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CHAPTER 4

Integer Programming Methods
for Reserve Selection and Design

Robert G. Haight and Stephanie A. Snyder

4.1 Introduction
How many nature reserves should there be? Where
should they be located? Which places have high-
est priority for protection? Conservation biolo-
gists, economists, and operations researchers have
been developing quantitative methods to address
these questions since the 1980s. The first formu-
lations (Kirkpatrick 1983; Margules et al. 1988;
Chapters 3 and 19) focused on species protection
and efficiency - select the minimum number of
reserves from a list of candidate sites to represent
all species - and were solved using iterative heu-
ristics, which guarantee only an approximation of
the optimal solution (Chapter 5). Researchers later
formulated the problem as a 0-1 linear integer pro-
gramming (IP) model and found mathematically
proven optimal solutions using the branch and
bound (B&B) method available in commercial opti-
mization software (Saetersdal et al. 1993; Underhill
1994). The main advantage of formulating a reserve
selection problem as an IF model is the availability
of solution methods such as B&B that guarantee
finding the optimal solution. Researchers quickly
recognized this advantage and have formulated
reserve selection problems with a remarkable array
of objectives and constraints.

We review IP methods and formulations applied
to reserve selection and design. Because IP is a
branch of linear programming (LP), we begin with
a discussion LP models, assumptions, solution
methods, and linearization techniques (Section
4.2). Then, we use a fundamental reserve selection
model called the maximum species covering prob-
lem (MSCP) to discuss IF formulations and solution

methods (Section 4.3). In Section 4.4, we discuss
computational aspects of solving the MSCP. In Sec-
tions 4.5-4.8, we present a range of IP extensions ('
the MSCP (Table 4.1). We conclude with a discu'-
sion of the limitations of IF models and directions
for future work.

Throughout the chapter, we attach specific mean-
ing to the terms 'site', 'reserve', and 'reserve sys-
tem'. Following Williams et al. (2005a), a site is a
selection unit - a piece of land that may be selected
for protection. A site is usually undeveloped open
space belonging to one or more cover types, includ-
ing forest, grassland, pasture, or cropland. A reserve
is a single site or a contiguous cluster of sites that
has been selected for protection. A reserve system
or network is a set of multiple, spatially separated
reserves. We also distinguish reserve selection from
reserve design models. Reserve selection models
identify sites to protect to maximize some measure
of biological diversity (e.g. species richness) sub-
ject to a budget constraint with no consideration
given to the spatial attributes of the reserve system.
Reserve design problems use spatial attributes of
the reserve system as objectives.

Excellent reviews of IF models for reserve selec-
tion and design are available. Rodrigues and Gaston
(2002) provide a comprehensive list of published
studies that use IF formulations of reserve selec-
tion problems. ReVelle et al. (2002) discuss the rela-
tionship between IF reserve selection models and
their counterparts in the facility location literature.
Williams et al. (2005a) discuss spatial attributes of
reserve systems and how they can be incorporated
as objectives in IF reserve design models.
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Table 4.1 Reserve selection (A) and design problems (B) that have been formulated and solved using integer programming methods. Reserve
selection models identify sites to protect to maximize some measure of biological diversity (e.g. species richness) subject to a budget constraint
with no consideration given to the spatial attributes of the reserve system. Reserve design problems use spatial attributes of the reserve system as
objectives

Problem

A. Non-spatial reserve selection
problems

Maximum species covering
Bi-criteria reserve selection

Reserve selection with uncertain species
presence

Dynamic reserve selection with uncertain
site availability

B.Spatial reserve design problems
Reserve proximity
Reserve connectivity
Reserve compactness
Reserve core and buffer areas

Objective

Maximize number of species protected for a given budget
Maximize number of species protected and some other

conservation objective
Maximize expected number of species protected for a

given budget
Maximize expected number of species protected at end
of horizon

Reference

Church et al. (1996)
Church et al. (2000); Ruliffson et al,

(2003)
Carom et al. (2002); Arthur et al. (2004)

Haight et al. (2005)

Minimize sum of pairwise distances between reserves 	 Onal and Briers (2002)
Maximize number of adjacent reserves 	 Nalle et at (2002)
Minimize boundary length of reserves	 Fischer and Church (2003)
Maximize core area protected 	 Williams and ReVelle (1998)

4.2 Linear programming

Linear programming is a mathematical modelling
and optimization technique invented in the 1940s
(see Dantzig 1963). LP problems involve finding
values of decision variables to optimize a linear
objective function subject to linear equality and
inequality constraints. The related problem of IP
requires some or all of the variables to take inte-
ger values. LP and IP methods have proved valu-
able for modelling problems in planning, routing,
scheduling, assignment, and design in a wide range
of industries. An excellent guide to LP and IP prob-
lems, algorithms, textbooks and software is avail-
able online (Fourer 2000).

4.2.1 Land allocation problem

LP models have been used for decades in forest
management to allocate land to mutually exclusive
uses such as timber production and wildlife habitat
(see Hof and Bevers 1998 for review). We describe
a simple version of this problem to illustrate the
assumptions of LP models. Suppose a planner has
forest sites that can be used for timber production
or wildlife habitat and must allocate a proportion of

each site to each use. The planner knows the abun-
dance of each species in each site and the minimum
total abundance desired for each species across
sites. To put a cost on habitat protection, the plan-
ner uses the revenue of foregone timber production.
The land allocation problem is an LP model with
the following notation:
1, I = index and set of sites,
j, J= index and set of species,

a', = abundance of species] in site i,
c,=cost of allocating a unit of site i to wildlife
habitat,

= minimum desired abundance of species],
x= proportion of site i allocated to wildlife habitat,
z=objective function value.

The model is formulated as follows:

	

Minimize  =	 (4.1)

	7' 	 for all ]mJ	 (4.2)

	0!^x:^1	 for all im	 (4.3)

The objective is to minimize the cost of allocating
land to habitat (Equation 4.1) subject to a set of con-
straints requiring a minimum abundance of each
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species across sites (Equation 4.2) and restrictions
on the decision variables (Equation 4.3).

This land allocation problem illustrates three
properties of linear programmes: proportional-
ity, additivity, and continuity. The proportionality
assumption states that if it costs ç units to protect
all of site i (i.e. x , = 1), then it costs cx to protect a
proportion x. of site i. Likewise, if a units of spe-
cies j are produced by protecting all of site i, then
ax units of species j are produced by protecting a
proportion x of site i. The proportionality assump-
tion implies constant returns to scale (e.g. the unit
cost of protecting a proportion of site i, c, does not
depend on the proportion of site i protected, x). The
add itivity assumption states that the total contribu-
tion of all variables equals the sum of the individ-
ual variable contributions regardless of the values
of the variables. The additivity assumption implies
that the objective function is separable in the vari-
ables: z(x i ,..., x,) is separable in variables x 1 ,..., x,,
if z can be written as a sum of n functions each of
which involves only one variable in the model (i.e.
z = 1z 1 (x 1 ) +...+ z(x)I, where z.(x) is the contribu-
tion of the variable x, to the objective function). The
third assumption is continuity of the variables: each
variable can take on all real values in its allowed
range. In the optimization problem above, the deci-
sion variable for the proportion of each site pro-
tected, x, can take on any real value between 0 and
1 (Equation 4.3).

4.2.2 Solving LP problems

The importance of LP problems derives from
the existence of general purpose (independ-
ent of the problem being solved) and computa-
tionally effective (able to solve large problems)
solution algorithms. LP problems having tens or
hundreds of thousands of continuous variables
are regularly solved on Pentium-based personal
computers or Unix workstations. Two families
of solution algorithms are in wide use: the sim-
plex algorithm introduced in the 1940s (Dantzig
1963) and interior point methods introduced in
the 1980s (Kamarkar 1984). Both visit a progres-
sively improving series of trial solutions until a
solution is reached that satisfies the mathemati-
cal conditions for optimality.

LP software comes in two related but different
kinds of packages. The first, algorithmic codes,
finds and lists optimal solutions to specified LP
problems. The second, modelling systems, helps
people solve LP problems by taking a description
of an LP problem in a straightforward, logical for-
mat, converting the model to a form required by
the algorithmic code, and displaying the results of
the optimal solution. Modelling systems include
programming languages that allow users to specify
models in concise algebraic statements (e.g. Gen-
eralized Algebraic Modelling System, GAMS) and
spreadsheets in which models are represented as
systems of linear equations (e.g. Microsoft Excel).
Most modelling systems support a variety of algo-
rithmic codes, while the more popular codes can be
used with many different modelling systems. The
Institute for Operations Research and the Man-
agement Sciences (INFORMS) regularly publishes
surveys of commercial modelling systems and
algorithmic codes, including both LP and IP solvers
(Fourer 2007).

4.2.3 Linear approximations of non-linear
optimization problems

While LP problems are easy to solve, many real-life
problems are better expressed with non-linear equa-
tions and inequalities that violate the proportional-
ity and additivity assumptions. It may be possible
to approximate the non-linear parts of the problem
with linear approximations that satisfy the additiv-
ity and proportionality assumptions and then use
LP to solve the approximation. For example, sup-
pose the unit cost of site protection c in the land
allocation model above does not vary by site so the
objective function (Equation 4.1) is z=c(x 1 +. . . + x)
where a is the number of sites. Further, suppose
unit cost c increases as a linear function of the total
amount of protected land, c = b(x 1 +. . . + x), where
b is the slope of the unit cost function. Then, the
objective function is z=b(x1 +...+ x, )(x 1 +...+

which violates both additivity and proportionality
assumptions. We can address the additivity viola-
tion by defining anew variable y = +...+ x,, which
is a linear function of the decision variables, and
writing the objective z=by2. While this objective is
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separable in the variables (it has only one variable!),
it still violates the proportionality assumption. The
violation of the proportionality assumption can be
addressed with a piecewise linear approximation.
First, divide the total amount of protected land, y,
into a set of cost classes, K, ordered from lowest cost
to highest cost, where Ck is the unit cost of protecting
an amount of land in class k and c 1 <c2 <Ck. Each Ck is
a linear approximation of the slope of the total cost
curve by' in the kth interval of y. Further, define Yk
as a decision variable for the total amount of land
selected for protection in cost class k and d  be the
upper bound on the amount available in class k,

so that 0 <Yk < dk . Then, we can formulate the fol-
lowing linear approximation of the non-linear land
allocation problem:

Minimize z =>Ckyk	 (4.4)
kEK

Yk=X	 (4.5)

	

^! T,for all  EJ	 (4.6)

0:^x!^1	 for all iEI	 (4.7)

O_< Yk _< dk 	 for all kcK	 (4.8)

The non-linear objective function z = by2 is replaced
by a piecewise linear approximation (Equation 4.4),
and Equations 4.5 and 4.8 define conditions for the
decision variables Yk If the model selects any land
for protection, the model will select land with the
lowest unit cost first. As a result, for any k, if Yk> 0,
then y, = d, for all t <k and Equation 4.4 is piecewise
linear. The major disadvantage of formulating a
linear approximation of a non-linear problem is the
considerable increase in the number of variables
and constraints. Nevertheless, linear approxima-
tions of non-linear site selection models have been
formulated with thousands of decision variables
and successfully solved using LP software (e.g. Hof
and Raphael 1997; Arthur et al. 2004).

4.3 Integer programming
Integer programming methods are used to solve
linear optimization problems in which one or

more of the variables are restricted to be inte-
gers. Zero—one or binary IP problems restrict
their integer variables to be 0 or 1. Many reserve
selection and design problems are formulated as
binary IP problems because site selection deci-
sions are binary and the logic of the conservation
objective can be modelled with binary variables.
To illustrate a 0-1 IF problem, we present the
maximum species covering problem, one of the
first of many reserve selection and design prob-
lems formulated in the conservation biology
literature.

4.3.1 Maximum species covering problem

Suppose a planner has identified a set of poten-
tial reserve sites and the cost of protecting each
site. The planner only knows whether or not each
species is present in each site and does not have
information on its abundance. Further, the plan-
ner must decide whether or not to protect each
site in total and cannot protect a portion of the
site. This restriction fits the common situation
in which sites are indivisible ownerships. The
MSCP identifies the sites to protect to maximize
the number of species represented - where a spe-
cies is represented if it is present in at least one
protected site - subject to a budget constraint
(Church et al. 1996). The MSCP is analogous to
the maximum covering location problem in the
location science literature (Church and ReVelle
1974; ReVelle et al. 2002), and it provides sets of
sites that efficiently achieve conservation goals
and trade-offs between conservation goals. The
MSCP is a binary IF problem with the following
notation:
i, I = index and set of potential reserve sites,
j, I = index and set of species in need of protection,
a ,.,. = 0-1 parameter: 1 if species j is present in site i,
0 otherwise,
B = upper bound on budget,
C 1. = cost of protecting site i,

x. = 0-1 variable: 1 if site i is selected for protection,
0 otherwise,
Y] = 0-1 variable: 1 if species j is represented in at
least one protected site, 0 otherwise,
z = objective function value.
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The model is formulated as follows:

Maximize  = I y1

for all j c j	 (4.10)

< B	
(4.11)

x,y 1 ei0,1l	 for all icl and jeJ	 (4.12)

The objective (Equation 4.9) is to maximize the number
of species that are represented or covered in the set
of selected sites. Equation 4.10 enforces the logic of
covering: a species is covered (y, =1) if at least one
site that contains the species is selected for protection.
Equation 4.11 is the budget constraint. Equation 4.12
describes the integer restrictions on the variables.

Note that the same IP model structure could
include species abundance data rather than pres-
ence—absence data. In this case, the abundance
parameter a , would be added to the objective func-
tion (Equation 4.9) to maximize the total abundance
of species contained in the selected set of sites:

Maximize z =

Note also that the MSCP problem is written in
terms of maximizing species coverage subject to a
budget constraint. This budget-constrained formu-
lation fits a common situation in which resources for
site protection are limited and the decision-maker
wants to allocate resources to optimize a conser-
vation objective. Solving the problem for a given
budget B allows the determination of an efficient
set of sites, where efficiency means that there are
no other sets of sites that provide a higher level of
species coverage and stay within the budget. Solv-
ing the problem with increasing budgets allows
construction of a cost curve, which shows the cost
of increasing the number of species covered. Box
4.1 describes an application of the MSCP in Lake
County, Illinois, USA, where planners want to
determine the impact of budget restrictions on effi-
cient sets of sites for species protection in the face of
urban development.

4.3.2 Solving lP problems

The integer requirements on the decision variables
make IP problems difficult to solve. In contrast to
LP problems, there are no general-purpose and

Box 4.1

We describe an application of the maximal
species covering problem (Equations 4.9-4.12)
in a case study in the Lake County portion of
the Fox River watershed north-west of the city
of Chicago (Figure 4.1). In response to rapid
population growth and conversion of open space
to housing and commercial development, Lake
County planners want to acquire land to protect
rare animals and plants and provide equitable
access to recreation. To help planners identify
cost-effective sets of sites, we solved an MSCP
and analysed the cost of increasing the number of
species covered.

The analysis is conducted using data for 31
privately owned open-space sites (see Haight
et al. 2005 for details). The sites vary in size from
1 t 313 ha, with median of 29 ha. Each site is
described by a list of rare plants and animals
present. Collectively, 27 rare species occur in the

31 sites, and species richness of individual sites
varies from 1 to 9 species. We used areas of sites
as proxies for site costs and assumed that the
planner has an area budget for selecting sites.

We determined the optimal sets of sites to
protect for area budgets ranging from 1 to
618 ha and plot the cost curve in Figure 4.2.
Each point represents a cost-effective set of sites
for a given budget. The slope of the cost curve
is the marginal cost of species protection - the
area required to protect an additional species.
Marginal cost is small (4 ha/species) as coverage
increases from 5 to 20 species, moderate (34ha/
species) in the range of 20 to 25 species, and
large (195 ha/species) for levels of species
coverage greater than 25.

As the budget increases, the optimal set of sites
is not always found by adding another site to the
previously selected set. For example, to increase

continues E
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Box 4.1 continued

N

0	 20	 40 Kilometres	 /'\

Figure 4.1 Fox River watershed (shaded grey) in counties of north-eastern Illinois, USA. The study area (shaded black)

is the north-eastern portion of the watershed located in Lake County, Illinois, USA.

coverage from 20 to 22 species, one site can be
added to the list of protected sites (Table 4.2).
However, increasing species coverage above 22
species involves dropping one site and adding
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Figure 4.2 Cost curve showing'area protected versus number
of species covered for the site selection options in the Fox River
watershed of Lake County, Illinois, USA.

Table 4.2 Optimal sets of sites selected for protection under
increasing area budgets in the Fox River watershed of Lake County,
Illinois, USA

Objective	 Site numbers selected for protection

values

Species Area 3 7 8 14 15 17 18 20 21 22 23 30
(ha)

20	 59	 X X X	 X 	 X	 X

22	 123 X X X X	 X X	 X	 X

25	 228 X X X	 X X X X X	 X

27	 618 X X X	 X 	 X X X X

up to four others. There is consistency in sites
selected for protection. Six sites are selected
whenever the budget is greater than 50 ha, These
sites are small (<16ha), have higher numbers of
species per hectare, and contain endemics.
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computationally effective algorithms for solving IP
problems. Solution methods for IP problems can be
categorized as 'optimal' and 'heuristic'. An optimal
algorithm is one that mathematically guarantees
finding the optimal solution while a heuristic is an
algorithm that should find a feasible solution which,
in objective function terms, is close to the optimal
solution. The choice between using an optimal or
heuristic algorithm depends in part on whether
the problem size is beyond the computational limit
of the optimal algorithm and whether the analyst
wants to spend the effort needed to solve the prob-
lem optimally.

The most effective optimal algorithm for IP
problems is LP-based branch and bound (B&B).
The algorithm proceeds by solving a sequence of
LP problems using either efficient simplex method
or interior-point method until a mathematically
proven optimal solution to the IF is found. The
B&B algorithm begins by solving a 'relaxed' LP
version of the problem, ignoring the binary inte-
ger restrictions on the decision variables. If this
relaxed solution is all-integer, then it is the opti-
mal solution and the algorithm terminates. If the
relaxed solution contains one or more binary vari-
ables with fractional values, the problem is itera-
tively branched into sub-problems. Branching is
done by picking one of the binary variables with
fractional value in the preceding solution. Two
new sub-problems are created by setting this vari-
able to 1 and 0, respectively, and the remaining
binary variables are allowed to have continuous
values between 0 and 1. In this manner, each sub-
problem is solved as a linear programme. This
sequence of creating sub-problems and solving
linear programmes is continued until either an
integer solution is found for each sub-problem
branch or the relaxation causes the sub-problem
to become infeasible. An exhaustive search of all
of the sub-problems can be prohibitive because 2
problems must be solved when there are n binary
variables. To reduce the number of sub-problems,
the B&B algorithm employs a 'bounding' feature,
which computes a bound on the optimum solu-
tion at each step. If the solution to a sub-problem
is worse than the best integer solution previously
found, then that sub-problem is discarded, thereby
reducing the search space. Most commercial

modelling packages contain B&B algorithms
(Fourer 2007).

4.4 Computational aspects of IP models

The computer time required to solve any particu-
lar IP problem is hard to predict. Problems with a
hundred variables can be challenging, while others
with tens of thousands of variables solve readily.
Examples of the MSCP with hundreds or thousands
of 0-1 decision variables have been solved using
B&B software in one to several minutes (Church
et al. 1996; Rodrigues and Gaston 2002; Snyder
et al. 2004a); however, reserve design problems with
spatial objectives may take much longer to solve. In
this section, we offer tips to explore when solving
the MSCP with B&B.

4.4.1 Formulation tips

Camm et al. (1996) recommend carefully pre-
processing MSCP datasets to reduce problem size
prior to attempting solution with B&B. Specifically,
they suggest removing any eligible site from con-
sideration if it contains all the same species or a
subset of the species of another site that costs less.
Similarly, if two species are found in the same set of
eligible sites, then only one of the species needs to
be included.

As recognized by Camm et al. (1996) and Church
et al. (1996), the species coverage variables, y, need
not be explicitly defined as binary decision vari-
ables. The structure of the MSCP and the binary site
selection variables, x1, will automatically produce
integer values for the coverage variables when
solved via B&B. As a result, the coverage variables
can be defined as non-negative variables with an
upper bound of 1. This reduction in the number of
integer variables may provide computational sav-
ings because the solution difficulty of integer pro-
grammes is often significantly influenced by the
number of integer variables.

A mathematically equivalent specification of the
MSCP can be formulated based upon a 'minimal
uncovering' model, which may have some com-
putational advantage (Church and ReVelle 1974;
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Church et al. 1996; Arthur et al. 1997; Snyder et al.
2004n). In the uncovering formulation, each deci-
sion variable for species coverage is 0 if the spe-
cies is represented in at least one site and I if the
species is unrepresented. The objective of this new
formulation is to minimize the number of unrepre-
sented species. As a result, the uncoverage variables
can be declared non-negative (rather than integer)
variables. This lack of a required upper bound may
make the minimal uncovering version of the MSCP
more computationally efficient than the equivalent
maximal covering version.

4.4.2 Solver settings - optimality gap

The B&B algorithm provides, for each feasible
solution obtained, a provable upper bound on its
distance from optimality. Each time a sub-prob-
lem is solved, the algorithm calculates the abso-
lute and percent deviation between the objective
function value of the current best feasible integer
solution and the current upper bound on the opti-
mal objective function value. Based on this devia-
tion, the analyst can specify an optimality gap'
that functions as a termination criterion (McDill
and Braze 2001; Onal 2003; Snyder et al. 2004a).
For example, to ensure that the optimal solution
is found, the analyst would set the optimality gap
equal to 0. Then, all sub-problem branches will
be explored as long as a non-0 difference exists
between the best current solution and the cur-
rent upper bound. When the problem takes too
long to solve to optimality, an analyst can set the
optimality gap to a non-0 value (e.g. 1 %), which
reduces problem size and hastens algorithm ter-
mination. However, allowing a non-0 optimality
gap also allows for the possibility of a suboptimal
solution. Thus, one must be judicious in setting
the optimality gap because better solutions could
be missed by allowing the algorithm to terminate
before reaching optimality.

An important feature of the MSCP allows the
absolute optimality gap to be just less than I while
still guaranteeing that the optimal solution will be
found (Onal 2003). Because the objective function of
the MSCP can only take integer values (e.g. number
of species covered), no improvement in the objec-
tive function value is possible when the absolute

optimality gap is below I. Then, the current integer
solution is optimal and the algorithm can termi-
nate. This is an important feature of the MSCP that
should be exploited when using B&B. If the objec-
tive function includes non-binary coefficients on the
decision variables (e.g. weights for species impor-
tance or rarity), then optimality gaps less than one
no longer guarantee optimal solutions.

4.5 Bi-criteria reserve selection problem

While the MSCP has traditionally focused on the
single objective of maximizing species representa-
tion, additional objectives can be considered in bi-
criteria formulations, including spatial attributes of
the reserve systems (e.g. Rothley 1999; Cerdeira et
al. 2005; Onal and Briers 2005, 2006; Alagador and
Cerdeira 2007), total habitat area (Snyder et al. 2004ii),
habitat quality (Church et al. 2000), and public access
or proximity (Ruliffson et al. 2003; Haight et al. 2005).
Cohon (1978) provides a comprehensive discussion of
multi-objective programming theories and methods.
While solution of a single objective problem yields an
optimal solution, solution of a multi-objective model
yields a set of solutions that are termed non-domi-
nated or non-inferior. A non-inferior solution is one in
which no other feasible solution exists to the problem
that will lead to an increase in the value of one objec-
tive without simultaneously causing a degradation in
the value of another. The choice of a preferred solu-
tion from the set of non-inferior solutions depends on
the preferences of a decision-maker.

To illustrate a bi-criteria problem, we extend the
MSCP to handle a second objective of maximiz-
ing the number of people with access to reserves
(Ruliffson et al. 2003). We assume that people in a
town have access if one or more reserves are within
a required distance of the town. The data for each
town include its population and a list of sites that
are within the required distance. In addition to the
notation of the MSCP, the bi-criteria site selection
model has the following notation:
k, K= index and set of towns,
Q 1 = number of species represented in the protected
sites,

Q2= number of people with access to protected sites,
rk= number of people in town k,

M, = set of sites that contain species j,
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Nk set of sites that are within the required distance
of town k,

Zk =Ol variable: I if town k has at least one pro-
tected site within the required distance,
o otherwise.

The model is formulated as follows:

Maximize Q1 =	 (4.13)

Maximize Q, = I rZ	 (4.14)

	

K, ^!Z	 for all k E K	 (4.15)

for all j J	 (4.16)

c,x 	 B	 (4.17)

x,y/ ,zk eO,11	 for all id, jdJ,kEK (4.18)

The problem has two objective functions: maxi-
mize the number of species represented in pro-
tected sites (Equation 4.13) and maximize the
number of people with access to protected sites
(Equation 4.14). Public access is the number of
towns with access weighted by population size, r.
Equation 4.15 is the condition under which town k
has access (i.e. Zk= 1): at least one site that is within
the required distance of town k must be selected
for protection. Equations 4.16-4.18 define species
coverage, the budget constraint, and the integer
restrictions on the variables.

One approach to solving a bi-criteria optimiza-
tion problem is the weighting method, which cre-
ates a single objective function as a weighted sum
of the two objectives. In our case, the problem is
to maximize the weighted sum, wQ 1 + (1-w) Q2,
where 0 w 1. The value of the weight, w, is sys-
tematically varied between 0 and 1, and the prob-
lem re-solved many times to produce an estimate
of the non-inferior set of solutions. The weight w

represents the decision-maker's position on the rel-
ative importance of the two objectives.

The constraint method is another approach to
solving bi-criteria problems in which one of the
objectives is transformed into a constraint. For
example, the bi-criteria problem above could be

solved by optimizing the species' representation
objective (QI) subject to a constraint requiring the
total number of people with access to protected
sites to be greater than, or equal to, some specified
threshold:

tZk ^!T	 (4.19)

The value of the parameter T would then be system-
atically varied and the problem resolved to yield an
estimate of the non-inferior set of solutions.

While both solution methods are effective means
of transforming a bi-criteria problem into a problem
with a single objective function and generating an
estimate of the non-inferior set of solutions, there
are some potential computational differences. As
ReVelle (1993) suggests and Snyder et al. (2004a)
illustrate, an MSCP model with a constraint in
which the coefficients are not 0 or 1 (e.g. Equation
4.19) is not likely to be integer-friendly (i.e. a struc-
ture that is amenable to integer solutions) nor solve
quickly to optimality. In such cases, including the
constraint as an objective in a bi-criteria optimiza-
tion formulation using the weighting method might
be computationally more efficient. A computational
issue known as gap points, however, can arise when
the weighting method is applied to integer models
(Cohon 1978). Gap points are non-inferior solutions
to a multi-objective integer model that cannot he
found using the weighting method because they
are located within the interior of the convex hull
of the trade-off curve formed by the non-gap solu-
tions. These solution points can be found, however,
through the use of the constraint method.

For these computational reasons, analysts
use both the weighting method and constraint
method. The weighting method is used to quickly
generate an estimate of the non-inferior set of
solutions. Then, if an analyst wanted to hone in
on a particular segment of the curve, the con-
straint method is used to explore small ranges of
the curve that the weighting method might miss
as a result of gap points. Box 4.2 illustrates the
bi-criteria site selection problem (Equations 4.13-
4.18) with results from an application to lake
County, Illinois, USA.
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Box 4.2

We used the bi-criteria site selection model
(Equations 4.13-4.18) to analyse how the optimal
set of protected sites in Lake County, Illinois, USA,
varies as we trade off species representation and
public access under different budgets. There are 34
towns in western Lake County. Based on the 2000
U.S. Census, the towns collectively held 222,000
people, and individual towns were home to from
1,000 to 30,000 people. We assume that people
in a town have access to a site if the site is within
3.2 km of the town, and we know the sites that
are within the required distance of each town. All
towns have at least one site within 3.2 km.

We used the multi-objective weighting method to
solve the bi-criteria problem. We computed optimal
sets of sites for problems in which the objective
function weight is decreased from 1.0 to 0.0 in
increments of 0.05 subject to area budgets of 81 and
200 ha. The curves showing the trade-offs between
species representation and public access have
concave shapes in which species representation drops
as public access increases (Figure 4.3). The points on
each curve represent non-dominated sets of sites and
their performance with respect to the two objectives
for a given budget. For each non-dominated set
of sites, improvement in one objective cannot be
achieved without simultaneously causing degradation
in the value of the other objective. As a result, the
points on each trade-off curve represent a frontier
beyond which no better solutions can be found.

Among the non-dominated solutions for a
given budget, the best depends on the decision-
maker's preference for the two objectives. If
species representation is most important and
the budget is 81 ha, the choice is alternative A,
in which species representation is 20 (74 % of
the maximum representation without a budget
constraint) and public access is 73,000 people
(33 % of the maximum accessibility). The dashed
horizontal line between the y-axis and point A
indicates that several solutions exist with the same
species representation as alternative A, but with
less public access. The highest level of public access
(point D, 91,000 people) is obtained with a 35 %
reduction in species representation. The dashed
vertical line from point D to the x-axis indicates
that several solutions exist with the same level of
public access as alternative D but with less species
representation. Increasing the budget from 81 ha to
200 ha shifts the trade-off curve up and to the right
while reducing the trade-off between objectives.

To complement the trade-off curves, we look at
the site selection decisions and identify core sites,
which are sites selected for protection regardless of
the weights given to the objective functions. With a
budget of 81 ha, three core sites are protected in all
four solutions (Table 4.3). With a budget of 200 ha,
there are four additional core sites. The core sites
are typically small (<30 ha) and have relatively large
numbers of species and people with access.

Figure 4.3 Trade-offs between open-space protection objectives of maximizing species coverage and maximizing public access under
different area budgets.
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Table 4.3 Objective function values and sites selected for protection for non-dominated solutions with area budgets of 81 ha
(solutions A, B, C, D) and 200 ha (solutions E, F, G) in the Fox River watershed of Lake County, Illinois, USA

Objective value	 Site numbers selected for protection 	 Area Protected

Solution	 Species	 People (lOCUs)	 3	 7	 8	 14	 15	 16	 17	 18	 19	 20	 21	 30	 (ha)
A	 20	 73	 X	 X	 X	 X	 X	 X	 X	 73
B	 18	 85	 X	 X 	 X 	 X	 75
C	 17	 88	 X	 X	 X	 X	 X	 X	 X	 X	 80
0	 13	 91	 X	 X	 X	 X	 X	 X	 81
E	 24	 85	 X	 X	 X	 X	 X	 X	 X	 X	 198
F	 23	 121	 X	 X 	 X	 X 	 X	 X	 X	 X	 196
G	 21	 124	 X	 X	 X	 X	 X	 X	 X	 X	 X	 193

4.6 Reserve selection with uncertain
species presence

In many cases, species presence in each site is not
known with certainty and expressed as a probability
of occurrence. The MSCP can be extended to handle
probabilities of occurrence and maximize the expected
number of species covered subject to a budget con-
straint. Let p 1 be the probability that speciesj is present
in site i where the probability of species presence is
independent of its occurrence in neighbouring sites.
This is an important assumption because it allows us
to write the probability that species j is not covered
in the sites selected for protection as a product of the
absence probabilities over all sites:

= [1 (1 -	 for all j J	 (4.20)

where x is the 0-1 decision variable for whether
or not site i is selected for protection. If occurrence
probabilities are not independent, then we would
have a much more complicated expression for V1

With the independence assumption, the problem
is to select sites to maximize the expected number
of species covered subject to a budget constraint:

and the model has been illustrated using probabilis-
tic occurrence data for 403 terrestrial vertebrates in
147 candidate sites in western Oregon, USA (Arthur
et al. 2004).

In some situations, the decision-maker may be con-
cerned about the likelihood that a subset of endan-
gered species is represented in the reserves. This
concern can be addressed by imposing additional
constraints for minimum coverage probabilities for
target species (Haight et al. 2000). Letting E be the set
of endangered species and be the minimum cover-
age probability for endangered species j (e.g. 0.95),
the minimum threshold coverage constraints are

1—v1 ^!h 1	 for all j€E	 (4.24)

Rearranging and taking the natural logarithm pro-
duces an equivalent set of linear constraints:

	

x1 ln(1 - p) ln(1 - h)	 for all j E E	 (4.25)

Arthur et al. (2004) added these constraints to the max-
imum expected species covering problem to estimate
the trade-offs between total species coverage and the
likelihood of endangered species representation.

Maximize: (1 - v)	 (4.21)

cx B	 (4.22)	 4.7 Dynamic reserve selection
With

X, E {0,1}	 for all i e 1	 (4.23) 	 uncertain site availability

The MSCP assumes that site selections are made all

	

A linear approximation of this non-linear problem	 at once and protection takes place rapidly before

	

can be solved using IP methods (Camm et al. 2002), 	 site degradation or loss. In practice, decisions are



54 SPATIAL CONSERVATION PRIORITIZATION

made sequentially with budget restrictions and
uncertainties about site degradation and loss.
Although dynamic site selection problems and
heuristic solution methods are discussed in detail
in Chapter 10, we discuss how to formulate and
solve a dynamic site selection problem as an IP
model.

Snyder et al. (2004h) developed a two-period
linear-integer model for sequential site selection
in which uncertainty about future site availability
is represented with a set of probabilistic scenarios.
The two-period problem maximizes the expected
number of species covered at the end of the sec-
ond period subject to an upper bound on the total
cost of site protection. The model employs a list
of sites, some of which are available for protec-
tion in the first period and others which are not.
Each site, not protected in the first period, has a
probability of remaining undeveloped and being
available for protection in the second period.
Uncertainty about the development of unpro-
tected sites is represented with a set of develop-
ment scenarios. Each scenario is one possible
development outcome identifying which sites are
undeveloped and available for protection in the
second period. Associated with each scenario is a
probability of occurrence. The model has two sets
of 0-1 site selection variables. The first set includes
the protection choices for sites in the first period.
The model assumes that protection decisions in
the second period are made after the decisions
in the first period are implemented and the site
development scenario is revealed. Thus, the sec-
ond set of decision variables includes the protec-
tion choices for sites in the second period under
each development scenario. The two-period prob-
lem is readily solvable using IP methods (Snyder
et al. 2004b) and provides information about how
uncertain site availability affects current site selec-
tion decisions (Haight et al. 2005).

4.8 Spatial reserve design problems

may not maintain or support long-term persistence
of target species (Cabeza and Moilanen 2001) and
may increase the difficulty and expense of reserve
management. Scattered reserves are particularly
troublesome when they are surrounded by a matrix
of land uses and cover types that adversely impact
species' persistence.

Reserve design attributes such as reserve proxim-
ity, connectivity, and shape can be incorporated into
IP models for site selection (Williams et al. 2005a).
Here, we discuss how these attributes can be for-
mulated as spatial objectives in IP models. Each
model includes a spatial objective combined with
a species coverage constraint. By varying the level
of the constraint, trade-offs between the spatial and
coverage objectives can be obtained.

4.8.1 Reserve proximity

When a reserve system consists of disjunct areas of
protected habitat, the distance between reserves may
influence species' mobility and viability. A reserve
system in which the reserves are closer together
may be preferred because shorter migration dis-
tances facilitate recolonization of areas where a spe-
cies has become locally extinct and help prevent the
loss of genetic diversity because of inbreeding. One
way to reduce the distances between reserves is to
minimize the sum of distances between all pairs of
selected sites. Letting dk be the distance between
sites i and k and 11k 

be a 0-1 variable for whether or
not both sites i and k are selected, the problem can
be written:

Minimize: 11 d,k u k	 (4.26)

U k 2^ X +Xk —1	 for all i,k c I,k > i (4.27)

X ^ I/	 for all j c 1	 (4.28)

(4.29)
JJ

e {0,l},u,k c= 10,1)  for all i,kel,jeJ (4.30)

One shortcoming of reserve selection models is
that they do not consider the spatial distribution of 	 The objective (Equation 4.26) minimizes the sum
selected sites. As a consequence, MSCP solutions 	 of the pairwise distances between selected sites
may consist of scattered reserves with little spa-
tial coherence. A scattered distribution of reserves

subject to constraints (Equations 4.28 and 4.29)
that require at least R species to he represented.
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Equation 4.27 enforces the definition of u , by
requiring both x = I and 

x  
= 1 for u = 1. Onal and

Briers (2002) apply a similar formulation to the
problem of selecting a subset of 131 pond sites
in Oxfordshire, UK, to protect 256 invertebrate
species. Variants of this approach include maxi -
mizing the inverse pairwise distance between all
selected reserves (Rothley 1999), minimizing the
maximum intersite distance between the selected
reserves (Onal and Briers 2002), constraining the
maximum distance between eligible reserves
(Malcolm and ReVelle 2002), and minimizing the
pairwise distance between reserves and existing
core areas (Alagador and Cerdeira 2007; Snyder
et al. 2007).

4.8.2 Reserve connectivity

The degree to which separate reserves are struc-
turally or functionally connected is an important
attribute contributing to species persistence. Con-
nectivity can be defined as the degree to which
separate habitat reserves are accessible from other
patches. Structural connectivity calls for strict adja-
cency of reserves while functional connectivity is
achieved if reserves are within a certain distance
of each other. Connectivity is a species-specific and
landscape-specific function which is dependent
upon mobility characteristics of individual species.

In situations where the landscape is subdivided
into contiguous polygons representing candidate
sites, structural connectivity can be promoted by
selecting sites for protection that are adjacent to each
other. Letting U ik be a 0-1 variable for whether or not
both sites i and k are selected, the objective is to max-
imize the number of adjacent pairs of selected sites:

Maximize: I Y_U,.	 (4.31)
,I kA ,k>i

U k ^: X. +; —1	 for all iE I,k E A,k > i	 (4.32)

	

X, ^! y 1	for all j e J	 (4.33)

	

^: R	 (4.34)
jeJ

xe(O, 1), uIk E{0, 11	 for all i, kEI, jsJ	 (4.35)

where the set A represents all sites that are adjacent
to site i (Williams et al. 2005a) and Equations 4.33

and 4.34 represent the species coverage constraints.
Nalle et al. (2002) employ a similar formulation to
the problem of selecting a subset of 4,181 sites in
Josephine County, Oregon, USA, to protect exam-
ples of 13 habitat types.

Another approach to reserve connectivity uses
constructs from graph theory and network opti-
mization (e.g. Williams 1998,2002; Onal and Briers
2005, 2006; Cerdeira et al. 2005). These models
enforce rather than promote structural connectivity
of the reserve system, although model variations
allow for contiguity gaps (e.g. Williams 2002; ()nal
and Briers 2005). In network terminology, sites are
viewed as network nodes. Network arcs are defined
for each pair of adjacent nodes or sites. A contigu-
ous reserve system is a network formed by a set of
selected sites linked by arcs between those sites.
These constructs can be integrated into an IP model
for reserve selection (e.g. Williams 2002; Onal and
Briers 2005, 2006).

4.8.3 Reserve shape

The shape of reserves may be important for spe-
cies survival and many authors advocate creat-
ing compact reserves that are nearly circular and
have low edge/area ratios. Compact reserves
are better for edge-intolerant species that pre-
fer large areas of interior habitat. One approach
to forming reserves that meet size and shape
requirements is to predefine desirable clusters
of sites and include the clusters as decision vari-
ables in a site selection model (Williams and
ReVelle 1998; Rebain and McDill 2003; Man-
anov et al. 2008). Another approach, the 'core
and buffer' method, involves creating an inner,
protected reserve area surrounded by a ring
of land managed to buffer the core areas from
negative impacts of the surrounding landscape
(Williams and ReVelle 1998). A third approach
involves selecting sites to minimize a measure
of compactness of the resulting reserves, where
compactness is the total length of the reserve
boundaries (Fischer and Church 2003; Onal and
Briers 2003). Total boundary length is the differ-
ence between the length of the boundaries of all
the selected sites and two times the length of the
shared boundaries between the selected sites.
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Letting b , be the length of the boundary of site
i and sb k be the length of the shared boundary
between sites i and k, the problem of minimizing
total boundary length is:

Minimize: yb , x, - 21 Y sb ik il	 (4.36)

U k ^ X, + Xk 1 for all ic I, k cA, k > i	 (4.37)

X, y 1	for all jcJ	 (4.38)

(4.39)

X,, y 1 , U c{O, 1) for all i, kcl, jcJ	 (4.40)

In the objective function (Equation 4.36), the bound-
ary length of the reserve system is calculated by add-
ing the boundary lengths of the selected sites and
then subtracting twice the length of the boundaries
shared by adjacent sites. Fischer and Church (2003)
utilized this model to analyse trade-offs between
total area and compactness of reserve systems to
protect examples of 55 plant community types in
northern California forests.

4.9 Applicability and limitations of IP

We have presented a wide range of reserve selec-
tion and design problems that have been success-
fully formulated and solved using IP methods.
These problems involve tens, hundreds, or thou-
sands of 0—I site selection variables and assume
that parameters such as site cost and species pres-
ence are fixed and independent of the sites selected
for protection. While IF is an efficient way to find
optimal solutions to problems that satisfy these
assumptions, IP models have limitations. Most
importantly, any relevant non-linear relationship
between the decision variables, the objective func-
tion, and the constraints must be transformed into,
or approximated by, linear equations. Non-linear
relationships arise, for example, when species pres-
ence depends on the spatial arrangement of the set
of selected sites (Moilanen 20055), when species
representation is valued with non-linear utility
functions (Arponen et al. 2005), or when site protec-
tion cost depends on the num6er and location of the
selected sites (Tajibaeva et al. 2008). Although some
non-linear relationships can be captured with linear

transformations and approximations (e.g. Hof and
Raphael 1997; Arthur et al. 2004), more complex
and possibly more realistic non-linear models can
be analysed using non-linear optimization methods
or heuristics that approximate optimal solutions
(e.g. Arponen et al. 2005; Moilanen 2005b; Tajibaeva
et al. 2008). Another limitation of IP models is prob-
lem size. It is difficult to generalize about the limits
of problem size because IP solution time is often a
function of the structure of the data matrix. How-
ever, generally speaking, problem complexity and
solution time tend to increase with the number of
binary variables. Thus, a reserve selection or design
problem with thousands of potential reserve sites
(e.g. remote sensing grid cells at a very fine-grain
spatial scale) might be difficult to solve to optimal-
ity in a reasonable time frame using IP methods.

4.10 Next steps
While a rich body of research has been published on
the application of IP to reserve selection and design,
more work is needed in a number of areas. Of
growing importance is the need to address species'
dynamics and persistence in reserve systems. One
approach is to incorporate stochastic, non-linear
population dynamics directly into site selection
models and use heuristic algorithms to search for
solutions that come close to maximizing species per-
sistence (e.g. Moilanen and Cabeza 2002; Haight and
Travis 2008). Another approach is to approximate
population dynamics with a system of linear equa-
tions and formulate linear or integer programming
models for site selection (e.g. Bevers et al.1997; Hof
et al. 2002). While optimal solutions can be obtained
for the linear models, additional work is needed to
evaluate under what conditions linear equations are
suitable to represent population dynamics.

While site selection models address problems
involving site acquisition and protection, plan-
ners also face problems involving the allocation of
resources to a wider range of conservation activities,
including fire management, invasive species con-
trol, and reintroduction of extirpated species. Wilson
et al. (2007) describe the decision steps involved in a
general conservation investment framework, includ-
ing definition of the conservation objective, threats
to achieving the objective, and possible actions for
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each site along with their costs and benefits. When
the conservation objective function can be expressed
as a linear function of the activities, then LP or IP
methods can be used to optimally allocate resources
over time (e.g. Bevers et al. 1997).

Another area of current research is the develop-
ment of models that address species-specific reserve
design and habitat needs. Moilanen et al. (2005)
develop a heuristic for selecting core areas for mul-
tiple species based on species-specific habitat con-
nectivity requirements and conservation weights.
More research is needed to develop IF models with
species-specific habitat requirements and analyse
the trade-offs associated with reserve systems that
favour certain species over others.

Finally, more research is needed to benchmark
and compare the solution performance of heuristic

methods to exact IP optimization techniques in a
variety of reserve selection and design problems.
While the use of heuristics may allow an analyst
to more rapidly reach a solution, little is known or
reported about the quality of solutions generated
via heuristics. If heuristics are the preferred option
for complex reserve selection and design problems,
much more needs to be known about how well
these solution methods perform.
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