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Abstract Synchrony in forest insect outbreaks is impor-

tant because the resulting regionalized outbreak dilutes the

regulating effects of natural enemies, reduces the land-

scape’s ability to buffer the disturbance, exacerbates the

economic burden on individual stakeholders, and over-

whelms the logistical abilities of managers to suppress

populations and mitigate impacts. Understanding the pro-

cess of synchronization of dynamics is therefore a crucial

aspect of understanding outbreak dynamics. We studied the

second-order log-linear (autoregressive) model to ask what

patterns of synchronization across invasion fronts may be

expected from Moran’s model. Generally, we show that the

time to synchronization in the log-linear model is a com-

plex function of a number of parameters of which the

overall strength of regulation, the strength of delayed sta-

tistical density dependence, and the relaxation time seem to

be of particular importance. Interestingly, while environ-

mental correlation is the crucial determinant of the

magnitude of asymptotic synchrony, it does not appear to

influence the transient process of synchronization. How-

ever, synchronization proceeds much more quickly among

weakly periodic populations than among populations that

are strongly periodic. As a case study, we investigate

synchronization following colonization by gypsy moth

(Lymantria dispar) populations located along the species’s

expanding invasion front in northeastern USA. Data con-

sisted of more than 100 years of county quarantine records

and 30 years of detailed defoliation maps. We found that

the dynamics of new populations tended to be initially out

of synch with the broadly synchronized outbreaks within

the established range. However, the outbreak dynamics of

these new populations lock on to the regional patterns very

quickly—within 10–15 years of invasion. Focusing on

parameters that produce periodicity comparable to that

seen in real gypsy moth populations, we discuss how the

observed synchronization compares to that predicted by

the log-linear model. While our results are equivocal, the

synchronization appears to be surprisingly rapid, so more

mechanistic models may be needed to explain the syn-

chronization observed in this case study.

Keywords Autoregressive model � Defoliation �
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Introduction

Populations of most forest insect herbivores persist at low

densities such that they are rarely noticed. In contrast, a

few species of foliage-feeding lepidopterans exhibit

extreme variability in abundance. During years of high

abundance, individual host trees may be completely defo-

liated, and this often leads to reduced growth and tree
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mortality. Of these outbreaking species, a handful are

responsible for some of the most expansive and intense

disturbances of forests worldwide. The manifold conse-

quences of these outbreaks include alteration of nutrient

cycles and shifts in animal/plant community structure

(Payette et al. 2000; Work and McCullough 2000) as well

as impacts on human utilization of forests for timber,

recreation, and aesthetics (Volney 1998; Coyle et al. 2005).

There are two main reasons why these outbreaking spe-

cies are such important pests. First is their ability to reach

very high densities that cause considerable damage to indi-

vidual host trees. This is a property that has, throughout the

history of ecology, received in-depth attention and has

revealed fundamental insights into pest biology and

dynamics. The second reason is that their population peaks

are geographically synchronized, resulting in regionalized

outbreaks. This spatial synchrony is crucial for at least four

reasons. First, it dilutes the regulating effects of any natural

enemy that could otherwise provide local control. Second, it

reduces the ecological landscape’s ability to buffer because

most areas within a watershed or greater ecosystem will

experience simultaneous disturbance (Lovett et al. 2002).

Third, it greatly exacerbates the economic burden on indi-

vidual stakeholders because a majority of his/her tract of land

may be damaged during any given outbreak. Finally, the

massive geographical scale of the outbreaks—for example

the 65 million cumulative acres defoliated by the gypsy moth

over the last 25 years—vastly overwhelms the budgetary

and logistical abilities of government agencies to suppress

populations and thereby mitigate impacts. Synchronization

of dynamics is therefore a key determinant of the ecological

and economic impacts of forest defoliating insects.

‘‘Spatial synchrony’’ refers to the statistical congruence

in the oscillations of geographically disjunct populations.

This phenomenon has received considerable recent atten-

tion in population ecology because spatial synchrony has

been found to be ubiquitous across animal populations

(reviewed in Bjørnstad et al. 1999a; Liebhold et al. 2004a).

Current theory explores two broad classes of mechanisms

for spatial synchronization. The first centers on how pat-

terns of dispersal in either the focal population or its natural

enemies can cause synchrony. The second centers on how

even modest but regionalized stochastic perturbations—

such as variable weather and climatic shocks or region-

wide trophic effects (e.g., mast-seeding effects on the food

supply of seed-eating insects)—may synchronize popula-

tion fluctuations. This second mechanism has received

prominence in the ecological literature as the ‘‘Moran

effect’’ (Royama 1992; Ranta et al. 1997; Bjørnstad et al.

1999a; Johnson et al. 2004) named after Moran’s (1953a,

b) prescient study of how random but spatially correlated

stochastic forcing may synchronize fluctuating populations.

Moran’s theorem (Royama 1992) details how any two

spatially disjunct populations governed by identical linear

or log-linear density-dependent feedbacks will directly

inherit their synchrony from the correlation in the envi-

ronment. Moran (1953a, b) derived this result from

studying a second-order autoregressive model fit to the

time series of Canadian lynx log-abundance. An important

conceptual insight from Moran’s work is that the cause of

synchronization can be different from the causes respon-

sible for the oscillations.

A principal reason for the difficulty in deducing the

causes of synchrony is that most forest insect populations

are already synchronized and thus the actual process of

synchronization can rarely be observed. An exception to this

may be during invasions of alien populations when newly

founded populations may be initialized out of synch with

previously established populations (Johnson et al. 2006b).

Such invasions may therefore offer insights into synchro-

nization and regionalization of outbreaks. In this paper, we

first use the second-order log-linear model to study how

direct density dependence and delayed density dependence

affect the speed of synchronization along invasion fronts.

We show that local regulatory processes are important

determinants of the speed of regionalization of outbreaks

despite the fact that (in linear and log-linear systems) long-

term synchrony is independent of these. We then discuss an

empirical analysis of the initial asynchrony and subsequent

rapid synchronization of populations along the gypsy moth

invasion front in the northeastern US. For this case study,

we speculate that nonlinearities in the local dynamics may

also be important for the observed rapid synchronization.

Theoretical explorations

Most empirical studies of synchrony—including our own

various efforts (e.g., Bjørnstad et al. 1999b; Bjørnstad

2000; Williams and Liebhold 2000; Peltonen et al. 2002)—

focus on populations that are in their ‘‘asymptotic mode’’

of dynamics (i.e., stochastically fluctuating around the

carrying capacity or cyclic/chaotic attractors). Following

Moran’s (1953a) study we know that in (log-)linear

dynamical systems, this asymptotic rate of synchrony is

determined by the strength of spatial coupling and is

independent of local dynamics. Here we ask whether and

how the rate of synchronization depends on local dynam-

ics. To investigate this we use the second-order

autoregressive (AR2) model of log-abundance as the

benchmark. This model has been used in the study of

synchrony, beginning with the work of Moran (1953b) but

continued in several other studies (Royama 1992; Peltonen

et al. 2002; Liebhold et al. 2006), and has in specific case

studies been derived as a useful approximation to more

mechanistic models of trophic interactions (e.g., Stenseth
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et al. 1996, 1998). The AR2 model for abundance (n) in

population i in year t is:

ni;t ¼ ceei;t ni; t�1na
i;t�1nb

i; t�2; ð1Þ

where c is the maximum population growth rate, a and b
are the coefficients of direct and delayed density

dependence, and ei is a sequence of zero-mean,

identically distributed random normal deviates with

variance r2. On a log-scale, Eq. 1 can be written in the

standard autoregressive form as:

xi; t ¼ c0 þ a1xi; t�1 þ a2xi; t�2 þ ei; t; ð2Þ

where xi; t ¼ logðni; tÞ; c0 = log(c), a1 = 1 + a, and

a2 = b.

Dynamically speaking, this model has been fully char-

acterized in the statistical (e.g., Priestley 1981) and

dynamical systems (e.g., Honerkamp 1993) literature. For

our discussion it is useful to summarize some key results

from this literature. In the absence of stochasticity, this

model exhibits dampened or divergent dynamics around

the equilibrium, �x ¼ c0= 1� a1 � a2ð Þ: In the parameter

region where a2 [ -1 and a1
2 + 4a2 \ 0, the dynamics is

represented by dampened oscillations with a period, T, that

is to a first order of approximation 2p
.

cos�1 a1

2
ffiffiffiffiffiffi�a2
p

� �

(Fig. 1a). In this region, the so-called relaxation time

towards the equilibrium is s ¼ �2=logð�a2Þ (Fig. 1b).

This relaxation time measures the time it takes for dis-

placements away from �x to decay by about 63% (i.e., to a

fraction 1� e�1 of the original displacement). This,

therefore, is a measure of how long any particular shock

will influence the dynamics. Note that this parameter

depends only on the magnitude of the delayed density

dependence and not on the direct density dependence.

The two eigenvalues of the system are k ¼ ða1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ 4a2

p
Þ=2 (Fig. 1c). In the presence of white-noise

stochasticity (i.e., r2 [ 0), the model exhibits persis-

tent oscillations with a statistical period approximately

equal to T. The autocorrelation function at time lag l takes

the form

acf ðlÞ ¼ signða1Þldl sinðp � lþ f Þ
sinðf Þ ; ð3Þ

where d ¼ ffiffiffiffiffiffiffiffiffi�a2
p

; p ¼ cos�1ðabsða1Þ=2dÞ; and f ¼
tan�1 tanðpÞð1þ d2Þ=ð1� d2Þð Þ: The theoretical spectrum

is

hðxÞ ¼ 2pj1� a1e�2pxi � a2e�4pxij2
� ��1

; ð4Þ

where x is the frequency (=1/period), i is the imaginary

unit, and || is the complex modulus.

To study time to synchronization, we consider a simple

two-patch system (i [ {1, 2}) where the dynamics are

identical except for the stochastic forcing being partially

correlated: Cor(e1, e2) = q. Consequently, the asymptotic

correlation in abundance, Cor(x1, x2), is also q (Moran

1953a; Royama 1992). We characterize the process of

synchronization by investigating how the 10-year moving-

window correlation (e.g., Ranta et al. 1997) changes as a

function of time and measure the time to synchronization

as the average time it takes to reach the asymptotical

correlation.

To make it as applicable as possible to our gypsy moth

case study (see below), we assume the maximum annual
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Fig. 1 a Damping period as a

function of direct (a1) and

delayed (a2) coefficients of

density dependence. The

triangle represents the stable

(nondivergent) region of

parameter space. The parabola
demarcates the region where

stochastic dynamics are

statistically periodic. Contours
represent cycle period. b
Relaxation time. c The modulus

of the dominant eigenvalue. d
The time to reach 90%

asymptotic synchrony (for

q = 0.8 and r = 1)
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per capita growth ratio to be around 50 (Elkinton et al.

1996) giving c0 = 4. Since the new populations in front of

an invasion front are generally seeded at low abundance

when populations in the established populations are at high

abundance (Johnson et al. 2006b), we initiate our popula-

tions using the observed peak-to-trough ratio observed in

gypsy moth time series. Liebhold et al. (1998) report

somewhere between a 1,000-fold and a 10,000-fold dif-

ference across a cycle. We consequently set x1; t¼0 ¼ �xþ 4

and x2; t¼0 ¼ �x� 4; which correspond to an approximately

3,000-fold difference. Note that all our results are quali-

tatively robust to these parametric choices. We explore the

time to synchronization across the convergent part of the

AR2 parameter space (i.e., where |k| \ 1) and investigate

how this correlates with the basic (a1, a2, r2, and q) and

emergent (T, s, and k) parameters. Because time to syn-

chronization is slow for certain parameter sets, we also use

a relaxed measure of time to synchronization as 90% of the

asymptotically expected correlation (q). We present aver-

ages across 100 replicate simulations of 500 generations

for each parameter set. The values of parameters a1 and a2

were divided into increments of 0.05 within the convergent

part of the parameter space, r equalled 0.5, 1 or 2, and q
0.2, 0.4, 0.6 or 0.8.

Results

The time to synchronization varied from virtually instan-

taneous (i.e., by the first 10-year moving window) to very

slow. Of the 19,752 parameter sets we investigated, 3%

reached asymptotic synchrony within 15 generations,

nearly 10% took longer than 500 generations, 10% took

between 100 and 500 generations, and around 75% took

between 15 and 100 years. This qualitative pattern

remained the same when we used the less stringent crite-

rion of reaching 90% of asymptotic synchrony. In the

remainder of our exploration, we will focus on this less

stringent criterion.

A cursory inspection suggests that time to synchroni-

zation decreases to a greater or lesser extent with all the

basic parameters: the Spearman rank correlations with a1,

a2, r, and q are -0.14, -0.53, -0.24, and -0.10,

respectively. However, a closer inspection reveals these

relationships to be complicated with obvious interactions

among the parameters (Fig. 1d). Generally, time to syn-

chronization is shorter when {a1 and a2} are close to the

origin and the noise variance is large, and longer when {a1

and a2} are closer to the boundary of instability, particu-

larly so when a2 is very negative. This generalization is

supported by the analysis of variance of (log-transformed)

time to synchronization, for which the absolute value of the

dominant eigenvalue, |k|, was positively related to the time

with a partial R2 = 0.21, followed by a2 (partial

R2 = 0.19), r (partial R2 = 0.05), a1 (partial R2 = 0.02),

and q (partial R2 \ 0.01). However, the determinants of

time to synchronization are only partially resolved by this

analysis as the total R2 is only 0.48, and while several

interactions between the variables are ‘‘significant,’’1 even

including all interactions up to the full five-way model

(with 26 additional parameters) only increases the R2 to

0.50.

Only considering the nonperiodic region (above the

parabola in Fig. 1), the proximity to the boundary of

instability (i.e., |k|) accounts for 49% of the variation with

minor contributions by the other variables: a2 (partial

R2 \ 0.01), r (partial R2 = 0.07), a1 (partial R2 = 0.06),

and q (partial R2 \ 0.01).

The separate analysis of the parameter region of statis-

tical periodicity (below the parabola in Fig. 1) offers some

additional insights. In this region we can investigate how

the time to synchronization also correlates with the period,

T, and the relaxation time, s. In this region, the crude

Spearman rank correlations of time to synchronization in

this region are as follows: with a1, -0.13; with a2, -0.86;

with r, -0.20; with q, -0.09; with |k|, 0.62; with T,

-0.13; and with s, 0.86. Note that s and a2 represent

negative but inverse transformations of each other so their

rank correlations are identical but of opposite sign. The

analysis of variance shows that of these, a2, |k|, and s
account for a partial R2 of 0.72. There is such strong co-

linearity among these parameters that it is difficult to

apportion contributions, but the drop-one ranking puts their

importance as s[ a2 [ |k|. The ranking of the remaining

variables is r (partial R2 = 0.04), a1 (partial R2 = 0.01), q
(partial R2 \ 0.01), and T (partial R2 \ 0.01).

In summary, the time to synchronization in the log-

linear autoregressive model is a complex function of a

number of parameters of which the overall strength of

regulation (inversely proportional to |k|), the strength of

delayed statistical density dependence (a2), and/or the

relaxation time (s) seem to be of particular importance.

Interestingly, while environmental correlation (q) is the

crucial determinant of the asymptotic synchrony (cf.

Moran’s theorem), it does not appear to influence the

transient process of synchronization. Moreover, the mag-

nitude of the noise variance (r) and the exact periodicity

of the oscillations (T) appear to be unimportant in this

process. Finally, the strength of statistical density depen-

dence (a1) only influences the time to synchronization

in so far as it influences the overall strength of regulation

(� 1/|k|).

1 We note here that the notion of statistical significance is, obviously,

not relevant in this kind of simulation study because one can always

find ‘‘P \ 0.05’’ if the sample size is increased sufficiently.
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Gypsy moth as a case study

Basic biology

The gypsy moth, Lymantria dispar, is an excellent model

system for investigating space-time patterns in pest out-

breaks because this species has been the subject of a great

deal of research, and considerable information exists on its

population biology. While the gypsy moth is alien in North

America, having been introduced around 1869, it is also a

pest species in much of its native range in Europe and Asia

(Giese and Schneider 1979). Throughout the world, pop-

ulations are known to oscillate with either *5- or *10-

year population cycles (Williams and Liebhold 1995;

Johnson et al. 2006a).

As with most cyclic forest insects, the mechanisms that

cause gypsy moth population oscillations are not com-

pletely understood, but a lot is known. High-density

populations can be strongly influenced by density-depen-

dent epizootics that typically cause outbreak populations to

collapse. These epizootics are dominantly caused by two

pathogens: the Lymatria dispar nucleopolyhedrosis virus

(LdNPV) (Dwyer and Elkinton 1993) and the fungal

pathogen Entomophaga maimaiga (Hajek 1999). In some

cases, specialist parasitoids may also contribute to the

collapse (Williams et al. 1992). Low-density populations

are most strongly affected by generalist predators, espe-

cially small mammals (Bess 1961; Campbell and Sloan

1977; Elkinton et al. 1996; Jones et al. 1998). Though voles

are known to prey on gypsy moths, most predation is

typically caused by the deer mouse and its congeners,

Peromyscus spp. (Smith 1981). Predation by small mam-

mals is generally the largest source of mortality in low-

density populations, but gypsy moths represent a small

proportion of the diet of these predators, and there is

apparently no numerical response to gypsy moth densities

(Elkinton et al. 2004; Schauber et al. 2004). Changes in

low-density gypsy moth populations are inversely corre-

lated with small mammal densities (Elkinton et al. 1996;

Grushecky et al. 1998).

Despite high levels of strongly density-dependent dis-

ease mortality, there is little evidence that the pathogens

alone are capable of producing the observed gypsy moth

population cycles (Dwyer et al. 2004). Parasitism alone is

also unlikely to generate the cycles because rates of para-

sitism by specialist parasitoids are generally low and

parasitism rates do not tend to closely track changes in

population density (Elkinton and Liebhold 1990; Ferguson

et al. 1994). Recently, Dwyer et al. (2004) proposed a

model that showed that the combined effect of LdNPV and

predation by small mammals is capable of generating

10-year cycles. This model quantifies the relatively robust

hypothesis that has been advanced by several research

groups (Elkinton et al. 1996; Jones et al. 1998; Liebhold

et al. 2000).

Another convenient aspect of the North American gypsy

moth as a model system is that the moths are not very

mobile. Adult females are incapable of flight and conse-

quently oviposit within meters of where they fed as larvae

(Lance et al. 1987). Hence, passive windborne movement

of ballooning first instars is the primary mode of dispersal

(Mason and McManus 1981). This means that gypsy moth

dispersal is likely to be a relatively unimportant contributor

to observed patterns of synchrony. A further consequence

of this low mobility is that the invasion of North America

has occurred over an extended period of time, during which

massive amounts of data have been collected. The gypsy

moth was accidentally introduced near Boston around 1869

and has been spreading at a very slow rate of 3–25 km/year

since 1900 (Liebhold et al. 1992; Tobin and Whitmire

2005). Gypsy moth spread is dominated by a ‘‘stratified

diffusion’’ process in which occasional long-distance dis-

persal occurs through the accidental movement of life

stages coupled with continuous short-distance windborne

dispersal of first instars (Sharov and Liebhold 1998). The

result is a pattern in which isolated populations are founded

ahead of the expanding population front. These colonies

slowly expand and ultimately coalesce with the continu-

ously expanding population. Moreover, because of strong

Allee effects (Tobin et al. 2007), invasions tend to occur in

a pulsed fashion (Johnson et al. 2006b).

Empirical patterns: initial asynchrony and rapid

synchronization

In order to investigate the synchronization of populations

following invasion, we analyzed time series of gypsy moth

populations that became established along the expanding

population front at various times during the particularly

data-rich recent period (post-1975) for which annual

defoliation maps exist. Our first step in generating these

time series was to delineate geographical areas in a GIS

according to their invasion history, based upon county-

level quarantine records (Fig. 2). These data record the

year that each county was designated as quarantined (based

upon establishment of gypsy moth populations) by the US

Department of Agriculture (USDA) and recorded in the US

Code of Federal Regulations, Title 7, Chapter III, Sect.

301.45–3. We subsequently grouped counties into those

invaded prior to 1975 vs. those invaded in subsequent

5-year periods (1980–1984, 1985–1989, 1990–1994, 1995–

1999, 2000–2004) and thereby delineated five regions,

identified here as ‘‘invasion cohorts’’ (Fig. 2). No counties

were quarantined between 1975 and 1979. Our dataset,

therefore, consists of five invasion cohorts. Because spatial

synchrony approaches zero among gypsy moth populations
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separated by[800 km (Peltonen et al. 2002), we excluded

the data from the distantly located counties in Michigan,

western Ohio, Illinois, Indiana and Wisconsin.

The second step was to generate defoliation time series

for each invasion cohort by extracting annual levels of

defoliation. Historical maps of gypsy moth defoliation

were compiled from aerial surveys from 1974 to 2005 and

digitized as a raster layer (2 9 2 km) in a GIS (Liebhold

et al. 1997). Time series were compiled by summing the

total area defoliated annually in each invasion cohort. The

use of defoliation data as a proxy for abundance is obvi-

ously prone to significant measurement error. Particularly,

this proxy is insensitive at low gypsy moth densities.

However, there are numerous previous studies that docu-

ment a statistical association between gypsy moth density

(measured by counts of egg masses per hectare) and

defoliation both in time and space (reviewed in Johnson

et al. 2006a). Similarly, an aggregate time series was

compiled for the area where the gypsy moth was already

established by 1975 (Fig. 3). We call the latter the ‘‘great

attractor.’’ The overall propensity for outbreaks every

10 years (with a tendency towards a subdominant 5-year

super-harmonic) is readily visible in the aggregate time

series (see Johnson et al. 2006a for a detailed analysis of

this cyclicity).

0 250 500 Km

Quarantine year

1900 - 1979

1980 - 1984

1985 - 1989

1990 - 1994

1995 - 1999

2000 - 2005

Fig. 2 Gypsy moth range according to their invasion history based on historical county-level quarantine records
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fo

lia
tio

n

Fig. 3 Aggregate defoliation time series as a proportion of total area

for the region where the gypsy moth was established prior to 1975 but

excluding counties in Michigan, western Ohio, Illinois, Indiana, and

Wisconsin
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To estimate synchrony and changes in synchrony

through time, we subsequently calculated the correlation

between the time series from each invasion cohort with the

‘‘great attractor’’ using a moving 10-year window. We

characterize the synchronization process by investigating

how this moving-window correlation changes as a function

of time since initial invasion (measured by the date of

quarantine). To quantify the background level of synchrony

within the area invaded prior to 1975, we also undertook

the same moving-window analysis for all 5-year quarantine

cohorts colonized between 1900 and 1970. So as not to bias

the estimate of synchrony for these earlier cohorts, we

calculated these correlations against aggregate time series

from which the cohort in focus had been removed.

Overall there was a high level of outbreak synchrony

among populations within the established range. The aver-

age correlation between each 5-year cohort and the great

attractor (with that particular cohort removed) was 0.81

[interquartile range (IQR): 0.76–0.93] (Fig. 4). In contrast,

among the 1975–2004 invasion cohorts, gypsy moth out-

breaks immediately following invasion tended to be out of

sync (or even somewhat ‘‘anti-synchronous’’) with region-

alized outbreaks in the established range (Fig. 4). For

example, the initial correlations between the 1985 and 1995

cohorts and the great attractor were –0.04 and -0.27,

respectively. Remarkably, despite the initial asynchrony, all

new populations appear to lock on to the regional great

attractor within about 10–15 years (Fig. 4). A smooth-spline

fit of correlation against time-since-quarantine reached the

regional average by year 11 post-invasion (for which the 10-

year moving-window is centered on year 16). A sensitivity

analysis of our results relative to the moving-window width

showed that our results are robust to the size of the moving

window. For example when we use a 15-year window, the

average correlation within the established range is then 0.80

(IQR: 0.79–0.93), and the initial correlation of the 1985

cohort is 0.06. The time series for the 1995 cohort is too short

to provide an estimate.

The initial anti-synchrony of newly established gypsy

moth populations may at first glance seem curious. Initial

asynchrony might be anticipated in newly founded popu-

lations because disruptive mechanisms such as

demographic stochasticity are likely to play an important

role in new and small populations. There is little reason

why such stochasticities should lead to anti-synchrony. In

the case of the gypsy moth, however, there is a strong Allee

effect (Tobin et al. 2007) that only allows invasion pulses

to occur when the donor populations surpass a donor

threshold density (Johnson et al. 2006b). Nascent popula-

tions, therefore, are usually seeded to start growing when

the donor populations within the established range are

abundant and, as a consequence, about to crash (Johnson

et al. 2006b). It remains to be determined whether initial

anti-synchrony is prevalent in other invasive species that

are influenced by strong Allee effects.

Discussion

Outbreaking forest insects are pests for two reasons. First is

their ability to reach ‘‘outbreak’’ densities. This is a property

that has received in-depth attention throughout the history

of ecology. Second is the geographic synchrony of their

population peaks. This spatial synchrony dilutes the regu-

lating effects of natural enemies, reduces the landscape’s

capacity for ecological buffering, exacerbates the economic

burden on individual stakeholders, and overwhelms the

budgetary and logistical abilities of agencies. Synchroni-

zation of dynamics is therefore a key determinant of the

ecological and economic impacts of forest defoliating

insects. A principal cause of the difficulty in deducing the

causes of synchrony is that most forest insect populations

are already synchronized and thus the actual process of

synchronization can rarely be observed. We propose that

studying synchronization across invasion fronts offers

unique opportunities for understanding spatial synchrony.
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Using Moran’s theorem for population synchrony as a

starting point, we studied the second-order log-linear

(autoregressive) model—as it is commonly used both in the

study of population synchrony (e.g., Moran 1953a; Roy-

ama 1992) and gypsy moth outbreak dynamics (e.g.,

Peltonen et al. 2002; Liebhold et al. 2006)—to investigate

determinants of the time to synchronization in populations

that are coupled by regionalized stochasticity. Generally,

we found the time to synchronization to be a function of the

overall strength of regulation, the strength of delayed

density dependence, and/or the system relaxation time.

While the environmental correlation is the crucial deter-

minant of the asymptotic synchrony (cf. Moran’s theorem),

this parameter did not appear to influence the transient

process of time to synchronization, nor did the cycle per-

iod. One particularly important finding is that the time to

synchronization can be very long for populations that have

strong delayed density dependence. This is interesting

because strong delayed density dependence is usually

important in cyclically outbreaking species. A corollary is

that we may expect some invading outbreak pests to be less

devastating during the early phase of an invasion. Such

effect has previously been suggested to occur because of

Allee effects (Johnson et al. 2006b). Here we suggest it

may also come about because of slow rates of synchroni-

zation during the initial ecological transience.

In the case study of the gypsy moth, the rate of syn-

chronization is very fast. While we have no conclusive

explanation for this rapid synchronization, we feel it useful

to speculate on the extent to which it is consistent with the

standard yardstick in spatial ecology, Moran’s theorem. To

do this we focus on the part of the parameter space that has

a statistical period of 8–10 years (Fig. 5a) and assume 80%

correlation in the environment.

Note that while there is a substantial wedge in the

parameter space that has a dominant 8- to 10-year period,

the strength of the periodicity varies greatly across this

region (Fig. 5b). When the delayed density dependence

(a2) is strong and negative, the periodicity is clear. How-

ever, while there are {a1, a2} parameter combinations

closer to the origin that have a dominant periodicity in the

8–10 year range, the statistical periodicity is weak. In fact

close to the origin there are parameters that give a damping

period, T, of 8–10 generations (open circles in Fig. 5a), yet

their corresponding power spectra (Eq. 4) do not have a

discernible interior mode (dashed lines in Fig. 5b). While

autoregressive model fitting of gypsy moth defoliation time

series often yields parameter estimates close to the origin

(see for example Liebhold et al. 2006), the theoretical

power spectra for these parameters are not easily recon-

ciled with observed spectra (Fig. 5b, see also Johnson et al.

2006a).2
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Fig. 5 a Sample parameters that correspond to dampening periods

with an 8- to 10-year periodicity. Filled circles represent parameters

for which stochastic dynamics are clearly cyclic, open circles
represent parameters for which dynamics are only weakly cyclic

(see b). b Theoretical power spectra calculated from Eq. 4. Solid lines
correspond to parameters for which stochastic dynamics are clearly

cyclic (filled circles in a). Dashed lines correspond to parameters for

which stochastic dynamics are weakly cyclic (open circles in a). The

circles represent the scaled power spectrum of the observed regional

defoliation time series (Fig. 3). c Correlation as a function of time

using a 10-year moving window. The shaded region corresponds to

the 10- to 15-year time to synchronization seen in the empirical data

(see Fig. 4). The horizontal line represents the expected asymptotic

correlation (q) for these simulations. The arrows in the figures orient

how movements in parameter space (a) translate into changes in

theoretical power spectra (b) and time to synchronization (c)

2 This may be a case where the inevitable observation errors in the

binary gypsy moth defoliation time series is biasing the autoregres-

sive estimates of direct and delayed density dependence (Dennis and

Taper 1994; Solow 1995). More elaborate state-space methods that

explicitly model the observational process may be needed to correct

for any such bias (e.g., de Valpine 2002; Clark and Bjørnstad 2004).
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Figure 5c shows the transient patterns of synchroniza-

tion for a range of parameters relevant to the gypsy moth 8-

to 10-year cycle. As can be seen, synchronization can be

very rapid, but only for very weakly periodic populations.

In contrast, models that exhibit the degree of periodicity

seen in the gypsy moth—a scaled version of the power

spectrum of the great attractor time series is superimposed

on the AR2 spectra in Fig. 5b—generally take much longer

to synchronize, typically as much as 30–40 years but up to

100 years in the most extreme case. Thus, the synchroni-

zation seen in the gypsy moth along the invasion front

seems to be much faster than predicted from the second-

order log-linear model.

We can only speculate on the ecological mechanism that

may account for the rapid synchronization in the gypsy

moth. Our historical data seem to suggest that there is a

very strong penalty for being out of synch. A possible

culprit may be the guild of natural enemies. Liebhold and

Elkinton (1989) and Gould et al. (1990) attempted to

experimentally initiate gypsy moth outbreaks within the

established North American range and found that such

populations quickly collapsed because of enhanced para-

sitoid attack rates. Aggregative responses of more-or-less

mobile natural enemies may therefore be disproportion-

ately penalizing growth in populations that are out of

synch. One additional area to explore in the future is

whether the speed of synchronization may be molded by

nonlinearities. Previous theoretical studies have shown that

nonlinearities can greatly affect the asymptotic synchrony

relative to that expected from Moran’s theorem (Grenfell

et al. 1998; Bjørnstad 2000; Royama 2005). This may be of

broad relevance to outbreaking forest insects because many

of them exhibit population cycles (Myers 1988; Liebhold

et al. 2000; Berryman 2002). While there is often consid-

erable debate about the precise mechanisms responsible for

population cycles, there is general consensus that most

forest insect cycles result from trophic interactions that

often result in nonlinearities in dynamics (Kendall et al.

1999; Dwyer et al. 2004).

Gypsy moth outbreaks within the established range in

the USA are highly synchronized. With respect to mech-

anism, one plausible candidate to explain this is the indirect

influence of oak masting—intermittent but geographically

synchronized production of acorns by oak trees (Koenig

and Knops 2000; Liebhold et al. 2000, 2004b). The small

mammals that are important predators of gypsy moth

pupae, such as Peromyscus (Smith 1981), are strongly

influenced by the availability of acorns (Wolf 1996; Elias

et al. 2004). Synchronized oak mast will synchronize

rodent dynamics and pupal predation, and thereby provide

a functional vehicle for the Moran effect on gypsy moth

populations mediated by community interaction.

Inferring process from pattern is a challenging task, yet

one that has seen a lot of use and a fair degree of success in

ecology. One area where this approach is frequently used is

in spatial ecology, and particularly with reference to

whether the observed spatial synchrony can be accounted

for by regionalized environmental stochasticity. The

yardstick here is Moran’s theorem. However, as recently

pointed out by Abbott (2007), this approach is complicated

by the fact that similar patterns can result from very dif-

ferent models of how stochasticity affects dynamics. Also,

local nonlinearities and local movement can interact to

mimic patterns of synchrony predicted by Moran’s theorem

(Bjørnstad 2000). Moreover, geographical heterogeneities

in local dynamics will cloud the theoretically clear-cut

relation between synchrony-by-distance and climatic-cor-

relation-by-distance (Peltonen et al. 2002; Hugueny 2006;

Liebhold et al. 2006).

Here, we propose that an important way forward for

disentangling these complexities is to focus on the transient

process of synchronization rather than trying to match

synchrony-by-distance and climatic-correlation-by-dis-

tance within endemic regions. The study of transient

dynamics has recently been emphasized as an important

way to understand ecological dynamics in general (Has-

tings 2001), and our study adds to this call. We furthermore

advocate that it may be time to treat Moran’s theorem as a

null model against which one should seek to find evidence

of departure, rather than the prevailing tradition of treating

it as a research hypothesis for which one tries to find

support.
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