by Martin E. Dale

Growth and Yield Predictions for Upland Oak Stands

10 Years After Initial Thinning

U.S.D.A. FOREST SERVICE RESEARCH PAPER NE-241 1972

NORTHEASTERN FOREST EXPERIMENT STATION, UPPER DARBY, PA. FOREST SERVICE, U.S. DEPARTMENT OF AGRICULTURE WARREN T. DOOLITTLE, DIRECTOR

The Author

MARTIN E. DALE received his bachelor's and master's degrees in forestry from Iowa State University in 1953 and 1955. He joined the former Central States Forest Experiment Station in 1957 and specialized in forest management and silviculture at the Station's research unit at Berea, Kentucky. After extensive training in mensuration and statistics, he was assigned in 1970 to the Northeastern Forest Experiment Station's research project on Timber Measurement and Management Planning at Columbus, Ohio, where he is now specializing in studies of growth and yield of managed upland oak.

Some of the studies upon which this publication is based are maintained by the USDA Forest Service's North Central Forest Experiment Station. The cooperation and assistance of the North Central Station are gratefully acknowledged.

MANUSCRIPT RECEIVED FOR PUBLICATION 30 NOVEMBER 1971

Growth and Yield Predictions for Upland Oak Stands

10 Years After Initial Thinning

INTRODUCTION

THE OAK-HICKORY forest type is by far the most extensive hardwood timber type in this country. It occupies nearly 116 million acres, or about one-quarter of the commercial forest land in the United States. Although this timber type dominates the forest landscape from the Appalachian Mountains west to the Great Plains, we have little information about either the quantitative or qualitative growth and yield of thinned upland oak stands.

This seriously handicaps intensive timber management because such information is necessary for selecting from among various thinning alternatives the one practice best suited to meet a specific objective. Three types of information are needed for selecting the best alternative: (1) the change in physical yields resulting from a specific thinning practice, including quantity, quality, and timing of yields; (2) the costs incurred in applying the practice; and (3) the values of the physical yields when they occur. With such estimates the decision-maker can select objectively among alternatives, determine the relative profitability of each, and assign priorities for stand treatment.

The purpose of this paper is to furnish part of the needed information, that is, quantitative estimates of growth and yield 10 years after initial thinning of upland oak stands. All estimates are computed from a system of equations. These predictions are presented here in tabular form for convenient visual inspection of growth and yield trends. The tables show growth and yield in terms of basal area, total cubic-foot volume, cordwood volume, and board-foot volume over a broad range of site, age, and residual stand density classes.

All the equations were developed from a set of 154 permanent growth plots where responses were observed over 5- to 12-year growth periods. Many users with access to computers will find the equations more useful than tables, especially if interested in specific stand conditions not listed in the tables or for use in other computer programs. A complete discussion of equation development is beyond the scope of this paper; however, the basic regression equations are given in the Appendix.

THE STUDY

The 154 permanent plots used in developing the growth and yield predictions were established as part of eight separate growth studies, two each in Kentucky, Ohio, Missouri, and Iowa (fig. 1 and table 1). All eight groups of plots were analyzed together because the objectives, methods of treatment, and plot-selection criteria were essentially the same.

Species composition varied between series from white oak to almost pure black oak stands (table 2). Although species composition does affect growth and vield, species differences are ignored in this report. Our plot data indicated confounding between species and location, and between species and site quality: so with our sample there was insufficient plot data for separating out species effect.

Stand age at time of initial thinning varied among the growth series from 22 to 90 years. which should adequately cover ages where intermediate cutting is practiced. Site index of plots averaged 69 overall, varying from 55 to 89; but most plots (83 percent) ranged between site indexes 60 and 80. Site index was based upon Schnur's (1937) site-index curves for upland oak. Our distribution of sample plots by site index is typical over a large part of the natural range of upland oak.

All plots were chosen initially as representative of fully stocked even-aged upland oak stands that showed little evidence of recent fire or logging. On some plots a few older and larger trees were present, probably as holdovers from the previous stand. Site index and

Figure 1.-Location of the study plots.

	1962-001-961		relations fo					
Study	Plot	Plot	Date	Initial average	Range	Re-	Years of growth used in	Pr

able 1.—Characteristics	of studi	ies used	to deve	lop growth	and	yield
r	elations t	for upla	nd oak			 Callesterice

	Study	Plots	Plot	Date study	Initial average	Range of	Re-	growth used in	Principal
No.	Location	Flots	size	started	stand age	site index	measure- ments	computing	species
		No.	Acres	1000	Years		No.	Years	
1	Kentucky	16	0.5	1961	33	62-77	7	7	White oak
2	Kentucky	16	1.0	1959	80	60-68	7	7	White oak
3	Ohio	16	.5	1961	31	67-80	7	7	Mixed oak
4	Ohio	16	.5	1962	60	60-71	6	6	White oak
5	Missouri	30	.5	1962	22	61-89	1	5	Black oak
6	Missouri	30	.5	1961	40	60-84	1	6	Black oak
7	Iowa	20	.2	1949	25	55-66	5	² 12	White oak
8	Iowa	20	1.0	1953	90	60-69	6	9	White oak

¹Nine additional plots cut to lower density levels were eliminated from analysis because all understory stems were cut.

²This series received a second thinning in 1961, but response to only the first thinning is included.

					[In p	ercent]					
Stude		Gro	oup 1	Gro	up 2	Gro	up 3	Gro	oup 4	Gro	up 5
Study No.	Date	No. trees	Basal area	No. trees	Basal area	No. trees	Basal area	No. trees	Basal area	No. trees	Basal area
1		77.01	73.31	13.78	17.95	0.44	1.11	5.40	5.45	3.37	2.18
2	1968 1961	$79.77 \\ 76.66$	$75.30 \\ 84.54$	$\begin{array}{c} 10.12 \\ 2.22 \end{array}$	$16.48 \\ 3.48$.44 1.50	$1.02 \\ 1.61$	$\begin{array}{r} 7.01 \\ 13.86 \end{array}$	5.49 8.55	2.70 5.76	$1.71 \\ 1.82$
	1968	73.43	84.63	2.11	3.30	2.44	1.83	15.10	8.30	6.92	1.94
3	1961	26.16	24.27	62.26	66.72	2.37	3.33	8.90	5.60	.31	.08
	1968	27.32	24.48	60.38	66.43	2.27	3.50	9.59	5.49	.44	.10
4	1962	61.55	57.87	34.78	40.37	.28	.17	3.11	1.53	.28	.06
	1968	65.80	62.74	29.33	35.29	.42	.18	3.52	1.66	.93	.13
5	1962	7.16	6.46	89.44	91.12	.03	.03	3.37	2.39		
	1967	7.48	6.30	88.43	91.33	.03	.03	4.06	2.34		
6	1961	11.86	8.07	83.01	88.70	.46	.41	4.63	2.81	.04	.01
	1967	12.16	7.91	82.76	89.28	.48	.37	4.56	2.43	.04	.01
7	1949	66.89	69.78	23.66	23.58	2.09	2.43	7.36	4.21		
	1961	63.97	66.31	20.93	25.74	2.75	2.82	12.29	5.12	.06	.01
8	1953	88.43	89.62	6.32	6.78	1.02	.28	4.23	3.32		
	1962	89.54	90.47	5.04	5.76	1.08	.33	4.34	3.44		

Table 2.—Basal area and number of trees for each study at beginning and ending of growth period, by species groups¹

Group 1: White oak, chestnut oak.

Group 2: Black oak, scarlet oak, northern red oak.

Group 3: Black walnut, yellow-poplar, ash, basswood, sycamore, black cherry, shortleaf pine, hemlock.
 Group 4: Hickory, black gum, red maple, sugar maple, post oak, blackjack oak, red elm, beech, black locust, shingle oak, hackberry.

Group 5: Dogwood, serviceberry, sourwood, ironwood, sassafras, holly, redbud, hawthorn, burr oak, mulberry, miscellaneous shrubs.

age varied little both within and between plots for a given series. Detailed measurements on no fewer than 10 sample trees per plot provided age, site, and height data at the time of plot installation. These sample trees, mostly dominant or codominant, were selected for their high potential as final crop trees and for their spatial distribution.

Similar marking rules were used for each series to create four or more stand-density levels. Cutting varied from very light or none to removing 70 or 80 percent of the original basal area, except for the older study in Iowa, where the heaviest cutting removed only about 30 percent of the basal area. After this initial cutting, plots ranged in basal area from a low of 20 to 30 square feet per acre up to between 75 and 110 square feet.

The thinning method we used resembled a selection thinning as defined by the Society of American Foresters (1950). However, our thinning procedure is more accurately described (*Braathe 1957*) as "free thinning," in which the marker is free to remove trees through all crown classes. Our objective was to leave a suitable number of the best stems as evenly spaced as possible over the plot. In general, we cut the larger cull and defective trees first, then competing trees of poor form and quality, then intermediate and suppressed trees of lower quality and value, and finally, if necessary, the lower value species of the main crown class. High-quality desirable species were cut also if necessary to achieve a uniform spatial distribution.

ANALYSIS

The number of years of growth data varied among different series of plots from 5 years to 12 years (table 1). Plot size also varied by series from $\frac{1}{5}$ to 1 acre in size. In our analysis these differences were disregarded, and all plots received equal weight in the regression analyses. The Ohio State University/Econ step-wise regression program was used for all regression equations.

Averages were used for some independent variables such as basal area, age, number of trees, and plot volumes, rather than the initial or final plot values. These average values are preferable when calculus methods are used. To determine average basal area. as an example, the initial and most recent measurements were used to compute basal area by equation from the individual tree diameters for all trees greater than 2.6 inches d.b.h., summed over all trees on a plot, and expanded to a per-acre basis. Then the initial and most recent basal areas per acre were averaged to provide the average basal area per acre over the growth interval. Net annual growth in basal area and volume, expressed as the average per acre per year, was obtained as the difference between the final and initial per-acre values divided by the number of years in the growth period.

Average cubic and board-foot volumes were computed in the same manner as basal area; however, the tree-volume equations required both total tree height and tree diameter as independent variables. Therefore total tree height was estimated by regression, using sample tree data; and this estimate of height was substituted into the volume equations. Two different tree-height equations were used; one for the white oak group and one for the red oak group. All volume estimates were for gross content, and no allowances were made for defect.

The summarized plot data were used to fit several recently published growth and yield models as well as some model forms we hypothesized. In these models we tried various transformations and combinations of independent variables such as stand age, basal area, number of trees, site quality, and average stand diameter.

The models we selected for basal-area growth and total cubic-foot volume are, respectively:

$$Y_1 = -BA^{-.8}LnB + 3.68521BA^{-.75} + .011383BSA^{-1.05}$$
 [1]

$$Y_2 = 3.09094 + .009302S + 1.03909LnB - 20.11035A^{-1}$$
[2]

where:

1

 Y_1 = net annual basal area growth per acre in square feet for all trees 2.6 inches or larger in d.b.h.

- Y_2 = natural logarithm of total cubicfoot volume per acre for all trees 2.6 inches or larger in d.b.h.
- B = basal area in square feet per acre of all living trees 2.6 inches or larger in d.b.h.
- S = site index in feet
- $A \equiv$ average stand age in years.

These equations provide a statistically close fit of the data; they are simpler in form than some proposed; and the growth trends in relation to age, site, and basal area agree well with biological assumptions. Plotting residuals (actual minus predicted values) over age, site, and basal area produced no evidence of nonconformity of these models over most of the range of all variables. Statistical information for these equations is given in table 11 (appendix).

Merchantable cubic-foot and board-foot volume estimates were obtained by multiplying the total cubic-foot volume by the ratio of merchantable cubic-foot or board-foot volume to total cubic-foot volume. Cordwood volume was estimated by dividing the merchantable cubic-foot volume by 80. Both the merchantable cubic-foot and board-foot ratios increase with the average stand diameter. These relationships, described by equations 4 and 5 (table 11, appendix), were developed by regressing the volume ratio data on average stand diameter for the 154 study plots. The calculated volume ratios using equations 4 and 5 are shown in table 12 (appendix), by 1-inch d.b.h. classes. The volume ratios change most rapidly when stand diameter is near the threshold diameter (4.6 inches for cordwood and 8.6 inches for board-foot volume). Both volume ratios gradually approach constant values as stand diameter increases.

It is not feasible to give volume estimates here for all combinations of age, site, and basal area over a range of different average stand diameters. So, in the tables presented here, we used a regression equation to determine average stand diameter as a function of site and age (equation 3, table 11, appendix). Then this average stand diameter was adjusted for each site and age class to reflect changes in average stand diameter due to intensity of cutting. These adjusted average stand diameters are given in table 13 (appendix), by site, age, and residual basal area after the initial thinning. They were substituted into equations 4 and 5 to compute the volume ratios, hence these assumed average stand diameters affect the cordwood and board-foot volume estimates presented here. When stand diameters are different than those shown in table 13 the estimates of cordwood and board-foot volume will be different.

A Fortran IV computer program is available, upon request, that will provide these growth and yield estimates up to 30 years after initial thinning for any desired combination of age, site, basal area, and average stand diameter. The only program input variables required are initial stand age, basal area, number of trees above 2.6 inches d.b.h., and site index. This program includes ingrowth and mortality functions that are used to adjust the number of trees annually.

RESULTS

Growth and yield predictions are given for thinned upland oak stands in tables 3 through 10. Estimates are given by age, basal area, and site class, all in increments of 10 units; from age 20 to 110 years, from 20 to 130 square feet of basal area; and from site index 55 to 85. All values were generated by the Fortran IV computer program, which incorporated the equations listed in table 11 (appendix), along with ingrowth and mortality functions.

Table 3 gives the current annual net basalarea growth per acre for specified ages and residual basal areas for each site class. These growth estimates are the solutions one would get by substituting into equation 1 the specified ages, sites, and basal areas. For example, a stand on site 65 with a residual basal area of 50 square feet at age 30 will on the average grow 2.54 square feet between age 30 and 31. A year later, age and basal area will have changed, and so will our estimate of growth.

The 10-year estimates of net basal-area growth in table 4 were obtained by repeatedly solving equation 1, each time updating age and basal area, and summing the 10 annual growth estimates. The stand from the previous example with 50 square feet of basal area at age 30 on site 65 would increase in basal area by 21.46 square feet over 10 years, or at age 40 this stand would reach 71.46 square feet of basal area.

Estimates of total cubic-foot volume, including bark, stump, and tip of all trees 2.6 inches d.b.h. or larger, are given in table 5. These volume estimates were obtained by solving equation 2 for each combination of age, site, and basal area. Total cubic-foot volume growth for 10 years (table 6) was obtained as the difference between the initial volume estimate (using the initial age and basal area) and the volume 10 years later, (using an updated age and basal area).

For the previous stand conditions, the total cubic-foot volume at age 30 would be 1,200 cubic feet (table 5). In 10 years, at age 40, the stand would reach 71.46 square feet of basal area; so equation 2 for these stand conditions would predict a stand total volume of 2,057 cubic feet. The difference between the final and initial volumes (2,057 minus 1,200) is the net volume growth for 10 years, or 857 cubic feet as shown in table 6.

The cordwood volume shown in table 7 is the merchantable volume in cubic feet divided by 80. Merchantable cubic-foot volume pertains to the gross content of all trees 4.6 inches d.b.h. or larger, excluding the bark, stump, and branches to a 4-inch top d.i.b. Merchantable cubic-foot volume is not shown, but was calculated by multiplying the total cubic-foot volume by the ratio of merchantable to total volume. This ratio is related to average stand diameter (equation 4, table 11, appendix) and was computed for each average stand diameter given in table 13 (appendix).

An illustration using the previous stand conditions should clarify the procedure. The average stand diameter for age 30 on site 65 with 50 square feet of basal area is 5.2 inches d.b.h. (table 13, appendix). Using 5.2 inches as the average stand diameter and applying equation 4 (appendix), we predict a merchantable to total volume ratio of 0.540. Multiplying this ratio by the total cubicfoot volume (0.540 x 1,200) gives 648 merchantable cubic feet, and dividing by 80 gives 8.1 cords, as shown in table 7. Growth in cords over the next 10-year period is given in table 8 by initial age and initial basal area. Net growth in cords is the difference between the volume 10 years hence and the initial volume in cords.

The merchantable to total cubic-foot ratio

Continued on page 14

Basal	Average stand age — years										
area	20	30	40	50	60	70	80	90	100	110	
				SIT	E INDE	X 55					
20	2.88	2.16	1.76	1.51 1.73	1.32	1.19	1.08	1.00	0.93	0.87	
30	3.21	2.44	2.01	1.73	1.53	1.38	1.26	1.16	1.08	1.02	
40	3.23 3.03	2.49	2.07	1.80 1.76	1.60	1.45	1.33	1.23	1.15	1.09	
50	3.03	2.38	2.01	1.76	1.58	1.44	1.33	1.24	1.16	1.10	
60	2.63	2.14 1.78	1.84	1.63	1.48	1.36 1.23	1.27	1.19	1.12	1.06 .99	
70 80	2.09	1.78	1.58	1.43	1.32	1.23	1.15	1.09	1.04	.99	
90		1.34	1.25 .85	1.17 .85	1.10 .84	1.05 .82	1.00	.95 .78	.92 .76	.88 .74	
100	_		.00	.00	.54	.82	.80 .58	.10	.58	.74	
110	_				.04	.00	.38	.58 .35	.38	.38	
120	4 	·	_	_	_		.02	.55	.00	.40	
				SIT	E INDE	X 65					
20	2.98	2.22	1.81	1.54	1.36	1.21	1.10	1.02	0.94	0.88	
30	3.36	2.53	2.08	1.78	1.57	1.42	1.29	1.19	1.11	1 04	
40	3.43	2.62	2.17	1.87	$1.66 \\ 1.66 \\ 1.57 \\ 1.43 \\ 1.23 \\ .98 \\ .69$	$1.50 \\ 1.51$	1.38 1.39	1.27 1.29	1.19	1.12 1.14 1.11	
50	3.27	2.54	2.13	1.85 1.75	1.66	1.51	1.39	1.29	1.21	1.14	
60	2.93	2.33	1.98	1.75	1.57	1.44 1.32 1.15	1.34	1.25	1.17	1.11	
70	2.43	2.01	1.75	$1.56 \\ 1.32 \\ 1.02 \\ .68$	1.43	1.32	1.23	1.16 1.03	1.10	1.05	
80		1.59	1.44	1.32	1.23	1.15	1.09	1.03	.99	1.05 .95 .82	
90 100			1.06	1.02	.98	.94	.91	.87	.84	.82	
110	18 - No			.08	.69	.70	.69 .45	.68 .47	.67 .48	.66 .49	
120	=	_				.41	.40	.22	.26	.49	
130	_	_	_	_	_		_	.44	.20	.07	
				SII	E INDE	X 75					
20	3.07	2.29 2.63	1.86	$1.58 \\ 1.84$	1.39 1.62	1.24	1.13 1.33	1.04 1.22	0.96	0.90	
30	3.50	2.63	2.15	1.84	1.62	1.45	1.33	1.22	1.14	1.06	
40	3.62 3.52	2.75	$2.26 \\ 2.25$	1.95	1.72 1.73	1.56	1.42	1.32	1.23	1.15	
50	3.52	2.70	2.25	1.95	1.73	$1.56 \\ 1.57$	1.44	1.34	1.25	1.18	
60	3.22 2.78	2.52 2.23	2.12	1.86 1.70	1.67	1.52	1.40	$1.31 \\ 1.23$	1.23	1.16 1.10	
70	2.78	2.23	1.91	1.70	1.54	1.41	1.31	1.23	1.16	1.10	
80 90	2.20	$1.85 \\ 1.38$	$1.63 \\ 1.28$	1.47 1.19	1.35	1.26	1.18	1.12	1.06	1.01	
100	_	1.30	.87	.86	1.12	1.06	1.01	.97	.93	.89 .74	
110	_	_	.07	.00	.85 .53	.83 .56	.81 .57	.78 .58	.76 .58	.74	
120	=		_		.00	.50	.31	.38	.38	.38	
130	_	17	_	_	_	_	.01	.04	.14	.17	
				SIT	E INDE	X 85					
20	3.17	2.35	1.90	1.62	1.42	1.27	1.15	1.06	0.98	0.91	
30	3.65	2.73	2.22	1.89	1.67	1.49	1.36	1.25	1.16	1.09	
40	3.82	2.88	2.36	2.02	1.79	1.61	1.47	1.36	1.26	1.18	
50	3.76	2.86	2.36	2.04	1.81	1.64	1.50	1.39	1.30	1.22	
60	3.52	2.71	2.26	1.97	1.76	1.60	1.47	1.37	1.28	1.21	
70	3.12	2.46	2.08	1.83	1.64	1.50	1.39	1.30	1.23	1.16	
80 90	2.59	2.10	1.82	1.62	1.48	1.36	1.27	1.20	1.13	1.08	
100		1.67	1.49 1.10	1.36 1.05	1.26 1.00	1.18	1.11	1.06	1.01	.96	
110			1.10	.70	.71	.96 .70	.92 .70	.89 .69	.85 .68	.83	
120		_	_		./1	.42	.45	.46	.08	1.21 1.16 1.08 .96 .83 .67 .48	
					2-03-04-04-0		.10	.40	.40	48	

Table 3.—Current annual basal-area increment per acre for given age and basal area

[In square feet]

Initial				Ini	tial stand	age — yea	ars			
basal area	20	30	40	50	60	70	80	90	100	110
				SI	FE INDE	X 55				
20 30 40 50 60 70 80 90 100 110 120	27.76 27.84 26.12 23.27 19.62 15.37 — — — — — — — — —	21.82 22.61 21.81 19.99 17.42 14.29 10.70 	18.16 19.23 18.91 17.67 15.75 13.31 10.44 7.21 — —	15.67 16.85 16.81 15.93 14.44 12.46 10.09 7.39 	$13.85 \\ 15.08 \\ 15.21 \\ 14.58 \\ 13.38 \\ 11.74 \\ 9.73 \\ 7.41 \\ 4.83 \\$	$12.46 \\13.70 \\13.94 \\13.48 \\12.50 \\11.11 \\9.38 \\7.35 \\5.08 \\$	$11.35 \\ 12.59 \\ 12.91 \\ 12.58 \\ 11.76 \\ 10.57 \\ 9.05 \\ 7.26 \\ 5.24 \\ 3.01 \\$	10.46 11.68 12.05 11.82 11.13 10.09 8.74 7.14 5.32 3.31	$\begin{array}{c} 9.71 \\ 10.91 \\ 11.32 \\ 11.16 \\ 10.58 \\ 9.66 \\ 8.46 \\ 7.02 \\ 5.36 \\ 3.53 \\ \end{array}$	$\begin{array}{c} 9.08 \\ 10.26 \\ 10.69 \\ 10.59 \\ 10.10 \\ 9.28 \\ 8.20 \\ 6.89 \\ 5.37 \\ 3.69 \\ 1.85 \end{array}$
				SI	FE INDE	X 65				
20 30 40 50 60 70 80 90 100 110 120 130	29.06 29.43 27.96 25.33 21.87 17.79 	22.68 23.70 23.11 21.46 19.07 16.08 12.64 	18.79 20.05 19.90 18.81 17.04 14.73 11.99 8.88 — — — —	16.16 17.50 17.60 16.86 15.49 13.63 11.37 8.78 5.90 —	$\begin{array}{c} 14.25\\ 15.62\\ 15.87\\ 15.35\\ 14.27\\ 12.73\\ 10.82\\ 8.60\\ 6.11\\\\\\\\\\\\\\\\\\\\$	$12.79 \\ 14.16 \\ 14.50 \\ 14.15 \\ 13.27 \\ 11.97 \\ 10.33 \\ 8.39 \\ 6.21 \\ 3.81 \\$	11.64 12.99 13.40 13.16 12.44 11.32 9.89 8.18 6.24 4.09	$\begin{array}{c} 10.71 \\ 12.03 \\ 12.48 \\ 12.34 \\ 11.73 \\ 10.76 \\ 9.49 \\ 7.97 \\ 6.22 \\ 4.28 \\ 2.16 \\$	9.93 11.22 11.71 11.63 11.12 10.27 9.14 7.76 6.18 4.41 2.47	$\begin{array}{c} 9.28\\ 10.54\\ 11.04\\ 11.02\\ 10.59\\ 9.84\\ 8.82\\ 7.57\\ 6.12\\ 4.50\\ 2.71\\ .79\end{array}$
				ST	FE INDE	X 75				
20 30 40 50 60 70 80 90 100 110 120 130	30.38 31.06 29.85 27.43 24.18 20.28 15.89 — — — — —	23.55 24.81 24.42 22.97 20.74 17.92 14.62 10.93 	19.43 20.88 20.90 19.97 18.34 16.17 13.56 10.58 7.30 —	16.65 18.16 18.41 17.80 16.56 14.82 12.67 10.19 7.42	14.65 16.16 16.54 16.14 15.17 13.73 11.93 9.80 7.41 4.79	13.13 14.62 15.08 14.83 14.04 12.84 11.29 9.44 7.35 5.03	11.93 13.38 13.90 13.75 13.12 12.09 10.74 9.11 7.24 5.17 2.91	$\begin{array}{c} 10.96 \\ 12.38 \\ 12.92 \\ 12.86 \\ 12.34 \\ 11.45 \\ 10.25 \\ 8.80 \\ 7.13 \\ 5.25 \\ 3.21 \end{array}$	$\begin{array}{c} 10.16\\ 11.53\\ 12.10\\ 12.10\\ 11.67\\ 10.89\\ 9.83\\ 8.52\\ 7.00\\ 5.29\\ 3.42\\ 1.40\\ \end{array}$	$\begin{array}{c} 9.48 \\ 10.82 \\ 11.40 \\ 11.44 \\ 11.09 \\ 10.40 \\ 9.45 \\ 8.26 \\ 6.87 \\ 5.31 \\ 3.59 \\ 1.72 \end{array}$
				SI	TE INDE	X 85				
20 30 40 50 60 70 80 90 100 110 120 130	31.74 32.74 31.78 29.60 26.55 22.84 18.62	24.44 25.94 25.77 24.50 22.45 19.79 16.64 13.10 	20.07 21.72 21.92 21.15 19.67 17.63 15.16 12.31 9.14	17.15 18.83 19.22 18.75 17.64 16.02 13.99 11.62 8.95 6.03	$15.06 \\ 16.71 \\ 17.21 \\ 16.94 \\ 16.07 \\ 14.75 \\ 13.04 \\ 11.02 \\ 8.73 \\ 6.19 \\$	$13.47 \\ 15.08 \\ 15.65 \\ 15.51 \\ 14.83 \\ 13.72 \\ 12.26 \\ 10.50 \\ 8.49 \\ 6.26 \\ 3.83 \\$	$12.22 \\ 13.78 \\ 14.40 \\ 14.35 \\ 13.80 \\ 12.86 \\ 11.59 \\ 10.05 \\ 8.26 \\ 6.27 \\ 4.08 \\$	$\begin{array}{c} 11.22\\ 12.73\\ 13.36\\ 13.39\\ 12.95\\ 12.14\\ 11.02\\ 9.64\\ 8.04\\ 6.24\\ 4.26\\ 2.12 \end{array}$	$\begin{array}{c} 10.38\\ 11.85\\ 12.49\\ 12.57\\ 12.22\\ 11.51\\ 10.52\\ 9.28\\ 7.83\\ 6.19\\ 4.38\\ 2.42 \end{array}$	$\begin{array}{c} 9.68 \\ 11.10 \\ 11.75 \\ 11.87 \\ 11.58 \\ 10.97 \\ 10.08 \\ 8.95 \\ 7.63 \\ 6.13 \\ 4.46 \\ 2.66 \end{array}$

Table 4.—Net basal-area growth in 10 years, by initial age and basal area

[In square feet per acre]

Basal		Average stand age — years											
area	20	30	40	50	60	70	80	90	100	110			
				SI	TE INDE	X 55							
20	302	422	499	552	590	619	642	660	675	687			
30	460	643	760	841	899	943	978	1,005	1,028	1,047			
40 50	620 782	867	1,025	1,134	1,213	1,272	1,318	1,356	1,386	1,412			
60	945	1,093 1,322	1,293 1,563	$1,430 \\ 1,728$	1,529 1,848	1,604 1,938	1,663 2,009	1,710 2,066	1,748 2,113	1,781 2,152			
70	1,109	1,551	1,834	2.028	2,169	2,275	2,358	2,425	2,480	2,526			
80		1,782	2,107	2,028 2,330	2,492	2,614	2,709	2,786	2,849	2,902			
90		े 	2,381	2,633	2,816	2,954	3,062	3,149	3,220	3,279			
100					3,142	3,296	3,416	3,513	3,593	3,659			
110 120					2004 CO.		3,772	3,879	3,967	4,040 4,422			
120	_								_	4,422			
90	991	409	540		TE INDE		704	794	740	754			
20 30	$331 \\ 505$	463 706	548 835	606 923	648 987	679 1,035	704 1,073	724 1,104	740 1,128	754 1,149			
40	681	952	1,125	1,244	1,331	1,396	1,447	1,488	1,522	1,550			
50	858	1,200	1,419	1,569	1.678	1,760	1,825	1,876	1,919	1,954			
60	1,037	1,450	1,715	1.896	2,028 2,380	2.127	2.205	2,268	2,319	2,362			
70	1,218	1,702	2,013	2,226	2,380	2,497	2,588	2,662	2,722	2,772			
80 90		1,956	2,313 2,614	2,557 2,890	2,734 3,091	2,869 3,242	2,973	3,058 3,456	3,127 3,534	3,185 3,599			
100	_		2,014	3,225	3,448	3,617	3,361 3,749	3,856	3,943	4,016			
110						3,994	4,140	4,257	4,353	4,434			
120		_	_					4,660	4,765	4,853			
130							<u></u>			5,274			
				SL		X 75							
20	364	508	601	665	711	746	773	795	813	828			
30	554	775	916	1,013	1,083	1,136	1,178 1,588	$1,211 \\ 1,633$	1,238	1,261			
40 50	747 942	1,045 1,317	$1,235 \\ 1,557$	1,366 1,722	$1,460 \\ 1,842$	$1,532 \\ 1,932$	1,588	1,633 2,059	1,670	1,701 2,145			
60	1,138	1,592	1,882	2,081	2,226	2,335	2,002 2,420	2,039	2,106 2,545	2,145			
70	1,336	1,868	2,209	2,443	2,612	2,740	2,841	2,921	2,987	3,042			
80	1,535	2,146	2,209 2,538	2,806	3,001	3,148	3,263	3,356	2,987 3,432	3,495			
90		2,426	2,868	3,172	3,392	3,558	3,688	3,793	3,878	3,950			
100 110		—	3,200	3,539	3,784	3,970	4,115	4,231 4,672	4,327	4,407			
120	_	_		_	4,178	4,383	4,543 4,973	5,114	4,778 5,230	4,866 5,326			
130			_			_	4,010		5,683	5,788			
				Sľ	TE INDE	X 85							
20	399	558	660	729	780	818	848	872	892	908			
30	608	850	1,005	1,112	1,189	1,247	1.293	1,329	1 359	1,384			
40	820	1,146	1,355	1,499	1,603	1,681	1.743	1.792	1,833	1,867			
50	1,034	1,445	1,709	1,890	2,021 2,443	2,120	2,198 2,656	2,260 2,731	1,833 2,311 2,793 3,278	1,384 1,867 2,354 2,845 3,339 3,836 4,335			
60 70	1,249 1,467	1,747 2,050	2,066 2,425	2,284 2,681	2,443 2,867	2,562	2,656	2,731	2,793	2,845			
80	1,467	2,050	2,425 2,785	3,080	3,294	3,008 3,455	3,117 3,581	3,206 3,683	3,278	3,839			
90		2,662	3,148	3,481	3,722	3,905	4,048	4,162	4,256	4,335			
100			3,512	3,884	4,153	4,357	4,516	4,644	4,749	4,001			
110		_		4,288	4,585	4,810	4,986	5,127	5,243	5,340			
120	—			—		5,266	5,458	5,613	5,739	5,845			
130	—							6,099	6,237	6,352			

Table 5.—Total cubic-foot volume of all trees over 2.5 inches d.b.h., by age and basal area

[In cubic feet]

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Initial				Init	ial stand	age — yea	rs			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	basal - area	20	30	40	50	60	70	80	90	100	110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10 									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	741	652	581	525	479	442	411	385	362	342
		812			588	541	502				396
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	842	745	670	612	565	527	495	467	443	422
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	844	740	665	608	563	527	496	470	447	427
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	828	715	639	549	542	508	419	400	430	416 393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80		610	540	043	004	413		421	409	359
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90			472	423	391	368	351	337	325	315
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	_				320	301	288	278	270	264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110						_	217	212	208	205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120					<u> </u>					140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					SIT						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	845	741	658	593	540		462	432	406	384
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	931	822	736	668	613	568	530	498	470	446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	970	856	768	699	645	600	562	530	502	477
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	979	857	768	700	647	604	552	524	100	486 477
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	900	793	701	638	590	553	599	496	435	455
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	301	738	644	582	538	505	478	456	437	420
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	_	100	573	514	474	445	422	404	388	375
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	<u></u>	<u>1072-021</u>		435	399	374	356	342	331	321
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110						295	282	272	265	321 259
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120		—			_	<u></u>		194	192	190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130				7		57.000				115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	964	841	744	669	609	560	519	485	456	430
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1,067	939	838	758	695	643	599	562	530	502
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1,117	982	879	799	735	682	638	601	568	540
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1,133	990	884	805	742	691	648	612	580	553
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	1,124	971	864	786	120	6/7	636	602	5/3	547
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1,098	931	822	690	636	643 505	562	070 594	510	525 490
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90		806	692	620	570	533	504	481	461	450
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100			607	537	492	460	436	416	401	388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110					403	376	357	343	332	388 323
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120			0				270	261	254	250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130									170	170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					SII		X 85				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1,099	954		755	686	630	583	544	511	482
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,222	1,070	952	860	787	726	676	634		565
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1,285	1,126	1,005	911	836	775	724	680	643	610
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1,310	1,141	1,018	924	850	790	740	697	660	628
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	1,307	1,127	1,001	908	837	779	731	690	656	625
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	1,283	1,090	961	870	802	747	702	665	633	605 570
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	1,243	1,034	903	749	691	695	500	624	544	070
110 559 507 471 445 425 409	100	_	905	741	656	599	559	597	509	199	522 464
120 373 353 339 328	110				559	507	471	445	425	409	396
	120	_		_			373	353	339	328	319
130 244 238	130								244	238	235

Table 6.—Net cubic-volume growth per acre in 10 years, by initial age and basal area

[In cubic feet per acre]

Basal		Average stand age — years											
area	20	30	40	50	60	70	80	90	100	110			
154 B271	1000000 A	NUMBER OF D		SII									
20	0.8	2.6	4.0	4.9	5.4	5.7 8.7	5.9	6.1	6.2	6.3			
30	1.3	3.9	6.1	7.4	8.2	8.7	9.0	9.2	9.4	9.6			
40	1.5	5.0	8.1	9.9	11.0	11.7	12.1	12.5	12.7	13.0			
50 60	1.7 1.8 1.8	5.9 6.7	9.9 11.6	12.4 14.8	13.8 16.6	14.7 17.7	15.3	15.7 19.0	16.1 19.4	16.4 19.8			
70	1.0	7.3	13.0	14.8	19.4	20.7	18.4 21.6	22.3	19.4 22.8	23.2			
80		7.7	14.4	19.2	22.1	23.8	24.8	25.6	26.2	26.7			
90			15.6	21.3	24.7	26.8	28.0	28.9	29.6	30.1			
100					27.4	29.8	31.2	28.9 32.2	33.0	33.6			
110	-		-			1	34.4	35.6	36.4	37.1			
120	-					_	<u></u>			40.6			
	Caleria -				E INDE								
20	1.4	3.4	4.8	5.5	5.9	6.2	6.5	6.7	6.8	6.9			
30 40	2.0 2.5	5.1 6.7	7.2 9.7	8.4 11.3	9.1 12.2	9.5	9.9	10.1	10.4 14.0	10.6			
50	2.9	8.1	12.0	14.2	12.2	12.8 16.2	13.3 16.8	13.7 17.2	17.6	14.2 18.0			
60	3.2	9.4	14.3	17.0	18.5	19.5	20.3	20.8	21.3	21.7			
70	3.2 3.3	10.5	16.4	19.8	21.7	22.9	23.8	24.5	25.0	25.5			
80	_	11.4	18.4	22.6	24.9	26.3	27.3	28.1	28.7	21.7 25.5 29.3			
90		1000	20.3	25.3	28.0	29.7	30.9	31.7	32.5	33.1			
100				27.9	31.2	33.1	34.4	35.4	36.2	36.9			
110					—	36.5	38.0	39.1	40.0	40.7			
120 130			_				_	42.8	43.8	44.6 48.4			
200				SIT	E INDE	X 75							
20	1.9	4.1	5.4	6.1	6.5	6.8	7.1	7.3	7.5	7.6			
30	2.9	6.3	8.2	9.3	9.9	10.4	10.8	11.1	11.4	11.6			
40	3.7	8.3	11.1	12.5	13.4	14.1	14.6	15.0	11.4 15.3	15.6			
50	4.3	10.2	13.8	15.7	13.4 16.9	17.7	18.4	18.9	19.3	15.6 19.7			
60	4.8	12.0	16.6	19.0	20.4	21.4	22.2	22.9	23.4	23.8			
70	5.2	13.6	19.2 21.8	22.2 25.4	24.0	25.2	26.1	26.8	27.4	23.8 27.9 32.1			
80	5.4	15.0	21.8	25.4 28.6	27.5 31.1	28.9	30.0	30.8	31.5 35.6	32.1			
90 100		16.3	24.3 26.8	31.8	34.6	32.7 36.5	33.9 37.8	34.8 38.9	39.8	40.5			
110			20.0	01.0	38.2	40.2	41.7	42.9	43.9	44.7			
120							45.7	47.0	48.0	48.9			
130							—		52.2	53.2			
					TE INDE								
20	2.5	4.8	6.0	6.7	7.2	7.5	7.8	8.0	8.2	8.3			
30	3.8	7.3	9.2	10.2	10.9	11.5	11.9	12.2	12.5	$12.7 \\ 17.1$			
40	4.9	9.8	12.3	13.8	14.7	15.4	16.0	16.5	16.8	17.1			
50 60	5.9 6.7	12.1 14.4	15.5 18.7	17.3 21.0	18.6 22.4	19.5 23.5	20.2 24.4	20.8 25.1	$21.2 \\ 25.7$	21.6 26.1			
70	7.9	14.4	21.8	21.0	26.3	23.5	24.4	29.5	30.1	30.7			
80	7.3 7.8	18.5	24.9	28.2	30.2	31.7	32.9	33.8	34.6	35.2			
90		20.3	27.9	31.8	34.2	35.9	32.9 37.2	38.2	39.1	39.8			
100			30.9	35.4	38.1	40.0	41.5	42.7	43.6	44.4			
110	-			39.1	42.1	44.2	45.8	47.1	48.2	49.1			
120	1111				•	48.4	50.1	51.6	52.7	53.7			
130								56.0	57.3	58.4			

Table 7.—Total cordwood volume per acre of all trees over 4.5 inches d.b.h., by age and basal area [In cords per acre]

Initial	Initial stand age — years											
basal – area	20	30	40	50	60	70	80	90	100	110		
		and the second se		SIT				420,753	2012	10.041		
20	5.9	6.4	5.7	5.0	4.4	4.1	3.8	3.5	3.3	3.1		
30	5.4	7.1	6.4	5.6	5.0 5.3	4.6	4.3	4.1 4.3	3.8 4.1	3.6		
40 50	4.3 2.9	7.2 6.9	6.8 6.9	5.9 6.0	5.3	4.9 4.9	4.5 4.6	4.3	4.1	39		
60	1.5	6.4	6.8	5.9	5.2	4.7	4.4	4.2	4.0	3.9 3.9 3.8 3.6		
70	.2	5.6	6.5	5.7	4.9	4.4	4.1	4.2 3.9	3.8	3.6		
80	1.0000	4.7	6.2 5.7	5.4	4.6	4.1	3.8	3.6 3.1	3.4	3.3 2.9		
90			5.7	5.0	4.2	3.6	3.3	3.1	3.0	2.9 2.4		
100 110			—		3.7	3.0	2.7 2.1	$2.6 \\ 2.0$	2.5 1.9	1.9		
120		_			_	_	2.1	2.0		1.3		
				SIT	E INDE	X 65						
20	8.0	7.4	6.3	5.5	5.0	4.6	4.2	4.0	3.7	3.5		
30	8.2	8.3	7.1	6.2	5.6	5.2	4.9	4.6	4.3	4.1		
40	7.6	8.8	7.5	6.6	5.9	5.5	5.2	4.9	4.6	4.4 4.5		
50 60	6.6	9.0 8.8	7.7 7.7	6.6 6.5	6.0 5.8	5.6 5.4	$5.2 \\ 5.1$	4.9 4.8	4.7 4.6	4.5		
70	5.2 3.7	8.5	7.6	6.3	5.5	5.1	4.8	4.6	4.4	4.2		
80		8.0	7.4	6.0	$5.5 \\ 5.1$	4.7	44	4.2	4.0	3.9		
90			7.0	5.5	4.6	4.1	3.9 3.3	3.7	3.6	3.4 3.0		
100	-		1.0	5.0	4.0	3.5	3.3	3.1	3.0	3.0		
110		1. .	-	1	1	2.8	2.6	2.5 1.8	2.4 1.8	2.4 1.7		
120 130	_			_		_		1.0	1.0	1.1		
				SIT	E INDE	X 75						
20	9.6	8.2	6.9	6.2	5.6	5.1	4.8	4.5	4.2	4.0		
30	10.5	9.3	7.9	7.0	6.4	5.9	5.5	5.2	4.9	4.6		
40	10.6	9.9	8.3	7.4	6.8	6.3	5.9	5.5	5.2	5.0		
50	10.2	10.3	8.5	7.5	6.8	6.3	6.0	5.6	5.3 5.3	$5.1 \\ 5.0$		
60 70	9.3 8.1	10.4 10.3	8.5 8.3	7.3 7.0	6.7 6.4	6.2 5.9	5.8 5.6	5.5 5.3	5.0	4.8		
80	6.7	10.0	8.0	6.6	5.9	5.5	5.2	4.9	4.7	4.5		
90		9.6	7.6	6.1	5.9 5.3	4.9	4.6	4.4	4.2	4.1		
100			7.0	5.4	4.6	4.2	4.0	3.8	3.7	3.6		
110				-	3.8	3.5	3.3	3.1	3.0	3.0		
120 130						_	2.5	2.4	2.3 1.6	2.3 1.6		
100			355	ST	E INDE	¥ 85			1.0	1.0		
20	11.0	9.1	7.8	6.9	6.3	5.8	5.4	5.0	4.7	4.4		
30	12.3	10.3	8.8	7.9	7.2	6.7	6.2	5.8	5.5	5.2		
40	12.9	11.0	9.3	8.4	7.7 7.8	7.1	6.7	6.3	5.9	5.6 5.8		
50	13.1	11.4	9.5	8.5	7.8	7.3	6.8	6.4	6.1	5.8		
60	12.8	11.5	9.5	8.4	7.7	7.2	6.7	6.3	6.0	5.7		
70 80	12.2 11.3	11.5	9.2 8.9	8.1 7.6	7.4 6.9	6.9 6.4	6.5 6.0	6.1 5.7	5.8 5.5	5.6 5.2		
90	11.0	11.2 10.9	8.4	7.0	6.3	5.8	5.5	5.2	5.0	4.8		
100			8.4 7.7	6.2	5.5	5.1	4.8	4.6	4.4	4.3		
110		-		5.4	4.7	4.3	4.1	3.9	3.8	3.6		
120					\Box	3.4	3.2	3.1	3.0	2.9		
130								2.2	2.2	2.2		

Table 8.—Net cordwood growth per acre in 10 years, by initial age and basal area

[In cords per acre]

Basał _				Ave	erage stan	d age — y	ears			
area	20	30	40	50	60	70	80	90	100	110
				SI	FE INDE					
20	0	0	118	411	898	1,431	1,870	2,178	2,359	2,434
30	0	0	168	619	1,335	2,134	2,850	3,320	3,587	3,709
40	0	0	186	727	1,651	2,708	3,696	4,401	4,789	4,988
50	0	0	175	770	1,834	3,156	4,397	5,361	5,968	6,263
60 70	ŏ	0	156 119	777 743	1,936	3,490	4,997	6,267	7,049 8,071	7,507 8,718
80	0	ŏ	83	690	1,954 1,929	3,646 3,728	5,451 5,767	6,966 7,601	8,989	9,858
90	_	_	43	630	1,858	3,749	6,008	8,125	9,791	10,940
100	-			-	1,824	3,808	6,225	8,595	10,574	12,001
110				_	-,		6,462	9,123	11,348	13,007
120			-		-		· —			14,045
					TE INDI					
20	0	42	325	888	1,545	2,076	2,420	2,558	2,628	2,677
30	0	61	465	1,304	2,330	3,164	3,646	3,893	4,005	4,080
40 50	ŏ	59 43	553 572	$1,602 \\ 1,772$	2,929 3,394	4,119 4,922	4,851 5,985	5,234 6,552	5,400 6,801	5,501 6,937
60	ŏ	22	568	1,866	3,783	5,669	7,027	7,820	8,200	8,383
70	ŏ	0	523	1,859	3,976	6,201	7,960	9,042	9,587	9,836
80	0 0	ŏ	475	1,836	4,084	6,630	8,774	10,175	10,934	11,289
90		_	419	1,768	4,122	6,914	9,463	11,241	12,238	12,727
100				1,736	4,167	7,267	10,144	12,238	13,521	14,163
110			_	_		7,538	10,764	13,218	14,789	15,580
120 130					-		_	14,293	16,048	17,007 18,451
100				ST	TE INDI	EX 75				10,101
20	0	135	654	1,439	2,172	2,562	2,737	2,821	2,885	2,938
30	ŏ	195	960	2,192	3,260	3,891	4,171	4,299	4,396	4,478
40	ŏ	219	1,155	2,716	4,256	5,171	5,610	4,299 5,797	5,928	6.038
50	0	215	1,262	3,160	5,093	6,378	7,028	7.308	7,475	6,038 7,613
60	0	195	1,318	3,447	5,818	7,534	8,421	8,825	9,034	9,201
70	0	156	1,277	3,563	6,318	8,532	9,776	10,332	10,603	10,800
80	0	117	1,224	3,648	6,770	9,402	11,052	11,831	12,179	12,407
90	107 - 17 P	76	1,161	3,643	7,073	10,137	12,221	13,291	13,756	14,022
100 110	_		1,116	3,680	7,345 7,637	10,920 11,640	13,358 14,528	14,731 16,130	15,332 16,900	$15,644 \\ 17,272$
120	_			_	1,001	11,040	15,691	17,575	18,483	18,905
130			(<u> </u>		-	· <u> </u>			20,058	20,544
					TE INDI					
20	2	296	1,119	2,072	2,650	2,898	3,011	3,096	3,166	3,225
30	0	429	1,645	3,075	4,003	4,409	4,588	4,718	4,825	4,914
40	0	503	2,024	3,975	5,333	5,928	6,187	6,362	6,506	6,626 8,355
50	0	524	2,276	4,710	6,537 7,628	7,423 8,916	7,800 9,422	8,023 9,696	8,204 9,915	8,355
60 70	0	515 471	2,423 2,459	5,280 5,693	8,590	10,287	9,422 11,035	9,696	9,915 11,638	10,098 11,852
80	ŏ	423	2,439	5,968	9,418	11,623	12,640	13,073	13,370	13,616
90		367	2,397	6,169	10,171	12,847	14,204	14,771	15,110	15,389
100			2,373	6,354	10,793	14,041	15,746	16,470	16,859	15,389 17,170
110			1000 Mart 10072	6,566	11,478	15,219	17,273	18,168	18,613	18,957
120					·	16,444	18,821	19,873	20,374	20,751
130					-			21,580	22,141	22,551

Table 9.—Total board-foot volume per acre of all trees over 8.5 inches d.b.h., by age and basal area [In board feet per acre]

Initial basal				Ini	itial stand	age — ye	ars			
area	20	30	40	50	60	70	80	90	100	110
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		12000-00-		Sr	FE INDE					
20	0	388	962	1,458	1,744	1,742	1,596	1,434	1,304	1,218
30	0	306	947	1,596	1,939	1,955	1,819	1,643	1,502	1,408
40	0	201	838	1,558	2,028	2,096	1,938	1,733	1,587	1,493
50	0	102	690	1,442	2,007	2,160	2,014	1,783	1,602	1,499
60	0	21	564	1,305	1,933	2,169	2,046	1,793	1,578	1,453
70 80	0	0	441	1,151	1,822	2,130	2,049	1,780	1,523	1,369
90	()	U	347 270	1,006 881	1,704	2,075 2,012	2,036	1,754 1,726	1,452 1,378	1,256 1,127
100		_	210	001	$1,581 \\ 1,487$	1,962	2,017 1,998	1,698	1,300	990
110	_			_	1,407	1,502	1,981	1,664	1,218	849
120		1 <u></u>				_				701
				SI	FE INDE	CX 65				
20	234	1,086	2,023	2,431	2,320	2,008	1,713	1,546	1,442	1,362
30	90	1,000	2,150	2,796	2,730	2,346	2,009	1,791	1,671	1,584
40	0	815	2,095	2,959	3,014	2,612	2,196	1,921 1,988	1,783	1,694
50	0	625	1,904	2,969	3,193	2,820	2,329	1,988	1,818	1,726
60	0	473	1,700	2,896	3,299	2,965	2,429	2,018	1,798	1,696
70 80	0	329	1,462	2,743	3,336	3,092	2,511	2,017	1,738	1,618
90		205	1,243	2,528	3,323 3,157	3,188	2,585	2,012 1,997	1,659 1,566	1,503 1,365
100			1,039	2,244 1,994	2,948	3,268 3,183	2,659 2,708	1,979	1,453	1,198
110				1,354	2,340	3,051	2,682	1,944	1,322	1,017
120		_		_		0,001	2,002	1,840	1,175	810
130				() (_			575
				ST	TE INDE	EX 75				
20	742	2,227	3,126	3,012	2,480	2,072	1,850	1,722	1,617	1,527
30	483	2,209	3,562	3,598	2,966	2,421	2,136	1,995	1,882	1,783
40	270	1,966	3,673	4,012	3,345	2,671	2,293	2,133	2,017	1,917
50	111	1,653	3,556	4,248	3,674	2,876	2,380	2,175	2,061	1,963
60	1	1,345	3,300	4,305	3,914	3,030	2,421	2,148	2,033	1,941
70	0	1,055	2,915	4,196	4,076	3,193	2,434	2,079	1,947	1,864
80 90	0	828 645	2,540 2,194	3,998 3,735	4,118	3,315	2,452	1,975	1,815 1,648	1,740
100		045	1,900	3,459	4,093 3,992	3,402 3,380	2,475 2,448	1,869 1,739	1,451	1,575 1,377
110			1,500	3,403	3,832	3,314	2,344	1,600	1,236	1,147
120				_	0,002	0,014	2,194	1,389	982	889
130	<u> </u>			<u> </u>					711	606
				SI	TE INDE	X 85				
20	1,641	3,542	3,900	3,178	2,554	2,243	2,071	1,932	1,813	1,710
30	1,239	3,704	4,594	3,848	3,008	2,596	2,401	2.249	2,119	2,006
40	876	3,496	4.954	4,356	3,319	2,792 2,906	2,570	2,416 2,475	2.283	2,167
50	570	3,085	5,020 4,875	4,743	3,615	2,906	2,627	2,475	2,344	2,167 2,231
60	349	2,626	4,875	5,000	3,872	2,944	2,602	2,451 2,361 2,215 2,025 1,799	2,327	2 219
70	173	2,159	4,579	5,127	4,089	3,024	2,526	2,361	2,246	2,147 2,023 1,855 1,647
80	48	1,766	4,202	5,133	4,257 4,343	3,058	2,408	2,215	2,112	2,023
90		1,429	3,800	5,031	4,343	3,102	2,287	2,025	1,931	1,805
100 110	_	· · · · · · · · · · · · · · · · · · ·	3,418	4,847 4,608	4,379 4,304	3,089 3,016	2,143 1,969	1,799	1,710	1,047
120	_			4,000	4,004	2,857	1,738	1,045	$1,454 \\ 1,165$	1,406 1,133
130					_	2,001	1,100	936	847	833
130		_						936	847	8

Table 10.—Net board-foot growth per acre in 10 years, by initial age and basal area [In board feet per acre]

changes over the 10-year growth period because average stand diameter increases. The predicted increase in average stand diameter 10 years after the initial thinning is given in table 14 (appendix), by site, age, and the initial residual basal area. Ingrowth and mortality, as well as accretion, affect the change in average stand diameter, and all three elements are incorporated into the program. In our example, average stand diameter would increase from 5.2 to 6.3 inches in 10 years, so the merchantable to total volume ratio would increase from 0.540 to 0.666. Multiplying this ratio by the total cubic-foot volume at age 40 (0.666 x 2.057) gives a merchantable volume of 1,370 cubic feet. Dividing by 80 gives 17.1 cords at age 40, and subtracting the 8.1 cords estimated at age 30 gives the 9.0 cords of growth shown in table 8.

Estimates of board-foot yield (table 9) and board-foot growth for 10 years (table 10) were computed by using the same procedure and the board-foot to total cubic-foot ratios given by equation 5 (appendix).

Many foresters in the central hardwood region are using stocking percent based on Gingrich's (1964) tree-area-ratio equation rather than basal area to express stand density. Our computer program calculates both stocking measures, so table 15 (appendix) is included here to aid those interested in expressing growth or yield in relation to stocking percent. The stocking percent shown here by site, age, and residual basal area after the initial thinning will vary when average stand diameter differs from those assumed in table 13 (appendix).

DISCUSSION

The predicted growth and yield values follow expected biological behavior patterns with respect to age, site quality, and stand density. We used these common variables in our equations not only because they are good predictors of growth and yield, but also because they have other utility to silviculturalists and managers and are generally available or else inexpensive and easy to measure.

The equations have received some field testing and it appears that their reliability should be acceptable for most uses. A more complete discussion of sources of error will be

included in a Ph.D. manuscript, "Growth and yield functions for thinned upland oak stands," by Martin E. Dale.

The relationships presented here help to establish, in general, the biological capabilities of upland oak stands over a broad range of stand and site conditions. This physical growth-response data are part of the information necessary for objectively evaluating specific thinning practices.

This system of equations indicates that maximum growth in basal area and total cubic-foot volume occurs with a low stocking; usually between 30 and 60 square feet of residual basal area regardless of site or age. Thus the stand density indicated here for maximum growth is somewhat less than that in earlier stocking recommendations (Dale 1968: Allen and Marquis 1970; and Gingrich 1971); however, in such recommendations other factors in addition to growth were considered. Initial thinning to such low densities is usually not recommended because this heavy cutting also tends to increase stem taper, reduce height growth, delay natural pruning, and perhaps stimulate epicormic branching of the residual trees.

If heavy thinning does in fact increase stem taper and reduce height growth, then the values presented here may result in overestimating volume at low stocking, and if adjusted, maximum volume growth would occur at a slightly higher stocking. The basal area and volume growth given here also includes ingrowth trees; and this ingrowth component becomes substantial when thinnings remove 50 percent or more of the original density. With such heavy thinnings, the residual crop trees grow rapidly in diameter. but there are not enough crop trees to fully utilize all available space; hence some of the growth potential of the site is diverted to the smaller understory trees or reproduction.

In general, we feel that in upland oak stands it requires at least 50 percent stocking —based on Gingrich's (1964) tree-area ratio equation — to fully occupy the area with potential crop trees, and to prevent extensive development of the understory or advanced reproduction. Also, stocking in excess of 50 percent will reduce the probability of adverse effects on stem taper, height growth, branch development, and natural pruning.

Growth in cordwood and board-foot volume is substantially more on the better sites, although basal-area growth is only slightly affected by site quality. Better sites produce up to 1.3 cords per acre annually between 20 and 30 years while poor sites produce only about 1/2 cord. Maximum periodic growth rates occur when many trees are reaching ingrowth size; hence the maximum periodic growth rate occurs when mean stand diameter is close to the threshold diameter -4.6inches for cordwood and 8.6 inches for sawtimber. Since this threshold diameter is reached at a younger age on the better sites, the peak in periodic mean annual growth is reached sooner on the best sites. This is illustrated in table 8, where cordwood growth on the best sites is shown to be greatest between 20 and 30 years and on poor sites it peaks between 30 and 40 years. Board-foot growth rates (table 10) are greatest at about 50 years on site 85; but on site 55 the peak board-foot growth rate is reached between 70 and 80 years.

Although maximum growth in quantity seems to occur at rather low stocking levels, a variation in basal area of 15 to 20 square feet around this point generally has only a minor effect on the growth rate. For example, on site 65 at age 30, growth is 8 to 9 cords in 10 years with a residual basal area stocking anywhere from 30 to 80 square feet (table 8), and at age 100 we get 4 to 5 cords of growth over the same range of basal-area stocking. Therefore, with such a small loss in quantity of growth and the possibility of adverse effects with low stocking, we feel that in the initial thinning it is better to leave 10 to 20 more square feet of residual basal area than what is indicated for maximum growth rates in the tables.

SUMMARY

Growth and vield equations were developed from the response of 154 permanent growth plots representing a broad range of age, site, and density classes in the upland oak timber type. Originally the stands were fully stocked; but a range of density levels was created by an initial thinning so growth could be studied in relation to stocking. The cubic-foot volume, cordwood, and board-foot volume yields obtained by using these equations are given for a wide range of stand age, site quality, and basal-area classes. Growth was computed for a 10-year period in terms of basal area, cubicfeet, cords, and board feet; and these predictions are given for a broad range of initial age and basal-area classes for site indexes 55, 65, 75, and 85.

Allen, Rufus H., Jr., and David A. Marquis.

1970, EFFECT OF THINNING ON HEIGHT AND DIAMETER OF OAK AND YELLOW-POPLAR SAPLINGS. USDA For-rest Serv. Res. Pap. NE-173, 11 pp., illus. NE. Forest Exp. Sta., Upper Darby, Pa.

Braathe, Peder. 1957. THINNINGS IN EVEN-AGED STANDS—A SUM-MARY OF EUROPEAN LITERATURE. 92 pp., illus., Univ. New Brunswick, Fredericton, New Brunswick.

Dale, Martin E.

1968. GROWTH RESPONSE FROM THINNING YOUNG EVEN-AGED WHITE OAK STANDS. USDA Forest Serv. Res. Pap. NE-112, 19 pp., illus. NE. Forest Exp. Sta., Upper Darby, Pa.

Gingrich, Samuel F. 1964. CRITERIA FOR MEASURING STOCKING IN FOR-EST STANDS. Soc. Amer. Forest, Proc. 1964: 198-201.

Gingrich, Samuel F. 1971. MANAGEMENT OF YOUNG AND INTERMEDIATE STANDS OF UPLAND HARDWOODS. USDA Forest Serv. Res. Pap. NE-195, 26 pp., illus. NE. Forest Exp. Sta., Upper Darby, Pa.

Schnur, G. Luther. 1937. YIELD, STAND, AND VOLUME TABLES FOR EVEN-AGED UPLAND OAK FORESTS. U.S. Dep. Agr. Tech. Bull. 560, 87 pp., illus.

Society of American Foresters. 1950. FOREST TERMINOLOGY. 93 pp. Society of American Foresters, Washington, D. C.

-

1000
Reine
77.04
2.59
p.
100.003
5.8
136
*Ca10010a
100
1.8
with picket
5775
225
4 - 5
4/10085
- #- SSR
de.
- Example
BUDDEN
Survey.
3.8
LANS?
1000
225.83
0.45
202
1000
P

Table 11.—Reg	gression equations	used for	growth	and	yield	estimates
---------------	--------------------	----------	--------	-----	-------	-----------

Equation number	Boulgtion form	Mean of dependent variable	Coefficient of determination (R ²)	$\begin{array}{c} \textbf{Root mean} \\ \textbf{square} \\ \textbf{residual} \\ (\textbf{S}_{y,\textbf{x}}) \end{array}$
(1)	$Y_1 = -BA^{8} Ln(B) + 3.68521BA^{75} + .011383BSA^{-1.05}$	1.80	0.518	0.733
(2)	$Y_2 = 3.09094 + .00930176S + 1.03909 Ln(B) - 20.11035A^{-1}$	7.463	.984	.064
(3)	$Y_{2} = 1.1341 + .0019876AS$	7.9	.867	1.147
(4)	$Y_4 =052676 + .7876045 \cdot \exp \left[-(1.298708117D)^{10} \right]$.632	.985	.016
	$Y_5 =088414 + 3.63827 \cdot \exp[-(2.00125D)^4]$	1.277	.969	.235

WI	rer	5

- Y_1 = net annual basal area increment per acre including ingrowth for all trees 2.6 inches d.b.h. or larger.
- Y_2 = natural logarithm of total cubic foot volume per acre for all trees 2.6 inches d.b.h. or larger, including bark, stump, tip, but no branchwood.
- Y_3 = quadratic mean stand diameter of trees 2.6 inches d.b.h. or larger.
- Y_4 = ratio of merchantable cubic-foot volume to total cubic-foot volume. Merchantable volume is for all trees 4.6 inches d.b.h. or larger and the volume excludes stump, bark, branches, and tip above 4.5 inch top d.o.b. Y_4 = 0.0 if D<2.3 and Y_4 = 0.735 if D>16 inches.
- Y_5 = ratio of board-foot volume to total cubic-foot volume. Board-foot volume based on International $\frac{1}{4}$ -inch rule for trees 8.6 inches d.b.h. or larger to a top d.o.b. of 8.5 inches. $Y_5 = 0.0$ if D<4.8 inches, and $Y_5 = 3.55$ if D>16 inches.
- B = basal area in square feet per acre of all living trees 2.6 inches or larger d.b.h.
- S = site index in feet at reference age 50.
- A = average stand age in years.
- D = quadratic mean stand diameter of trees 2.6 inches d.b.h. or larger.

D.b.h. class (inches)	Merchantable cubic-foot/ total cubic-foot ratio	Board-foot/ total cubic-foot ratio
3	0.0896	0.0
3 4 5 6	.3125	.0
5	.5181	.014
6	.6430	.228
7	.7016	.645
8 9	.7245	1.250
9	.7322	1.936
10	.7343	2,563
11	.7348	3.035
12	.7349	3.329
13	.7349	3.479
14	.7349	3.536
15	.7349	3.549
16	.7349	3.550
17	.7350	3.550

Table 12.—Ratios of merchantable cubic-foot volume and board-foot volume to total cubic-foot volume, by d.b.h. class

......

..

Table 13.—Average stand diameter of trees 2.6 inches d.b.h. and larger by site, age, and residual basal area

[In inches]

Basal	Average stand age — years									
area	20	30	40	50	60	70	80	90	100	110
				SIT						
20	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12.0	13.2	14.4
30	3.6	4.8	6.0	7.2	8.3	9.5	10.7	11.9	13.1	14.3
40 50	3.5	4.7 4.5	5.8 5.7	7.0 6.8	8.2 7.9	9.3 9.0	10.5 10.2	11.6 11.3	12.8 12.4	13.9 13.5
60	3.4 3.3	4.5	5.5	6.6	7.7	9.0 8.8	9.9	11.0	12.4	13.5
70	3.2	4.3	5.3	6.4	7.4	8.5	9.6	10.6	11.7	12.7
80		4.1	5.2 5.0	6.2	7.2	8.5 8.3	9.3 9.0	10.3 10.0	11.3	12.4
90		() 2	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
100	_				6.9	7.9	8.8 8.7	9.8	10.8	11.8
110 120				1.000			8.7	9.6	10.6	11.6
120						_	_	_	_	11.4
	11421041			SIT						
20	4.1	5.5	6.9	8.3	9.7	11.1	12.5	13.9	15.3	16.8
30 40	4.0 3.9	5.4 5.3	6.8 6.7	8.2 8.0	9.6	11.0	$12.4 \\ 12.2$	$13.8 \\ 13.5$	15.2 14.9	16.6 16.3
50	3.8	5.2	6.5	7.8	9.4 9.1	10.8 10.5	11.8	13.1	14.5	15.8
60	3.7	5.0	6.3	7.6	8.9	10.3	11.5	12.8	14.1	15.8 15.3
70	3.6	4.8	6.1	7.4	8.6	9.9	11.1	12.4	13.6	14.9
80	_	4.7	5.9 5.8	7.1	8.4	9.6	10.8	$12.4 \\ 12.0$	13.2	14.4
90		1	5.8	6.9	8.1	9.3	10.5	11.7	12.8	14.0 13.7
100				6.8	7.9	9.1	10.3	11.4	12.6	13.7
110 120	—	—	—			8.9	10.1	11.2 11.1	12.3	13.5
130			_		_	_	_	11.1	12.2	13.3 13.2
100				SII	E INDE	V 75				10.2
20	4.5	6.1	7.7	9.4	11.0	A 75 12.6	14.3	15.9	17.5	19.1
30	4.5	6.1	7.7	9.4	10.9	12.5	14.3	15.8	17.4	19.0
40	4.4	5.9	7.5	9.1	10.7	12.3	13.8	15.4	17.0	18.6
50	4.2	5.8	7.3	8.8	10.4	11.9	13.4	15.0	16.5	18.0
60	4.1	5.6	7.1	8.6	10.1	11.6	13.1	14.6	16.0	17.5
70	4.0	5.4	6.9	8.3	9.8	11.2	12.6	14.1	15.5	17.0
80	3.9	5.3	6.7	8.1	9.5 9.2	10.9 10.6 10.3	$12.3 \\ 11.9$	13.7	15.1	16.5
90 100	_	5.1	6.5 6.3	7.8 7.7	9.2 9.0	10.6	11.9	13.3 13.0	14.7 14.3	15.0
110			0.5	1.1	8.8	10.3	11.5	12.8	14.1	15.4
120	_						11.3	12.6	13.9	16.0 15.7 15.4 15.2
130		· · · ·			—				13.8	15.1
				SII	E INDE	X 85				
20	4.9	6.8	8.6	10.5	12.3	14.2	16.0	17.8	19.7	21.5
30	4.9	6.7	8.6	10.4	12.2	14.0	15.9	17.7	19.5	21.4
40	4.8	6.6	8.4	10.2	11.9	13.7	15.5	17.3	19.1	20.9 20.3
50	4.6	6.4	8.1	9.9	11.6 11.3	13.3	15.1	16.8	18.6	20.3 19.7
60 70	4.5 4.4	6.2 6.0	7.9 7.6	9.6 9.3	10.9	13.0 12.5	14.6 14.2	16.3 15.8	18.0 17.5	19.7
80	4.4	5.8	74	9.0	10.5	12.3	13.8	15.4	16.9	18.5
90	4.2	5.7	7.4 7.2	8.8	10.3	11.8	13.4	14.9	16.5	18.0
100		_	7.1	8.6	10.1	11.6	13.1	14.6	16.1	17.6
110		_		8.4	9.9	11.4	12.9	14.3	15.8	17.3
120 130						11.2	12.7	14.2	15.6	17.1
130					10-00		1.1	14.1	15.5	17.0

Table 14.—Increase in average stand diameter 10 years after thinning, by site, age, and residual basal area

[In inches]

Residual				Av	erage stan	d age — y	ears			
basal area	20	30	40	50	60	70	80	90	100	110
				SIT			test to environment			
20 30	1.4 .9 .5 .2 .0	1.6 1.2	1.6 1.3	1.5	1.4	1.3	1.1 .9 .7 .6 .6 .6 .6 .6	0.9 .7 .5 .5 .5 .5 .5 .5 .5 .5	0.7 .5 .3 .2 .3 .3 .3 .3 .3 .3 .3 .3	0.4
40	.5	1.2	1.3	1.2	1.2 1.0	1.0 .9	.9	.7	.0	.2
50	.2	.8	.9	.9	1.0	.9	7	.5	.2	.0
60	.0	.9 .8 .6 .4 .3	.9 .8 .7 .6	1.1 .9 .9 .8 .7 .7	1.0 .8 .7 .8 .7 .6	.9 .8 .7 .7 .7 .6	.6	.5	.3	.0
70		.4	.7	.8	.7	.7	.6	.5	.3	.1
80		.3	.6	.7	.8	.7	.6	.5	.3	.0
90 100	1000		.6	.7	.7	.7	.6	.5	.3	.1
110			_		.0	.6	.0	.0	.0	1.
110 120	-	÷	_	_			.0			0.4 .2 .1 .0 .0 .1 .1 .1 .1 .2
				SIT	E INDE	X 65				Derver.
20	1.8	2.0	2.1	2.1	2.0	1.8	1.8 1.3	$1.5 \\ 1.2$	1.2	0.9
30	1.3	1.7	1.8	1.8	1.7	1.5	1.3	1.2	1.0	.7
40	1.0	1.4	1.5	1.5	1.5	1.4	1.3	1.1	.8 .8 .7 .8 .7 .8 .7 .7 .8	.5
50 60	.6 .4 .2	1.1	1.3 1.2	1.4 1.3	1.4 1.3	1.4 1.2	$1.2 \\ 1.2$.9 1.0 .9 .9 .9 .9	.8	.5
70	.2	1.0	1.1	1.2	1.3	1.2	1.2	1.0	.1	.5
80		1.0 .8 .7	1.0	1.1	1.1	1.1	1.0	.9	.7	.5
90			1.0 .8	1.1 1.0 .8	1.1	1.1	1.0	.9	.8	.5
100	-			.8	1.0	1.0	1.0	.9	.7	.6
110						.9	.9	.9	.7	.5
120 130					1000	Contraction of the second seco		.9	.8	0.9 7.5.5.5.4.5.5.6.5.6.6
100		201-20	_	SII	E INDE	X 75			21-71	.0
20	2.3	2.6	2.7	2.7	2.6	2.6	2.4	2.1	1.9	17
30	1.7	2.1	2.3	2.4	2.4	2.3	2.4	1.8	1.6	1.7 1.4
40	13	1.8	2.0	2.1	2.1	2.1	1.9	1.7	1.5	1.1
50	1.1	1.5	1.8	1.8	1.9	1.9	1.8	1.6	1.4	1.1 1.1
60	1.1 .8 .6 .4	1.3	1.5	1.7	1.8	1.8	1.7	1.6	1.3	1.0 1.0
70	.6	1.2	1.3	1.5	1.5	1.7	1.6	1.4	1.3	1.0
80 90	.4	1.0 .9	1.1	1.3	1.4	1.5	1.5	1.5	1.3	1.0
100		.9	1.0 1.0	1.2 1.0	1.3 1.2	1.3 1.2	1.4 1.2	1.4 1.4	1.3 1.2	1.0
110			1.0	1.0	1.1	1.1	1.2	1.2	1.2	1.1
120 130							1.1	1.2	1.1	1.0 1.1 1.1 1.1 1.1
130					<u></u>				1.1	1.1
				SIT						
20	2.9 2.2	3.2	3.4 2.8	3.5	3.4	3.3	3.3	2.8	2.9	2.4
30	2.2	2.6	2.8	3.0	3.1	3.0	2.9	2.6	2.5	2.1
40 50	1.7	2.1 1.8	2.4 2.1	2.6 2.2	2.7 2.4	2.8 2.5	2.8 2.6	2.5 2.4	2.3 2.2	1.9
60	1.4	1.6	1.8	2.0	2.4	2.2	2.3	2.4	2.1	1.9
70	.9	1.3	1.6	1.7	1.9	2.0	2.0	2.1	2.0	1.8
80	.8	1.2	1.4	1.6	1.7	1.8	1.9	1.9	1.9	1.7
90		1.0	1.3	1.4	1.6	1.7	1.7	1.8 1.7	1.9	1.7
100			1.1	1.2 1.2	14	1.5	1.6	1.7	1.7	1.7
110		<u></u>		1.2	1.3	1.4	1.4	1.6 1.4	1.6	1.7
120 130	1.4 1.2 .9 .8 					1.3	1.4	1.4	1.5 1.4	2.4 2.1 1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.6 1.5
100								1.0	4.7	1.0

Basal	Average stand age — years										
area	20	30	40	50	60	70	80	90	100	110	
			04.27	SIT			25523	1000			
20	26	23	21	20	19	18	17	17	16	16	
30	39	34	32	30	28	27	26	25	24	24	
40 50	53 67	46 59	42 54	40 50	38 48	36	35 44	33 42	32 41	32 40	
60	81	55 71	65	61	58	45 55	53	51	50	40	
70	96	84	77	72	68	65	62	60	58	57	
80	-	98	89	83	78	75	72	70	67	66	
90			101	94	89	85	82	79	77	74	
100					100	95	92	88	86	83	
110		_				_	101	98	95	92	
120						5.000				101	
				SIT							
20	25	22	20	19	18 27	17	16	16	15	15	
30	37	33	30	28	27	26	25	24	23	22	
40 50	50	44	40	38	36	34	33	32	31	30	
60	63 77	56 68	51 62	48 58	45 55	43 52	42 50	40 49	39 47	38 46	
70	91	80	73	68	65	62	50	49 57	56	40	
80	-	92	84	79	65 75 85 95	71	59 68 78	66	64	54 62	
90			96	90	85	81	78	75	73	71	
100	_			100	95	91	87	84	82	79	
110						100	96	93	90	88	
120					-			102	99	96	
130		_	_							104	
				SIT	E INDE	X 75					
20	24	21	19	18	17	16	16	15	15	14	
30	35	31	29	27	26	24	24	23	22	21	
40	48	42	39	36	34	33	32	31	30	29	
50	60 73 87	53	49	46	43 53	42	40	39	37	36	
60 70	13	65	59	56	53	50	48	47	45	44	
80	101	76 88	70 81	66 76	62 72	59 68	57	55	53 62	52	
90	101	100	92	86	81	78	66 75	63 72	62 70	60 68	
100	_	100	103	96	91	87	84	81	78	76	
110			_	_	101	96	92	89	86	84	
120						_	101	98	95	92	
130				<u> </u>					103	100	
				SIT	E INDE	X 85					
20	23	20	18	17	16	16	15	15	14	14	
30	34	30	28	26	25	24	23	22	21	21	
40	46	41	37	35	33	32	30	29	29	28	
50	58	51	47	44	42	40	38	37	36	35	
60 70	71	62	57	54	51	48	46	45	44	42	
70 80	84 97	74 85	67 78 88 99	63 73	60 69	57 66	55 63	53	51	50	
90	51	85 97	88	83	79	75	79	61 69	59 67	58 66	
100		_	99	93	88	84	72 80	78	75	73	
110			_	102	78 88 97	93	89	86	75 83	81	
120		_				101	98	94	91	89	
130		—	-	_				102	99	96	

Table 15.—Stocking percent based on tree-area ratio, by site, age, and residual basal area

1

THE FOREST SERVICE of the U. S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives — as directed by Congress — to provide increasingly greater service to a growing Nation.