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Abstract 
The Forest Inventory and Analysis (FIA) program of the Forest Service, an Agency of the U.S. Department 
of Agriculture, provides what is arguably the most valuable forest resource dataset in the United States. 
These data are the basis for numerous inquiries across a wide range of forest-related attributes at 
various spatial and temporal scales. While user-friendly analytical tools are publicly available to facilitate 
the use of the data without expert knowledge, there is a need for detailed documentation of the 
underlying sampling and estimation procedures. The audience for this information entails the entire 
spectrum of both internal and external FIA data consumers. This document clarifies some aspects of 
existing documentation, provides the sampling and estimation methods used for key program areas 
including Urban FIA, National Woodland Owner Survey, Timber Products Output, and Carbon, and 
provides an examination of burgeoning estimation topics relevant to the FIA program and its users. A 
broad overview is provided on several advanced estimation approaches of particular interest to the FIA 
community. While the exposition for each topic is necessarily coarse, links to more detailed research and 
informational material are provided for readers desiring to further study a specific area of interest.
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Chapter 1: Overview
James A. Westfall, John W. Coulston, Gretchen G. Moisen, and Hans-Erik Andersen

The Forest Inventory and Analysis (FIA) program of the U.S. Department of 
Agriculture’s Forest Service is responsible for implementation of the 
national forest inventory of the United States. Initially established under 
the 1928 McSweeney-McNary Forest Research Act (Public Law 70-466), FIA 
has been conducting forest inventories for nearly a century. A key change 
to the program resulted from the 1998 Farm Bill (Public Law 
105-185), which prescribed the adoption of the annualized FIA sampling 
paradigm that many users are familiar with today. Currently, the program 
is implemented via four regional units corresponding with geographic 
delineations of the United States (Northern, Southern, Rocky Mountain, and 
Pacific Northwest) in coordination with the national office (Washington, 
DC) (Fig. 1). Key programmatic outputs include comprehensive reports for 
each state published every 5 years—as mandated in the 1998 Farm Bill
(Public Law 105-185). The primary focus of these reports is on analyses
of statistical estimates of forest resources that arise from the base forest 
inventory effort; however, within these reports and in other publications 
are findings from other FIA program surveys and research endeavors 
designed to address critical information needs or burgeoning topics of 
interest.

Figure 1.—Map showing geographic extent of the four regional FIA units that 
comprise the national program. Created by Greg Liknes, USDA Forest Service.
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In the two decades subsequent to the 1998 Farm Bill, FIA has continually 
enhanced not only the forest inventory effort but also its other two core 
functions of conducting the National Woodland Owner Survey (NWOS) 
and Timber Products Output (TPO) studies. The 2014 Farm Bill (Public 
Law 113-79) emphasized further advancement of FIA’s ongoing activities 
and also provided directives for reporting of status and trends of biomass/
carbon stocks and land use/land cover, improving statistical precision 
for sub-state areas, and initiating inventories in urban environments. To 
address these mandates, the FIA program identified a set of topical areas to 
focus on further development and refinement. It is important for scientific 
rigor and transparency to document the history and current status of these 
central topics, particularly to the extent that similarities and differences 
with standard FIA inventory procedures (Bechtold and Patterson 2005) 
are clearly conveyed. Thus, the purpose of this report is to chronicle 
the fundamental processes and procedures used in several prominent 
supplementary aspects of the FIA program. Specifically, the relevant subject 
matter covers the following:

• Urban FIA.

• National Woodland Owner (NWOS).

• Timber Products Output (TPO).

• FIA Carbon Attributes.

• Emerging Alternative Estimators.

The NWOS seeks to better understand population demographics through 
queries of forest land owners. The TPO program collects data to assess 
patterns in wood demand and harvesting activities in the context of mill 
production. Both the NWOS and TPO missions have existed within the 
FIA program for decades; however, their implementation and statistical 
methods have evolved with advances in technology and theory. The 
remaining topics are more recent extensions into broader themes the 
FIA program is inherently poised to address. The Emerging Alternative 
Estimators chapter, for example, covers new techniques to address land 
use and land cover change, small area estimation, and FIA implementation 
in interior Alaska. As with NWOS and TPO, work in these newer areas is 
ongoing to establish innovative, scientifically credible procedures as a basis 
for nationally consistent reporting of key outputs for policy makers, natural 
resource managers, and the public-at-large. For each topical area, the 
methods rely on fundamental statistical underpinnings for valid estimation 
and inference. Documentation of the statistical framework is paramount 
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for establishing transparency and credibility of the outputs. As appropriate 
to the topic, elements to be addressed may include the following:

• Definition of the population.

• Methods to construct the sampling frame.

• Methods to draw the sample.

• Response design (e.g., four-point cluster plot).

• Design-based estimators.

• Methodology for nonresponse.

• Minimum sample size guidance.

In most cases, relevant information for each subject area has been 
documented in some form; however, it may not be easily synthesized 
into a clear understanding of current methods and protocols due to a 
combination of various outlets, formats, and fragmented dissemination 
over time. Thus, this publication intends to holistically examine the 
primary components of key FIA program outputs, as well as describe the 
current state of research endeavors and their future directions. As noted 
earlier, many aspects of the FIA program are not static as ongoing research 
provides improvements in processes and procedures. Recognition of this 
constant state of continual improvement necessitates a provision for 
updating the documentation as methods evolve. This is accomplished via 
establishment of an internet repository (https://www.fia.fs.usda.gov/library/
sampling/index.php) where supplementary information can be accessed 
regarding the current implementation methods for the subject areas 
covered in this report.

https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php


4           General Technical Report  NRS-207    

Chapter 2: Foundational Documentation
James A. Westfall, John W. Coulston, Paul L. Patterson, and Charles T. Scott

Within this document, there is considerable reliance on the sampling or 
estimation procedures, or both, used for the base FIA inventory program 
that pertain to Phase 1 (stratification), Phase 2 (base sample of ground 
plots), and Phase 3 (subset of Phase 2; forest health measurements). 
Detailed documentation on these procedures can be found in Bechtold 
and Patterson (2005); however, for completeness, ease of reference, and 
establishment of notational conventions, relevant sampling and estimation 
techniques described in that publication are summarized here.

Sample Design
Broadly, the target population for the FIA program is defined as all land 
and water within the official boundaries of the United States. When the 
annual FIA program was implemented in 1999, spatial balance of the 
sample was obtained via a grid composed of 5,937 acre (2,403 ha) hexagons 
superimposed over the area by using a random starting location (Fig. 2). 
When one or more existing inventory plots were found within a hexagon, 
one of those points was chosen based on a predefined set of rules (Reams et 
al. 2005). Sample plot locations were chosen via random selection of a point 
for hexagons having no pre-existing plots. To accommodate a panelized 
design in which a portion of the plots are sampled each year and the 
entire sample would be completed over a specified number of years, each 
hexagon (with associated sample plot) was assigned to a panel by using 
techniques that produced approximately uniform spatial coverage of the 
population within each panel (Fig. 3).

Plot Design
Each plot consists of a four-point cluster where the central point 
corresponds with the location chosen within each hexagon and the 
remaining three peripheral points are dispersed at a distance of 120 feet 
(36.6 m) on azimuths of 120, 240, and 360 degrees (Bechtold and Scott 
2005). Centered at each point are subplots having a 24 feet (7.3 m) radius 
(Fig. 4a). Subplot-based measurements include trees having diameter at 
breast height (d.b.h.) ≥ 5.0 inches (12.7 cm) and various other site attributes 
such as forest type and stand size. Each subplot contains a 6.8 feet (2.1 m) 
radius microplot with center offset 12 feet (3.7 m) at 90 degrees azimuth. 



General Technical Report  NRS-207         5

Trees having 1.0 inch (2.5 cm) ≤ d.b.h. ≤ 4.9 inches (12.4 cm) are recorded 
within the microplot. An optional macroplot based at subplot center with a 
radius of 58.9 feet (18.0 m) may also be used. The purpose of the macroplot 
is to measure large trees exceeding a specified d.b.h. threshold.

Figure 2.—Hexagonal grid with randomized plot location 
within each hexagon.

Figure 3.—Assignment of a five-panel system across 
the hexagonal grid.
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A salient detail related to the plot design entails mapping of differing 
conditions occurring within the plot area. For example, the plot may 
straddle a forest/nonforest boundary, which would be delineated in the 
plot measurement process (Fig. 4b). Differences in other attributes such 
as ownership, forest type, stand size, and tree density may also be used 
to define condition boundaries. Because the population being sampled 
includes all land and water within the United States, areas with no forest 
land are often encountered. On all accessible conditions, the land use 
(forest, nonforest, or water) and land cover (e.g., tree cover, shrub cover, 
and barren) are recorded. Conditions meeting the definition of forest land 
trigger the collection of numerous site- and tree-level variables (USDA 
Forest Service 2018). Areas that are not forest are assigned a value of 
zero for all forest-related area and tree attributes. The boundary data are 
used to calculate the proportion of the plot area in each condition, which 
facilitates estimation for specified domains (e.g., area of oak-hickory forest 
type).

Figure 4a.—The FIA plot design.
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Figure 4b.—Example of forest/nonforest condition boundary 
intersecting an FIA subplot. 

Post-Stratified Estimation
It is common practice in forest inventory to use post-stratification as a 
means of reducing the variance of estimates (Tomppo et al. 2010). The 
process entails division of the population into relatively homogenous strata 
via the use of remotely sensed imagery. Most contemporary applications 
use digital map products for ease and consistency afforded by automated 
processing algorithms. This approach will be the method described 
immediately below; however, readers interested in sampling approaches 
to post-stratification are directed to Westfall et al. (2019) and references 
therein.

Generally, the post-stratification proceeds by developing H strata based 
on classification of pixel values from a selected source of classified digital 
imagery. For example, post-strata may be defined as forest and nonforest 
land cover, or a set of canopy cover proportion classes. For each of the h = 1 
to H strata, the stratum weights (Wh) are calculated based on the proportion 
of all pixels in the population that are assigned to stratum h. The Wh are 
considered as known values without error due to the complete pixel 
coverage of the population. Subsequently, the sample plots are assigned 
to strata by using the geographic location of the plot center. The ground 
sample plot is assigned to the same stratum as the pixel that contains the 
plot center point. This exercise is referred to as post-stratification because 
the stratification was conducted after the selection of the plot locations. 
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Upon completion of the post-stratification process, the key pieces of 
information are the stratum weights (Wh), membership of each plot i to a 
stratum h, and the within-stratum sample sizes (nh). The post-stratification 
process is repeated each year for the entire set of plots when a new panel 
of plot measurements are added to the database.

Because the sample covers all lands, the FIA program is primarily 
interested in domain estimates relevant to forest type, stand size class, and 
ownership. Examples of domain estimates include the amount of forest 
land in the population, and the amount of tree biomass growth in longleaf 
pine forest types in the population. Domain estimation is described 
separately for area and tree-level attributes in Scott et al. (2005), the 
primary difference being in how the plot-level values are obtained. Thus, 
a generalized presentation of the estimation procedures from Scott et al. 
(2005) is given below with subsequent attention to appropriate calculation 
of the plot values. The estimate of the population mean for a domain (d) of 
interest for attribute y is

 (1)

Where

 , and (2)

yhid = the ith plot observation of attribute y in stratum h for the domain of   
interest d. 

The estimated variance is

 (3)

 

Where

 (4)

The first term in Equation 3 represents the typical stratified sampling 
variance (under proportional allocation), whereas the second term 
accounts for the additional variability arising from random within-stratum 
sample sizes.
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The estimate of the total is then 

 (5)

With estimated variance

 (6)

Where

AT = the known total area of the population.

Presentation of estimates and their uncertainty is typically approached 
through calculation of the standard error of the estimate as the square root 
of the variance:

 (7)

Standard errors are then commonly used to estimate percent sampling 
error and construct confidence intervals, respectively:

, and (8)

 (9)

Where

t ≈ 2 for a 95 percent (α = 0.05) confidence interval. 

It should be noted that large percent SE may be obtained when estimates of    
are small, e.g., estimates of change over time.

The preceding estimation formulae cover many common applications 
of FIA data. A numeric example showing calculations to estimate 
forestland area is provided in Appendix 1. Other types of estimates may be 
constructed, such as those arising from information needs on a per-tree or 
per-condition basis. Interested readers are referred to Scott et al. (2005) for 
details pertaining to these other estimation procedures.
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Post-Stratified Estimation of Ratios
In addition to estimating population totals as described, it is often desired 
to have the estimates expressed on a per-unit-area basis, where the area 
is also to be estimated (e.g., biomass per acre of forest land, number of 
trees per acre of ponderosa pine type). These estimates are constructed 
via a ratio of estimated totals as described above. Typically, a tree-level 
attribute total serves as the numerator and the total forest land area serves 
as the denominator; however, other estimations may also be formulated 
depending on the information need. For ease of presentation, the ratio 
estimate will be shown using the notation already established. The form of 
the estimator is

 (10)

Where 

d, d’ = the specified domains for the numerator and denominator, 
respectively. 

The estimated variance is

 (11)

The only previously undefined term is

 (12) 

Where

 . (13)

Summarizing Data to Plot-Level Observations
The stratified estimator and the ratio estimator are the primary approaches 
used in online analytical tools such as EVALIDator and DATIM (https://
www.fia.fs.usda.gov/tools-data/). However, to apply the domain estimators, 
the data must first be appropriately summarized to the plot-level . In 

https://www.fia.fs.usda.gov/tools-data/
https://www.fia.fs.usda.gov/tools-data/
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practice, the plot values are either a proportion (e.g., proportion of the ith 
plot that was d = forest land) or a per-unit-area value (e.g., aggregate tree 
volume cubic feet per acre) for d = red maple on forest land for the ith plot). 
For a given domain, condition- and tree-level observations are summarized 
to the plot level in order to construct estimates.

The initial plot-level summarization  is calculated by summing the 
attribute of interest across conditions occurring within the plot type 
(macroplots, subplots, or microplots) that the attribute of interest is 
measured on for the domain of interest and dividing by the fixed total area 
of the plot (Eq. 14): 

 (14)

Where

= an indicator (0,1) variable which equals 1 when the attribute is in the 
domain of interest; 0 otherwise,

 = the observation for attribute y measured on j = macroplots (1 acre), 
subplots (1/6 acre), or microplots (1/75 acre) for plot i in condition k, and

 = the corresponding total plot area depending on whether the attribute 
is measured on j = macroplots (1 acre), subplots (1/6 acre), or microplots 
(1/75 acre). 

This results in the plot-level summaries taking on two forms: a proportion 
or a density. Note the use of the domain indicator variable  results 
in plot observations of zero for plots where the attribute of interest is not 
observed in the domain or the domain does not occur within the plot. 
The plot-level summary is a proportion when  is area-based (e.g., 
mapped area of forest land) because both the numerator and denominator 
of Equation 14 are areas. Proportion-based plot-level summaries are 
constructed from subplots in all FIA regions except the Pacific Northwest 
(PNW; California, Oregon, Washington) where the macroplots are used. 
The plot-level summary is a density when  is, for example, number 
of trees because the numerator in Equation 14 is number of trees and 
the denominator is an area. For some plot-level summaries, such as the 
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number of live trees ≥ 1 inch d.b.h., summaries must be constructed at the 
microplot scale and the subplot scale because trees 1.0 inch ≤ d.b.h. < 5.0 
inches are only recorded on the microplot. In this case

 (15)

A generalized formula that can be used across any combination of plot 
sizes is

 (16)

Adjustment for Partial Plots Outside of the Population and 
Stratum Assignment
Two additional steps are needed to use the plot-level summaries to 
construct estimates. The first step is to assign each plot to a stratum h 
(discussed previously). Once the stratum assignment has been made via 
spatial intersection, . The remaining step is to adjust  for 
stratum h plots partially outside of the population. Portions of plots may 
be inaccessible due to denied access or hazardous conditions and these 
portions are separately mapped unobservable conditions. This means 
that, for example, the total area measured across the four subplots is not 
always 1/6 acre. Rather than treating measured plot area as a random 
variable, stratum-level adjustments are calculated to account for partial 
plots. A different adjustment is made for the subplot-level, microplot-level, 
and macroplot-level (PNW only) measurement areas. In general terms, the 
adjustments are the proportion of measured plot area to total plot area 
within stratum:

 (17)

Where

 = the measured area of condition k for plot size j within plot i 
assigned to stratum h (excluding portions that are inaccessible or out-of-
population).
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When only one plot-scale is used (e.g., estimated forest area based on the 
subplot), the final plot-level summary  is

 (18)

And when multiple plot-scales are used (e.g., subplot and microplot to 
summarize the number of trees with d.b.h. ≥ 1.0 inch), then

 (19) 

The plot summaries denoted by yhid are the values used when constructing 
estimates of totals and ratios via Equations 1–13. The only exception to 
the above method occurs when there is a desire to estimate the area of d 
= nonresponse, in which case  =1 for all strata. Readers interested in 
computational examples are directed to https://www.fia.fs.usda.gov/library/
sampling/index.php.

In addition to calculating estimates of current forest resource attributes, 
these same formulae can be applied to observed changes from plots 
measured at two points in time. To obtain valid change estimates, it 
is necessary that yid is reformulated as a difference observation, i.e., a 
difference between proportions (e.g., difference in proportion of the ith plot 
that was d = forest land between an initial and subsequent measurement) 
or a difference expressed on a per-unit-area basis (e.g., difference in tree 
volume (cubic feet per acre) on d = forest land for the ith plot between an 
initial and subsequent measurement). As before, differences between 
observations at either the condition- or tree-level are summarized to the 
plot level. Note that only plots (or portions thereof) that were measured at 
both times can be used to estimate change; thus, plot areas intended to be 
sampled that remained unobserved due to factors such as denied access 
and hazardous conditions are excluded from change calculations (except 
for the specific case of area change estimation for d = nonresponse).

https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
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Implementation of Estimators
The estimators described above are applied to populations created from 
delineated geographic areas having a known area. It is at this level the 
stratification is applied, i.e., the sum of the stratum weights equals one. In 
FIA terminology, these areas are known as estimation units and they are 
usually formed from administrative boundaries such as a county, a group 
of counties, or in some cases large ownerships such as national forests. 
Estimation unit boundaries are also constrained within state boundaries, 
i.e., an estimation unit cannot include more than one state. Due to the 
independence among estimation units, state-level (or other areas composed 
of > 1 estimation unit) estimates can be obtained through sums of estimates 
arising from the estimation units therein. Estimates at the multi-state, 
regional, and national scales are generally obtained by summing state-
level estimates. Thus, estimation units form the essential building blocks 
to obtain estimates for any geographic area of interest. The estimate in 
domain d across G estimation units is obtained from

 (20)

Where 

ATg = total area in estimation unit g, and 

G = total number of estimation units in the area of interest.

The variance of the total is the sum of the variances, since the estimation 
units are independent of one another. 

 (21)

Often, interest is in the mean per unit area (acre) across the estimation 
units. If the mean is expressed on the basis of the total number of acres in 
the estimation unit (as in equation 1), the population mean is simply the 
population total divided by the total area in the population (a weighted 
mean):

 (22)
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The variance of the mean is easily computed from the variance of the total 
via division by the square of the total area in the population. 

 (23)

However, often the mean is expressed on a per forested-acre basis. This 
forms a ratio estimate because the denominator (estimated area of forest 
land) is also a random variate. As with summing across strata, summing 
across subpopulations for ratio estimation suggests that the ratios 
are formed as the last step, i.e., at the population level. The estimated 
population ratio is

 (24)

The general form of the variance is shown in Equation 11. The variance 
of the numerator is given in Equation 21 and similarly the variance of the 
denominator is:

 (25)

The above is straightforward; however, the covariance term in Equation 
8 remains to be addressed. The following assumes that estimation units 
are independent; therefore, the covariance between the numerator and 
denominator is the sum over the estimation unit covariances—analogous 
to the variances

 (26)

This completes the necessary formulae to calculate the variance of the ratio 
estimate across multiple estimation units.

Analysts should be aware that FIA analytical tools such as EVALIDator 
and DATIM (https://www.fia.fs.usda.gov/tools-data/) take a standardized 
approach of providing estimates at the state level or for other user-defined 
populations (e.g., a GIS polygon). Hence, estimates from these tools almost 
always arise via specification of a domain d that is applied across all 
estimation units in the state. The summation across estimation units is 
accomplished internally and is usually not apparent to the user. Note that 
estimation units not having any plots containing domain d will contribute 
zero to the both the estimate and its variance.

https://www.fia.fs.usda.gov/tools-data/
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 Equations 1–26 shown above are consistent with those in Scott et al. 
(2005) and represent the current methods by which FIA generates forest 
resource estimates. An alternative approach would be to use ratio-to-size 
estimators (Cochran 1977, section 11.8). The key difference in using ratio-
to-size estimators within strata is how partial nonresponse (inaccessible 
portions of plots) is addressed. The current approach uses  (Eq. 17) to 
compensate for missing portions of plots; however, this source of variation 
is not directly accounted for when estimating variance. The ratio-to-size 
estimator yields exactly the same estimates of forest attributes; however, 
the variance of  is incorporated into the variance estimator, yielding 
a more accurate variance estimate. When there are no partial plots, the 
variances from both methods are identical. Another feature of the ratio-
to-size estimator is that it can be used for estimating ratios of means, such 
as volume per acre of forest land. The variance estimator is much simpler 
than what is currently used but yields the same results only in the case of 
simple random sampling—but not when stratification is used such as in 
FIA applications. A detailed explanation of ratio-to-size estimation in the 
context of the FIA inventory is provided in Appendix 1.

Nonresponse
The FIA program gains considerable efficiency via a priori determination 
of whether a sample plot may contain forest land or is entirely nonforest. 
Data for entirely nonforest plots is obtained from high-resolution imagery 
(independently of the poststratification process), whereas plots containing 
forest land are designated for field measurement. Occasionally, a field 
plot (or portion thereof) may not be measured for some reason. The 
most common causes are denied access by the landowner and hazardous 
conditions such as wildfire or other dangerous circumstances. These 
unmeasured plot areas are referred to as nonresponse, which is consistent 
with the survey sampling literature. The treatment of nonresponse 
conditions in estimation is described by Scott et al. (2005), i.e., plots that 
are entirely nonresponse are dropped from the estimation and partially 
nonresponse plots are included in an adjustment factor (Eq. 17). These 
protocols are implemented at the stratum level; thus, some effort is 
made to construct strata having similar properties that may influence 
characteristics of nonresponse plots. An example is using ownership 
information maps in the creation of the post-strata to separate public and 
private ownerships, for the primary purpose of accounting for denied 
access plots mostly occurring on privately owned land (Patterson et al. 
2012). This model is similar to the Response Homogeneity Group (RHG) 
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model (Särndal et al. 1992, p. 578), where groups are identified on which 
the response probabilities are constant. The standard “stratified” estimator 
is used with the RHGs treated as strata. FIA estimation processes assume 
the nonresponse areas are missing at random within strata; however, it is 
acknowledged this assumption may not always be tenable (Bechtold and 
Scott 2005). Additionally, the FIA approach for estimating change over time 
only includes plots that were sampled at both the previous and current 
measurement. Thus, the sample size for change estimation differs from 
that used to develop estimates of current status and the magnitude of the 
difference is largely driven by nonresponse rates.

The evolution of nonresponse awareness and treatment varies slightly 
between the four FIA units. In the early 2010s, the Rocky Mountain (RM) 
region of FIA decided to investigate the impact of nonresponse. Previously 
RM-FIA did not include a RHG layer as part of the post-stratification. In 
most states of the RM region, the majority of nonresponse is due to denied 
access on privately owned lands; it thus it makes sense to use a public/
private ownership map layer. At the same time, New Mexico was being 
inventoried by using an accelerated schedule and comparisons between 
ignoring nonresponse bias and the use of a stratification layer to reduce 
nonresponse bias had a substantial effect on estimates of forest land area. 
This outcome suggested the use of RHGs considerably reduced nonresponse 
bias (Goeking and Patterson 2013). RM-FIA is in the process of reviewing 
the other seven states in its region for the applicability of forming RHGs, 
the first step being identification of proper mechanisms for treatment of 
nonresponse. Although, as stated above, the majority of the nonresponse 
is from denied access, an analysis of the nonresponse for each state will 
be conducted to see if there are any other nonresponse drivers such as 
hazardous conditions that need to be accounted for.

In the Pacific Northwest (PNW) FIA unit, the issue of nonresponse in 
estimation has been mainly addressed through the addition of more 
informative stratification layers, such as the National Land Cover Database 
(NLCD) tree canopy cover, historical forest type maps (California, Oregon, 
and Washington), mean annual temperature (Alaska), elevation (Alaska), 
ownership, and wilderness layers. However, the possibility of bias 
remains a concern, especially given the relatively large differences in the 
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nonresponse rate within particular ownership classes (such as corporate 
vs. noncorporate private landowners) that are not separated in the spatial 
layers currently used in stratification. Other spatial layers are being 
considered to reduce possible nonresponse bias attributed to other sources, 
such as topography (steepness, cliffs) to account for hazardous plots on 
public land, mapped disturbance information (harvest, cultivation) to 
explain denial of access on private lands, and additional ownership layers 
to separate corporate from noncorporate private. There is also an ongoing 
effort to reduce the number of access-denied plots through more focused 
outreach and education. 

While the nonresponse rate in the Southern FIA region is low (~1.0 
percent), there are specific locations where nonresponse is an issue. When 
there is a nonresponse issue, the typical approach is to construct additional 
strata related to the nonresponse mechanism so that the assumption of 
missing at random within strata is more appropriate. For example, in west 
Texas there is significant nonresponse because of denied access on private 
forest land. In this case, separate public forest land and private forest land 
strata are created. An example arising from hazardous conditions is the 
Okefenokee National Wildlife Refuge in Georgia and northern Florida. 
While some of the forested plots in this swamp are measured, many are too 
hazardous to access. The Okefenokee is treated as a separate stratum for 
estimation purposes.

The stratified estimation process used by Northern FIA comprises 
estimation units defined by ownership categories (e.g., national forest, 
other public, and private) and strata defined by 5 percent tree canopy cover 
classes (0–5, 6–50, 51–65, 66–80, and 81–100) to reduce the possible effects 
of bias caused by nonresponse (Gormanson et al. 2018).

An analysis of plots designated for field measurement during the period 
2007–2017 indicated the rate of nonresponse due to denied access (6.5 
percent) and hazardous conditions (1.1 percent) at the national scale has 
been about 7.6 percent. However, there was considerable spatial variability 
as shown by states in the northeastern United States tending to have the 
highest rates of denied access (Delaware, Maryland, and Rhode Island > 20 
percent); whereas the southeastern United States had the lowest rates (~ 1.0 
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percent regionally). Similarly, hazardous conditions were more prevalent 
in the western United States where phenomena such as wildfire, dangerous 
wildlife, and extreme terrain are more commonly encountered. Western 
states had hazardous-condition nonresponse rates of 1.5 percent to 4.5 
percent. 

Various initiatives to decrease the amount of nonresponse have met with 
limited success, such that the issue remains a concern to the FIA program. 
Initial research into the problem and potential solutions were reported 
by Patterson et al. (2012), which led to increased emphasis on improving 
post-stratification efforts to better contend with potential bias issues in 
estimation and recitation of the policy to maintain the existing plot location 
regardless of nonresponse frequency. Current data suggests that about 5 
percent of field plots change status from denied access to accessible (or vice 
versa) at time of remeasurement. Further, fewer than 1 percent of plots 
were consistently denied access for three successive measurements. These 
outcomes suggest a plot replacement effort would be largely ineffective 
and FIA should continue to preserve the original sample plot selection. For 
the TPO and NWOS surveys, the nonresponse issue is addressed within the 
respective chapters.
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Chapter 3: Urban Forest Inventory and Analysis
Christopher B. Edgar

Urban forests provide numerous environmental benefits. In urban and 
community areas of the United States, trees reduce residential energy cost 
by $7.8 billion per year (Nowak et al. 2017), store 643 million tonnes of 
carbon, and annually sequester 25.6 million tonnes of carbon (Nowak et 
al. 2013). Further, trees in urban areas of the conterminous United States 
remove 711 thousand tonnes of air pollution, providing an annual value of 
$3.8 billion (Nowak et al. 2006). The value of trees as a structural asset in 
urban forests of the conterminous United States totals $2.4 trillion (Nowak 
et al. 2002). These and numerous other studies point to the wide range of 
benefits that urban forests provide and illustrate the important role of 
urban inventory to quantify status and change in the urban resource.

Urban forests include all trees in urban areas. In the enhanced Forest 
Inventory and Analysis  (FIA) program, tree data are collected on forest 
land uses only (Bechtold and Scott 2005). Absent extending measurement 
to all trees in urban areas, only a portion of urban forests are monitored 
in the national forest inventory (Nowak et al. 2013). In the mid-2000s, 
several pilot studies were conducted by FIA in partnership with states to 
test various procedures for urban forest resource monitoring (Cumming 
et al. 2007, Nowak et al. 2007, Nowak et al. 2011). Although limited to a 
few states, these pilot studies provided valuable lessons regarding the 
feasibility of adapting the FIA design to urban environments (Nowak et al. 
2016).

The lack of comprehensive coverage of urban forests in the national 
forest inventory created an information gap that challenged stewardship 
of the broader forest landscape (USDA Forest Service 2016). From 2000 
to 2010, the nation’s urban population increased 12.1 percent through a 
combination of internal growth and outward expansion of urban areas 
(U.S. Census Bureau 2018). The National Association of State Foresters, in 
a position statement regarding Farm Bill direction, noted the need to “[s]
trengthen forestry outreach, education, research, and inventory programs 
that enhance the ability of State Foresters to assist private landowners and 
deliver federal and state programs serving all lands across the rural to 
urban spectrum” (National Association of State Foresters 2017). Seamless 
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monitoring of forest land and urban forests would fill the information gap 
and provide critical information needed to help partners and stewards 
address important issues such as the loss of peri-urban forest, wildland 
fire, and invasive species. 

In recognition of the lack of strategic coverage and the important benefits 
of urban forests, and with direction from the 2014 U.S. Farm Bill, FIA 
expanded its focus beyond forest land to include all trees in urban areas 
through deployment of an urban inventory program. The urban inventory 
extends the enhanced FIA sampling frame and estimation procedures to 
urban areas with some modification. Adapting the enhanced FIA program 
to urban areas leverages the valuable lessons learned implementing 
annual FIA over the past two decades and lays the foundation for seamless 
inventory of forest and urban lands.

The purpose of this chapter is to document the sample design and 
estimation procedures used in the urban inventory. Many of the 
approaches and techniques employed by the enhanced FIA program that 
are documented in Bechtold and Patterson (2005) are used. The approach 
taken here is to identify circumstances where the urban inventory follows 
enhanced FIA and for the reader to consult the Bechtold and Patterson 
(2005) publication if more detailed information is desired. Circumstances 
where the urban inventory deviates from enhanced FIA are noted and 
technical details provided. Sections are devoted to the sampling frame, 
plot configuration and measurement, sample-based estimators, combining 
panels, and continuing investigations. The urban program was initiated in 
2014 and is still evolving with investigations into methods and techniques 
remaining to be conducted. This chapter is accompanied by an online 
resource (https://www.fia.fs.usda.gov/library/sampling/index.php) where 
new developments in urban inventory design and estimation are made 
available.

Sampling Frame
In the urban inventory, populations and subpopulations are formed from 
urban areas by using one of two models. For the first program goal, that of 
providing strategic-level coverage of urban forests across the nation, U.S. 
Census Bureau-defined urbanized areas (UA) and urban clusters (UC) are 
used. Urbanized areas are densely developed territory containing 50,000 
or more people. Urban clusters are densely developed territory with at 

https://www.fia.fs.usda.gov/library/sampling/index.php


24           General Technical Report  NRS-207    

least 2,500 people but fewer than 50,000 people. As of the 2010 Census, 
there were 486 urbanized areas and 3,087 urban clusters across the nation 
covering approximately 68 million acres (U.S. Census Bureau 2018). A 
second program goal is to provide strategic urban forest inventories for 
the largest cities in the United States. In this model, a population is formed 
from a city boundary. FIA is targeting cities with populations of 200,000 
or more people as of the 2010 Census. A small number of cities with 
populations below 200,000 are included to ensure every state has at least 
one target city in the program. Altogether, approximately 100 cities would 
be included in the program when partnerships, resources, and funding are 
fully in place.

The hexagonal sampling frame (Bechtold and Patterson 2005, White 
et al. 1991) applied to the FIA program is used in the urban inventory. 
For populations and subpopulations formed from UA/UC, a base spatial 
sampling intensity of approximately one plot per 5,937 acres is used. 
For populations formed from city boundaries, the base spatial intensity 
produces plot numbers insufficient for reliable city-level inference. 
Sample size decisions are influenced by i-Tree (https://www.itreetools.
org/), a set of software tools developed by the USDA Forest Service and 
partners that provides assessment of urban forest structure, services, and 
benefits. In an analysis of sample inventory data from 14 cities, Nowak 
et al. (2008b) reported that 200 0.1-acre circular plots typically produce 
about a 12 percent error for the estimate of the total number of trees and 
that more plots provide only marginal gains. Where city boundaries form 
a population, the sample frame is enhanced by a spatial intensification 
sufficient to produce around 200 plots. In the spatial intensification 
process, base hexagons are divided into smaller units with one plot 
randomly located in each unit.

The sample frame is divided into panels. Each panel provides a spatially 
complete sample of the population. In standard implementation, one panel 
is measured at a time and not until that panel is completed is a subsequent 
panel measured, and no panel is remeasured until all other panels have 
been measured. Details on the origin and use of the panel system by FIA 
are documented in Reams et al. (2005). 

https://www.itreetools.org/
https://www.itreetools.org/
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Post-stratification is used to increase the precision of estimates without 
increasing sample sizes (Scott et al. 2005). The population is divided into 
strata of known size by using one or more remote sensing or geospatial 
layers that cover the population. In the FIA program, considerable research 
has been conducted into image classification, spatial resolution, and 
selection of strata boundaries (McRoberts et al. 2006). Recent work has 
focused on post-stratification for both variance reduction and as a means 
of minimizing the bias due to differential response rates among major 
owner groups. Using post-stratification to make the missing-at-random 
assumption tenable has been recommended as a strategy to mitigate 
the effects of nonresponse (Patterson et al. 2012). Domke et al. (2014) 
examined six techniques to compensate for missing observations in carbon 
estimation, two of which involved replacing missing observations with 
stratum means. Westfall et al. (2011) examined within-strata sample sizes 
and presented recommendations on minimum sample size to achieve 
acceptable levels of bias and variability. Previous FIA work into post-
stratification for proportion forest land and cubic net volume (McRoberts 
et al. 2006, Westfall et al. 2011) and coarse woody debris (Hatfield 2010) 
estimation inform the post-stratification being applied in the urban 
inventory.

Using the FIA sampling frame in the urban inventory provides program 
efficiencies and promotes the goal of seamless monitoring of forest land 
and urban areas. The FIA sampling frame was formally described as 
occurring in three phases (Reams et al. 2005). The urban inventory sample 
design matches Phase 1 and Phase 2 of the enhanced FIA program (Table 1) 
when satellite pixels rather than photo points are used in Phase 1. The FIA 
program has a Phase 3; however, there is no analog in the urban inventory. 
By using the same sample frame, plots from both inventories (i.e., the base-
intensity plots) can occur at the same location (i.e., colocated). When that 
is the case, both plots are installed and measured by using their respective 
protocols. Measurement of both plots occurs in the same inventory year 
according to the panel timing of the enhanced FIA program. The number of 
panels used in the urban inventory is set equal to that of the FIA program 
in the state or area. 
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Table 1.—Summary of general attributes associated with the urban inventory
Attribute Phase 1 Phase 2

Sample type Satellite pixel Ground plot

Sample configuration Pixel
Cluster of four 1/300-acre microplots, 
one 1/6-acre subplot

Purpose
Stratification of the landscape for 
the purpose of variance reduction

Samples FIA and i-Tree Eco attributes 
of interest

Tessellation method Wall-to-wall Systematic national hexagonal cell grid

Base-grid intensity Wall-to-wall

One plot per every 6,000-acre 
hexagonal cell in urbanized areas 
and urban clusters (UA/UC); spatial 
intensification in target cities sufficient 
to produce at least 200 plots

Plot Configuration and Measurement
Urban inventory plots conform to a national standard configuration (Fig. 
5). Each plot consists of one 48-ft radius circular plot. Nested in each 
plot are four 6.8-ft radius circular microplots offset 12 feet in each of the 
cardinal directions from plot center. The urban plot configuration differs 
from the enhanced FIA plot configuration, which consists of four 24-ft 
radius circular subplots with one subplot centered on plot center and 
the other three centered 120 feet from plot center at azimuths of 0, 120, 
and 240 degrees (see Fig. 4a in the Foundational Documentation chapter). 
The change in configuration was made to reduce the number of owners 
that would need to be contacted to access urban plots. Although plot 
configurations are different between the two programs, sampled areas are 
the same. The four subplots in the enhanced FIA plot configuration total 
0.166 acres, which is the same area as the urban plot. For both programs, 
the microplot area totals 0.013 acres. There is no macroplot in the urban 
plot design.
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Figure 5.—Plot design used in the urban inventory.

On the urban plot, trees 5.0 inches and larger in diameter at breast height 
(d.b.h.) or diameter at root collar (d.r.c.) are sampled. Trees 1.0–4.9 in. d.b.h. 
or d.r.c. are sampled on the microplots. The urban inventory applies many 
of the same measurements that are used in the FIA program. The urban 
inventory collects additional measurements related to urban-specific issues 
and to provide data needed for processing of urban benefits in the i-Tree 
Eco system (Nowak and Crane 2000, Nowak et al. 2008a). Land use, urban 
specific damage, and tree location relative to residential buildings are 
examples of areas where additional measurements are taken. Interested 
readers can consult the urban inventory field guide for a complete 
description of measurements taken at sample locations (https://www.fia.
fs.usda.gov/library/field-guides-methods-proc/index.php).

https://www.fia.fs.usda.gov/library/field-guides-methods-proc/index.php
https://www.fia.fs.usda.gov/library/field-guides-methods-proc/index.php
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The urban inventory uses mapped condition classes similar to the 
enhanced FIA program. One significant area of deviation is treatment of 
nonforest conditions. In the enhanced FIA program, measurement of trees 
occurs on forest conditions only. Urban forests include all trees in urban 
areas and thus urban inventory measurements are made on all conditions, 
forest and nonforest. The urban inventory is collecting more detailed 
information on the occurrence, type, and condition of nonforest land use 
classes than is done in the FIA program. This reflects the fact that trees in 
urban areas occur both inside and outside forest land and information 
from all plots and conditions is needed for estimation of the full range of 
attributes produced by urban forests.

Design-Based Estimation
The estimators used in the FIA program have been adopted in the urban 
inventory for attributes collected under a probabilistic design. Populations 
may contain both enhanced FIA plots and urban inventory plots; however, 
for the purposes of estimation in the urban inventory, the plot types are not 
pooled or combined. The estimation of urban area attributes is based on 
data from urban inventory plots only. The estimation approach follows the 
methodology described in the Foundational Documentation chapter, which 
uses Equations 1–26 as appropriate for either population totals or ratios.

There is a need and expectation that growth, removals, and mortality 
estimates will be produced once sufficient remeasurement data become 
available. Like the FIA program, the urban inventory is designed to 
produce components of change. Two sequential measurements of a plot 
provide the essential data needed to compute change components. Scott 
et al. (2005) provide detailed information on the individual components 
recognized in FIA and how those components are combined to produce 
various estimates of change. The urban inventory will likely adopt the 
estimation methods for growth, removals, and mortality used in the 
enhanced FIA, although some modification may be needed. For example, 
tree mortality may be accompanied by removal, especially in areas where 
standing dead trees are a hazard to people and property. The extent 
to which this occurs and subsequent impact on component of change 
calculation is an issue for investigation. 
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Combining Panels
The FIA program does not prescribe a single procedure for combining 
panels for the reason that a single technique may not work for all 
situations encountered in a national forest inventory (McRoberts et al. 
2005). Patterson and Reams (2005) briefly describe several approaches 
to combining panels and important considerations. Estimates that are 
produced in standard or routine reporting in the urban inventory program 
best match the temporally indifferent method in the sense that all panels 
are pooled and the same stratification is applied. Note that the temporally 
indifferent method is equivalent to the moving average method when 
weights proportional to the number of plots in each panel are used 
(Patterson and Reams 2005). 

Continuing Investigations
The urban inventory started in 2014 with measurements in Austin, Texas, 
and Baltimore, Maryland. As of 2020, the urban inventory is operational 
in 40 cities covering all the major regions of the United States. The latest 
information on implementation, as well as other program information, is 
available at the National Urban Forest Inventory and Analysis Program 
website hosted by the USDA Forest Service’s Northern Research Station 
(https://www.fia.fs.usda.gov/program-features/urban/).

The rapid expansion of the urban inventory can at least in part be 
attributed to the decision to adapt the enhanced FIA program. Leveraging 
the FIA sample frame and the accumulated expertise in data acquisition 
and information management enabled quick deployment of the inventory 
in urban areas. As an integration of FIA and i-Tree, urban inventory is 
benefitting from the lessons learned from each of those successful systems. 
The urban inventory is expanding and there remain issues to be resolved. 
Several areas for potential future investigation include efficient sample size 
in target cities; auxiliary data for post-stratification; change component 
computation; allocation of population model output to domains; and 
methods of combining panels. Seamless monitoring of rural and urban 
forests is a goal of the FIA program, suggesting the need for investigation 
of methods for producing estimates that combine the data from both FIA 
and urban inventory (e.g., Westfall et al. 2018). Urban areas are expanding 
and that presents a challenge to the urban inventory – the boundaries 
of the population can change. FIA is currently using U.S. Census spatial 
layers from 2010 to define urban populations with plans to adopt new 

https://www.fia.fs.usda.gov/program-features/urban/
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layers in 2020. Considerable focus has been placed on development of 
information models and databases with the flexibility to store versions of 
the population boundaries. Investigation into estimation methods for both 
inventory and change component estimation in preparation for changing 
boundaries will be needed. As advances are made, newly established 
techniques and methods will be documented and made available on the 
website (https://www.fia.fs.usda.gov/library/sampling/index.php) that 
accompanies this report.
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Chapter 4: National Woodland Owner Survey 
Brett J. Butler and Jesse Caputo

The U.S. Department of Agriculture, Forest Service, Forest Inventory 
and Analysis (FIA) program conducts the National Woodland Owner 
Survey (NWOS). The NWOS is the social complement to the plot-based, 
biophysical-focused, forest inventory component of the FIA program. It 
has been implemented by FIA since 1993 (Birch 1996) with subsequent 
iterations completed in 2006 (Butler 2008), 2013 (Butler et al. 2016), and 
2018 (Butler et al. 2021). Beginning in 2019, the NWOS switched to an 
annual system, as is done with the FIA forest inventory. The goals of the 
NWOS are to generate information related to the attitudes, behaviors, and 
general characteristics of private forest ownerships in the United States. 
This information is used to help design policies, implement programs, and 
provide services aimed at private landowners.

This chapter summarizes the sampling and estimation procedures for 
the base/rural NWOS. After defining the populations of interest, the 
sample design is described, the estimators are presented, issues related to 
nonresponse are discussed, and recommended sample sizes are presented. 
Additional information about the sampling and estimation procedures is 
available in Butler and Caputo (2021) and Butler et al. (2021). 

Definition of the Population
The NWOS has multiple populations of interest: family forest ownerships, 
large corporate forest ownerships, other corporate forest ownerships, and 
other private forest ownerships (Table 2). An ownership is defined as a 
legal entity that has specified rights associated with the land, such as the 
ability to sell and manage it. In the case of family forest ownerships, the 
entity can be composed of one or more individual owners. For the base 
NWOS, the primary population of interest is family forest ownerships. The 
corporate category is further divided into large (≥ 45,000 acres) and smaller 
ownerships (Caputo et al. 2017). NWOS results are typically reported in 
terms of ownerships and acreage. The sampling procedures for the Urban 
National Landowner Survey, which are not covered in this chapter, are 
very similar to the approach used for the base NWOS, but the populations 
of interest are different.
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Table 2.—Descriptions of populations of interest for the USDA Forest Service, 
National Woodland Owner Survey.

Population Description

Family forest ownerships
Individuals and families, including trusts, estates, and family partnerships 
with 1+ acres of forest land

Large corporate forest 
ownerships

Corporate, including forest industry companies, timber investment 
management organizations (TIMOs), real estate investment trusts (REITSs), 
Native Corporations in Alaska, and private universities with 45,000+ acres of 
forest land

Other corporate forest 
ownerships

Corporate, including forest industry companies, TIMOs, REITs, Native 
Corporations in Alaska, and private universities with 1–44,999 acres of 
forest land

Other private forest 
ownerships

Nongovernmental conservation / natural resources organization and 
unincorporated partnerships / associations / clubs with 1+ acres of forest 
land

Sampling Frame
The sampling procedure used by the NWOS (Fig. 6) is built upon the same 
framework used for the FIA forest inventory described in the Foundational 
Documentation chapter of this report. An area-based sampling frame, 
defined as the land area in a state, forms the basis for sampling. Land area 
includes forest land, nonforest land, and non-Census water; it does not 
include Census water.

Sample Selection
The NWOS sample begins with the FIA sample points associated with 5 
years’ worth of forest inventory plots. There is a 2-year time lag between 
plot inventory and survey implementation to ensure the field crews can 
inventory the plots prior to survey implementation and provide some 
separation in terms of burden on the respondents. Where possible, the 
ownership information is updated prior to survey implementation. The 
time lag should have little impact on the survey results, especially given the 
long tenure of most ownerships and because the ownership information is 
being updated.
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Figure 6.—USDA Forest Service, National Woodland Owner Survey sampling 
procedure. Only private ownerships with forested sample points on their land 
are asked to participate. Created by Penny MichAalak (Penny Michalak Design).
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The FIA inventory sample design consists of hexagons that cover a state, 
sample points randomly located in each hexagon, and inventory plots 
associated with each sample point (see Foundational Documentation 
chapter). The base hexagons have an area of 5,937 acres. The sampling 
is implemented on an annual basis with 10 to 20 percent of the points 
sampled each year. The sample is spatially distributed across the entire 
state each year.

Where necessary, the NWOS sample is “augmented” to increase the 
number of sample points to reach the target of 250 respondents per state. 
Augmentation occurs by repeating the basic sampling procedure with a 
decreased hexagon size, with these smaller hexagons nested within the 
base hexagons in a fully tessellated manner. The hexagon size is based on 
the target sample size (see below), expected response rates, and expected 
area in the stratum of interest. One point is located randomly in each of 
the empty (i.e., not containing a point associated with a forest inventory 
plot) smaller hexagons. These additional points are iteratively added to the 
sample (by using the panel designation of the parent hexagon) until the 
desired intensity is achieved.

The NWOS, like the FIA inventory, is implemented on an annual basis. For 
the NWOS, 20 percent of the sample points, spatially distributed across a 
state, are used each year with a full cycle being completed once every 5 
years. This 5-year remeasurement cycle is implemented across all states, 
regardless of the remeasurement cycle for the FIA plots in a given state. 
At the end of the 5-year cycle, remeasurement commences using the same 
base FIA and augmented sample points; owners who still own the sample 
point are asked to complete another survey and new owners are invited to 
complete a survey.

The sample points are post-stratified based on land use and ownership; 
stratum areas are not known a priori. For the FIA inventory sample points, 
the land use (forest/nonforest) data come directly from the variables 
collected by the FIA prefield staff and field crews (i.e., are the same data 
used in the estimates derived from the FIA forest inventory). The initial 
land use is classified with aerial photography, and ground-validation 
occurs for plots that are likely to be forested or are potentially forested. 
For the augmented points, aerial photography is again used to determine 
land use, but no ground-truthing occurs. For the forested sample points, the 
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ownership of record is determined based on publicly available property 
ownership records. If the ownership is private, it becomes part of the list 
of ownerships surveyed as part of the NWOS. Some FIA inventory sample 
points are not sampled due to denied access, hazardous conditions, or 
other reasons, and are treated similarly to the augmented points: the 
land use is determined by using image analysis and, as with all points, 
the ownership is derived from property records. Although included in the 
sample, no surveys are sent to ownerships associated with these points.

Response Design
The basic unit of response is an ownership. For family, other corporate, and 
other private forest ownerships, the NWOS asks them to respond for all 
the forest land they own in a specified state. In the case that a family, other 
corporate, or other private forest ownership has forest land in multiple 
states that is part of the sample, they would be asked to respond separately 
for each state. Large corporate forest ownerships are asked to respond 
for all the forest land they own in the United States, along with how many 
acres they own in each state.

Design-Based Estimators
The NWOS sampling procedure uses an area-based sampling frame that 
results in a sample design with inclusion probabilities proportional to size 
of forest holdings—the greater the forest acreage owned, the more likely 
an ownership will be surveyed. In order to generate accurate estimates, 
the post-stratification, sampling weights, and other attributes of the sample 
design need to be incorporated into the estimators. Estimates of totals, 
proportions, means, and quantiles and their associated variances are made 
in terms of ownerships and acreages. Estimates are generated separately 
by state and stratum and can then be combined to get estimates for 
broader groupings.

A weighting approach (Valliant et al. 2013) is used for the estimates of 
totals, means, proportions, and quantiles with a bootstrapping approach 
(Efron and Tibshirani 1986) used for the associated variance estimates. 
An R package for implementing these procedures is available on GitHub 
(Butler and Caputo 2020).
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There is not a one-to-one relationship between sample points and 
ownerships—i.e., there is the possibility of having more than one sample 
point on an ownership’s land. For example, an ownership may have many 
acres of forest land across the state and sample points fall on more than 
one parcel. It is also possible that a parcel straddles hexagon boundaries 
and has more than one sample point fall on that parcel. The probability of 
multiple points increases as the acreage of the holding increases. This too is 
accounted for in the estimators.

Weights
Weights incorporate the sample design, adjustments for response rates, 
alternative stratum area estimates, and unit nonresponse biases. These 
are calculated separately for each stratum or population of interest by 
state (e.g., family forest ownerships in Wisconsin). The base weights are 
the inverse of the stratification-adjusted design weights multiplied by the 
number of forested sample points that fall on an ownership’s land (Eq. 27). 
The design weights (Eq. 28) are a function of the acreage owned within 
a stratum, the estimated acreage of the stratum, and the total number of 
sample points in the stratum:

 (27)

 (28)

Where

ωhi = base weight for ownership i in stratum h,

πhi = design weight for ownership i in stratum h,

phi = number of sample points owned by ownership i in stratum h,

 = estimated area of land in stratum h,

A = total land area,

nh = number of sample points in stratum h, and

n = total number of sample points.

All of the calculations occur at the state level; to simplify notation, a 
subscript denoting state is suppressed.
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To get the total area of forest land to equal values from the FIA forest 
inventory estimates, an alternative value, , is substituted for  in 
Equation 28. This allows the reported values to be the same across multiple 
reports. Both sets of estimates, i.e., based on  and , are unbiased 
estimates for area in a stratum, but the differences, which are likely to 
be small, can complicate interpretation. Although Equation 28 can be 
simplified by substituting  for , this would negate the ability to adjust 
with . For the variance estimation described below, it is important to 
exclude , otherwise the variability associated with estimating  is lost.

To account for response rates, the base weight is multiplied by the inverse 
of the response rate:

 (29)

Where

= response rate adjusted base weight for ownership i in stratum h,

 = response rate in stratum h,

Rh = number of sample points owned by respondents in stratum h, and

NRh = number of sample points owned by nonrespondents in stratum h.

This approach for response rate adjustments is similar to the partial plot 
adjustments described in the Foundational Documentation chapter.

Estimates of ownership totals are the summation of the products of the 
adjusted base weights, domain variables, and the variables of interest (Eq. 
30a). As defined, the domain variable is a binary variable indicating an 
ownership’s inclusion in the domain of interest. Likewise, the attribute of 
interest is defined by a binary variable, yhi, where 1 indicates the presence 
of the attribute of interest and is 0 otherwise. The estimates of acreage 
totals are similar to ownership totals with the inclusion of area owned, ahi, 
in the product chain (Eq. 30b):

  (30a )

 (30b )
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Where

= estimated total number of ownerships in domain d in stratum h, 
= estimated total acreage in domain d in stratum h,

dhi = a binary variable indicating inclusion of ownership i in domain d in 
stratum h,

yhi = a binary variable indicating the presence of a specific attribute for 
ownership i in stratum h, and

ahi = area owned by ownership i in stratum h.

Proportions are derived from the total estimators above. The total number 
(or acreage) of ownerships with a given attribute is divided by the total 
number (or acreage) of ownerships in the domain. For example, we may 
want to know what proportion of family forest ownerships in a state have 
a written forest management plan (using Eq. 31a) or what proportion of 
family forest acres in a state are owned by someone who has a written 
forest management plan (using Eq. 31b):

 (31a)

 (31b)

Where

= estimated proportion of ownerships in domain d in stratum h, and

= estimated proportion of acreage in domain d in stratum h.

Means are calculated the same way as proportions except that the variable 
representing the attribute of interest, yhi, is a numeric value, as opposed to 
simply binary as above. For example, to calculate the mean size of forest 
holdings, ahi is substituted for yhi in Equation 31a.

Quantiles, including median values, are estimated with an iterative 
approach. Successive values for the variable of interest are tested until 
the probability of interest, e.g., 0.5 for medians, is reached in terms of the 
proportion of ownerships, or acreage.
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Variance Estimation
A resampling, bootstrap approach (Efron and Tibshirani 1986) is used 
to estimate variances. This approach was selected due to the complex 
sample design of the NWOS and the resulting complications in developing 
a closed-form variance estimator. With bootstrapping, a specified number 
of replicates are created by randomly selecting sample points, with 
replacement, from the original full sample list until the original sample 
size is reached; this is done at the state level. Based on attenuation of 
coefficients of variation1, 1,000 replicates were deemed adequate to 
estimate variances (Butler and Caputo 2021). The value for the estimate of 
interest is calculated for each replicate and the variance is calculated based 
on the replicate estimates.

Post-stratification for variance reduction is used for the FIA forest 
inventory (see Foundational Documentation chapter). This technique is 
something that could be investigated for future iterations of the NWOS.

Nonresponse
Unit and item nonresponse are issues that need to be addressed for the 
NWOS, as they do for virtually all surveys. Unit nonresponse is when an 
ownership included in the sample does not respond. Ownerships that 
fail to meet the minimum 75 percent threshold for completeness of their 
questionnaire are treated as nonrespondents (Butler et al. 2021). Item 
nonresponse occurs when an ownership returns a questionnaire but fails 
to respond to all of the questions asked of them.

Unit Nonresponse
The overall cooperation rate for the 2018 NWOS was 40 percent (Butler 
et al. 2021). The state-level cooperation rates ranged from less than 30 
percent in Connecticut, Hawaii, and Nebraska to over 60 percent in coastal 
Alaska, Nevada, North Dakota, and South Dakota (Fig. 7). Cooperation was 
calculated as the number of completed responses divided by the sum of 
the numbers of completed responses, partial responses, and nonresponses; 
this corresponds to the American Association for Public Opinion Research’s 
COOP3 equation (AAPOR 2016, p. 63).

1 Coefficient of variation is defined here as the estimated standard error of the total divided by the estimate of 
the total.



44           General Technical Report  NRS-207    

Figure 7.—Cooperation rates for the 2018 USDA Forest Service, National 
Woodland Owner Survey (Butler et al. 2021). Created by Brett Butler, USDA 
Forest Service.

Unit nonresponse is addressed in the weights through an adjustment based 
on the response rates (Eq. 29). This naively assumes no nonresponse bias. 
A common approach to assessing nonresponse bias is to contact a portion 
of the nonrespondents via an alternative mode and make comparisons 
between the responses received for the different modes (Dillman et al. 
2014). For the base NWOS, telephone interviews are conducted with 
a subset of the sampled ownerships that responded via mail. For the 
telephone nonresponse assessment for the 2018 NWOS, most variables did 
not significantly vary between the mail and phone respondents and none 
of the differences had a large effect size (Butler et al. 2021). Overall, the 
NWOS appears to capture a representative sample of forest landowners 
in most regards, with nonrespondents being slightly less active on their 
land and less sure of future plans. Comparison across different modes 
provides an important qualitative assessment, but cannot be used to make 
adjustments.
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To make unit nonresponse adjustments, a response propensity modeling 
approach is adopted. To do so, data are required for all potential 
respondents in the sample (Lohr 1999). The auxiliary variables used for 
the NWOS unit nonresponse adjustments are: sample origin (FIA forest 
inventory or augmentation), population density, ecoregion, and size of the 
parcel at plot center. A response model, using random forests (Breiman 
2001), with these auxiliary variables is created and the adjustment factors 
are calculated as the inverse of the probability of response as predicted 
by the model. These adjustment factors are combined with the weights 
(Eq. 32a) and the weights are recalibrated to ensure the total areas in the 
strata do not change (Eq. 32b). Additional details are available in Butler and 
Caputo (2021) and Butler et al. (2021).

 (32a)

 (32b)

Where

= unit nonresponse, response rate adjusted base weight for ownership i 
in stratum h, and nr_adjhi= unit nonresponse adjustment for ownership i in 
stratum h.

Item Nonresponse
Question-level item nonresponse rates average 4 percent for the 2018 
NWOS (Butler et al. 2021). This excludes the “other (please specify)” 
variables, which were never intended for quantitative analysis and 
were dropped from the analyses. Nineteen percent of the questions (n = 
18) have item nonresponse rates of over 5 percent, and 3 percent of the 
questions (n = 3) have item nonresponse rates in excess of 10 percent (Fig. 
8). Due to excessive missingness, the results from the “Nontimber forest 
products—reason for collecting,” “Management plan implementation,” and 
“Management plan writer” questions should be viewed cautiously. 
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Figure 8.—Item nonresponse rates for questions with missingness of over 5 
percent from the 2018 USDA Forest Service, National Woodland Owner Survey 
(Butler et al. 2021). Created by Brett Butler, USDA Forest Service.

There are different approaches available for addressing item nonresponse. 
Multiple imputation with chained equations (mice) is a robust and 
increasingly common approach (Azur et al. 2011, van Buuren 2018) and 
is the one used for the NWOS. This technique uses a series of models that 
predict the missing values based on the observed values. Random forests 
(Breiman 2001) is used for the underlying models because it is a robust 
technique that can easily handle discrete and continuous variables. The 
whole process is implemented through the mice package in R (van Buuren 
and Groothuis-Oudshoorn 2011). A total of five imputed data sets are 
created; this is the number of imputations deemed sufficient by Rubin 
(1987) for datasets with low to moderate amounts of item nonresponse and 
good convergence of imputations, of which the NWOS qualifies. Following 
imputation, values are checked to ensure internal consistency. Additional 
details of the NWOS imputation implementation are available in Butler et 
al. (2021).
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Minimum Sample Size Guidance
The target sample sizes for the NWOS are based on desired error rates 
and logistical/financial constraints. The coefficients of variation for 
estimates of number and acreage of family forest ownerships are used for 
this assessment. At a sample size of 100 respondents in a state, the major 
reduction in the coefficient of variation, defined as the estimated standard 
error of the total divided by the estimate of the total, is obtained. After 
a sample size of 250 respondents, the rate of reduction of the coefficient 
of variation is greatly reduced. At a sample size of 500 respondents, the 
estimates will obtain a minimum coefficient of variation of 0.05 for acreage 
of family forest ownerships with 1+ and 10+ acres. In terms of ownerships, 
estimates for 1+ acre ownerships exceed the 0.05 threshold, but estimates 
for ownerships with 10+ acres are within this threshold. States with at least 
10 responses are included in regional and national totals, but a minimum 
of 100 respondents is the threshold to publish state-level results. Similar 
thresholds can be applied to all custom data retrievals and analyses.
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Chapter 5: Timber Products Output 
John W. Coulston

Wood product markets affect forest sector jobs (Hodges et al. 2012, 
Sorenson et al. 2016, Woodall et al. 2012), shape the composition and 
structure of future forests (Wear et al. 2016), and are strong drivers of 
investments in forest management (FAO 2009). Monitoring timber products 
output (TPO) is key to understanding the current utilization of raw 
material to support these markets. In the United States, TPO monitoring 
has been a constituent program within the Forest Inventory and Analysis 
program (FIA) since 1948. Estimates from the TPO program have provided 
the essential foundation for U.S. timber market analyses and projections 
(e.g., Abt et al. 2009, Adams and Haynes 1996, Buongiorno 1996, Ince et al. 
2011, McCarl et al. 2000), sustainability analyses (e.g., Shifley and Moser 
2016, USDA Forest Service 2012, Wear and Greis 2002, Wear and Greis 
2013), policy analysis (Boyd and Hyde 1989, Haynes 2003), and local wood 
basket analysis of potential market expansion. The goal of the TPO effort 
is to estimate volumes by timber product (Table 3), species group (e.g., 
hardwood, softwood), and county of origin. 

Population and Sampling Frame
The population of interest for timber products output estimation is all 
facilities receiving roundwood from the United States. The roundwood 
received can be in log form, bolt form, or chipped roundwood (Bentley and 
Johnson 2011). The population includes primary mills and other entities 
such as power companies, traders, and direct log exporters that also 
receive roundwood originating from the United States. Primary facilities 
include sawmills, pulp mills, veneer and plywood mills, composite panel 
mills, biomass and energy plants, pole, post, and piling mills, and other 
miscellaneous mills that accept roundwood (Table 3). 



General Technical Report  NRS-207         51

Table 3.—Terminology used in timber products output monitoring

Term Definition

Bioenergy/Fuelwood
Roundwood products and mill residue byproducts used to produce some form of energy 
(heat, steam, etc.) in residential, industrial, or institutional settings.

Byproducts
Primary wood products, e.g., pulp chips, animal bedding, and fuelwood, recycled material 
from mill residues.

Composite panels
Roundwood products manufactured into chips, wafers, strands, flakes, shavings, or 
sawdust and then reconstituted into a variety of panel and engineered lumber products.

Industrial roundwood 
products

Any primary use of the main stem of a tree, such as saw logs, pulpwood, veneer logs, 
intended to be processed into primary wood products such as lumber, wood pulp, or 
sheathing, at primary wood using mills.

Post, poles, pilings
Roundwood products milled (cut or peeled) into standard sizes (lengths and 
circumferences) to be put in the ground to provide vertical and lateral support in buildings, 
foundations, utility lines, and fences. May also include nonindustrial (unmilled) products.

Pulpwood
A roundwood product that will be reduced to individual wood fibers by chemical or 
mechanical means. The fibers are used to make a broad generic group of pulp products 
that includes paper products, as well as fiberboard, insulating board, and paperboard.

Sawlog
A roundwood product, usually 8 feet in length or longer, processed into a variety of sawn 
products such as lumber, cants, pallets, railroad ties, and timbers.

Veneer log
A roundwood product either rotary cut, sliced, stamped, or sawn into a variety of veneer 
products such as plywood, finished panels, veneer sheets, or sheathing.

A list of roundwood receiving facilities serves as the sampling frame and 
the frame is maintained by the FIA program in cooperation with partner 
organizations (e.g., state forestry agencies). Maintaining the sampling 
frame is important for producing quality timber product statistics. The 
frame is updated annually by the FIA program and partners by contacting 
each facility to ensure they are still in business with the same mill capacity 
consumption, number of employees, and other relevant information. 
Establishments no longer in business or that are inactive are coded 
appropriately and not considered part of the sample frame for that year. 
New facilities can be identified in several ways. First, when contacting 
existing facilities, the practitioner can also ask about new facilities in the 
area. The practitioner may also rely on professional organizations, trade 
journals, and the internet to identify planned mill construction. New 
facilities that are identified are contacted and added to the frame. 
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Sample Design and Selection
The TPO program uses a stratified random sampling approach (Coulston 
et al. 2018) with a sampling fraction of 0.4 (40 percent sample). The 
population of roundwood receiving facilities is divided into subpopulations 
where subpopulations are defined by the state the facility resides in (or 
country when considering Canadian mills) and the primary roundwood 
product the facility receives. Each subpopulation is then stratified based on 
facility measure of size (e.g., amount of roundwood received or capacity). 
The goal of the stratification is to arrange the facilities into strata where 
the total within stratum measure of size (MOS) is similar. Facilities with an 
MOS greater than 10 million cubic feet of roundwood are placed in their 
own strata; however, this threshold may be adjusted by subpopulation. 
Strata containing a single facility are considered sampled with certainty 
(Nh = nh = 1, where Nh and nh are the number of facilities and the number of 
sampled facilities, respectively, for stratum h). The remaining facilities in 
the subpopulation are then arranged into strata and a fixed sample size of 
nh = 2 is randomly selected. 

For example, suppose the subpopulation of interest is active facilities in 
South Carolina that receive saw logs and that there are N = 17 of these 
facilities (Table 4). The target sample size is n = N*0.4 = 6.8 facilities. To 
identify the strata boundaries, the facility list is placed in descending MOS 
order. Note that facility 1 has an MOS of 12 million  cubic feet. This facility 
is sampled with certainty, placed in its own stratum (stratum A), and 
then the stratum boundary is drawn (Table 4). The sample size subject to 
randomization is then nrandomized = n-ncertain = 7-1 = 6. The cumulative MOS for 
each stratum h subject to randomization  is approximated by

 (33)
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Table 4.—Hypothetical example of the stratification and sample selection process for a 
subpopulation

Facility 
number Subpopulation

Facility MOS 
(mmcf) Stratum Sample

Inclusion 
probability

1 South Carolina Saw logs 12 A X 1.00

2 South Carolina Saw logs 9 B X 0.67

3 South Carolina Saw logs 9 B X 0.67

4 South Carolina Saw logs 9 B  0.67

5 South Carolina Saw logs 8 C 0.40

6 South Carolina Saw logs 6 C X 0.40

7 South Carolina Saw logs 5 C 0.40

8 South Carolina Saw logs 4 C 0.40

9 South Carolina Saw logs 4 C X 0.40

10 South Carolina Saw logs 4 D X 0.25

11 South Carolina Saw logs 4 D 0.25

12 South Carolina Saw logs 4 D 0.25

13 South Carolina Saw logs 3 D 0.25

14 South Carolina Saw logs 3 D 0.25

15 South Carolina Saw logs 3 D 0.25

16 South Carolina Saw logs 3 D 0.25

17 South Carolina Saw logs 3 D X 0.25

In the example (Table 4), the target cumulative MOS is 27 million cubic 
feet. Starting with facility 2, the MOS is accumulated until the total is 
approximately 27 million cubic feet and then a stratum line is drawn. 
This results in facilities 2 through 4 being assigned to stratum B. Starting 
with facility 5, the procedure is repeated, and the stratum C boundary is 
drawn once the cumulative MOS is at least 27 million cubic feet. Stratum C 
contains facilities 5 through 9. Stratum D contains the remaining facilities 
(10–17). For each stratum subject to randomization a sample size of nh = 
2 is randomly selected (denoted by X in Table 4). The overall effect of this 
approach to stratification is that facilities that have a larger MOS also have 
a greater inclusion probability (Table 4).
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The base sampling fraction for each subpopulation is 0.4. However, 
because of the sampled with certainty strata, all pulpmills that receive 
pulpwood (primary product) will be sampled (i.e., all roundwood receiving 
pulpmills exceed 10 million cubic feet of receipts). The minimum sample 
size for any state is 20, the minimum sample size for any product is 5, 
and the minimum sample size within strata is 2 except for sampled with 
certainty strata.

TPO monitoring is intended to be flexible so that market shifts and 
emerging markets can be captured. To this end, the sampling fraction of 
the TPO sample can be adjusted for a specific subpopulation or across 
subpopulations to meet information needs. For example, a state may 
choose to implement a 100 percent sample (complete enumeration) or a 
state may choose to increase the sampling fraction for a specific product. 
Additional subpopulations can also be added to capture emerging 
markets. TPO practitioners work directly with partners (e.g., state forestry 
organizations) to implement intensifications. 

Data Collection Process and Timing
Sampling is conducted annually based on an up-to-date sampling frame 
resulting in a new set of sampled facilities each year (i.e., the samples are 
independent). Typically, the practitioner will update the sampling frame 
in the fall of each year and the annual sample is identified once the frame 
is updated. In January, the practitioner will send out postcards to inform 
selected facilities of the upcoming survey and survey questionnaires two 
weeks after initial postcard mailings. The questionnaire is the primary 
survey instrument. The TPO survey form is designed to determine the 
location, size, and composition of the primary wood-using facilities in 
each state, the volume of roundwood harvested by product, species, 
and geographic location, and the volume and disposition of wood 
residues generated during primary processing annually. All facility-level 
information is confidential and used only to construct aggregate estimates. 
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Estimation
There are five main population parameters that are estimated: receipts, 
production, imports, exports, and retained. These parameters may be 
estimated from either a volume (e.g., cubic feet) or weight perspective 
(e.g., tons). The retained roundwood volume is the amount of material 
processed in the state where the roundwood originated from. Exports are 
the roundwood volume from a state that was sent to facilities in other 
states or out of the country (e.g., Canada or direct log exports). Imports are 
the roundwood volume from other states that was received by facilities in 
the state of interest. Receipts are the total roundwood volume received by 
facilities in the state of interest (retained + domestic imports). Production is 
the roundwood volume from the state of interest used for timber products 
(retained + exports). In addition, these parameters may in some cases be 
estimated by product, species, and in the case of production, by county.

The standard direct estimators for stratified random sampling from 
Cochran (1977) are used to construct estimates for each subpopulation. 
Under the stratified random sample design each facility (i) belongs to a 
single subpopulation (s) and strata (h). In the notation below we rely on the 
s subscript to recognize different subpopulation and we do not carry the 
s subscript through all variables as i and h are defined uniquely for each 
subpopulation. The estimated total Ŷs is then 

 (34)

with estimated variance

 (35)

Where

 , and (36) 

is the mean for stratum h. (37)
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Estimates of the total and the variance of the total for a subpopulation can 
be further aggregated to construct estimates of total roundwood receipts 
for a state across products, for example. In this case both the estimates and 
variances are additive across subpopulations of interest.

  

Equations 34–37 are modified to construct estimates for domains (d) 
within the subpopulation. For example, the volume of hardwood saw logs 
imported to facilities in Virginia from other states is a domain of study. The 
volume of softwood saw logs from Wake County, North Carolina received 
by saw mills in North Carolina is another example of a domain of study. To 
construct domain estimates, we introduce a domain indicator to be used in 
the construction of domain (d) totals and variances of totals:

 (38)

With estimated variance

 (39)

Where

= domain indicator which takes the value of 1 when facility i in 
stratum h is in domain d and zero. Otherwise,

, and (40)

 

 (41)

is the mean for stratum h. Estimated totals and their variances  are additive 
across subpopulations for a domain of interest.
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Each facility selected with certainty forms its own stratum with Nh = nh = 1 
and when the distribution of the MOS is highly skewed Nh = nh = 2 can also 
occur. When Nh = nh the stratum is completely enumerated and hence the 
contribution to the variance of the estimate is assumed to be zero. 

Change estimates are constructed by using the independent samples 
collected at two points in time. Because sampled with certainty strata 
are complete enumerations and strata subject to randomization are 
constructed each year there is no covariance term in the estimation of 
change. Change estimates are

 (42)

With estimated variance

 (43)

Most of the parameter estimates used for TPO reporting are constructed 
with domain estimation (Table 5). However, estimates of state roundwood 
receipts and state roundwood receipts by product will generally rely on 
Equations 34–37. 

Table 5.—Appropriate design-based estimators for 
constructing typical timber products estimates

Parameter State Product Species County

equation number  (total, variance)

Receipts 34, 35 34, 35a 38, 39 --

Retained 38, 39 38, 39 38, 39 --

Exports 38, 39 38, 39 38, 39 --

Imports 38, 39 38, 39 38, 39 --

Production 38, 39 38, 39 38, 39 38, 39

aIf facilities process multiple products then equations 38 and 39 should be 
used.
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Nonresponse
Nonresponse is a concern in any survey whether sample-based or census-
based. There are two types of nonresponse: item nonresponse and unit 
nonresponse. Unit nonresponse refers to a complete missing value for a 
selected sample unit from the frame. Item nonresponse refers to missing 
values for specific variables collected for each sample unit (Cochran 1977, 
Kish 1995). 

The primary goal of any survey is to minimize nonresponse, yet a 
nonresponse plan should be developed. The TPO nonresponse plan 
contains the following elements:

• Evaluation of the survey questionnaire to ensure the questions are 
understandable and follow a logical format.

• Evaluation of respondent’s burden.

• A communication plan that informs respondents of the importance of 
the survey.

• Follow-up schedule for cases of both unit and item nonresponse. This 
includes reminders, follow-up phone calls, and in person visits.

The core approach for unit nonresponse is to collapse strata such that 
nh≥2. This approach assumes that responses are missing at random within 
strata. The core optional approach is to model missing values based on 
historical information. In cases of item nonresponse, the missing values 
are modeled. As of the writing of this chapter, research is underway to 
evaluate key mechanisms behind nonresponse, the reasonableness of the 
missing-at-random assumption, and the efficacy of imputation methods for 
nonresponse (Rubin 1986).
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Chapter 6: FIA Carbon Attributes
Grant M. Domke, Brian F. Walters, James E. Smith, and Christopher W. Woodall

Given the broad interest in forest carbon estimation as well as international 
reporting requirements from treaties such as the United Nations Framework 
Convention on Climate Change, the FIA program is continually evaluating 
existing methods and models used to estimate carbon attributes in the 
FIADB and testing new methods and modeling approaches to characterize 
forest carbon attributes of interest. Tree- and condition-level carbon 
attributes in the FIADB Forest Inventory and Analysis (FIA) database 
(FIADB) are estimated by using models and tree-, condition-, and plot-level 
core variables that have been measured or estimated along with auxiliary 
site-level variables (e.g., mean temperature; soil order) which have been 
spatially joined to actual plot locations. The carbon attributes reported 
in the FIA program are used to establish baselines in a regulatory carbon 
market (Marland et al. 2017), in national and international reporting (FAO 
2016, USDA OCE 2016, U.S. EPA 2020), state and local reporting (Kurtz et al. 
2015, Morin et al. 2017), as well as many other research and inventory and 
monitoring activities. 

This chapter briefly describes the carbon attributes currently in the FIADB, 
how they are compiled, and how those values are used to obtain population 
estimates and their variances. This chapter also describes ongoing work to 
develop new approaches for quantifying carbon attributes. 

Design-Based Estimators
Population estimates for carbon attributes are obtained by using the same 
sample-based estimators employed by the FIA program (as shown in the 
Foundational Documentation chapter). Carbon attributes are compiled with 
models at either the tree- (e.g., Cagb) or condition level (e.g., Clitter). One of the 
key differences is that tree-level observations usually need to be aggregated 
and put into a per-unit-area basis, whereas the model prediction at the 
condition-level is already in the appropriate units, such as tons per acre of 
forest land. The model prediction can serve as the plot-level summary,  
(see Foundational Documentation chapter, Equation 14 ) in cases where 
the plot is entirely forested and has only one condition. However, for plots 
that are only partially forested with a single forest condition, the model 
prediction must be multiplied by the forest condition proportion to obtain 

 When more than one forested condition is present, the weighted average 
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value based on the condition proportions must be calculated to obtain  
Analysts should be aware of this distinction when estimating population 
totals or ratios as described in the Foundational Documentation chapter, 
Equations 1 through 26.

Currently, the FIA program provides information on: (1) carbon in 
aboveground and belowground live tree biomass, (2) carbon in above 
and belowground understory biomass, (3) carbon in aboveground and 
belowground standing dead tree biomass, (4) carbon in downed dead 
woody materials, (5) carbon in litter, and (6) carbon in organic soil (Table 
6). 

Carbon in Aboveground and Belowground Live Tree Biomass
Carbon in the aboveground and belowground biomass of live trees (Cagb 
and Cbgb pounds per tree) is provided for trees with a diameter ≥ 1.0 
inch. Cagb includes the aboveground portion, excluding foliage; while Cbgb 
consists of coarse roots ≥ 0.1 inch in root diameter. The component ratio 
method (CRM) is currently used to estimate aboveground and belowground 
carbon in live tree components in the FIADB (Heath et al. 2009, Woodall 
et al. 2011—see for detailed examples). The CRM involves measuring tree 
attributes (e.g., diameter at breast height [d.b.h.], tree height) in the field, 
using those attributes to estimate gross volume (cubic feet), converting 
gross volume to sound volume of wood by deducting rotten and missing 
cull volume, and then using specific gravity (Miles and Smith 2009) of wood 
and bark and the weight of water to convert sound volume to oven-dry 
bole biomass. Biomass in the stump (Ds) and tops and limbs (Dt) of trees 
≥ 5.0 inches d.b.h. is estimated as a proportion of bole biomass that uses 
component ratios from Jenkins et al. (2003) and Raile (1982). It is important 
to note that foliage is not currently included as a component of Cagb in the 
CRM in the FIA program, but it is included in national greenhouse gas 
estimation and reporting efforts (U.S. EPA 2020). Biomass in the foliage 
(Df) can be estimated as a proportion of bole biomass that uses component 
ratios from Jenkins et al. (2003). All tree biomass components obtained 
from Jenkins et al. (2003) and Raile (1982) must be multiplied by an 
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Table 6.—Summary of carbon attributes currently included in the Forest Inventory and Analysis Database 
(FIADB) and notation used to refer to the carbon attributes. See the Notes column for details on alternative 
methods and models and plans for the future.

Carbon 
attribute Units FIADB name

Notation used 
in this chapter Notes

Carbon in 
aboveground live 
tree biomass

lbs per tree CARBON_AG Cagb

New models and methods are currently 
being explored and will be adopted by 
the FIA program in the future.

Carbon in 
belowground live 
tree biomass

lbs per tree CARBON_BG Cbgb

New models and methods are currently 
being explored and will be adopted by 
the FIA program in the future.

Carbon in 
standing dead 
trees

tons per acre of 
forest land

CARBON_STANDING_DEAD Csd

Carbon in standing dead tree biomass 
can be calculated directly for individual 
trees (see Domke et al. 2011, Domke et 
al. 2012).

Carbon in 
aboveground 
live understory 
biomass

tons per acre of 
forest land

CARBON_UNDERSTORY_AG Cuagb

New models and methods are currently 
being explored and will be adopted by 
the FIA program in the future.

Carbon in 
belowground 
live understory 
biomass

tons per acre of 
forest land

CARBON_UNDERSTORY_BG Cubgb

New models and methods are currently 
being explored and will be adopted by 
the FIA program in the future.

Carbon in 
downed dead 
woody materials

tons per acre of 
forest land

CARBON_DOWN_DEAD Cdd

Carbon in downed dead woody 
materials can be calculated directly for 
individual pieces (see Woodall et al. 
2008, 2013, 2019).

Carbon in litter
tons per acre of 
forest land

CARBON_LITTER Clitter

Carbon in litter can be calculated 
directly for FIA plots and a new model 
based on FIA field data has been 
developed for condition-level estimates 
and will be adopted by the FIA program 
in the future (see Domke et al. 2016).

Carbon in 
mineral soil

tons per acre of 
forest land

CARBON_SOIL_ORG Csoil

Carbon in mineral soil can be 
calculated directly for FIA plots and 
a new model based on FIA field data 
has been developed for condition-level 
estimates and will be adopted by the 
FIA program in the future (see Domke 
et al. 2017).
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adjustment factor to estimate CRM biomass. Biomass of saplings (Dsap; trees 
< 5.0 inches d.b.h.) is based on models from Jenkins et al. (2004) by using 
the observed d.b.h. The model prediction is then multiplied by a sapling 
adjustment factor (Heath et al. 2009, Woodall et al. 2011). Woodland species 
biomass (Dw) for stems < 5.0 inches d.b.h. is estimated in a similar fashion 
as sapling biomass. These species have a volume estimate from ground to 
tip, which is used to estimate total aboveground biomass similar to the bole 
biomass (Db) calculation. Cagb is estimated by multiplying by 0.5 (Woodall et 
al. 2011) for each tree type as follows: 

Cagb = 0.5 × (Db + Ds + Dt) (44)

Cs = 0.5 × Dsap (45)

Cw = 0.5 × Dw (46)

The oven-dry belowground (coarse root) biomass (Db) is based on a 
proportion of bole biomass (using component ratios from Jenkins et al. 
2003) and an adjustment factor. Carbon in belowground biomass is then 
estimated as: 

Cbgb = 0.5 × Db (47)

Carbon in Aboveground and Belowground Standing Dead 
Tree Biomass
Carbon in aboveground (Cagb ) and belowground (Cbgb ) standing dead tree 
biomass (pounds per tree) is compiled following the same methods as 
carbon in live tree biomass. In addition, density reduction factors and 
structural loss adjustments are applied to account for decay and structural 
loss in standing dead trees by decay class in the FIADB (Domke et al. 2011).

Carbon in standing dead trees (Csd; tons per acre of forest land) is also 
compiled for all forested conditions in the FIADB using a model based 
on geographic area, forest type, and (except for nonstocked conditions) 
growing stock volume (Smith et al. 2006). Note that the condition-level 
Csd attribute is not calculated from direct field measurements of standing 
dead trees on FIA plots (Domke et al. 2011, Domke et al. 2012, Woodall 
et al. 2012b), so it is advised that the individual-tree approach that uses 
Equations 44–47 described above be used with density reduction factors 
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and structural loss adjustments (Domke et al. 2011) to compile carbon in 
aboveground and belowground standing dead tree biomass at the tree-
level. 

Carbon in Aboveground and Belowground Live Understory 
Biomass
Carbon in live understory aboveground and belowground biomass (Cuagb 

and Cubgb; tons per acre of forest land) includes the aboveground and 
belowground portions, respectively, of seedlings and woody shrubs. These 
carbon density values (per unit area of forest land) are obtained from a 
model based on geographic area, forest type, and (except for nonstocked 
and pinyon-juniper stands) live tree carbon density (Smith et al. 2006). 
These values are components of the U.S. National Greenhouse Gas 
Inventory (U.S. EPA 2020) and are not based on direct field measurements 
of seedlings and woody shrubs. 

Carbon in Downed Dead Woody Materials
Carbon in downed dead wood (Cdd; tons per acre of forest land) includes 
woody material ≥ 3.0 inches in diameter with a lean angle greater than 
45 degrees from vertical, stumps and their roots ≥ 3.0 inches in diameter, 
and slash piles. This is a carbon density value (per-unit-area of forest 
land) from a model based on geographic area, forest type, and live tree 
carbon density (Smith et al. 2006). This attribute is a component of the U.S. 
National Greenhouse Gas Inventory (U.S. EPA 2019) and is not calculated 
from direct field measurements of downed woody materials, stumps and 
their roots, or slash piles.

Downed woody material (including fine/coarse woody materials and 
slash piles) have been measured on a subset of forested plots in the FIA 
program since 2001 (Woodall and Monleon 2008, Woodall et al. 2013, 
2019). Downed woody material C density (i.e., per-unit-area) values 
obtained from field measurements of downed dead wood pieces have 
been found to be statistically significantly different from Cdd described 
above (Domke et al. 2013). The Cdd values generally overestimate downed 
woody material carbon density on sites with small amounts of material 
and underestimate downed woody material on sites with large amounts 
of material. The per-unit-area divergence is also evident at the state level 
but, collectively, the difference between methods for all states is less than 
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9 percent. The relatively small absolute difference between model- and 
field-based estimates at the per-unit-area and population scales is not a 
result of good model fits; rather, it reflects the models overestimating the 
contribution of C from coarse woody material pieces (diameter ≥ 3 inches) 
and underestimating the contribution of C downed woody material in slash 
piles. To compensate for these differences between the values compiled 
from individual downed dead wood piece measurements and Cdd estimates, 
state-specific adjustment factors have been developed (see Table 4 in 
Domke et al. 2013) and are used to compile downed dead wood estimates in 
the U.S. National Greenhouse Gas Inventory (U.S. EPA 2019).

Carbon in Litter
Carbon in litter (Clitter; tons per acre of forest land) includes the organic 
material on the floor of the forest, including fine woody debris, humus, 
and fine roots in the organic forest floor layer above mineral soil. Although 
the FIA program has been measuring litter attributes, including carbon 
content and bulk density, on a subset of forested FIA plots since 2001 
(O’Neill et al. 2005, Woodall et al. 2012a), a model using literature values 
and forest type that was used previously in greenhouse gas reporting 
is still made available. The Clitter attribute is a carbon density (per-unit-
area of forest land) value from a model based on geographic area, forest 
type, and (except for nonstocked and pinyon-juniper stands) stand age 
(Smith and Heath 2002). This attribute is not calculated from direct field 
measurements of organic material on the floor of the forest above mineral 
soil. 

Improved methods to estimate carbon based on direct measurements 
of litter (Cfield litter) on forested plots in the FIA program are described in 
Domke et al. (2016). In general, the Clitter values described above show a 
substantial overestimate relative to estimates obtained directly from FIA 
plot measurements of litter variables resulting in statistically significant 
differences between the C litter estimates and those obtained from FIA plot 
measurements (Domke et al. 2016). As a result of these differences, a new 
approach to estimate litter carbon density (Domke et al. 2016) has been 
developed based directly on litter measurements from forested plots in 
the FIA program along with auxiliary climate variables. This approach is 
used in the U.S. National Greenhouse Gas Inventory (U.S. EPA 2019) and the 
values obtained from this method will replace the Clitter values in the FIADB 
in the future (Domke et al. 2016).
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Carbon in Soil Organic Matter
Carbon in soil (Csoil; tons per acre of forest land) includes the fine organic 
material below the soil surface to a depth of 39 in. This is a per-unit-area 
estimate from a model based on soil inventory data, geographic area, 
and forest type (Amichev and Galbraith 2004, Smith et al. 2006) and was 
previously used in national greenhouse gas reporting. The Csoil attribute 
is not calculated from direct field measurements of fine organic material 
below the soil surface on FIA plots. 

The FIA program has been consistently measuring soil attributes since 2001 
and has amassed an extensive inventory of soil observations in forest land 
in the conterminous United States and southeast and southcentral coastal 
Alaska (Domke et al. 2017, O’Neill et al. 2005, USDA Forest Service 2011). 
Soil samples are collected on a subset of forested FIA plots, and soil cores 
are taken to a depth of 8 inches adjacent to subplot 2 (see Fig. 4a in the 
Foundational Documentation chapter) on each of these plots. Methods to 
estimate carbon in soil on forested plots in the FIA program are described 
in Domke et al. (2017). The Csoil estimates described above are to a depth 
of 39 inches and the values obtained from the soil cores on FIA plots are 
to a depth of 8 inches; it is not possible to make direct comparisons of the 
two values. That said, it is clear when comparing the values by soil order 
that the model used to obtain Csoil values substantially underestimates the 
contribution of carbon in soil on forested FIA plots (Domke et al. 2017). 
This downward bias can be attributed to several factors. First, the Csoil 

values described above were developed by using STATSGO data (Schwarz 
et al. 1995), which has a wide distribution, but much of the data is from 
nonforest land. These values of soil organic carbon are means over large 
map units intended for broad planning and management uses covering 
state, regional, and multi-state areas and are not expected to provide 
accurate estimates of soil organic carbon for specific locations (Domke et 
al. 2017, Homann et al. 1998). Second, soil organic carbon estimates were 
organized by broad forest type in the Csoil model whereas C content and 
bulk density measurements were used to obtain estimates of carbon in 
soil from the FIA plots (Domke et al. 2017). Finally, given the variability 
observed in soil carbon estimates, it is likely that the model currently 
used to estimate soil carbon in the FIADB does not include important 
interactions between variables (e.g., temperature, precipitation) that 
directly and indirectly influence soil carbon dynamics (Domke et al. 
2017, Jobbágy and Jackson 2000, Parton et al. 2007). As a result of these 
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differences, a new approach to estimate carbon in soil organic matter 
per-unit-area has been developed based directly on soil measurements 
from forested plots in the FIA program (USDA Forest Service 2011). This 
approach is used in the U.S. National Greenhouse Gas Inventory (U.S. EPA 
2019) and the values obtained from this method will replace the Csoil values 
in the FIADB in the future (Domke et al. 2017). 

Further Research
The carbon attributes described in this chapter can be used in numerous 
applications such as national greenhouse gas monitoring and reporting, 
forest carbon cycle research, or project-level carbon monitoring and 
reporting efforts. As new data become available within the FIA program, 
the methods and models currently used to estimate carbon attributes in 
the FIADB are evaluated and refined or replaced to better represent the 
conditions observed on FIA plots (Domke et al. 2011, 2013, 2016, 2017). To 
that end, there are ongoing efforts within the FIA program to evaluate and 
improve methods and models described in this chapter.

The methods and models currently used to estimate aboveground and 
belowground live and dead tree volume, biomass, and carbon have 
been evaluated and alternative methods are being explored (Frank et al. 
2018, Radtke et al. 2017, Martin et al. 2021, Weiskittel et al. 2015, Westfall 
et al. 2016, Zhao et al. 2018a, Zhao et al. 2018b). Nationally consistent 
methods and models are expected to replace existing methods and 
models in the near future and these will include estimators of foliage 
biomass and carbon. Research is also underway to evaluate and improve 
characterization of carbon in aboveground and belowground understory 
biomass by using FIA plot data and auxiliary information (Johnson et 
al. 2017, Russell et al. 2014). This includes the use of regionally specific 
understory vegetation data from the FIA program as well as destructively 
sampled data from understory studies and digital photo-series data. Results 
suggest that the current models used to estimate carbon in the understory 
biomass are overestimating the contribution of carbon in understory 
biomass (Johnson et al. 2017). The sampling methods for downed woody 
material have recently changed (Woodall et al. 2019) with efforts underway 
to revise models to characterize carbon in downed woody material (Smith 
et al. 2022) and use direct measurements of downed woody materials to 
characterize the sources of uncertainty associated with new methods and 
models (Campbell et al. 2019). Finally, while the methods and models used 
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to characterize carbon in litter and soil in the FIA program have recently 
been revised (Domke et al. 2016, 2017) and will be adopted in the FIADB 
in the future, there is ongoing work to expand the new methods (Cao et al. 
2019) and to use remeasurements from the FIA program to evaluate change 
in these important carbon pools. 
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Chapter 7: Emerging Alternative Estimators
Gretchen G. Moisen,  Hans-Erik Andersen, David M. Bell, R, John W. Coulston, Tracey S.  
Frescino, Kelly S. McConville, Ronald E. McRoberts, Paul L. Patterson, James A. Westfall, and 
Barry T. Wilson

New estimation strategies are evolving in the FIA program. This evolution 
is motivated by new information needs about change (e.g., transitions out 
of forest land use), remote areas (e.g., wilderness), smaller geographic 
areas (e.g., counties and disturbance boundaries) and time scales (e.g., 
those shorter than the inventory cycle length). The 2014 Farm Bill (Public 
Law 113-79) contains three provisions that specifically articulate these 
needs: 

•  Complete the transition to a fully annualized forest inventory 
program and include inventory and analysis of interior Alaska

•  Understand and report on changes in land cover and use

•  Implement procedures to improve precision in substate estimates

In all cases, FIA is investigating new statistical techniques, increasing 
computing capacity, and improving auxiliary remotely sensed data to help 
FIA meet these needs. Because the classes of estimators covered here are 
just emerging in the FIA program and are not yet operational, this chapter 
takes a very different form than the others in this collection. The purpose 
of this chapter is to provide a brief overview of topics critical to these 
three Farm Bill provisions, review FIA’s progress to date on estimation 
strategies that are not yet implemented operationally, and set up a dynamic 
mechanism to track progress through a new online repository for material 
referenced here, as well as for rapidly-evolving tutorials and application 
details that enables people to track FIA’s advances under these numerous 
topics. 

Model-Assisted Estimation
As the quantity and quality of relevant remotely sensed data increases, it is 
important for FIA to explore how these data can be combined with ground 
plot data to improve the precision of estimates of forest parameters. Model-
assisted inference provides one possible framework where an assisting 
model links these two data sources. For FIA’s production processes, it 
currently uses a simple post-stratified estimator (Bechtold and Patterson 
2005) to estimate population means and totals. The post-stratified estimator 
is a model-assisted estimator where the assisting model is the group 
mean model (Särndal et al. 1992, pages 264–269), which relies on a single, 
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categorical auxiliary variable—such as the classes obtained from a forest/
nonforest or tree canopy cover map. 

Inference under the model-assisted framework is design-based where the 
randomness in the estimators is based solely on the random selection of 
population units for the sample. No stochastic structure is assumed for 
variables and instead the values of the response variables and the auxiliary 
variables in the population are treated as fixed quantities. Therefore, 
a key feature of model-assisted inference is that a probability-based 
sample is collected. To construct model-assisted estimators, the response 
and auxiliary variables must be available for every sample unit and the 
auxiliary variables collected as either a large probability sample (e.g., 
double sampling) and/or on every unit in the population. Depending on the 
form of the assisting model, the auxiliary variable may only be needed in 
summary form, such as population totals or means. 

The assisting model is built on the sampled data and then predictions of 
the response variable are generated for every population unit. The model-
assisted estimator of the population mean is composed of two pieces: the 
mean of the predicted values over the population and the survey-weighted 
mean of the residuals. The second component ensures that the estimator is 
approximately unbiased for a wide range of assisting models and sampling 
designs, regardless of how well the assisting model captures the true 
relationship between the response variable and the auxiliary variables.

The variance of the model-assisted estimator is impacted by the predictive 
accuracy of the assisting model, warranting the need for good model 
building practices when determining which assisting model to employ. To 
this end, many assisting models have been explored for forest inventory, 
such as linear regression (Andersen et al. 2009, Gobakken et al. 2012, 
Gregoire et al. 2011, Saarela et al. 2015), logistic regression (McRoberts 
2010, McRoberts and Walters 2012, McRoberts et al. 2016c), nonlinear 
regression (McRoberts et al. 2013, Moser et al. 2017), penalized linear 
regression (McConville et al. 2017), K-nearest neighbors (Baffetta et al. 
2009, McRoberts et al. 2015b, McRoberts et al. 2016b, McRoberts et al. 
2017), modified generalized regression estimator (Wojcik et al. 2022), and 
generalized semiparametric additive models (Breidt et al. 2007, Kangas et 
al. 2016, Opsomer et al. 2007). 
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To help make model-assisted estimators more accessible, McConville et 
al. (2020) provide a tutorial on parametric model-assisted estimators with 
guidance on their use in forest inventory applications. Seven estimators 
are covered, including: Horvitz-Thompson, ratio, post-stratification, 
regression, lasso, ridge, and elastic net. An R package called mase (Model 
Assisted Survey Estimation, McConville et al. 2018) is available on the 
Comprehensive R Archival Network (CRAN), enabling easy computation 
of these estimators, along with closed form and bootstrap variances. The 
mase package has also been embedded in the R package FIESTA for FIA 
applications (described in the Computing Resources section of this chapter).

Examples of the use of model-assisted estimators in forest inventory 
applications can be found in the dynamic content, here: https://www.fia.
fs.usda.gov/library/sampling/index.php.

Model-Based Estimation
Assumptions underlying model-based inference, also characterized as 
model-dependent inference, differ considerably from the more familiar 
design-based or probability-based inference used for model-assisted 
estimation. First, the basis for the validity of design-based inference is a 
probability sample, but the basis for the validity of model-based inference 
is correct specification of the model. Second, design-based inference 
assumes a single possible value for each population unit, but model-based 
inference assumes an entire distribution of possible values for each unit. 
Third, randomization for design-based inference is accomplished via 
selection of population units into the sample, while with model-based 
inference the sample is considered fixed with randomization occurring 
via realization of observations from the distribution characterizing the 
population units selected for the sample.

  

An important consequence of the first assumption is that model-based 
inference does not require probability samples. Although probability 
samples may be used and, in fact, may be preferable and purposive, other 
nonprobability samples may also produce entirely valid model-based 
inferences provided the model is appropriately specified. The absence of 
a requirement for a probability sample means that model-based inference 
can be used for applications for which design-based inference is not 
possible. First, model-based inference can be used when the sample is 
sufficient for constructing a model but was not acquired with a probability 

https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
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sampling design. Examples are remote and/or inaccessible populations 
such as interior Alaska, Siberia, or tropical regions for which probability 
sampling is not feasible because of logistical and/or cost issues (Andersen et 
al. 2013, McRoberts et al. 2014). Second, model-based inference can be used 
when the sample size is insufficient for design-based inference, as discuss 
in more detail in the following section; examples typically entail estimation 
for small areas such as individual forest stands (Breidenbach et al. 2016, 
McRoberts 2006).

An important consequence of the second assumption is how population 
parameters are interpreted. Although model-based inference assumes 
a finite population, the fact that each population unit has an entire 
distribution of possible observations means that an infinite number of 
finite populations could be realized. Thus, with model-based inference, 
population parameters are random, whereas with design-based inference 
they are constants. This conceptual framework is characterized as a 
superpopulation, and model-based inference has occasionally been 
characterized as superpopulation inference.

 

With model-based inference, a model is used to predict the response 
variable for all population units. The point estimator for the population 
mean is then simply the mean over the predictions for all population units. 
An important aspect of model-based inference is that when the model 
is correctly specified, population estimators are unbiased, but when the 
model is misspecified, the adverse effects on inference may be substantial 
(Valliant 2009). Because the model-based estimator of the population mean 
cannot be assured to be unbiased, mean square error (MSE) rather than 
variance is used to characterize the uncertainty of model-based estimators.

An emerging use of model-based inference is as a component of hybrid 
inference (Corona et al. 2014, Fattorini 2012, Ståhl et al. 2016). This form 
of inference combines design-based and model-based methods and has 
four key features: (1) a probability sample of population units for which 
only auxiliary information is available, i.e., observations of the response 
variable are not available; (2) a prediction technique that uses the auxiliary 
information to predict the response variable for the sample units; (3) 
a design-based estimator of the population parameter that uses the 
predictions for the sample units; and (4) a design-based estimator of the 
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MSE to estimate the effects of sampling variability together with a model-
based estimator to estimate the effects of the uncertainty of the sample unit 
predictions (McRoberts et al. 2016a).

Although the term hybrid inference was not always used, Breidenbach et 
al. (2014), McRoberts and Westfall (2014), McRoberts et al. (2015a, 2016a), 
and Ståhl et al. (2014) all documented a common inventory application 
for which hybrid inference perhaps should be, but generally has not 
been, used. They used allometric models to predict volume or biomass 
for a probability sample consisting of inventory plots, used design-based 
estimators with the allometric model predictions to estimate mean volume 
or biomass per unit area, and then used both design-based and model-
based estimators to estimate the standard error of the estimate of the 
mean. Hence, both sampling and measurement error were accommodated.

Examples of the use of model-based estimators in forest inventory 
applications can be found in the dynamic content, here: https://www.fia.
fs.usda.gov/library/sampling/index.php.

Small Area Estimation
Increasingly, FIA is being asked to answer resource questions for small 
areas or domains, i.e., subsets of the population for which there are too few 
sample plots from which to construct estimates with adequate precision 
using a direct estimator. Interest in this stems from needs to quantify 
ecological conditions, disturbances, and timber supplies for increasingly 
smaller areas or over specific time intervals. Statistical techniques tailored 
to produce these small area estimates are needed for rapid assessments 
such as assessing damage caused by fire and wind events, for quantifying 
insect damage and the associated rate of spread, and for ecological 
assessments such as estimating the extent of old growth forests and wildlife 
habitat for indicator species. In addition, forest industry has expressed 
substantial interest in quantifying wood supplies surrounding current 
and potential mill sites, and both the Southern Group of State Foresters 
and the Northeastern States Research Cooperative have expressed the 
need for county-level harvest estimates where too few sample plots are 
collected to warrant FIA’s standard direct estimators, described below. 
User perspectives on the need for small area estimates in the private forest 
sector and National Forest Systems were published recently in Prisley 

https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
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et al. 2021 and Wiener et al. 2021, respectively. Thus, requirements for 
small area estimates by FIA’s traditional and future clients are expected to 
increase. 

Rao (2003, pages 1–141) gives a comprehensive account of small area 
models. Small area estimation can be conducted under design-based 
(i.e., Särndal et al. 1992, pages 20–22) or model-based (i.e., Valliant 2009) 
modes of inference. Even when sample sizes are small, FIA currently 
relies primarily on model-assisted direct estimators constructed under a 
design-based framework, bringing in ancillary data through simple post-
stratification. Direct estimators use values of the response variable only 
from the sample units in the domain. Indirect estimators, on the other 
hand, borrow strength by using values of the response variable from 
sample units outside the domain by means of a linking superpopulation 
model, thus increasing the “effective” sample size.

Some indirect estimators rely upon an implicit superpopulation model, 
such as a synthetic estimator that uses a reliable direct estimator for a 
large area to derive an indirect estimator for a small area assuming the 
small area has similar characteristics. Other indirect estimators rely on 
an explicit superpopulation model that accounts for the variability in the 
relationship between auxiliary and response variables among small areas. 
These models can be specified as either unit-level or area-level models, 
depending on whether the auxiliary data are available for the individual 
population units (e.g., plots), or only at the aggregate level for each small 
area (e.g., counties). Such models permit the estimation of area-specific 
MSE values, unlike in the case of purely synthetic estimators where the 
estimated MSE is averaged over all small areas. However, distinct models 
must be identified and calibrated for each unique delineation of small 
areas within a population.

A common framework for many explicit superpopulation models is the 
general linear mixed model, which includes both fixed effects of auxiliary 
variables across small areas as well as random effects associated with each 
small area. Empirical Best Linear Unbiased Predictor (EBLUP) estimators 
can be used to simultaneously estimate the parameters associated with 
the fixed and random effects (Henderson 1975). These models can be fitted 
either from a frequentist or Bayesian perspective. 
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Under the frequentist interpretation, probability refers to the long-term 
frequency of an observation (the evidence) given repeated outcomes from 
an experiment, or repeated samples from a population (the hypothesis). 
The underlying parameters that describe this repeated process are 
assumed to be unknown but fixed. An early example of using satellite 
imagery to improve precision in survey estimates of crop acres was 
provided by Battese et al. (1988). EBLUPs are receiving increasing attention 
as a tool to produce small area estimates in forest inventory applications 
(Breidenbach and Astrup 2012, Goerndt et al. 2013, Mauro et al. 2017). 
EBLUPs also have some intuitive appeal in that they can be algebraically 
expressed as a weighted average of a direct and synthetic estimator, with 
more weight going to the synthetic estimator as number of plots decreases.

When fitting an explicit superpopulation model under the Bayesian 
interpretation, probability refers to the plausibility of a set of underlying 
parameters describing the random process (the hypothesis) given the 
fixed set of observations available (the evidence). In this view, the 
parameters are not fixed but come from a distribution of possible values. 
Empirical Bayes is equivalent to the EBLUP approach via general linear 
mixed models. This is not a fully Bayesian approach because it does not 
incorporate a prior probability distribution of model parameters, but 
instead estimates values for model parameters based on the sample 
units by using maximum likelihood, which is fundamentally frequentist. 
In the Hierarchical Bayes approach, a prior probability distribution of 
model parameters is specified. This, in conjunction with the values of the 
sample units, induces a posterior probability distribution of the small area 
parameter of interest via Bayes theorem.

Small area estimation through explicit superpopulation models and 
estimators like the EBLUP has been made more accessible through 
statistical packages such as sae (Molina and Marhuenda 2015) and JoSae 
(Breidenbach 2018). Both packages have been embedded in the R package 
FIESTA for FIA applications, described in the Computing Resources 
section. Synthetic estimators are being implemented through an Amazon 
Web Services cloud computing environment using Esri’s Raster Analytics 
platform as described in the BIGMAP project in the Computing Resources 
section.
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Guldin (2021) and Dettmann et al. (2022) provide recent reviews of small 
area estimation in forest inventory applications, and investigations into 
improving precision in FIA estimates over small domains continues to rise. 
For example, in the Pacific Northwest, Bell et al. (2022) compare Horvitz 
Thompson, generalized regression, and k-nearest neighbor synthetic 
estimates of aboveground live carbon, while Temesgen et al. (2021) use Fay-
Herriot models of aboveground biomass and volume specific to stand-level 
inventories. In the Interior Western United States, estimates for multiple 
forest attributes were explored using a modified generalized regression 
estimator over counties (Wojcik et al. 2021), and area-level Hierarchical 
Bayesian and EBLUPs were compared to post-stratification over ecological 
subsections (White et al. 2021). In the northern United States, Harris et 
al. (2021) compare design- and model-based estimates in support of the 
National Woodland Owner Survey. In the Southern United States, Cao 
et al. (2022) improve precision in volume estimates for counties using 
spatial area-level small area estimators. For multiple regions or nationally, 
Gaines and Affleck (2021) estimate postfire tree density through temporal 
borrowing strategies, Stanke et al. (2022) develop spatial Fay-Herriot 
models of forest carbon stocks for counties, and Frescino et al. (2022) 
deliver a large collection of model-assisted and model-based estimates of 
forest attributes over ecosubsections, counties, and HUC 10 watersheds 
through dashboards.

These and other examples of the use of small area estimation in forest 
inventory applications can be found in the dynamic content, here: https://
www.fia.fs.usda.gov/library/sampling/index.php.

Photo-Based Sampling and Estimation
Photo-based estimation involves both an alternative sample design and 
estimator. The sample design relies on techniques to (1) obtain a sample 
of individual locations within a region and (2) establish at each location a 
photo plot with multiple points (or dots) within the photo-plot boundary. At 
each point within the photo plot (illustrated in Fig. 9), a photo interpreter 
assesses a set of characteristics, including: (1) condition attributes or land 
use, e.g., forest type or privately owned; and (2) an object type or land 
cover, e.g., vegetation type, species of tree, or bare ground. If photos are 
available at two time periods, then change-based characteristics, such as 
agent of change, can be assessed by the interpreter and assigned to each 
point within the photo plot. The estimators for a single point in time are the 
same as for two points in time.

https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
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Figure 9.—Example ICE (Image-Based Change Estimation) plots on 
images acquired from the National Agriculture Imagery Program (NAIP). 
Forty-five dots are observed on plots where some change of interest has 
occurred, while only five dots are observed where no change of interest 
has occurred between the two NAIP image dates. Created by Tracey 
Frescino, USDA Forest Service.

The first application of photo-based estimation in FIA was the Nevada 
Photo-based Inventory Pilot (NPIP). An outgrowth of NPIP was the Image-
Based Change Estimation (ICE) pilot program. ICE uses imagery from the 
National Agriculture Imagery Program (NAIP) to assess changes in land use 
and land cover and agent of change between two different years of NAIP. 
The sample of individual locations within a region for both NPIP and ICE 
are the FIA plot locations in the region (or possibly a subset of the FIA plot 
locations). At each photo-plot location, a sample of points is established 
within the photo plot. For details of the sample procedures used in NPIP, 
see Frescino et al. (2009). For details of the sample procedure for ICE, see 
USDA Forest Service (2017a). The derivation of the statistical estimators 
for NPIP and ICE is based on the Cordy (1993) estimators for continuous 
populations and Stevens and Urquhart (2000) results for support regions 
(Patterson 2012).
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For an example of estimates produced for NPIP, see Frescino et al. (2016). 
Recently, the USDA Forest Service Geospatial Technology and Applications 
Center and IW-FIA developed summary reports that provide snapshots of 
basic analysis from the ICE data; see USDA Forest Service (2017b).

A recent pilot study in North Central Georgia (Moisen et al. 2020) compared 
FIA field and photo measures to data collected by using both the ICE 
protocol as well as historical Landsat-based observations collected through 
the image interpretation tool, TimeSync (Cohen et al. 2010), to evaluate 
how these three data sources could be used to best estimate land use and 
land cover (LULC) change. The study revealed that in order to report LULC 
trends in North Central Georgia with adequate precision and temporal 
coherence, data were needed on all the FIA plots each year over a long time 
series and broadly collapsed LULC classes. Discussions continue in the FIA 
program on the role of image interpretation for LULC change analyses. 
Further work is also underway to incorporate model-assisted methods 
and nonresponse (e.g., clouds and uninterpretable points) in image-based 
estimators, and substantiate theoretical results through simulation. 

Photo-based estimators have been incorporated in the R package FIESTA 
(described in the Computing Resources section).

Examples of the use of photo-based (and other image-based) estimators in 
forest inventory applications can be found in the dynamic content, here: 
https://www.fia.fs.usda.gov/library/sampling/index.php.

Temporally Specific Estimation
Patterson and Reams (2005) discuss various methods to combine panels 
in order to construct estimates. They do not prescribe a core methodology 
but rather provide three alternatives: the moving average method, 
the temporally indifferent method, and modeling. To date, most of the 
estimates produced by the FIA program were produced with the temporally 
indifferent (TI) method. The TI method pools all panels into essentially one 
large periodic inventory measured over all the years in the periodic cycle. 
The post-stratified estimator is then used on the pooled inventory. This 
method is indifferent to time in that the cycle length depends on whether 
the population is in the eastern United States (where cycle length is 5 or 7 
years) or in the western United States (where cycle length is 10 years) and 

https://www.fia.fs.usda.gov/library/sampling/index.php
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all observations spanning those years are combined without considering 
how current those panels are relative to the date of interest. The TI method 
does not produce an estimate for any specific year and emerging trends 
are lagged when estimates are produced with the TI method (Van Deusen 
2002). 

In many cases there is a need to increase the temporal precision of 
estimates to be specific for a given year, and Johnson et al. (2003), Smith 
and Conkling (2004), and Van Deusen (1999) provide examples. The most 
obvious approach to constructing an estimate for a specific year is to use 
a single panel of data collected in the year of interest. However, these 
estimates can have large year to year variability given the small sample 
size. A weighted moving average may be used to improve the temporal 
specificity, where more weight is given to more recent data and less 
weight to the older data. The assignment of weights can be done by using 
a number of functions, including a linear or exponential, and options for 
weighted moving averages are currently available in the rFIA package 
described in the Computing Resources section. 

The mixed estimator (Van Deusen 1999) offers another alternative. 
The mixed estimator requires two models: an observation model and a 
transition model. The time series of annual data arising from the panel 
design is used to construct the simple linear observation model, which 
defines the relationship between the forest parameter of interest and time. 
The transition model describes how the parameter in the observation 
model changes over time. Van Deusen (1999) constrained the parameters 
in this set of equations with first, second, and third derivative constraints, 
which yield a flat trend, a linear increasing or decreasing trend, or a 
quadratic trend respectively. Annual estimates and their variances are 
simultaneously estimated via maximum likelihood. Van Deusen’s (1999) 
approach generally smooths individual panel estimates and is informed by 
the patterns revealed in the sample data. 

Examples of constructing temporally specific estimates in forest inventory 
applications can be found in the dynamic content, here: https://www.fia.
fs.usda.gov/library/sampling/index.php.

https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
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Application of Alternative Estimators for the FIA Inventory 
of Interior Alaska
The FIA program is mandated by Congress to assess current status and 
trends for all forest lands of the United States. However, implementing an 
inventory with the standard sampling intensity is cost-prohibitive in more 
remote regions of the nation, such as interior Alaska (estimated to have 110 
million acres of forest), due to challenging logistics and high transportation 
costs (the lack of roads requires that virtually every plot is accessed via 
helicopter). For this reason, in interior Alaska, FIA has implemented a 
modified sampling design that uses a reduced sampling intensity for field 
plots (1 plot per 30,000 acres), supplemented with high-resolution airborne 
imagery (lidar, hyperspectral, thermal) acquired through a research 
collaboration with scientists from NASA-Goddard Space Flight Center in 
a strip sampling mode (Cook et al. 2013, Pattison et al. 2018). Although 
the field plots are established on a regular hexagonal grid and therefore 
standardized FIA estimation approaches (Bechtold and Patterson 2005) 
can be used for estimates over large areas, sample sizes within smaller 
management units (national parks, wildlife refuges, state forests, etc.) 
will be relatively small, leading to estimates with large standard errors, 
especially for smaller domains such as forest type. In addition, the periodic 
nature of the inventory (plot remeasurement interval likely greater than 
10–12 years) has increased the interest in techniques that can provide more 
frequent information on forest change over this vast region. 

For these reasons, several alternative approaches to estimation—with the 
aim of improving the timeliness and reliability of the FIA estimates through 
the use of sampled, high-resolution remote sensing measurements—
are currently being developed and evaluated to support the interior 
Alaska FIA inventory, including two-stage, model-assisted (Ringvall et 
al. 2016, Cahoon and Baer 2022), hybrid estimation (Ene et al. 2018), and 
Bayesian hierarchical model-based approaches (Babcock et al. 2018). 
Recent advances in the use of Gaussian Nearest Neighbor processes have 
significantly increased the computational efficiency, and feasibility, of 
implementing Bayesian hierarchical modeling approaches over large 
regions (Finley et al. 2019). In addition, recent studies have indicated that 
lidar sampling may have significant value as a monitoring tool in interior 
Alaska, especially in capturing forest change due to wildfire (Alonzo et al. 
2017). 
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Computing Resources
FIESTA

Forest Inventory ESTimation for Analysis (FIESTA) (Frescino et al. 2015, 
Frescino et al. 2020) is an R package that was originally developed to 
support the production of estimates consistent with tools available 
from the FIA National Program, such as Forest Inventory Data Online 
(FIDO) and EVALIDator. FIESTA provides an alternative data retrieval 
and reporting tool that is functional within the R environment, allowing 
customized applications and compatibility with other R-based analyses. 
Over the last few years, the tool has expanded to include new modules that 
accommodate many of the topics covered in this chapter on alternative 
estimators. FIESTA is available for download with vignettes for model-
assisted estimation, photo-based estimation, small area estimation, and 
nonresponse. FIESTA was recently used to produce a large collection of 
model-assisted and model-based estimates of key forest attributes for 
counties, ecosubsections and watersheds across the conterminous, which 
were then delivered through user-friendly dashboards (Frescino et al 
2022). The source code for the back-end estimation done in FIESTA is 
publicly available via the FIESTAutils R package on the CRAN (Frescino et 
al 2022). The FIESTA package will be distributed in its entirety on GitHub 
(https://github.com/USDAForestService/FIESTA) and CRAN (https://cran.r-
project.org, a stand-alone desktop application of FIESTA is currently rolling 
out, and FIESTA is also being integrated into ArcGIS Pro. 

Links to FIESTA documentation and distributed products can be found in 
the dynamic content here: https://www.fia.fs.usda.gov/library/sampling/
index.php.

rFIA

A recently developed, publicly available R package, rFIA (https://doi.
org/10.1016/j.envsoft.2020.104664, https://rfia.netlify.com/), is gaining 
popularity among FIA users for estimation, plot-level summaries, and 
visualization. The package can be downloaded by anyone from CRAN 
or Github, and its use is not restricted to Forest Service employees and 
partners. In addition to the temporally indifferent method, rFIA can 
produce estimates for individual annual panels and implements multiple 
forms of a moving average estimator, providing flexibility in the temporal 

https://github.com/USDAForestService/FIESTA
https://cran.r-project.org
https://cran.r-project.org
https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
https://doi.org/10.1016/j.envsoft.2020.104664
https://doi.org/10.1016/j.envsoft.2020.104664
https://rfia.netlify.com
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specificity of estimates. In Stanke et al. (2022), rFIA was recently used to 
develop spatial Fay-Herriot models of forest carbon stocks for counties 
across the conterminous United States.

rFIA-related material can be found in the dynamic content, here: https://
www.fia.fs.usda.gov/library/sampling/index.php.

GEE

Google Earth Engine’s (GEE) cloud-based archive and programming 
interface eliminate image acquisition and processing tasks that previously 
took up most of the budget for large land cover mapping projects. At a 
time when FIA is being asked to do more with less, GEE represents an 
opportunity to achieve estimation goals for LULC change and other issues 
in a budget-conscious way. Best-practice protocols are currently being 
developed for FIA to ensure safe use of coordinate data with GEE. This 
protocol development work will provide the foundation of requirements 
written into the security plans of both internal and external users of FIA 
data in cloud-based platforms like GEE.

A link to GEE examples in forest inventory applications can be found in the 
dynamic content, here: https://www.fia.fs.usda.gov/library/sampling/index.
php.

BIGMAP

The Big Data Mapping and Analytics Platform project (BIGMAP), a 
partnership between  Forest Service and Esri, is leveraging cloud 
computing to accelerate processing of large geospatial datasets to facilitate 
the development, validation, and distribution of new data products 
and estimation techniques. Among other applications, Forest Service 
researchers are implementing nearest neighbor imputation methods for 
mapping forest carbon pools based on FIA plot data and time series of 
Landsat imagery (as defined by Wilson et al. 2013 and Wilson et al. 2018). 
These methods include model-based inference for small area estimation 
(McRoberts et al. 2007). Computational challenges associated with model-
based inference arise from both (1) the production of forest attribute 
maps, and the associated manipulation of massive spatio-temporal 
datasets (e.g., 30-m Landsat satellite imagery), and (2) spatially explicit 

https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
https://www.fia.fs.usda.gov/library/sampling/index.php
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calculations needed for estimating variances, such as the calculation of 
covariances between pairs of pixels. While such challenges have limited 
the applicability of some methods to regional scales, the Amazon Web 
Services cloud computing environment leveraged by this project facilitates 
national-scale efforts.

A link to BIGMAP-related materials can be found in the dynamic content, 
here: https://www.fia.fs.usda.gov/library/sampling/index.php.

Summary
FIA’s response to the Farm Bill’s call for improved LULC change estimates, 
full implementation of the FIA inventory in interior Alaska, as well as 
improved precision over small geographic areas, have all been on an 
accelerated research schedule. This chapter introduced several of the 
rapidly evolving topics. Whether a model-assisted, model-based, or hybrid 
approach should be taken depends on the research question and available 
data. Ståhl et al. (2016) provide a thorough comparison of these different 
frameworks and their applicability to different inventory scenarios. 
Research updates will continually be posted to FIA’s website to track the 
organizations progress on these important fronts.
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Appendix 1: Forest Area Estimation and Area Control 
Revisited
John W. Coulston and James A. Westfall

Forest area is a key population parameter estimated by the FIA program. 
Both sampling and estimation methodologies have changed over time 
and there remains some misperception around how the methodologies 
presented by Scott et al. (2005) differ from previous approaches for 
estimating forest area. Frayer and Furnival (1999) and USDA Forest Service 
(1992) provide an overview of historical statistical designs. Frayer and 
Furnival (1999), as a general statement, suggested that most states were 
inventoried with a double sampling design where aerial photo plots were 
used for stratification and field plots were used for collecting basic forest 
mensuration variables. This practice led to the idea of a “Phase 1” forest 
area estimate that arises from a stratification process based on a large 
number of photo plots. Reams (2000) provides an example of “Phase 1” 
forest area estimation. With the shift to the rotating panel design and the 
adoption of the post-stratified estimator, the concept of a “Phase 1” area 
estimate has been eliminated. The goal of this Appendix is to revisit area 
estimation procedures from Scott et al. (2005) with an emphasis on forest 
area estimation and area control. The practitioner is the target audience of 
this Appendix and as such we take guidance from Freese (1962), provide 
example calculations for forest area estimates, and re-present equations 
that are also given in the Foundational Documentation chapter.

  
Simple Random Sampling Case
To increase understanding of area estimates, area estimation under 
simple random sampling (SRS) is initially presented and then extended to 
constructing estimates with the post-stratified estimator. This approach 
was taken because when only one stratum is used with the post-stratified 
estimator, an SRS estimate is obtained. Further, the rotating panel design 
is assumed to produce an equal probability sample (McRoberts et al. 2006) 
and estimators for equal probability samples generally reduce to the same 
form as SRS estimators. The general steps for constructing an SRS estimate 
for a population total that uses FIA data include the following: 

1. Calculate the plot (i) area proportion for the domain (d) of interest        
. 
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2. Estimate the mean of the plot-level values . 

3. Estimate the variance of the mean .

4. Expand the mean and the variance of the mean to a total and 
variance of the total.

In step 1, the domain of interest is identified. Here we focus on forest as the 
domain of interest, but the approach is valid for any area-based estimate. 
For simplicity, we assume all plots were sampled and adjustments for 
nonresponse are unnecessary. When forest is the domain of interest the 
measured forest proportion of each plot is summarized:

 (48)

Where 

 = the proportion of each plot i in condition k, and 

= an indicator (0, 1) variable that takes the value of 1 when the 
condition is forest. 

In simple terms, yid is the sum of the forested condition proportions for 
each sample plot in the population, including entirely nonforest plots. 
In Scott et al. (2005), yid has an additional summation to first sum the 
conditions for each j subplot (or macroplot) on plot i but the approaches 
yield equivalent results. 

The mean proportion forest  is estimated by

 (49)

Where 

n = the total number of plots (forest and nonforest plots) in the population. 

The variance of the mean proportion forest  is estimated by

 . (50)
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In the divisor of Equation 50, n is used to estimate the variance of the mean 
from the variance of the sample . In this manner the standard 
error of the estimate is then .

To expand the mean proportion forest and the variance of the mean to 
population totals, the area of the population (AT) is needed. For estimation 
purposes, AT is considered known and is typically taken from official U.S. 
Census Bureau statistics. Given a known AT, the total forest area is

 (51)

With estimated variance

 (52)

and the standard error of the estimate is v(Ŷ)0.5. 

Example Forest Area Estimate Under SRS
Consider a hypothetical population made up of two counties with an 
inventory of 30 sampled plots (Table 7). County 1 is 87,420 acres, county 2 is 
98,580 acres, and the population is AT = 186,000 acres. 

Based on Equation 49, the mean proportion forest is

Using Equation 50 the estimated variance of the mean proportion forest is

= 703.985 X 10^-5 

The total estimated forest area is 186,000 acres × 0.513333 = 95,480 acres 
with the estimated variance being 186,0002 acres2 × 703.985 × 10-5 = 
243,550,651 acres2. The standard error of the estimate is  (243,550,651 
acres2)0.5 = 15,606 acres.
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Table 7.—Dataset used for example forest area estimates using simple random 
sampling estimation and post-stratified estimation. Note that the condition data 
have already been summarized to plot-level proportion forest using Equation 48.

County Plot Forest proportion

1 1 1

1 2 1

1 3 0

1 4 0.75

1 5 0.25

1 6 0.3

1 7 1

1 8 0

1 9 0

1 10 0

1 11 0.1

1 12 0.8

1 13 1

2 14 1

2 15 0

2 16 0

2 17 1

2 18 1

2 19 1

2 20 0

2 21 1

2 22 0

2 23 0.25

2 24 1

2 25 0

2 26 0.75

2 27 1

2 28 1

2 29 0.2

2 30 0
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Post-stratified Estimation
The post-stratified estimators for area parameters are presented in Scott 
et al. (2005) and are presented earlier in the Foundational Documentation 
chapter equations 1–6. These estimators are relevant to single panel 
estimates or estimates based on a full set of panels assuming temporal 
indifference (Patterson and Reams 2005). There are two components of 
stratified estimation as presented in Scott et al. (2005) that are not covered 
under the SRS example above. These components are the stratification 
process and the adjustment for partially nonsampled plots.

Stratification Process
The goal of stratification is to form homogeneous strata by using auxiliary 
information to reduce the variance of the estimate. Generally, the 
precision of forest area estimates is increased 1.4- to 3.0-fold by using 
post-stratified estimation (Brooks et al. 2016, Coulston 2008, McRoberts et 
al. 2006). Westfall et al. (2011) recommended that strata be constructed 
such that there are ≥ 10 plots within each stratum. As of the writing of this 
report, FIA typically constructs a stratification map based on one or more 
geospatial datasets. Often, one component of the stratification is based on a 
map of forest cover (Homer et al. 2015) or tree cover (Coulston et al. 2012) 
derived from the National Land Cover Database (NLCD). Another common 
component is an ownership map, such as the Protected Areas Database 
(DellaSala et al. 2001) where public and private lands are delineated.

When wall-to-wall maps are used for post-stratification, the weight of each 
stratum is assumed to be known and each inventory plot is assigned to a 
single stratum. For a simple example, consider a forest cover / nonforest 
cover raster map that completely covers a population. Each inventory 
plot is assigned to one stratum h (forest cover stratum or nonforest cover 
stratum). The weight of each stratum (Wh) is calculated directly from the 
stratification map. It follows that the weight of the forest cover stratum 
is the number of forest cover grid cells in the raster map (pixels) in the 
population divided by the total number of pixels in the population. The 
weight of the nonforest cover stratum is calculated similarly. Hence,

  = 1 for the population. 
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It is important to note that in practice the strata are not completely 
homogeneous. This occurs for several reasons: 

• Classification differences—The FIA program defines forest based on 
use, which differs from defining forest based on cover (Coulston et 
al. 2014, Nelson and Reams 2017). For example, under a forest use 
definition, areas that have been harvested and replanted remain in 
forest land use whereas these same areas do not meet the definition 
of forest cover (e.g., trees > 5 m tall and occupying > 20 percent of 
vegetative cover). 

• Error associated with the wall-to-wall maps—For example, Wickham 
et al. (2017) found that the accuracy of the 2011 NLCD Land Cover 
map was 88 percent across broad land cover classes. Likewise, 
ownership boundary layers contain geospatial error arising from 
incorrect property boundaries.

• Error in plot locations—Each plot is assigned to a single stratum 
based on the location of the plot center. When there are errors in 
the plot locations, the potential for assigning plots to an incorrect 
stratum increases. McRoberts (2010) suggests that the general plot 
coordinate accuracy is within the range of 8 to 20 m.

• Multiple condition plots—Plots may only be assigned to one stratum, 
yet multiple conditions can be recorded on a plot. For example, 
a plot may have both forest and nonforest conditions but only be 
assigned to a forest or nonforest stratum. 

• Temporal discontinuity—The FIA program collects data annually, 
yet the maps used for stratification are only updated on a periodic 
basis. For example, the most current NLCD Land Cover maps in 
2020 are from the 2016 NLCD. This leads to situations where the plot 
data reflect more current ground conditions than the map used for 
stratification.

It is common to have forest land use plots in a nonforest stratum and vice 
versa. This does not bias results but rather increases the variance of the 
estimate.



108           General Technical Report  NRS-207    

Partially Sampled Plots

There are certain situations where field inventory crews cannot access 
a sample location (in whole or in part). This can occur because of denied 
access by a landowner, a hazardous situation, or the location falls outside 
the population of interest (Scott et al. 2005). These nonsampled conditions 
are addressed in two ways. Plots that are completely nonsampled are 
not used when estimating forest area. They are assumed to be missing 
at random within the stratum (Patterson et al. 2012). For plots that are 
partially nonsampled, an adjustment is calculated for each stratum within 
the population. In practical terms, the adjustment is the average proportion 
of the plots within a stratum that were sampled and is discussed further in 
the following section.

  

Estimators 

Equation 4.1 from Scott et al. (2005) extends Equation 48 to identify the 
stratum to which plot i belongs and the adjustment  for partial plots 
outside of the population within the stratum:

 (53)

Where 

 .

When calculating  it is important to note that the domain indicator 
(δ) changes. In calculating the adjustment for partial plots, δ takes on a 
value of 1 if the kth condition was in the population and sampled and zero 
otherwise. For example, consider a plot that has three conditions. Condition 
1 is forest land use with yhik = 0.5, condition 2 is nonforest land use with 
yhik= 0.25, and condition 3 is nonsampled with yhik = 0.25. When calculating 

, δhikd = 1 for both condition 1 (forest land use) and condition 2 (nonforest 
land use) irrespective of the domain of interest because those are sampled 
conditions on the plot. Likewise, for any d, condition 3 is nonsampled and 
hence δhikd = 0. Overall, this example plot has a sampled proportion of 0.75. 
The division by  in Equation 53 is a method to account for partially 
sampled plots and this approach is used so that plot area is not a random 
variable.
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Equations 4.3 and 4.4 in Scott et al. (2005) are extensions of Equation 49 
and Equation 50 and are used to estimate the plot-level mean and the 
variance of the plot-level mean within strata, respectively: 

 (54)

 (55)

In effect, the SRS estimators are just used within each stratum. The 
estimate of the population mean for the domain of interest is then a 
weighted average based on the strata weights (Wh): 

 (56)

With estimated variance

 (57)

Equation 51 is then used to estimate the total forest area from the mean 
forest area (Eq. 56), and Equation 52 is used to estimate the variance of the 
total forest area from Equation 57. Equations 54–57 are also presented in 
the Foundational Documentation chapter. 

Example Forest Area Estimate Under Poststratification
To provide an example of forest area estimation under post-stratification, 
the same hypothetical population described for SRS estimation is used. 
Each plot from Table 7 is assigned to a single stratum (Table 8). The 
stratification is a simple forest / nonforest approach where the stratum 
weights and sample sizes are Wh=Forest = 0.57, Wh=Nonforest = 0.43, nh=Forest = 18, 
and nh=Nonforest = 12. 
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Table 8.—Stratification assignment for each plot in 
the example dataset from table 7. 

County Plot
Forest 
proportion Stratum

1 1 1 Forest

1 2 1 Forest

1 3 0 Non-forest

1 4 0.75 Forest

1 5 0.25 Non-forest

1 6 0.3 Forest

1 7 1 Non-forest

1 8 0 Forest

1 9 0 Non-forest

1 10 0 Non-forest

1 11 0.1 Non-forest

1 12 0.8 Forest

1 13 1 Forest

2 14 1 Forest

2 15 0 Forest

2 16 0 Non-forest

2 17 1 Forest

2 18 1 Forest

2 19 1 Forest

2 20 0 Non-forest

2 21 1 Forest

2 22 0 Forest

2 23 0.25 Non-forest

2 24 1 Forest

2 25 0 Non-forest

2 26 0.75 Forest

2 27 1 Forest

2 28 1 Forest

2 29 0.2 Non-forest

2 30 0 Non-forest
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The first step is to estimate the mean proportion forest for each stratum 
based on Equation 54: 

 

 

At this point note that both strata contain forested plots and contribute 
to the overall forest area estimate. The estimated variance of the mean 
proportion forest for each stratum based on Equation 55 is then

The mean proportion for the population is estimated by using Equation 56:

The estimated variance is obtained by using Equation 57:
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The total forest area is 186,000 acres × 0.495167 = 92,101 acres with an 
estimated variance of 186,0002 acres2 × 418.675 × 10-5 = 144,844,803 acres2. 
The standard error of the estimate is (144,844,803 acres2)0.5 = 12,035 acres

Recall that the goal of the stratification is to reduce the variance of the 
estimate. The variance of the post-stratified estimate of the mean was 
0.004 as compared to 0.007 under SRS suggesting a relative efficiency of 
approximately 0.007/0.004 = 1.75.

Expansion Factors
Expansion factors are commonly used in survey statistics and are 
the sampling weights (i.e., the inverse of the inclusion probability). 
An expansion factor approach can easily be developed by combining 
Equations 51, 54, and 56 to yield:

    

     

     

     

Where 

Ah = WhAT = the area of stratum h, and 

EFh =Ah/nh = the expansion factor for stratum h. 

The expansion factors in this context are not sampling weights but rather 
post-stratification weights. As such, post-stratification weights and hence 
expansion factors can change when different stratification approaches are 
used, when the map used to construct the stratification changes, and when 
nh changes because of different response rates over time.
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As described in Burrill et al. (2018), the expansion factors are often joined 
directly to condition- or plot-level data summaries and further simplify 
calculations to

 (58) 

We demonstrate the typical use of the expansion factor approach that uses 
the population described in Table 8. As previously noted, AT =186,000 acres, 
Wh=forest = 0.57, nh=forest = 18, Wh=Nonforest  = 0.43, and nh=Nonforest = 12. 

The expansion factor for the forest stratum 

EFh=Forest = 0.57 × 186,000 acres/18 = 5,890 acres                                (Result 1)

The expansion factor for the nonforest stratum 

EFh=Nonforest = 0.43 × 186,000 acres/12 = 6,665 acres                         (Result 2)

The notation  in the first term in Equation 58 denotes that only plots 
in the domain = forest are summed. That is, only plots where proportion 
forest > 0. In Table 8, only 20 plots have a proportion forest > 0. The area of 
forest is then

 

      = 92,101 acres.

In most instances the practitioner uses the expansion factor approach 
without knowledge of geographic boundary used to define the population. 
As Scott et al. (2005) note, “… the use of expansion factors prohibits 
accurate variance estimation.” This is an issue when the practitioner 
selects a geographic domain of study that contains subsets of one or more 
population boundaries used to calculate the expansion factors. When this 
happens, AT and Wh are no longer known but estimated. 
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Expansion Factor-Based Variance Calculation
Consider the population described in Table 8 and suppose there is a need 
to estimate the forest area in county 2. As previously defined by Result 1 
and Result 2, the expansion factors for the forest and nonforest strata are 
5,890 ac and 6,665 acres, respectively. The first step in the expansion factor 
approach is to subset Table 8 so that only plots from county 2 are used. The 
total forest area is then estimated by using Equation 58:

 = 54,537 acres              (Result 3)

AT and Wh are needed to estimate . Based on the derivation of the 
expansion factors 

          (Result 4)

          (Result 5)

          (Result 6)
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In the above calculations we have added accents to denote that AT and 
Wh are now estimated rather than known. Ignoring that AT  and Wh are 
now estimated, the practitioner may rely on Equations 54, 55, and 57 to 
construct the variance of the forest area estimate for county 2:

 

The estimated variance of the total forest area estimate for county 2 is

 (Result 7)

The standard error is 8,367.8 acres. However, error arising from the 
estimation of Wh and AT has not been accounted for with the expansion 
factor approach.
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Domain-Based Variance Calculation
Scott et al. (2005) note inaccurate variance estimates when they use the 
expansion factor approach. The issue arises because it is not obvious how 
the populations are defined when data are downloaded from FIA’s online 
database. Population information is stored in a series of population tables 
within the database (see Burrill et al. 2018 for more information). To 
properly construct the estimated variance, the practitioner should realize 
that a domain of interest has changed from forest area in the population 
to forest area in county 2. With this domain of interest, the domain 
indicator in Equation 48 is changed so that δikd takes a value of 1 when the 
observation on plot i in condition k is in the domain of interest and zero 
otherwise. The use of Equation 48 sets all plot-level observations to zero 
when they are not forest in county 2. Once the domain indicator has been 
adjusted, the variance calculation follows Equations 54, 55, and 57: 

The estimated variance of the total forest area estimate for county 2 is

 (Result 8)

The standard error of the estimate is 13,223 acres. 
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Comparing Results
As stated in the Simple Random Sampling Case section above, the total area 
of county 2 is 98,580 acres and the stratum weights are 0.57 and 0.43 for the 
forest and nonforest stratum, respectively. However, based on Result 3, the 
estimated total area of county 2 is 104,780 acres and the estimated strata 
weights are 0.62 and 0.38 for the forest and nonforest strata, respectively 
(Results 5 and 6). The estimated variance for the domain-based variance 
(Result 8) is 2.5 times larger than the expansion factor estimated variance 
(Result 7). These results support the statement by Scott et al. (2005) that the 
expansion factor approach can lead to inaccurate variance estimates. 

 
Area Control 
The term “area control” refers to the spatial scales at which AT is 
considered known.2 At its most basic level, area control refers to the size 
and geographic extent of the population for post-stratified estimation. The 
way in which populations are defined, for estimation purposes, differs by 
region. For example, in the western United States where counties may be 
large enough to meet the sample size recommendations (Westfall et al. 
2011), a single county may be defined as a population. In the South where 
counties are often small, populations tend to be defined by survey units 
(aggregates of counties that roughly follow physiographic boundaries). 
When the population, and hence AT, is defined by county aggregates, there 
is no area control at the county-level. 

We demonstrated, in the Comparing Results section above, how estimated 
values of total area can differ from known values of total area. For 
example, the estimated total area of county 2 is  104,780 acres and the 
known value is 98,580 acres. When estimating the total and the variance 
of the total, it is important to use a known AT when possible because the 
estimated total arising from Equation 51 is the product of AT and the 
estimate of the mean. The variance of the total is the product of AT

2 and the 
variance of the mean (Eq. 52). There are two primary options available to

 ensure that a known AT is used when constructing estimates. 

2 Our use of the term area control relates only to constructing estimates of forest parameters. Area control as 
presented in this Appendix does not have any relationship to terms area control and volume control used in 
forest regulation. 
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The first and preferred option is to define the population based on the 
desired scale of area control and develop the post-stratification weights 
for that population. Following our previous example of estimating the 
forest area in county 2, the practitioner would consider county 2 as the 
population, develop the post-stratification weights specifically for the 
county 2 population, and then employ Equations 53–58 to construct 
estimates. However, care should be taken with this approach to ensure 
adequate sample size. 

The second approach is to use the ratio estimator (Foundational 
Documentation chapter, Equations 10–13) and treat both the forest area 
and the total area as estimated parameters. This approach, from a forest 
area perspective, produces mean proportion forest for the domain (and the 
variance of the mean). The known area of the domain may then be used 
to construct estimates of the total forest area using Equations 51 and 52. 
Returning our attention to the estimation of forest area in county 2, the 
ratio estimator is

Where 

d, d’ = the specified domains for the numerator and denominator, 
respectively. 

When the forest area estimate for county 2 (Result 3) is used as the 
numerator and estimated total area of county 2 (Result 4) is used as the 
denominator, the ratio estimate (proportion forest in county 2) is

The estimate of the total forest area is then the product of the known area 
of the county 2 (98,580 acres) and .

Here we have added the r subscript to  to denote that the estimate arises 
from the ratio estimator. 
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As discussed in the Foundational Documentation chapter, the estimated 
variance is

Where

 

and  

To calculate   parameter estimates are needed for , 
and . Result 8 provides . To estimate  

Equations 52, 54, 55, and 57 are used. Additionally, the domain indicator 
must be changed so that all plots in county 2 (not just the forested plots) 
have a value of 1 and the remaining plots have a value of zero (i.e., yhid = 
1 if the plot is in county 2 and zero otherwise). The estimate of  = 
310,778,949 ac2. The within-stratum covariance is

= 0.0111

= 0.0017

The total covariance is then

And the estimated variance of  is
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The variance of  is then estimated as 

The standard error of the estimate is 9,759 acres. Using the ratio approach, 
the practitioner can construct domain estimates with area control provided 
the area of the domain is known. This approach can be more precise than 
relying on the basic domain estimation approach presented in the Domain-
Based Variance Calculation section where the standard error of the forest 
area estimate for county 2 is 13,223 acres. 

Area control always occurs at the population level and aggregates of 
populations also have area control. To our knowledge, the lowest common 
denominator of area control is at the state level. In other words, there is 
a set of populations used for estimation purposes that, when summed, 
maintain area control at the state level. This is an important characteristic 
for state-level reporting requirements.
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Appendix 2: Ratio-to-Size Estimation
Charles T. Scott and James A. Westfall

The following describes an alternative approach to that currently used 
by Forest Inventory and Analysis (FIA) (Scott et al. 2005). The ratio-to-
size estimator is presented as an alternative to estimation approaches 
already described in the Foundational Documentation chapter for means, 
totals, and ratios under a simple random sampling design. The ratio-to-
size estimator is then extended to account for partially sampled plots in 
a post-stratified estimation framework. The material is drawn from an 
unpublished document, “Formulas for Estimators and Their Variances in 
NFI,” by Korhonen and Salmensuu (2014). 

The ratio-to-size estimator is a ratio estimator that takes advantage of 
the proportional relationship between the total of the attribute observed 
and the size of the sampling unit (Thompson 2012, p. 160). Korhonen 
and Salmensuu (2014) used the estimator, in part, to account for the 
portion of the sampling unit that could not be measured, such as when 
a portion is too dangerous to measure or access is denied by the owner. 
As will be demonstrated, the estimator can be used to take advantage of 
the relationship between any two attributes measured. Specifically, this 
estimator is efficient when the attribute of interest is correlated with the 
size of the attribute in the denominator. A common example in forest 
inventory is when the tree volume or biomass on a plot is related to the 
portion of the plot that is forested. This situation occurs when plots are 
randomly placed on the landscape without regard to whether the location 
is forested in order to determine the total forest area and volume within 
the population. A given plot may straddle the boundary between forest 
and nonforest or between two different domains of interest, such as forest 
types. This may also happen when a portion of the plot cannot be measured 
for safety or other reasons. The estimator can also be used to estimate 
other ratios, such as the proportion of the total volume contributed by a 
certain tree species.
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The following assumes a single fixed-area plot located within a single 
stratum based on the plot center. However, the results extend easily to 
clusters of plots or as used here, plots composed of subplots, such as is 
used by the Forest Inventory and Analysis program in the United States 
(Bechtold and Scott 2005). In that case, the attributes must be summarized 
to the plot level. Given the FIA plot configuration is fixed (no randomization 
of the subplots within the plot), the results given here apply (i.e., this is not 
two-stage random sampling). 

Estimation
Simple Random Sample (SRS)

Estimates of forest proportion (or proportion of any category of interest) of 
the total population area, AT, or of the density other attributes of interest, 
such as biomass, in domain d can be estimated by using Equation 59. The 
numerator is the total area measured that is in the domain of interest d 
(such as land use or cover class) for area proportions or as the total for 
other attributes (e.g., biomass) measured that is in the domain of interest 
d (such as a species or diameter class within a particular forest type). The 
denominator is the total area measured:

 (59)

Where

yid = area or attribute total of plot i in domain d,

 = area measured on plot i (excluding portions that are inaccessible or 
out-of-population),  

 = the area measured on plot i in condition k (excluding portions that 
are inaccessible or out-of-population), 

yikd = area or attribute total for condition k in plot i in domain d, and 

δikd = indicator variable which is 1 if condition k on plot i is in domain d, 
such as a specific forest type or species; 0 otherwise.

Note that although unmeasured areas are mapped to their own condition, 
they are not included in the k conditions being summed. The exception to 
this method is when area of nonresponse is estimated, in which case the 
unmeasured areas are included in the K conditions. Also, observation unit 
values yikd are simply summed and are not expressed on a per-unit-area 
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basis, such as the sum of sampled tree biomass values. The sum of the 
area measured in the denominator takes the role of the sample size in the 
typical formula for calculating a mean. Population totals are estimated as

 (60)

The variance of the estimated mean (Eq. 59) is

 (61)

And the variance of the estimated total (Eq. 60) is

 (62)

Often in forest inventory, nested or concentric plots are used to sample 
trees of different sizes. Seedlings are sampled on small plots while large 
trees are sampled on large plots. A commonly desired estimate that spans 
more than one plot size is total number of trees. To address this, the largest 
plot size is used in the denominator and each size class, j, is rescaled to 
the largest size class, J. This approach ensures that estimates across plot 
sizes are equal to the sum of estimates from individual plot sizes. The plot 
attribute becomes

 (63)

Where

yijd = sum of the attribute of interest on plot i having plot size j in domain 
dm, and 

aij =  plot size i j area measured on plot i.
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Ratio Estimates (SRS)
Often estimates of means are of more interest for a particular subcategory 
of land, rather than across the whole land area, such as biomass per 
hectare of forest land. It can be estimated as the ratio of the mean of the 
attribute across all land divided by the mean area proportion across all 
land:

 (64)

Where

yid = the attribute of interest in domain d on plot i where d is typically a 
subdomain of d’, for example d is a species-specific biomass on forest land, 
and  = the area of interest in domain  on plot i, where  is typically 
the primary domain such as forest land. 

The variance of the ratio estimate can be computed by using the same 
approach as in (Eq. 61) for , but replacing ai with . That is, instead of 
summing across all measured areas, only those areas in the domain d are 
summed.

 (65)

This is a much simpler estimator than is shown in Equation 11 in the 
chapter on Foundational Documentation, but the results are identical when 
there are no partial plots due to inaccessibility. When there are partial 
plots, then Equation 65 more accurately reflects the variance.

Post-stratification

In a post-stratified estimation framework, the mean across the entire 
population area is estimated as

 (66)
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Where

Wh = weight for stratum h, 

yhid = the attribute of interest in domain d on plot i in stratum h, and 

= area measured on plot i in stratum h (excluding portions that are 
inaccessible or out-of-population).

The total is estimated by multiplying by the total area:

 (67)

The ratio is computed by dividing the total of the attribute in domain 
 by the total of the attribute in domain  :

 (68)

Note: It is important to first estimate the totals  and  across strata then 
create the ratio estimate, rather than doing the ratio estimate by strata 
and subsequently constructing a weighted average. The first method is 
unbiased, the second is not. 

Post-Stratified Variance Estimation

In post-stratification, a sample of the population is selected first then 
the stratification is applied (Cochran 1977, p. 134). This is typical of long-
term National Forest Inventories that use permanent plots. This results in 
within-stratum sample sizes being random variates, i.e., the sample sizes 
are not predetermined and would vary among samples. This source of 
variation is accounted for in the second term of the variance estimator. The 
variance estimator of the mean for post-stratification is

 (69)

Where the stratum variance is

 (70)

The variance of the total is

 (71)
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The general form for the variance of the ratio estimate is

 (72)

The  under a post-stratified design is

 (73)

Where the stratum covariance for ratio-to-size estimation is

      

 (74)
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Appendix 3. Metric Equivalents

When you know: Multiply by: To find:

Inches (in) 2.54 Centimeters

Feet (ft) 0.305 Meters

Acres (ac) 0.4047 Hectares

Cubic feet 0.0283 Cubic meters

Pounds (lb) 0.4536 Kilograms

Tons (ton) 907 Kilograms

https://doi.org/10.2737/SRS-GTR-80
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USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, 
call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office 
of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 
690-7442; or (3) email: program.intake@usda.gov.

USDA is an equal oppourtunity provider, employer and lender.
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