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ABSTRACT

The task of modeling the distribution of a large

number of tree species under future climate sce-

narios presents unique challenges. First, the model

must be robust enough to handle climate data

outside the current range without producing

unacceptable instability in the output. In addition,

the technique should have automatic search

mechanisms built in to select the most appropriate

values for input model parameters for each species

so that minimal effort is required when these

parameters are fine-tuned for individual tree spe-

cies. We evaluated four statistical models—Regres-

sion Tree Analysis (RTA), Bagging Trees (BT),

Random Forests (RF), and Multivariate Adaptive

Regression Splines (MARS)—for predictive vegeta-

tion mapping under current and future climate

scenarios according to the Canadian Climate Centre

global circulation model. To test, we applied these

techniques to four tree species common in the

eastern United States: loblolly pine (Pinus taeda),

sugar maple (Acer saccharum), American beech

(Fagus grandifolia), and white oak (Quercus alba).

When the four techniques were assessed with

Kappa and fuzzy Kappa statistics, RF and BT were

superior in reproducing current importance value

(a measure of basal area in addition to abundance)

distributions for the four tree species, as derived

from approximately 100,000 USDA Forest Service’s

Forest Inventory and Analysis plots. Future esti-

mates of suitable habitat after climate change were

visually more reasonable with BT and RF, with

slightly better performance by RF as assessed by

Kappa statistics, correlation estimates, and spatial

distribution of importance values. Although RTA

did not perform as well as BT and RF, it provided

interpretive models for species whose distributions

were captured well by our current set of predictors.

MARS was adequate for predicting current distri-

butions but unacceptable for future climate. We

consider RTA, BT, and RF modeling approaches,

especially when used together to take advantage of

their individual strengths, to be robust for predictive

mapping and recommend their inclusion in the

ecological toolbox.
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INTRODUCTION

Ecosystem scientists frequently need tools to

extrapolate findings discovered via intensive local

research across a larger area. Many management
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decisions, ranging from protecting potentially rare

species or communities to estimating potential

commodity yields, rely on reliable, landscape-level

maps produced from sample locations (Miller and

others 2004). Many such decisions also rely on

predictions of possible future conditions, such as

the impacts of climate change. These maps are

generally produced via simulation or statistical

modeling from samples and predictor variables,

current and potential future, that are already

mapped. There are numerous techniques in place

for such mapping; in this paper, we evaluate four of

them, including two techniques new to ecosystem

scientists.

We employ statistical approaches to model spe-

cies distributions, using relevant predictors to esti-

mate current abundances as well as plausible future

abundances resulting from climate change. Typi-

cally, regression-like techniques have been used,

but traditional parametric methods do not always

yield satisfactory results for continental-scale

mapping because the same variables may not

operate in the same way throughout a species’

range (Moore and others 1991; Franklin 1995).

Newer computer intensive data-mining techniques

based on recursion, resampling, averaging, and

randomizations can uncover hidden structures in

the data and yield better predictive models.

Estimating species range shifts under changing

climate conditions, especially through a frag-

mented landscape, has become a key area of re-

search for several groups, including ours (for

examples, Davis 1989; Pitelka and Plant Migration

Group 1997; Clark 1998; Hobbs 1994; Iverson and

others 1999b; Schwartz and others 2001; Malcolm

and others 2002; Higgins and others 2003). Previ-

ously, we were among the first to use Regression

Tree Analysis (RTA) to spatially model the distri-

bution of tree importance values for 80 tree species

in the eastern United States for future climatic

scenarios (Iverson and Prasad 1998; Iverson and

others 1999a; Prasad and Iverson 2000a). Our

model, DISTRIB, was run at county scale and

incorporated 33 climatic, edaphic, and land-use

variables in predicting how tree-habitat distribu-

tions might change under a doubled carbon dioxide

scenario as estimated by five global circulation

models (GCMs) (Iverson and Prasad 2002). The

results were the basis for a climate-change tree atlas

(Iverson and others 1999a; Prasad and Iverson

2000a) for the eastern United States. RTA provided

a satisfactory overall prediction model for our data

set, although we were aware of its limitations

(discussed in section on Regression Trees). In this

paper, we evaluate three other techniques, with

the purpose of building better predictive models:

Bagging Trees (BT), Random Forests (RF), and

Multivariate Adaptive Regression Splines (MARS).

The aim is to test the four modeling tech-

niques—RTA, BT, RF, and MARS—on four tree

species with different distributions and character-

istics. Our emphasis throughout will be on the

modeling techniques and not on the ecological

details of the tree species.

STATISTICAL MODELS

All of the statistical models tested here are com-

puter-intensive algorithms that have been used in

data-mining and large-scale predictions, particu-

larly in the field of machine learning. All but MARS

use a classification or regression tree (also known as

‘‘CART’’) approach to recursively partition predic-

tor variables. Classification trees are used in appli-

cations dealing with categorical or remote sensing

data. We use regression trees because our response

variable is continuous. The differences between

classification and regression trees pertain to the

techniques used for data splitting and aggregating.

We briefly discuss each technique in the following

sections. A comparison summary of the four mod-

eling techniques is presented in Table 1.

Regression Tree Analysis

Unlike classical regression techniques for which the

relationship between the response and predictors is

pre-specified (for example, straight line, quadratic)

and the test is performed to prove or disprove the

relationship, RTA assumes no such relationship. It

is primarily a method of constructing a set of

decision rules on the predictor variables (Breiman

and others 1984; Verbyla 1987; Clark and Pregibon

1992). The rules are constructed by recursively

partitioning the data into successively smaller

groups with binary splits based on a single predictor

variable. Splits for all of the predictors are exam-

ined by an exhaustive search procedure and the

best split is chosen. For regression trees, the se-

lected split is the one that maximizes the homo-

geneity of the two resulting groups with respect to

the response variable (the split that maximizes the

between-groups sum of squares, as in analysis of

variance [ANOVA], although other options may be

available. The output is a tree diagram with the

branches determined by the splitting rules and a

series of terminal nodes that contain the mean re-

sponse. The procedure initially grows maximal

trees and then uses techniques such as cross-

validation to prune the overfitted tree to an optimal

size (Therneau and Atkinson 1997).
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Regression Tree Analysis has clear advantages

over classical statistical methods. It is effective in

uncovering structure in data with hierarchical or

nonadditive variables. Because no a priori

assumptions are made about the nature of the

relationships among the response and predictor

variables, RTA allows for the possibility of interac-

tions and nonlinearities among variables (Moore

and others 1991). RTA’s splitting rules enable

mapping of predictors with the greatest influence

on distributions, providing greater insight into the

spatial influence of the predictors (Iverson and

Prasad 1998). Yet there are certain disadvantages

with RTA compared to conventional regression

modeling: (a) simple linear functions are highly

approximated; (b) for certain data sets, it is difficult

to constrain the model by selecting the optimum

pruning parameter through cross-validation; (c)

the output can be a discontinuous, coarse-grained

response for some species, depending on the

threshold established in the regression trees; and

(d) the output can be unstable—that is, small

changes in data can produce highly divergent trees.

Classification and regression trees have found

favor among researchers for several biological

applications, including remote sensing (for exam-

ple, Lees and Ritman 1991; Hansen and others

1996; De’ath and Fabricius 2000; Stoppianea and

others 2003), assessing potential for tree mortality

(Baker 1993; Dobbertin and Biging 1998), vegeta-

tion mapping (for example, Michaelsen and others

1994; Franklin 1998; Iverson and Prasad 1998),

and predicting species invasions or pest outbreaks

(Hernandez and others 1997; Reichard and

Hamilton 1997).

Bagging Trees

The basic idea underlying BT is the recognition that

part of the output error in a single regression tree is

due to the specific choice of the training data set.

Therefore, if several similar data sets are created by

resampling with replacement (that is, bootstrap-

ping) and regression trees are grown without

pruning and averaged, the variance component of

the output error is reduced (Breiman 1996a;

Buhlmann and Yu 2002). When a bootstrap res-

ample is drawn, about 37% of the data is excluded

from the sample, but other data are replicated to

bring the sample to full size. The portion of the data

drawn into the sample in a replication is known as

the ‘‘in-bag’’ data, whereas the portion not drawn

is the ‘‘out-of-bag’’ data. The latter are not used to

build or prune any tree but provide better estimates

of node error and other generalization errors for

bagged predictors (Breiman 1996b). The result is a

slightly perturbed version of the data set with each

replication. If the separate analyses differ consid-

erably from each other, trees exhibit instability, so

averaging improves results. The primary disadvan-

tage of BT is that it requires averaging 30–80 trees,

so interpreting multiple individual trees becomes

nearly impossible. For some species for which the

multiple trees vary little, the most influential splits

are the same and a single RTA tree can be used for

interpretation. By contrast, if the multiple trees

vary widely, a single RTA tree may be only one of

several possible interpretations of the modeled

relationship, and the uncertainty of interpretation

is higher. Species with this higher uncertainty are

typically those whose present distribution is a result

of complex natural historical factors that are not

adequately captured by the predictor variables.

Bagging has been applied frequently in fields

such as biostatistics and remote sensing (for

example, Hothorn and others 2004; Chan and

others 2001), but its use is uncommon in the field

of ecology. A related technique called ‘‘boosting’’

(Freund 1995; Schapire and others 1998) has re-

cently gained popularity. In boosting, bias is re-

duced by repeatedly readjusting the weights of the

training samples, by focusing on ‘‘difficult’’ exam-

ples from previous samples. Boosting is competitive

with bagging and is used primarily in classifying

data with large training sample sizes (Skurichina

and Duin 2002). Because our primary goal was

regression and not classification, we did not include

boosting in our comparisons.

Random Forests

Random Forests is a new entry to the field of data-

mining and is designed to produce accurate pre-

dictions that do not overfit the data (Breiman 2001,

2002). RF is similar to BT in that bootstrap samples

are drawn to construct multiple trees; the differ-

ence is that the each tree is grown with a ran-

domized subset of predictors, hence the name

‘‘random’’ forests. A large number of trees (500 to

2,000) are grown, hence a ‘‘forest’’ of trees. The

number of predictors used to find the best split at

each node is a randomly chosen subset of the total

number of predictors. As with BT, the trees are

grown to maximum size without pruning, and

aggregation is by averaging the trees. Out-of-bag

samples can be used to calculate an unbiased error

rate and variable importance, eliminating the need

for a test set or cross-validation. Because a large

number of trees are grown, there is limited gener-

alization error (that is, the true error of the popu-
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lation as opposed to the training error only), which

means that no overfitting is possible, a very useful

feature for prediction.

By growing each tree to maximum size without

pruning and selecting only the best split among a

random subset at each node, RF tries to maintain

some prediction strength while inducing diversity

among trees (Breiman 2001). Random predictor

selection diminishes correlation among unpruned

trees and keeps the bias low; by taking an ensemble

of unpruned trees, variance is also reduced. An-

other advantage of RF is that the predicted output

depends only on one user-selected parameter, the

number of predictors to be chosen randomly at

each node.

Random Forests seems more of a ‘‘black box’’

approach than BT because we cannot examine the

individual trees separately. However, it provides

several metrics that aid in interpretation. Variable

importance is evaluated based on how much worse

the prediction would be if the data for that pre-

dictor were permuted randomly. The resulting ta-

bles can be used to compare relative importance

among predictor variables. As such, the procedure

is much more interpretable than methods such as

neural networks, and might be better termed a

‘‘gray box’’ approach.

We have not seen the use of RF reported in the

ecological literature. The only biological application

associated with RF was an investigation of risk-

mapping of tick-borne encephalitis in landscape

epidemiology (Furlanello and others 2003).

Multivariate Adaptive Regression
Splines

Multivariate Adaptive Regression Splines (Friedman

1991) is well known in the data-mining field and

purportedly addresses some limitations of RTA with

respect to continuous variables. The MARS proce-

dure builds flexible regression models by using

basis functions to fit separate splines to distinct

intervals of the predictor variables. Both the vari-

ables to use and the end points of the intervals, or

knots, are found by an exhaustive search procedure

using a special class of basis functions (Abraham

and Steinberg 2001). This approach differs from

classical splines where the knots are predetermined

and spaced evenly. MARS finds the location and

number of required knots in a forward/backward

stepwise fashion. First, the model is overfitted by

generating more knots than needed, and the

resulting knots that contribute least to the overall

fit are removed. Basis functions used in MARS are

similar to principal components because they re-

express the relationship of the predictor variables

with the response variable (Steinberg and others

1999).

Multivariate Adaptive Regression Splines has an

advantage over RTA in that RTA’s discontinuous

branching at tree nodes is replaced with continuous

smooth functions that are guided by the local nat-

ure of the data. Therefore, MARS is better at

detecting global and linear data structure so that its

output is smoother and not as coarse-grained and

discontinuous as RTA. However, MARS also has its

limitations: (a) its basis functions are sometimes

excessively guided by the local nature of the data,

resulting in inappropriate outcomes; and (b)

selecting the correct values for the parameters can

be cumbersome and may entail multiple trial-and-

error steps. MARS also does not lend itself well to

interpretation of species–environment relation-

ships and has been used infrequently in ecosystem

science except for mapping certain vegetation

characteristics (Prasad and Iverson 2000b; Moisen

and Frescino 2002; Munoz and Felicisimo 2004).

METHODS

We analyzed nearly 3 million tree records gener-

ated by the USDA Forest Service’s Forest Inventory

and Analysis (FIA) program to derive tree impor-

tance values (IV) for each species. The species re-

sided in about 100,000 plots across the 37 states

within the United States east of the 100th merid-

ian. Four of 135 tree species being modeled were

selected as representative examples to report the

range of model behavior in this paper: loblolly pine

(Pinus taeda), sugar maple (Acer saccharum), Amer-

ican beech (Fagus grandifolia), and white oak

(Quercus alba) (Hansen and others 1992).

Importance value was calculated based equally

on relative basal area and the number of stems

contained within each plot, with a maximum value

of 100 in monotypic stands. The plot-level IVs were

then averaged over each of 9,782 20 · 20 km cells

for the entire study area. The averaged IVs for each

cell were rounded to whole numbers with one

exception. If the IV was greater than 0 but less than

1, it was assigned to 1 because rounding would

have falsely turned species-present cells to species-

absent cells.

Our predictor dataset consisted of 36 variables,

including climate, soil, land-use, landscape, and

topographic variables from various sources

(Table 2). The future climate data set is from

Canadian Climate Centre’s (CCC) GCM (Boer and

others 2000; Kittel and others 2000). CCC is a

transient model in which 30-year climatic averages
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were estimated for the period 2071 to 2100, and

data were obtained as half-degree cells from the

USDA Forest Service Laboratory at Corvallis, Ore-

gon (Neilson and Drapek, personal communica-

tion). We first ran the models with current climate

and then with CCC.

Map Similarity Measures

Visual evaluation, Kappa statistics, and Pearson’s

correlation were used to compare actual species

abundances with model outputs. Comparing maps

visually for similarities and differences is the most

comprehensive method of comparison because

patterns, coherence, and local and global similari-

ties are grasped intuitively. However, automated

methods are more effective if procedures can be

clearly defined so that repeatability and objectivity

are maintained (Hagen 2002). A software compar-

ison usually captures one of the comparison com-

ponents, but it lacks the flexibility to look at others

when the data demand it. To minimize this prob-

lem, we used several map similarity measures,

including Kappa, Kloc, Khisto, and fuzzy Kappa, for a

pixel-by-pixel comparison of map classes, based on

subdivisions of the continuous variable IV.

Kappa and its Variants

With the Kappa statistic (Monserud and Leemans

1992), the level of agreement between maps is based

on the contingency table, which details how the

distribution of categories in map A differs from map

B. Kappa is the proportion of agreement after chance

agreement, or the percentage of agreement expected

after randomly relocating all cells in the maps, has

been removed. Kappa can range from )1 (no

agreement) to 1 (perfect agreement between maps).

Two other variants to Kappa together define the

locational and quantitative similarities (Pontius

2000; Hagen 2002). These are calculated by first

defining the maximum fraction of agreement that

could be attained if the locations of the cells in one

of the maps were to be rearranged, P(max).

Kloc describes the spatial allocation of categories

and compares the actual to expected success rate

relative to the maximum success rate given that the

total number of cells of each category does not

change. It is calculated as:

Kloc ¼
PðAÞ � PðEÞ

PðmaxÞ � PðEÞ

Note that while Kloc gives an indication of the

similarity of the spatial distribution of categories, it

makes no distinction between a category that is

dislocated by a distance of one cell versus another

that is dislocated by a long distance.

Kloc values near 1 indicate that further improving

the spatial allocation of the categories results in

little overall improvement and therefore can be

taken to be the upper limit of similarity that can be

achieved. Kloc values near 0 indicate the lower limit

Table 2. Variables Used to Predict Current and
Future Tree Distributions

Abbreviation Variable

AGRICULT Cropland (%)

ALFISOL Alfisol (%)

ARIDISOL Aridisol (%)

AVGT Mean Annual Temperature (�C)

BD Soil Bulk Density (g/cm3)

CLAY Percent Clay (<0.002 mm)

ELV_CV Elevation Coefficient of Variation

ELV_MAX Maximum Elevation (m)

ELV_MEAN Average Elevation (m)

ELV_MIN Minimum Elevation (m)

ELV_RANGE Range of Elevation (m)

ENTISOL Entisol (%)

FOREST Forest land (%)

FRAG Fragmentation Index

(Riitters and others 2002)

HISTOSOL Histosol (%)

INCEPTSOL Inceptisol (%)

JANT Mean January Temperature (�C)

JULT Mean July Temperature (�C)

KFFACT Soil Erodibility Factor, Rock

Fragments Free

(susceptibility of soil erosion

to water movement)

MAYSEPT Mean May–September Temperature (�C)

MOLLISOL Mollisol (%)

NO10 Percent Passing Sieve No. 10 (coarse)

NO200 Percent Passing Sieve No. 200 (fine)

NONFOREST Nonforest land (%)

OM Organic Matter Content

(% by weight)

ORD Potential Soil Productivity

(m3 of timber/ha)

PERM Soil Permeability Rate (cm/h)

PH Soil pH

PPT Annual Precipitation (mm)

ROCKDEP Depth to Bedrock (cm)

ROCKFRAG Percent Weight of Rock

Fragments (8–25 cm)

SLOPE Soil Slope (%) of a Soil

Component

SPODOSOL Spodosol (%)

TAWC Total Available Water

Capacity (cm, to 152 cm)

ULTISOL Ultisol (%)

VERTISOL Vertisol (%)
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of similarity. Negative Kloc values indicate a major

fundamental difference in location pattern of the

two maps, larger than can expected from random

selection of locations.

Hagen (2002) introduced a measure of quanti-

tative similarity that can be calculated from the

histograms of the two maps:

Khisto ¼ PðmaxÞ � PðEÞ
1 � PðEÞ

Kappa can now be defined as the product of Kloc

and Khisto. The former is a measure of the spatial

allocation of categories of the two maps; the latter is

a measure of the quantitative similarity of the two

maps (for details, see Hagen 2002; and Pontius

2000).

Kappa ¼ Kloc � Khisto

Kappa statistics provide insight into the nature of

the predictions and facilitate comparison among

models. However, Kappa tests usually are more

appropriate in remote sensing applications—that is,

comparing a field-sample-based land-use map with

a satellite-classified map where a pixel-by-pixel

comparison is more meaningful. In our case, the

relative differences in Kappa values among the four

models are more important than the actual values

because we are using Kappa primarily as a com-

parison index.

We reclassified the predicted IV maps into eight

categories to obtain the Kappa statistics: 0 or ‘‘not

present’’ class (which includes model values up to

0.499); 1–3 (0.5 to 3.499), 4–6 (3.5 to 6.499), 7–10

(6.5 to 10.499), 11–20 (10.5 to 20.499), 21–30

(20.5 to 30.499), 31–50 (30.5 to 50.499), and

51–100 (50.5 to 100).

Fuzzy Kappa

Often in the real world, system properties are not

crisp, that is, there are grades of similarity. Like-

wise, in the map world, there are grades of simi-

larity between pairs of cells in two maps—that is,

similarity between categories and/or location. The

fuzzy set approach to calculating Kappa takes into

account the fuzziness of categories as well as loca-

tion. The fuzzy set approach expresses similarity of

each cell in a value between 0 (distinct) and 1

(identical). The degree of uncertainty or ‘‘vague-

ness’’ among categories can be set with the fuzzy-

category matrix. The fuzziness of location can be set

with a function (usually an exponential, linear, or

constant decay) that defines the level to which the

neighboring cells influence the target cell (Power

and Simms 2001; Hagen 2003). The fuzzy Kappa

statistic is calculated similarly to the regular Kappa

statistic, with the difference that the expected

fraction of agreement P(E) takes into account the

fuzziness of location and categories.

In our case, there is some degree of class overlap

because we have subjectively categorized a quasi-

continuous distribution of IVs into eight logical

classes. We created a fuzzy-category matrix to

recognize that the closer classes tend to be fuzzy

whereas categories far apart (for example, IV = 1–3

versus IV = 31–50) are distinct. We also must take

into account the model output fuzziness, which

occurs mostly between the 0 and the 1–3 classes.

These factors are reflected in the fuzzy category

matrix we used: the similarity between the 0 and

1–3 class was set to 0.6, between 1–3 and 4–6 was

0.5, and between 4–6 and 7–10 was 0.4. The

remaining class similarity matrix with IV values

greater than 10 was set to 0 because those com-

parisons had classes where misrepresentation by

the models is less likely.

When estimating the locational fuzziness of a

class, we wanted the level at which the neighbor-

ing cells influenced the target cell to be small be-

cause we are dealing with large, 20-km cells. After

testing various parameters, we chose the expo-

nential decay function with a radius of 1 and

halving distance of 1; this was a closer approxi-

mation to reality because the IV of the 20-km cells

were aggregated from the FIA plots that fell within

that individual cell.

Software Used

We used the R statistical software (R Development

Core Team 2004), which is based on the S language

(Chambers and Hastie 1993; Chambers 1998). R is

freeware that was developed by researchers who

have contributed novel statistical techniques in the

form of packages that can be plugged into R.

However, the MARS package was deficient in R, so

we used Salford System’s (Steinberg and others

1999) MARS software. We used a package in R

called ‘‘rpart’’ for RTA (Therneau and Atkinson

1997), ‘‘ipred’’ for BT (Peters and others 2002), and

‘‘randomForest’’ for RF (Liaw and Wiener 2002).

GIS analysis was performed using ArcView 3.2a

and ArcInfo 8.1.2 (including Grid) [Environmental

Systems Research Institute 2001]. Kappa and fuzzy

Kappa statistics were obtained via the Map Com-

parison Kit (Map Comparison Kit 2003) software.

MODEL SPECIFICS

In RTA, one must decide when to stop pruning

because tree size is not limited in the growing
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process. Allowing the tree to grow unpruned will

result in overfitted models because they fit noise

along with data. From several options we chose a

complexity parameter (cp) equal to 0.002 for

pruning splits. Any split that does not decrease the

overall lack of fit by a factor of cp at each step is not

attempted. Essentially, any split that does not im-

prove the fit by cp will likely be pruned by cross-

validation and is not pursued. The recommended

number of cross-validations is between 10 and 20;

we chose 15. In BT, we combined 50 trees based on

observations that bagging gives satisfactory results

after 25 trees. The output of RF depends primarily

on one input parameter: the number of predictors

to be chosen randomly at each tree node. The de-

fault advocated by Breiman (Breiman and Cutler

2003) is one-third the number of predictors, (in our

case, 12). But if the predictors contain noise vari-

ables (which is true in our case because some

variables that are important for one species could

be noise for another), a higher number is better.

After some testing, we chose 15 and increased the

number of trees from a default of 500 to 1,000 to

further stabilize the errors. MARS purportedly se-

lects the optimal model by automating several as-

pects of model development. In reality, several

control parameters must be chosen carefully to

obtain this optimal model. Selecting the number of

basis functions and interactions is of prime impor-

tance. Increasing the number of interactions in-

creased computer time needed substantially, with

marginal improvement in model fit. In addition,

the model’s prediction under future climate was

highly distorted. We therefore constrained the

number of interactions to two to strike a balance

between fit and prediction. We chose 100 as the

number of basis functions after several trials be-

cause this value proved adequate for the number of

predictors and interactions.

Correlation

We chose not to use individual model error esti-

mates when comparing models because they are

calculated differently for each technique. Instead

we use correlation of FIA IVs to the current pre-

dicted IVs using Pearson’s correlation test. In

addition, we decided not to use the out-of-bag

predictions even though they tend to be more

‘‘honest’’ for depicting the correlation (the non–

out-of-bag predictions use the models built from

the training data to predict the training data). Our

decision was based on the fact that there is no

equivalent of out-of-bag in RTA and MARS. Be-

cause our primary goal was to compare model

predictions, we decided to keep the comparison at

the same level to show how BT and RF perform

compared to RTA and MARS. As a check, we also

compared the out-of-bag correlation of BT and RF

with the non–out-of-bag correlation of RTA and

MARS; in this case, BT and RF values were at least

as high, and mostly higher, than RTA or MARS.

Variable Importance

The variables predicted to be important in the

model help us to understand what variables are

driving the distribution of species. Some species

distributions are strongly driven by climate,

whereas others are driven primarily by edaphic or

land-use variables. In addition, variable importance

enables us to determine what set of variables is

deemed important for each of the four models and

to compare them to see whether the sets are similar.

For RTA, importance of a variable is simply the

total reduction in sum of squares achieved by all

splits on that variable. Variable importance in BT is

derived similarly because it uses the RTA package

‘‘rpart’’ to grow the individual trees. However, in

BT, the importance values for all the 50 trees are

averaged to obtain an overall measure of the vari-

able importance. RF has two measures of variable

importance. The first is based on mean squared

error (MSE) and relates to the prediction accuracy

of the out-of-bag portion of the data after per-

muting each predictor variable. The difference be-

tween the two MSEs are then averaged over all

trees and normalized by the standard error. The

second measure is the same as that for BT and is

computed on the data used to grow the trees. Thus

the conclusion is based on overfitted models. Here

we report the second metric to enable a fair com-

parison among RTA, BT, RF, and MARS. The var-

iable importance list between the two methods

differed little, particularly among the first six pre-

dictors. We normalized the variable importance

measures of RTA, BT, and RF to 0–100 to facilitate

comparison among models. MARS calculates vari-

able importance scores by refitting the model after

dropping all terms involving the variable in ques-

tion and calculating the reduction in goodness-of-

fit and normalizing the results. The least important

variable is the one with the smallest impact on the

model quality; similarly, the most important vari-

able is the one that, when omitted, degrades the

model fit the most (Steinberg and others 1999).

Data Distribution

A prominent feature of the data is the distribution of

IV. It is typically right-skewed with many zeroes.
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Nonconstant error variance usually is a ‘‘symptom’’

of such data; the usual remedy is transforma-

tion;—for example, square root or log. Because of

the large number of zeroes in IV, we also built two

models as part of a hybrid approach. The first is a

classification model that predicts whether or not the

data point has IV equal to 0. If not, it is given to the

second regression model, which gives a numerical

prediction for the IV. We also examined combina-

tions of the hybrid with transformations. Although

these models gave superior results for the current

distribution compared to our original untrans-

formed, nonhybrid approach, the future distribu-

tions tended to be biogeographically unrealistic. We

concluded that although the transformation-hybrid

approach is highly suitable for predicting the cur-

rent scenario and for certain other applications, the

original approach is more appropriate for predicting

future habitat distributions. Also, the errors in the

untransformed, nonhybrid approach were mostly

model-prediction artifacts where the predictions

between 0 < IV < 1 are in reality IV = 0. As a result,

we rounded these values to zero to obtain satisfac-

tory current predictions and eliminate the need for

more complicated hybrid models.

Model Limitations

An obstacle in our modeling environment is that

the response variable distribution may not be

comprehensive because we are relying solely on

FIA data to capture the current spatial distribution

of the species. Although there are more than

100,000 forested plots in our study area, there re-

main spatial gaps in the FIA data. This sampling

intensity is especially problematic in sparsely for-

ested areas with few plots per 20-km cell and in

areas where the environmental conditions are

particularly heterogeneous within the 20-km cell.

Further, of the four species, only the range of lob-

lolly pine does not extend into Canada (mainly the

province of Ontario). FIA data stops at the border,

so we are not modeling the full range of the species

distribution. Range maps (Little 1971, 1977; Prasad

and Iverson 2003) superimposed on actual FIA

distributions indicate the current range of the spe-

cies (Figures 1, 2, 3, 4). However, we believe that a

preferred modeling technique might predict rea-

sonably well in the gaps based on the existing

strength of the relationships between the response

and the predictors. Therefore, it should be noted

that any agreement between the actual and pre-

dicted, although still a strong measure of model

predictive ability, might not necessarily be a com-

prehensive test of the superiority of the prediction.

RESULTS

We compare the four techniques by assessing the

outputs of the four species: correlation, Kappa and

its variants, variable importance, and the output

maps. Each is presented separately, with distinc-

tions among the four species also noted.

Correlation

It is apparent looking at predicted correlations (Ta-

ble 3) that for all four species, there is a clear dis-

tinction between RTA and MARS versus BT and RF,

with the latter pair showing much better correlation.

Actual versus predicted distributions of loblolly pine

have correlations of at least 0.85 for all models,

whereas the other species, especially white oak,

have lower correlations for RTA and MARS. RF also

has a slight edge over BT with all the correlations.

Kappa

The distinction between RTA and MARS versus BT

and RF is also apparent with all variants of the

Kappa statistics (Table 4), with BT and RF showing

much better conformity with the actual values for

all four species. Among the four Kappa variants, BT

produces the best match of histograms (Khist) for all

species except American beech, whereas RF pro-

duces the best match of pixel similarity (Kloc) for all

four species. Thus, RF better preserves locational

similarity, whereas BT better preserves categorical

similarity. When both are considered in the overall

Kappa statistic, RF has slightly higher values than

BT, as it does for fuzzy Kappa.

Variable Importance

As expected, the predictors deemed important by

the models are different for the four species

(Table 5). Each of the species is predominantly

climate-driven to some degree. For loblolly pine, all

models use potential soil productivity (ORD) as the

most important variable in predicting IV. RF and BT

agree on the ranking of the first four variables.

After agreeing with other models on the impor-

tance of ORD and mean January temperature

(JANT), MARS departs from the rest.

For sugar maple, all four models agree that mean

July temperature (JULT) is the most important

variable, with ORD and precipitation (PPT) also

important. Four of the first five variables in RF are

climate-related, indicating that sugar maple is pri-

marily climate-driven.

American beech has percent of land use in agri-

culture (AGRICULT) as the most important vari-
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able, followed closely by JULT in all models except

MARS. MARS elevates PPT to the first position

followed by minimum elevation (ELV_MIN). RF

and BT agree for the first five variables, except that

BT places more importance to ELV_MIN versus

percent forest (FOREST). Topographic variables

that seem to drive American beech in the Appala-

chians are important in all four models.

The RF and BT models for white oak are similar

for four of the top five variables. BT puts heavier

weight on FOREST, whereas mean growing season

temperature (MAYSEPT) is weighted more heavily

in RF. The high-ranking variables for RF are much

closer in weight as compared to the other species,

indicating that all of these variables could be simi-

larly important in predicting distribution; this

characteristic may be an important indicator of a

generalist species.

Map of Current Distributions

The maps of the four species (Figures 1, 2, 3, 4)

reflect the correlations of Table 3 and the Kappa

statistics of Table 4. For loblolly pine (Figure 1), it is

clear that compared to the actual FIA distribution,

BT-Current and RF-Current match better than RTA

A

B F

C G

D H

E I

Figure 1. Loblolly pine.

A Current distribution

according to Forest Inventory

and Analysis (FIA) and Little

(1971) boundaries. B–E

Predictions of current

distribution according to the

four models. F–I Predictions

of potential future suitable

habitat according to the four

models. RTA, Regression Tree

Analysis; BT, Bagging Trees;

RF, Random Forest; MARS,

Multivariate Adaptive

Regression Splines.
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and MARS, which show false presence (albeit low

IVs) in Tennessee and Kentucky and in the

northeastern and north-central states. BT-Current

shows a better match, although there are some low

values in the northeastern states.

The current distribution of sugar maple is captured

in all models except MARS, which shows an anom-

alous southwestward distribution as well as a large

drop in abundance in the central states (Figure 2).

BT-Current and RF-Current are similar, whereas

RTA-Current shows slightly more erroneous distri-

butions in the central portion of the study area.

There is a large difference between RTA and

MARS versus BT and RF for American beech.

Visually, BT-Current and RF-Current are similar,

although RF shows more smoothing between

classes (Figure 3). RTA fails to show presence in the

south. MARS shows an anomalous westward

spread to Missouri.

For white oak, the predictions of current abun-

dance are well matched for BT and RF and are

similar, except that RF smoothes the abundances

slightly more in some areas (Figure 4). The RTA

and MARS models do not do as well because they

A
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C G

D H

E I

Figure 2. Sugar maple.

A Current distribution

according to FIA and Little

(1971) boundaries. B–E

Predictions of current

distribution according to the

four models. F–I Predictions

of potential future suitable

habitat according to the four

models. RTA, Regression Tree

Analysis; BT, Bagging Trees;

RF, Random Forest; MARS,

Multivariate Adaptive

Regression Splines.
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show a westward presence that is not visible even

on Little’s range map.

Maps under Future CCC Scenario

It is important to ask how reasonable the maps of

future climate scenarios are because one of the

main goals in predictive vegetation mapping is to

assess the performance of models when predicting

under changed climatic conditions. Obviously, it is

impossible to reliably validate such models, but in

the following discussion, we will attempt to assess

the reasonableness of such models based on bio-

logical expectations.

One striking feature that emerges when com-

paring among models for all four species is that, for

the MARS model, the future climate predictions are

counter to biogeographical expectations (Figures1,

2, 3, 4). The reason for this erratic behavior is ad-

dressed in the Discussion section.

Loblolly pine shows an expansion of potential

suitable habitat northward in the RTA and espe-

cially the BT-CCC and RF-CCC models (Figure1).

Compared to BT-CCC, RF-CCC pushes the species

habitat farther north (mainly in Ohio) and shows a

smoother grading of classes as the suitable habitat

spreads northward. The abundance suitability

B F

C G

D I

E J

A

Figure 3. American beech.

A Current distribution

according to FIA and Little

(1971) boundaries. B–E

Predictions of current

distribution according to the

four models. F–I Predictions

of potential future suitable

habitat according to the four

models. RTA, Regression Tree

Analysis; BT, Bagging Trees;

RF, Random Forest; MARS,

Multivariate Adaptive

Regression Splines.
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D
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G

H

I

Figure 4. White oak. A Current distribution according to FIA and Little (1971) boundaries. B–E Predictions of current

distribution according to the four models. F–I Predictions of potential future suitable habitat according to the four models.

RTA, Regression Tree Analysis; BT, Bagging Trees; RF, Random Forest; MARS, Multivariate Adaptive Regression Splines.
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gradually decreases northward. This smoothing

feature may give RF an advantage over BT for

predicting reasonable future climate scenarios.

MARS creates an unrealistic picture in that large

values appear in the south while low values appear

in the north.

The CCC scenario for sugar maple is strikingly

similar for BT and RF; RTA shows more thinning

(reduction of importance value), whereas MARS is

highly distorted with wide expansions to the cen-

ter-west, southwest, and south (Figure 2). Both BT

and RF retain potential future sugar maple habitat

more than the RTA model presented here and

especially more than the RTA (DISTRIB) outputs

from previous work (Iverson and Prasad 1998;

Iverson and others 1999a; Prasad and Iverson

2000a). As mentioned, these differences result from

updated response and predictor variables, as well as

the refined spatial resolution of this work.

As with sugar maple, the RTA-CCC map for

American beech shows a vast reduction in potential

future habitat within the United States, whereas

RF-CCC and BT-CCC retain more habitat and are

similar (Figure 3). With RF-CCC, there is a

smoother transition of classes (rather than ‘‘jump-

ing,’’ for example, from an IV of 1–3 adjacent to an

IV of 11–20), giving that prediction an edge over

the other models. MARS-CCC does show a bioge-

Table 3. Pearson’s Correlation Coefficients between Current FIA and Current Model Predictions

Species RTA BT RF MARS

Loblolly Pine 0.85 0.96 0.97 0.86

Sugar Maple 0.70 0.92 0.93 0.69

American Beech 0.75 0.92 0.93 0.71

White Oak 0.66 0.90 0.92 0.62

RTA, Regression Tree Analysis; BT, Bagging Trees; RF, Random Forest; MARS, Multivariate Adaptive Regression Splines; FIA, Forest Inventory and Analysis.
All correlations are highly significant, with P value < 2.2e)16 for n = 9,782.

Table 4. Kappa Statistics Comparing the Agreement of Current Importance Values Based on FIA and Model
Predictions

RTA BT RF MARS

Loblolly Pine

Kappa 0.448 0.664 0.676 0.422

Kloc 0.648 0.785 0.806 0.607

Khist 0.692 0.845 0.838 0.695

Fuzzy Kappa 0.497 0.717 0.725 0.478

Sugar Maple

Kappa 0.395 0.593 0.598 0.309

Kloc 0.533 0.705 0.718 0.487

Khist 0.741 0.841 0.832 0.635

Fuzzy Kappa 0.393 0.638 0.643 0.349

American Beech

Kappa 0.378 0.650 0.668 0.365

Kloc 0.469 0.686 0.696 0.421

Khist 0.807 0.947 0.960 0.867

Fuzzy Kappa 0.413 0.677 0.692 0.399

White Oak

Kappa 0.354 0.623 0.630 0.333

Kloc 0.438 0.711 0.726 0.462

Khist 0.808 0.877 0.867 0.720

Fuzzy Kappa 0.352 0.652 0.656 0.342

RTA, Regression Tree Analysis; BT, Bagging Trees; RF, Random Forest; MARS, Multivariate Adaptive Regression Splines; FIA, Forest Inventory and Analysis.
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Table 5. Variable Importance (Top 12 Variables) Predicted by the Four Models for Loblolly Pine, Sugar
Maple, American Beech, and White Oak

Predictors RTA (Rank) RF (Rank) BT (Rank) MARS (Rank)

Loblolly Pine

ORD 100 (1) 100 (1) 100 (1) 100 (1)

JANT 18 (2) 74 (2) 27 (2) 56 (2)

PPT 8 (5) 37 (3) 14 (3) 41 (5)

ULTISOL 16 (3) 29 (4) 12 (4) —

AVGT 9 (4) 26 (5) 6 (7) 16 (9)

ELV_MEAN — 18 (6) — 54 (3)

FOREST 4 (7) 16 (7) 7 (5) 1 (12)

PH — 14 (8) — —

AGRICULT 6 (6) 13 (9) 6 (6) 43 (4)

ELV_MAX — 13 (10) 4 (11) —

NO200 2 (11) 11 (11) 4 (10) 17 (8)

CLAY 2 (10) 10 (12) 5 (9) —

ELV_MIN 3 (9) — 5 (8) —

ELV_RANGE 1 (12) — 4 (12) —

OM 3 (8) — — 19 (6)

SLOPE — — — 18 (7)

JULT — — — 15 (10)

ELV_CV — — — 14 (11)

Sugar Maple

JULT 100 (1) 100 (1) 100 (1) 100 (1)

ORD 31 (3) 63 (2) 39 (3) 44 (4)

PPT 32 (2) 58 (3) 47 (2) 62 (3)

MAYSEPT 4 (7) 58 (4) 13 (10) 1 (11)

JANT 2 (11) 38 (5) — 1 (12)

NO10 7 (5) 34 (6) 14 (6) —

ELV_MEAN 6 (6) 30 (7) 11 (11) —

ELV_CV — 30 (8) 16 (4) 37 (6)

AVGT — 29 (9) — 31 (9)

ELV_RANGE 2 (12) 27 (10) 13 (9) —

ELV_MAX — 27 (11) 14 (8) 42 (5)

ELV_MIN — 25 (12) 16 (5) —

ALFISOL — — 14 (7) —

FOREST 3 (10) — 8 (12) —

KFFACT 8 (4) — — 71 (2)

NO200 — — — 36 (7)

SPODOSOL — — — 35 (8)

SLOPE — — — 27 (10)

CLAY 3 (8) — — —

BD 3 (9) — — —

American Beech

AGRICULT 100 (1) 100 (1) 100 (1) 55 (6)

JULT 54 (2) 58 (2) 43 (2) 79 (3)

FOREST 12 (5) 50 (3) 16 (7) 42 (10)

PPT 6 (10) 47 (4) 22 (5) 100 (1)

ELV_MAX 9 (8) 41 (5) 23 (4) 1 (11)

MAYSEPT — 36 (6) 14 (9) 59 (5)

ELV_MIN 24 (3) 35 (7) 27 (3) 99 (2)

ELV_RANGE — 34 (8) 17 (6) —

ELV_MEAN 15 (4) 31 (9) 13 (12) 44 (8)

JANT 5 (12) 29 (10) 13 (11) 43 (9)

ELV_CV — 28 (11) 15 (8) 1 (12)

(continued)
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ographically reasonable future output, although

the presence of American beech in Texas and

Florida is unexpected.

The RTA, BT, and RF models for white oak are

similar in predicting a northward expansion of

suitable habitat (Figure 4). However, RTA retains

higher values in the south as well as in the Missouri

Ozarks. The BT-CCC and RF-CCC differ for this

species in that RF tends to produce reduced levels

of IV in the Missouri Ozarks and in other areas

scattered throughout the range of white oak. The

MARS map is not biogeographically reasonable

because it predicts wildly, with a large area of high

values in the northeast and a large westward

presence.

DISCUSSION

Model Comparisons

It is clear from the maps and statistics presented

here that BT and RF have a distinct advantage over

MARS and RTA in predictive mapping. BT and RF

are similar and both are more effective than single

regression tree outputs. The ‘‘multiple-perturbed’’

trees in BT and ‘‘multiple-perturbed-randomized’’

trees in RF had better predictive capabilities. Al-

though the error rates of BT and RF were similar in

our analysis of four tree species, RF proved superior

for this type of application because it provides a

smoother response surface in that the IVs grade

smoothly from lower to higher values and there is

no jumping of classes. Because species IVs often are

highly variable between nearby FIA plots due to

local variations in environment or land-use history,

the smoother output that RF generates minimizes

this influence and hence is appropriate in regional

models.

We realize that evaluating whether a particular

species distribution is biogeographically realistic

under future climate is primarily a subjective pro-

cess because numerous factors can influence the

final distribution. Here, in addition to our own

limited insights into the nature of species distribu-

tions, we have to place more confidence in RF than

in BT as evaluated by other studies in which the

two models are compared (Svetnik and others

2003; Hawkins and Musser 1999; Meyer and others

2003).

Table 5. Continued

Predictors RTA (Rank) RF (Rank) BT (Rank) MARS (Rank)

AVGT 12 (6) 27 (12) 13 (10) 62 (4)

ORD — — — 47 (7)

INCEPTIS 9 (7) — — —

CLAY 8 (9) — — —

White Oak

SLOPE 100 (1) 100 (1) 100 (1) 1 (11)

PPT 39 (4) 98 (2) 62 (2) 55 (6)

ORD 23 (7) 84 (3) 44 (4) 62 (4)

MAYSEPT 18 (10) 73 (4) 34 (11) 79 (3)

AVGT 46 (2) 72 (5) 47 (3) 42 (10)

JULT 41 (3) 66 (6) 40 (7) 100 (1)

PH — 64 (7) — 43 (9)

AGRICULT 17 (11) 61 (8) 39 (8) —

FOREST 20 (9) 59 (9) 41 (5) 99 (2)

NO10 38 (5) 57 (10) 40 (6) 47 (7)

ELV_MEAN — 56 (11) — —

ELV_MIN — 56 (12) 38 (9) —

ALFISOL 36 (6) — 35 (10) —

ELV_RANGE — — 32 (12) —

JANT 22 (8) — — 59 (5)

MOLLISOL — — — 44 (8)

ELV_MAX — — — 1 (12)

KFFACT 15 (12) — — —

RTA, Regression Tree Analysis; BT, Bagging Trees; RF, Random Forest; MARS, Multivariate Adaptive Regression Splines.
Variables are listed in Table 2.
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Erratic Behavior of MARS

Multivariate Adaptive Regression Splines per-

formed unrealistically under future climate for all

four species, with major distortions for loblolly

pine, sugar maple, and white oak (Figures 1G, 2G,

4G). In our earlier effort to compare the RTA and

MARS models (Prasad and Iverson 2000b), we

concluded that MARS was superior for predicting

current tree distributions. This conclusion resulted

from using a high number of interactions in the

MARS software until we achieved a better fit to

current distributions. However, we did not evalu-

ate the impact of such a model for predicting the

distribution of suitable habitat under future cli-

mate. For our current effort, we discovered that

increasing the number of interactions highly dis-

torts the model of future distribution. This was true

even when we constrained the number of inter-

actions to two. The need to constrain the number

of interactions to two is the reason why RTA out-

performed MARS in this study.

The reason for these ‘‘wild’’ predictions under

changed climate is that MARS is highly sensitive to

extrapolation caused by the local nature of the basis

functions. A change in the predictor value toward

the end of its range can cause the prediction to go

largely off scale (M. Golovnya personal communi-

cation). For certain applications, a strength of

MARS is that its basis functions are guided by the

local nature of the data; in our case, this proved a

major disadvantage for predictions under future

climate scenarios. Attempts to control such wild

behavior in MARS involves tweaking the basis

functions and creating a hybrid RTA–MARS model,

which defeats our original purpose of making the

model intelligently automatic so that we need not

fine-tune the model individually for multiple spe-

cies. Thus, it appears that tree-based models are

better when we want to investigate how species

habitat could change in the future, given the level

of the current response.

Species Comparisons

It is useful to speculate why the models performed

better for some species than for others because we

want to know which models to use for the

numerous tree species in the eastern United States.

Loblolly pine likely had the best-fit models (based

on correlation, Kappa, and visual comparison) be-

cause (a) it has the highest average IVs of all species

(Iverson and others 1999a) and is distributed evenly

(b) it has a northern limit well within the United

States, so absolute range boundaries can be assessed

and (c) its northern range matches temperature

isotherms in the eastern United States. American

beech and sugar maple, which had similar distri-

butions, both border Canada, so the northern limits

of their range are not examined fully by the models.

White oak produced the least satisfactory model for

RTA and MARS, whereas BT and RF showed sur-

prisingly strong predictions. White oak is a gener-

alist species with a scattered distribution of varying

abundance across much of its range, making it dif-

ficult to model. It is also common in woodlots across

the heavily cultivated Midwest and thus contained

in small forest patches that are easily missed in FIA

sampling. The strong performance of BT and RF for

this species is encouraging. Future work will

determine whether these trends are consistent with

other generalist species.

Interpretation of Models

Although BT and RF are ensemble methods based on

regression trees (RTA), they become more of a black

(or gray) box when interpreting the model due to the

sheer number of trees generated. Because the main

purpose of our effort is to develop a superior pre-

diction model, this does not necessarily pose a

problem. However, adding interpretability to the

black boxes is worthwhile and gives us additional

insight into the nature of species distributions. Our

results show that RF can be used for the predictions,

with interpretations primarily from RTA and BT.

Because RTA is just one model-slice of the data and

BT is a 50-tree average, we can examine the varia-

tion in the 50 trees by computing a statistical sum-

mary of the deviances as well as the variation in the

variable importance table among the 50 trees. If

there are wide differences in the splitting rules

among trees, we know that the model is unstable for

that species and bootstrap-resampling and averaging

(BT) would predict better than a single tree (RTA).

For such species, RF would predict even better by the

randomization of predictors and the sheer number of

trees grown (1,000). However, if the individual trees

are similar, a single RTA tree can be used to map

what predictors are driving the distribution of the

species spatially. This geographic mapping of pre-

dictors is a unique aspect of RTA that offers addi-

tional insights into species distribution (Iverson and

Prasad 1998; Iverson and others 1999a; Prasad and

Iverson 2000a).

CONCLUSIONS

In conclusion, the RTA, BT, and RF techniques can

be used in combination because they provide both

a means to accurately map organism distributions

Techniques for Ecological Prediction 197



and a mechanism that provides a better under-

standing of the drivers of current and potential

future distributions. The superior predictive capa-

bility of RF can be used to map current distributions

and potential future suitable habitat, whereas RTA,

and to some extent BT, provide interpretive results.

We are using this multiple model procedure to

interpret and predict the distributions of 135 tree

species in the eastern United States under multiple

scenarios of future climate conditions.

The potential applications of these methods are

numerous. They can be used to classify landscapes

into categories, such as vegetation types or land-

use classes. They can also be used to identify target

locations or probability surfaces for common, rare,

or invasive species, whether plant or animal. They

can be extended to map pollution levels or nutrient

concentrations across a landscape. They will also

become valuable in remote sensing studies using

customized software.

Essentially, these techniques can be used to

extrapolate any response variable collected at

sample locations across the landscape and to

understand what predictors are driving the distri-

bution with a higher level of confidence than with

other methods. We therefore highly recommend

this package of statistical modeling tools for use in

predictive biological mapping.
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