
Remote Sens. 2014, 6, 4741-4763; doi:10.3390/rs6064741 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Improving Species Diversity and Biomass Estimates of Tropical 

Dry Forests Using Airborne LiDAR 

José Luis Hernández-Stefanoni 
1,

*, Juan Manuel Dupuy 
1
, Kristofer D. Johnson 

2
,  

Richard Birdsey 
2
, Fernando Tun-Dzul 

1
, Alicia Peduzzi 

2
, Juan Pablo Caamal-Sosa 

3
, 

Gonzalo Sánchez-Santos 
3
 and David López-Merlín 

3
  

1
 Centro de Investigación Científica de Yucatán, A.C. Unidad de Recursos Naturales, Calle 43 # 130. 

Colonia Chuburná de Hidalgo, Mérida, Yucatán C.P. 97200, Mexico;  

E-Mails: jmdupuy@cicy.mx (J.M.D.); fjtun@cicy.mx (F.T.-D.) 
2 

U.S. Forest Service, Northern Research Station, Newtown Square, PA 19073, USA;  

E-Mails: kristoferdjohnson@fs.fed.us (K.D.J.); rbirdsey@fs.fed.us (R.B.); apeduzzi@fs.fed.us (A.P.) 
3
 Proyecto México-Noruega, Comisión Nacional Forestal, Col. Del Carmen Coyoacán,  

Coyoacán D.F. C.P. 04100, Mexico; E-Mails: jcaamalsosa@gmail.com (J.P.C.-S.);  

bedxemex@hotmail.com (G.S.-S.); davidlopezmerlin@gmail.com (D.L.-M.) 

* Author to whom correspondence should be addressed; E-Mail: jl_stefanoni@cicy.mx;  

Tel.: +52-999-942-8330 (ext. 372). 

Received: 7 March 2014; in revised form: 6 May 2014 / Accepted: 7 May 2014 /  

Published: 26 May 2014 

 

Abstract: The spatial distribution of plant diversity and biomass informs management 

decisions to maintain biodiversity and carbon stocks in tropical forests. Optical remotely 

sensed data is often used for supporting such activities; however, it is difficult to estimate 

these variables in areas of high biomass. New technologies, such as airborne LiDAR, have 

been used to overcome such limitations. LiDAR has been increasingly used to map carbon 

stocks in tropical forests, but has rarely been used to estimate plant species diversity. In 

this study, we first evaluated the effect of using different plot sizes and plot designs on 

improving the prediction accuracy of species richness and biomass from LiDAR metrics 

using multiple linear regression. Second, we developed a general model to predict species 

richness and biomass from LiDAR metrics for two different types of tropical dry forest using 

regression analysis. Third, we evaluated the relative roles of vegetation structure and habitat 

heterogeneity in explaining the observed patterns of biodiversity and biomass, using 

variation partition analysis and LiDAR metrics. The results showed that with increasing plot 

size, there is an increase of the accuracy of biomass estimations. In contrast, for species 
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richness, the inclusion of different habitat conditions (cluster of four plots over an area of  

1.0 ha) provides better estimations. We also show that models of plant diversity and biomass 

can be derived from small footprint LiDAR at both local and regional scales. Finally, we 

found that a large portion of the variation in species richness can be exclusively attributed to 

habitat heterogeneity, while biomass was mainly explained by vegetation structure. 

Keywords: above-ground biomass; biodiversity; habitat heterogeneity; LiDAR; 

vegetation structure 

 

1. Introduction 

Tropical forests are one of the most diverse terrestrial communities in the world. They provide 

goods and ecological services to human populations, store more carbon than any other terrestrial biome 

and play a crucial role for mitigating future global warming [1]. Nevertheless, the rate of forest loss by 

natural disturbances and human interventions has increased dramatically. Tropical deforestation 

currently represents about 8% of annual global greenhouse gas emissions, although historically, this 

rate has ranged from 15%–25% [2,3]. Tropical forest clearing brings declines in biological diversity, 

environmental functions and forest products [4]. Thus, accurate estimates of the spatial distribution of 

plant diversity and biomass are needed to support policies that are designed to maintain terrestrial 

biodiversity and tropical forest carbon stocks. Remote sensing is becoming widely used for supporting 

such activities [5,6]. Understanding and identifying the main factors that affect biodiversity and 

biomass is critical to mapping these variables [7]. This would allow us to develop appropriate methods 

for predicting these variables if we found some parameters or indicators measured from remotely 

sensed data that can be used as proxies for these factors [8,9]. 

There are several limitations of using remote sensing data to quantify important vegetation structure 

parameters, such as diversity and biomass [10]: first, the use of medium or coarse spatial resolutions to 

estimate biodiversity; a single pixel often encompasses a number of different individual plants 

belonging to different species. Thus, each pixel corresponds to a mixed averaged signature, leading to 

difficulties in individual species identification. However, increasing spatial resolution is often 

accompanied by reducing other sensor properties. For example, a recent study [11] compared the 

ability of medium (Landsat) and high- (IKONOS) resolution satellite imagery for assessing plant 

diversity in a tropical dry Indian forest and found that Landsat performed better than IKONOS. This 

was due to a scale factor, since it is not possible to directly measure habitat heterogeneity at high 

spatial resolution. Thus, medium resolutions allow the development of meaningful measures of 

landscape heterogeneity that are more related to species diversity. A second major limitation is the 

inability of different vegetation indices (such as NDVI) to detect changes in areas of high biomass 

above a threshold level, which makes it difficult to estimate biomass and species richness in certain 

areas, due to the saturation of the signal [12]. Finally, there is often poor availability of cloud-free 

optical imagery in the tropics.  

Recent studies have found that LiDAR (light detection and ranging) can be a powerful predictor of 

different vegetation attributes, such as height, basal area, stem density and other vegetation structure 



Remote Sens. 2014, 6 4743 

 

 

parameters [13–15]; yet, LiDAR has been used only rarely to estimate plant species diversity [16,17]. 

This sensor uses laser pulses to directly measure ground and vegetation height, as well as the vertical 

distribution of intercepted surfaces, making it an ideal tool for mapping vegetation structure with no 

saturation at high biomass values [18]. Thus, LiDAR measurements have been shown to produce more 

accurate estimates of vegetation structure parameters than other remotely sensed data, because LiDAR 

has the ability to penetrate tropical forest canopies and to detect three-dimensional forest  

structures [19]. Above-ground biomass is related to several vegetation structure parameters, including 

diameter, height and basal area [20]. Furthermore, many studies have demonstrated a strong 

relationship between above-ground biomass and LiDAR measurements in different ecosystems, 

ranging from conifers to tropical forest [18,21]. 

Other studies have explored the potential of LiDAR to model the assemblage composition and 

diversity of insects, spiders and birds [22–24]. However, few studies have explicitly analyzed the 

relationships between plant species diversity and LiDAR measurements [16,17]. Here, we evaluated 

the potential of LiDAR to map the spatial distribution of species richness in a tropical dry forest based 

on two main factors related to diversity. First, we tested whether LiDAR can be used to predict plant 

diversity based on vegetation structure. LiDAR measurements are well related to estimates of 

vegetation structure parameters [19], and these parameters are associated with different groups of 

species. For example, pioneer species commonly grow in open areas, while non-pioneer species are 

established almost entirely beneath the forest canopy [25]. Moreover, the species richness of tropical 

dry forests increases from young to old stands [26,27]. Second, we evaluated whether species richness 

is related to habitat complexity or heterogeneity. Different measures of variability of remotely sensed 

data have been proposed and used to measure habitat heterogeneity, such as the variance of vegetation 

indices like NDVI [28], the spectral variability derived from the mean of spectral values in a  

multi-dimensional system of bands [29] and variability in the reflectance values among pixels using 

the texture of remotely sensed imagery [30]. It is generally assumed that greater habitat heterogeneity 

allows for a higher number of species to coexist [31]. Here, we propose to use the variance of LiDAR 

metrics as a proxy of habitat heterogeneity. 

The goal of this study was to evaluate the accuracy of predicting the spatial distribution of species 

richness and above-ground biomass using airborne LiDAR in two tropical dry forests of the Yucatan 

Peninsula. The design and aims of the study address some of the research shortcomings that we have 

outlined previously. To this end, we established three specific objectives. 

The first objective was to evaluate the effect of using different plot sizes and plot designs for 

improving the prediction accuracy of the species richness and biomass of tropical dry forests. There is 

a tendency for errors to decrease in biomass estimates with increasing plot size, because large plots 

reduce the likelihood of edge effects, which occur when the canopy of trees are found along the plot 

boundary. There is also a decrease of errors in general, because large plots capture an adequate amount 

of structural variability in the field [32]. Thus, our first prediction was that the accuracy of estimation 

for above-ground biomass (AGB) and species richness would increase as the plot size increased [33]. 

In terms of plot design, having a cluster of separated plots allows for capturing habitat heterogeneity, 

possibly resulting in higher correlations with species richness, but could also increase errors associated 

with edge effects, thereby potentially decreasing the accuracy of AGB estimates. Consequently, our 
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second prediction was that having a cluster of separated plots would improve estimates of species 

richness, but not of AGB.  

The second objective was to develop a general model to estimate species richness and above-ground 

biomass from LiDAR data for two different types of tropical dry forests. We expected that vegetation 

structure and species composition would vary with climate and anthropogenic disturbance regimes in 

the studied area [27] and that relationships between LiDAR metrics and forest characteristics are site 

dependent [34]. It is important to evaluate the accuracy of a general model encompassing different 

vegetation types, for possible applications at a regional level.  

The third objective was to use LiDAR metrics as surrogates for both vegetation structure and 

habitat heterogeneity to evaluate the relative roles of these two factors in explaining the observed 

patterns of biodiversity and biomass. AGB increases rapidly with stand age in the Yucatan  

Peninsula [35,36], and we hypothesized that vegetation structure is the most important variable 

affecting above-ground biomass due to its relationship with stand age. We also hypothesized that 

species richness is influenced mostly by habitat heterogeneity, since plant diversity has been reported 

to be strongly correlated with environmental variables, such as soil fertility and proximity to  

seed sources [37]. 

2. Data and Methods 

2.1. Site Descriptions 

We acquired LiDAR imagery and collected field data from two different regions of the  

Yucatan Peninsula—the Kiuic site located in the southern part of the State of Yucatan  

(89°32ʹW–89°34ʹW, 20°04ʹN–20°06ʹN) and the Felipe Carrillo Puerto (FCP) site situated in the middle 

portion of the State of Quintana Roo (88°03ʹW–88°05ʹW, 19°28ʹN–19°30ʹN) (Figure 1). The Kiuic site 

lies within a private protected area, while the FCP site consists mostly of communal land. Both sites 

are covered with a tropical dry forest and have a tropical warm climate, with summer rain and a dry 

season from November to April, and a mean annual temperature of about 26 °C. However, there is 

considerable variation in the precipitation, topography and land-use history between both sites that 

confers differences in species composition and vegetation structure. On the Kiuic site, mean annual 

precipitation ranges between 1000 and 1100 mm. The landscape consists of Cenozoic limestone hills 

with a moderate slope (10°–25°) alternating with flat areas, and the elevation ranges from 60 to  

180 m [38]. The area is dominated by seasonally dry semi-deciduous tropical forests (50%–75% of 

species drop their leaves during the dry season) of different ages of abandonment after traditional 

slash-and-burn agriculture. The forest has a relatively low canopy stature (8–13 m) with a few 

prominent trees attaining 15–18 m in the oldest (60–70 year old) stands. The most abundant species in 

this forest are Neomillspaughia emarginata, Gymnopodium floribundum, Bursera simaruba, Piscidia 

piscipula and Lysiloma latisiliquum. The FCP site has fairly flat topography and mean annual rainfall 

between 1000 and 1300 mm [39]. The landscape is dominated by seasonally dry semi-evergreen 

tropical forest (25%–30% of species drop their leaves during the dry season), which grows up to 25 m 

tall and is a structurally complex community with two or three canopy layers, consisting mostly of 

trees, where the most abundant species are Manilkara zapota, Vitex gaumeri, Bursera simaruba, 
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Metopium brownei and Cecropia obtusifolia. The dominant land use is pastures for cattle raising, 

although traditional swidden agriculture is also practiced, both leading to a mosaic of open fields and 

vegetation in different successional stages.  

Figure 1. Location of the study sites and field samples: (A) Kiuic and (B) Felipe Carrillo 

Puerto (FCP). 

 

2.2. Species Richness and Biomass Data 

Field data for both sites were recorded from a systematic plant survey conducted during the rainy 

season of 2013 in an area of 9 km
2
. At the Kiuic site, clusters of sample plots were located 

systematically around an eddy covariance flux tower, while at the FCP site, the clusters of plots were 

located on a fixed grid of evenly-spaced sample locations, having in total 20 and 28 sample clusters of 

plots for the Kiuic and FCP sites, respectively (Figure 1). The cluster plot design was based on the 

field data layout used for Mexico’s National Forest Inventory (INFyS) [40]. Each cluster consists  

of 4 circular plots of 400 m
2
 each, with a radius of 11.28 m. The plots are distributed over an area  

of 1.0 ha, representing a sample of the conditions within this area. Plot 1 is located in the center of the 

cluster, whereas Plots 2, 3 and 4 are located 38.6 m at azimuths of 0°, 120° and 240° from the center of 

Plot 1. All plots were located on the ground with a Garmin GPS unit. The precision of the X and Y 

coordinates of center plots was estimated from different measurements of the position, and the mean 

location errors were less than 3 m. In each plot, all woody plants >7.5 cm in DBH (diameter at breast 

height: 1.3 m) were sampled. In addition to the 400 m
2
 area and as a modification of the original 

INFyS design, we added another larger concentric area of 1000 m
2
 (17.84 m radius), centered at  
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Plot 1, where all woody plants >20.0 cm in DBH were registered. We measured the diameter of all 

stems and the height of all individuals. We calculated the number of all woody plant species per 

sample site (i.e., species density sensu [41]), as a measure of local or α species diversity, and  

above-ground biomass for different plot areas and spatial arrangements: individual 400 m
2
 plots,  

1000 m
2
 plots and the whole cluster (2200 m

2
). To calculate the biomass from tree diameter (and 

height), two allometric equations developed for tropical forests of Mexico were employed: one for 

trees ≥10 cm in DBH [42] modified by [43] and the other for trees <10 cm in DBH [44]. To calculate 

liana biomass, we used the allometric equation reported by [45], while for palms ≥10 cm in DBH, 

we used the equation developed by [46]. 

2.3. LiDAR Data Processing 

The LiDAR coverage data for the Kiuic and FCP sites were acquired in August of 2012 and January 

of 2013, respectively, by a private contractor, CartoData [47], operating a Cessna T202 aircraft. The 

LiDAR data were collected using an airborne laser scanner, RIEGL-QV-480 LiDAR, equipped with a 

NovAtel GPS/IMU and a 16-mpx RGB nadir looking camera. The system was operated at an average 

height of 396.2 m above ground level, a 30° field of view and a pulse repetition frequency of 200 kHz, 

for which the aircraft maintained a ground speed between 80 and 90 kph. Flights had an approximate 

overlap of 50% between adjacent flight lines, averaged more than 5 pulses per square meter and 

included up to 5 returns for each pulse.  

LiDAR data were processed using FUSION software [48]. Using the X, Y coordinates and the 

radius for each field plot, the clouds of points were clipped to correspond with the area of plots 

(400 and 1000 m
2
). Before applying the clipping process, the data were normalized to the ground 

surface, in order to express the returns in terms of heights above the ground instead of elevation above 

sea level. Then, a set of 62 LiDAR metrics were calculated from the cloud of points within each of the 

400 and 1000-m
2
 plots. For the entire cluster of sample plots (2200 m

2
), the mean and standard deviation 

values were calculated for the metrics derived from all three 400-m
2
 plots and the 1000-m

2
 plot.  

The LiDAR metrics were used as the predictor variables in the models for estimating the spatial 

distribution of species richness and biomass. Such metrics belonged to two categories. The first group 

was based on height statistics and includes mean, maximum and minimum elevation, the variability of 

return heights (variance, coefficient of variation), statistics to quantify location (percentiles 1, 5, 10, …, 

100 and L-moments), among others. The second group included canopy density metrics and was used 

to evaluate the amount of vegetation cover. A threshold of 1.5 m as a minimum height above ground 

was used to reduce the noise within the near-ground cloud of returns caused by low vegetation and 

imperfections of the ground. A canopy threshold height of 4.0 m was used to compute LiDAR canopy 

cover metrics. A list of the metrics is shown in Table A1; for a detailed description and the equations 

used to calculate the LiDAR metrics, see [48]. 

2.4. Data Analysis 

Ordinary least squares (OLS) multiple regression analysis was used to model the statistical 

relationship between the response variable (species richness or above-ground biomass) and 

explanatory variables (LiDAR metrics) at each of three sample areas (400, 1000 and 2200 m
2
). The 
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dependent variables were formally tested for normality and homoscedasticity, while the response 

variables were transformed as needed with 1/x, log10(x), log10(x + 1) and sqrt(x) to meet linearity 

assumptions [48]. None of the LiDAR metrics (predictors) required transformation once the distributions 

of response variables were normalized. All multiple regression analyses were carried out using 

stepwise forward selection. Multicollinearity between predictor variables can cause problems in 

multivariable modeling; therefore, the explanatory variables considered for the analysis were either 

uncorrelated or expressed only small collinearity, with a variance inflation factor less than 2.0 [49]. 

Second, a multiple linear regression technique was used to develop a regional model to predict the 

species richness and biomass of the tropical dry forest in the Yucatan from LiDAR metrics. These 

models used the best model selected once the goodness of fit was applied for each variable, and then, 

they were applied to the combined data sets from both sites (Kiuic and FCP). 

The performance of the different models was assessed by leave-one-out cross-validation. In this 

procedure, one observation is temporally removed from the data set, and the remaining sampling plots 

are used to fit the model. Then, coefficients obtained are applied to this datum in order to produce a 

predicted value. The cross-validation yields a list of estimated values of species richness and biomass 

paired to those obtained from the observed sampling plots. Predicted values were also back-transformed 

to original values as needed and corrected for bias introduced during the back-transformation process 

using a method suggested by [50]. The predicted and observed values of species richness and biomass 

were compared using the coefficient of determination (R
2
), the root mean square error (RMSE) and the 

agreement coefficient (AC) proposed by [51]. The last quantitative measure of agreement has the 

ability to provide metrics that are bounded by the fixed minimum and maximum values and are 

standardized to non-dimensional units, so the units of measurement of observed and predicted values 

do not affect the value. AC is calculated as:  

𝐴𝐶 = 1 −
SSD

𝑆𝑃𝑂𝐷
 (1) 

where SSD is the sum of squared differences: 

 
2

1

 
n

i i

i

SSD X Y


   (2) 

and SPOD is the sum of potential difference: 

  
1

 
n

i i

i

SPOD X Y X X X Y Y Y


        (3) 

where 𝑋 and 𝑌  are the mean values of the observed (X) and predicted (Y) values of the variable, 

respectively. The AC values range from <0 to 1, where AC = 1 means perfect agreement between 

observed and predicted values, and values less than or equal to zero indicate no agreement. 

Considering that the third objective of this study was to evaluate the relative contribution of 

vegetation structure (mean values of LiDAR metrics calculated in 4 plots) and habitat heterogeneity 

(standard deviation values of LiDAR metrics calculated in 4 plots) to overall variation in species 

richness and biomass, a combination of multiple regression and variation partitioning methods was 

used [52]. The general procedure involves the following steps. First, a model of multiple regressions 

between response variables and mean values of LiDAR metrics per cluster was fitted. This model 
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represents the variability explained by vegetation structure and the variation explained jointly by 

vegetation structure data and habitat heterogeneity (a + b). Dependent variables (species richness and 

above-ground biomass) were formally tested for the normality and homogeneity of variances in the 

residuals [52]. These variables were transformed with 1/x, log10(x), log10(x + 1) and sqrt(x), as 

necessary to meet linearity assumptions [49]. Second, a multiple regression model using habitat 

heterogeneity (standard deviation values of LiDAR metrics calculated in 4 plots per cluster) was fitted 

to the response variables. This second model represents habitat heterogeneity plus the variation 

explained jointly by vegetation structure and habitat heterogeneity (b + c). Then, linear trends were 

checked by conducting a regression analysis of response variables with the X and Y spatial locations of 

each site. In the case of significant linear trends, detrended residuals were used as response variables 

for both previous models. Thirdly, the total amount of variation explained (a + b + c) was calculated by 

combining the two previous multiple regression models into an overall regression model using 

exclusively significant selected variables. All multiple regression analyses were carried out using 

forward selection. Finally, variation partitioning was performed to determine the relative importance of 

vegetation structure variables (a = (a + b + c) − (b + c)), habitat heterogeneity (c = (a + b + c) − (a + b)) 

and shared variation (b = (a + b + c) − (a) − (c)) on species richness and biomass [52].  

3. Results 

3.1. Patterns of Species Richness and Biomass 

A total of 5843 individuals belonging to 152 plant species were recorded in the 20 clusters  

of four plots in the Kiuic site, whereas 10,301 individuals belonging to 144 plant species were 

recorded in the 28 clusters of four plots in the FCP site. The number of sample plots employed 

provided adequate representations of species richness at the landscape level, both for the Kiuic and for 

the FCP sites, as shown in [27,53], through the use of species accumulation curves. Both species 

richness and AGB were consistently higher in FCP than in Kiuic across sampling areas (Table 1). 

Species richness also consistently increased as the sampled area increased, whereas AGB failed to 

show a clear trend with the total area sampled (Table 1). 

Table 1. Key statistics of the field data for the tropical dry forests in the Yucatan peninsula.  

Site and Number of Plots Sampled Area (m
2
) 

Mean (SE) 

Species Richness Biomass (Ton/ha) 

Kiuic (20) 400 22.75 (1.00) 147.20 (14.99) 

 1000 23.55 (1.06) 109.71 (9.59) 

 2200 46.20 (1.71) 179.16 (8.16) 

FCP (28) 400 26.93 (1.09) 270.27 (16.12) 

 1000 29.46 (1.22) 376.77 (20.91) 

 2200 58.25 (1.35) 351.81 (27.15) 
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3.2. Effects of Plot Size and Plot Design on Species Richness and Biomass 

LiDAR showed a low association with species richness for the 400 and 1000-m
2
 sample areas.  

The R
2
 values ranged from 0.18 to 0.19 and the AC values were all negative, indicating no agreement 

between observed and predicted values of species richness (Figures 2 and 3). However, predictions of 

species richness that considered the entire cluster of four plots (2200 m
2
) improved the accuracy of 

predictions compared to the analysis using the individual plots. The R
2
 values increased to 0.39 and 0.49, 

respectively, for the FCP and Kiuic sites. Similarly, the AC values were 0.11 and 0.29, respectively, 

showing an agreement between observed and predicted values of species richness. Multiple regression 

models consistently retained some LIDAR metrics based on percentiles of height for the 400 and  

1000-m
2
 sample areas, whereas for the cluster of plots, species richness was mainly explained by the 

standard deviation of the LiDAR metrics in the four plots in both landscapes (Tables 2 and 3, 

respectively). These results suggest that a cluster-plot design can improve the accuracy of the predictions 

of species richness, likely because it is able to capture habitat heterogeneity within the sampled area. 

Figure 2. The results of cross-validation analyses used to compare the performance of 

observed and predicted values of (left panel) species richness and (right panel)  

above-ground biomass (MG/ha) in the Kiuic site. (A) Plots of 400 m
2
; (B) Plots of 

1000 m
2
; (C) Plots of 2200 m

2
. R

2
 is the determination coefficient; RMSE is the root mean 

square error, and AC is the agreement coefficient. 

 

(A) 

 

(B) 
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Figure 2. Cont. 

 

(C) 

Figure 3. The results of cross-validation analyses used to compare the performance of 

observed and predicted values of (left panel) species richness and (right panel)  

above-ground biomass (MG/ha) in the FCP site. (A) Plots of 400 m
2
; (B) Plots of 1000 m

2
;  

(C) Plots of 2200 m
2
. R

2
 is the determination coefficient; RMSE is the root mean square 

error, and AC is the agreement coefficient. 

 

(A) 

 

(B) 
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Figure 3. Cont. 

 

(C) 

Table 2. Summary statistics of multiple linear regressions of species richness and biomass 

with LiDAR metrics in the Kiuic site, using different sample areas.  

Dependent 

Variable 

Sampled 

Area (m
2
) 

Predictor Variables *** 
Parameters Estimate 

(SE) 

R
2
 

MODEL 

Species 

richness 

400 
Intercept 12.72 (3.54) * 

0.32 
Elev P10 1.98 (0.68) * 

1000 
Intercept 3.30 (6.19) 

0.37 
Elev P90 1.55 (0.47) * 

2200 

Intercept 31.81 (9.21) * 

0.67 
MEAN Elev Maximum 1.11 (0.65) ** 

STD Elev L4 137.97 (60.92) * 

STD canopy relief ratio −216.50 (57.05) * 

Sqrt 

Biomass 

400 
Intercept 10.38 (0.51) * 

0.59 
Elev L3 −14.33 (2.79) * 

1000 

Intercept 52.52 (7.33) * 

0.89 
Percentage of first returns above 4.0 −0.65 (0.09) * 

(All returns above mean)/(Total firs returns) × 100 0.12 (0.03) * 

Elev P50 1.64 (0.15) * 

2200 

Intercept 7.20 (2.15) * 

0.78 
MEAN Elev P80 0.63 (0.19) * 

MEAN Elev kurtosis −19.55 (8.87) * 

STD Elev P10 1.09 (0.55) ** 

Notes: * Variables included in the model with p < 0.01; ** variables included in the model with p < 0.05;  

*** Elev P10, P50, P80 and P90 = 10, 50, 80 and 90 of the percentile value of height;  

Elev Maximum = maximum value of height; Elev L3 and L4 = L3 and L4 moment value of height,;  

Elev Kurtosis = kurtosis value of height; MEAN and STD = mean and standard deviation values of the metrics 

for the cluster of four plots. 
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Table 3. Summary statistics of multiple linear regressions of species richness and biomass 

with LiDAR metrics in the FCP site, using different sample areas. 

Dependent 

Variable 

Sampled 

Area (m
2
) 

Predictor Variables *** 
Parameters 

Estimate (SE) 

R
2
 

MODEL 

Species 

richness 

400 

Intercept 45.16 (8.92) * 

0.41 Elev P90 −3.47 (0.87) * 

(All returns above mean)/(Total firs returns) × 100 0.44 (0.11) * 

1000 

Intercept 69.79 (15.83) * 

0.38 Elev P99 −3.70 (1.01) * 

(All returns above mean)/(Total firs returns) × 100 0.18 (0.06) * 

2200 

Intercept 75.91 (8.97) 

0.49 

MEAN Elev Kurtosis −8.70 (3.17) * 

STD Return 4 count above 1.50 0.57 (0.24) * 

STD Elev MAD mode 8.70 (3.25) * 

STD Elev P60 −4.60 (2.36) ** 

Sqrt 

Biomass 

400 
Intercept 5.52 (1.81)*  

0.58 
Elev P60 0.98 (0.16) * 

1000 

Intercept −937.56 (434.85) * 

0.73 Percentage of all returns 0.33 (0.05) * 

Elev minimum 627.66 (290.50) * 

2200 

Intercept −3.26 (6.58) 

0.63 
MEAN Elev P99 1.31 (0.38) * 

STD Return 3 count above 1.50 0.03 (0.01) * 

STD Return 1 count above 1.50 −0.004 (0.002) * 

Notes: * Variables included in the model with p < 0.01; ** variables included in the model with p < 0.05;  

*** Elev P60, P90 and P99 = 60, 90 and 99 of the percentile value of height; Elev Minimum = minimum value of 

height; Elev MAD mode = median of the absolute deviations from the overall mode of height;  

Elev Kurtosis = kurtosis value of height; MEAN and STD = mean and standard deviation values of the metrics for 

the cluster of four plots. 

We found substantial improvement of the prediction accuracy of ABG as the plot size increased 

from 400 to 1000 m
2
. The R

2
 and AC values increased, respectively, from 0.49 and 0.23 to 0.86 and 

0.84 for the Kiuic site (Figure 2) and from 0.49 and 0.19 to 0.62 and 0.46 for the FCP site. Meanwhile 

the RMSE decreased from 37.4 to 19.8 and from 60.2 to 57.2 for Kiuic and FCP, respectively. 

However, the accuracy of predictions did not improve for the 2200-m
2
 sample area, compared with the 

1000-m
2
 area. On the contrary, the R

2
 decreased from 0.86 to 0.70 and from 0.62 to 0.50, respectively, 

for Kiuic and FCP sites. These results suggest that although the sampled area increased when we 

considered the cluster of four plots, this also increased the edge effect, leading to greater errors for 

biomass estimation.  

AGB was explained by point density measures and height metrics for the 400 and 1000-m
2
 sample 

areas, whereas for the cluster of plots, biomass was explained by both the mean and standard deviation 

of the LiDAR metrics in the cluster of four plots in the Kiuic and FCP sites (Tables 2 and 3). 
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3.3. Regional Model to Predict Species Richness and Biomass from LiDAR 

Our general model, incorporating the sample plots of both sites, explained 46% and 62% of the 

variation of species richness and biomass, respectively (Figure 4). This general model was built using 

the best model obtained for each explanatory variable (species richness and biomass) when evaluating 

the sites individually. Multiple regression models indicated that species richness was mainly explained 

by the standard deviation of the LiDAR metrics in the cluster of four plots, while above-ground 

biomass was best explained by point density and height metrics for the plot of 1000 m
2
 (Table 4). 

Figure 4. The results of cross-validation analyses used to compare the performance of 

observed and predicted values of (left) species richness and (right) above-ground biomass 

(MG/ha) in the entire area (samples from both Kiuic and FCP sites). R
2
 is the determination 

coefficient; RMSE is the root mean square error, and AC is the agreement coefficient. 

 

Table 4. Summary statistics of multiple linear regressions of the number of species and 

biomass with LiDAR metrics for a regional model. 

Dependent 

Variable 

Sampled 

Area (m
2
) 

Predictor Variables *** 
Parameters 

Estimate (SE) 

R
2
 

MODEL 

Species 

Richness 
2200 

Intercept 48.07 (5.54) * 

0.59 

MEAN Elev variance 0.60 (0.36) ** 

STD return four count above 1.50 1.02 (0.26) * 

STD First returns above mean −0.015 (0.005) * 

STD Elev variance 1.32 (0.65) * 

STD First returns above mode −0.006 (0.003) ** 

Sqrt Biomass 1000 

Intercept −1.00 (2.63) 

0.71 
Elev P90 1.21 (0.18) * 

Return three count above 1.50 0.004 (0.001) * 

Percentage all returns above mean −0.04 (0.23) ** 

Notes: * Variables included in the model with p < 0.01; ** variables included in the model with p < 0.05;  

*** Elev P90 = 90 of the percentile value of height; Elev variance = variance value of height; MEAN and 

STD = mean and standard deviation values of the metrics for the cluster of four plots. 
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Comparing the variation explained by the general model with that of each site independently, the 

general model differed from the models obtained at each site by 3%–7% for species richness and by  

0–24% for above-ground biomass. 

3.4. Variation Partitioning of Species Richness and Biomass 

The amount of variation explained by vegetation structure (mean values of LiDAR metrics in the 

cluster of four plots) and habitat heterogeneity (standard deviation values of LiDAR metrics in the 

cluster of four plots) differed between species richness and biomass (Figure 4). The total variation 

explained by the models was consistently higher for biomass (63%–79%) compared to species richness 

(49%–67%) (Figure 5). Variation partitioning revealed that habitat heterogeneity was the single most 

important factor, accounting for 42% and 27% of the total variation in species richness, respectively, 

for the Kiuic and FCP sites. In contrast, for biomass, the combined effect of vegetation structure and 

habitat heterogeneity was the most important factor. However vegetation structure was more important 

than habitat heterogeneity, accounting for 16 and 20% of the total variation in stand biomass for the 

Kiuic and FCP sites, respectively (Figure 5). 

Figure 5. Partitioning of the variation in (left panel) species richness and (right panel) 

above-ground biomass using mean (Struct) and standard deviation values (Hab_H) of 

LiDAR metrics in the cluster of four plots. Struct is vegetation structure, and Hab_H is 

habitat heterogeneity. (A) Kiuic Site; (B) FCP Site. 

 

(A) 

 

(B) 
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4. Discussion 

4.1. Effects of Plot Size and Plot Design on Species Richness and Biomass Estimations 

Our results suggest that plot size and plot spatial arrangement, respectively, strongly influence the 

accuracy of estimates of AGB and species richness obtained from LiDAR. For AGB, the R
2
 values in 

the cross-validation procedure increased from 0.49 to 0.86 and from 0.49 to 0.62 in the Kiuic and FCP 

sites, respectively, when comparing the 400-m
2
 and the 1000-m

2
 plot sizes. However, a further 

increase in the total sample area from 1000 m
2
 to 2200 m

2
 did not result in an increase of the R

2
 

values. Thus, our results indicate that plot size, rather than total sample area, is critical for improving 

LiDAR-derived biomass estimations. There are several reasons why increasing the field plot size 

should be considered when estimating ABG from airborne LiDAR data. First, there are errors in the 

field estimates of AGB when small plots are used in inventories, due to the potential over- or  

under-representation of rare large trees in small areas [32]. Second, increasing the plot size allows 

more overlap between ground plots and LiDAR data, thereby reducing the potential errors associated 

with inaccurate GPS locations collected at the center of the plots [54]. Third, a larger plot has a lower 

perimeter-to-area ratio, resulting in fewer potential edge-related issues, and more accurate LiDAR 

metrics describing vertical structure [33]. The latter point can also help explain why increasing the 

total sample area to 2200 m
2
 resulted in a decrease, rather than an increase, in the R

2
 values compared 

to the 1000-m
2
 plots, since this increase in area was accompanied by a substantial increase in the 

perimeter and the potential errors associated with edge effects [33], when comparing a cluster of four 

plots to a single large plot.  

Although implementing larger plot sizes increases the accuracy of biomass predictions, this also 

increases the cost. Thus, for determining an optimal plot size for mapping biomass using airborne 

LiDAR, it is necessary to quantify acceptable levels of error and cost. The study by [54] evaluated 

different plot sizes (314, 707, 1257 and 1964 m
2
) for estimating biomass from LiDAR and showed that 

R
2
 increased from 0.82 to 0.88, with an asymptotic non-linear trend, suggesting that little improvement 

is expected for plots larger than 1257 m
2
. Our predictive R

2
 values are comparable to those of [54], 

providing reliable estimates for the AGB, and suggest that it is not necessary to increase the plot size 

much beyond the size of the larger plot we used. 

In contrast to estimating biomass, there was no benefit to increasing the plot size from 400 to  

1000 m
2
 to model species richness; instead, the ability to capture the local variability of the landscape 

using a cluster of four plots proved to be far more efficient. Habitat heterogeneity has been frequently 

associated with species richness. Several authors have reported strong associations between spectral 

heterogeneity (as a proxy of habitat heterogeneity) and species richness [28–30,55]. Using the variance 

of height on LiDAR metrics within plots of 400 and 1000 m
2
, the R

2
 values were increased from 0.19 

to 0.49 and from 0.25 to 0.39 in the Kiuic and FCP sites, respectively, when comparing the 1000-m
2
 

plot and the cluster of four plots (2200 m
2
), suggesting that habitat heterogeneity is a  

scale-dependent proxy of species richness [56]. In other words, the inclusion of different habitat 

conditions at a larger scale (cluster of four plots over an area of 1.0 ha) may reveal a relationship 

between species richness and habitat heterogeneity that is not captured at the local, single-plot  

scale [56]. For example, the variety of land cover classes within clusters of four plots may be 
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correlated with species richness, reflecting different topographic conditions and stages of forest 

succession, as also found by [27,57], respectively. Both studies were performed in tropical dry forests 

of the Yucatan Peninsula. 

Besides plot design, the type of species diversity measurement used may also affect the estimation 

accuracy. In particular, the Shannon diversity index, which takes into account relative species 

abundance, may improve the ability to detect local species diversity by remotely sensed data, as 

suggested by [58]. This is mainly due to the fact that this index is less affected by the presence of rare 

species than species richness. However, the occurrence of rare species is one of the most frequently 

used criterion for selecting and prioritizing habitat sites for preservation [59,60]. This was the reason 

why we selected the number of species as our estimate of alpha diversity. 

Species richness and biomass were shown to be strongly related to LiDAR data in the studied area. 

Specifically, regression results suggest that species richness is mainly related to the standard deviation 

of LiDAR metrics in the four plots: standard deviation of the elevation L4, canopy relief ratio and 

elevation MAD (median of absolute deviations) mode. The positive coefficient of the standard 

deviation of LiDAR metrics indicates that greater habitat heterogeneity (more variability of 

topography and tree height) promotes a greater number of species to be present within the area of the 

clusters of plots. On the other hand, above-ground biomass was mainly related to point density (all 

returns above mean/total first returns × 100, the percentage of all returns) and height metrics (elevation 

P50, elevation minimum). We found a positive relationship between point density and height metrics 

in most of the regression models for estimating biomass, meaning that biomass increases with taller 

trees and more canopy cover. 

4.2. Regional Model to Predict Species Richness and Biomass 

The accuracy of the predictions of species richness and biomass from LiDAR metrics varied 

between the studied sites. The R
2
 values were consistently higher for the Kiuic site (0.49 and 0.86 for 

species richness and AGB, respectively), compared to FCP (0.39 and 0.62). Different studies have 

shown differences in associations between LiDAR metrics and forest structure parameters across sites, 

such as that of Drake et al. [14] comparing a seasonal moist tropical forest in Panama and a wet 

tropical forest in Costa Rica. These differences could be due to a combination of between-site 

differences in forest structure, resulting from environmental conditions, land use changes and the 

limited precision of LiDAR footprints. The denser, taller and multilayered canopy in the FCP site may 

represent more difficult conditions than those of the Kiuic site for acquiring accurate GPS  

positions [61]. Our general model explained 46% and 62% of the variation of species richness and 

biomass, respectively, and showed some differences compared with the individual models for each 

site. Between-site variations in the relationships among LiDAR metrics and species richness and 

biomass may be related to the level of variation explained by the general vs. site-specific models. 

However, our biomass regional models have a similar accuracy (R
2
 = 0.62) when compared with other 

regional tropical forest models (R
2
 = 0.56 to 0.80) [34,62]. 
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4.3. Factors Related to Species Richness and Biomass Estimations  

The results of this study suggest that the standard deviations of LiDAR metrics can be used as 

indicators of habitat heterogeneity within stands and, therefore, of species richness [31]. A greater 

variety of canopy and subcanopy LiDAR returns reflects the greater variability of topography and tree 

height (possibly linked to forest succession) and conditions that provide opportunities for different 

species to be present within the sample area. The question remains if there is a limit to how many 

species can be detected with this approach. For the range of conditions that exist for our two studied 

sites, where species richness is relatively high, the current approach seems adequate. 

The ability to predict biomass and species richness, however, is based on the combination of two 

main aspects that contribute to the predictive value of the models. The first aspect is related to the 

structural attributes of vegetation, i.e., canopy cover, tree diameter, basal area and tree height, which 

are indicators of the structural complexity of the forest [63] and are related to the species richness and 

biomass present in the stand, since this fosters different groups of species [26] and biomass  

levels [35,36]. The second aspect is based on habitat heterogeneity, i.e., the heterogeneity within and 

among stands caused by disturbance and topography. Although this second aspect is considered a 

relevant surrogate of biodiversity [31], habitat fragmentation substantially reduces forest biomass [64], 

possibly due to enhanced tree mortality and the proliferation of disturbance-adapted species, such as 

lianas [65]. Moreover, basal area and tree height differ between hills and flat areas [27]. 

An important finding of our study is that the structural complexity of vegetation and habitat 

heterogeneity, measured through airborne LiDAR data, were significant predictors of species richness 

and biomass. A large portion (27%–42%, see Figure 5) of the variation in species richness can be 

attributed exclusively to habitat heterogeneity, whereas a much smaller fraction of the variation  

(5%–19%) was explained solely by the structure of vegetation. An opposite pattern to that of species 

richness was found for biomass, since the variation in biomass was mainly explained by vegetation 

structure (16%–20%) compared with habitat heterogeneity (5%–12%). However, shared variation 

(31%–58%) was the most important determinant of the biomass. These results are consistent with 

recent findings in tropical forests showing that biomass is mainly explained by the structure of 

vegetation [35,36], whereas species richness is strongly affected by factors not directly measured by 

LiDAR and related to the variability of habitat conditions, such as soil fertility and other 

environmental components [37,66]. 

5. Conclusions  

We presented in this study a potentially useful approach for mapping the number of species and 

biomass based on LiDAR data (as surrogates of environmental factors). The results showed that 

increasing plot size, rather than total sample area, is better for LiDAR-derived biomass estimations. 

In contrast, the inclusion of different habitat conditions (as in the case of the clusters of four plots over 

an area of 1.0 ha) allows better species richness estimations. We also showed that vegetation structure 

and habitat heterogeneity, represented with LiDAR data, may contribute significantly to our 

understanding of how diversity and AGB are maintained in any given area. An important finding of 

our study is that a large portion of the variation in species richness can be exclusively attributed to the 
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habitat heterogeneity. An opposite pattern was found for biomass, since the variation of biomass was 

mainly explained by vegetation structure. 

Finally, a strong limitation faced by conservation biologists and managers of natural resources is the 

lack of continuous information concerning species distribution patterns [67]. In addition to providing 

guidance regarding the selection and effectiveness of protected natural areas, precise biodiversity maps 

produced by accurate modeling can also help to assess species responses to global climate change. In the 

same way, mapping the spatial distribution of above-ground biomass through remote sensing will translate 

into better estimates of carbon stocks at broad scales, a requirement of a deforestation-reduction program, 

such as a REDD+ (Reducing Emissions –of green-house gasses– from Deforestation and Degradation, plus 

enhancing forest carbon stocks). We have shown that models of plant biodiversity and biomass can be 

derived from small footprint LiDAR at both local and regional scales in the tropical dry forest in the 

Yucatan Peninsula. The main limitation to expanding these models to produce regional or national maps in 

Mexico is a lack of wall-to-wall LiDAR data. Nonetheless, recent LiDAR acquisitions by the NASA 

Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) team and more acquisitions planned by the 

United States Agency for International Development Mexican REDD+ (USAID M-REDD+) program will 

fill more gaps and should provide more opportunities for future research in this area. The challenge remains 

to scale these estimations with other wall-to-wall data, such as Landsat, MODIS or RapidEye. 
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Appendix 

Table A1. List of LiDAR metric used in this study. 

Category Metric 

Height 

statistics 

Minimum 

Maximum 

Mean 

Median (output as 50th percentile) 

Mode 

Standard deviation 

Variance 

Coefficient of variation 

Interquartile distance 

Above mean 

Above mode 

Skewness 

Kurtosis 

AAD (average absolute deviation) 

L-moments (L1, L2, L3, L4) 

L-moment skewness 

L-moment kurtosis 

(1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles) 

Canopy 

density 

Total number of returns 

Count of returns by return number (1, 2, 3, 4, 5, 6, 7, 8, 9, other) 

Percentage of first returns above a specified height (canopy cover estimate) 

Percentage of first returns above the mean height/elevation 

Percentage of first returns above the mode height/elevation 

Percentage of all returns above a specified height 

Percentage of all returns above the mean height/elevation 

Percentage of all returns above the mode height/elevation 

Number of returns above a specified height/total first returns × 100 

Number of returns above the mean height/total first returns × 100 

Number of returns above the mode height/total first returns × 100 

Number of first returns above mean 

Number of first returns above mode 

Number of returns above mean 

Number of returns above MODE 

Total number of 1st returns 

Total number of returns 
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