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Fundamental Elements of
Ecologically Healthy Watersheds in
the Pacific Northwest Coastal
Ecoregion

ROBERT J. NAIMAN, TIMOTHY J. BEECHIE, LEE E. BENDA,
DeaN R. BERG, PETER A. BIssoN, LEE H. MacDoONALD,
MATTHEW D. O’CONNOR, PATRICIA L. OLSON,

AND E. ASHLEY STEEL

Abstract

Characteristics of streams and rivers reflect variations in local geomor-
phology, climatic gradients, spatial and temporal scales of natural distur-
bances, and the dynamic features of the riparian forest. This results in a
variety of stream types which, when coupled with the many human uses of
the Pacific Northwest coastal ecoregion, presents a difficult challenge in
identifying and evaluating fundamental, system-level components of eco-
logically healthy watersheds. Over 20 types of streams are found in western
Oregon, Washington, and British Columbia and in southeastern Alaska, a
region where extractive forest, agricultural, fishing, and mining industries
and a rapidly increasing urban population are severely altering the land-
scape. Yet stream characteristics remain the best indicators of watershed
vitality, provided the fundamental characteristics of healthy streams are ac-
curately known. The premise of this article is that the delivery and routing
of water, sediment, and woody debris to streams are the key processes reg-
ulating the vitality of watersheds and their drainage networks in the Pacific
Northwest coastal ecoregion. Five fundamental components of stream cor-
ridors are examined: basin geomorphology, hydrologic patterns, water qual-
ity, riparian forest characteristics, and habitat characteristics. Ecologically
healthy watersheds require the preservation of lateral, longitudinal, and ver-
tical connections between system components as well as the natural spatial
and temporal variability of those components. The timing and mode of in-
terdependencies between fundamental components are as important as the
magnitude of individual components themselves.
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Introduction

major conceptual advancements only in the Jast decade (Vannote etal. 1980,
Newbold et al. 1982, Hynes 1985, Naiman et al. 1988). Longitudinal, lat-
eral, and vertica] connections in controlling the ecological vitality of streams
and rivers are recent concepts requiring additiona] Investigation Yet, in
combination, these and subsequent studies point to running waters ag €co-
logical systems demonstrating considerable variability in Space and time and
requiring a high degree of connectivity between System components for the
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FIGURE 6.1. Principal factors influencing stream characteristics in the Pacific North-
west coastal ecoregion.

volcanism, continental and alpine glaciation, and erosional processes, in-
cluding mass wasting. Climatic processes include the dominant form of pre-
cipitation (e.g., rain, snow, or transition), the seasonal timing, and the run-
off patterns. Stream size is a function of the spatial position of the channel
in the drainage network and upstream geomorphic and climatic processes.
Thus a broad array of stream types may be found within a relatively small
area, with each having different biological characteristics and presenting dif-
ferent managerial challenges.

The phrase ecologically healthy refers to functions affecting biodiversity,
productivity, biogeochemical cycles, and evolutionary processes that are
adapted to the climatic and geologic conditions in the region (Karr et al.
1986, Karr 1991). Collectively, these functions can be a measure of system
vitality. Some tangible measurements of ecological healthy watersheds in-
clude water yield and quality, community composition, forest structure, smolt
production, wildlife use, and genetic diversity. Our working hypothesis is
that delivery and routing of water, sediment, and woody debris to the stream
channel are the key processes determining the ecological health of wa-
tersheds in the Pacific Northwest coastal ecoregion. This article will present
a broad overview of several fundamental components of ecologically healthy
watersheds in this ecoregion, and present a conceptual model of principal
interdependencies between those components.
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Table 6.1. Six fundamental components of ecologically healthy watersheds in the
Pacific Northwest Pacific Northwest coastal ecoregion.

pathways

Approximate
Hierarchical Factors Sphere of
Component Level Considered Influence
1. Basin 1°-2° . Physiographic Effects all factors
geomorphology and geologic except climate
setting
. Significant
geomorphic
processes
. Natural
disturbance
regimes
2. Hydrologic 1°-2° . Discharge Channel
patterns pattern flood geomorphology
characteristics and other
and water physical
storage characteristics,
. Bedload and some aspects of
sediment routing chemical regime,
. Subsurface riparian forest,
dynamics and in-channel
community
dynamics
3. Water quality 3°4° . Biogeochemical Feedbacks to
processes terrestrial
. Fundamental vegetation and
parameters direct effects on
chemical and
biotic
characteristics
4. Riparian forest 2°-3° . Light and Most aspects of the
characteristics temperature physical,
. Allochthonous chemical, and
inputs biotic
. Woody debris characteristics
source
5. Habitat 3° . Fish habitat Influence in other
characteristics preferences biotic
. Fish community communities in
dynamics stream and strong
. Spatial and feedbacks to
temporal physical,
dynamics chemical, and
. Woody debris terrestrial
accumulations dynamics
. Wildlife
communities
. Trophic
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geology of the Pacific' Northwest mountains contains a diversity of lithol-
ogies, including marine sedimentary sequences, metasedimentary rocks,
various old and more recent volcanics, and granitic plutons (McKee 1972).
Suspect terrain, or rafted continental crust, also contributes to the geologic
complexity.

The most recent continental glaciation ended approximately 14,000 years
B.P. and significantly altered the landscape of northwestern Washington (north
of Centralia), British Columbia, and parts of southeastern Alaska (Crandell
1965). The retreating ice sheets deposited thick layers of till, lake clay, and

outwash sand in valley bottoms and the Puget Lowland. Typically, major

rivers and many smaller tributaries within these regions continue to ingcise
through glacial sediments.

Basin Geomorphology
Natural Disturbances and Stream Size

Basin geomorphology in ecologically healthy watersheds is affected by the
type, frequency, and intensity of natural disturbances. Characteristics of these
disturbances reflect the spatial position of channel segments in the drainage
network. Processes of material delivery and routing are highly interactive
with hydrologic patterns and riparian vegetation.

Geomorphic Processes and Forms in Low-Order Channels.

In the Pacific Northwest, low-order (e.g., first- and second-order) stream
segments represent >70% of the cumulative channel length in typical moun-
tain watersheds (Benda et al. 1992). Hence low-order channels are the pri-
mary conduits for water, sediment, and vegetative material routed from hill-
slopes to higher-order rivers. First- and second-order basins are naturally
prone to catastrophic erosion because steep slopes adjacent to steep channels
favor landslides and debris flows.

In the few studies conducted in the coastal ecoregion, first- and second-
order channels in steep bedrock of mountain basins do not transport signif-
icant quantities of sediment by water flow; hence these channels have limited
amounts of stored alluvium (Figure 6.4, top). Swanson et al. (1982) esti-
mated that fluvial transport accounted for approximately 20% of the total
sediment yield from a first-order basin in the central Oregon Cascades. In
the Oregon Coast Range, Benda and Dunne (1987), using a sediment budget
approach that included specifying sediment routing by debris flow, estimated
that fluvial processes accounted for 10 to 20% of the total sediment yield.

Low-order channels are filled primarily with colluvium, characterized by
coarse, unsorted sediments, including silts and clays derived from landslides
and debris flows (Benda and Dunne 1987). Low-order channels also contain
substantial amounts of boulders (>27 cm diameter) and woody debris (>10
c¢m diameter) because streamflow is not competent to transport the largest
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Channel Morphology Disturbance Regimes
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FIGURE 6.4. Generalized channel morphology and disturbance regimes associated
with low-, mid-, and high-order streams in the Pacific Northwest coastal ecoregion.
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materials. First- and second-order channels have steep gradients (typically
>8 degrees), but have lower gradients over shorter (<10 m) lengths due to
accumulations of woody debris organized into debris jams which create a
stepped longitudinal profile (Swanson and Lienkaemper 1978). Woody de-
bris jams store sediment and contribute to discontinuous sediment transport
during storms (Heede 1972, Mosley 1981). Bedforms in steep first- and
second-order channels are generally limited to plunge pools in coarse-tex-
tured substrate, migrating gravel sheets originating from streamside land-
slides, and local accumulations of finer sediment upstream from woody de-
bris and boulder obstructions. Woody debris jams can account for the majority
of energy loss of flowing water in steep, low-order channels (Beschta and
Platts 1986), implying that less energy is available for sediment transport.

Landslides occur on steep slopes during large rainstorms or rain-on-snow
events (Swanston and Swanson 1976). Furthermore, wildfires kill vegeta-
tion, and loss of root strength may result in landslide and debris flow activity
during large rainstorms (see below). Certain landslides at the heads of low-
order valleys are transformed into debris flows, eroding accumulated sedi-
ment and organic debris from first- and second-order channels (Benda and
Dunne 1987). Debris flows are one of the most common forms of mass
wasting in mountain watersheds of the coastal ecoregion, and are the prin-
cipal process transporting sediment and woody debris in first- and second-
order channels (Swanson et al. 1985). Recurrence intervals of debris flows
have been estimated to be once in 500 years for first-order channels in the
central Oregon Cascades (Swanson et al. 1982), and once in°750-1,500
years for first- and second-order channels in the Oregon Coast Range (Benda
and Dunne 1987).

Geomorphic Processes and Forms in Mid-Order Channels.

Third- through fifth-order channels, referred to as mid-order channels, are
characterized by moderate to steep gradients (1 to 6 degrees), substrates
ranging from boulders to gravels (or sands in some streams), and abundant
large organic debris in jams and single pieces (Figure 6.4, middle). True
alluvial channel systems in the coastal ecoregion begin at third-order chan-
nels (e.g., where the majority of sediment and organic debris is transported
by water).

Mass wasting often dominates the amount and type of deposition along
narrow valley floors of mid-order channels. Debris flow deposits in confined
valleys create fans at mouths of first- and second-order basins, and levees
and terraces along valley floors (Benda 1990). Streams are often forced to-
ward the opposite valley wall by alluvial or debris flow fans. For example,
65% of stream meanders in a fifth-order basin in the Oregon Coast Range
with a sinuosity of >1.1 were maintained by debris flow fans (Benda 1990).
Landslides and debris flows also deposit large volumes of sediment and veg-
etative material (1,000 — 10,000 m®) directly into mid-order channels. Local
channel aggradation and logjams persist at the site of deposition for years
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stream reaches to entire tributaries (Benda 1990). In addition, spatial vari-
ability in channel form in mid-order streams can be significant due to fre-
quent deposits of sediment and organic debris from landslides, debris flows,
and earthflows.

Geomorphic Processes and Forms in High-Order Channels.

Large rivers of sixth order and higher integrate the diversity of erosional
processes in time and space (Figure 6.4, bottom). Hence sediment supply
is more steady in time, and as a result the channel form (that which is de-
pendent on the sediment supply rate, such as pools) is more uniform in
space. In addition, extensive alluvial terraces and floodplains isolate the river
from direct contact with hillslopes and low-order tributary basins, and there- -
fore limit the direct influences of mass wasting.

Large rivers sort sediment by size or selectively transport it along the
longitudinal gradient from third- through sixth- and higher-order channels.
As gradient decreases and channels widen, transport of large sediment de-
creases. The coarsest sediment is found in upper watersheds, often adjacent
to mass wasting deposits; the finest sediment, such as sand and small gravel,
is in the lower reaches (Brierley and Hickin 1985). Particle comminution or
abrasion further limits sediment size downstream. General exceptions to this
decline in substrate size downvalley include local accumulations of larger
particles at tributary confluences, aggradation of finer sediment behind de-
bris jams, and landslide and debris flow deposits. '

Large discharge and easily erodible banks in large rivers favor the de-
velopment of meandering floodplain channels, creating alternating pool and
riffle morphology (Dunne and Leopold 1978). Other common bedforms in
large rivers include mid-channel bars formed by organic or inorganic ob-
structions, and transverse bars formed by flow separation due to changing
channel geometry (Figure 6.4, bottom). The scale and dimension of the pool-
riffle morphology depend on bank height and composition, size and type of
riparian vegetation, size of bedload, discharge regime, and so forth. Rivers
tend to be slightly deeper and significantly wider than steep stream channels
upvalley; width to depth ratios range from ~10 to >20.

Lateral migration of rivers occurs continuously and does not depend on
extreme events, though migration may occur more rapidly during large floods.
Evulsions are common and multiple thread channels are formed, often dur-
ing flood events, because of weak bank deposits. This leads to the devel-
opment of floodplains kilometers wide containing numerous active and semi-
active channels (Sedell and Froggatt 1984). Meander cutoffs create oxbow
lakes, the size and number depending on meander history of the river, width
of the floodplain, and groundwater characteristics of the alluvial plain. Wet-
lands become numerous within and along cutoff meanders and oxbow lakes.
If the hydrologic regime is characterized by a high flood frequency, lateral
migration may also occur more frequently. Hence vegetation patterns along
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greater heterogeneity of stand ages.
Small tributaries, originatin

Erosion and Sedimentation in Ecologically Healthy Watersheds

While erosion and sedimentation are often viewed negatively from a bio-
logical point of view, they are essential to the ecological functioning of
aquatic and terrestrial communities because they provide the sources and the
surfaces necessary for habitat. In mountain regions in particular, erosion and
sedimentation are often violernt (e.g., landslides, debris flows, landslide/
dam-break floods, and snow avalanches) and produce mortality among ter-

White 1985). The disturbance regime, therefore, is the type, frequency,
magnitude and spatial distribution of changes in biological communities.
Changes in the supply or the routing of sediment and organic debris are
usually the result of local mass wasting or large floods. Some specific effects
of mass wasting deposits on valley floors and channels have been covered
in the previous sections on low- and mid-order channels. Floods not asso-

ciated with mass wasting have less of an influence on low- to mid-order
rivers (Grant 1986).
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contributing determinants of natural stream characteristics. The influence of
flood regimes (associated largely with climate and elevation) and watershed
characteristics (such as geomorphology) is discussed in the following section.

Erosion in mountain terrains of the coastal ecoregion is dominated by
mass wasting. Therefore, triggering mechanisms such as rainstorms and
wildfires were responsible for episodic transfers of sediment and organic
debris from hillslopes and low-order channels to third- and higher-order streams
and rivers (Swanson et al. 1982, Benda 1990). Past tense is used because
wildfires are typically suppressed, while timber harvest activities have cre-
ated a new pattern of disturbance across landscapes. Little is known about
frequencies, magnitudes, and spatial distributions of historic wildfires and
rainstorms, and therefore characteristics of natural erosional patterns (or dis-
turbance regimes) in large watersheds are not well understood.

Wildfires, of varying intensities and in various locations, are controlled,
to some extent, by climate and local topography (Teensma 1987). In Mount
Rainier National Park, Washington, Hemstrom and Franklin (1982) esti-
mated average recurrence intervals for stand-resetting wildfires to be ~450
years. In coastal forests of the Olympic Peninsula and Oregon Coast Range,
a recurrence interval of a large stand was about two centuries (Agee 1990).
In contrast, recurrence intervals of rainstorms that initiate landslides and
debris flows are a few decades or less (Pierson 1977). A wildfire followed
by large storms has the potential of inducing a spate of erosion that may
result in sedimentation, and therefore a large channel disturbance over stream
reaches to entire drainage networks (Benda 1990).

Erosion- and sedimentation-related disturbances in channels exhibit spatial
variability because storms and fires act on different areas at different times.
The scale of heterogeneity may range from individual small basins (and
channels) to a major portion of a large watershed (numerous channels).

Several aspects of disturbance regimes are important to the functioning of
biological communities in mountain watersheds. Unfortunately, knowledge
of natural disturbance regimes is limited because of the length of time re-
quired for the processes to operate (100 to 1,000 years) and therefore to be
observed by humans, and because recent use has altered the disturbance
regimes in ways not fully understood. Nevertheless, we are able to concep-
tualize some attributes of natural disturbance regimes.

Disturbances related to erosion and sedimentation in low- to mid-order
basins are thought to be characterized by high magnitude and low frequency
because of the large number of mass wasting events and the potential for
wildfires to range over these basins (Swanson et al. 1982, Benda 1990)
(Figure 6.4). Within larger watersheds (mid-order, Figure 6.4) asynchronous
combinations of fires and rainstorms act to limit the magnitude of the sed-
iment and organic debris movement downstream. Though events may not
be coupled in time within a larger watershed, they occur (collectively) more
frequently because of the greater area and therefore greater probability of
occurrence. This creates a disturbance regime, as far as sediment flux is
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Disturbance Magnitude

L II.

Frequency

FIGURE 6.5. In ecologically healthy watersheds there is a natural spatial and temporal
heterogeneity of disturbances between subbasins.

concerned, characterized by lower magnitude and increasing frequency (Fig-
ure 6.4, middle). In high-order rivers, the integration of many occurrences

turbances while increasing their frequency (Figure 6.4, bottom).

Spatial heterogeneity of erosion and sedimentation due to asynchronous
fires and rainstorms may lead to adjacent basins having decoupled patterns
of disturbance (Figure 6.5). In this example, the degree of disturbance can
be thought of as time since the last event and the magnitude of that event.

termediate, and high disturbance.

Therefore, the type, intensity, and frequency of erosional events and their
spatial distribution across landscapes are important considerations to under-
standing the relationships between geomorphic process, form, and ecolog-
ical functioning of watersheds. The temporal and spatial scales at which
these processes occur, however, complicate their study. Our minimal knowl-
edge of natural disturbance regimes limits our understanding of the func-
tioning of ecologically healthy watersheds over long periods and large spatial
scales, thus precluding accurate environmenta] assessments of the long-term
effects of land use in watersheds in the coastal ecoregion.

Hydrologic Patterns
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FIGURE 6.6. Flood regions of western Washington, USA.

Timing and Quantity of Flow

Distinct flood regimes in the coastal ecoregion of Washington have been
identified in two analyses of regional stream gauging data (Bodhaine and
Thornas 1964, Cummans et al. 1975). A map of these flood regions provides
perspective on the spatial variability of runoff intensity (Figure 6.6).
Comparison of the Stillaguamish River (Region I), Nooksack River and
Cedar River (Region II), and Pilchuck Creek (Region III) provides an ex-
ample of basic differences in amount and form of precipitation, seasonal
timing, and water storage within a region (Figure 6.7). Region I comprises
the western Cascades and the northwestern portion of the Olympic Penin-
sula. The Cascade Mountain portion of Region I is located in the atmo-
spheric convergence zone east of the Strait of Juan de Fuca where air masses
moving north through the Puget Lowland collide with air moving east through
the Strait, causing heavy precipitation. Region II covers most of the rest of
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FIGURE 6.8. Estimated 25-year recurrence interval peak discharges for the three dom-
inant flood regions in western Washington, by drainage area.

The significance of floods to high-order channels and associated riparian
forests is as a disturbance creating heterogeneous habitat and as a recharge
source for alluvial aquifers. Identifying a characteristic flood threshold at
which significant disturbance occurs for a given stream, location, or region
may be desirable to assess ecological effects. Once identified, such thresh-
olds could define the spatial and temporal limits of disturbance in floodplain
and riparian environments. This concept is best explored in the context of
the following case study.

The potential for defining an ecologically significant flood recurrence n-
terval is suggested by a study of the Skagit River, Washington. Stewart and

%{r 6 : —7/ Receigt;ir\,ab
1R % _7 72 100y

2.6 26 260
Drainage Area (km?)

FIGURE 6.9. Predicted peak discharge of 2-year, 25-year, and 100-year recurrence
interval floods in Region I (western Washington, USA) by drainage area.
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-Yyear recurrence interval flood had a discharge almost double
the mean annuaj ﬂood—suggesting, perhaps, a threshold. Further hydro-
logical and ecological analyses would be necessary to determine whether the
10-year flood recurrence interval can be matched with patterns of riparian

vegetation successjon, thus providing evidence of an ecologically significant
flood threshold.

Runoff Processes

, The wetted area of the drainage network €xpands and contracts seasonally
In response to precipitation, local topography, and soj] characteristics (Hew-
lett and Nutter 1970, Dunne 1978, Burt and Arkel] 1986). Investigations in
humid mountainous regions throughout the world substantiate the applica-
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October - January
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FIGURE 6.10. Variable source area concept for water availability and storage for three
hydrologic seasons : October — January, February — June, and July — September.

bility of this variable source area concept (Swistock et al. 1989, Wolock et
al. 1989, Sunada and Hong 1988, Fritsch et al. 1987, Rhodes et al. 1986,
O’Loughlin 1986, Satterlund 1985, Troendle 1985, Bruijnzeel 1983) (Figure
6.10). These studies conducted outside the Pacific Northwest show enough
similarities to extend the concept to the Pacific Northwest coastal ecoregion.

Generally, variable source area has been applied only to runoff in small
watersheds. However, the concept should be extended to larger watersheds
or to explain other processes, such as nutrient cycling and characteristics of
riparian forests that are important to the stream ecosystem (Rhodes et al.
1986, Oliver and Hinckley 1987, Burt 1989). The dynamics of the variable
source area are important where runoff timing and duration influence eco-
logical processes. For example, during summer drought, source areas con-
tract as drainage from hillslopes decreases (O’Loughlin 1986). As soil tem-
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perature rises, biological activity increases in the shallow soil mantle unti]
it is eventually reduced by low moisture availability (Maser and Trappe 1984,
Waring and Schlesinger 1985). In autumn, precipitation increases and the
variable source area expands. Water levels rise and the groundwater re-
charge phase begins. Increased water contact within the soil enhances the
capture of carbon and nutrients (Rhodes et al. 1986, Wolock et al. 1989).

Runoff Processes in Low-Order Watersheds.

Variability in channel pattern and flow regimes creates a habitat mosaic along
the longitudinal and lateral axes of streams (Minshall 1988, Pringle et al.
1988). At high elevations, low-order watersheds predominate. Topography,

soil attributes, and initial source of flow (e.g., glacial, snow, seeps, hillslope .

runoff) influence the flow regime and variable source area for the low-order
channels. Low-order watersheds are major source areas for downstream sur-
face water and for recharge of alluvial aquifers (Compana and Boone 1986).
However, water storage is limited by steep hillslopes and shallow soils ad-
Jacent to the channel. Exceptions occur in zones of small floodplains and
wet meadows where local subsurface water may contribute to streamflow,
in alpine areas during snowmelt, and in permanent snowfields or glacier-
fed streams.

Subsurface areas may act as a storage compartment in winter and as a
source for organic and inorganic nutrients (Triska et al. 1989q). Deep per-
colation and groundwater recharge occur beneath the snowpack (Compana
and Boone 1986, Munter 1986, Rhodes et al. 1986). Groundwater levels
and soil moisture remain high through midwinter. Subsurface flow is suf-
ficient to sustain baseflow and contributes nutrients to streams during winter.

At high elevations, the variable source area for lower-order streams ex-
Pands substantially during snowmelt as soil layers become saturated (Figures
6.4 and 6.10). When soil is fully saturated, overland flow is generated by
continued snowmelt. Overland flow is important for providing additional
nutrients to the stream. For example, nitrate-nitrogen concentrations are higher
in overland flow than in groundwater flow, with the highest concentrations
occurring during peak discharge (Rhodes et al. 1986). This nitrogen pulse
is important for providing nutrients to the nitrogen-limited streams of the
coastal ecoregion.

In midsummer, water levels recede and the variable source area contracts
as soil water is withdrawn and transpired by vegetation (Harr 1976, Walters
et al. 1980). The subsurface hydrologic gradient toward the stream increases
as stream water levels subside. The subsurface storage compartment drains
relatively quickly toward the stream (zone of convergence) transporting nu-
trients and carbon from the riparian forest (Peterjohn and Correll 1984, Triska
et al. 1989a, b). During drier periods, the variable source area may shrink
to the channel, with the channel then acting as the primary storage
compartment.
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Runoff Processes in Mid-Order Watersheds

Alluvial stream processes dominate in third- through fifth-order watersheds
and channels. Variable source area and storage expand as the stream valley
widens. However, surface storage in oxbow lakes and overflow channels
remains limited. (Benda 1990). Water movement from the hillslopes and the
level of soil saturation at the hill bottom are still important runoff compo-
nents (O’Loughlin 1986). One result is formation of wetlands at the base of
hillsides. Wetlands are important storage areas for flow, expanding the vari-
able source area through the season (Holland et al. 1990, Carter 1986, Wald
and Schaefer 1986). In the upper reaches, riparian wetlands are restricted
due to narrowness of the valley. However, wetlands form landward of flu-
vial floodplain features such as scroll bars, and on alluvial fans deposited
by tributaries at the base of hillslopes (L. Mertes, University of California,
Santa Barbara, pers. comm.). Beaver (Castor canadenis) also contribute to
the formation of storage features (Naiman et al. 1988). During dry seasons,
some wetlands become part of the variable source area; however, others are
perched and do not act as a water or nutrient source to the stream, but as a
sink (Beaudry et al. 1990).

Local groundwater aquifers are recharged by ample winter precipitation
and snowmelt and are an important component of streamflow and the vari-
able source area throughout the year (Walker 1960, Hewlett and Nutter 1970,
Freeze and Cherry 1979, Burt and Arkell 1986). Overbank flooding provides
additional recharge to groundwater and wetlands. Flooding duration is shorter
than in higher-order channels. For example, the two-year flood duration in
a mid-order stream (at 500—1,000 m elevation) is approximately 1-2 days.
The two-year flood duration for higher-order streams is approximately 3—4
days (estimated from the USGS — Water Resource Data Reports, 1950—
86). Aggradation due to mass wasting or episodic debris flows can increase
the flood stage and duration for mid-order streams.

Runoff Processes in High-Order Watersheds

Higher-order (>sixth-order) watersheds and channels occur at lower ele-
vations where the dominant form of precipitation is rain. As the stream val-
ley broadens, the variable source area expands and remains more spatially
and temporally stable (Figures 6.4 and 6.10). Tributaries still exhibit sea-
sonal expansion and contraction, but not to the degree seen in lower-order
streams at higher elevations. Flow hydrographs (Figure 6.7) indicate that
winter storm and snowmelt are the dominate flow generators. Tributaries
confined to lower elevations show no influence from rain-on-snow events;
higher-order streams are still influenced by rain-on-snow events.

At low and moderate flow conditions, the main river channel meanders
across the floodplain (Leopold et al. 1964). Over time, cutoff channels,
oxbow lakes, meander scrolls, and other backwater and high water channels
develop on the broad valley floor. Along some reaches, logjams redirect
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flow into secondary channels, or the river forms new channels (Walker 1960,
Lienkaemper and Swanson 1987). Increases in depression storage serve tq
lengthen the time of ponding, and to dampen flood peaks, while prolonging
the duration of inundation. Nonperched Systems supply water to subsurface

pold 1978, Ponce and Lindquist 1990).
Precipitation, side valley runoff, and groundwater seeps contribute to water

Some floodwaters are placed in long-term storage in groundwater and deeper
wetlands. Flooding is not restricted just to snowmelt or storm events. Lesser
magnitude floods are due to accumulated sediment, beaver dams, fallen trees,
and debris dams (Sedel] et al. 1988). Thus, in ecologically healthy wa-

tersheds in the Pacific Northwest coastal ecoregion, the valley bottoms are
wet or flooded most of the year.

late winter and early spring precipitation, whereas the flow regime of the
higher-order main channel is regulated by winter storms, snowmelt, and
groundwater.

Lowland rivers become a network of islands, wood debris dams, sloughs,
oxbow lakes, and beaver ponds (Sedell et a]. 1988). The channe] pattern
becomes anastomosed (multiple channels) due to significant reduction in
gradient, sediment inputs from upstream causing channel aggradation and
backwater effects (Smith 1973). The backwater effect creates additional
overbank ﬂooding, deposition of fines, and buildup of river levees, back-

1988).

Hyporheic Processes and Subsurface Habitat
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the interstitial habitat beneath the streambed that is the interface between
surface water and the adjoining groundwater. Traditionally, the hyporheic
zone has been considered a relatively thin area extending only tens of cen-
timeters vertically and laterally beneath and alongside the stream (Pennak
and Ward 1986). However, recent investigations on gravel-bed rivers show
that these habitats can extend throughout the alluvial gravels of floodplains.
Stanford and Ward (1988) found the average hyporheic habitat to be 3 km
wide and 10 m deep in an alluvial floodplain on the Flathead River, Mon-
tana. Thus, in areas of extensive alluvial gravel floodplains, the hyporheic
zone contributes substantially to total habitat area. '

Vertical and lateral dimensions of subsurface water movements are con-
trolled by geologic structure and layering of aquifers in the continental gla-
cial till deposits of Washington, British Columbia, and Alaska. Toth (1963)
suggests that there are three distinct systems; local systems, intermediate
systems, and regional systems. Under this framework, local systems develop
only where there is pronounced typographic relief. Increasing typographic
relief is hypothesized to increase the depths and the intensities of the local
flow systems.

Occurrence of fractured bedrock, as found throughout the Cascades, pro-
vides an avenue for upwelling of regional groundwater systems (Freeze and
Cherry 1979). In lower-gradient alluvial valleys, the local water system may
stagnate, allowing regional or intermediate systems to dominate or mix with
local systems. Boundaries between systems are located at the highest and
lowest elevations of local hills and depressions (Toth 1963). Thus the stream
channel may serve as a zone of convergence between different groundwater
systems. Chemical characteristics of the groundwater systems are different
and are reflected in the variability of chemical parameters found within the
stream or along the banks.

Hyporheic areas are important regulators of nutrient inputs to streams. The
hyporheic zone, as a retention or storage compartment, provides a medium
for biotic processing (Hynes 1983, Bencala 1984, Grimm and Fisher 1984,
Dahm et al. 1987, Stanford and Ward 1988, Triska et al. 1989a, b). Nutrient
and organic fluxes within the hyporheic zone are hypothesized to be a func-
tion of the direction and type of groundwater or surface water influence.
Close to the channel, groundwater and stream water mix (Triska et al. 19895,
Vervier and Naiman 1992). Triska et al. (19895b) found that within 3.5 me-
ters of the channel, at least 80% of the subsurface water was stream water.

The rate of exchange between the subsurface and stream ecosystems var-
ies with the dominant hydraulic process (discharge or recharge). Dominance
of groundwater or surface water depends on the season or magnitude and
duration of storms (Compana and Boone 1986, Gilbert et al. 1990, Vervier
and Naiman 1992). As surface water rises in the channel, groundwater re-
charge dominates (Freeze and Cherry 1979, Beaudry et al. 1990).
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Hyporheic Processes in Low-Order Channels

Spatial connectivity of hyporheic zones in the steeper bedrock-controlleq
channels may be discontinuous due to constrained topography (Figure 6.4).
Hyporheic zones are limited to smalj] floodplains, meadows, and Stretcheg
of stream where coarse sediment is deposited over bedrock. System contj.
nuity is further interrupted by mass wasting and debris dam breaks which
gouge channels.

Local hyporheic systems are fed by subsurface flow from hillsides. Sup-
surface flow through porous soils can be significant from forested slopes
(Sloan and Moore 1984) where root channels, decayed root holes, worm
holes, piping, and animal burrows are common (Sklash and Farvolden 1979,
Higgins 1984, Roberge and Plamondon 1987, Beaudry et al. 1990).

In zones of bedrock fracture, mixing between local and regional ground-
water systems may occur (S. Burgess, Cjvil Engineering, University of
Washington, pers. comm.). However, in the subsurface ecosystem, loca]
groundwater dominates. Dominance affects several parameters, such as quality
of organic matter, water chemistry, and faunal distribution (Triska et al.

Hyporheic Processes in Mid-Order Channels

As valleys broaden to a wider alluvial floodplain with less topograhic con-
straints, the spatial connectivity of the hyporheic zone becomes more con-
tinuous (Figure 6.4). Local groundwater systems still dominate the subsur-

and regional systems, especially during drier periods when hydraulic gra-
dients toward the stream are strongest (Freeze and Cherry 1979).

As surface discharge declines, as during the summer drought period, the
system is dominated by groundwater discharge. Exceptions occur during storms
(Vervier and Naiman 1992). During surface low-water periods the hyporheic
zone acts as a source of water, nutrients, and energy to the stream (Wallis
et al. 1981, Bencala 1984, Naiman et al. 1987, Ford and Naiman 1989,
Triska et al. 1989a, b).

Hyporehic Processes in High-Order Channels

In higher-order streams, with wide floodplains and unconstrained valleys,
the spatial extent of hyporheic habitat is greater than upstream (Figure 6.4).
However, discontinuities in spatial connectivity increase as the influence of
local groundwater system decreases. For example, small topographic vari-
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dynamics and varying topography on the floodplain, alternating recharge and
discharge areas are found across the valley (Toth 1963, Winter 1987).

-ontrolled Soil and substrate permeability in the floodplain and channel is variable

ure 6.4), due to erosional and depositional fluvial processes and deposition of till dur-

stretches ing the continental glacial period. However, duration of overbank flows and

*m contj- ponding is longer in higher-order watersheds, enhancing opportunities to

ks which transmit organic matter and nutrients from surface water to the hyporheic
zone. Subsurface storage and retention of nutrients increases as the spatial

les. Sub- extent of channel features (e.g., side bars and channel bars) increases (Ben-

'd slopes cala 1984).

S, W

en 19071-3,1 Functions of Hyporheic Zones

). " Hyporheic zones act as sensitive indicators of ecological health, since pro-

ground- cesses there substantially influence energy and nutrient resources in riparian
ersity of forests and aquatic surface systems (Wallis et al. 1981, Hynes 1983, Pe-

m, local terjohn and Correll 1984, Lowrance et al. 1984, Grimm and Fisher 1984,

s quality Stanford and Ward 1988, Ford and Naiman 1989, Triska et al. 19894, b;

<a et al. Gibert et al. 1990). Hyporheic zones can act as a sink, storage, or source

; on hill- depending on spatial location and season.

/nstream Retention of nitrogen, phosphorus, and organic carbon within the sub-
surface zone occurs during the recharge phase. Low hydraulic gradients and
slower velocities enhance biotic activity (Winter 1987, Triska et al. 1989a,
b). However, anaerobic processes such as denitrification may dominate dur-

. ing this phase due to saturated soil conditions (Hixson et al. 1990). As the
hic con- recharge phase shifts to a discharge phase, aerobic processes such as nitri-
ore con- fication become dominant. The type and intensity of biochemical processes

subsur- will influence biodiversity and the spatial distribution of animals using hy-
greatest porheic habitat.

ic relief Numerous and often contradictory hypotheses exist concerning the flux of

‘mediate carbon, nitrogen, and phosphorus from subsurface to surface waters. For

llic gra- example, Fisher and Likens (1973) reported that groundwater diluted organic
carbon in stream systems in New Hampshire. Hynes (1983) also hypothe-

iod, the sized that hyporheic zones serve as a sink for organic matter in Ontario. Yet

2 storms groundwater has been found to be a significant source of carbon and nu-

'porheic trients to streams (Hynes 1983, Grimm and Fisher 1984, Dahm et al. 1987,

(Wallis Naiman et al. 1987, Ford and Naiman 1989). Rutherford and Hynes (1987)

a1 1989, suggest that the hyporheic zone is too heterogeneous to make a source or
sink conclusion. The results, equivocal to date, point to the need for better
information about an inherently complicated system that is of fundamental
importance for watershed functions (Pinay et al. 1990).

::léei ; Water Quality

ence of Selection of Fundamental Water Quality Elements

ic vari- Water quality is a fundamental component of watershed health because it

:Is, ox- effectively integrates the full range of geomorphic, hydrologic, and biologic

system processes (Hem 1985). Alterations to any one of these processes will affect
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one or more water quality parameters (Frere et al. 1982, Peterjohn and Cor.
rell 1984). Hence changes in water quality indicate a change in some aspect
of the terrestrial, riparian, or in-channel ecosystem. Conversely, water qua]-
ity affects the aquatic, riparian, and hyporheic ecosystems (Hynes 1966,
1970; Stanford and Ward 1988, MacDonald et al. 1991). These interactions
are extremely complex, and recognition of their importance does not sim-
plify the problem of associating an observed change in water quality with
a particular cause. In ecologically healthy streams there is considerable spa-
tial and temporal variability in water quality parameters due to the large
number of controlling factors and the uneven distribution of these factors in
space and time (Feller and Kimmins 1979, Bencala et al. 1984, Keller et
al. 1986).

We focus on just five of many water quality elements related to ecolog-
ically healthy systems: (1) nitrogen (particularly nitrate-nitrogen), (2) phos-
phorus (principally phosphates), (3) turbidity, (4) temperature, and (5) in-
tragravel dissolved oxygen. Other important elements related to the ecological
health of watersheds, such as buffering capacity (pH and alkalinity), organic
nutrients (forms of dissolved organic carbon), and potential toxicants (wastes,
insecticides, herbicides), are not considered here. The five elements chosen
were selected after discussions with water quality experts and a review of
the results of a recent project sponsored by the Environmental Protection
Agency to develop guidelines for monitoring the effects of forestry activities
on streams in the Pacific Northwest and Alaska (MacDonald et al. 1991).
Consideration was limited to the physical and chemical constituents of water
even though channel, riparian, and other biological characteristics are equally
important for maintaining an ecologically healthy system (MacDonald et al.
1991). The intent is that, taken together, these five elements provide an

indication of the basic health of lotic Systems in the Pacific Northwest coastal
ecoregion.

Role and Expected Values

Nitrogen and phosphorus are typically limiting nutrients in coastal ecoregion
strcams (Hem 1985). The mass flux of N and P is a function of critical
processes such as the efficiency of terrestrial nutrient cycles, flow and trans-
formations of organic material, and erosion of particulate matter (Sollins et
al. 1980, Harr and Fredriksen 1988, Martin and Harr 1989). Use of both
nitrogen and phosphorus is complementary because phosphorus tends to be
sorbed and transported in particulate form, while nitrogen usually is dis-
solved and transported by subsurface and groundwater flow (Mohaupt 1986).
In the absence of other limiting factors such as light, increased concentra-
tions of plant-available nitrogen and phosphorus stimulate primary produc-
tion (Gregory et al. 1987).

The range of conditions found from southeastern Alaska to northern Cal-
ifornia, and from the coast to the permanent snow zone, make it difficult
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to specify expected values. For example, mean annual nitrate-nitrogen con-
centrations in undisturbed headwater streams range from less than 0.01 mg/
L (Harr and Fredriksen 1988, Martin and Harr 1989) to 1.2 mg/L (Brown
et al. 1973). Because atmospheric inputs usually are larger than the loss of
pitrogen by leaching, there is a small net input of 0.1-2.6 kg N ha™"' yr™'
in undisturbed forested watersheds west of the Cascades (Feller and Kim-
mins 1979, Martin and Harr 1989).

Mean annual phosphorus concentrations in small forest streams typically
are less than 0.06 mg/L (Brown et al. 1973, Feller and Kimmins 1979,
Harr and Fredriksen 1988, Martin and Harr 1989). Annual phosphorus bud-
gets for four forested coastal watersheds range from a net gain of 0.1 kg
ha~'yr~' to a net loss of 0.3 kg ha™' yr™' (Feller and Kimmins 1979).

Turbidity is a measure of light scattering by a water sample. In most cases,
suspended silt and clay particles are the primary cause of high turbidities,
although colored organic compounds, finely divided organic matter, and mi-
croorganisms such as plankton also contribute (APHA 1989). Turbidity is
useful as an easily measured indicator of suspended sediment concentrations
(Kunkle and Comer 1971, Aumen et al. 1989), and hence a first approxi-
mation of erosion rates. Suspended sediment has wide-ranging effects on
salmonids, invertebrates, and other aquatic organisms (Everest et al. 1987,
Chapman and McLeod 1987).

Expected values for turbidity are difficult to specify because turbidity is
discharge dependent and extremely variable throughout the region. Hence
turbidity standards usually are expressed in terms of an allowable increase
over background (Harvey 1989). The absolute values necessary to protect
designated uses, such as sight feeding by salmonids, are <25 NTU (EPA
1986); greater values generally are encountered only during major floods
(Aumen et al. 1989).

Water temperature greatly affects rates of chemical and biological pro-
cesses. Although absolute stream temperatures are largely a function of the
subsoil environment and climatic conditions (Beschta et al. 1987), stream
temperature is a relatively sensitive indicator of riparian conditions (Brown
and Krygier 1970, Harr and Fredriksen 1988). As noted previously, stream
channel morphology also affects the temperature regime. Temperature 1s largely
a function of discharge and incoming solar radiation, and is relatively pre-
dictable for specific locations.

Intragravel concentration of dissolved oxygen (DO) is critical for salmonid
reproduction, invertebrates, and other aquatic life. Furthermore, the con-
centration of intragravel DO integrates numerous other factors, including
temperature, bed material particle size, and the deposition of fine sediment
and particulate organic matter (MacDonald et al. 1991). In undisturbed al-
luvial streams the concentration of intragravel dissolved oxygen should ap-
proach saturated values; values substantially less than saturation suggest
blockage of interstitial water flow (Chapman and McLeod 1987) or high
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Table 6.2. Relative importance of factors controlling the observed values of
selected water quality elements in coastal ecoregion streams.

Water Quality Element

Intragrave]
Temper- Dissolved
Controlling Factor Nitrogen  Phosphorus  Turbidity ature Oxygen
Climatic and
atmospheric inputs High Low Moderate  High Low
Geology and soils Moderate  High High Moderate  High
Stream order Moderate  Moderate Moderate  High Moderate
Constrained or
unconstrained
channels High High High Moderate  Moderate
Vegetation High Moderate Moderate  High Low

oxygen demand from the breakdown of organic materials (Ringler and Hall
1975, Plamondon et al. 1982).

Little data are available for intragravel DO values for ecologically healthy
watersheds. Suggested one- and seven-day minimum values for intragrave]
DO are 5.0 and 6.5 mg O, /L, respectively (EPA 1986). Idaho is considering
an intragravel DO standard of 85% of the saturated value (Harvey 1989),
but adoption of this standard has been slowed by uncertainty over intragravel
DO values in undisturbed streams, and by the high spatial variability of
intragravel DO in a stream segment or even within a salmonid redd (Chap-
man and McLeod 1987).

Taken together, these five fundamental elements are one indication of the
suitability of streams for cold-water fishes and provide an integrated view
of watershed health. Other parameters could be supplemented, but these five
represent a best initial indication of watershed health over the range of en-
vironmental conditions found in the Pacific Northwest coastal ecoregion.

Controlling Factors

Expected values of these five fundamental elements are a function of mul-
tiple controlling factors, and each element has a unique response to the set
of controlling factors. Table 6.2 qualitatively summarizes the relative im-
portance of five factors—climatic and atmospheric inputs, geology and soils,
stream order, valley type (constrained versus unconstrained channels), and
vegetation—on the selected water quality elements.

The first controlling factor—climatic and atmospheric inputs—strongly
affects nearly all water quality elements. In the Bull Run watershed near
Portland, Oregon, for example, precipitation accounts for approximately 60%
of the dissolved ionic load in surface runoff (Aumen et al. 1989). Atmo-
spheric nitrogen inputs generally exceed nitrogen losses (Feller and Kimmins
1979). Solar radiation is a dominant variable in predicting stream temper-
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atures (Beschta et al. 1987). Turbidity is highly responsive to the size and
spacing of storm events (Brown 1983). Climatic and atmospheric inputs also
help define basic processes such as the volume and timing of runoff, weath-
ering rates, and the likelihood of mass failures. Thus virtually all water qual-
ity parameters are affected by climatic and atmospheric inputs (Risser, this
volume), but nitrogen and water temperature generally are more responsive
than phosphorus or intragravel DO.

Geology and soils are important factors in determining the amount and
type of erosion, hence the levels of turbidity, phosphorus, and indirectly
intragravel DO (Everest et al. 1987, Chapman and McLeod 1987). Nitrogen
also is relatively sensitive to geology and soils because losses occur pri-
marily in dissolved form, and this is a function of soil and groundwater
processes (Feller and Kimmins 1979, Sollins et al. 1980).

Relatively few studies have related values of these fundamental elements
to stream order in undisturbed watersheds. In general, increasing stream or-
der reduces temporal variability, but absolute effects are uncertain. In in-
terior Alaska stream order has no effect on phosphorus or turbidity, while
nitrogen shows a slight decrease downstream (Hilgert and Slaughter 1988).
Changes in stream temperature are more predictable, with the observed tem-
perature generally increasing downstream. Intragravel DO should decline
with increasing stream order because the larger volume of water reduces the
reaeration rate, mean water temperatures are higher, and the finer bed ma-
terial associated with higher-order streams reduces subsurface permeability.

Differences in water quality between geomorphically constrained and un-
constrained channels will result from differences in subsurface flow paths,
sideslope gradients and resultant erosion and transport rates, and width of
riparian and hyporheic zones. Turbidity is most likely to be sensitive to
valley form, with lesser or indirect effects on other water quality elements.

Vegetation is the final controlling factor. Healthy watersheds in the Pa-
cific coastal ecoregion generally have a dense forest cover, and this helps
keep water temperatures and sediment loads in the range suitable for sal-
monids. In addition, both density and vegetation type affect nitrogen fixation
and uptake (Sollins et al. 1980).

Since all five fundamental elements respond directly or indirectly to the
same basic driving forces of runoff, erosion, and weathering, there are sig-
nificant interactions among these elements. The use of several water quality
elements is necessary to assess the specific condition (health) of the drainage
network, and to fully evaluate the effects of natural and anthropogenic changes.

Riparian Forest Characteristics

The natural characteristics and ecological health of streams and rivers are
intimately linked to the surrounding landscape by the biotic and physiochem-
ical properties of the riparian zone. The riparian zone extends from the edge
of the average high water mark of the wetted channel toward the uplands
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a transition area between the riparian zone
and the upland forest where vegetation still influences the stream under some
conditions (Gregory et al. 1991).

In ecologically healthy watersheds, riparian forest characteristics are strongly

lowlands (Sedell et al. 1988).
The width of the riparian zone, and the extent of the forest’s influence
on the stream, are strongly related to stream size and valley morphology.

Light and Temperature

The amount and quality of light reaching streams are determined by forest
vegetation height, forest canopy density, stream channel width, and channel
orientation in relation to the sun’s path in the sky. Light is important for
streams because of its influence on water temperature, on primary produc-

tion by aquatic plants, and on the behavior of organisms.

and activity of stream organisms.

Small forested streams typically receive 1 to 3% of total available solar
radiation (Naiman and Sedell 1980, Naiman 1983, 1990). Small streams
have relatively cool but stable daily temperatures, low rates of primary pro-
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Small stream

Elevation

21112711 T2l 3 | 4

Community type

FIGURE 6.11. The natural characteristics of the riparian zone change with stream
size. In low- and mid-order streams the links between the riparian forest and the
stream are strong. In large rivers the links are not as strong in the main channel but
they do remain strong in the secondary channels. Key: (1) active channel, (2) ri-
parian zone, (3) zone of influence, (4) uplands. Note that (2) and (3) make up the

complete riparian zone of influence.
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Table 6.3. Functions of Tiparian vegetation with respect to aquatic ecosystems.

Sites Components Functions

Aboveground /above Canopy and stems
channel

Shade controls temperature and
in-stream primary production
Source of large and fine plant
detritus
Wildlife habitat
In channel Large debris derived from Controls routing of water and
riparian vegetation sediment
Shapes habitat: pools, riffles,
cover
Substrate for biological activity
Increases bank stability
Creates overhanging banks, cover
Nutrient uptake from ground and
stream water
Floodplain Stems and low-lying Retards movement of sediment,
canopy water, and floated organic
debris during floods

Streambanks Roots

Source: Swanson et al. (1982), p. 269.

duction, and organisms that are behaviorally adapted to reduced light and
cool temperatures (Naiman and Sedell 1980). In mid-order streams and riv-
€rs, gaps appear in the riparian forest canopy. These gaps allow 10 to 25%
of the total available solar radiation to reach the stream surface. Daily vari-
ations of ~2-6°C and seasonal variations of 5-20°C in water temperature
may occur, primary production by attached algae and diatoms increases,
distinct day-night differences exist in species-specific behavior to light lev-
els, and the biota are metabolically adapted to slightly warmer temperatures.
In larger rivers, most available solar radiation reaches the water surface of
the main channel through wide gaps in the forest canopy. However, in con-
trast to reaches upstream, the main channel of large rivers tends to be deeper
or more turbid, restricting light penetration through the water. Daily vari-
ations in temperature are not as large as in mid-order streams, and depending
on water depth, primary production may be less. In addition, primary pro-
duction is augmented by phytoplankton suspended in the water column and
vascular plants rooted near the shore. Finally, most organisms are adapted
for life in waters that are dark, or with reduced visibilities.

As water flows downstream, temperature changes in response to factors
involved in the heat balance of water, all of which are strongly influenced
by the riparian forest. The net rate of gain or loss of temperature is the
algebraic sum of net solar radiation, evaporation, convection, conduction,
and advection. Net radiation is generally dominated by the amount of direct-
beam solar radiation reaching a stream’s surface. Heat gain or loss from
evaporation and convection depends on the vapor pressure and the temper-
ature gradient at the water surface and the air immediately above the surface,
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respectively. Wind speed at the air-water interface is also an important con-
trolling variable. Conduction of heat between water in the stream and the
channel substrate depends on the type of material making up the substrate.
Bedrock channels are more efficient than gravel-bed channels at conducting
heat. Heat exchange by advection occurs when tributaries or groundwater
of different temperatures mix with the main streamflow, thereby either in-
creasing or decreasing the main stream temperature.

The influence of shading by the riparian forest on the heat balance of a
small stream can be enormous because net solar radiation, evaporation, con-
vection, conduction, and advection remain relatively small over a 24-hour
period, even in midsummer, relative to groundwater temperature. Should
the forest canopy be opened by a disturbance, the net heat exchange can be
significantly altered. For example, during winter, streams without riparian
canopies may experience lower temperatures because the lack of cover en-
hances energy losses by evaporation, convection, or long-wave radiation.
Long-wave radiation losses are greatest when clear skies prevail, particularly
at night, resulting in the formation of surface and anchor ice. During sum-
mer, the lack of a forest canopy cover results in large (3—10°C) diel vari-
ations in temperature as the amount of direct solar radiation increases {Bes-
chta et al. 1987).

Instantaneous temperatures and cumulative temperatures (e.g., degree-days
per unit of time) have a significant influence on biotic characteristics. In-
stantaneous temperature significantly affects water viscosity, and therefore
the amount of energy required to swim. It influences an organism’s metab-
olism, dictating the amount of food required for daily activities and repro-
ductive products. Further, species preferences for temperature influence the
ability of an organism to successfully compete for resources, and thereby
influencing community composition and abundance. Fish and invertebrates
have specific requirements for the number of degree-days needed for egg
development and for the timing of reproduction and emergence, thereby re-
ducing competition for food and reproduction sites by subtle differences in
phenology or life history strategies (Sweeney and Vannote 1978).

Sources of Nourishment

Annually, riparian forests add large amounts of leaves, cones, wood, and
dissolved nutrients to low- and mid-order streams (Gregory et al. 1991).
These organic inputs originate as particles falling directly from the forest
into the stream channel (or moving downslope along the forest floor by wind
and water driven erosion) and as dissolved materials in subsurface water
flowing from the hyporheic zone.

The riparian forest is an important regulator of stream productivity through
the amounts and qualities of material directly contributed to the stream. Small
streams directly receive 300-600 g C/m’ annually from the forest, with the
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rate per unit area decreasing as channel width (and the gap in the forest
canopy) increases (Conners and Naiman 1984). In deciduous riparian forests
>80% of these inputs may be leaves that are delivered over a six-to-eight
week autumn period. In coniferous riparian forests ~40-50% of the material
may be cones or wood. The chemical quality of the material (i.e., nitrogen
and lignin content) strongly influences the rate of decay and subsequent trophic
pathways (Melillo et al. 1983, 1984). The complete decay process takes
about one year for most high quality materials such as leaves and herbaceous
plants and may take several years or decades for low quality materials such
as cones and wood (Gregory et al. 1991).

Subsurface water moving from the uplands to the stream also carries large
quantities of dissolved organic matter and nutrients essential for stream func-
tion. The riparian forests chemically alter these materials as the subsurface
water flows pass their root Systems. Riparian forests take up nutrients for
growth, promote denitrification by subtle changes in the position of oxic-
anoxic zones, and modify the chemical composition and availability of car-
bon and phosphorus (Pinay et al. 1990). Exact mechanisms regulating these
processes are not well understood (Triska et al. 1989a, b). Yet the presence
of riparian forests significantly regulates the amount of nitrogen and phos-
phorus reaching streams from upland areas (Karr and Schlosser 1978, Schlosser
and Karr 19814, b; Peterjohn and Corre]l 1984).

Large Woody Debris

Large woody debris (LWD) is the principal factor determining the charac-
teristics of aquatic habitats in low- and mid-order forested streams. The amount
of LWD in streams can be substantial, ranging from >40 kg/m’ in small
streams to 1-5 kg/m? in large rivers (Harmon et al. 1986). The importance
of LWD relates to its ability to control the routing of sediment and water,
to shape the formation and distribution of pools, riffles, and cover, and to
act as a substrate for biological activity (Swanson et al. 1982; Table 6.3).
Wood boles (>10 cm diameter) enter streams of all sizes from the riparian
forest. However, the spatial distribution of LWD varies Systematically from
small streams to large rivers, reflecting, in part, the balance between stream
size and wood size (Bilby 1981). Wood in small streams is large relative to
channel dimensions and to peak stream flow. Thus LWD cannot be easily
floated and redistributed, and consequently is randomly distributed and often
located where it initially fell. But these small channels are often in the stee-
pest part of the drainage network, and are most prone to catastrophic flush-
ing by extreme landslide/dam-break floods (Benda 1990). Mid-order streams
are large enough to redistribute LWD but narrow enough that LWD accu-
mulations across the entire channel are common. LWD tends to be concen-
trated in distinct accumulations spaced several channel widths apart along
the stream. In large rivers, LWD is commonly collected in scattered, distinct
accumulations at high water and particularly on the upstream ends of islands
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and at bends in the river (Lienkaemper and Swanson 1987, Potts and An-
derson 1990). Natural anchors such as root wads, large limbs, or lodging
of LWD between other obstructions improve debris retention and are im-
portant considerations for environmental health of the system.

LWD in streams influences channel morphology as well as sediment and
water routing. In small streams LWD creates a stair-stepped gradient where
the streambed becomes a series of long, low gradient sections separated by
relatively short, steep falls or cascades (Grant et al. 1990). Therefore, much
of the streambed may have a gradient less than the overall gradient of the
valley bottom, because much of the decrease in altitude, and in potential
energy, takes place in the short, steep reaches. This pattern of energy dis-
sipation in short stream reaches results in less erosion to bed and banks,
more sediment storage in the channel, slower downstream movement of or-
ganic detritus, and greater habitat diversity than in straight, even-gradient
channels (Bisson et al. 1987).

Comparison of volumes of stored sediment and annual sediment export
suggests that small forested streams with natural amounts of LWD annually
export often <10% of sediment stored in the channel system (Swanson et
al. 1982). LWD makes up ~40% of the obstructions that trap sediment in
forested streams (Bilby and Ward 1989). Unfilled storage capacity serves to
buffer potential sedimentation impacts on downstream areas when pulses of
sediment from the uplands enter stream channels. Scattered LWD in chan-
nels reduces the rate of sediment movement downstream, routing sediment
through the stream ecosystem slowly, except in cases of catastrophic flush-
ing events or when the storage capacity is filled.

By redirecting water flow, LWD has both positive and negative effects
on bank stability, on the lateral geomorphic mobility of channels, and on
the stability of aquatic habitats (Keller and Swanson 1979). LWD-related
bank stability problems in steep-sided, bedrock-controlled streams result from
undercutting of the soil mantle on hillslopes by debris torrents. Undercut
slopes are subject to progressive failure by surface erosion and small-scale
(<1,000 m3) mass erosion over a period of years. Both bank instability and
lateral channel migration may be facilitated by LWD accumulations in chan-
nels with abundant alluvium and minimal bedrock influence. Changes in
channel conditions and position often occur as a stream bypasses a LWD
accumulation and cuts a new channel. Where channels pass through massive
debris accumulations, streamflow may become subsurface much of the year.
In areas of active earthflows from the forest, lateral stream cutting may un-
dermine banks, encouraging further hillslope failure and accelerated sedi-
ment supply to the channel. On balance, however, LWD generally stabilizes
small streams by dissipating energy and by protecting streambanks.

As a result of these mechanisms, LWD helps regulate the distribution and
temporal stability of fast-water erosional areas and slow-water depositional
sites. LWD and riparian vegetation provide cover and nourishment for all
stream organisms, serving as habitat or substrate for substantial biological
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Habitar C haracteristics

In ecologically healthy watersheds, interactions between channel geomor-
phology, hydrologic pattern, spatial position of the channel, and riparian
forest characteristics produce habitat for terrestrial and aquatic organisms,
Fundamental habitat features influencing animal population dynamics, pro-
ductivity, biodiversity, and evolutionary processes are related to riparian for-
est dynamics, spatial and temporal variability of the habitat, and mainte-

Sponse to changing habitat. In combination, these examples have broad
implications for €cosystem health. -
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Thrash Creek

Beaver Creek

Steelhead
_96%

Other
4%

22.2% Pools, 77.8% Riffles

74.0% Pools, 26.0% Riffles
Total Biomass = 3.03 g/m2

Total Biomass = 3.53 g/m2

FiGURE 6.12. Juvenile fish habitat preferences in two western Washington streams
with different proportions of pool and riffle areas (P. A. Bisson, unpublished data).

In stream reaches (defined as a section of channel >10 m in length),
habitat preferences influence which portions of streams are dominated by
juveniles of different species during summer (Figure 6.12). However, these
influences are also affected by the availability of suitable spawning gravels
for each species, and by other habitat factors, such as cover. Though the
habitat requirements of juvenile coho salmon, steelhead trout, and cutthroat
trout (O. clarki) have been extensively studied, species occupying the larger
rivers, floodplains, and estuaries during the juvenile life history stages (e.g.,
chinook [O. tshawytscha], chum, and pink salmon) are not well known.
However, it is clear that healthy salmonid populations utilize habitats
throughout the drainage network during different stages of their life cycles,
suggesting that connectivity between habitats is of fundamental importance.

Fish Community Habitat Requirements

Compared with forested ecosystems in eastern North America, fish species
diversity in the coastal ecoregion is low. This results from zoogeographic
barriers (McPhail 1967, Reimers and Bond 1967), the geologically short
time interval since the last glacial period, and an unpredictable and often
severe maritime climate (Moyle and Herbold 1987). What the coastal ecore-
gion streams lack in species richness, however, is partly offset by a re-
markable differentiation among locally adapted stocks. For example, Nehl-
sen et al. (1991) have identified a large number of distinctive stocks of
salmonids within California, Oregon, Idaho, and Washington, 214 of which
are considered to be currently at risk of extinction. Fish assemblages in coastal
streams are therefore characterized by relatively few, but highly adapted and
often genetically unique, native species.
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Stream fishes in the coastal ecoregion face unpredictable streamflows and
substrate conditions, and relatively low levels of aquatic productivity be-
cause of large seasonal environmental changes. Moyle and Herbold (1987)
have summarized the general adaptations of western species to life in streams;
these include large body size, long life and reproductive spans, high fe-
cundity, extensive migrations, and feeding specialization. Such adaptations
confer the ability to migrate to areas where food resources are abundant or
conditions for successful reproduction exist (Northcote 1978), and also the
abilities to spread the risk of reproduction over several years (important in
climatic and geologic unstable areas) and to make maximum use of scarce
food resources through morphological and behavioral specialization.

Ecologically healthy watersheds provide a wide array of stream conditions

(Naiman et al. 1991), nearly all of which are used directly in various life
history stages of one or more species (Everest 1987). Fishes in coastal ecore-
gion streams tend to have dynamic life cycles closely linked to climate,
valley form, and the input and transport of sediment and woody debris within
the drainage network. Reproduction is associated with specific hydrologic
and climatic conditions. Spawning migrations usually occur when streams
possess intermediate flows, typically in autumn or spring. Eggs are laid in
well-sorted, clean gravels that have a relatively low probability of scouring.
Often these substrates are located in unconstrained channels that exhibit some
braiding. Fish species that Spawn on aquatic vegetation or on mud substrates
(Umbridae, Gasterosteidae, some Cyprinidae) locate suitable areas in beaver
ponds and in backwaters and sloughs on the floodplain; connections between
the river mainstem and floodplain channels must be maintained for suc-
cessful reproduction of these species to occur. Most fishes in the coastal
ecoregion avoid spawning in steep, constrained river valleys unless their
lack of mobility prevents migration to reaches with a shallower gradient. In
such cases, tributary mouths or other geomorphic features characterized by
coarse sediment deposits and low gradient may provide easily accessible but
localized spawning sites.

Egg and alevin survival within stream gravel depends on the redd re-
maining relatively free of fine sediment and maintaining good permeability
to ensure that developing embryos have an adequate oxygen supply (Chap-
man 1988). Deposition of fine sediment during incubation reduces survival
to emergence through anoxia or physical entrapment. In general, emergence
is timed to avoid large freshets that carry fry downstream away from rearing
areas. Increases in the magnitude and frequency of storm flows, particularly
in spring, can have a significant impact on survival of Juvenile salmonids
(Hartman et al. 1987). Other taxa such as Cottidae, Cyprinidae, and Ca-
tostomidae, which usually spawn in spring and early summer, may be sim-
ilarly affected by changes in discharge patterns.

Newly emerged fry are weak swimmers and take up foraging stations along
the edge of the stream channel behind prominent flow obstructions, includ-
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ing boulders and LWD (Bisson et al. 1987, Moore and Gregory 1988a).
The complexity of channel margins can be an important factor influencing
carly rearing (Moore and Gregory 1988b); therefore, ecologically healthy
streams possess complex margins that include backwaters, secondary chan-
pels, fallen trees, boulders, and other features that create areas of slowly
moving water. Undercut streambanks with the root systems of riparian trees
also provide excellent habitat for fry, as well as protection from terrestrial
predators. Interactions between stream channels and riparian vegetation be-
come critical to the maintenance of habitat for fry.

As fish grow larger they become better able to maintain feeding stations
in swifter currents and more adept at avoiding predators. Preferred habitat
often shifts from stream and river margins to deeper water, where the avail-
ability of drifting aquatic invertebrates may be greater (Chapman and Bjornn
1969). Some larger salmonids and cyprinids move from tributaries into the
river mainstem with the onset of summer. In most cases such movements
are timed to take advantage of seasonally abundant food. However, in cer-
tain instances summer movements are dictated by the thermal regime, with
cold-adapted species seeking out groundwater seeps and congregating around
the mouths of cooler tributaries or at the bottom of thermally stratified pools
(Berman 1990). Beschta et al. (1987) point out that many fish stocks are
adapted to local temperature regimes and that significant alteration of these
regimes can lead to disruption of important life cycle events, such as the
timing of migrations.

Segments of streams and rivers that provide productive rearing environ-
ments in summer may not be optimal winter rearing sites. Periods of high
discharge and low food availability force some fishes to seek overwintering
locations away from headwater streams and adjacent to, but not in, river
mainstems (Peterson 1982a, Tschaplinski and Hartman 1983). Quite often
these areas are located in seasonally flooded wetlands, beaver ponds, and
spring-fed tributaries at the base of steep valley walls (Skeesick 1970, Ced-
etholm and Reid 1987, Brown and Hartman 1988). Almost invariably they
are characterized by pondlike conditions having relatively stable discharge
and low current velocities. Although such sites serve as important refugia
from high flows and heavy sediment loads, certain types of invertebrates
can be abundant in them and winter growth rates of fish in off-channel ponds
and swamps can be considerably greater than those overwintering in the
mainstem (Peterson 1982b, Brown and Hartman 1988). Some species that
do not emigrate from headwater streams or main channel habitats to sea-
sonally flooded wetlands and spring-fed tributaries along the valley floor
instead make use of the protection afforded by woody debris accumulations
along the channel margin (Bustard and Narver 1975). Perhaps at no. other
time of the year are riparian vegetation and floodplain interactions more
important to the maintenance of productive rearing habitat in watersheds

than during winter.
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Watershed-Scale Patterns in Habijtat

Spatial patterns of physical habitat expressed at the scale of large watersheqs p
(>100 km?) in the coastal ecoregion are largely controlled by regional ge-

ology and geomorphology. The bedrock geology is the result of millions of
years of lithologic and tectonic proc
individual watersheds has been heavily influenced by glaciation for at least
20,000 years. These factors combine to create unique spatial patterns of
salmonid habitats for individual watersheds. For example, in the recently
deglaciated South Fork of the Stillaguamish River, Washington, low gra-
dient (<2%), pool-dominated habitats tend to be located on a 1,700 year
old terrace adjacent to the main river, whereas riffle-dominated streams tend
to occupy slightly higher-gradient streams (2-4%) incised into the older ter-
races (Benda et al. 1992, Beechie and Sibley 1990). Both types of stream
channels are downcutting into glacial-age clay and outwash sand deposits,
whereas bedrock channels in this valley are steeper and provide little habitat
for anadromous salmonids.

Along a longitudina] gradient from the headwaters to the mouths of major
river systems, fish communities are correlated with stream order and stream
gradient (Platts 1974). Valley-wall or headwater streams, usually first- and
second-order tributaries, are not accessible to anadromous salmonids and
may be dominated by resident cutthroat trout and rainbow trout, Whep fish
are absent, these tributaries remain an important part of the stream System
since they transport allochthonous nutrients such as leaf litter
from the hillslope, and LWD o higher-order tributaries.

In moderate-gradient (2-5%) third- to fifth-order Streams, anadromous
salmonids tend to dominate when there are no barriers to upstream migra-
tion. Steelhead and cutthroat trout occupy the steepest streams in this range,

1l accessible, low-gradient tributaries.

Chinook salmon tend to utilize larger tributaries and main rivers that are
used little by steelhead and coho salm

Influence of Woody Debris on Habitat Development

Large woody debris is an important part of salmonid habitats in streams,
both as a structural element (Grette 1985, Bilby 1985, Sedel] et al. 1988)
and as cover or refugia from high flows (Bisson et al. 1982, Murphy et al.
1985). Furthermore, LWD tends to reinforce meanders (Mason and Koon
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Table 6.4. Longitudinal patterns in channel roughness, effectiveness of LWD in
controlling channel morphology, and habitat complexity in an ecologically healthy

watershed.

Stream Channel Effect of Habitat
Order Roughness LWD Complexity

Very high Very high Moderate
High Very high High

Moderate High Very high
Low Low to moderate Moderate
Low Low to moderate Moderate

1985) and trap sediment (Bilby 1979) and smaller organic debris (Naiman
and Sedell 1979a, Harmon et al. 1986) in stream channels. Historically,
woody debris piles covered enormous areas of small streams and large riv-
ers. For example, a driftwood jam on the Skagit River, Washington, was
reported to have been 1.2 km long and 0.4 km wide (Sedell et al. 1988).
Current estimates of woody debris biomass and volume in aquatic ecosys-
tems are extremely variable. Biomass reports range from 18 Mg/ha to 550
Mg/ha and volumes from 45 m’/ha to 1,400 m’/ha (Harmon et al. 1986).

A habitat classification scheme to describe woody debris accumulations
separates the debris piles by their typical geomorphic settings; in the main
channel, in a side channel, along a cut bank, on an overflow bank, at the
island head, or on a gravel bar (Mason and Koon 1985). The habitat func-
tions of LWD vary along the longitudinal gradient from headwaters to mouth
(Table 6.4). In low-order, high-gradient streams LWD has a reduced func-
tion as a structural element in pool formation because the roughness of a
large log is small relative to the inherent roughness of a boulder and bedrock
channel. As streamn order increases and gradient decreases, LWD becomes
increasingly important in creating salmonid habitats. In streams where LWD
spans the width of the channel, LWD becomes a dominant roughness ele-
ment relative to gravel and pebble substrates. Thus, in third- to fifth-order
streams, LWD is a dominant channel-forming feature.

As roughness elements, LWD pieces deflect the flow of water and in-
crease hydraulic diversity. Flow deflections create a number of pool types
that serve as different habitats for juvenile salmonids in summer (Bisson et
al. 1982). When LWD pieces are too small or located such that they do not
create pools, they create local hydraulic diversity (i.e. localized low-velocity
areas) that serve as refugia for juveniles at higher discharges (Murphy et al.
1985). LWD in third- to fifth-order streams also traps sediments and nu-
trients which often enhance the suitability of gravels for spawning and slows
the transport of vital nutrients in the stream system. This also allows in-
vertebrate communities to more fully utilize the allochthonous inputs to the
stream.
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zone.

Woody Debris Accumulations as Nodes of Ecological Organization

The functional role of large piles of debris deposited on riverbanks has re-
ceived little investigation. Substantial amounts of LWD are associated with
streams of old-growth Douglas-fir (Pseudotsuga menziesii), western hem- 'i
lock (Tsuga heterophylla), and Sitka spruce (Picea sirchensis) forests. Lien- &

>

parian zone would disappear.
| In coastal Oregon at least 80 species of snag-
frequent riparian forests (Cline and Phillips 1983).

or log-dependent wildlife

Twenty North American species of small mammals are known to use coarse
woody debris for denning, feeding, and reproduction (Harmon et al. 1986).
Doyle (1990) indicates that woody debris accumulations in riparian envi-
ronments of montane areas provide superior habitat for several species of
: small mammals. In her study, several less commonly captured species of
‘ small mammals were collected only in riparian habitat. Deer mice (Pero-
myscus maniculatus) and chipmunk (Tamias townsendii) are often located
in microhabitats that contain relatively large amounts of woody debris (Doyle
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1990). Shrew (Sorex trowbridgii) and mole (Neurotrichus gibbsii) have also
peen found in association with decayed wood (Maguire 1983, Whitaker et
al. 1979). These same woody debris accumulations may also provide unique
habitat for invertebrates and decomposers (Anderson 1982, Shearer and von
Bodman 1983). This is an aspect of watershed health requiring substantial
investigation in the near future.

Habitat Alterations by Wildlife Communities

wildlife communities are also sensitive indicators of ecological health at the
watershed scale, provided a broad spatial and temporal perspective is taken.
wildlife affect ecological systems through feeding strategies and day-to-day
activities (e.g., ponding water, burrowing). These are important control pro-
cesses on the riparian forest and the stream channel which have reverbera-
tions throughout the entire ecological system. The fundamental features of
the role of wildlife in ecologically healthy watersheds are related to the use
of wildlife to detect broad-scale environmental change, the nature of long-
term population cycles and their relation to environmental conditions, and
the seasonal phenology of habitat use and migration to maximize individual
fitness (e.g., connectivity).

The riparian zone provides an exceptional array of vegetative conditions
that support diverse and productive wildlife communities (Thomas et al. 1979,
Oakley et al. 1985). Whereas fish are usually incapable of modifying the
physical environment of streams, some wildlife populations are quite ca-
pable of modifying the structure and dynamics of riparian zones (Kauffman
1988, Naiman 1988, Pastor et al. 1988). Large herbivores such as elk (Cer-
vus elaphus) and deer (Odocoileus hemionus and O. virginianus) may alter
the abundance of understory vegetation through browsing of herbaceous plants
and by rubbing or trampling. These activities contribute to a patchy mosaic
of plant communities in various successional stages, which in tumn increase
habitat and soil complexity (Figure 6.13).

Interactions of wildlife with riparian plants not only affect vegetative
patchiness but may also alter habitat characteristics of stream channels them-
selves (Figure 6.13). Water quality parameters including temperature, light,
nutrients, and sediment are all influenced by wildlife activities (Green and
Kauffman 1989). Beaver have perhaps the most profound effects on streams
and riparian habitat (Naiman et al. 1986, 1988). Beaver ponds provide suit-
able environments for lentic species as well as stream-dwelling forms pre-
ferring low current velocity. Beaver ponds are known to be important ov-
erwintering areas for some coastal fishes (Bisson et al. 1987). Beaver ponds
also serve as important storage and processing sites for terrestrial plant ma-
terials entering the stream (Naiman and Melillo 1984), and thus play a major
role in regulating nutrient availability downstream (Dahm et al. 1987). Bea-
ver herbivory decreases tree density and basal area by as much as 43% within
forage zones around beaver ponds (Johnston and Naiman 1990). Selective
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Animal
Populations

Community Structure
and Dynamics

Soils, Sediment,
and Water

community, resulting in long-term changes to biogeochemical cycles in soils, segd.

iment, and water. (Note. After Naiman 1988. Copyright by American Institute of
Biological Science. Used by permission.

Food Web Dynamics

Trophic processes in stream ecosystems are strongly influenced by channel
morphology and the nature of riparian and upland vegetation (Vannote et
al. 1980). In steep, cool headwater streams (first and second order), much
of the organic matter processed by the aquatic community originates from
riparian trees and is stored in stream channels by LWD (Naiman and Sedell
1979a, Cummins et al. 1982). Invertebrate communities are often dominated

nutrient poor, aquatic plant production is limited to epilithic diatoms and a
few green and blue-green algae. Large aquatic consume
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camptodon ensatus), sculpins (Cortus spp.), and coastal cutthroat trout (On-
corhynchus clarki clarki). Small streams draining the Coast Range usually
have lower gradients, and anadromous fishes can penetrate far into wa-
tershed drainage networks. Assemblages of large consumers include, in ad-
dition to the taxa listed above, steelhead, coho salmon, sea-run cutthroat
trout, lamprey (Lampetra spp.), and occasionally dace (Rhinichthys spp.).
Other anadromous salmonids (chinook, chum) may be transitory residents
of small coastal streams from several days to several months before mi-
grating to the ocean.

Mid-order streams have a more even balance of allochthonous (terrestrial)
and autochthonous (aquatic) sources of organic matter than headwater streams
(Naiman and Sedell 1979b). A substantial fraction of the allochthonous ma-
terial processed in third- to fifth-order streams is transported from headwater
tributaries rather than entering laterally from riparian vegetation, although
the latter source of organic matter remains important (Conners and Naiman
1984). Because much of it has already been consumed and excreted by aquatic
invertebrates, -fluvially transported organic matter has been reduced to fine
particles, and invertebrate communities contain species that are adapted to
processing this fine organic material. Mid-order stream channels are less
heavily shaded than headwater streams, and periphyton production plays a
greater role in community metabolism (Naiman and Sedell 1980, Gregory
et al. 1987). Invertebrates specialized to consume algae are prominent mem-
bers of the benthic community. In unconstrained valleys, composition of
riparian vegetation along these streams also changes to a more even mixture
of conifer and hardwood species. Deciduous trees contribute considerable
amounts of easily decomposed and relatively nutrient-rich materials (leaves,
catkins) to the streams on a seasonal basis.

In many respects, mid-order streams possess the greatest diversity of both
trophic pathways and physical habitat conditions within the watershed. Pool-
riffle sequences remain intact and are coupled with lateral habitat devel-
opment in the form of backwaters and secondary channels on alluvial sur-
faces. These streams tend to support the greatest diversity of cold-water
fishes, such as Salmonidae and Cottidae, and usually contain all of the large
consumers found in headwater tributaries as well as species adapted to larger
rivers, provided suitable temperatures exist. Salmonids typically found in
third- to fifth-order streams include bull trout (Salvelinus confluentus; rarely
in coastal streams), Dolly Varden (S. malma), and mountain whitefish (Pro-
sopium williamsoni). Juvenile chinook salmon make greater use of these
streams for rearing, and both chum and pink salmon use them to spawn.
Because summer temperatures are warmer than in first- to second-order
streams, mid-order streams also possess a more diverse community of min-
nows (Rhinichthys spp., Richardsonius balteatus, Ptychocheilus oregonen-
sis, Acrocheilus alutaceus), and suckers (Catostomus spp.) than are repre-
sented in headwaters (Li et al. 1987). Included in this assemblage are species
that consume algae and detritus.
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order s.treams is still heavily dependent on resources, including nutrients,
thaF orlgl.nate from upstream areas (Naiman et a] 1987) as well as from
periodic inundation of the floodplain (Pinay et a). 1990). Zooplankton and

forms inhabiting mid-order Streams as we]] ag additional species of minnows
(Mylocheilus caurinus, Hybopsis crameri, Couesiys plumbeus) and other
species that often inhabit marshes and sloughs (Novumprq hubbsi, Percopsis
fransmontana), Also Tepresented among the fishes of larger streams are eu-
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either through predation or competition (Li et al. 1987). Overall,

powever, introduced fishes have tended to increase species richness in large

su-eamS .

An Ecologically Healthy Watershed

In reference to the original working hypothesis—that delivery and routing
of water, sediment, and woody debris are the key processes regulating the
characteristics of drainage networks in the Pacific Northwest coastal ecore-

;jon—we offer several observations. The available evidence suggests that
ecologically healthy watersheds are maintained by an active natural distur-
pance regime operating over a range of spatial and temporal scales. Eco-
logically healthy watersheds are dependent on the nature of the disturbance
(e.g., fire, landslides, debris torrents, channel migration) and the ability of
the system to adjust to constantly changing conditions. This natural distur-
bance regime imparts considerable spatial heterogeneity and temporal vari-
ability to the physical components of the system. In turn, this is reflected
in the life history strategies, productivity, and biodiversity of the biotic
community.

This natural disturbance regime produces a dynamic equilibrium for ri-
parian forests, habitat, water storage, water quality, animal migration, and
biodiversity resulting in resilient and productive ecological systems. The net
result is an ecological system, at the watershed scale, which possesses a
biotic integrity strongly valued for its long-term social, economic, and eco-
logical characteristics.

The heart of an ecologically healthy watershed is the riparian forest
(Décamps and Naiman 1989, Naiman and Décamps 1990). The riparian for-
est is shaped by channel geomorphology, hydrologic pattern, spatial position
of the channel in the drainage network, and the inherent disturbance re-
gimes. Yet the riparian forest affects, and is affected by, habitat dynamics,
water quality, and the animal community. This strongly suggests that main-
tenance of riparian forests in their historic abundance and in healthy eco-
logical condition is of fundamental importance for long-term ecological and
socioeconomic vitality of watersheds in the Pacific Northwest coastal

ecoregion.
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