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Quantifying the Model-Related Variability of
Biomass Stock and Change Estimates in the
Norwegian National Forest Inventory

Johannes Breidenbach, Clara Anton-Fernandez, Hans Petersson, Ronald E. McRoberts, and
Rasmus Astrup

National Forest Inventories (NFIs) provide estimates of forest parameters for national and regional scales. Many key variables of inferest, such as biomass and timber
volume, cannot be measured directly in the field. Instead, models are used fo predict those variables from measurements of other field variables. Therefore, the
uncertainty or variability of NFI estimates results not only from selecting a sample of the population but also from uncertainties in the models used to predict the variables
of interest. The aim of this study was to quantify the model-related variability of Norway spruce (Picea abies [L.] Karst) biomass stock and change estimates for the
Norwegian NFI. The model-related variability of the estimates stems from uncertainty in parameter estimates of hiomass models as well as residual variability and was
quantified using a Monte Carlo simulation technique. Uncertainties in model parameter estimates, which are often not available for published biomass models, had
considerable influence on the model-related variability of biomass stock and change estimates. The assumption that the residual variability is larger than documented
for the models and the correlation of within-plot model residuals influenced the model-related variability of biomass stock change estimates much more than estimates
of the biomass stock. The larger influence on the stock change resulted from the large influence of harvests on the stock change, although harvests were observed
rarely on the NFI sample plots in the 5-year period that was considered. In addition, the temporal correlation between model residuals due to changes in the allometry
had considerable influence on the model-related variability of the biomass stock change estimate. The allometry may, however, be assumed to be rather stable over
a 5-year period. Because the effects of model-related variability of the biomass stock and change estimates were much smaller than those of the sampling-related
variability, efforts to increase the precision of estimates should focus on reducing the sampling variability. If the model-related variability is fo be decreased, the focus
should be on the ree fractions of living branches as well as stump and roofs.
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ational forest inventories (NFIs) provide estimates of forest

| \ | parameters for national and regional scales. Because of the
vast geographical extent of forests, a full census is impossi-

ble. Therefore, NFI results are estimates based on measurements of
a sample of the population. The sample usually consists of sample
plots distributed over the country. Because only a sample is taken,
uncertainty in the form of sampling-related variability is introduced
into the estimates. Many variables of interest such as timber volume,
biomass, or carbon cannot be measured directly in the field. There-
fore, models are used to estimate these variables from tree-level
measurements of field variables such as diameter and height. This
process introduces uncertainty in the form of model-related variabil-
ity. Other sources of uncertainty in NFI estimates are measurement

errors during fieldwork and calculation errors during data process-
ing for variables that are estimated from measured variables (e.g.,
Cunia 1965, Intergovernmental Panel on Climate Change 2000).

The uncertainty associated with forest inventory estimates is of
central relevance in the further use of inventory results in policy-
making and international reporting. For example, an inadequate
representation of uncertainties in estimates can result in consider-
able biases for future projections (Valle 2011, Fortin and Langevin
2012). The uncertainty is also a declaration of quality and reveals the
weaknesses of an inventory, which form the basis for identifying
areas of further improvement.

The different sources of uncertainty in forest inventories and
how they can be considered in estimates have long been studied. For
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example, Cunia (1986a, 1986b, 1986¢), Gertner (1990), and Gert-
ner and Ko6hl (1992) analyzed the effect of different error sources
under a variety of sampling designs. McRoberts and Westfall (2013)
used a Monte Carlo simulation approach to quantify the uncer-
tainty of model-related variability of timber volume estimates.
Berger et al. (2013) used a Monte Carlo simulation approach to
assess the effects of measurement errors in volume model predictor
variables on individual tree volume estimates. Stahl et al. (2011)
introduced a model-based estimator that inherently considered the
model- and sampling-related variability. The approach was applied
by Stdhl et al. (2013) to quantify the model-related variability of
national forest biomass estimates in Sweden and Finland. Whereas
Wirth et al. (2004) carried out a meta-analysis with special attention
to the uncertainty associated with biomass models, Peltoniemi et al.
(2006) and Monni et al. (2007) focused more generally on factors
influencing the uncertainty of greenhouse gas inventories.

As part of their greenhouse gas accounting, nations that have
signed the United Nations Framework Convention on Climate
Change are required to report estimates and uncertainties for the
carbon stocks and carbon stock changes in their forests (Intergov-
ernmental Panel on Climate Change 2000). Because tree biomass is
an important component of the forest carbon stock, tree biomass
uncertainty has recently received renewed attention. Tree biomass
can be estimated from NFI data using biomass expansion factors
(BEF) or biomass models (Petersson et al. 2012). BEFs are preferred
if only aggregated volume measurements are available, whereas bio-
mass models are applicable if single tree variables such as diameter
and height are measured systematically (Somogyi et al. 2007). A
range of different biomass models exists (for a review, see Jenkins et
al. 2003, Zianis et al. 2005, Muukkonen and Mikipii 2006). For
the Nordic countries, the most widely applicable biomass models
include those of Marklund (1987, 1988), Petersson and Stihl
(2006), and, more recently, Repola (2009) and Skovsgaard et al.
(2011).

National or regional estimates of biomass are usually based on a
two-phase survey, similar to the estimation of timber volume (Cunia
1986b). In a first phase (the forest inventory), auxiliary variables that
correlate with tree biomass and are easy to measure, such as dbh and
height, are measured on a large sample of trees. In a second phase,
auxiliary variables and tree biomass are measured in a small number
of trees. A regression model is then fit with biomass as the dependent
variable and the auxiliary variables (e.g., dbh and height) as inde-
pendent variables. The biomass model is then used to predict the
single tree biomass of the trees measured in the first phase. Usually,
the second-phase sample is so costly that it is carried out separately
from the first phase, and the biomass models are applied in many
subsequent forest inventories (first-phase samples). Therefore, it is
not uncommon that the models do not fully cover the geographical
range of the applications and are based on trees that were sampled
many years before the forest inventory takes place. Sufficient infor-
mation on the model uncertainty is then frequently missing, with
the result that quantification of model-related variability is often
accepted as impossible (Cunia 1986b).

In the Norwegian NFI, biomass models developed in Sweden
(Marklund 1988, Petersson and Stdhl 2006) are currently used to
predict the biomass of sampled trees (Norwegian Climate and Pol-
lution Agency 2010). Models were developed and their parameters
were estimated separately for the tree fractions of stem wood, bark,
living branches, dead branches, and stump and roots, and must be
combined to obtain the total tree biomass. The applied biomass
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models used are tree species-specific and use dbh and height as
independent variables.

In this study, the biomass model-related variability of the bio-
mass stock estimate of Norway spruce (Picea abies [L.] H. Karst.)
and the stock change estimate between two consecutive inventory
cycles were quantified. The model-related variability of the esti-
mates stems from uncertainty in the parameter estimates of the
biomass models and the residual variability around the model pre-
dictions. The model-related variability of the estimates was approx-
imated using a Monte Carlo simulation method known as the para-
metric bootstrap (Efron and Tibshirani 1993, p. 53ff). Different
properties of the biomass models contribute differently to the un-
certainty of the estimate. Therefore, the overall goal was approached
based on four research questions:

1. Because the biomass models were fit to Swedish data, it is
possible that the model residual variance is larger under Nor-
wegian conditions. Therefore, the influence of the larger re-
sidual variance on the model-related variability was assessed.

2. Information on the uncertainty and correlation of the param-
eter estimates is often missing for existing biomass models.
Therefore, the contributions of uncertainty in parameter esti-
mates on model-related variability were analyzed.

3. Trees close to each other tend to grow similarly. Hence, devi-
ations of the actual biomass from the predicted biomass (i.e.,
the model residuals) tend to be correlated for trees on the same
sample plot. Therefore, the effects of correlations among with-
in-plot model residuals on model-related variability were
analyzed.

4. Deviations of the actual biomass from the predicted biomass
on the same tree at consecutive inventory cycles tend to be
correlated. We evaluated how the temporal correlation of
these deviations influenced the model-related variability of the
biomass stock change.

Material—The Norwegian National Forest
Inventory (NNFI)

The NNFI is a permanent sample plot inventory that covers the
whole country (Tomter etal. 2010). Except for high mountain areas
and some northern parts of the country, the permanent sample plots
are located on a 3 X 3-km grid (Landsskogtakseringen 2010). Every
year, 20% of the sample plots are visited, which results in 5-year
remeasurement cycles. Among other attributes, dbh and tree species
of all trees with dbh >5 cm are recorded on circular sample plots
with a 8.92-m radius (250 m?). On plots with 10 trees or fewer, all
tree heights are measured using hypsometers. On plots with more
than 10 trees, heights are measured from a relascope-selected sub-
sample with a target sample size of 10 trees/plot (Landsskogtakser-
ingen 2010). The heights of the unmeasured trees are estimated
using tariff models calibrated at the plot level with the data from
measured trees.

The representation factor (also known as design weight or expan-
sion factor) of an observation in the NFI is given by dividing the
land area of Norway (including lakes) by the number of potential
sample plots on the 3 X 3-km grid independently of their land
cover. Because of the NNFI design, the representation factor is
36044.94.

We used spruce trees sampled in the eighth (NNFI8) and ninth
inventory cycle (NNFI9) to estimate the spruce biomass stock and



Table 1. NNFI sample tree characteristics.

NNFI8 NNFI9
Predicted Predicted
dbh (cm) Height (m) biomass (kg) dbh (cm) Height (m) biomass (kg)
Mean 13.25 10.09 108.29 13.44 10.37 112.81
SD 7.43 4.73 162.80 7.54 4.88 168.64
Max. 71.20 33.10 2,286.40 74.00 34.30 2,646.36

Biomass was predicted according to Marklund (1988) and Petersson and Stdhl (2006).

the spruce biomass stock change between the two NNFI cycles. The
sample plots in the NNFI8 and NNFI9 were visited between 2000
and 2004 and 2005 and 2009, respectively (Larsson and Hylen
2007). We defined our sample as the 10,384 NNFI plots on the 3 X
3-km grid that were forest according to the NNFI definition in both
inventory cycles. Spruce trees were observed on m = 5,831 and
6,023 sample plots of the common grid in the NNFI8 and NNFI9,
respectively. Harvests between the two inventory cycles were ob-
served on 102 sample plots. The numbers of sample trees in the first
phase were » = 81,868 and 7 = 86,029 in the NNFI8 and NNFI9,
respectively. Of the spruce trees measured in the NNFI8, 75,593
were measured in the NNFI9. Characteristics of the sample trees are
given in Table 1. A small proportion of trees (0.11% in the NNFI8
and 0.12% in the NNFI9) were within the extrapolation range with
respect to the dbh and height of trees observed in the second-phase
sample that was used to fit the biomass models (Marklund 1988, p.
8, Table 3). Nonetheless, the trees were well within the range of data
for which the biomass models behave logically (Marklund 1988,
p- 18).

Methods
Biomass Models

The biomass models G5, G8, G12, and G20 of Marklund
(1988) and case B, category i of Petersson and Stahl (2006) were
used to predict the biomass of the tree fractions of stem wood under
bark, bark, living branches including needles, dead branches, and
stump with roots down to 2-mm diameter, respectively. These uni-
variate biomass models have the general form

5= P i=1,...,n, (1)

where fB is the coefficient vector, x; is the vector of the explanatory
variables x; = (x; X1, X5, x3;) with x, = 1 (intercept), x; = dbh,
x, = height, and x; = In(height) and 7, is the number of second-
phase observations used by Marklund (1988) and Petersson and
Stahl (20006) to fit the biomass models. The model for stump and
roots includes dbh as the only explanatory variable such that x; =
(x5 x1,) in this case. To estimate the linear model coefficients,
Marklund (1988) and Petersson and Stahl (2006) transformed the
left- and right-hand sides of models 1 with the natural logarithm.
The resulting models are of the general form

lﬂ()’[) = ﬁTxi + g, & =~ N(O, 0'2)) (2)

where &, is the residual and o is the residual variance. Marklund
(1988) and Petersson and Stihl (2006) assumed the model residuals
to be independently and identically normally distributed on the log
scale.

The necessary spruce biomass models in Marklund (1988) and
Petersson and Stahl (2006) were refitted using the original data to
obtain the parameter covariance matrices W5 f'= 1,..., p for each

model fof the p = 5 tree fractions. The parameter covariance ma-
trices can be found in Tables A1-A5 in the Appendix. Any depen-
dence among the residuals resulting from spatial correlation was
ignored. However, the dependence of residuals between models was
assessed using the model residuals. The model residuals of 7 trees
with a complete record of all tree fractions can be used to obtain the
2 X p residual covariance matrix

2 =cov(g,.... & ..., &) (3)
where £, = {g; 1,....&; ,,f)}T is the vector of residuals of model £
However, because Petersson and St3hl (2006) used a different data
set (second-phase sample) than Marklund (1988), % cannot be di-
rectly calculated from the residuals of Petersson and Stdhl (2006)
and Marklund (1988) models. Therefore, we followed a two-step
procedure to obtain 2. First, the correlation matrix

Q =cor(gy,.... & ..., &) (4)
was calculated by using the residuals of the refitted model G23 for
stump and roots by Marklund (1988) instead of the residuals of the
model by Petersson and St&hl (2006).

Second, the residual covariance matrix 3, was calculated as

3 =Q(c® o)) (5)
where

o={o, ... 05.., 0" 6)
is the vector of model residual SDs and & is the outer product. The
residual SD of the model for stump and roots by Petersson and Stahl
(2006) was used in Equation 6. The residual covariance matrix can
be found in Table A6 in the Appendix.

Between 505 and 540 trees were used by Marklund (1988) to fit
the biomass models for the aboveground fractions, and 316 trees
were used to fit the model for stump and roots. There were 2.“ =
274 trees with measurements of all tree fractions that are the basis

for Q.

The residual variance of the biomass models may be greater un-
der Norwegian conditions than for Swedish forests. To simulate a
greater residual variance and test the first research question, a new
variance-covariance matrix was calculated by multiplying the resid-
ual SDs o /in Equation 6 by 1.5. This means a 50% greater residual
SD than that reported by Marklund (1988) and Petersson and Stihl
(2006) was assumed. The vector of inflated model residual SDs (o)
was then multiplied with the correlation matrix of the residuals
(Equation 4) to obtain 3 under the assumption of inflated residual
variances.

Forest Science * February 2014 27



Model-Related Variability of Biomass Stock and Change
Estimates
Parametric Bootstrap of the Biomass Stock

For purposes of focusing specifically on the effect of model-re-
lated variability on estimates, NNFI measurements of dbh and both
measurements and tariff model estimates of height were assumed to
be error-free. The parametric bootstrap was carried out as follows

1. From the distribution N(0, lI’f) one random sample e}fwas
drawn for every biomass model f. The vector efwas added to
the original model parameters published by Marklund (1988)
and Petersson and Stihl (2006). Based on these new model
parameter estimates and the dbh and height measurements of
the NNFI8 and NNFI9," biomass by tree fraction was pre-
dicted as ln(il»j) = {ln(jl,l-j), e (ﬁfi]-), . (jp,y)}Tfor thej =
1, ..., n;trees on the i = 1, ..., m sample plots.

2. Because of similar growing conditions, the biomass model
residuals for trees on the same plot tend to be correlated
(e.g., Repola 2009). The plot-level correlation was not con-
sidered in the biomass models (Marklund 1988, Petersson and
Stdhl 2006; Equation 2). Therefore, the concept of weighted
residuals as described by Lehtonen et al. (2007), was applied.
A sample of 7 random numbers was drawn from the
multivariate normal distribution MO0, %), resulting in
the matrix IT*? of the dimensions 7 X p. Every row in TI*'"
is a p vector of simulated model residuals 82-(7) =

{s;‘j]’, s S}TSJD, e s;,f-]D}T for tree j on sample plot 7. The

superscript (7) indicates the simulated residuals for trees.

Analogously, a sample of 72 random numbers IT*? was drawn

for each sample plot i. The superscript (P) indicates the sim-

ulated residuals for plots. The weighted residuals then result
from

*

G el T e 0

where the weight w is the within-plot correlation.

3. Thesimulated residuals were added to the biomass predictions
on the logarithmic scale. The result was back-transformed to
the original scale and multiplied with the representation factor

¥ = explln(fy) — A+ gjlr (8)

where A is the p vector of bias correction factors specific for the
respective biomass model”® and r; is the p vector of represen-
tation factors.

4. The sum of tree biomass estimates over all 7 trees is one para-
metric bootstrap sample of the biomass stock by tree fractions

n

A
* — v
Y= 2)’/‘
J
where Y* = {Y7, ..., Y}} is a p vector of biomass total estimates by

tree fraction. The sum over the tree fractions is the biomass stock

denoted Y* resulting from one bootstrap replication.
Steps 1—4 were repeated 2,000 times, resulting in a set of boot-

strap replications. The mean of the bootstrap replications Y* is the

parametric bootstrap estimate Y* of the biomass stock. The variance
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of the bootstrap replications 7* is the mean squared error resulting
from model uncertainty (MSE,).

The parametric bootstrap was applied to the spruce trees ob-
served on the sample plots in the NNFI8 and NNFI9 as described in
the Material section. Whereas the study of Repola (2009) suggests a
within-plot correlation w of 0.5 (for total tree biomass), it was also
tested with the values 0 (no correlation on plot level) and 1 (full
correlation on plot level; all trees on one plot have the same simu-
lated residual). R software for statistical computing (R Core Team
2012) was used for all analysis.

Parametric Bootstrap of the Biomass Change

The biomass change is given as ¥#® — ¥*®, where the superscripts
8 and 9 indicate the bootstrap estimates for the NNFI8 and NNFI9,
respectively. It is probable that if the biomass model overestimates
(underestimates) the true biomass of a tree in one inventory cycle,
the biomass model will overestimate (underestimate) the true bio-
mass of the same tree also in the next inventory cycle. The concept
of weighted residuals (Lehtonen et al. 2007) was also used to model
this temporal correlation of biomass model residuals. In Equation 7,
8;-(7) and 8;;(1)) are substituted by the within-plot correlation-
weighted residuals of the NNFI8 and NNFI9 denoted by 8;-(9) and
&5 ®, respectively, to model the temporal correlation of biomass
model residuals. The new vector of simulated residuals, &7, is then
used in Equation 8. The weight w is given by the temporal correla-
tion. Temporal correlations of 0.5, 0.9, and 1 were simulated.

Sampling-Related Variability of Biomass Stock and Change
Estimates

For comparison to the model-related variability, the sampling-
related variabilities of the biomass stock and change estimates were
also calculated. To focus on the sampling-related variability, the
biomass, predicted with the models described above, was assumed to
be a measurement without error.

The sample estimate of the biomass stock is given by the ratio
estimator (Thompson 2002, Petersson et al. 2012)

. Mm

where M is the population size,? 7 is the number of sample plots,
and y; = 27y, is the sum of the biomass predictions y;; for the 7;
trees 7 on plot 7. Because the true population size was unknown, M
was estimated from the sample by multiplying the number of sample
plots by the representation factor. The variance resulting from the
estimation of the forest area was ignored to focus on the sampling-
related variability. The sample size 7 was the number of sample

plots with observed spruce trees. Because ¥ was an estimate of the
biomass stock over all tree fractions, y;; was the sum of the biomass
predictions by tree fraction per tree.

The introduction of the plot-level biomass is necessary to calcu-
late the variance (or MSEy) of the estimate because observations for
trees measured on the same plot are not independent of each other.
An estimate of the variance of the total biomass estimate was given

by

. &
MSE; = var(¥%) = i



Table 2. Biomass stock and change estimates and their associated uncertainties (RMSE) in 1,000,000 Mg.

NNFI8 NNFI9 Change
Original Original Original
Method Boot. Boot. sample Boot. Boot. sample Boot. Boot. sample
Uncertainty in parameter estimates Incl. Excl. Incl. Excl. Incl. Excl.
Estimate 319.663 319.520 319.551 349.902 349.730 349.750 30.239 30.210 30.199
RMSE 3.087 0.733 5.073 3.381 0.788 5.476 0.410 0.258 2.507

Parametric bootstrap estimates (Boot.) included (Incl.) and excluded (Excl.) uncertainty in parameter estimates. The residual variance was as reported by Marklund (1988)
and Petersson and Stahl (2006) and the within-plot correlation was set to 0.5. Sample estimates (Original sample) are based on the assumption of a measurement of single

tree biomass.

Table 3. Biomass stock and change estimates and their associated uncertainties (RMSE) in 1,000,000 Mg.

NNFI8 NNFI9 Change
Original
Method Boot. Original sample Boot. Original sample Boot. sample
Estimate 319.640 319.551 349.877 349.750 30.237 30.199
RMSE 3.198 5.073 3.500 5.476 0.509 2.507

Parametric bootstrap estimates (Boot.) included uncertainty in parameter estimates and are based on the assumption of a 50% inflated residual SD compared with values as
reported by Marklund (1988) and Petersson and Stdhl (2006). The within-plot correlation was set to 0.5. Sample estimates (Original sample) are based on the assumption

of a measurement of single tree biomass.

Table 4. Biomass stock estimates and their associated uncertainties (RMSE) in 1,000,000 Mg.

NNFI8 NNFI9
Original
Method Boot. Boot. Boot. Original sample Boot. Boot. Boot. sample
Within-plot correlation 1 0.5 0 1 0.5 0
Stock estimate 319.665 319.663 319.654 319.551 349.901 349.902 349.896 349.750
RMSE 3.163 3.087 3.008 5.073 3.464 3.381 3.297 5.476

Parametric bootstrap estimates (Boot.) include uncertainty in parameter estimates and residual variances as reported by Marklund (1988) and Petersson and Stdhl (2006).
Within-plot correlations of 1, 0.5, and 0 were simulated. Sample estimates (Original sample) are based on the assumption of a measurement of single tree biomass.

where

, 1

Tm—1

2 ()/i - )_/)2

i=1

s

is the sample variance and y is the mean of the y/s.

In the case of the estimation of the biomass stock change, y; is the
change of the measured biomass on a sample plot between two
periods. In our case, this was the observation in the NNFI9 minus
the observation in the NNFIS.

Total Variability

The sum of the model- and sampling-related variability is the
total variability, MSE = MSE,, + MSEg. The root mean squared
error (RMSE) is the square root of MSE.

Results
Uncertainty in Parameter Estimates and Residual Variance
If the uncertainty in the model parameter estimates was consid-
ered, the model-related variability (RMSE,,) of the biomass stock
and biomass stock change estimate was considerably larger (1.5 and
4.2 times) than if only residual variability was considered (Table 2).
Because ignoring the uncertainty in the parameter estimates resulted
in unrealistically small model-related variability of the estimates,
model parameter uncertainty is included in all further results.*
Inflating the residual variance by 50% compared with the re-

ported values (Marklund 1988, Petersson and Stdhl 2006) (termed
inflated residual variance in the following), increased the RMSE, ; of
the biomass stock and biomass stock change by 4 and 24%, respec-
tively (Table 3).

If an inflated residual variance was assumed, the total variability
(RMSE) of the biomass stock estimate was approximately 2% of
the estimate in both inventory cycles. The model-related variabilicy
of the estimate (MSE,,) accounted for approximately 28% of the
total variability (MSE ). The total variability of the biomass stock
change estimate was approximately 8% of the estimate. For the
biomass stock change, MSE,; accounted for approximately 4% of
the MSE . Similar results were obtained if the residual variance was

not inflated (Tables 2 and 3).

Within-Plot Correlation

An increased within-plot correlation of the model residuals
slightly increased the model-related variability of the biomass stock
estimate (Table 4). The influence of the within-plot correlation on
the model-related variability of the biomass change estimate was
greater than for the stock estimate. The RMSE,; of the stock change
increased by approximately 19% if the within-plot correlation was
assumed to be 0.5 compared with ignoring the within-plot correla-
tion. The model-related variability further increased by another
15% if the within-plot correlation was assumed to be 1.0 (Table 5).
Because of the large proportion of the sampling variability, the total
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Table 5. Biomass change estimates and their associated uncer-
tainties (RMSE) in 1,000,000 Mg.

Original

Method Boot. Boot. Boot. sample
Within-plot correlation 1 0.5 0

Change estimate 30.235 30.239 30.242 30.199

RMSE 0.473 0.410 0.345 2.507

Parametric bootstrap estimates (Boot.) include uncertainty in parameter estimates,
a temporal correlation of 0.9, and residual variances as reported by Marklund
(1988) and Petersson and Stdhl (2006). Within-plot correlations of 1, 0.5, and 0
were simulated. Sample estimates (Original sample) are based on the assumption of
a measurement of single tree biomass.

Table 6. Biomass change estimates and their associated uncer-
tainties (RMSE) in 1,000,000 Mg.

Original

Method Boot. Boot. Boot. sample
Temporal correlation 1 0.9 0.5

Change estimate 30.240 30.239 30.229 30.199

RMSE 0.401 0.410 0.696 2.507

The temporal correlation was set to 1, 0.9, and 0.5. Parametric bootstrap estimates
(Boot.) are based on a within-plot correlation of 0.5 and residual variances as
reported by Marklund (1988) and Petersson and Stahl (2006). Uncertainty in
parameter estimates was considered. Sample estimates (Original sample) are based
on the assumption of a measurement of single tree biomass.

variability was barely affected by the increased model-related vari-
ability resulting from the increased within-plot correlation.

Temporal Correlation

In the above paragraphs, the temporal correlation between the
model residuals of a tree that was measured in the NNFI8 and
NNFI9 was set to 0.9. Increasing the temporal correlation to 1.0
barely influenced the model-related variability of the estimate. De-
creasing the temporal correlation to 0.5 increased the RMSE,, by
70% (Table 6). As for the within-plot correlation, the total variabil-
ity was barely affected by changes in the temporal correlation due to
the large proportion of the sampling-related variability.

Model-Related Variability of Estimates by Tree Fraction

The tree fractions of living branches, stump and roots, and stem
wood had the greatest influence on the model-related variability of
the biomass stock and change estimates (Figure 1, Table 7). It
should be noted that the MSE,, values by tree fraction are not
additive because of the correlation between the tree fractions. The
MSE,, values were in the same order for the NNFI9 as shown for the
NNFI8. The rankings of the MSE,, values according to size were
the same for the biomass change as for the stock.

Discussion

The aim of the study was to quantify the model-related variabil-
ity of biomass stock and change estimates of Norway spruce mea-
sured during two consecutive NNFI cycles. With use of a Monte-
Carlo simulation, the uncertainties in estimates of the different
biomass components were analyzed with respect to how they influ-
enced the model-related variability of biomass stock and change
estimates under different assumptions.

Of all the effects analyzed, the uncertainty in parameter estimates
had the greatest influence on the model-related variability. If the
information on the covariance structure of the model parameters
would not have been available and thus been ignored, the model
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Centered biomass stock (1000000 Mg)
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Bark —

Living branches —
Dead branches —
Stem wood |
Stump + roots —|

Figure 1. Distribution of the parametric bootstrap samples of the
biomass stock of the NNFI8 centered around the mean prediction
by tree fraction assuming residual variances as reported by Mark-
lund (1988) and Petersson and Stahl (2006) and a within-plot
correlation of 0.5. Uncertainty in paramefer estimates was consid-
ered. Dashed lines indicate empirical 95% confidence intervals of
the model-related uncertainty in the estimate.

Table 7. Biomass estimates of the NNFI8 by tree fraction and their
associated model-related variability in 1,000,000 Mg.

Stump

Living Dead Stem and

branches branches wood Bark roots
Stock estimate 85.197 3.570 133.147 14.697 83.051
RMSE 2.016 0.215 1.248 0.252 1.960

The within-plot correlation was set to 0.5. Residual variances as reported by Mark-
lund (1988) and Petersson and Stihl (2006) were assumed.

uncertainty would have been considerably underestimated. Unfor-
tunately, information on the covariance structure of model param-
eter estimates is usually missing in published biomass models. Given
the weight of uncertainty in parameter estimates in the model-re-
lated variability and the increasing interest in biomass uncertainty,
we recommend that future biomass models report the covariance
structure of model parameters. To facilitate the analysis of the un-
certainty in estimates and forecasts of other variables of interest
besides biomass, this recommendation could be extended to forestry
models in general.

The model-related variability, as a proportion of the total vari-
ability, was considerably greater for the biomass stock than for the
change in biomass stock, because the model residuals will be very
similar for trees measured in two consecutive forest inventories and
thus compensate for each other. Similar results were reported by
Stdhl et al. (2013), who used an analytical approach to estimate the
model-related variability of national biomass estimates in Sweden
and Finland. Whereas Stihl et al. (2013) considered the above-
ground biomass of spruce, pine, and birch, the order of magnitude
of the model-related variability of biomass stock and change esti-
mates was similar as in this study.



The results of this study are based on the assumption that Swed-
ish biomass models (Marklund 1988, Petersson and St3hl 2006) are
transferable to Norwegian conditions. This assumption was gener-
ally corroborated by two studies that were, however, based on a
small, nonrepresentative sample of trees (B.H. @yen, unpubl. data,
2009; Andreassen 2009). Because it may be assumed that the Swed-
ish biomass models fit the Norwegian data less well than the Swedish
data, the residual variance was inflated with respect to Marklund
(1988) and Petersson and Stihl (2006). The choice of a 50% in-
flated residual variance was, however, arbitrary. The inflated resid-
ual variance particularly affected the model-related variability of the
biomass stock change estimate. Nonetheless, because the model-re-
lated variability of the biomass stock change estimate was small
compared with the sampling-related variability, an increase in the
residual SD of 50% only marginally increased the total variability.

Increased within-plot correlation resulted in increased model-re-
lated variability of the biomass stock change estimate. The same
tendency, although less obvious, was observed for the biomass stock.
The within-plot correlation describes the similarity of the deviation
of the true biomass from the biomass prediction of the model for the
trees on one plot. With increased similarity, the residual deviations
compensate for each other to a lesser degree and the uncertainty
increases. For the same reason, the influence of the within-plot
correlation on the model-related variability will increase with a de-
creasing number of sample plots. Plot-level random-effects models
(Repola 2009, Skovsgaard et al. 2011) would be necessary to
consider the influence of the within-plot correlation in a more real-
istic way.

Although the total variability of the estimates was barely affected,
it was somewhat surprising that the effects of increased residual
variability and within-plot residual correlations on the model-re-
lated variability were greater for the biomass stock change estimate
than for the biomass stock estimate. The Monte Carlo simulations
were therefore repeated for sample plots on which no harvesting
occurred between NNFI8 and NNFI9. Barely any influence of in-
creased residual variance and within-plot correlation on the model-
related variability of the biomass stock change estimate was visible
under this restriction. We can therefore conclude that harvests, al-
though rarely occurring in a 5-year period, have a strong influence
on the model-related variability.

The temporal correlation between trees measured in both NNFI
cycles had a large effect on the model-related variability of the bio-
mass stock change estimate. Quantifying the actual temporal corre-
lation of the deviation between true biomass and predicted biomass
is practically impossible because true biomass is measured using
destructive sampling. The difference between true and predicted
biomass is related to the allometry of the tree; therefore, an indica-
tion of the temporal correlation could be obtained by considering
other allometric measurements that are obtained in a nondestructive
way. For example, the temporal correlation of the ratio of dbh and
height in 8,400 measured trees in the NNFI8 and NNFI9 was 0.97,
which suggests that a temporal correlation of 0.9 is a reasonable or
perhaps slightly conservative assumption.

Independently of the assumptions made in the bootstrap proce-
dure, the model-related variability was considerably less than the
sampling-related variability, especially for the biomass change. Sim-
ilar results were reported for the estimation of timber volume, given
that the tree attributes were measured without systematic errors
(Gertner 1990, Gertner and Kshl 1992).

Although by far the most biomass is accumulated in the tree

fraction stem wood, the contribution to the model-related variabil-
ity is greater for living branches as well as stump and roots. This
results from the comparatively precise biomass model for stem wood
Marklund (1988) and Petersson and Stihl (2006).

This study focused on the spruce biomass model-related variabil-
ity of estimates of biomass stock and biomass stock change in Nor-
way. The methodology and approach are, however, generally appli-
cable to other permanent sample plots inventories. Other
approaches might be feasible; for example, we could envision an
analytical approach to estimate uncertainty for a single biomass
equation (e.g., Stahl etal. 2011, 2013). The Monte Carlo approach
applied here is robust, flexible, and intuitive although more com-
puter-intensive than the analytical approach.

Conclusions

The model-related variability of the biomass stock and change
estimates of Norway spruce was considerably less than the sampling-
related variability of the estimates. This was true for all the different
assumptions on the model structure (e.g., within-plot correlation of
residuals etc.) made during the bootstrapping procedure. Although
the model-related variability of the biomass stock estimate was con-
siderable, the total variability combining model- and sampling-re-
lated variability was small compared with the estimate. Whereas the
model-related variability of the biomass stock change estimate was
small, the total variability was considerable compared with the
estimate.

The model-related variabilities of the biomass stock and change
estimates were both strongly affected by considering uncertainties in
the model parameter estimates. However, assumptions on inflated
residual variances and within-plot correlations affected the model-
related variability of the biomass stock change estimate much more
than the estimate of the biomass stock. This was mainly driven by
the large influence of the few plots where harvests occurred. The
temporal correlation of model residuals also strongly affected the
model-related variability of the biomass stock change estimate but
changes in allometry are usually small.

The results suggest that if the objective is reduction in the total
uncertainty of biomass or biomass change estimates, then the main
emphasis should be to reduce the sampling-related variability. If the
model-related variability is to be decreased, the focus should be on
the tree fractions of living branches as well as stcump and roots. In
further studies, investigation into how measurement errors and the
uncertainty in the height model for trees without height measure-
ments contribute to the uncertainty of the biomass stock and change
estimates given the Norwegian National Forest Inventory design
will be performed.

Endnotes

1. This means that the same model parameters were used for trees in the NNFI8 and
NNFI9 in one bootstrap repetition.

2. The standard bias correction factor RMSE?/2 was used. It should be noted that a
bias correction is not necessary in this case because an individual observation is
predicted (including a simulated residual error component), which reconstructs
the error structure. Because Marklund’s models include already a bias correction
factor in the intercept, it had to be subtracted.

3. Often, the concept of land area is used (e.g., Petersson et al. 2012), which is
equivalent to the representation here. The population size is the number of units
of the same size as a sample plot in the population.

4. The bootstrap estimates and the sample estimate of the total biomass stock differ
slightly. Because this bootstrap bias was small compared with the model-related

variability, it was ignored (Efron and Tibshirani 1993, p. 128).
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Appendix

Table A1.  Parameter covariance matrix () of the biomass
model for stem wood (G5) by Marklund (1988).

Table A4. Parameter covariance matrix (W] of the biomass
model for dead branches (G20) by Marklund (1988).

Intercept dbh Height Log(height) Intercept dbh Height Log(height)
Intercept 0.00187 Intercept 0.03943
dbh 0.00063 0.02804 dbh 0.04184 1.36314
Height 0.00011 —0.00008 0.00001 Height 0.00215  —0.00762 0.00037
Log(height) ~ —0.00149  —0.00566 —0.00008 0.00226 Log(height) ~ —0.03575  —0.22849 —0.00153 0.06607
Table A2.  Parameter covariance matrix (W) of the biomass Table A5. Parameter covariance matrix (W) of the biomass

model for stem bark (G8) by Marklund (1988).

model for stump and roots by Petersson and Stahl (2006).

Intercept dbh Height Log(height) Intercept dbh
Intercept 0.00612 Intercept 0.00230
dbh 0.00238 0.09170 dbh —0.00438 0.00963
Height 0.00035 —0.00034 0.00003
Logtheighy 000491 —0.01770 —0-00027 0.00709 Table A6. Residual covariance matrix 3.
Table A3. Parameter covariance matrix (¥) of the biomass Res. Res. Res. Res. Res.
model for living branches (G12) by Marklund (1988). G12 G20 G5 G8 PS0.06
. . Res. G12 0.13976
Intercept dbh Height Log(height) Res. G20 010997 1.12792
Intercept 0.00454 Res. G5 —0.00065  0.05229  0.02366
dbh 0.00418 0.16322 Res. G8 0.01360  0.05564  0.02072  0.07749
Height 0.00027 —0.00030 0.00004 Res. PS0.06 0.03414  0.00251 0.01133  0.02912  0.10438
Log(height) —0.00428 —0.03535 —0.00027 0.01096

G5, G8, G12, and G20 refer to biomass models by Marklund (1988). PS0.06 refers
to the biomass model by Petersson and Stdhl (2006). Res., residual.
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