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Abstract - Laricobius osakensis (Coleoptera: Derodontidae) was imported from Japan to
the United States in 2006 for study in quarantine facilities as a potential biological control
of Hemlock Woolly Adelgid. Laricobius osakensis was released from quarantine in 2010,
but it was soon discovered that the colony also contained a cryptic species, Laricobius na-
ganoensis. This led to the placement of L. osakensis back into quarantine and development
of a method to purify the colony. To distinguish the two species, we designed a restriction
fragment length polymorphism (RFLP) assay using mitochondrial DNA sequences and
developed a non-lethal testing method. Twenty-one diagnostic nucleotide sites separated
the two species, and they both exhibited extraordinary intra-specific haplotype diversity.
Sequencing the ITS2 nuclear region did not produce evidence of hybridization between the
species in the field or in the lab colony. Splitting the colony into small groups and testing
their species composition was successful in isolating L. osakensis. Efforts should be made
to maintain high genetic diversity in L. osakensis colonies. Continued genotyping of new
colony stock will be necessary to fully characterize the diversity within both species.

Introduction

Laricobius osakensis Shiyake and Montgomery was imported into the US under
quarantine from Japan in 2006 for study as a potential biological control agent
of the invasive Adelges tsugae Annand (Hemlock Woolly Adelgid). Laricobius
osakensis was collected in Japan in association with the same lineage of Hemlock
Woolly Adelgid that is found in the eastern US (Avise 2000, Havill et al. 2006).
Since L. osakensis may be well-adapted to this particular lineage, its use as a bio-
logical control agent is promising (Lamb et al. 2011).

It has been recommended that biological control practitioners increase the prob-
ability of adaptation and success of a biological control agent by releasing as much
genetic variation as possible into the new region (Phillips et al. 2008, Sz{ics et al.
2012). Traits such as climatic adaptation, mate finding, fecundity, mortality, feed-
ing capacity, synchrony with host, habitat preference, and sex ratio are likely to
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affect establishment or control by biological control agents (Hopper et al. 1993). The
amount of genetic variation in the pool of L. osakensis released for biological con-
trol is of particular interest because Hemlock Woolly Adelgid is established across a
broad latitudinal range, from Maine to Georgia. Therefore, a biological control agent
with the potential of adapting to the climates within this range would be advanta-
geous. Additionally, maintaining high genetic variation by periodically adding new
field-collected material from the native range could help avoid inbreeding depression
resulting from low effective-population size in the lab (Phillips et al. 2008).

Laricobius osakensis was granted release from quarantine in 2010 by the USDA,
Animal and Plant Health Inspection Service (APHIS). However, after sequencing
DNA barcodes for members of the L. osakensis colony in the fall of 2011, it was
discovered that the colony was contaminated by another Japanese species, Larico-
bius naganoensis Leschen. APHIS states in its Plant Health, Plant Protection and
Quarantine (PPQ) permit 526 that insects shipped from abroad must not contain un-
authorized species; therefore the presence of L. naganoensis within the L. osakensis
colony resulted in the placement of the L. osakensis colony back into quarantine
before beetles were released in the field.

Laricobius naganoensis is a recently discovered species that was collected from
high-altitude areas of Nagano Prefecture where it is sympatric with L. osakensis
(Leschen 2011). The morphological similarity between the two species and varia-
tion within L. osakensis make it difficult to differentiate these species. Laricobius
naganoensis is distinguished from L. osakensis by having pale tibiae, more vivid
orange-red coloration of the elytra, and an acute median lobe of the male genitalia
(Leschen 2011). Females cannot be reliably differentiated using morphology. Males
can be differentiated by their genitalia but this identification requires dissection of
dead specimens.

After the discovery of L. naganoensis contamination in the colony, we estab-
lished a purification protocol whereby we divided the colony into small groups
whose progeny were kept separate. Once oviposition was completed for the season,
we planned to determine the identity of the parents to see if there was contamina-
tion in each group. We planned to discard the progeny from contaminated groups
and retain the progeny of pure groups. Because L. osakensis was to be released in
the fall of 2012, we needed a quick and inexpensive assay to identify the parental
species within the colony. In addition, we evaluated non-lethal DNA extraction
methods that might allow genetic analysis to be performed before adults died.

Materials and Methods

To survey genetic diversity, beetle specimens were collected from 2006 through
2011 from nine prefectures in Japan (Tochigi, Nagano, Gunma, Yamanashi, Mi-
yazaki, Nara, Hyogo, Osaka, and Kochi; Appendix 1). Forty-seven L. naganoensis
specimens were collected from Japan and one L. naganoensis was a lab-reared F,.
Laricobius osakensis specimens included 121 individuals collected in Japan, as
well as 260 lab-reared F, individuals. Specimens were preserved in 95-100% etha-
nol. We used the following methods to process all specimens with the exception
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of 93 of the 260 F, L. osakensis, which were treated using standard DNA barcod-
ing methods at the Canadian Centre for DNA Barcoding (Ivanova et al. 2006). We
extracted DNA from beetle thoraces, legs, and second wings using the DNA 1Q
extraction kit (Promega, Madison, WI), or the DNAeasy kit (Qiagen Inc., Valencia,
CA). We eluted samples with 20-30 pl of buffer. We retained heads, elytra, and
genitalia as vouchers and deposited them in Yale University’s Peabody Museum of
Natural History, New Haven, CT.

We amplified the 5' end of the mitochondrial cytochrome ¢ oxidase subunit I
(COI) using forward primer LepF1 and reverse primer LepR1 (Hebert et al. 2004).
PCR was performed in 30-pL reactions containing 3.0 pL. 10X PCR Buffer, 2.4 pL
dNTPs (10 mM), 4.8 uL MgCl, (25 mM), 1.0 uL BSA (10 mg/ml), 1.0 pL of each
primer (10 mM), 0.3 pLL Taqg DNA polymerase (New England Biolabs, Ipswich,
MA), and 1.0 pL DNA template. Thermocycling conditions were 95 °C for 5 min
followed by 35 cycles of 45 s at 95 °C, 45 s at 48 °C, and 1 min at 72 °C, with a final
extension of 72 °C for 5 min. We purified PCR products using the QIlAquick PCR
purification kit (Qiagen Inc., Valencia, CA) or digested them with exonuclease I
and antarctic phosphatase (New England Biolabs, Ipswich, MA). Sequencing reac-
tions were performed using the BigDye Terminator kit (Applied Biosystems, Foster
City, CA) and analyzed on an Applied BioSystems 3730x] automated sequencer. We
aligned sequences using the SeqMan Pro program in Lasergene 8.0 (DNASTAR;
http://www.dnastar.com) and calculated sequence divergence (uncorrected p-dis-
tance) within and between species using PAUP* (Swofford 2003). We determined
diagnostic sites that distinguish the two species by examining sequences in Mes-
quite 2.75 (Maddison and Maddison 2011). Separate haplotype networks for Japa-
nese wild-caught L. osakensis and L. naganoensis were reconstructed following
the statistical parsimony method of Templeton et al. (1992) using the software TCS
1.21 (Clement et al. 2000, Crandall 1994, Crandall et al. 1994). Haplotype diversity,
nucleotide diversity, Tajima’s D, and Fu’s Fg were calculated for wild L. osakensis
and wild L. naganoensis using Arlequin 3.5 (Excoffier et al. 2005). For each spe-
cies, accumulation curves showing how the number of haplotypes increased with
sample size were estimated with EstimateS 9.1.0 (Colwell 2013) using one hundred
randomized runs.

We examined restriction sites within a preliminary set of L. osakensis and
L. naganoensis sequences using Biology WorkBench 3.2 (Subramaniam 1998) or
Geneious 5.6.5 (Drummond et al. 2011), resulting in the selection of three possi-
bly diagnostic restriction enzymes: Alul, Mboll, and Bcll. We used 10 individuals
of each species to validate polymerase chain reaction—restriction fragment length
polymorphism (PCR—RFLP) assays using these three enzymes. COI was amplified
using the PCR conditions described above. We added 12.5 pL of PCR product to
each of the three RFLP reactions containing 0.5 uL of Alul and 1.5 pL of 10X Buf-
fer 4, 0.5 pL of Mboll, and 1.5 pL of 10X Buffer 4, or 0.5 pL of Bell and 1.5 pL of
10X Buffer 3 (New England Biolabs, Ipswich, MA). We incubated reactions for 4 h
at 37 °C for Alul and Mboll, and at 50 °C for Bcll, followed by gel electrophoresis
and visualization on a 2% agarose gel. We used the software, Geneious, to generate
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virtual gels showing all of the unique RFLP patterns from among all the samples
that were sequenced.

We chose a subset of the samples used to sequence the COI gene (22 F, lab-
reared and 12 wild-caught L. osakensis, and one lab-reared F, and nine wild-caught
L. naganoensis) to amplify and sequence the internal transcribed spacer ITS2 gene.
In contrast to COI, which is strictly maternally inherited, ITS2 is a multi-copy
nuclear region, so F, hybrids contain copies from both parents. ITS2 was ampli-
fied using the primers ITS3 and ITS4 (White et al. 1990) with the same conditions
as for COI, but with an annealing temperature of 50 °C. Sequences were aligned
using Muscle 3.6 (Edgar 2004), and a neighbor-joining tree was constructed using
PAUP’, with uncorrected p-distance, indels not scored as characters, and Laricobius
kangdingensis Zilahi-Balogh and Jelinek (Genbank Assession HQ433487) as an
outgroup. We deposited all new sequences generated from this study in GenBank
(Appendix 1).

We used Laricobius osakensis specimens to explore whether we could extract
DNA using non-lethal methods. Beetles had been preserved in 95% ethanol at -20
°C and then air-dried before use. We removed a single antenna and a single tarsus
from five specimens. Because using antennae appeared to yield better results (see
results), we completed an additional experiment using 20 L. osakensis anten-
nae to further test the success rate. Each PCR reaction contained 6.25 uL of 10%
D- (+)-trehalose dihydrate (Fluka Analytical), 1.25 pL of 10X PCR buffer, 0.625
uL MgCl, (50 mM), 0.0625 pL of each 10 uM primer (LepF1, LepR1, LCO1490,
HCO2198; Folmer et al. 1994), 0.0625 pL of dNTPs (10mM), 0.060 puL of 5 U/uL
PlatinumTaq DNA Polymerase (Invitrogen), and 2.0 pL of DNA template for a total
reaction volume of 12.5 pL. Thermal-cycling conditions were 94 °C for 1 min, fol-
lowed by 5 cycles of 94 °C for 40 s, 45 °C for 40 s, 72 °C for 1 min, then 35 cycles
0f 94 °C for 40 s, 51 °C for 40 s, 72 °C for 1 min, and a final extension of 72 °C for
5 min.

In 2012, we split the L. osakensis colony into eight groups of approximately 20
adult beetles whose progeny were kept separate. Our goal was to purify the colony
by separating L. naganoensis male and female beetles and prevent them from repro-
ducing. After beetles had completed oviposition and died, we identified all parents
to species. We dissected the beetles and identified males by using genital morphol-
ogy and females by using the Alul and Mboll RFLP assays described above.

Results

We cropped all Laricobius COI sequences to 658 bp-long; their alignment re-
quired no gaps, and amino acid translation contained no stop codons. P-distance
(proportion of nucleotide differences between sequences) within L. osakensis
ranged from 0 to 2.12% with a mean of 0.74% for wild-collected specimens and
a range of 0-1.97% with a mean of 0.79% for F, colony-collected specimens. P-
distance within L. naganoensis ranged from 0 to 2.28% with a mean of 1.11%.
P-distance between L. osakensis and L. naganoensis ranged from 7.33 to 9.45% with
a mean of 8.35%. There are 21 diagnostic CO1 nucleotide sites (fixed differences
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between species) spread throughout the 658-bp COI barcode region. The haplotype
network for wild-caught L. osakensis exhibited very high diversity with 90 unique
haplotypes in the 121 individuals sampled (Fig. 1). Of the 90 sites with nucleotide
substitutions, 13 were at the first codon position, one at the second codon position,
and 76 at the third codon position. All were synonymous (did not result in amino
acid changes) with the exception of substitutions in one individual each at positions
83,200, 263, 506, 515, and 640, and in three individuals at position 491. Haplotype
diversity (H) was 0.989, and nucleotide diversity was 0.008. Tajima’s D, and Fu’s
Fywere -2.209 and -25.324, respectively, and both were significantly different from
neutral expectations (p < 0.01). The COI network for wild L. naganoensis exhibited
high haplotype diversity as well, with 32 unique haplotypes of the 47 wild individu-
als sampled (Fig. 1). Of the 39 sites with nucleotide substitutions, four were at the
first codon position, one at the second codon position, and 34 at the third codon
position. All were synonymous substitutions with the exception of a substitution
in one individual at position 318. For L. naganoensis, haplotype diversity (H) was
0.9628, and nucleotide diversity was 0.011. Tajima’s D, and Fu’s Fgwere -0.7109
and -17.044, respectively, and both were significantly different from neutral expec-
tations (P < 0.01). Neither of the accumulation curves for either species showed
evidence of reaching an asymptote, and therefore, they indicate that all of the di-
versity has not been sampled for these species (Fig. 2).

Two of the enzymes (Alul and Mboll) can be used to correctly identify all
samples of L. osakensis and L. naganoensis that have been collected to date. Diges-
tion by Alul produced four fragment patterns for L. naganoensis, and ten patterns

L. naganoensis

L. osakensis

Figure 1. TCS networks showing relationships among COI haplotypes for wild-caught Lari-
cobius naganoensis (47 individuals, 32 unique haplotypes) and wild-caught L. osakensis
samples (121 individuals, 90 unique haplotypes). The squares denote the inferred ancestral
haplotypes. The size of each shape is proportional to the frequency of the haplotype. Small
black dots represent unsampled intermediate haplotypes.
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for L. osakensis (Fig. 3A). All of the patterns for L. osakensis contained a fragment
larger than 201 bp, distinguishing them from L. naganoensis. Digestion by Mboll
produced one pattern for L. naganoensis and three patterns for L. osakensis (Fig.
3B). Similar to Alul, L. osakensis can be distinguished from L. naganoensis by the
presence of at least one fragment greater than 170 bp. Digestion by Bell produced
two patterns for L. naganoensis and three patterns for L. osakensis (Fig. 3C). There
was one L. naganoensis individual that shared a pattern with L. osakensis, so iden-
tification using this enzyme is not always correct.

Length of ITS2 sequences were 402 bp for all L. osakensis specimens and 397
bp for all L. naganoensis specimens. The alignment resulted in three indels that
were 1 bp long and one indel that was 2 bp long. All chromatograms were free of
superimposed peaks, which would have indicated amplification of different-sized
ITS2 copies. The neighbor-joining tree (Fig. 4) showed a clear separation between
the species with no evidence of hybridization.

For the two potentially non-lethal treatments tested, sequences were success-
fully recovered from all five antennae and from two of five tarsi. The second
experiment using 20 L. osakensis produced full-length 658-bp sequences that
matched L. osakensis for all samples.

After splitting the colony into eight small groups and testing the parental beetles,
we determined that six groups contained L. naganoensis males and females, preclud-
ing their use for the colony because of possible contamination in the next generation
(Table 1). One group (SK6) contained L. naganoensis females but no males. We also
removed this group from the colony because the females could have mated in the field
prior to being collected. One group (SK1) contained only one male L. naganoensis;
we removed this group from quarantine and used it to start the next generation.
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Figure 2. Accumulation curves showing how the number of haplotypes increase with the
number of individuals sampled for Laricobius osakensis and L. naganoensis.
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Figure 3. Virtual agarose gel electrophoreses of Laricobius naganoensis and L. osakensis
COI PCR products digested with: A) Alul, B) Mboll, and C) Bcll. The first lane is a simu-
lated 10-bp ladder.

Table 1. Species and sex of parent beetles in eight colony-rearing groups.

Laricobius osakensis

L. naganoensis

Group Female Male Female Male
SK1 12 10 0 1
SK2 11 7 4 2
SK3 8 7 4 4
SK4 14 8 4 3
SK5 12 8 3 1
SK6 12 10 3 0
SK7 9 11 1 1
NS1 5 8 3 2
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Discussion

Laricobius naganoensis and L. osakensis are not closely related (p-distance =
8.35%), and our results from sequencing ITS2 showed no evidence of hybridiza-
tion in the field or in the lab colony. It is therefore unlikely that the two species can
hybridize, an event that has occurred in recent biological control efforts involving
other Laricobius spp. (Fischer 2013, Havill et al. 2012). Two closely related North
American species, L. nigrinus and L. rubidus, which exhibit approximately 2%
COlI sequence divergence were found to readily hybridize, while L. nigrinus and
L. osakensis with 12% divergence separating them did not (Fischer 2013).

Recent population expansion is implied by high haplotype diversity, low nucleo-
tide diversity, negative values for both Tajima’s D test and Fu’s F; test, as well as
a haplotype network showing low levels of sequence divergence and a high fre-
quency of unique mutations (Avise 2000, Halliburton 2004). These patterns were

L. kangdingensis HQ433487
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. haganoensis KJ549808
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. osakensis KJ549814
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Figure 4. Neighbor-joining tree of nuclear ITS2 sequences showing separation of Larico-
bius oakensis and L. naganoensis with no evidence of hybridization.
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evident for both Japanese Laricobius species. Recent population expansion follow-
ing the last glacial period is a pattern that has been observed in several organisms
in Japan and throughout the northern hemisphere (Hewitt 2000, Kawamoto et al.
2007, Liu et al. 2006). Climatic conditions during the last glaciation reduced the
available habitat for many species through contraction of forests (Hewitt 2000, Tsu-
kada 1983). Following this period, evidence suggests that the distributional range
of many organisms expanded along with available habitat (Hewitt 2000, Kawamoto
et al. 2007, Liu et al. 2006).

Almost all of the intra-specific nucleotide substitutions in our data set were
neutral (synonymous) and therefore the diversity that we document is a reflection
of natural diversity, not due to PCR error or base-calling mistakes. The extensive
mitochondrial variation within L. osakensis and L. naganoensis as well as their
haplotype accumulation curves suggest that we have documented only a small
amount of the variation within these species. Continued collections of both spe-
cies in Japan and genotyping of new rearing stock will be necessary to fully
characterize the diversity within both species. This high diversity should allow
L. osakensis to adapt to new environments, which is advantageous for a biological
control agent. Colony maintenance and augmentation should seek to maintain this
high diversity.

Without the proper permits, L. naganoensis cannot be released legally in the
US. Therefore, distinguishing between L. osakensis and L. naganoensis is cur-
rently necessary for universities and state or federal agencies that will be importing
L. osakensis from Japan for biological control of Hemlock Woolly Adelgid. The
RFLP assay developed here is less expensive and less time consuming than DNA
sequencing, and the equipment needed for this assay is available in most basic mo-
lecular labs. The enzymes Alul and Mboll were each sufficient for distinguishing
the species. However, since there is likely to be more natural diversity than we have
sampled to date, possibly resulting in additional banding patterns, we recommend
using both enzymes independently and sequencing any individuals for which the
assay results do not match or which produce new gel patterns not reported here.

Although only one of the eight L. osakensis groups was found to be pure fol-
lowing RFLP, this one group produced approximately 200 adult progeny, which
are currently being mass reared for releases in fall 2014. This result demonstrates
that purification can work in an applied setting, and that even with a small starting
colony (approximately 20 beetles), mass rearing can be successful.

Our results show that a single antenna from a Laricobius specimen is suffi-
cient for recovery of a full-length 658-bp COI barcode sequence. Several samples
consisted of less than an entire antenna; one consisted of only two segments, sug-
gesting that Laricobius antennae are mtDNA-rich and an excellent tissue source for
non-lethal barcoding. A study on non-lethal sampling using antennae of Japanese
diving beetles had similar results (Suzuki et al. 2012); furthermore, they found that
removal of an antenna did not affect mating, oviposition, or lifespan. Additional
experiments using live Laricobius specimens are necessary to determine if the re-
moval of a single antenna will impact beetle survival and reproduction in the lab
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and whether a non-lethal approach is more cost-effective than identifying beetles
after they have died.
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