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Summary

1. Modelling the effects of environmental change on populations is a key challenge for ecolo-

gists, particularly as the pace of change increases. Currently, modelling efforts are limited by

difficulties in establishing robust relationships between environmental drivers and population

responses.

2. We developed an integrated capture–recapture state-space model to estimate the effects of

two key environmental drivers (stream flow and temperature) on demographic rates (body

growth, movement and survival) using a long-term (11 years), high-resolution (individually

tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a

stream network. Our integrated model provides an effective context within which to estimate

environmental driver effects because it takes full advantage of data by estimating (latent) state

values for missing observations, because it propagates uncertainty among model components

and because it accounts for the major demographic rates and interactions that contribute to

annual survival.

3. We found that stream flow and temperature had strong effects on brook trout demogra-

phy. Some effects, such as reduction in survival associated with low stream flow and high

temperature during the summer season, were consistent across sites and age classes, suggest-

ing that they may serve as robust indicators of vulnerability to environmental change. Other

survival effects varied across ages, sites and seasons, indicating that flow and temperature

may not be the primary drivers of survival in those cases. Flow and temperature also affected

body growth rates; these responses were consistent across sites but differed dramatically

between age classes and seasons. Finally, we found that tributary and mainstem sites

responded differently to variation in flow and temperature.

4. Annual survival (combination of survival and body growth across seasons) was insensitive

to body growth and was most sensitive to flow (positive) and temperature (negative) in the

summer and fall.

5. These observations, combined with our ability to estimate the occurrence, magnitude and

direction of fish movement between these habitat types, indicated that heterogeneity in

response may provide a mechanism providing potential resilience to environmental change.
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Given that the challenges we faced in our study are likely to be common to many intensive

data sets, the integrated modelling approach could be generally applicable and useful.

Key-words: annual survival, Bayesian modelling, capture–mark–recapture, integrated model,

movement, sensitivity, stream fish, stream network, survival

Introduction

Environmental variation can be a key driver of popula-

tion dynamics, but sorting out how environmental varia-

tion affects population dynamics is challenging. First,

multiple aspects of environmental variation can each inde-

pendently influence population dynamics through complex

pathways (Ozgul et al. 2009; Coulson et al. 2011; Pelletier

et al. 2012). Furthermore, except in some extreme events,

environmental drivers rarely act alone and likely interact

(Mysterud et al. 2001; Stenseth et al. 2004; Bakker et al.

2009). Secondly, patterns of environmental variation

almost always vary across space and, depending on the

extent of local adaptation, the demographic response to

environmental variation itself may also vary across space

(Angilletta, Steury & Sears 2004). Thirdly, the various

environmental drivers can influence population growth

via any one of a combination of the five basic demo-

graphic processes: development, survival, reproduction,

inheritance and movement (Coulson & Tuljapurkar 2008).

Fourthly, the environmental drivers likely have different

effects in different seasons as both environmental change

and the demographic response to change vary seasonally

(Caswell & Shyu 2012). Finally, the strength and direction

of environmental effects may vary over ontogeny (Bonner,

Morgan & King 2010). The challenges in establishing

robust relationships between environment and population

processes may be a major factor in the generally poor

forecasting performance of many current population pro-

jection models (Coulson et al. 2001, 2011; Crone et al.

2013).

A clear understanding of environmental driver effects on

population dynamics is particularly important as the pace

of environmental change quickens (Karl & Trenberth 2003;

Dawson et al. 2011). The relative importance of environ-

mental drivers that are directly or indirectly altered by

changes in climate is likely to increase. For example, in tem-

perate streams, water flow and water temperature are

strongly related to variation in precipitation and air tem-

perature which in turn affect demographic processes in

stream fishes (Xu, Letcher & Nislow 2010). A thorough

understanding of the effects of these environmental drivers

on population dynamics and local population persistence is

critical for effective forecasting and management. For

example, the inability to appropriately incorporate these

dynamics is suggested to strongly limit the applicability of

species distribution models to adequately forecast the

effects of a changing climate (Guisan & Thuiller 2005).

The development of this understanding consists of two

essential components: (i) data with sufficient duration and

resolution and (ii) models with appropriate structure to

accommodate the challenges involved in estimating effects

of environmental drivers. Long-term data allow estima-

tion of independent and interactive environmental effects

on vital rates because multiple years are likely to encom-

pass a wide range of environmental variation (Clutton-

Brock & Sheldon 2010). Additionally, data of sufficient

temporal resolution, particularly in highly seasonal

regions, are necessary to capture seasonal effects of envi-

ronmental drivers. Finally, tracking performance and fates

of known individuals is required to fully characterize the

influence of environmental drivers on demographic pro-

cesses such as body growth, movement and survival. Simi-

larly, to take full advantage of high-resolution, long-term

data, we need to build a model that can estimate key

demographic rates and how the rates respond to environ-

mental variation.

For small-bodied species that are hard to observe and

track in the field, the recent increase in the use of passive

integrated transponder (PIT) tags has generated a wealth

of individual-based field data. This is especially true for

stream fishes that are often abundant in stream networks,

are spatially constrained to essentially one dimension by

the stream network and are therefore relatively easy to

capture and recapture. Combined with in-stream PIT tag

antennas that allow estimation of movements past fixed

locations in stream networks (Zydlewski et al. 2006), these

data provide the necessary information for estimating sur-

vival, growth and movement rates. If complete data were

available for all individuals in a population, these rates

could be measured directly, but capture and recapture

rates of stream fishes (and most animals) are always <1,
leading to missing observations. Well-established capture–

recapture models exist (Lebreton et al. 1992) to account

for missing observations when estimating survival alone,

but in stream fishes (and other animals and plants) sur-

vival and detection commonly depend on time-varying

characteristics (states) of individuals such as body size or

location. In this case, more complex models are needed to

model state-dependent survival effectively (Bonner, Mor-

gan & King 2010). One way to do this is to integrate

models for the states with the survival model (King,

Brooks & Coulson 2008; Royle 2009; Bonner, Morgan &

King 2010). This model integration generates a full ‘feed-

back’ loop between process models (e.g. survival, growth,

movement) and latent states, providing the basis for

robust parameter estimates and propagation of uncer-

tainty among model components. The combination of

long-term high-resolution data and the potential for flexi-

ble, integrated model formulation provides the foundation
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for the development of robust estimates of environmental

effects on key demographic rates.

We collected high-resolution (seasonal), long-term data

(11 years, approximately seven generations) on individu-

ally tagged brook trout (Salvelinus fontinalis) at four sites

in a stream network. We also developed and applied an

integrated state-space capture–recapture model (Royle

2008) that estimates key processes (body growth, survival

and movement) as a function of steam flow and tempera-

ture. The combination of (i) process integration, (ii) the

ability to estimate latent variables for missing data, (iii)

the explicit estimation of covariance structure among all

model components and (iv) the propagation of uncer-

tainty through the model makes this a useful contribution.

This flexible modelling structure allows us to generate

robust seasonal and site-specific estimates of environmen-

tal effects on body growth and survival. Further, these

estimates and their uncertainties can form the basis of

estimates of annual size- and location-dependent survival

or of a population projection model (Ellner & Rees 2006;

Rees & Ellner 2009), which can generate projections

under future climates and can identify sensitivities of key

population dynamic pathways to environmental change.

Materials and methods

data

Study site

Our study site is the West Brook (WB) and three tributaries,

located in western Massachusetts, USA (Fig. S1, Supporting

information). The stream network is situated in a mixed hard-

wood forest with a dense canopy, a few local residences and some

small farms. The focal study area consists of a 1-km long reach

of the WB and 300-m long reaches of three tributaries (open

large, OL; open small, OS; isolated, IS). The bottom of the study

area on the WB contains a small, but passable, waterfall while

the top is unobstructed. A waterfall (2�3 m) blocks access to IS

from the WB, and large (>4 m, OL, OS) or small (1 m, IS)

waterfalls delimit the upstream ends of the tributary study areas.

Average stream width is 4�5 m for the WB, 3 m for OL, 2 m for

IS and 1 m for OS.

Naturally reproducing populations of brook trout (S. fontinal-

is) and brown trout (Salmo trutta) inhabit the WB, OL and OS

(minimal numbers of brown trout in OS). Only brook trout have

been found in IS. Atlantic salmon (Salmo salar) fry were stocked

into the WB during early years of the study (2002–2004). The

only other species consistently found in the WB is blacknose dace

(Rhinichthys atratulus), but densities are generally low. There is

no trout stocking in the study area, and fishing pressure is very

low.

We conducted seasonal sampling (spring = late March, sum-

mer = June, autumn = late September, winter = early December)

of the WB and three tributaries since 2002 and report data col-

lected from summer 2002 to spring 2012 for a total of 43 sam-

pling occasions (Table S1, Supporting information). Sampling

consisted of collecting fish from 20-m sections sequentially from

downstream to upstream in each reach (47 sections in the WB

and 15 sections in each of the tributaries). In the WB, we used

temporary block nets to isolate each section and ran two electro-

fishing passes (200–300 V unpulsed DC). In the tributaries where

capture rates were high, we did not use block nets and conducted

one pass surveys. On capture, we measured the fork length

(�1 mm) and recorded the section of capture of each fish. We

also recorded the tag number of tagged fish and tagged any un-

tagged fish larger than 60-mm fork length (Gries & Letcher

2002). Tags were 12-mm PIT (Digital Angel, St. Paul, MN,

USA) tags, which provide unique alphanumeric codes for each

fish. Following workup, fish were returned to capture sections.

Passive integrated transponder tag antennas (Zydlewski et al.

2006) at the top and bottom of the study area identified fish that

left the study area. The wire antennas are housed in PVC piping.

The bottom side of the rectangular antennas is buried in the

stream substrate and the antenna surrounds the stream. A

detailed description of the PIT tag antennas can be found in Hor-

ton, Dubreuil & Letcher (2007) and Horton & Letcher (2008).

Stream temperature was recorded every 2 h with data loggers

(Onset Corp., Bourne, MA, USA) placed at the downstream end

of the study area in the WB and just upstream of the confluence

of each tributary. Stream depth was also recorded every two hr

(Onset Corp.) at the downstream end of the WB study area and

reflects an index of among-year seasonal variation across the

study area. Depth was converted to stream flow (m3 s�1) using a

stage-discharge relationship.

Field data summary

We present data from 43 sampling occasions (Table S1, Support-

ing information). Ice build-up in the stream during four winter

sampling occasions precluded sampling all sections in the WB

(2002, 2005, 2007, 2012) and all sections in the tributaries during

2002 and led to incomplete sampling in the WB in 2003 (30 of 47

sections) and 2004 (three of 47). Overall, we recorded 20 089

observations of 10 458 individual trout. Average seasonal stream

discharge was much more variable among years compared to sea-

sonal steam temperature (Fig. 1). Discharge was most variable in

the spring and least variable in the winter.

Brook trout life history

Brook trout spawn in the late autumn, depositing eggs into small

depressions in the stream substrate. Developing embryos spend

the winter in the substrate and ‘fry’ emerge in late winter/early

spring. Age at first reproduction is typically 1 year. Maximum

age is four in our system, although there are typically few three-

and very few 4-year-old fish (Letcher et al. 2007). Trout are

polygynous and can be highly fecund (100’s of eggs), with an

exponential distribution of family sizes of surviving fry (Kanno

et al. 2014). When found in small stream habitats (such as our

study system), brook trout establish and defend feeding territo-

ries, from which they feed mainly on invertebrates carried by the

stream current past their territory(Allan 1981).

Definition of first growth year

Preliminary analyses indicated strong differences in size-depen-

dent survival between young and older fish, suggesting the need

to separate fish by an age-based metric. Age in fish is typically

increased on January 1 (e.g. age-0+ for fish in their first year
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before January 1). Based on the marked seasonal variation in

brook trout growth (very high ‘spring’ growth, Xu, Letcher &

Nislow 2010) and the resulting size difference before and after

spring, we chose to identify growth years based on size

differences rather than the calendar. Growth year ‘0/1’ included

fish from age-0+ in the fall to age-1+ fish in the spring (before

the age-1+ spring growth spurt). Growth year ‘1+’ included all

samples older than age-1+ spring (after the age-1+ spring growth

spurt).

model development

Our goal is to develop a modelling framework that simultaneously

estimates the effects of environmental variation on interacting

components of the population. Our integrated model consists of

four modules – survival, body growth, movement and detection

(Fig. 2). The body growth and movement models estimate latent

states (body size and location) for missing observations. Modelling

values integrating over uncertainty for the missing observations

with latent states allows estimation of state-dependent survival

and growth using continuous state values. Our integrated

approach also incorporates uncertainty in the state estimates into

the estimates of state-dependent survival and growth.

Model selection

We did not conduct model selection within our integrated model

because (i) application of model selection techniques for complex

integrated models is an area of active research and (ii) the long

run times make running multiple alternate models challenging.

Instead, we conducted external model selection with simpler mod-

els for each model component – growth, survival and detection.

We did not conduct model selection for movement because the

limited number of movements in the raw data suggested a very

simple structure for the movement component. For growth, sur-

vival and detection, we were interested in determining appropri-

ate structure for the independent variables season, river, year,

growth year, stream temperature, stream flow and body length.

For growth and survival, we assessed AIC from generalized

linear models of increasing complexity using the glm() function

in program R (family = ‘gaussian’ for growth and ‘binomial’ for

survival) (R Core Team 2014). Growth was estimated as the

change in length (mm day�1) of individuals caught on consecu-

tive sampling occasions. Individuals caught on consecutive occa-

sions represented 34% of all captures. Survival was estimated

based on subsequent captures; if a fish was captured in a later

occasion, the fish was coded as alive, otherwise it was coded as

dead. This approach is commonly used in selection analyses

(Hendry, Letcher & Gries 2003) in evolutionary studies, but it

underestimates survival because it does not account for imper-

fect detection.

For detection probability model selection, our goal was to

determine first if we needed separate estimates for growth years

0/1 and 1+ and secondly whether we needed size structure within

growth years. As we were not interested in effects of the other co-

variates on detection, we ran a simple multistate version of the

Cormack–Jolly–Seber (CJS) model in Program MARK (White &

Burnham 1999). We defined five evenly divided (numerically)

Fig. 1. Average seasonal discharge (above) and temperature

(below). Individual points represent 1 year. Stream temperatures

are combined across tributaries.

Fig. 2. Diagram of the model structure. The three model mod-

ules are arranged in columns. Symbols are defined in the text.

Data are in boxes, models are in circles and state variables are in

ovals. For simplicity, description of priors and indexing are omit-

ted. Indexing for the state variables and models is i[r,g]s,y, where i

represents individual, r = river, g = growth year, s = season and

y = year. r and g are dynamic characteristics of individuals, and s

and y are common among individuals for any time step t. Arrows

show dependencies. Dashed arrows represent dependencies at

time step t + 1. The grey box identifies the model structure for a

simple Cormack–Jolly–Seber model, which forms the basis of the

integrated model.
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body size (mm)-based states (state 1, ≤90; state 2, 91–105; state 3,

106–120; state 4, 121–135; state 5 > 135) and tested for variation

in probability of capture with and without variation among

states. We did not use this CJS model for survival model selec-

tion (or as the overall integrated model) because inclusion of all

the covariates (flow, temperature, river, season, year) led to a

model that did not converge in MARK.

integrated modular parameter estimation
model

Survival module

We used a state-space formulation of the standard CJS survival

model (Gimenez et al. 2007; Royle 2008). The state-space model

consisted of a process model (survival) and an observation model

(capture). The CJS model estimates the alive state (zi,t, 1 = alive,

0 = dead) and the probability of capture (pi,t) for each individual

(i) and sampling occasion (t) based on an encounter history of

individual captures (oi,t, 1 = captured, 0 = not captured for each

t). In a CJS model, estimation is conditioned on first capture (fi)

of each individual such that zi;fi ¼ 1. Following the first capture,

zi,t + 1 is estimated as a Bernoulli trial with probability equal to

the product of survival over the interval t to t + 1 (ui,t) and the

latent alive state at time t:

zi;tþ1 ¼ bernoulliðui;t � zi;tÞ; t[ fi eqn 1

To account for the unequal number of days between observa-

tions of individuals, ui,t was raised to the power of (di,t/Ds,r),

where (di,t) equalled the actual number of days between observa-

tions for fish caught on consecutive occasions or the number of

days between an actual capture and the median date of the sam-

pling occasion for fish not caught on consecutive occasions. Ds,r

was defined as the mean number of interval days for each sam-

pling interval across all individuals categorized by season (s) and

river (r).

We modelled survival (ui,t) as a linear function of individual

body length (‘i;t; mm), averaged seasonal stream flow (Fi,t;

m3 s�1), averaged seasonal stream temperature (Ti,t; °C) and the

interaction between flow and temperature. The intercept (b0) and
slopes (b1:4) of the linear model were indexed by season (spring,

summer, autumn, winter), river (WB, OL, OS, IS) and whether

an individual was in growth year 0/1 at time t or older (g):

logitðui;tÞ ¼ b0;s;r;g þ b1;s;r;g � ‘i;t þ b2;s;r;g � Fi;t

þ b3;s;r;g � Ti;t þ b4;s;r;g � Fi;t � Ti;t

eqn 2

At each sampling occasion (t), when an individual was

observed, season, g, river and length were known. At sampling

occasions, when an individual was not observed, river and length

were estimated from the movement and growth models (see

below). g was determined by comparing ‘i;t to occasion- and

river-specific size distribution cut-offs in the fall, winter and

spring that clearly distinguished first-growth-year fish from older

fish (Fig. S2, Supporting information). Fi,t and Ti,t were observed

mean temperature or flow between dates of capture (t:t + 1,

where t represented actual date of capture for individuals cap-

tured on an occasion or the median date of the sampling occa-

sion for individuals that were not captured). The three

independent variables were standardized to a mean 0 and SD 1

within the inference model. We used independent, weakly infor-

mative on the probability scale, truncated priors for the intercept:

b0,s,r,g ~ N(0, 0�44) T(�3�5, 3�5). The truncated prior kept esti-

mates out of the very flat (and unlikely) portions of the logit like-

lihood (Standard deviations defined in the normal distributions

throughout the model description were converted from precisions

(1 SD�2) that are used by JAGS). Our model for betas 1 : 4

included random effects across season and river:

b1:4;s;r;g �NðmuPhi1:4;g; sigmaPhi1:4;gÞ eqn 3

with weakly informative priors for muPhi1:4,g ~ N(0, 1�22) and

sigmaPhi1:4,g ~ gamma(2, 0�1).

Capture module

The probability of capture (p) was the probability of detection

given that an individual is alive at time t (zi,t = 1) and available

for capture (1�gi,t), where gi,t was an indicator of observed

permanent emigration based on the PIT tag antenna data. gi,t

equalled 1 for occasions after which fish were last observed on

the PIT tag antenna at the top or bottom of the study area

and equalled 0 for fish that were not observed for the last time

on the antennas (not known to have emigrated permanently).

We scaled capture probability by the proportion sampling sec-

tions completed for each s, y, r (xs,y,r). xs,y,r equalled 1 for the

majority of samples, except for the incomplete winter samples

(Table S1, Supporting information). In the capture likelihood,

the individual encounter histories (oi,t) are modelled as the

result of a Bernoulli trial:

oi;t � bernoulliðpi;t � zi;t � ð1� gi;tÞ � xs;y;rÞ eqn 4

We modelled p as a function of body size for each s, y, r, g

combination. We included y in the intercept and slope to account

for yearly variation in p without explicitly modelling effects of

stream flow and temperature on p.

logitðpi;tÞ ¼ b0;s;y;r;g þ b1;s;r;y;g � ‘i;t eqn 5

Priors for the intercept were independent and weakly informa-

tive b0,s,r,y,g ~ N(0, 1�22). For the slope, we used a random effects

structure across s, r, y:

b1;s;r;y;g �NðmuPg; sigmaPgÞ eqn 6

with weakly informative priors on the mean; muPg ~ N(0, 1�22),
and SD; sigmaPg ~ gamma(2, 0�1).

Growth module

We modelled body size using a growth model to integrate over

uncertainty in body size observations. When length was observed

(lengthi,t), the source of uncertainty was measurement error.

When length was not observed (individual not captured), uncer-

tainty in ‘i;t was derived from the growth model. Length was

modelled as a linear change in body length (di,t) between consecu-

tive sampling occasions:

‘i;tþ1 ¼ ‘i;t þ di;t eqn 7
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Linear growth in length is a reasonable assumption for salmo-

nids over relatively short seasonal growth periods (Sigourney

et al. 2008). We accounted for measurement (observation) error

in length (Sigourney, Munch & Letcher 2012), by allowing a

small SD in the observed lengths (length):

lengthi;t �Nð‘i;t; 0�01Þ eqn 8

Body growth was estimated as:

di;t �Nð�di;t; sigma�ds;r;y;gÞ eqn 9

where �di,t was mean expected seasonal growth and sigma �ds,r
was the SD in expected seasonal growth rate. We divided �di,t by
di,t�Ds,r to account for unequal sample intervals among individu-

als. The model for �di,t was similar to the model for ui,t:

�di;t ¼ b0;s;r;y;g þ b1;s;r;g � ‘i;t
þ b2;s;r;g � Fi;t þ b3;s;r;g � Ti;t þ b4;s;r;g � Fi;t � Ti;t

eqn 10

except for additionally indexing b0 by year and using a random

error structure across years for the intercept:

b0;s;r;y;g �NðmuGrInts;r;g; sigmaGrInts;r;gÞ eqn 11

We used slightly informative prior means on muGrInts,r,g ~ N

(gs, 10), where gs = (25, 10, 8, 4), reflecting plausible seasonal val-

ues (Letcher et al. 2007) and a wide distribution (SD = 10).

Incorporation of gs improved run times compared with uninfor-

mative prior means. We used non-informative priors for

sigmaGrInts,r,g ~ U(0, 100).

For the slopes, we used a random effects structure across sea-

sons and rivers:

b1:4;s;r;g �NðmuGr1:4;g; sigmaGr1:4;gÞ eqn 12

with muGr1:4,g ~ N(0, 32) and sigmaGr1:4,g ~ U(0, 100). We fur-

ther constrained b1:4,2,r,1 ~ U(�0�001, 0�001) to reflect the lack of

data (impossible condition) for g = 1 in the summer.

Our model for sigma �ds,r,y,f included random effects across years:

sigma �ds;r;y;g �NðmuSigma �ds;r;g; sigmaSigma �ds;r;gÞ eqn 13

with non-informative priors for muSigma �ds,r,g ~ N(0, 32)T(0, )

and sigmaSigmaGrs,r,g ~ U(0, 100).

Movement module

The movement module estimates the state location (river) of

each individual at each sampling occasion based on observed

locations (rivert) and movements of all fish. When rivert was

observed (oi,t = 1), it was treated as known without error, other-

wise it was modelled as a latent variable (rt). Discrete movement

between rivers was modelled as a multistate process (Calvert

et al. 2009). The likelihood of an individual’s location at the

next sampling occasion (rt + 1) was drawn from a categorical

distribution:

rivertþ1 ¼ catðwi;t;rt Þ eqn 14

rt ¼ rivert � zi;t þ 1 eqn 15

where wi;t;rtþ1
represents a vector of normalized transition proba-

bilities given the occasion (t) and all possible destination rivers

(r) at the next occasion, and zi,t represents an individual’s alive/

dead state. By multiplying the categorical outcome by zi,t and

adding one, all dead individuals are considered to be in category

one and all alive individuals can be in categories two through five

(WB, OL, OS, IS). The normalized transition probabilities come

from a multinomial process. We begin with bs;rj;t ;rk;tþ1
, which is a

parameter specific to season, beginning location (i.e. river j at

time t) and ending location (i.e. river k at time t + 1) that is nor-

mally distributed on the logistic scale. Then, a multinomial back

transformation (generalized logit link) is used, so that all transi-

tion probabilities sum to one given the season and an individual’s

current location. An individual’s current location is used as the

baseline category; therefore, the multinomial back transformation

for the probability of moving is:

wi;t;rtþ1
¼ e

bs;rj;t ;rk;tþ1

1þP
k6¼j e

bs;rj;t ;rk;tþ1

eqn 16

And the probability of staying at the current location is:

wi;t;rtþ1
¼ 1

1þP
k6¼j e

bs;rj;t ;rk;tþ1

eqn 17

We used independent weakly informative priors,

bs;rj;t ;rk;tþ1
�Nð0; 1�5Þ. Estimated movement rates are minimum

estimates because our sampling could not detect movements (par-

ticularly spawning) that occurred between sampling occasions.

parameter estimation

We used JAGS (http://mcmc-jags.sourceforge.net/) to code the

model and to draw posterior samples of the parameters. We

called JAGS from R using the R package ‘rjags’. We set initial

values for z to 1 from the first to the last observation for each

individual and NA for all other observations. We used overdi-

spersed initial values (relative to the posteriors, checked with ini-

tial runs) for the remaining parameters. We specified 500

adaptive phase iterations and 50 000 estimation iterations with a

thin rate of 5. We ran five chains and checked convergence using

the ‘potential scale reduction factor’ (Brooks & Gelman 1998) in

the R ‘coda’ package (diagnostic values <1�1 indicate good chain

mixing). We also checked chains visually for lack of autocorrela-

tion.

The model was very large, with c. 15 million nodes in JAGS.

We ran five chains on different threads using the R package ‘par-

allel’ which improved run times, but required substantial RAM

(10�6 GBytes per chain). A single run took 25 h to adapt and

26 days for estimation on an IBM System x3650 M3 with 96 GB

of RAM (IMB Corporation, Armonk, NY, USA).

goodness-of-fit

We conducted posterior predictive checks (Rubin 1984; Gelman

et al. 2004) to assess model goodness-of-fit. Posterior predictive

checks involve comparing simulated data based on model param-

eter estimates to observed data. We developed a simulation that

replicated dynamics in our brook trout system and based the pos-

terior predictive checks on three state variables calculated for
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each sampling occasion in each river: average body size, abun-

dance of observed individuals and the proportion of individuals

observed in each river. These state variables represent outcomes

of the three key processes in the model: body growth, survival

and movement.

The simulation projected body sizes, abundances and locations

(rivers) for fish from eight cohorts (2004–2011). Initial size distri-

butions and locations for each cohort were sampled with replace-

ment from each cohort’s fall age-0 data that included all tagged

fish plus fish that were too small to tag. We needed to include

the untagged fish in the simulation because initial and subsequent

size distributions and abundances in the simulation would be

biased low without them. The number of initial fish sampled

equalled the total number of fish ever observed in a cohort. For

each time step in the simulation, we estimated body growth, sur-

vival and movement based on parameter estimates from the

model and environmental data (flow and temperature) aligned

with the sampling occasion. For each cohort, we ran 10 replicate

simulations for each of 40 evenly spaced iterations (sets of

parameter estimates) and calculated mean state values for each

iteration. To evaluate bias in the predictions, we plotted mean

values against observed values (40 predicted values for each

observation). We also calculated Bayesian P-values (Gelman

2003) for each state as the overall proportion of predicted values

that were above observed values.

predicted values

To assist in interpreting the parameter estimates, we generated

predicted values of body growth and survival across stream flows

and temperatures for each river and growth year. We also gener-

ated predictions for body growth and survival across body sizes

for each river and growth year. We present predicted curves for

each iteration. In addition to patterns in the strength and direc-

tion of predictions, the overlap in predicted curves provides a

visual representation of prediction (combined parameter) uncer-

tainty among iterations.

sensit iv ity of annual survival

Based on our parameter estimates, we developed stage transition

matrices of a periodic integral projection model (IPM; Easter-

ling, Ellner & Dixon 2000). We used the projection model to

estimate sensitivities of annual survival to seasonal variation in

stream flow and temperature. We also identified sensitivity path-

ways, the magnitude and direction of environmental effects via

either survival or growth. Details of the annual survival calcula-

tions are in the Supporting information and see (Caswell 2007,

2008).

Results

model selection

Model selection results for the modules guided develop-

ment of the integrated model structure. The most highly

supported growth model (Table S2, Supporting informa-

tion) included an intercept structured by river, season,

growth year and year, an interaction between stream tem-

perature and flow structured by growth year, season and

river and an effect of body size also structured by growth

year, season and river. We used this model structure for

the growth model in the integrated model. The most

highly supported survival model (Table S2, Supporting

information) had the same structure as the growth model.

We also used this model structure for the survival model

in the integrated model. The most highly supported model

for probability of capture based on AIC-estimated sepa-

rate probabilities for young and old fish and a size trend

within growth years (delta AIC = 3�7 compared to a

model with separate capture estimates for each state).

integrated modular model

Convergence diagnostics

The ‘potential scale reduction factor’ (values ≤1�1 indicate

acceptable model convergence) was <1�1 for all of the

parameters related to survival, probability of capture and

movement. The reduction factor for model deviance

equalled 1�01 with an upper CI of 1�03 (Fig. S3, Support-

ing information). Some of the growth rate parameters had

reduction factors >1�1, but these parameters were associ-

ated with sampling occasions with limited data, either at

the beginning of the study. Convergence diagnostics of

growth rate parameters were more sensitive to missing

sampling occasions compared to the other parameters

because they were also indexed by year.

Goodness-of-fit

Bayesian P-values (body size = 0�75, abundance = 0�32,
river proportions = 0�47) indicated no bias in state esti-

mates from the simulations. Graphical representation of

the posterior predictive checks also demonstrated that the

model parameter estimates generated unbiased state esti-

mates (Fig. S4, Supporting information).

parameter estimates

Probability of capture

Capture (p) was highly variable among seasons, rivers,

growth years and years, with an overall average of p

intercepts (p at average body size) of 0�57 (individual esti-

mates in Fig. S5, Supporting information). Capture esti-

mates for individual combinations of season, river,

growth year and year ranged from lows of around 0�25 to

highs of 0�8 (Fig. S5, Supporting information). Capture

across years was most consistent in WB and IS in the

summer and most variable among years in the winter for

growth year 0/1 fish.

Size-dependent capture (b1,s,r,y,g) was generally positive

(larger fish within an age class had a higher probability of

capture), with an overall average value of 0�14 (Fig. S6,

Supporting information). Younger fish generally had

higher average size-dependent p than growth year 1+ fish
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(Fig. S6, Supporting information). Across seasons, size-

dependent p in spring and winter was almost twice as

strong as in the summer and fall. Size-dependent p did

not vary substantially across rivers.

Seasonal movement

Proportion of fish moving among tributaries and the

mainstem WB was generally low (<0�15), with most of

the movement occurring from the tributaries to WB

(darkest bars in Fig. 3). Across all seasons, between 0�02
and 0�15 of the fish moved from OS and OL to the WB,

with the greatest movement (0�15) from OS to WB in

the spring. In the summer, small, non-zero movement

(<0�05) was estimated from the WB to OS and from the

WB to OL.

Growth

The overall average of the growth rate intercepts (growth

at average body size, flow and temperature) was 14�0 mm

per season (Fig. S7, Supporting information), but the

average masked considerable growth rate variation among

seasons (Fig. S7, Supporting information). Average

growth in the spring was more than double average

growth in the summer and at least fourfold faster than

average growth in the autumn or winter (Fig. S7,

Supporting information).

Growth rate intercept priors (eqn 11) did not appear to

constrain posterior estimates (Fig. S7, Supporting infor-

mation). Effects of body size and stream flow on growth

were generally positive, while temperature effects were

usually negative (Fig. S8, Supporting information). Yearly

variation in the SD of growth (sigma 2 ds,r,y,g) was great-

est in the summer and was fairly consistent among years

in the other seasons (Fig. S9, Supporting information).

Survival

The overall average of seasonal survival was 0�76. Among

seasons, average survival was greatest in the spring and

lowest in the summer (‘Int’ in Fig. S10, Supporting infor-

mation). Average survival for fish in OS and IS was

slightly greater than average survival in the WB and OL

(Fig. S10, Supporting information). Size-dependent sur-

vival was consistently negative, while the effects of flow

and temperature varied across seasons and rivers

(Fig. S10, Supporting information).

predicted values

Body growth

Effects of flow and temperature on growth rate were

remarkably consistent across seasons and rivers. For

younger fish, we observed strong interactive effects of flow

Fig. 3. Averages and 95% credible intervals for posteriors of movement probabilities (Ψ) from one river (x-axis) to another (bar

colours) for each season. ‘*’ indicates that the lower 95% credible interval did not overlap a movement probability of 0�01.
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Fig. 4. Predicted growth rates and survivals in the spring as a function of stream temperature, stream flow and body size. Stream dis-

charge is represented by the different colours [red = high flow (+1 SD units), green = average flow (0 SD units), blue = low flow (�1 SD

units)]. Graphs in the first column represent growth rates (above) and survivals (below) for each combination of river and growth year

as a function of stream temperature and flow (line colours). The second column contains estimates of size-dependent growth (above) and

survival (below) for each river for average flow and temperature conditions. Lines on the left (smaller fish) in each panel are for growth

year 0/1 fish and on the right (larger fish) are for growth year 1+ fish. Each line in the graphs is the predicted relationship for one

MCMC iteration.

Fig. 5. Predicted growth rates and survivals in the summer (see description of Fig. 4 for details).
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and temperature, with high growth at high temperatures

but only when flow was also high (Figs 4–7). For older

fish, the effect of flow dominated growth rates, especially

in the summer. Growth was consistently greatest across

the observed range of temperatures for older fish when

flows were high (Figs 4–7).

The strength and direction of size-dependent growth

varied dramatically between younger and older fish, but

was quite consistent among rivers and seasons. For

young fish, size-dependent growth was almost always

positive (larger fish grow faster) and was particularly

strong in the autumn (Fig. 6). For older fish, size-

Fig. 7. Predicted growth rates and survivals in the winter (see description of Fig. 4 for details).

Fig. 6. Predicted growth rates and survivals in the autumn (see description of Fig. 4 for details).
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dependent growth was neutral or negative, with the

most negative size-dependent growth in the spring

(Fig. 4).

Survival

Patterns of flow and temperature-dependent survival were

complex and site-specific, but some general patterns

emerge (Figs 4–7). Seasonal effects of flow and tempera-

ture on survival tended to be similar among the tributar-

ies, but quite different between the tributaries and the

WB. For cold springs, survival of young fish in the WB

was substantially higher (approximately threefold) with

higher flows but effects of flow were negligible at warmer

temperature (Fig. 4). For both young and old fish in the

spring, the direction of flow and temperature effects were

opposite in the WB compared with the tributaries, and

flow and temperature effects were more uncertain for

older fish (Fig. 4). In the summer, flow and temperature

effects on survival were very similar among the tributar-

ies, with highest survival at high flow and lower survival

when it was warm (Fig. 5). In the WB, summer survival

was also greatest when flow was high, but only when it

was warm. Summer WB survival decreased dramatically

at low flow when it was warmer (Fig. 5). In autumn, sur-

vival generally decreased when it was warmer, but the

effect of flow was opposite in the WB vs. the tributaries:

survival was greatest at lower flow in the WB but greatest

at high flow in the tributaries (Fig. 6). In winter, survival

patterns were generally quite similar between younger and

older fish in each river, but patterns were quite different

among rivers (Fig. 7).

Across all seasons, seasonal size-dependent survival was

generally negative for both young and old fish (Figs 4–7).

However, in the summer, we observed a strong difference

in direction and magnitude as a function of river with

size-dependent survival strongly negative in small rivers

(OS and IS) and positive in larger rivers (WB and OL,

Fig. 5).

sensit iv ity of annual survival

Annual survival was sensitive to both stream flow and

temperature but the magnitude and direction of effects

varied seasonally across rivers (Fig. 8). Despite the vari-

ability, some general patterns emerge. Body growth effects

(black portion of the bars in the figures) on annual sur-

vival were miniscule compared to the direct effects of sea-

sonal survival. The magnitudes of flow and temperature

effects were similar (directly comparable owing to stan-

dardization in the model), although directions were often

opposite. In summer and autumn, flow sensitivities were

generally positive or neutral (annual survival increasing or

relatively unaffected by increased stream flows) and

Fig. 8. Sensitivity (�95% credible interval) of annual survival for growth year 0/1 and growth year 1+ fish to seasonal survival (grey

bars) and body growth (black bars) acting through stream flow or temperature. Sensitivities are shown for average flow, temperature

and body size for each season.
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temperature sensitivities were generally negative for both

0/1 and 1+ age-class fish. By contrast in winter, flow sen-

sitivities were consistently negative and moderate-strong

for growth year 0/1 fish, but weaker and less consistent

across sites for growth year 1+ fish.

Discussion

Forecasting population fates in the context of environ-

mental change requires robust estimates of the effects of

the environment on vital rates (Coulson et al. 2011; Crone

et al. 2013). In this study, we used long-term, high-resolu-

tion data and a novel integrated model to establish rela-

tionships between stream flow, temperature and

population processes in a wild brook trout population.

Developing these relationships is a key step towards fore-

casting environmental effects on population persistence.

Flow and temperature had effects on brook trout growth

and survival rates and also on annual survival, suggesting

that future climate-driven changes in stream flow and

temperature are likely to affect population dynamics and

risk of local extirpation. We were able to uncover these

effects because we combined data collected at appropriate

resolution with a model that could surmount many of the

difficulties in estimating environmental effects on popula-

tion dynamics (Crone et al. 2013). Because many long-

term population studies face similar challenges, we expect

our modelling approach could be useful in a variety of

systems.

The general utility of the integrated model approach

has several limitations, however. There is no ‘manual’ for

building these kinds of models, although there are now a

number of good starting examples (King, Brooks & Coul-

son 2008; Royle 2008, 2009; Bonner, Morgan & King

2010; Kery & Schaub 2011). As one consequence, extend-

ing existing models by integrating new components (i.e.

body growth, movement) requires substantial effort to

incorporate the components and to select appropriate

hierarchical structure for the priors. These models are also

computationally intensive and require considerable com-

puter resources; the model described here requires

c. 62 GB of RAM to run five chains in parallel. Run

times can be long (c. 4 weeks for our model). However, in

many situations, these challenges are worth taking on for

a number of reasons.

Perhaps the most desirable feature of the modelling

approach we adopt is the ability to reveal emergent effects

while accounting for processes responding to multiple and

interacting sources of variation in a complex system.

Simultaneous estimation in a single integrated model

allows direct comparison of strength, direction and consis-

tency of effects. We observed several cases of strong, con-

sistent effects of variation in flow and temperature on key

demographic rates. For example, in the summer, we

found that low stream flows and high temperatures

decreased annual survival across age classes and sites.

Similar effects have been observed in previous studies

(Xu, Letcher & Nislow 2010), but these effects have not

been put in context (e.g. the relative strength across sea-

sons and sites). Potential increases in summer tempera-

tures are currently a major focus of vulnerability

assessments for cold-water trout species (Beauchene et al.

2014). Our results support this emphasis, but further sug-

gest that incorporating changes in summer stream flows

may help strengthen the utility of these assessments. We

also found effects of flow and temperature in winter on

annual survival rates that were opposite in direction to

summer effects, with lower stream temperatures and

higher stream flows generally associated with decreased

survival. Both summer and winter effects are largely con-

sistent with the general physiological ecology of stream-

dwelling salmonid fishes. Physiological performance in

brook trout is maximized at temperatures between 12 and

16 °C (McCormick 1972), and warm summers in our

study site readily exceed physiological optima. Low sum-

mer flows reduce encounter rates with drifting inverte-

brate prey and increase intraspecific competition for food

and space by increasing local densities via reductions in

habitat area (McNicol & Noakes 1984; Grant & Noakes

1988). In contrast, high flows in winter present swimming

performance challenges (to maintain position in flowing

water and to avoid winter-active predators) to fish that

are operating at temperatures well below their physiologi-

cal optima, but relatively warmer winters are closer to

performance optima and could therefore result in higher

survival. This concordance between our results, previous

field and laboratory research, and the fundamental biol-

ogy of this and similar species suggests that these findings

are likely to be general and applicable across a broad

range of conditions. For the spring season, however, the

influence of stream flow and temperature on annual sur-

vival was variable in direction and magnitude across both

age classes and sites, suggesting that our current under-

standing of spring flow and temperature effects is insuffi-

cient to apply to broader-scale dynamics.

Simultaneous estimation in a single integrated model

also allows the comprehensive propagation of uncertainty

among linked model components. A key benefit of our

approach is the ability to incorporate uncertainty in states

(alive, body size and location) and link these with uncer-

tainty in parameter estimates (survival, growth and move-

ment). Because we modelled both the parameters and the

states in a single integrated model using MCMC, there is

complete ‘feedback’ between all model components (see

Fig. 2). This means that uncertainty in the parameters will

influence the states and vice versa. For example, for indi-

viduals that were present but not captured for a given

sampling occasion, we can estimate not only whether the

individual was alive, but also its size and location. Fur-

ther, the uncertainty in these predictions is incorporated

into parameter estimates that are size- and location-

dependent (growth, survival). The net result is an increase

in the number of observations that are available to model

the relationship between environmental drivers and
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parameters. This increase in useful data can be substan-

tial. For example, using raw data, we need captures on

consecutive sampling occasions to estimate individual sea-

sonal growth or movement but only 34% of our individ-

ual captures were from consecutive occasions. Modelling

values for the missing observations in the integrated

model provide state estimates (and uncertainty) for 100%

of the sampling occasions. Robust estimates of parameter

uncertainty are a critical component of forecasting and

using models to guide natural resources management deci-

sions (Nichols et al. 2011; Williams & Johnson 2013).

While our model provides full integration over uncer-

tainty, the long run times present serious challenges.

Alternatives to the fully integrated model include (i)

describing the states as discrete variables and estimating

effects with a multistate model (Brownie et al. 1993; Sch-

warz, Schweigert & Arnason 1993; Lebreton & Pradel

2002) and (ii) estimating time-varying covariates with an

external model and linking the estimates to the CJS model

(Worthington, King & Buckland 2014). Based on suc-

cesses with multistate models for estimating size-depen-

dent survival in Atlantic salmon (Letcher & Horton 2008)

and brook trout (Letcher et al. 2007), we initially

attempted to use a multistate model to estimate individual

covariate effects. Unfortunately, a seasonal model with

both the individual covariates (five size states, four loca-

tion states and four seasons) combined with the environ-

mental variables resulted in a model that would not

converge in program MARK. An additional drawback of

using a multistate model to describe continuous variables

such as body size is the inevitable lumping across the vari-

able, resulting in a loss of information (Bonner & Sch-

warz 2006; Bonner, Morgan & King 2010). The second

alternative, a ‘two-step’ approach generating state imputa-

tions with an external model (Worthington, King & Buck-

land 2014), can decrease run times substantially,

traditional model selection and parameter uncertainty esti-

mation via bootstrap are possible and the models are sim-

pler, but an analysis of the trade-offs between reduced

run times and loss of full integration has not yet been per-

formed. With the two-step approach, however, there is no

longer ‘feedback’ among model components, resulting in

incomplete covariance structure among parameters and

incomplete error propagation across model components.

Further research is needed to evaluate fully these trade-

offs.

In size structured populations with indeterminate

growth and size-dependent fecundity, it is important to

consider the effects of environmental drivers on growth

and size in addition to direct effects on survival. We

developed an integral projection matrix (stage transitions

only) based directly on modelled parameter estimates to

evaluate sensitivity of annual survival to direct and indi-

rect effects of flow and temperature acting through either

body growth or survival. This analysis allowed us to iden-

tify strength, direction and uncertainty of flow and tem-

perature effects on annual survival. We found that body

growth, like survival, was sensitive to flow and tempera-

ture, but the strength, direction and level of interaction

differed substantially between young and old fish. For

older fish, higher flows almost always resulted in faster

growth. In contrast, the effect of flow on growth in young

fish was temperature dependent, with faster growth for

high flows only at higher temperatures. Similar to the sea-

sonal effects on annual survival discussed earlier, these

differences are largely consistent with size- and age-depen-

dent ecological considerations. In general, for stream sal-

monids, larger individuals are capable of higher sustained

swimming speeds, and higher flows therefore yield the

benefits of high prey encounter rates with relatively minor

metabolic costs (Fausch 1993), resulting in higher growth

rates. In contrast, for younger, smaller fish, the benefits and

costs of higher flows are more likely to trade off, with net

benefits only accruing at optimal temperatures. Young and

old fish also exhibited strikingly different patterns of size-

dependent growth, with strong positive size-dependent

growth for young fish and the opposite for older fish. All

these patterns were consistent across sites, suggesting a fun-

damental difference in the growth strategies and response

of growth to environmental drivers between fish of different

age classes. While previous studies have addressed age-spe-

cific differences in environmental tolerances (Breau, Cunjak

& Bremset 2007) and behavioural strategies (Clarke 1994),

our modelling framework allowed us to detect potential

consequences of these effects for population vital rates in

the context of environmental change. At the same time,

environmental effects on growth had minimal effect on

annual survival in our model. However, annual survival

estimates did not include potential effects of growth and

body size on reproduction, which could be strong in species

with size-dependent maturation and fecundity, like brook

trout. A full accounting of body size and growth effects on

population growth is possible with population projection

models (Caswell 2001; Caswell & Shyu 2012). The parame-

ter estimates generated with our model combined with

reproduction and early growth/survival (pre-tagging) can

provide the information needed to build a full IPM (Ellner

& Rees 2006).

In addition to their general importance, robust esti-

mates of environmental effects (including uncertainty)

help evaluate fundamental concepts of species response to

environmental change. For example, among-site and

among-life history stage variation in the response to envi-

ronmental drivers can help stabilize populations and

increase resilience to environmental change via a ‘portfo-

lio effect’ (Schindler et al. 2010) as conditions which nega-

tively affect populations in one location or at one stage

are counterbalanced by neutral or positive effects in oth-

ers. In our study, we were able to demonstrate several

components of a potential portfolio effect for brook trout

populations. Perhaps most importantly, we found that

tributary and mainstem sites responded differently to

variation in flow and temperature. In general, brook

trout were more negatively affected by low flows in the
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tributaries than in larger mainstem habitats, responses to

flow were more temperature dependent in the mainstem,

and negative size-dependent survival was much stronger

in tributaries (Figs 4–7). As a specific example, summer-

fall droughts may be bad years for fish in tributary habi-

tats, but may be counterbalanced by better condition in

mainstem habitats (Figs 4–7). These habitat-, age- and

season-specific vital rates, combined with our ability to

estimate the occurrence, magnitude and direction of

movement between these habitat types, lay the ground-

work for a quantitative assessment of the value of a diver-

sified conservation portfolio.

Our model estimates and their uncertainty can also be

incorporated directly into population projection matrices

(Caswell 2001), which can be used to evaluate likely popu-

lation response to environmental change. For example,

IPMs (Easterling, Ellner & Dixon 2000; Ellner & Rees

2006) provide a framework for incorporation of continuous

state variables, such as body size, into projection models.

As demonstrated with our annual survival sensitivity analy-

sis (a partial version of an IPM), the parameter estimates

from our integrated model provide the necessary growth,

survival and movement estimates to form the core of an

IPM. A full IPM would require the addition of two compo-

nents: (i) early (pre-tagging) growth, survival and move-

ment, and (ii) reproduction. The full IPM could be used to

evaluate population response to a changing environment by

examining sensitivities (Rees & Ellner 2009) of demo-

graphic rates in the model to changes in stream flow and

temperature and by running scenarios of alternate future

environmental conditions. Thus, estimates from our inte-

grated model, while interesting and informative alone, also

provide the key estimates needed for a broader analysis of

population response to environmental change.
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Data S1. Description of annual survival sensitivity calculations

and JAGS code for the integrated model.

Fig. S1. Map of the study area in western MA, USA, including the

study area range (stippled line), the mainstem (WB) and the three

tributaries (OL, OS, IS).

Fig. S2. Size frequency distributions for the West Brook for each

sampling occasion.

Fig. S3. Deviance of the five chains (white to black) across

iterations.

Fig. S4. Observed vs. predicted state values for mean body size,

abundance, and proportion of fish in each river.

Fig. S5.Mean and 95% CI for probability of detection (b0,s,y,r,g in eqn

5) across years for each combination of season (rows), river

(columns) and growth year (columns; 1 = 0/1, 2 = 1+).
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Fig. S6.Mean and 95% CI for the probability of detection slope (b1,s,y,
r,g in eqn 5) across years for each combination of season (rows),

river (columns) and growth year (columns; 1 = 0/1, 2 = 1+).

Fig. S7.Mean and 95% CI for intercepts of the growth model (b0,s,r,y,g
in eqn 9) across years for each combination of season (rows), river

(columns) and growth year (columns; 1 = 0/1, 2 = 1+).

Fig. S8.Mean and 95% CI for the four betas of the growth model (b1:4,
s,r,g in eqn 9) for each combination of season (rows), river

(columns) and growth year (columns; 1 = 0/1, 2 = 1+).

Fig. S9. Mean and 95% CI for standard deviation in growth model
(sigma 2 ds,r,y,g in eqn 12) across years for each combination of

season (rows), river (columns) and growth year (columns; 1 = 0/1,
2 = 1+).

Fig. S10. Mean and 95% CI for the intercept and four beta parameters
of the survival model (b1:4,s,r,g in eqn 2) for each combination of

season (rows), river (columns) and growth year (columns; 1 = 0/1,
2 = 1+).

Table S1. Counts of brook trout captured in each river, season and

year.

Table S2. Model selection for the growth model and the survival

model.
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