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Abstract. Wildfires are a serious threat for land managers and property owners, and over the last few decades this threat

has expanded as a result of increased rural development. Most wildfires in the north-eastern US occur in the wildland–
urban interface, those regions of intermingling urban and non-developed vegetated lands, where access to firefighting
resources can be limited. We created monthly wildfire ignition probability maps from environmental predictors and
wildfires occurring between 2000 and 2009 for the states of New Jersey, Ohio and Pennsylvania. Predictor variables

included a drought index, long-term soil moisture, percentage forest and wildland–urban interface classifications.
Probability maps generated from modelled (Maxent) extrapolations were used to create monthly hazard maps to aid
agencies and managers with resource allocation and likelihood projections of wildfires across the region. Our results

suggest that monthly hazard assessments provide a better indication of potential wildfires than does a single mean annual
probability. Our monthly predictions retain information related to long-term seasonal variability associated with
environmental variables and the recorded wildfires providing spatial and temporal information for resource allocation.
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Introduction

Eastern US wildfires tend to result more from anthropogenic
causes in places where human populations have fragmented the

forest landscape (Malamud et al. 2005). These locations, where
human-built structures occur within vegetated lands, are
referred to as the wildland–urban interface (WUI) (Radeloff

et al. 2005). Areas where houses and properties intermingle with
wildland vegetation are referred to as intermix WUI, whereas
developed areas that abut wildland vegetation are characterised

as WUI communities (Radeloff et al. 2005). The north-eastern
US is characterised by high proportions of WUI lands and as a
result of the frequent human–vegetation contact, the majority of

wildfires in this region are human-caused fires (set on purpose or
accidentally) which is similar to the situation in the Upper
Midwest (Cardille and Ventura 2001). Fires within the WUI are
thus an important issue that must be dealt with by agencies and

land managers (Cohen 2000); because as the WUI increases
from vegetated to interface, so does the potential threat of
property-damaging wildfires.

The Northeast Wildfire Risk Assessment conducted by the
USDA Forest Service suggests that New Jersey would provide a
good case study for the effects of WUI and wildfire occurrences

related to risk assessment because of the state’s extensive fire
history datasets (US Forest Service Northeastern Area State and

Private Forestry 2010). The assessment also suggested that use
of an Integrated Moisture Index (IMI) might aid in mapping
wildfire risk because IMI ‘has been shown to be statistically

related to many ecological processes’ (US Forest Service
Northeastern Area State and Private Forestry 2010). These
recommendations emphasise the need for research to help

identify areas at particular risk for wildfires in the north-eastern
US, especially given the projections of increasing fire under
changing climate (Dale et al. 2001).

Many studies have identified conditions associated with
wildfires that are useful in developing risk and hazard models.
These conditions vary by location, especially west v. east in the

US. Lein and Stump (2009) used a fuel model, solar radiation,
topographic wetness, population density and distance to roads to
model wildfire risk in gentle topography in southern Ohio.
Parisien and Moritz (2009) mapped wildfire suitable conditions

using climate, solar radiation, humidity, elevation, classified
vegetation and fuel loads for the US and California. Keane et al.
(2010) used climate, humidity, wind speed and dead and live

fuel moisture to simulate fires in the northern RockyMountains.
Syphard et al. (2007) used fire records (occurrence and area
burnt), WUI, road networks and vegetation to explore human

influence on fires in California. These conditions can be
modelled utilising geographic information systems (GIS)
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technology and statistical methods to develop potential risk or
hazard maps. Risk maps typically associate the potential effect
on a valued resource in conjunction with hazards, where hazard

maps identify the potential occurrence of an event (Thompson
et al. 2011).

Other studies focussed on the western US or at the national

scale have used simulated fires to determine the burn probability
of a landscape and assign risk to resources (Calkin et al. 2010;
Thompson et al. 2011). An advantage of fire simulation models

is that they do not require historical fire records to assess risk like
empirical models do (Bar Massada et al. 2009); however, they
are often parameterised with current knowledge of processes
that are often complex and difficult to represent in many

models. Thus, Bar Massada et al. (2009) recommends the use
of empirically developed ignition models for risk or hazard
mapping of fires when sufficient data are available.

Our group developed IMI for Ohio and based on the recom-
mendations contained in the North-east Wildfire Risk Assess-
ment decided to expand IMI to New Jersey and Pennsylvania in

order to model wildfire ignition probabilities based on the
methodology presented by Bar Massada et al. (2012). In doing
so, we developed monthly probabilistic hazard maps for a

12-month period from four environmental variables and the
spatial distribution of reported wildfires between 2000 and 2009
to investigate whether monthly or annualised models performed
better. The hazard models were then evaluated using 2010 fire

records not included in the model. Public land (federal- and
state-owned) and the New Jersey Pine Barrens region were
analysed for potential wildfire hazards as ameans to evaluate the

models. We define wildfire hazard as it relates to our model
output as the relative probability of a location having conditions
favourable for awildfire ignition.We recognise that fire plays an

important ecological role by maintaining vegetation and soil
conditions. However, wildfires that threaten human lives and
property are an important issue for wildland firefighters among
many other managers and the public, and hazard mapping can

help with resource allocation and planning.

Methods

Study area

The eastern states of New Jersey, Ohio and Pennsylvania

(NJOHPA) encompass 244 315 km2. Elevation ranges from 1m
below sea level to 978m above and based on the 2006 National
Land Cover Dataset 46.3% of the area is forested, whereas 38.8,

14.5 and 1.2% is non-forested, urban and water. Historically,
these states were predominantly characterised by oak–hickory
or oak–pine forest types with pre-suppression fire return inter-
vals of,30 years for southern Ohio, and an average of 14 years

for New Jersey (Abrams 2000). Prior to European settlement,
fires were the result of lightning or were purposely set by Native
Americans as a means to manage resources (Abrams and

Nowacki 1992; Abrams 2000). Centuries of development,
landuse change and fire exclusion have resulted in forests
characterised by dense understoreys, heavy fuel loads and

altered fire regimes (Nowacki and Abrams 2008). Although
human activities have played a dominant role in shaping the
current fire regime, site conditions are also critically important
in creating the conditions favourable to wildfires. For example,

Givnish (1981) indicates that site conditions, specifically coarse
soil texture and low fertility, in the New Jersey Pine Barrens
region contribute to wildfires by creating drier soils and more

fire-prone vegetation.
Wildfire records occurring between 2000 and 2009 were

obtained from three state agencies (New Jersey Division of

Parks and Forestry, Ohio Department of Natural Resources –
Division of Forestry, Pennsylvania Department of Conservation
and Natural Resources – Bureau of Forestry) and one federal

source, the US Geological Survey’s Geospatial Multi-Agency
Coordination (GeoMAC) (see http://geomac.gov/index.shtml,
accessed September 2011). Only records that were georefer-
enced and contained the attributes of date or time, area burnt and

cause were used. Although latitude and longitude were reported
as point locations, these coordinates may only rarely represent
the point of ignition. The 4847 usable records were made

compatible by generalising the reported cause, based on The
New Jersey Forest Fire Service Incident Reporting System.
Thus, the final causes were reclassified to campfires, children,

debris burning, equipment, incendiary, lightning, railroad or
cigarette smoking. For our hazard model, four uncorrelated
environmental variables (Pearson’s correlation coefficient rang-

ing from �0.26 to 0.28) were selected via model contribution
from a suite of potential variables on terrain, climate and human
influences. These variables (described below) were derived
from GIS data and comprised an Integrated Moisture Index

(IMI) value, mean Palmer Modified Drought Index (PMDI)
value, percentage forest cover and WUI classification. A GIS
was used to process the data and produce grid coverages at 30-m

resolution for each predictor and response variable. Final grid
coverages were converted to an ASCII format to be read into the
Maxent software.

Integrated Moisture Index

Terrain is a key component of any fire hazard modelling and we

assumed the IMI – as an index of long-term soil moisture
potential for rolling topography common in our study area – to
be representative of the terrain influence within the model. It is

based on topographic shading, flow accumulation of water
downslope, curvature and soil water-holding capacity, and has
been related spatially to soil fertility, productivity, fire intensity

and species composition (Iverson et al. 1996, 1997; 2004, 2008).
IMI was calculated from a US Geological Survey 10-m digital
elevation model (DEM) and soil data from the Soil Survey

Geographic (SSURGO) database (Natural Resources Conser-
vation Service, United States Department of Agriculture 2008)
for each state. Themethod described in Iverson et al. (1997) was
modified to incorporate an infinite directional algorithm,

TauDEM v4.0 (Utah State University, Logan, UT, USA), to
calculate flow direction and accumulation (Tarboton 1997) of
soil moisture. Hillshade and curvature were also derived from

the DEM. Available water-holding capacity (AWC) to a depth
of 150 cmwas generated fromSSURGOcounty soil survey data.
For each county, the dissolvedmap unit symbol produced by the

Soil DataViewer (version 5.2) was converted to a 30-m grid. For
each state, the county grids were combined using a mosaicking
technique to produce a seamless coverage for the region. Using a
weighted summation developed by Iverson et al. (1996), we
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combined the four grid coverages to generate an IMI following
this equation:

IMI ¼ ðcurvature� 0:1þ flow accumulation

� 0:3þ hillshade� 0:4þ AWC� 0:2Þ

The resulting grid can contain values ranging from 0 to 100;

however, IMI values were reclassified to dry (,35), inter-
mediate (35–50) andmesic (.50) for theMaxentmodel because
reported wildfire locations occurred within a range of IMI
values.

Palmer Modified Drought Index

The PMDI was assumed to represent an integrated variable
pertaining to the climate influence in the model. Mean monthly

PMDI data for the period of 1895–2009 were obtained from the
National Climatic Data Center. Due to limitations of the original
Palmer Drought Severity Index described in Alley (1984), the

modified version (Heddinghaus and Sabol 1991) was used.
Monthly PMDI values for the period 2000–09 were averaged
and mapped for each of the 23 climate divisions within

NJOHPA. A single set of 12 monthly means were calculated by
averaging the 10 PMDI numeric values used to determine
drought classifications for each year within the study period to
provide a long-term value. For example, numeric PMDI values

for January 2000–09were averaged for inclusion into themodel.
The climate divisions consist of an aggregation of counties so
that any derived outputs will show these coarse boundaries.

Forest cover

Most wildfires occurred on land having percentage forest cover
.10%; thus, we assumed that forest cover captures the vege-

tative influence within the model. Percentage forest cover grids
were obtained from LANDFIRE data (The National Map,
LANDFIRE 2007). Two 30-m coverages encompassing

NJOHPA were mosaicked together and the state boundaries
were used to remove values beyond the extent of the region. The
data values consisted of forest cover classified in 10% intervals,
which also helped to distinguish forested from non-forested

lands.

Wildland–urban interface

The WUI is intended to capture the interaction between the

landscape and humans. Many methods have been used to map
WUI (Platt 2010) based on various definitions of land use and
the interface zones. The Spatial Analysis for Conservation and

Sustainability (SILVIS) Laboratory at the University of
Wisconsin–Madison used a ratio of housing density (1 structure

per 16 ha) to the proportion of wildland vegetation (.50% for
intermix and ,50%, but within 2.4 km of a 500-ha area with
.75%vegetation for interface) per area (Radeloff et al. 2005) to

create a data layer developed from 2000 Census data and 1992
National Land Cover Dataset values. Vector classifications
were obtained for each state and converted to a 30-m grid and

reclassified to WUI, non-WUI vegetative, non-vegetative or
agriculture, uninhabited–no vegetation and water (Table 1).

Maxent

Maximum entropy is a density estimation method based on a

probability distribution (Phillips and Dudı́k 2008) and is ideal
formodelling presence-only data (Elith et al. 2011). Because the
wildfire records are locations that have burnt, and it cannot be

determined whether a neighbouring area was also suitable to
burn at that time, it is appropriate to assume the data represent
presence-only. Maxent, using only presence records, has been
shown to provide better estimates of probability as compared

with other statistical tools (e.g. GLM, tree ensembles) that rely
on absences as well for their best estimates (Bar Massada et al.
2012). The Maxent model relates samples from a distribution

within a spatial extent to environmental variables at the same
extent (Phillips et al. 2004).Maxent explores this environmental
relationship by estimating a distribution that is close to uniform

with the constraint that the value for each environmental vari-
able under the estimated distribution is expected to match its
empirical average (Phillips et al. 2004). It has been used to

identify locations of SuddenOakDeath (Crocker andGarbelotto
2010; Václavı́k et al. 2010), estimate species distributions
(Phillips et al. 2006) and map the environmental space of
wildfires (Parisien and Moritz 2009).

We usedMaxent (version 3.3.2), a Java application developed
by Phillips et al. (see http://www.cs.princeton.edu/~schapire/
maxent, accessed 5 December 2012), to calculate the relative

probability of fire occurrences for a 12-month period (2000–09)
using maximum entropy. Wildfire records with a size class
$0.1 ha and from the following ignition sources were selected

for use in the analysis: campfire, children, debris burning,
equipment, incendiary, lightning, railroad or smoking. We
chose these categories and sizes in an attempt to exclude
potential ‘non-wildfires’, such as reported ‘wildfires’ that could

actually be debris-burning fires that did not result in an out-of-
control wildfire. Although we tried to control for ‘non-wildfire’
records, 510 false alarms were documented among the three

state agencies during the study’s time period.

Table 1. Generalised WUI class values used in Maxent model

WUI Non-WUI Non-vegetated or agriculture Uninhabited or no vegetation Water

Low-density interface Very low-density vegetated Very low-density no vegetation Uninhabited or no vegetation Water

Medium-density interface Uninhabited vegetated Low density no vegetation

High-density interface Medium density no vegetation

Low-density intermix High density no vegetation

Medium-density intermix

High-density intermix
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Maxent was parameterised with a total of 4847 wildfire
records ignoring the year of occurrence and environmental data
consisting of 30-m grids of percentage forest cover, IMI, mean

PMDI (month of fire, as values 1 month before the reported fire
were not significant) and WUI classification, all of which were
set to categorical classes except mean PMDI.Within theMaxent

software, the options for response curves, jackknife and random
seed were set to true. The response curve option generates
graphs indicating the predicted probability based on the values
of each environmental predictor. The jackknife option, which

measures the contribution that is unique to a specific variable,
systematically omits one predictor variable to determine the best
model, and thus it rebuilds models by excluding the variable of

interest. The random seed option results in a unique random
subset of the training data during each iteration. Maxent also
reduces overfitting with a regularisation multiplier that limits

the algorithm from modelling the data too closely (Parisien and
Moritz 2009). The default value of 1 was used, as Parisien and
Moritz (2009) found it to produce the best results.

Ten replications with 25% of each month’s records being
randomly withheld for testing were run with bootstrapping of

each replicate. The number of sample points varied for each
month whereas 10 000 background points were used to charac-
terise the predictor variables. Output was a logistic ASCII file

containing the mean relative probability distribution for each
month and for each 30-m grid cell. These data were mapped for
the entire study area (Fig. 1) and at a finer extent for the Pine

Barrens of New Jersey (Fig. 2). The jackknife option provides a
measure of percentage contribution for each predictor variable
and is determined from the Maxent algorithm, which relates the
gain in model performance to the inclusion of each variable.

However, this assessment is sensitive to the model parameters
and influenced by highly correlated variables.

Hazard maps

Four variables (IMI, mean PMDI, percentage forest cover and

WUI classification) were used to calculate the relative proba-
bility of fire occurrences using maximum entropy and reported
wildfires in NJOHPA. Each variable was created at a 30-m

resolution, which serves to preserve the original data values and
reduces the potential of multiple wildfire records occurring in

January February March

April
Hazard

10% 30% 50% 70% 90%

80% 100%60%40%20%
May June

July August September

October November December

Fig. 1. Average of 10 maximum entropy probability distributions for monthly wildfire hazards developed from reported wildfire (2000–09 ignoring year of

occurrence) and four environmental predictors. Visual assessments of eachmodel shows temporal variations at 30-mgrid cells with county boundaries overlaid

for reference.
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the same grid cell; however, the drought index values originated
from coarse-scale climate divisions (aggregation of counties),
which are visible in the final hazard values.

The average of 10 simulated relative probability distributions
for each month and a mean annual and spring (March, April and
May; Figs 1–3 of the Supplementary material) probabilities

(derived by averaging monthly model output) were used to
assess the hazard of reported wildfires (2000–09). Fires used to
generate the hazard maps were overlaid within a GIS by month

(ignoring the year of occurrence), and probability values were
extracted for each fire to assess the accuracy of the monthly and
annual models. Additionally, records of 523 wildfires occurring
during 2010 but not included in themodels were used as ameans

to evaluate their accuracy by assessing the probability values at
their reported locations. We assessed model performance by
determining the proportion of fires captured by the monthly or

annual models in the higher-probability classes. AUC values of
the mean monthly models were also used to evaluate model
performance.

An assessment of state and federally owned land was con-
ducted to determine hazard levels for portions of the region that
are under different management objectives. Because most

records occurred during the spring, the number of reported
springtime wildfires (March, April and May during 2000–09)
within each state was compared with the number contained by
state-owned forests and parks, along with National Forests,

Parks and Department of Defence lands. Additionally, mean
hazard values for each IMI class on forested land (derived from
the 2006NLCD) andWUI classes were examined to gain insight

related to landscape patterns and hazard values.

Results

Historical trends

Historical (1895–1999) records ofmeanmonthly PMDI indicate

that near-normal to dry conditions were the general trend for
NJOHPA (Fig. 3a). During the 2000–09 decade, however, near-
normal towet conditionswere reported (Fig. 3b), despite the fact
that 16 580wildfires were reported, of which 4847were$0.1 ha

and of discernable causes. The leading causes of these wildfires
during 2000–09 were ‘incendiary behavior’ (Fig. 4), followed
by ‘debris burning’. Fig. 4 also indicates that the wildfire

occurrences were temporally bimodal, with most fires occurring
in spring and autumn. According to IMI values, 68.4% of the
4847 wildfires were located on dry sites whereas 25.3 and 6.3%

were on intermediate and mesic sites. Locations were also
distributed among all LANDFIRE percentage forest cover
classes with 44% occurring in cells classified as having $10%

forest cover.
April had the highest number of occurrences (1664) for

the study area (Table 2) whereas New Jersey reported the
most wildfires (2259) among the three states (Table 3).

New Jersey Pine Barrens
April Wildfire Hazard
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Fig. 2. Averagemaximum entropy probability distribution of wildfire hazard with reported fires occurring during April 2000–09 overlaid for the New Jersey

Pine Barrens region. Inset shows the finescale variability of the 30-m hazard values and the locations of reported wildfires.
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The region of the Pine Barrens appeared to have more
reported wildfires than the rest of the state, which made
for a good location to show the spatial variability of hazard
probabilities (Fig. 2). The hazard models do not consider fire

size or area burnt, thus each 30-m cell contains a probabilis-
tic value that a wildfire ignition could occur, derived from
the locations of known fires and the environmental predic-
tors at those sites.
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Fig. 3. Historical and current trends of observed drought conditions by month for each state, 1895–2009.
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Model evaluation

Maxent uses presence-only data, which prevents an analysis of
the true commission error. However, a more robust method to
analyse the accuracy of predictions is to evaluate the area under

the curve (AUC) of the receiver operating characteristics (ROC)
curve, where values .0.5 are generally accepted as better than
random. Values of AUC were between 0.764 and 0.872 for

monthly averages of 10 iterations. In addition to calculating
AUC, Maxent determines the percentage contribution of each
predictor variable within the model; the two dominant variables
according to their contribution wereWUI and PMDI (Fig. 5). An

alternative measure of variable importance is the jackknife of

regularised training gain plots (Fig. 6). When each of the four
predictor variables were evaluated via the jackknife analysis,
PMDI was the most influential for the months of March, May,

August, September and November, whereas WUI was more
important for the months of January, February, April, June and
July (Fig. 6). Overall, the models predicted, in most months, a
higher proportion of wildfire occurrences (based on .50%

probability of fire) than the mean annual distribution (Table 2).
For example, 1664 fires were reported during April between
2000 and 2009. The monthly model predicted 1004 fires with a

probability.50%, and 660 falling below this threshold. For the
same month, the mean annual hazard values captured only 508
fires with a probability.50%, whereas 1156 were below. There

may be locations throughout our study area where a threshold
,50% is appropriate, however further analysis should be con-
ducted to validatemodel performance.Themonthlyhazardmaps

with an overlay of reportedwildfires (Fig. 7) illustrate the annual
variation in probabilities, as the PMDI values and reported
wildfire locations change throughout the year. Visually, most of
the wildfires fall in the higher probability classes, even though

the 50% cutoff does not capture many of the fires. The maps
produced from this research canbe validated only as newdata are
made available. With a limited number of reported fires (523)

and PMDI values from 2010, our model predicted only 40% of

Table 3. Area for each state, state-owned land (forest and park),

National Forest Service (NFS), National Park Service (NPS) and

Department of Defence (DOD) land is presented along with the number

of reported spring (March, April andMay) and annual (in parentheses)

wildfires (2000]09)

Additionally, the mean hazard probability for each land owner is included

for the spring and annual (parentheses) models

State NJ OH PA

Area (km2)

Total 20 116 106 870 117 329

State-owned land 1316 819 9115

NFS – 3455 2901

NPS 292 139 331

DOD 257 362 452

Fires .0.1 ha

Total 1225 (2259) 317 (504) 1716 (2089)

State-owned land 57 (95) 2 (8) 104 (141)

NFS – (–) 33 (89) 25 (34)

NPS 7 (8) 0 (0) 7 (8)

DOD 9 (18) 0 (1) 1 (2)

Mean hazard

Total 0.49 (0.46) 0.19 (0.19) 0.31 (0.27)

State-owned land 0.48 (0.46) 0.33 (0.30) 0.34 (0.24)

NFS – (–) 0.34 (0.31) 0.30 (0.24)

NPS 0.36 (0.31) 0.23 (0.22) 0.34 (0.31)

DOD 0.62 (0.56) 0.21 (0.26) 0.27 (0.32)
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among 10 Maxent iterations.

Table 2. Monthly wildfire occurrences during 2000]09 for monthly and annual (in parentheses) hazard probability classes calculated from

Maxent models

Monthly hazard values suggest a higher accuracy for the total fires .50% when compared with the average annual probability

Hazard probability JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

10% 2 (2) 3 (2) 7 (13) 25 (32) 4 (7) 3 (1) 4 (2) 13 (2) 3 (5) 8 (2) 8 (2) 3 (2)

20% 6 (1) 17 (11) 97 (61) 59 (122) 30 (34) 19 (1) 21 (9) 7 (9) 12 (9) 7 (10) 27 (10) 6 (0)

30% 1 (4) 34 (28) 84 (146) 164 (333) 127 (121) 9 (20) 18 (22) 6 (26) 15 (30) 13 (20) 28 (44) 8 (6)

40% 6 (10) 28 (35) 121 (147) 177 (364) 63 (128) 22 (11) 6 (20) 14 (24) 32 (26) 37 (25) 48 (43) 0 (9)

50% 9 (10) 37 (30) 237 (170) 235 (305) 27 (94) 12 (22) 16 (17) 27 (25) 30 (26) 13 (21) 35 (40) 4 (13)

60% 20 (12) 45 (40) 112 (146) 379 (171) 59 (51) 26 (18) 35 (11) 21 (20) 18 (20) 51 (32) 47 (53) 14 (5)

70% 17 (12) 33 (65) 57 (147) 465 (152) 122 (76) 17 (35) 15 (40) 35 (25) 15 (30) 5 (36) 61 (72) 19 (14)

80% 5 (15) 72 (58) 74 (132) 160 (185) 158 (106) 40 (40) 68 (62) 46 (43) 32 (19) 48 (36) 69 (69) 7 (11)

90% 0 (0) 0 (0) 163 (0) 0 (0) 27 (0) 0 (0) 0 (0) 5 (0) 8 (0) 0 (0) 10 (0) 0 (0)

100% 0 (0) 0 (0) 10 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Total 66 269 962 1664 617 148 183 174 165 182 333 61
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the occurrences with a hazard value.50%; but with a cutoff of
.30%, it captured 70%of the occurrences. PMDI values in 2010
were near-normal towet from January toMarch and near-normal

to mildly dry from April to August (with the exception of NJ’s

remaining near-normal to wet until June). The small number of
wildfires reported in 2010 and the PMDI values’ departure from
near-normal conditions suggest that more fire records might be

needed to evaluate the model’s performance.
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Fig. 6. Monthly plots of jackknife regularised training gains for predictor variables. Model performance without variable

(dark grey), performance with only variable (light grey) and performance with all variables (medium grey).
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For each state the area, number of reported spring (March–

May) and total wildfires $0.1 ha, and mean spring and annual
probabilities are reported for the state, state-owned land (forest
and park) and National Forest Service, National Parks Service

and Department of Defence (DOD) lands (Table 3). With the

exception of DOD land in Ohio and Pennsylvania, mean spring

hazard probabilities were higher than the mean annual value.
Mean monthly and annual probability values were higher

among drier IMI cells that were also classified as forested by

the 2006 NLCD (Table 4). Half of the months had a mean

January February March

April
Hazard

10% 30% 50% 70% 90%

80% 100%60%40%20%
May June

July August September

October November December

Fig. 7. Average monthly maximum entropy probability distributions of wildfire hazard at 30-m grid cells with monthly reported fires (2000–09) overlaid for

accuracy assessment and county boundaries for reference.

Table 4. Average monthly and annual probability of wildfire hazard for IMI (on forested land) and WUI classes

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Annual

IMI

DRY 0.30 0.32 0.30 0.40 0.34 0.29 0.35 0.21 0.37 0.42 0.33 0.32 0.33

INTERMEDIATE 0.22 0.23 0.28 0.38 0.32 0.21 0.21 0.15 0.29 0.25 0.21 0.14 0.24

MESIC 0.17 0.13 0.25 0.33 0.25 0.19 0.23 0.12 0.24 0.21 0.11 0.11 0.20

WUI

WUI 0.45 0.45 0.44 0.52 0.40 0.42 0.43 0.26 0.41 0.46 0.36 0.34 0.41

Non-veg Agriculture 0.10 0.14 0.14 0.13 0.08 0.10 0.11 0.08 0.13 0.15 0.15 0.08 0.12

Non-WUI Veg 0.22 0.24 0.27 0.37 0.35 0.24 0.30 0.18 0.35 0.30 0.25 0.23 0.28

Uninhabited No Veg 0.47 0.34 0.20 0.28 0.31 0.32 0.20 0.19 0.27 0.28 0.31 0.47 0.30

WATER 0.45 0.28 0.17 0.27 0.32 0.31 0.50 0.23 0.38 0.34 0.37 0.37 0.33
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probability$ the annual value. Similarly, mean monthly prob-
ability values among WUI cells were usually higher between
months. Values during August were typically lower among IMI

and WUI classes and correspond to a high contribution from
PMDI within the model.

Discussion

Wildfires in the eastern states of New Jersey, Ohio and

Pennsylvania tended to occur in regions that are predominantly
vegetated and have low- to medium-density development. In
contrast to risk models developed in the western US by Calkin
et al. (2010) for Oregon, Bar Massada et al. (2009) for a portion

of north-westernWisconsin using FARSITE, or Thompson et al.
(2011) at a national scale using simulated wildfires based on
reported large wildfires to assess risk, our approach uses

reported finescale wildfires ($0.1 ha) and site conditions to
statistically model the probability of suitable conditions for
wildfire ignitions in the eastern US. Our methodology is similar

to that of Parisien andMoritz (2009), but with amajor difference
in running Maxent monthly as opposed to annualising fire
records and climate data. Another key difference is the scale at

which environmental predictors where included in the model:
30-m rather than 1-km resolution. We assume that this finescale
approach is important to help inform local management deci-
sions, especially in the eastern US, as the relationships between

fire occurrences and predictor variables often operate at such
scales. As Openshaw (1983) showed, aggregation of data into
larger zones can artificially increase correlation within the

data, thus using the native resolution of each dataset, or con-
verting vector data to a compatible resolution is preferred.
Because we are modelling suitable conditions for wildfire

ignitions, not fire spread, spatial dependency issues with fines-
cale data are minimised.

Within the western US, risk assessments derived from the
spread of a few large fires have been shown to accurately model

the total area burnt (Calkin et al. 2010). However, wildfires in
the eastern US behave quite differently in that more small fires
(10 671 records between 2000 and 2009 from all causeswith size

,121.5 ha) were observed in our study area. Many of these
small fires are possibly related to the influences from the WUI,
where increased housing density can lead to more fires, but the

surrounding infrastructure enables a faster response from fire-
fighters (Bar Massada et al. 2009). Another difference between
our study region and the western US is that only a small portion

of each state is owned by state or federal agencies. Fewwildfires
were reported on public land during springtime and annually
compared with the rest of the study region. However, both state
and federal agencies are responsible for wildfires on public and

surrounding private lands.
Because the fire records are point locations and represent

presence-only data (as the stochastic nature of ignitions makes it

difficult to determine whether surrounding sites could have
burnt), some assumptions were made. Reported locations may
not necessarily represent the ignition site but were assumed to be

representative of local site conditions within a 30-m pixel. We
also assumed that weather conditions (PMDI) averaged for the
entire month represented conditions suitable to fire occurrences
for that entire month. We chose to model based on monthly data

because weekly PMDI data were not available over the entire
study area and because insufficient fire recordswere available to
model at a weekly resolution. However, we realise that this

assumption may under-represent periods of extreme conditions
or over-represent the time when conditions conducive to igni-
tion may be present, because fire-prone conditions can appear

and disappear easily within a calendar month. Therefore, up-to-
date fire danger ratings should be used to assess current condi-
tions, as our results represent the long-term trend of hazards in

the near future.We also recognise that the resulting output maps
will often distinctly show the coarse-resolution boundaries
(multiple counties) when there are variations among the PMDI
averages.

In addition to providing information related to the potential
hazard of wildfires, the Maxent models offer insight into the
weights of the four predictor variables driving the models.

Knowing the monthly dynamics of these variables can help
managers make informed decisions by considering how current
conditions vary from the long-term ones in the models. The two

dominant variables are WUI and PMDI (Fig. 5), which is not
surprising because themajority of reported wildfires occurred in
rural areas intermingled with housing under near-normal to dry

conditions. The temporal variation of these two variables
reveals an alternating level of importance within the models
during the first half of the year, followed by higher contributions
from PMDI from August through December (Fig. 5). This

pattern could indicate that ignition sources (within WUI) relate
more to human activities, whereas favourable conditions of
drying (PMDI) are related to atmospheric conditions such as

humidity that are dominant in the second half of the year. The
increased contribution from IMI during October–December
supports this hypothesis, as for each month, dry sites had a

higher proportion of fire hazard. In contrast, the IMI of the site
has essentially no influence in the spring (March–May), when
most soils have the potential to be very wet and the moisture
content of surface litter is probably tied more to humidity rather

than the overall moisture regime of the soils.
Although the monthly models have been shown to perform

better than a single annual model for most months, these models

may under-estimate the probability ofwildfire occurrence due to
recent PMDI values being departed from the historical trend
(Fig. 3). Given that future climates are expected to be warmer

and drier for some regions, our models will be relevant for short-
term planning, i.e. annual or biannual forecasting. An advantage
to the methods used to produce monthly probability maps is that

three of the four environmental predictors are static, with only
PMDI values and current reported wildfires needing to be
updated within the models.

Conclusions

Wildfires pose a serious threat to property and resources, and

managers are faced with important decisions, especially with
limited resources available. Hazard and risk mapping can
provide supplemental information on which to base resource

allocations. Verification of long-term trends related to wildfire
conditions could provide some clarity when assessing the
uncertainty of risk. The current study aims to provide a tool to
spatially project the hazard of wildfires across three states.
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It incorporates both the long-term nature of soil moisture at
the fine scale (30m) as well as the dynamic nature of the
current climatic conditions, albeit at a coarse resolution

(climate divisions at monthly intervals). The system would
obviously be improved with finer scale data of climate condi-
tions (e.g. PMDI), both spatially and temporally, but these data

were not yet available.
Although hazard and risk mapping can provide insight into

the potential long-term distribution of wildfires, managers and

property owners need to continually assess local site conditions
as small changes are beyond the scope of the models. Addition-
ally, human behaviour cannot accurately be modelled; fires
resulting from malicious intentions or accidents can occur

throughout the region when conditions are suitable. However,
education and preventativemeasures canmitigate some threat to
personal property within the WUI regardless of the risk or

hazard levels; for example, communities could reduce burning
debris, a dominant cause of the reported fires, with such
measures.

Acknowledgements

The authors thank Mark Twery and NorthSTAR for funding, Mike Drake

and the New Jersey Division of Parks and Forestry, Mike Bowden and the

Ohio Department of Natural Resources – Division of Forestry, Rich Deppen

and the Pennsylvania Department of Conservation and Natural Resources –

Bureau of Forestry, and other agencies and organisations that provided data.

We also thank those who have reviewed and commented on the manuscript.

References

Abrams MD (2000) Fire and the ecological history of oak forests in the

eastern United States. In ‘Proceedings: Workshop on Fire, People, and

the Central Hardwoods Landscape’, 12–14March 2000, Richmond, KY.

(Ed. DA Yaussy) USDA Forest Service, Northeastern Research Station,

General Technical Report NE-274, pp. 46–55. (Newtown Square, PA)

Abrams MD, Nowacki GJ (1992) Historical variation in fire, oak recruit-

ment, and post-logging accelerated succession in central Pennsylvania.

Bulletin of the Torrey Botanical Club 119(1), 19–28. doi:10.2307/

2996916

Alley WM (1984) The Palmer Drought Severity Index: limitations and

assumptions. Journal of Climate and Applied Meteorology 23, 1100–

1109. doi:10.1175/1520-0450(1984)023,1100:TPDSIL.2.0.CO;2

Bar Massada A, Radeloff VC, Stewart SI, Hawbaker TJ (2009) Wildfire

risk in the wildland–urban interface: a simulation study in northwestern

Wisconsin. Forest Ecology and Management 258, 1990–1999.

doi:10.1016/J.FORECO.2009.07.051

Bar Massada A, Syphard AD, Stewart SI, Radeloff VC (2012) Wildfire

ignition-distribution modelling: a comparative study in the Huron–

Manistee National Forest, Michigan, USA. International Journal of

Wildland Fire . doi:10.1071/WF11178

Calkin DE, Ager AA, Gilbertson-Day J (Eds) (2010) Wildfire risk and

hazard: procedures for the first approximation. USDA Forest Service,

Rocky Mountain Research Station, General Technical Report RMRS-

GTR-235. (Fort Collins, CO)

Cardille JA, Ventura SJ (2001) Occurrence of wildfire in the northern Great

Lakes Region: effects of land cover and land ownership assessed at

multiple scales. International Journal of Wildland Fire 10, 145–154.

doi:10.1071/WF01010

Cohen J (2000) Preventing disaster: home ignitability in the wildland–urban

interface. Journal of Forestry 98, 15–21.

Crocker E, Garbelotto M (2010) Phosphonate treatment to control

Phytophthora cinnamomi infection of Ione Manzanita, A. myrtifolia.

In ‘Proceedings of the Sudden Oak Death Fourth Science Symposium’,

15–18 June 2009, Santa Cruz, CA. (Eds SJ Frankel, JT Kliejunas, KM

Palmieri) USDA Forest Service, Pacific Southwest Research Station,

General Technical Report PSW-GTR-229, p. 307. (Albany, CA)

Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan DM,

Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson

FJ, Stocks BJ, Wotton BM (2001) Climate change and forest distur-

bances. Bioscience 51, 723–734. doi:10.1641/0006-3568(2001)051

[0723:CCAFD]2.0.CO;2

Elith J, Phillips SJ, Hastie T, Dudk M, Chee YE, Yates CJ (2011) A

statistical explanation of MaxEnt for ecologists. Diversity & Distribu-

tions 17, 43–57. doi:10.1111/J.1472-4642.2010.00725.X

Givnish TJ (1981) Serotiny, geography, and fire in the Pine Barrens of New

Jersey. Evolution 35(1), 101–123. doi:10.2307/2407945

Heddinghaus TR, Sabol P (1991) A review of the Palmer Drought Severity

Index and where do we go from here? In ‘Proceedings of the Seventh

Conference onApplied Climatology’, 10–13 September 1991, Salt Lake

City,UT. pp. 242–246. (AmericanMeteorological Society: Boston,MA)

Iverson LR, Scott CT, Dale ME, Prasad A (1996) Development of an

IntegratedMoisture Index for predicting species composition. In ‘Caring

for the Forest: Research in a Changing World, Statistics, Mathematics

and Computers, Proceedings of the Meeting of IUFRO S4.11–00’, 6–12

August 1995, Tampere, Finland. (EdsMKohl,GZGertner) pp. 101–116.

(Swiss Federal Institute for Forest, Snow and Landscape Research:

Birmensdorf, Switzerland)

Iverson LR, Dale ME, Scott CT, Prasad A (1997) A GIS-derived

integrated moisture index to predict forest composition and productivity

in Ohio forests. Landscape Ecology 12, 331–348. doi:10.1023/

A:1007989813501

Iverson LR, Yaussy DA, Rebbeck J, Hutchinson TL, Long R, Prasad AM

(2004) A comparison of thermocouples and temperature paints to

monitor spatial and temporal characteristics of landscape-scale

prescribed fires. International Journal of Wildland Fire 13, 311–322.

doi:10.1071/WF03063

Iverson LR, Hutchinson TF, Prasad AM, Peters M (2008) Thinning, fire,

and oak regeneration across a hetergeneous landscape in the eastern US:

7-year results. Forest Ecology and Management 255, 3035–3050.

doi:10.1016/J.FORECO.2007.09.088

Keane RE, Drury SA, Karau EC, Hessburg PF, Reynolds KM (2010)

A method for mapping fire hazard and risk across multiple scales and its

application in fire management. Ecological Modelling 221, 2–18.

doi:10.1016/J.ECOLMODEL.2008.10.022

Lein JK, StumpNI (2009) Assessingwildfire potential within thewildland–

urban interface: a southeastern Ohio example. Applied Geography 29,

21–34. doi:10.1016/J.APGEOG.2008.06.002

Malamud BD, Millington JDA, Perry GLW (2005) Characterizing wildfire

regimes in the United States. Proceedings of the National Academy of

Sciences of the United States of America 102(13), 4694–4699.

doi:10.1073/PNAS.0500880102

Natural Resources Conservation Service, United States Department of

Agriculture (2008) Soil surveys of New Jersey, Ohio, Pennsylvania,

and West Virginia. Available at http://soildatamart.nrcs.usda.gov/State.

aspx [Verified 5 December 2012]

Nowacki GJ, AbramsMD (2008) The demise of fire and ‘mesophication’ of

forests in the eastern United States. Bioscience 58, 123–138.

doi:10.1641/B580207

Openshaw S (1983) ‘The Modifiable Areal Unit Problem’, Vol. 38 of

Concepts and Techniques in Modern Geography (CATMOG). (Geo

Books: Norwich, UK)

ParisienMA, MoritzMA (2009) Environmental controls on the distribution

of wildfire at multiple spatial scales. Ecological Monographs 79(1),

127–154. doi:10.1890/07-1289.1

Phillips SJ, Dudı́kM (2008)Modeling of species distributions withMaxent:

new extensions and a comprehensive evaluation. Ecography 31,

161–175. doi:10.1111/J.0906-7590.2008.5203.X

Wildfire hazard mapping: site conditions Int. J. Wildland Fire 577

http://soildatamart.nrcs.usda.gov/State.aspx
http://soildatamart.nrcs.usda.gov/State.aspx


Phillips SJ, Dudı́k M, Schapire RE (2004) A maximum entropy approach to

species distribution modeling. In ‘Proceedings of the Twenty-first

International Conference on Machine Learning’, 4–8 July 2004, Banff,

AB, Canada. (Eds RGreiner, D Schuurmans) pp. 655–662. (AMC Press:

New York)

Phillips SJ, Anderson RP, Schapire RE (2006)Maximum entropymodeling

of species geographic distributions.EcologicalModelling 190, 231–259.

doi:10.1016/J.ECOLMODEL.2005.03.026

Platt RV (2010) The wildland–urban interface: evaluating the definition

effect. Journal of Forestry 108(1), 9–15.

Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holocomb SS, McKeefry

JF (2005) The wildland–urban interface in the United States. Ecological

Applications 15(3), 799–805. doi:10.1890/04-1413

SyphardAD, Radeloff VC, Keeley JE, Hawbaker TJ, ClaytonMK, Stewart

SI, Hammer RB (2007) Human influence on California fire regimes.

Ecological Applications 17(5), 1388–1402. doi:10.1890/06-1128.1

Tarboton DG (1997) A newmethod for the determination of flow directions

and contributing areas in grid digital elevation models.Water Resources

Research 33, 309–319. doi:10.1029/96WR03137

TheNationalMap, LANDFIRE (2007) LANDFIRENational Forest Canopy

Cover layer. USDepartment of Interior, Geological Survey. Available at

http://gisdata.usgs.net/website/landfire/ [Verified 5 December 2012]

Thompson MP, Calkin DE, Finney MA, Ager AA, Gilbertson-Day JW

(2011) Integrated national-scale assessment of wildfire risk to human

and ecological values. Stochastic Environmental Research and Risk

Assessment 25, 761–780. doi:10.1007/S00477-011-0461-0

US Forest Service Northeastern Area State and Private Forestry (2010)

Northeast wildfire risk assessment. Available at http://www.na.fs.fed.us/

fire/pubs/northeast_wildfire_risk_assess10_lr.pdf [Verified 5 Decem-

ber 2012]
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