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Effects of Uncertainty in Model Predictions of
Individual Tree Volume on Large Area Volume
Estimates
Ronald E. McRoberts and James A. Westfall

Forest inventory estimates of tree volume for large areas are typically calculated by adding model predictions of volumes for individual trees. However, the uncertainty
in the model predictions is generally ignored with the result that the precision of the large area volume estimates is overestimated. The primary study objective was
to estimate the effects of model residual variability and model parameter uncertainty on large area volume estimates and their uncertainties for a study area in
northeastern Minnesota, USA. Monte Carlo simulation approaches were used because of the complexities associated with multiple sources of uncertainty and the nonlinear
nature of the models. Two conclusions were important. First, for this study, the effects of uncertainty in model predictions on the large area volume estimates and their
uncertainties were small when the models were calibrated using an average of 100 or more observations per species and when the average proportion of variance
explained by the models was at least 0.95. Second, large area estimates and their uncertainties based on coniferous/deciduous and nonspecific models deviated very
little from large area estimates based on species-specific models.
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Statistical models are routinely used by forest inventory and
monitoring programs to predict the volume, biomass, or car-
bon content for individual trees using measurements of tree

attributes such as species, diameter, and height as independent vari-
ables. The individual tree model predictions are often aggregated at
the plot level and used as training and/or accuracy assessment data
for remote sensing-based applications or aggregated at the plot level
and then added or averaged over plots to produce large area esti-
mates. When the individual tree model predictions are aggregated at
the plot level, inventory and monitoring programs routinely ignore
the effects of uncertainty in the model predictions. The problem
that results is that all trees with the same values of independent
variables receive the same model prediction for volume, whereas in
reality different trees with the same values of the independent vari-
ables may have quite different volumes. Failure to account for this
latter tree-to-tree variability by treating model predictions as obser-
vations causes erroneously optimistic precision estimates. From a
rigorous statistical perspective, this widely used practice of ignoring
model prediction uncertainty cannot be justified. However, from a
practical perspective, the practice can perhaps be justified if the

effects of model prediction uncertainty are negligible relative to the
effects of other sources of uncertainty such as plot-to-plot
variability.

Uncertainty in model predictions can be attributed to four pri-
mary sources: (1) model misspecification, (2) uncertainty in values
of the independent variables, (3) residual variability expressed as
differences between observations and predictions obtained from
correctly specified models, and (4) uncertainty in the model param-
eter estimates. Model misspecification is due to the lack of appro-
priate model calibration data (Breidenbach et al. 2013) or the lack of
modeling expertise, must be assessed on a case-by-case basis, and is
not a subject of the current study. The effects on the uncertainty of
model predictions due to uncertainty in values of the independent
variables, whether the result of measurement error and or simply
observer-to-observer variability, have been studied extensively
(Gertner and Dzialowy 1984, Kangas 1996, Mowrer and Frayer
1986, Gertner 1987, 1990, Mowrer 1991, Gertner and Köhl 1992,
McRoberts et al. 1994, McRoberts 1996, McRoberts and Lessard
2001, Westfall and Patterson 2007, Berger et al. 2013). The general
consensus is that this source of uncertainty is a major contributor to
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model prediction uncertainty. Based on the considerable body of
literature already available, this source of uncertainty is also not a
subject of the current study.

The effects on model predictions of uncertainty from the other
two sources, residual variability and model parameter uncertainty,
result from attributes of the data and have been studied much less
extensively. For a correctly specified model, residual variability is
closely related to the quality of fit of the models to the data as
measured by indices such as the root mean square error, modeling
efficiency (Vanclay and Skovsgaard 1997), and the Akaike informa-
tion criterion (Akaike 1974). The effects of this source of uncer-
tainty on the uncertainty of model predictions vary by application
(Cunia 1965, Gertner 1987, Gertner and Köhl 1992, McRoberts
and Lessard 2001).

The effects of uncertainty in model parameter estimates also vary
by application (Mowrer and Frayer 1986, Cunia 1987, Gertner
1990, Mowrer 1991, McRoberts and Lessard 2001). For linear
models, this source of uncertainty can be easily quantified as the
covariance matrix for the model parameter estimates using a first-
order Taylor series. For nonlinear models, a first-order Taylor series
produces only an approximation for the covariance matrix with the
quality of the approximation dependent on the mathematical form
of the model and quality of fit of the model to the data (Ratkowsky
1983). When the Taylor series approximations are poor, the Monte
Carlo approach described by McRoberts and Lessard (2001, p. 72)
can be used.

Several approaches have been used to propagate uncertainty from
multiple and varied sources to model predictions and large area
estimates. The first approach is based on sampling theory and entails
theoretical derivations of expressions for the magnitudes of uncer-
tainty from the different sources and expressions for their simulta-
neous effect on the uncertainty of estimates. The general approach is
similar to the approaches reported by Cunia (1987) and Ståhl et al.
(2011, 2013), but has not often been reported in the literature,
perhaps because of the theoretical complexities. The second ap-
proach, characterized as the method of statistical differentials
(Kempthorne and Folks 1971) or error propagation (Mowrer and
Frayer 1986, Mowrer 1991, Gertner 1987, 1990), uses first-order
Taylor series approximations to produce an additive expression for
total uncertainty of the estimate of interest (Gertner 1990). The
third approach uses Monte Carlo simulations (Gertner 1987, Gert-
ner and Dzialowy 1984, Kangas 1996, Mowrer 1991, McRoberts et
al. 1994, McRoberts 1996, McRoberts and Lessard 2001, Breiden-
bach et al. 2013). This approach is motivated to a large degree by the
near intractability of the mathematics involved when uncertainty
from multiple sources must be propagated through complex mod-
els. The gain in tractability associated with Monte Carlo approaches
may be offset by much greater computational intensity, although
increasingly greater computing capabilities mitigate the latter factor.

The overall conceptual objective was to determine whether the
practice of ignoring model prediction uncertainty could be justified
from a practical perspective. The particular technical objective of the
study was to assess the effects of residual variability and uncertainty
in model parameter estimates on the uncertainty of large area esti-
mates of mean volume per unit area. The estimates are obtained by
aggregating model predictions of volume for individual trees within
plots and then calculating the mean over plots. A Monte Carlo
approach was used with species-specific models constructed specif-
ically for this study so that residual variability and uncertainty in
model parameter estimates could be correctly quantified. The rele-

vance of the study extends beyond well-established inventory and
monitoring programs such as the national forest inventories con-
ducted by North American and European countries to the monitor-
ing, reporting, and verification programs that are being established
in tropical countries under the auspices of the United Nations
REDD (Reducing Emissions from Deforestation and forest Degra-
dation) program.

Data
Study Area

The study area was defined by Minnesota Survey Unit 1 for the
Forest Inventory and Analysis (FIA) program of the Northern Re-
search Station, USDA Forest Service (Figure 1). The study area
includes approximately 33,353 km2 (12,877 mi2) with land use
consisting of forestland dominated by aspen-birch and spruce-fir
associations, agriculture, wetlands, and water.

Estimation Data Set
The FIA program conducts the national forest inventory (NFI)

of the United States and has established field plot centers in perma-
nent locations using a sampling design that is regarded as producing
an equal probability sample (McRoberts et al. 2005). Each FIA plot
consists of four 7.32-m (24-ft) radius circular subplots that are con-
figured as a central subplot and three peripheral subplots with cen-
ters located at distances of 36.58 m (120 ft) and azimuths of 0, 120,
and 240o from the center of the central subplot. Field crews visually
estimate the proportion of each subplot that satisfies the FIA defi-
nition of forestland: minimum area of 0.4 ha (1.0 acre); minimum
crown cover of 10%; stand width, measured as external crown-to-
crown distance, of at least 36.6 m (120 ft); and forestland use. Field
crews also observe species and measure diameter at breast height
(dbh, 1.37 m, 4.5 ft) and height (ht) for all trees with dbh of at least
12.7 cm (5 in.). Volumes for individual trees are estimated using
statistical models, aggregated at the plot level, expressed as volume
per unit area, and for inventory estimation purposes are considered
to be observations without error. For this study, data were used from
2,178 FIA plots on forestland with 50,176 trees representing 38
species (Table 1). For future reference, these data are characterized
as the estimation data set.

Model Calibration Data Sets
The data used to calibrate the volume models in this study (Table

1) were originally collected for a taper model study (Westfall and
Scott 2010) encompassing the 24 states of the United States for
which the regional FIA program of the Northern Research Station
has inventory responsibility (Figure 1). The geographic sources of
the data used to calibrate the models for this study were restricted to
the states of Michigan, Minnesota, and Wisconsin (Figure 1), which
span the ecological province that includes the study area. Exceptions
were made for a few minor species for which sample sizes were small
(Table 1).

Sample trees were selected based on species frequency and tree
size information obtained from FIA plots whose conditions satisfied
the definition of forestland. Data were acquired for a range of tree
sizes and for all major species groups (Scott 1981) subject to the
constraints that data were not acquired for more than one tree per
species group at each sample location or for trees exhibiting abnor-
mal conditions such as broken tops or excessive lean. The sampling
strategy ensured a wide geographic distribution of observations and
circumvented the necessity of accommodating spatial correlations
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among observations for trees at the same sample locations when
species-specific models were constructed.

For individual trees, diameter measurements were obtained us-
ing a Barr and Stroud dendrometer at heights of 0.3, 0.6, 0.9, 1.4,
and 1.8 m and at approximately 2.5-cm taper intervals up to total
tree height. Diameter measurements were recorded to the nearest
0.25 cm, and tree heights were recorded to the nearest 0.03 m.
Volumes of sections between height measurements were calculated
using Smalian’s formula (Avery and Burkhart 2002) as the product
of mean cross-sectional area and section length. Total stem volumes
for individual trees were calculated by adding volumes for all sec-
tions, characterized as volume over bark to the top of the tree, and
considered to be observations without error. For future reference,
these data are characterized as the species-specific calibration data
sets.

Methods
Volume Model

The individual tree volume models used by NFIs have typically
been developed independently of other NFIs and have been revised
and modified over long periods of time. As a result, the mathemat-
ical forms of these NFI volume models tend to vary considerably.
However, in recent years, allometric forms for these models have
gained in popularity. Allometry refers to relationships between size
and shape, and allometric or power law models are often used to
characterize biological phenomena for which the actual mechanisms
underlying the relationship are too complex to describe in detail, but
predictions are still needed. Allometric models are often of the gen-
eral form,

Y � �0X1
�1. . .Xp

�P � �,

or equivalently,

Y � exp[�0��1 � ln�X1)�· · ·��p � ln�Xp�� � �,

where Y is the response or dependent variable, exp(.) is the exponen-
tial function, X is the predictor or independent variables, the �s and
the �s are parameters whose estimates are obtained by fitting the
model to data, and � is a random residual error. This mathematical
form has emerged as increasingly popular and has been used in
China (Xiang et al. 2011), throughout Europe (Zianis et al. 2005),
in the United States (Jenkins et al. 2003), in Norway (Breidenbach
et al. 2013), in New Zealand (Beets et al. 2012), and for many recent
tropical applications (Brown et al. 1989, Ketterings et al. 2001,
Chave et al. 2004, 2005, Litton and Kauffman 2008, Basuki et al.
2009, Kamelarczyk 2009, Návar 2009).

For this study, the relationship between individual tree volume
(V) as the dependent variable and dbh and ht as the independent
variables was modeled using the allometric form,

V i � �0 � dbhi
�1 � hti

�2 � �i, (1)

where i indexes individual trees in the calibration data set. Because
of heterogeneity of residual variance, reweighted nonlinear least
squares techniques were used to fit the model to the data and esti-
mate the parameters. Residual deviations were calculated as

�i � V̂i � Vi where

V̂i � �̂0 � dbhi
�̂1 � hti

�̂2 (2)

is the model prediction. The quality of fit of the model to the data
was assessed using model efficiency (Vanclay and Skovsgaard 1997)
calculated as

Q2 � 1�
SSres

SSmean
, (3)

where SSres��
i�1

ncal

�i
2, SSmean � �

i�1

ncal

(Vi � V� )2, V� �
1

ncal
�
i�1

ncal

Vi, and

ncal is the size of the calibration data set. Although in some cases Q2

Figure 1. Minnesota Survey Unit 1 (black), area of Northern Research Station inventory responsibility (gray), and geographic source of
model calibration data (Minnesota, Wisconsin, and Michigan).
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is equivalent to the more familiar R2 used for linear regression mod-
els, this is not necessarily the case for most nonlinear models
(Anderson-Sprecher 1994).

Quality of fit of the models to the calibration data and residual
variability were further assessed using a six-step procedure (Hosmer

and Lemeshow 1989): (1) the triplets (�i, Vi, V̂i) were ordered with

respect to V̂i; (2) the ordered triplets were grouped to produce at
least 10 groups but with group size not exceeding 25; (3) for the gth

group, V� g �
1
ng
�
i�1

ng

Vi, V̂g �
1
ng
�
i�1

ng

V̂i, and �g
2 �

1
ng � 1�

i�1

ng

�i
2 were

calculated where ng is the number of triplets in the gth group; (4) a

graph of V� g versus V̂g was constructed to assess quality of fit of the

model to the data; (5) the relationship between �g and V̂g was esti-

mated using a linear model through the origin as

�̂g � �̂ �V̂g (4)

where � is a model parameter; and (6) the group model predictions
from Equation 4 were graphed against the group estimates from step
3 to assess the quality of fit of the model to the data. If the models
expressed by Equations 1 and 4 fit their respective data, the data
points for the graphs should lie along the 1:1 line with intercept 0
and slope 1.

Three approaches were considered for estimating the effects of
uncertainty in the model parameter estimates. The first approach
was based on approximating the covariance matrix for the parameter

estimates using a first-order Taylor series linearization as

Var̂��̂� � Z� � W � Z, (5)

Table 1. Species observed in the study area.

Common name Scientific name
Estimation data set

(proportion of trees)

Calibration data sets

No. of
trees Q2 � 1 � (SSres/SSmean)

Balsam fir Abies balsamea 0.1127 65 0.9806
Tamarack Larix laricina 0.0540 93 0.9551
White spruce Picea glauca 0.0318 53 0.9953
Black spruce Picea mariana 0.1619 90 0.9869
Jack pine Pinus banksiana 0.0320 107 0.9714
Red pine Pinus resinosa 0.0410 79 0.9792
Eastern white pine Pinus strobus 0.0107 76 0.9894
Scotch pine Pinus sylvestris 0.0001 11

Northern white cedar Thuja occidentalis 0.1119 892 0.9909
Box elder Acer negundo 0.0010 03

Red maple Acer rubrum 0.0368 111 0.9785
Silver maple Acer saccharinum 0.0002 1182 0.9722
Sugar maple Acer saccharum 0.0283 132 0.9524
Mountain maple Acer spicatum 0.0001 03

Serviceberry Amelanchier spp. �0.0001 03

Yellow birch Betula alleghaniensis 0.0032 73 0.9789
Paper birch Betula papyrifera 0.0895 86 0.9764
Black ash Fraxinus nigra 0.0656 89 0.9639
Green ash Fraxinus pennsylvanica 0.0045 562 0.9809
Apple Malus spp 0.0001 03

Eastern hophornbeam Ostrya virginiana 0.0002 113

Balsam poplar Populus balsamifera 0.0206 102 0.9842
Bigtooth aspen Populus grandidentata 0.0049 93 0.9860
Quaking aspen Populus tremuloides 0.1744 156 0.9649
Pin cherry Prunus pensylvanica 0.0002 13

Black cherry Prunus serotina �0.0001 1622 0.9812
Common chokecherry Prunus virginiana �0.0002 13

Northern pin oak Quercus ellipsoidalis 0.0004 73

Bur oak Quercus macrocarpa 0.0020 143

Northern red oak Quercus rubra 0.0019 97 0.9847
Willow spp. Salix spp. 0.0002 73

Peachleaf willow Salix amygdaloides 0.0002 143

Black willow Salix nigra 0.0001 43

Bebb willow Salix bebbiana 0.0001 03

American mountain ash Sorbus americana 0.0003 03

American basswood Tilia americana 0.0065 64 0.9892
American elm Ulmus americana 0.0024 67 0.9786
Slippery elm Ulmus rubra �0.0001 44

Coniferous 0.5562 648 0.9866
Deciduous 0.4438 1,454 0.9689
Nonspecific 1.0000 2,102 0.9717

1 Uses jack pine model.
2 Uses data from throughout region of Northern Research Station (Figure 1).
3 Uses deciduous model.
4 Uses American elm model.
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where W is an ncal 	 ncal diagonal matrix with entries wii � �̂i
�2

and �̂i
2 is calculated from Equation 4 using V̂i as the independent

variable. However, preliminary analyses revealed that for the smaller
sample sizes and smaller values of Q2 used for simulations for this
study, the covariance matrix approximations were poor. This result
is attributed to the nonlinearity of the model in its parameters,
which often produces nonelliptical parameter confidence regions
that are not well approximated by the elliptical regions produced by
Equation 5 (Bates and Watts 1988, Figure 6.9). The second ap-
proach is based on Monte Carlo bootstrapping and entails con-
structing empirical distributions of the model parameter estimates.
However, this approach would require fitting the nonlinear model
of Equation 1 to tens of thousands of separate data sets, an onerous
and labor-intensive task that is difficult to automate.

The third approach, which was selected, was based on linearizing
the model using natural logarithm (ln) transformations of both sides
of Equation 1, ignoring the residual, which results in

ln�V� � �1
lin � �2

lin � ln(dbh) � �3
lin � ln(ht) � �, (6)

where the �lin is a vector of parameters to be estimated and � is a
random residual, although not the same residual as for Equation 1.
Graphical analyses revealed no indication of heteroscedasticity for
any species or species group, so that unweighted linear regressions
could be used on the ln-ln scale when the model of Equation 6 was
fitted. For all species and species combinations, the smallest Q2 on
the ln-ln scale was Q2 � 0.9994. When back-transforming the

model predictions to the original scale, a factor of
�̂i

2

2
was used to

correct for transformation bias as

V̂i � exp��̂0 � �̂1 � ln�dbhi� � �̂2 � ln�hti� �
�̂i

2

2 �, (7)

where exp(.) is the exponential function, ln(.) is the natural loga-
rithm function, and the �̂s and �̂i

2 are the parameter estimates and
the residual variance, respectively, as estimated on the ln-ln scale
(Baskerville 1972). Homoscedasticity on the ln-ln scale permits a
common value, �̂2 � �̂i

2, to be used to correct for bias for all
predictions for the same species or species group, whereas heterosce-
dasticity would require a different value for each prediction. Differ-
ences between model predictions obtained using Equation 1 and
back-transformed model predictions using Equation 7 were negli-
gible for all species and species groups. Preliminary analyses indi-
cated that this procedure produces variability in model predictions
on the original scale corresponding to uncertainty in the nonlinear
parameters of the model of Equation 1.

In addition to species-specific models, models were constructed
and assessed for coniferous and deciduous groupings of species and
for all species grouped together. When the latter models were con-
structed, correlations among observations in the calibration data sets
for trees in close physical proximity were ignored based on the
relatively low frequency of such observations.

Simulating Uncertainty
For a given calibration data set size and residual variance, a five-

step procedure was used to estimate the uncertainty of plot-level and
large area estimates of mean volume per unit area.

Step 1. —For each species or species group:

a. The calibration data set was randomly resampled with replace-
ment to produce data sets of sizes ncal � 25, ncal � 50, ncal �
100, ncal � 250, and ncal � 1,000.

b. For each element of each data set, an observation was simu-
lated as the sum of a prediction calculated using Equation 2
and a residual randomly selected from a Gaussian distribu-
tion with mean zero and variance obtained from Equation 4.

c. Each data set was transformed to the ln-ln scale.

d. A linear model as per Equation 6 was fit to the transformed
data and the vector of parameter estimates, �̂lin, and residual
variance, �̂2, were calculated.

Step 2. —For the ith tree on the jth plot in the estimation data
set, a volume observation was simulated using the parameter esti-
mates from step 1 as

Vij � exp[�̂1
lin � �̂2

lin � ln(dbhij) � �̂3
lin � ln(htij) �

�̂2

2
] � 	�,

where � is a residual randomly selected from a Gaussian distribution
with mean 0 and variance calculated from Equation 4 and 	 is a
multiplicative factor selected to produce Q2 � 0.85,
Q2 � 0.90, Q2 � 0.95, Q2 � 0.98, and Q2 � 0.99.

Step 3. —The total volume for the jth plot in the estimation data

set was calculated as Vj � �
i�1

nj

Vij where nj is the number of trees on

the plot.
Step 4. —The mean and variance of the mean over all plots for

the kth simulation were calculated as

V� k �
1

nplot
�
j�1

nplot

Vj, (8)

and

Var̂(V� k) �
1

nplot(nplot�1)�
j�1

nplot

�Vj � V� k�2, (9)

where nplot is the number of plots.
Step 5. —For each value of ncal and 	, steps 1–4 were replicated

and the mean and variance over replications were calculated as per
Rubin (1987) as


̂sim �
1

nsim
�

k�1

nsim

V� k, (10)

and

Var̂(
̂sim) � �1 �
1

nsim
� � W1 � W2, (11)

where W1 �
1

nsim � 1�
k�1

nsim

(V� k�
̂sim)2 is the among-simulations

variance and W2 �
1

nsim
�
k�1

nsim

Var̂(V� k) is the mean within-simulation

variance. The replications continued until 
̂sim and Var̂(
̂sim)
stabilized.
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Correlations among residuals for trees on the same plot in step 2
would be expected to differ by plot, by stand history and density, by
tree-to-tree distance, and by tree size, age, and species. However,
because estimates of these correlations are not available, a sensitivity
analysis was conducted using four levels of among-tree correlations:
� � 0.00, � � 0.25, � � 0.50, and � � 0.75. Although these levels
are acknowledged to be only crude approximations, they are suffi-
cient to determine whether correlations among residuals for trees on
the same plot have non-negligible effects on large area variance
estimates.

This procedure was also used with species-specific values of ncal

and Q2 obtained for the calibration data sets.

Analyses
The estimation data set included some tree species for which

there were no observations or only a few observations in the calibra-
tion data sets (Table 1). For these species, one of three approaches
was used in the following order of priority. First, if sufficient obser-
vations for the species were available elsewhere in the 24-state re-
gion, they were used to augment the original calibration data sets;
models were then constructed using the augmented data sets and
applied without regard to the source of the calibration data. Second,
a model was used for a similar species for which sufficient calibration
data were available. Third, if the species was coniferous, the conif-
erous model was used, and if the species was deciduous, the decid-
uous model was used. The proportions of affected trees in the study
areas were 0.1166 for the first approach, 0.0002 for the second
approach, and 0.0049 for the third approach (Table 1).

The five-step simulation procedure was implemented using spe-
cies-specific volume models, models for coniferous and deciduous
groupings of species, and a nonspecific model for all species grouped
together. Different levels of calibration data set size affected only the
covariances for the parameter estimates, but different levels of resid-
ual variance affected both covariances for the parameter estimates
and individual tree model predictions as per Equation 7. Estimates
obtained from the simulations were compared with estimates ob-
tained using model predictions obtained directly from Equation 1
with no incorporation of uncertainty in parameter estimates or re-
sidual variability. In addition, estimates obtained using the species-
specific models were compared with estimates obtained using the
coniferous/deciduous and nonspecific models.

Results and Discussion
General

The fits of the models to the data produced Q2 from Equation 3,
ranging from Q2 � 0.9524 for sugar maple to Q2 � 0.9953 for
white spruce for the species-specific models (Table 1) and
Q2 � 0.9866, Q2 � 0.9689, and Q2 � 0.9717 for coniferous,
deciduous, and nonspecific models, respectively. Graphs of obser-
vations versus predictions for individual trees (Figure 2) and graphs
of group observation means versus group prediction means (Figure
3) indicated no systematic lack of fit. Graphs of predicted group
standard deviations versus group means revealed no systematic lack
of fit (Figure 4), thus indicating that the linear regression models
through the origin were sufficient to predict residual variance from
volume predictions.

Although estimates of simulation means from Equation 8 and
standard errors of means calculated as square roots of variances from
Equation 9 typically stabilized by 5,000 simulations (Figure 5), all
analyses were based on 10,000 simulations.

The effects of correlations among residuals for trees on the same
plot on the uncertainty of large area volume estimates were negligi-
ble for all levels and models. A similar finding was reported by
Berger et al. (2013) and Breidenbach et al. (2013). Therefore, for
this study, further results are reported only for the case of no corre-
lations among residuals.

When no uncertainty was incorporated, differences among esti-
mates of means for the species-specific, coniferous/deciduous, and
nonspecific models were relatively small, not more proportionally
than 0.025. The differences can be at least partially attributed to
differences in species proportions for the calibration and estimation
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Figure 2. Individual tree model predictions versus observations
for jack pine.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
ro

u
p
 m

ea
n
 v

o
lu

m
e 

o
b
se

rv
at

io
n
 (

m
3
)

Group mean volume prediction (m3)

Figure 3. Group means of individual tree model predictions ver-
sus observations for jack pine.
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Figure 4. Group residual standard deviation versus group means
of model predictions for jack pine.
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data sets. For example, the proportion of deciduous trees in the
calibration data sets was approximately 0.69, whereas the propor-
tion in the estimation data set was approximately 0.45. Thus,
parameter estimates for the nonspecific model would be skewed
toward the deciduous species. However, because species proportions
in estimation data sets vary by region, the effects of skewness in the
nonspecific model will also vary by region. Differences among the
models with respect to the standard errors (SEs) were also relatively
small, less proportionally than 0.035. The important result was that
SEs for the coniferous/deciduous and nonspecific models were less
than those for the species-specific models. This result can be attrib-
uted to the combined effects of two factors. First, Q2 values for the
coniferous/deciduous and for the nonspecific models were only
slightly smaller than those for the species-specific models even
though data for multiple species had been combined (Table 1).
Second, the much larger calibration data set sizes for the
coniferous/deciduous and for the nonspecific models resulted in
much smaller covariances for the model parameter estimates.

For the species-specific models with different levels of calibration
data set sizes and residual variances, differences between simulation
estimates of mean volume per unit area and the mean obtained when
no uncertainty was incorporated were small with a maximum pro-
portional difference of less than 0.01. The slight differences can be
attributed to the nonlinearity of the models. For models that are
nonlinear in the parameters, unlike linear models, changing a pa-
rameter by equal amounts in opposite directions does not necessarily
produce changes in model predictions that are equal but of opposite
direction. Thus, greater differences were realized for smaller calibra-
tion sample sizes and greater residual variances because these condi-
tions produced greater covariances and therefore greater deviations
of the parameter estimates from their means. For the species-specific
models, SEs increased for smaller calibration data set sizes and
smaller Q2, as expected, and reflected the effects of greater uncer-
tainty in model predictions due to uncertainty in the parameter
estimates and residual variability. For the coniferous/deciduous and
nonspecific models, simulation means differed from means ob-
tained when no uncertainty was incorporated proportionally by less
than 0.0015. SEs also increased with smaller calibration data set
sizes and values of Q2 but not by as much as for the species-specific
models.

Implications for the FIA Program
For this study, the mean size of the calibration data sets for

individual species was 66.31 and the mean weighted species-specific
Q2 was Q2 � 0.974 where the weights were proportional to the
calibration data set sizes. For the species-specific models, estimates
of the large area mean and SE when no uncertainty was incorporated
were 92.599 and 1.754 m3/ha, whereas the simulation estimates
that incorporated uncertainty were 92.614 and 1.779 m3/ha. For
the coniferous/deciduous models, the estimates that incorporated
no uncertainty were 90.539 and 1.701 m3/ha, whereas the simula-
tion estimates that incorporated uncertainty were 90.547 and 1.712
m3/ha. For the nonspecific models, the estimates that incorporated
no uncertainty were 90.395 and 1.695 m3/ha, whereas the simula-
tion estimates that incorporated uncertainty were 90.413 and 1.706
m3/ha. For all three model combinations, differences between esti-
mates of means obtained with and without incorporated uncertainty
were proportionally less than 0.001, and differences between SEs
were proportionally less than 0.025; for practical purposes, these
deviations are negligible. These results suggest that with respect to
estimates of mean volume per unit area, little may be lost by using
the nonspecific models, and with respect to the SEs of the estimates
of the means, nothing is gained by using the species-specific
models.

For operational purposes, the FIA program uses the volume
models reported by Hahn (1984), not the models constructed for
this study. For the Hahn (1984) models, the mean size of the spe-
cies-specific calibration data sets was 2,156 and the mean weighted
Q2 was Q2 � 0.825. These values produced an estimate of mean
volume per unit area of 92.599 m3/ha with SE of 1.754 m3/ha when
no uncertainty was incorporated and 92.614 m3/ha with SE of
1.779 m3/ha when uncertainty was incorporated. For practical pur-
poses, these estimates are not meaningfully different. Thus, with
respect to the uncertainty of model predictions, the much larger
calibration data set sizes for the Hahn (1984) models more than
compensated for the smaller Q2 values. However, the Hahn (1984)
models use a different mathematical form for the volume models
and include site index and stand basal area as additional indepen-
dent variables. A rigorous comparison of the effects of the different
mathematical forms of the models is not possible for this study
because site index and stand basal area were not available for the
calibration data set. Nevertheless, analyses for a variety of two-,
three-, and four-parameter models of different mathematical forms
that use only dbh and ht indicated that when adjustment was made
for different residual variances, the mathematical forms of the mod-
els had little effect on confidence intervals around model predic-
tions. Thus, uncertainty in model predictions resulting from resid-
ual variability and uncertainty in parameter estimates associated
with the Hahn (1984) models can be expected to have only negligi-
ble effects on the precision of large area estimates of mean volume
per unit area.

In general, residual variability and uncertainty in model param-
eter estimates characteristic of the data used to construct the models
for this study and characteristic of the Hahn models had minimal
effects on the uncertainty of large area estimates of mean volume per
unit area and their SEs. Similar results are also reported by Berger et
al. (2013) for the Austrian NFI, by Breidenbach et al. (2013) for the
Norwegian NFI, and by Ståhl et al. (2013) for the Swedish and
Finnish NFIs.
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simulations.

40 Forest Science • February 2014



Broader Implications
The results reported in Table 2 can be used as crude but general

guidelines for assessing the effects of uncertainty in parameter esti-
mates and residual uncertainty on the volume, biomass, and carbon
models reported for tropical applications. For the following exam-
ples, models similar in form to Equation 6 were used and the re-
ported quality-of-fit measure is understood to be equivalent to Q2 as
used for this study. Brown et al. (1989, Table 2) reported above-
ground biomass models for dry tropical forests for which calibration
data set sizes were as small as n � 32 with Q2 � 0.67, and Litton and
Kauffman (2008, Table 1) reported models for Hawaii with n � 36
and Q2 � 0.96 and with n � 20 and Q2 � 0.93. Certainly consid-
erable caution must be exercised when extrapolating from models
constructed for boreal and temperate forests to models for tropical
forests. Nevertheless, these examples illustrate that individual tree
models are reported and presumably used for which uncertainty in
volume model predictions resulting from uncertainty in model pa-
rameter estimates and residual uncertainty should not be assumed to
be negligible. For cases such as these for which species have small
calibration data sets, aggregating over multiple species to form larger
calibration data sets may produce greater precision with little or no
loss of accuracy (Kamelarczyk 2009, p. 15).

Conclusion
Four conclusions may be drawn from the study. First, the Monte

Carlo approach worked well and was not excessively computation-
ally intensive, although the ln-ln transformation was necessary to
incorporate uncertainty in the model parameter estimates. Second,
no seriously detrimental consequences relative to precision in large

area estimates of volume accrue as a result of ignoring model pre-
diction uncertainty for calibration data set sizes and Q2 values for
this study or for the Hahn (1984) models. These results provide a
practical justification for the widespread inventory and monitoring
practice of ignoring the effects of parameter and residual uncertainty
on the uncertainty of volume model predictions, although the jus-
tification is subject to sufficiently large calibration data sets and Q2

values. Third, the coniferous/deciduous and nonspecific models,
which require considerably less effort to construct and maintain,
produced only small deviations in large area means relative to those
for the species-specific models and actually produced smaller SEs.
This conclusion suggests that for large area estimation purposes,
little may be gained by using species-specific models. Fourth, the
results of the study suggest that efforts by NFIs and other large-scale
inventory and monitoring programs to increase the precision of
large area volume estimates should focus on reducing the effects of
sampling variability by increasing sample sizes, using more efficient
sampling designs, and using remotely sensed data to enhance infer-
ences (McRoberts et al. 2012, 2013).
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BREIDENBACH, J., C. ANTÓN-FERNÁNDEZ, H. PETERSSON, P. ASTRUP,
AND R.E. MCROBERTS. 2013. Quantifying the contribution of biomass
model errors to the uncertainty of biomass stock and change estimates in
Norway. For. Sci. In press.

BROWN, S., A.J.R. GILLESPIE, AND A.E. LUGO. 1989. Biomass estimation
methods for tropical forests with application to forest inventory data.
For. Sci. 35(4):881–902.

CHAVE, J., C. ANDALO, S. BROWN, M.A. CAIRNS, J.Q. CHAMBERS, D.
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