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Future Fire Probability Modeling with Climate
Change Data and Physical Chemistry
Richard P. Guyette, Frank R. Thompson, Jodi Whittier, Michael C. Stambaugh, and Daniel C. Dey

Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted
with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States.
We demonstrated a method for estimating changes in fire probability based on future climate simulations of temperature and precipitation. The probability of a fire
occurring in a particular climate was extracted from the Physical Chemistry Fire Frequency Model (PC2FM) and represented the rate of change in fire due to climate.
Climate output data from two global climate models (GCMs) were applied to the PC2FM to estimate changes in fire probability. We calculated change in fire frequency
and probabilities from the difference between current and future climates and mapped climate-forced percentage change in fire probability under each GCM for the
nation at a 1.2 km2 scale. Future fire probability estimates increased in cooler northern and high elevation regions but decreased slightly in some hotter and drier regions
of the southwestern United States. Our approach’s greatest strength may be reliance on only climate data and the simple principles of physical chemistry; many other
nonclimatic factors that affect fire are often difficult to predict in the distant future.

Keywords: fire scars, dendrochronology, physical chemistry, ecosystems

The details of the physics and inorganic chemistry of fire may
seem distant from the large-scale fires burning in forests,
however, wildland fire is fundamentally a chemical reaction

of carbon compounds and oxygen resulting from complex ecological
and abiotic factors (Chandler et al. 1983). Carbon bond formation
and breakdown occur within primary ecosystem processes such as
growth, decay, and burning that are all affected by climate. The
probability of fire will change as basic combustion processes are
exposed to new more varied climates (Mann et al. 1998, Parisen and
Moritz 2009). The rate of wildland fire spread and occurrence are a
function of the environment and reactants in a chemical reaction
(Atkins 1986, Guyette et al. 2012). We consider rate as the number
of fires per year and fire occurrence based on evidence of fire (fire
scars) in an approximately 1.2 km2 area during 1 year.

The use of physics, chemistry, and climate data to formulate
wildland fire models allows for estimates of changes in future fire
regimes (fire occurrences) based on climate data from GCMs.
Whether the reaction environment is a laboratory benchtop at room
temperature or an ecosystem with changing temperature, precipita-
tion, and reactant concentrations, the fundamentals of combustion
reactions play a central role (Chandler et al. 1983, Bernard and
Nimour 2007). The modeling approach presented here (Figure 1)

had been validated by temporal fire rate data (Guyette et al. 2012),
many years of experimental physics and chemistry (Atkins 1986,
Harris 1987, McQuarrie 1987), fire ecology (Wright and Bailey
1982), and fire history (Swetnam et al. 1999, Pyne et al. 2010).
Although other models exist that attempt to estimate the effects of
vegetation, society, and future climate on fire regimes, they are often
more complex, less quantitative, and have less certainty with regard
to many future conditions (Flannigan et al. 2005, Archibald et al.
2013). The PC2FM (Figure 1) is based on concepts that have re-
sulted from years of experimental physics and chemistry involving
temperature and reactant concentration, many long-term fire his-
tory records, and has been vetted in peer review (see Supplemental
Data in Guyette et al. 2012, National Oceanic and Atmospheric
Administration (NOAA)/Paleofire Database 2009).

The temporal and spatial scale of the PC2FM data covers a
diversity of fire regimes across North America (Whitlock et al.
2010). This breadth of variance gives the model power that cannot
be derived from sites with limited climate conditions and temporal
depth. However, the model’s virtues (diversity of fire regimes and
simple climate variables) are also potential shortcomings. The list of
ecosystem variables that affect fire frequency and intervals is long
and includes natural and human ignitions, topographic variables,
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vegetation, fuel characteristics, wind, and fire weather. The PC2FM
does not address these variables because it was developed to avoid
these local and short-term factors and focus only on climate as an
overarching influence.

The statistical formulation, calibration, and validation of the
PC2FM began by breaking down wildland fire into a reaction en-
vironment parameter (ARterm) and a reactant concentration param-
eter (PTrc), the two basic conditions of any nonnuclear chemical
reaction (Figure 1). We used multiple regression analysis to test the
terms and the model empirically with mean fire interval data from
170 sites, more than 3,400 trees, containing 30,000 fire scars (see
Supplemental Data in Guyette et al. 2012). Regression coefficients
translated the relatively fine-scale units of chemistry (i.e., kJ�1

mol�1, molecular reactions per second, and partial pressure of oxy-
gen) to landscape-scale units (�1 km2) that are relevant to fire
frequency, mean fire intervals, and probability. PC2FM variables
were significant (P � 0.001), multicollinearity among predictor
variables was not significant, and residuals were normally distrib-
uted. Based on many model runs the average tested model coeffi-
cient of determination (r2) was 0.80 (range � 0.59 to 0.90). Partial
r-squares were 0.60 for ARterm and 0.20 for PTrc terms.

The PC2FM approach in this study allows for direct temperature
and precipitation inputs that affect reactant collisions and reaction
rates required for modeling combustion in future climates and eco-
systems. Direct precipitation input is a proxy for the amount of
water in the atmosphere (humidity) and reactants (fuels) and esti-
mates how this reaction inhibitor blocks the molecular collisions of

oxygen and fuels in ecosystems. The quantitative modeling of
wildland fire probability will improve with new data on fire fre-
quency, improved modeling approaches, and better climate projects
from future global change models. However, applying the PC2FM
model to output from GCMs allows the extrapolation of future fire
regimes based on climate projections that can be applied at a conti-
nental scale.

In this study, our objectives were to develop a modeling frame-
work for estimating fire frequency and probability changes in future
fire regimes based on climate change data and produce spatially
explicit predictions of changes in fire frequency due to projected
climate conditions at the end of the century in the United States.

Methods
Application of the PC2FM

A short review of the PC2FM method will aid in its application
in the context of this research, predicting change in fire probability.
The PC2FM used the Arrhenius equation �k � A0exp�Ea/RT� as a
physical chemistry concept to formulate the effects of climate on
wildland fire (Guyette et al. 2012). This Arrhenius equation has
been used in other fire, weather, and climate applications (Bernard
and Nimour 2007, Perminov 2007, Mandel et al. 2009). The
PC2FM is represented by two components, one the ARterm and two
the PTrc, component (precipitation over temperature), which esti-
mates fuel availability (concentration and moisture) based on cli-
mate data (Equation 1; Figure 1). The PC2FM is written as

Figure 1. A listing of the concepts and processes of the PC2FM: climate variables and proxies, equation components, fire ecology
theory, and physical chemistry processes. Directly below the equation are the names of the reaction environment component
(ARterm) and the reactant concentration term (PTrc). MFI is the mean fire interval, the Ao term is P2/ppO2, e � 2.718, Ea � 132 kJ
mol�1 and is a constant in this model formulation, r � 0.00831 kJ mol�1 K�1 (the universal gas constant), P � annual precipitation
in cm, T � degrees K.
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MFI � 0.232 � �2.62 � 10�28 � ARterm� � �52 � PTrc�

(1)

where MFI is the mean fire interval (years), the ARterm represents
the reaction environment, and the PTrc represents the estimated
reactant concentration and quality.

Mean fire intervals (MFIs) are an ecological measure of time and
fire occurrence. They are the chemical analog of time and relative
frequency and are based on rates of combustion reactions. The anal-
ogy works because the reaction environment and reactant quality
(concentration and condition) are dominant factors that affect
the likelihood of fire occurrence in both the laboratory and land-
scape. The probabilities of fire ignition and spread are based on
the ecological and chemical characteristics of the reaction environ-
ment. Turning landscape measures such as MFI (time interval/
occurrences) into rate metrics such as frequency or probability
(occurrences/period) allows for the use of time and fire data in
model calibration (Figure 2) (Swetnam et al. 1999, Heyerdahl et al.
2001).

Climate Data and Simulations
We selected two GCMs to determine the potential variance in

fire probability based on their different climate output. The Cou-

pled General Circulation Model 3.1 T47 (CGCM) (Flato et al.
2000) from the Canadian Centre for Climate Modeling & Analysis
is a “middle of the road” conservative model that is similar to many
other global climate change models. The GFDL-CM2.1 model
(GFDL) (NOAA 2009) was selected because it differs in methods
and output and is from a different source. These models differ in
processes, scale, and metrics. The metrics used, how they are used
(constants or variables), and the model coefficients used for each
metric can influence outputs. Even small differences in initial forc-
ing values can result in large differences when the models are run
hundreds of times. Some examples of differences in radiative-forc-
ing factors between the models used in this paper include the use of
ozone as a constant (CGCM) or as a variable (GFDL) and the
modeling of radiative forcing using atmospheric SO4. Other differ-
ences include processes that are difficult to measure and model such
as deep ocean circulation, melting rates of ice, thermohaline circu-
lation, and spatial scale. Spatial scale is an important and well-doc-
umented factor in all climate-fire modeling (Whitlock et al. 2010).
The spatial scale of the GFDL climate output is finer than that of the
CGCM (Figure 3). GCM model cell sizes change with latitude and
longitude. GCM cells are 3.75 degrees for CGCM and 2.5 degrees
for GFDL beginning at the equator.

Figure 2. PC2FM regression data, estimates, and probabilities for fire frequency in the United States. The labeled “climate” line
represents the climate-driven rates of fire frequency and probability based on the regression line. The “nonclimate” line represents the
regression residuals caused by nonclimatic forcing from topography, ignitions, and many other factors.
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We used the two GCMs with hind-cast and future temperature
and precipitation metrics that could be summarized for two time
periods, 2001–2020 and 2081–2100 AD in the conterminous
United States; herein, these are, respectively, referred to as control
and future time periods. Mean annual precipitation and mean max-
imum temperature between the control and future climates in over-
all magnitude and spatial pattern for each GCM (Figure 3). Fire
probability was derived for each GCM through the PC2FM.

Transforming Fire Intervals into Climate-Forced Fire Probabilities
The observed rate of fire occurrence at a specified scale is an

estimate of its probability. We used the classic relative frequency
approach to estimate the annual probability of a fire occurring in a
1.2 km2 area (Keller and Warrack 1997). We transformed time and
fire data as measured in years (mean fire interval) into a physical
definition of relative frequency and probability (1/fire free interval).
The probability of the reciprocal allowed for the conversion of the
mean fire intervals that are derived from the output of the PC2FM
equation into probabilities of fire occurrence based on climate.
Treating fire events as event-wave periods considers landscape basics
of fuel production, reactant concentration, decay, and longer-term
precipitation effects. The conversion to frequency extracts the prob-
ability of fire occurrence for a specified time (annual) at a specified
scale (1.2 km2) from the climate forcing of the model (PC2FM).
Climate–fire calibrations were based on the thousands of years of

data of fire occurrence (see Supplemental Data in Guyette et al.
2012). The general physical concept (Equation 2) that transforms
time intervals to probabilities of occurrence is

cff yr�1 km�2 � 1/MFI@tt. (2)

where cff yr�1 km�2 is the probability of climate-forced fire occur-
rence calculated as the relative frequency of a fire per year per square
kilometer and 1/MFI@tt is one divided by the mean fire interval at
time tt. Equation 2 uses relative frequency to estimate fire probabil-
ity (Keller and Warrack 1997). Equation 3 uses PC2FM output
mean fire intervals to predict the climate-forced change in fire prob-
ability or relative frequency (cff) from a “control” (tc) climate period
(1/PC2FM@tc), and a future (tf) climate period (1/PC2FM@tf) and
then uses differencing to estimate positive or negative percent of
change in fire probability (CFP)

CFP � ��1/PC2FM@tf � 1/PC2FM@tc�/1/PC2FM@tc�

� 100 (3)

The reciprocal expressions in the three terms in parentheses of Equa-
tion 3 cancel out and simplify the calculation to Equation 4

CFP � ��PC2FM@tf � PC2FM@tc�/PC2FM@tc� � 100 (4)

Figure 3. Maps of changes in precipitation (on the right) and mean maximum temperature (on the left) in the United States. Climate data
changes are based on model hind casts (“control period”) for 2001 and 2020 average data and future casts circa 2081 to 2100 with two
different climate change data simulations: top—GFDL CM2.1 and bottom—CGCM 3.1 T47.
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Defining Fire Probability Estimates
We define different change in fire probability (CFP) outputs of

the PC2FM future prediction as “the percent change in climate
driven fire probability” based on the use of only climate variables for
estimating fire probabilities. The model does not include the many
important nonclimatic fire variables such as land use, human pop-
ulation, or the number of fire departments that may have profound
effects on future fire regimes. The abstraction to the change in
probabilities between past and future climates allows climate-forced
probabilities to be applied to many types of data sets that may be of
interest in planning at large spatial scales.

Mapping Simulation
Fire probability estimates for mapping require attention to the

size of spatial units for control and future climate periods. Here,
climate estimates for the conterminous United States were used as
input into the PC2FM and were derived from hind casts and future
casts of each GCM. This method allowed not only comparisons of
identical spatial extent but also for change over time using individual
climate modeling methods. In this study, we also used the peer-re-
viewed formulations of the PC2FM to estimate fire probabilities for
the compared climate periods based on the outputs of both climate
models. Mapping fire probabilities requires attention to developing
class direction, range, and hue for breadth of probability given by a
particular GCM-PC2FM output. The probability class sizes are
defined by the frequency of distribution of their occurrence. We
used more intense color saturations to create greater representation
of the changes in fire probability while less intense color saturations
to represent smaller changes in probabilities. Probability classes be-
gin at zero (no change) and are scaled as increases (� 0) and decrease
(� 0). The classes below zero are smaller in probability range than
the classes above zero. Outliers in the distribution of probabilities
represent very small areas (e.g., top of a mountain or nonvegetated
deserts), which were not used to create mapped probability classes.

Results
Regional GCM-PC2FM Fire Probability Comparisons

PC2FM outputs based on the two GCM data sets depicted both
similarities and differences in estimates of future fire probabilities.
Fire estimates from both the GFDL and the CGCM data showed
increased fire probabilities in the northern Rocky Mountain and
northwest regions (Figure 4) (Heyerdahl et al. 2008). For both
global change model inputs, the fire probabilities in Great Plains
changed with latitude: GFDL (�12 to 60%) and CGCM (�20 to
20%) and temperature (Stambaugh et al. 2008). Decreased fire
probabilities (negative percentage) were predicted for the hotter
southern plains region. Some of the largest differences in fire prob-
abilities predicted by the models were in the southwestern United
States (Figure 3). Here, the CGCM data resulted in decreased future
fire probability (0 to �30%) while the GFDL data resulted in in-
creased fire probability (near 0 to greater than 40%; Figure 3). In the
northeastern United States, the two global change model outputs
into the PC2FM resulted in no difference in direction (all positive
outcomes) but some differences in their magnitude (GFDL �
� 40%, CGCM � 80%). In the southeastern United States,
PC2FM outputs based on the two models resulted in increased fire
probabilities with some latitudinal differences in magnitude (GFDL
� � 0–90%, CGCM � 10–70%). The largest increases in fire
probabilities for both climate models were in Appalachia, a montane

region known for fire activity during dry spring and fall seasons
(Lafon et al. 2005).

Continental Trends in Changing Fire Probabilities
Fire probability estimates were mapped for both GFDL and

CGCM climate change data simulations (Figure 4). Although re-
gional fire probabilities varied by GCM and region across the con-
tinental United States in their response to future temperature and
precipitation inputs into the PC2FM, the overall spatial area of the
continent showed more increases in fire probability than decreases
(many more red hues than blue in Figure 4). These positive increases
in overall fire probability are consistent with results from other
future-fire climate modeling efforts (Xu et al. 2013). Climate-forced
changes in fire probability in the United States were between �40
and over 275% for the GFDL and the CGCM. The predicted future
fire probabilities already fall into the range of documented past and
current fires in many North American climates. The largest increases
in fire probabilities were in colder and wetter ecosystems where
temperature and precipitation are affected by latitude and elevation
(e.g., the Northern Rocky Mountains) while the few decreases in fire
probability were in hotter and dryer ecosystems. Overall, there are
more increases in fire probabilities in the northern than in the south-
ern United States.

Discussion
Model Integration and Mapping

For the objectives of this study we wanted to keep the framing
and method for the PC2FM fire probability changes as straight
forward as possible. Thus, we temporally compared only current
and future forecasts from the same global change models (CGCM,
GFDL) to “drive” the PC2FM predictions. When comparing dif-
ferent spatial scale model estimates for different time periods, prob-
lems in estimating fire probability due to the spatial scale of temper-
ature and precipitation data arose. In the fire probability maps
(Figure. 4) probability estimates are calculated from two of the
model components of PC2FM (Equation 1; Figure 1) that have
different influences in different ecosystems (Guyette et al. 2012).
For example, the fuel production and availability as calculated by the
reactant concentration term (PTrc) is very important in many dry
and/or cold ecosystems where reactant (fuel) concentration can be a
major factor limiting fire reactions. In the continental United States,
the spatial majority of ecosystems produce enough fuel but have fire
probability restrictions due to reaction rates limited by climate (too
much water or too cold). Often fine-scale modeled climate data
when matched with large spatially scaled GCM data will result in
exaggerated fire probabilities due solely to the differences between
model scales. For example, both low (deserts) and high elevation
(mountain) ecosystems with annual temperature differences occur
in the large cells of the GCM climate output. Thus, GCM cells with
high elevation variance can have misleading fire estimates at small
individual scales.

Unbiased Climate-Forcing Results
Separating climate from the many variables that effect wildland

fire probability is a difficult and debated matter. Many indirect
climate effects influence management and biological changes (e.g.,
biotic effects on fuels). Climate effects on animal species and their
population can result in dramatic effects on wildland fire (Jenkins et
al. 2013). Estimating changing fire probabilities using only the
framework of physical chemistry and climate allows for a more
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focused if somewhat limited model using climate change data as
overarching fire variables. Thus, the climate-forcing predictions are
less biased with respect to changes in land use, vegetation, the num-
ber of fire departments, and so many other important, but noncli-
matic changes. A major result of the application of the PC2FM in
this work is the resulting framework for recalculating fire probability
with near future GCM data.

Using Physical Chemistry to Quantify the Interactions between
Temperature and Precipitation

The Arrhenius concept in the PC2FM quantifies the exponential
effects of temperature in degrees K (ARterm) and the dual or qua-
dratic effects of precipitation (both ARterm and PTrc). The expo-
nential and unidirectional effects of temperature increase the appar-
ent importance of this variable in most regimes. The complex

Figure 4. Coarse-scale mapping of climate-driven changes in the probability of fire occurrence in the United States on 1.2 km2 areas in
2100 based on GFDL CM2.1 data (top) and CGCM 3.1 T47 (bottom).
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opposing effects of precipitation on reactant quality (fuel moisture)
and quantity (fuel concentration) mask the importance of this cli-
mate variable. Threshold values for the switch in precipitation forc-
ing (from concentration to reaction environment) have been hy-
pothesized (Guyette et al. 2012). Reactant concentration threshold
values range from about 40 to 100 cm annual precipitation based on
ecosystem average temperatures. These abiotic factors, although dif-
ficult to identify from mapping output, are critical to the rates and
probabilities of combustion reactions.

Temperature versus Precipitation Drivers of Fire
We used precipitation as a proxy in the PC2FM for two contrast-

ing influences on wildland fire: humidity and fuel moisture inhibit
fire rates and the production of fuel increases with available water at
a given temperature. These effects were quantified by precipitation
(Figure 1) in both the rate term (ARterm) and the fuel reactant
concentration term (PTrc). Ecosystem precipitation can both in-
crease and decrease the probability and rate of wildland fire (Davis
and Miller 2004, Collins et al. 2013). These contrasting positive and
negative forces quantitatively diminish the total effect of precipita-
tion because of their opposing directions of influence. On the other
hand, the effects of temperature alone on reaction rates (ARterm) are
never negative and are primarily positive in ecosystems with even a
moderate amount of fuel. Nonetheless, temperature can have a dual
effect on reactant concentration by constraining fuel production in
ecosystems by being too hot (Death Valley) or too cold (Greenland
Ice Cap) at a given precipitation. While the single exponential effect
of temperature (in K) on the natural logarithm (e) can greatly in-
crease the rate of reactions, the hotter an ecosystem gets, the steeper
or more rapid the reaction rate changes.

Precipitation Data Uncertainty in Fire Modeling
Many of the climates in the world are not well predicted with

regard to fire events as positive or negative in response to precipita-
tion. Precipitation effects on landscape reactions and reactants are
important for many reasons such as fuel moisture, fuel productivity,
and humidity (Anderson 1970, Nelson 1984). Fire models that do
not include the two-prong effects of precipitation (negative reaction
rates and positive reactant concentration) are missing an important
forcing factor.

Precipitation events are caused by many interacting factors.
Small differences in model coefficients among any of these factors
will influence estimated rates and seasons of precipitation. Thus,
precipitation is more difficult to predict than temperature because of
the influence of multiple factors. Predicting precipitation with mod-
els based on many unknown future metrics and their complex in-
teractions makes precipitation forecasts difficult and uncertain but
still important for fire prediction models (Allen and Ingram 2002,
Ma and Xie 2013). Current research suggests that we are headed for
complex changes that include increased precipitation variance in
storm output, humidity, and long-term pluvial-drought periods
(Allan and Soden 2008, Giorgi et al. 2011).

Annual Climate and Fire Variability
The PC2FM approach relies on average annual values of precip-

itation and temperature over long periods. Yet fire occurrence is
most often problematic because of extreme dryness and high tem-
peratures in a season or year. Although we predicted average fire
probabilities based on climate averages, many ecosystems vary
greatly in annual temperature and precipitation from year to year

and season to season. Inter- and intra-annual variation in tempera-
ture and precipitation may greatly accentuate fire variability beyond
average changes in GCM-PC2FM predictions and may potentially
produce some extreme new fire-climate conditions (Groisman and
Easterling 1994). For example, the northeastern United States has a
highly variable seasonal fire climate: wet and cold then dry and warm
conditions in the same year. Wet conditions make for abundant fuel
production (concentration) in the growing season, while potentially
dry-warm conditions in the spring, summer, or fall enhance reaction
rates and fire spread.

Climate Change Forcing Already Here
Although we used GCM data of current climate as a control

period, it is debatable in which period to place the control climate.
Climate change is hypothesized to have already begun with temper-
ature increasing over the last 160 years. The forcing of more fre-
quent and larger fires is now happening in many ecosystems and
may be due partly to climate. For example, some recent large fires (in
the temporal framework of the global change models), such as the
1988 Yellowstone National Park, occurred in some of the regions
with the highest fire probability changes in this study (darkest reds;
Figure 4) (Westerling et al. 2011).

Unique Conditions in the Southwest
As might be expected, fire probabilities in most, but not all,

ecosystems increased with temperature (Figure 4). The primary im-
portance of temperature in drought and fire regimes has been sug-
gested in many studies (Xu et al. 2013). Future predictions of fire
probability based on temperature alone may be robust due to more
reliable temperature prediction compared to precipitation. Future
precipitation is more difficult but is integral to fuel production and
moisture in the PC2FM (Figure 1). However, the effects of increas-
ing precipitation, water, and humidity are too great on the reaction
environment (ARterm) and fuels (PTrc) to be ignored (Nicholls et al.
1996, Karl and Knight 1998). Water variables affect all parts of the
combustion reaction from collision frequency to fuel concentration
and availability (Figure 1). The variance in CGM precipitation out-
puts results in much of the variance between fire probability esti-
mates (Figure 3). The predictive value of the PC2FM compared to
other fire models may be in quantifying the physical and chemical
interactions between the water, combustion, and fuel. The excep-
tions to increasing fire with increasing temperature (blue color
coded regions in Figure 3) occur in fuel-limited dry regions where
increased temperature can decrease fuel production and continuity.

Two reasons for the nonintuitive mapping results in the south-
western United States are: mapping resolution is much larger than
model resolution and ecosystems changing from reaction rate lim-
ited to concentration rate limited are abundant in the Southwest.
The southwestern United States is a complex of ecosystems from
fuelless deserts to high mountain forests. Annual precipitation
ranges from � 10 to more than 125 cm. There is no doubt that
decreasing precipitation and increasing temperature will decrease
plant growth (fuel production), especially in dry ecosystems that are
already fuel-limited systems. Much of the land area of the Southwest
is comprised of ecosystems with less than 50 cm of annual precipi-
tation. Despite the large scale of global climate change estimates of
temperature, our model predicted that the southwest will have de-
creased probabilities of fire. If the climate mapping data were finer
scale, one would expect increasing fire probability in the few cooler
and wetter high elevation ecosystems. Also, below about 50 cm of
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annual precipitation, at southwestern temperatures, the effect of
precipitation on fire in ecosystems switch from reaction rate driven
to primarily fuel limited very rapidly (Guyette et al. 2012). This is
true with any reaction rate, a first lesson at the chemistry bench; the
greater the reactant concentration, the faster the reaction will occur.

Limitations
The physics and chemistry of climate forcing in fire regimes will

not change and can be used to bridge temporal and spatial land-
scapes, but vast amounts of variance in fire regimes results from
human ignitions, fire suppression, land use, real estate value, fire
department location, roads, and with the temporal and spatial scale
of interest. These nonclimatic factors can overwhelm climate effects,
especially during short periods and at small spatial scales. Thus, our
predictions are limited to only potential climate effects and do not
include many other important factors. It would be remiss of us to
make absolute estimates of fire probabilities in the distant future
without addressing the many nonclimatic factors. Thus, unlike pre-
diction of past mean fire intervals using climate (Guyette et al.
2012), predicting future mean fire intervals for regions with greatly
changed nonclimatic factors would not be appropriate. Only the
extent (percentage) of change due to climate effects on fuel and
combustion can be predicted or simulated.

Physical Chemistry Model Calibration with Diverse Data Sets
Although there are many ways to address fire in the future, our

presentation here allows for the use and model calibration with
many types of climate-fire data. These include state-level fire num-
bers with average state temperature and precipitation, Moderate
Resolution Imaging Spectroadiometer (MODIS) fire starts and
temperature and precipitation, local fire department annual fire re-
cords and climate, and long-term fire scar records as used to calibrate
the PC2FM presented here.

Summary
The framing of future climate effects on future fire regimes will

change with the strength and calibration of global climate data sets,
their inputs, and modeling improvements. The results of this fire
modeling approach will be adaptable to new climate simulations
and the increasing range of new fire calibration data. This ap-
proach’s greatest strength may lie in using only climate data and the
simple principles of physical chemistry. The many other noncli-
matic factors that affect fire are often difficult to predict in the
distant future. Additionally, many nonclimate variables are perhaps
even less predictable than temperature and precipitation given 50 to
100 years of potential rapid changes in human technologies, societal
needs, and values.
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