4. Percentage of cases (patches) identified by the two methods, and associated with the ecological classification.

Spatially Unconstrained Classification Cluster number:

1 2 3 4 5

Less productive subperennial selva 30.73% 28.68% 3.28% 21.12%

Subperennial selva 3.79% 62.15% 71.23%

Hyperwet perennial selva 57.14% 23.77% 2.46% 0.45%

Submountainous perennial selva 42.12% 1.64% 1.42%

Highest productive perennial selva 11.41% 1.78% 83.08% 12.73% 26.89%

Spatially Constrained Classification Cluster number:

1 2 3 4 5

Less productive subperennial selva 8.17% 3.36% 29.97% 24.32% 46.04%

Subperennial selva 69.05% 5.15% 1.14%

Hyperwet perennial selva 2.52% 52.90% 20.35% 53.96%

Submountainous perennial selva 3.89% 45.07%

Highest productive perennial selva 20.69% 81.81% 13.61% 6.36%

Table 5. Accuracy assessment for the spatially constrained classification of Selvas evaluated with Kappa and Tau statistics.

1 2 3 4 5 User’s Acc

Less productive subperennial selva 64 312 315 306 32 6.22%

Subperennial selva 0 2637 12 0 49 97.74%

Hyperwet perennial selva 75 0 556 256 24 61.03%

Submountainous perennial selva 0 0 0 567 37 93.87%

Highest productive perennial selva 0 790 143 80 778 43.44%

Producer’s accuracy 46.04% 70.53% 54.19% 46.90% 84.57%

kappa = 0.534

Tau = 0.539

Overall Accuracy = 0.654
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gional variation of primary productivity is explained
by spatial variables (Mora and Iverson 1998). It is
clear that a spatial constraint is necessary to identify
and to delineate homogeneous regions.

Principal component analysis (PCA) seemed par-
ticularly suitable for this analysis due to the number
of significant linear relationships among environmen-
tal variables. However, DCA, CCA or other ordina-
tion technique that provides a measure of the impor-
tance of the ecological factors (e.g., eigenvalues)
could be also used to ecologically constrain the clas-
sification. This is particularly valid when the propor-
tion of variance explained by environmental factors
is greater than that explained by spatial variables. In
any case, an ordination with variance partitioning
may be the best method of choice (Borcard et al.
(1992); Okland (1996, 1999); Okland and Odd 1999).

The linear combination of variables obtained with
PCA indicates that four different ecological factors,
identified on the basis of vegetation activity, annual
water balance variations, and elevation could be used
to ecologically constrain the classification. Of these,
vegetation productivity is more important (to define
ecological regions) than water balance variables and
terrain in this case. Furthermore, the spatial variabil-
ity in these ecological gradients can be identified and
used to map the patterns of ecological variation of
rainforest ecosystems.

The spatial pattern analysis of ecological gradients
is important because patterns of ecological variation
are discordant in spatial scales as shown with the
semivariogram analysis. There is a clear differentia-
tion among all ecological factors according to their
scale characteristics (Figure 6). Vegetation activity
and the water gradient have a scale domain ranging
in thousands of kilometers (both are no longer spa-
tially autocorrelated after � 3050 km). The seasonal
vegetation factor operates at intermediate scales (the
range is � 2370 km). Abiotic ecological processes,
such as those described by the ecological factor 2
(ADPE-ELEV), are small scale ecological processes,
because the distance at which it is no longer autocor-
related is much shorter ( � 275 km).

From the previous results, it was clear that there
are at least three types of scales operating for the
ecological processes under consideration. Large-scale
ecological processes, like the interrelationship be-
tween water balance and vegetation activity, translate
their effects over a landscape scale at ranges of thou-
sands of kilometers. Similarly, vegetation seasonality
operates at intermediate ranges of scale, but still in

the thousands of kilometers. On the other hand, local
gradients of distribution (elevation ranges), or small-
scale processes, are associated with the decrease of
potential evapotranspiration as elevation increases.
This pattern occurs “locally” over hundreds of kilo-
meters. Large-scale variation is typical for ecological
factors that integrate vegetation activity and small-
scale variations are typical of local processes such as
the relationship between elevation and potential
evapotranspiration.

In terms of ecological regionalization, the identifi-
cation of ecological patches is constrained to the max-
imum range of spatial variation defined for by eco-
logical factors, i.e., no greater than scale of variation
for vegetation productivity and water balance
( � 3,500 km) and no less than the scale of variation
than ADPE-Elevation ( � 500 km). Certainly the
analysis of scales of variation in ecologically and spa-
tially constrained classifications opens the possibility
to evaluate quantitatively the potential distribution of
vegetation types according with the (geographic)
scales of variation of ecological gradients. This may
have an important impact in bio-geographical re-
search to explain the present distribution of vegeta-
tion and their modification by climate change.

In terms of classification results, landscape rainfor-
est patches were identified differently by applying
constrained and unconstrained cluster analyses. The
results obtained suggested differences among all the
previously identified rainforest classes. Neither of the
two methods was able to clearly identify the less pro-
ductive subperennial selva as an independent type of
rainforest, indicating that this class is neither ecologi-
cally nor geographically different from the others.
Unconstrained cluster analysis was unable to differ-
entiate this type from the others, while constrained
clustering indicates that this type is highly similar (in
both attributes and spatial distribution) with the hy-
perwet perennial selva type (Table 5).

The unconstrained classification does not offer bet-
ter results identifying the different rainforest types
than the previous classification scheme (Mora 1994).
The unconstrained method identified the highly pro-
ductive perennial group (cluster 3), the hyperwet pe-
rennial group (cluster 1) and the submountainous
group (cluster 2) (Table 5). Clusters 4 and 5 are
highly related to the subperennial group, dividing the
subperennial rainforest patches of the Yucatan penin-
sula into two groups. Basically, unconstrained cluster
analysis identifies the four groups based only on eco-
logical characteristics.
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On the other hand, the spatially constrained clas-
sification not only identified four ecologically differ-
ent groups, but divided also the hyperwet perennial
selva type in two groups, according to their geo-
graphic distribution (Table 5). One occurred in the
northern part of the Mexican State of Veracruz (de-
noted as “A” in Figure 5), and the other ecologically
similar type occurred in the states of Oaxaca and
Tabasco (“B”, Figure 5). Clearly these two groups
could be classified in different categories if the loca-
tion of patches were considered in the final classifi-
cation scheme.

Spatially constrained cluster analysis also offers a
new feature in the spatial representation of the clas-
sification. Clearly, ecological groups identified with
this approach are more geographically homogeneous
than those identified in the previous classification.
This homogeneity is the direct result of the spatial lo-
cation of patches, and the spatial co-variation of eco-

logical factors in the definition of the resulting land-
scape structure.

The addition of spatial constraints to the informa-
tion conveyed within the ecological factors integrates
their intrinsic scale of variation before clustering, and
is a key element for the definition of the landscape
structure in the distribution of the rainforest. From the
set of vegetation, water balance and elevation varia-
bles, new interrelated ecological components can be
derived and their patterns of distribution can be eval-
uated with semivariogram analysis. This information
can provide a sound basis for spatially constrained
classifications.

With this example, it is clear that the spatial anal-
ysis of the variation in ecological attributes resulted
in more information that can be used to define the
landscape structure. Similar forms of spatial varia-
tion, using different ecological variables, can be de-
tected with PCA (and/or other ordinations techniques)

Figure 6. Scale domains for ecological landscape variables. The scale is defined by the position of each ecological factor in a feature space
plot determined by the grain (measured as the autocorrelation) and the extent (measured as the range) values determined by semivariogram
analysis.
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scales and forms of spatial variation can be captured
by semivariograms; and similar patterns can be iden-
tified with a spatially constrained classification. Con-
sequently, landscape ecological classifications can in-
tegrate information about the forms of co-variation in
ecological variables (using principal component anal-
ysis when linear relationships are predominant, and
DCA when non-linear relationships are dominant),
and their spatial structure and scales of variation (us-
ing semivariograms and principal coordinate analy-
sis).

Implications for future research

The results suggested that a spatially constrained,
landscape ecological classification can be imple-
mented with the methodology described here. In ad-
dition, the classification approach identified homoge-
neous landscapes based on the spatial patterns of
landscape ecological variables.

An analysis of the landscape structure within large
regions can start by identifying landscape heteroge-
neity at one scale, and continue by making an addi-
tional analysis of ecological information at different
scales. For example, vegetation productivity patterns
can be analyzed by looking at the modification of
large-scale effects such as climate, and then by look-
ing at small scale effects such as soil characteristics
and landform (e.g., slope and aspect), or by using
more integrative factors such as the integrated mois-
ture index (Iverson et al. 1997). Combinations of site
productivity (measured, for example, as height of
trees) can be combined with forms of variation of soil
nutrients (nitrogen and phosphorus) and topography
(integrated moisture index) to create new ecological
components. Their ranges of spatial autocorrelation
(scale) can be determined and used to constrain the
classification in different ways. In the above example,
the first ecological factor was used in order to con-
strain the final classification, but a different landscape
structure could be obtained if other factors (such as
terrain and vegetation seasonality) are used to con-
strain the classification. This suggests that a nested
approach can be developed to identify landscape
structure at different scales, by using the forms of
spatial variation of different ecological factors.

With the application of constrained classifications,
a new set of possibilities is opened for landscape anal-
ysis. Ecological and spatially constrained classifica-
tions can therefore used more often by landscape

ecologists in defining not only groups of ecological
patches, but also their patterns of distribution.
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