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For most national forest inventories, the variables of primary interest to users are forest area and growing
stock volume. The precision of estimates of parameters related to these variables can be increased using
remotely sensed auxiliary variables, often in combination with stratified estimators. However, acquisi-
tion and processing of large amounts of remotely sensed data can be costly and laborious, and stratified
estimation requires construction of strata and satisfaction of within-stratum sample size constraints. An
alternative to both challenges is to use an existing remote sensing-based, spatial product with the model-
assisted estimators. The latter estimators use continuous auxiliary information directly rather than their
aggregation into strata and are not subject to such severe sample size constraints. The objective of the
study was to compare estimates of mean proportion forest area and mean growing stock volume per unit
area obtained using both stratified and model assisted estimators with a remote sensing-based percent
tree canopy cover map as auxiliary information. For a study area in Minnesota, USA, the primary conclu-
sion was that estimates obtained with both sets of estimators were acceptably precise, but that the
model-assisted estimators were easier to implement and facilitated aggregation of estimates from smal-
ler sub-areas to estimates for larger areas.

Published by Elsevier B.V.
1. Introduction

National forest inventories (NFI) typically report estimates of
parameters related to forest area and growing stock volume and
their changes using unbiased probability-based (design-based)
estimators. The estimates are used for multiple purposes including
strategic planning (USDA-FS, 2012) and reporting for an increasing
number of international agreements such as the Global Forest
Resources Assessment (FAO, 2010) and Annex 1 of the United
Nations Framework Convention on Climate Change (UNFCCC,
2006). However, for important inventory parameters related to for-
est area and volume, limited sample sizes inhibit these estimators
from producing sufficiently precise estimates unless the estimation
process is enhanced using auxiliary information. Remote sensing-
based thematic maps are increasingly used as auxiliary informa-
tion to address this challenge.

The Forest Inventory and Analysis (FIA) program of the U.S. For-
est Service conducts the NFI of the United States of America (USA)
and has conducted extensive research on using remotely sensed
data to enhance inventory estimates via stratified estimation.
(Hansen and Wendt, 2000; McRoberts et al., 2002a, b, 2006,
2012; Liknes et al., 2004, 2009; Nelson et al., 2005; Westfall
et al., 2011). However, for large areas such as states, provinces,
and regions, the labor and costs associated with acquiring and pro-
cessing large amounts of remotely sensed data inhibit this practice.
For example, 10–20 Landsat scenes are required to cover individual
states in the Midwestern region of the USA. An alternative is to use
a readily available, remote sensing-based, spatial, thematic prod-
uct such as the National Land Cover Database (NLCD)
(Vogelmann et al., 2001; Homer et al., 2004, 2007). The NLCD is a
30-m � 30-m, multi-class, land cover dataset that has been widely
used as a source of auxiliary information for multiple purposes.
McRoberts et al. (2002a) aggregated the thematic classes of the
1992 NLCD to forest and non-forest and then constructed four
related strata. These strata, when used with stratified estimators
(Section 3.2.2), reduced variances of estimates of mean proportion
forest area by factors as great as 3.2 for four Midwestern states.
This approach was operationally implemented for at least some
of the regional FIA programs in the USA. McRoberts et al. (2006)
later showed that stratifications based on estimates of pixel-level
probabilities of forest cover reduced variances of estimated mean
proportion forest by factors as great as 5.9 and variances of esti-
mates of mean growing stock volume per unit area by factors as
great as 2.5. The similarity between the probability of forest cover
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Fig. 1. Study area consisting of Minnesota FIA Unit 1 and five subordinate counties
by name and U.S. Federal Information Processing Standard (FIPS) codes.
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and the percent tree canopy cover layer for the 2001 NLCD facili-
tated operational implementation of the latter approach to
stratification.

One disadvantage of stratified estimation is that the full utility
of continuous auxiliary data such as percent tree canopy cover is
not realized when the data are aggregated into a small number
of strata. In addition, when using continuous auxiliary information
for stratification, strata boundaries must be selected, and sufficient
numbers of observations per stratum must be ensured (Westfall
et al., 2011). The model-assisted regression estimators are alterna-
tive estimators that more fully utilize continuous auxiliary data.
These estimators calculate an initial estimate as the aggregation
of estimates for individual population units and then adjust the ini-
tial estimate using differences between unit-level estimates and
observations for a probability sample (Section 3.2.3). The increased
availability of remotely sensed satellite and lidar data and products
based on them has increased the appeal of model-assisted estima-
tors for forest inventory applications (Baffetta et al., 2009; Gregoire
et al., 2011; McRoberts, 2010, 2011; McRoberts and Walters, 2012;
McRoberts et al., 2013a, b; Næsset et al., 2011, 2013a, b; Vibrans
et al., 2013; Sannier et al., 2014). With these estimators, selection
of strata boundaries is not necessary because the auxiliary data
are used in their continuous form. In addition, although overall
minimum samples sizes must be accommodated, satisfaction of a
sample size criterion for each of multiple strata is not necessary.

For inventory estimation, the ultimate analytical objective is a
statistical inference in the form of a confidence interval calculated
as l̂� t1�a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârðl̂Þ

p
where l̂ is the estimate of a mean, Vârðl̂Þ is

an estimate of the variance of the estimated mean, and t corre-
sponds to the confidence level. The primary objective of the study
was to compare estimates of mean proportion forest area and
mean forest growing stock volume per unit area using continuous
NLCD tree canopy cover data as auxiliary information with three
sets of statistical estimators: (1) the simple random sampling esti-
mators, (2) the stratified estimators, and (3) the model-assisted
regression estimators. A particular underlying objective was to
determine if the model-assisted regression estimators circumvent
the disadvantages of the stratified estimators without introducing
additional disadvantages.
2. Data

2.1. Forest inventory field data

The study area was Minnesota FIA Inventory Unit 1 and the five
counties included within the Unit (Fig. 1). Land use for the study
area consists of forest land dominated by aspen-birch and
spruce-fir associations, agriculture, wetlands, and water (Miles
et al., 2011). The FIA program samples without replacement and
has established field plot centers in permanent locations using a
quasi-systematic sampling design that is regarded as producing
an equal probability sample (McRoberts et al., 2010). Each FIA plot
consists of four 7.32-m (24-ft) radius circular subplots that are
configured as a central subplot and three peripheral subplots with
centers located at distances of 36.58 m (120 ft) and azimuths of 0�,
120�, and 240� from the center of the central subplot. Field crews
visually estimate the proportion of each subplot that satisfies the
FIA definition of forest land: minimum area of 0.4 ha (1.0 ac); min-
imum canopy cover of 10%; stand width, measured as external
crown-to-crown distance, of at least 36.6 m (120 ft); and forest
land use. Field crews also observe species and measure diameter
at-breast-height (dbh) (1.37 m, 4.5 ft) and height for all trees with
dbh of at least 12.7 cm (5 in.). Volumes for individual trees are esti-
mated using statistical models (Woodall et al., 2011), aggregated at
plot-level, expressed as volume per unit area, and for inventory
estimation purposes are considered to be observations without
error (McRoberts and Westfall, 2014). For this study, data were
used for 2681 FIA plots measured between 2008 and 2012. At
the time the plots were measured, the sampling intensity in the
study area was approximately one plot per 1200 ha. Two variables
were considered: proportion forest area (FOR) and growing stock
volume per unit area (VOL, m3/ha).

2.2. Auxiliary data

The NLCD is a 30-m � 30-m, multi-class, Landsat-based land
cover product of the Multi-Resolution Land Characteristics Consor-
tium, a collaboration of multiple agencies of the U.S. Government
(Homer et al., 2004, 2007). The NLCD is national in scope and pro-
vides spatial data for thematic classes such as urban, agriculture,
and forest and separately for percent tree canopy cover. The latter
data reflect land cover, not land use, and were predicted from
Landsat 7 ETM + images and high resolution reference data using
regression trees (Huang et al., 2001). For this study, the 2001 NLCD
percent tree canopy cover (PCT) product was used as auxiliary
information for both stratified and model-assisted estimation. For
each FIA plot, FOR and VOL were associated with PCT for the NLCD
map unit containing the plot center. Preliminary investigations
indicated only negligible benefits accrued from using mean PCT
for the 3 � 3 block of pixels centered on the map unit containing
the plot center.
3. Methods

3.1. Assumptions

All three estimators rely on the same three underlying assump-
tions: (1) a finite population, U, consisting of N units in the form of



14 R.E. McRoberts et al. / Forest Ecology and Management 331 (2014) 12–18
square, 900-m2 NLCD map units; (2) a sample, S, of n population
units in the form of map units that contain FIA plot centers; and
(3) availability of auxiliary data in the form of PCT for all map units.

3.2. Probability-based estimators

Properties of probability-based (design-based) estimators
derive from the probabilities of selection of population units into
the sample. Hansen et al. (1983) apparently coined the term prob-
ability-based to describe these estimators as an alternative to the
more familiar term design-based. Because the basis for inference
is not just a design for sampling, but more specifically a probabil-
ity-based design, the term probability-based is considered by some
to better characterize the basis for inference. Probability-based
inference is based on three assumptions: (1) population units are
selected for the sample using a probability-based randomization
scheme; (2) the probability of selection for each population unit
is positive and known; and (3) the observation of the response var-
iable for each population unit is a fixed value. Estimators are
derived to correspond to sampling designs and typically are unbi-
ased, meaning that the expectation of the estimator over all sam-
ples and sample sizes that could be obtained with the sampling
design is the true value of the population parameter. However,
the estimate obtained with any particular sample may deviate con-
siderably from the true value.

3.2.1. Simple random sampling estimators
The simplest approach to probability-based inference is to use

the familiar simple random sampling (SRS) estimators for means
and their variances,

l̂SRS ¼
1
n

X
i2S

yi ð1Þ

and

Vârðl̂SRSÞ ¼
P

i2Sðyi � l̂SRSÞ2

nðn� 1Þ ; ð2Þ

where yi is the observation of the response variable for the ith sam-
ple unit. The primary advantages of the SRS estimators are that they
are intuitive, simple, and unbiased when used with an SRS design;
the disadvantage is that variances are frequently large, particularly
for highly variable populations and small sample sizes. Although
Vârðl̂SRSÞ from Eq. (2) may be biased when used with systematic
sampling, it is usually conservative in the sense that it over-esti-
mates the variance (Särndal et al., 1992). For this study, finite pop-
ulation correction factors were ignored because of the small
sampling intensity of one 672-m2 plot per 1200 ha of land area, a
sampling intensity of less than 0.0001.

3.2.2. Stratified estimators
The essence of stratified estimation is to assign map units to

homogeneous groups characterized as strata, calculate within-
stratum sample plot means and variances, and then calculate the
population estimate as a weighted average of the within-stratum
estimates. Stratified estimation requires accomplishment of two
tasks: (1) calculation of stratum weights, and (2) assignment of
each sample unit to a single stratum. The first task is accomplished
by calculating the stratum weights as proportions of map units in
strata. The second task is accomplished for this study by assigning
the FIA plots to strata on the basis of the stratum assignments of
the map units containing the plot centers.

NFIs often use permanent plots whose locations are based on
systematic grids or tessellations and use sampling intensities that
are constant over large geographic areas. In such cases, even
though stratified sampling is not possible, increase in precision
may still be achieved by using stratified estimation subsequent
to the sampling, a technique characterized as post-sampling strat-
ification or simply post-stratification. Post-stratified (STR) estimates
of means and variances are calculated as (Cochran, 1977, p. 134),

l̂STR ¼
XH

h¼1

whl̂h; ð3Þ

and

Vârðl̂STRÞ ¼
XH

h¼1

wh
r̂2

h

n
þ ð1�whÞ �

r̂2
h

n2

� �
; ð4Þ

where

l̂h ¼
1
nh

X
i2Sh

yi;

r̂2
h ¼

1
nh � 1

X
i2Sh

ðyi � l̂hÞ2;

h = 1, . . ., H indexes strata; Sh is the portion of the sample, S, in the
hth stratum; wh is the weight for the hth stratum; n is the total sam-
ple size; and l̂h and r̂2

h are the sample estimates of the within-stra-
tum mean and variance, respectively. The utility of a stratification
for increasing precision is often expressed using relative efficiency
(RE) calculated as,

RE ¼ Vârðl̂SRSÞ
Vârðl̂STRÞ

; ð5Þ

where values of RE greater than 1.0 indicate increasing effective-
ness of the stratification.

3.2.3. Model-assisted regression estimators
Model-assisted regression estimators use models based on aux-

iliary data to enhance inferences by increasing precision but rely
on probability samples for validity. For this study, the model-
assisted regression (MAR) estimators of means and variances were
used (Särndal et al., 1992, Section 6.5),

l̂MAR ¼
1
N

X
i2U

ŷi �
1
n

X
i2S

ei ð6Þ

and

Vârðl̂MARÞ ¼
1

nðn� 1Þ
X
i2S

ðei � �eÞ2; ð7Þ

where ŷi is a model prediction and ei ¼ ŷi � yi. The first term in Eq.
(6) is simply the mean of the model predictions over all map units,
and the second term is an estimate of bias calculated over the sam-
ple units and compensates for systematic model prediction errors.
For the MAR estimators, RE was calculated as,

RE ¼ Vârðl̂SRSÞ
Vârðl̂MARÞ

: ð8Þ

The descriptive term regression is commonly used to describe the
MAR estimators (Cochran, 1977; Särndal et al., 1992), probably
because when they were developed models of the relationships
between the response and predictor variables were most often in
the form of a linear regression model. However, any prediction pro-
cedure, whether explicit or implicit, that produces replicable pre-
dictions is generally understood to be acceptable for use with
these estimators. For example, Breidt and Opsomer (2000) used
local polynomial regression; Lehtonen et al. (2005) used a nonlinear
logistic regression model; Särndal (2007) used a calibration
approach; Zheng and Little (2004) used penalized splines; Breidt
and Opsomer (2009) used non-parametric and semi-parametric
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Fig. 2. Mean growing stock volume observations versus mean growing stock
volume predictions for NLCD percent canopy cover classes.
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approaches; and Sannier et al. (2014) used visual assessments, all
while still using the term regression estimator.

The primary advantage of the MAR estimators is that they cap-
italize on the relationship between the sample observations and
their model predictions to reduce the variance of the estimate of
the population mean. In this regard, they are potentially preferable
to the STR estimators because they use the model predictions for
individual population units, whereas the STR estimators use the
model predictions to aggregate the population units into a small
number of strata.

3.3. Analyses

3.3.1. Constructing strata
For the stratified analyses, four strata were used based on

Cochran’s (1977) recommendation that more than 6–8 strata pro-
duce little additional gain in precision and previous experiences
with FIA data indicating that four Landsat-based strata were
approximately optimal (McRoberts et al., 2002a,b, 2006;
McRoberts, 2010).

The general approach to constructing strata entails dividing the
range of a continuous variable, possibly in the form of model pre-
dictions, into a small number of intervals that constitute the strata.
For this study, only a single auxiliary variable, PCT, was used, and
only monotonic increasing models were used to represent the rela-
tionships between FOR and PCT and between VOL and PCT. There-
fore, dividing the range of predictions for any monotonic model
based only on PCT into strata is equivalent to dividing the range
of the PCT auxiliary variable itself into strata. Therefore, all strati-
fications were constructed by dividing the 0 6 PCT 6 1 range into
intervals that satisfied selected criteria. Strata were constructed
in two steps. First, the [0,1] continuum of PCT values was divided
into 101 standardized classes [0,0], (0,1], . . ., (99,100]. Second,
adjacent standardized classes were aggregated into strata that sat-
isfied selected criteria. Two criteria were considered: (1) minimiza-
tion of Vârðl̂STRÞ and (2) maximization of REFOR + REVOL. The first
criterion prioritizes precise estimation of mean VOL under the
assumption that it will be more difficult to estimate precisely than
mean FOR which is more closely related to PCT. The second crite-
rion balances the priorities.

Stratum boundaries were selected to satisfy the criteria for the
entirety of Unit 1, and then were applied to each of the five coun-
ties within the Unit (Fig. 1). All stratifications were subject to the
constraint that each stratum must include at least 50 plots at the
Unit level. For comparison purposes, the regional FIA program of
the Northern Research Station (NRS), U.S. Forest Service, uses five
strata and requires at least 10 plots per stratum per county which
is equivalent to 50 plots per stratum for a 5-county unit level. Thus,
the within-stratum sample size constraint used for this study was
comparable to the constraint used in practice.

3.3.2. Constructing models
For the MAR estimators, each response variable must be pre-

dicted for each 30-m � 30-m map unit. For FOR, the PCT value
itself was used as the prediction. For VOL, predictions were calcu-
lated using a nonlinear logistic model of the form,

VOL ¼ a
1þ expðb0 þ b1 � PCTþ b2 � PCT2Þ

þ e ð9Þ

where e is a residual with mean zero, and a and the bs are param-
eters to be estimated. The advantage of this model over a linear
model is it that has a lower asymptote at VOL = 0 and an upper
asymptote at VOL = a whose estimate is based on the sample data.
Linear models have no such constraints and can produce negative
and unrealistically large predictions, particularly for values of
predictor variables that are beyond the ranges of those variables
represented in the sample.

3.3.3. Estimation
Means and standard errors (SE) of the means were estimated for

each of the five counties using the SRS estimators, the STR estima-
tors with strata constructed to satisfy both criteria, and the MAR
estimators. For each case, RE was also calculated.

The MAR estimators are not subject to selection of strata
boundaries or the necessity of altering strata boundaries to accom-
modate a minimum number of plots per stratum. Therefore, esti-
mation for multi-county units is much easier; in particular, basic
within-county sums can be calculated and then further added to
estimate multi-county means and SEs. This advantage is demon-
strated for the VOL response variable.
4. Results and discussion

4.1. Accuracies

For the 2861 FIA plots with centers in the study area, the corre-
lation between FOR and PCT was 0.68. If map units with PCT < 0.5
are classified as non-forest and maps units with PCT P 0.5 are clas-
sified as forest, then for the 2461 of the 2861 plots that were com-
pletely non-forested or completely forested, the classification
accuracy was 0.93.

The quality of fit of the nonlinear logistic model to the data was
also assessed using pseudo-R2 calculated as,

R2� ¼
P

i2Sðyi � �yÞ2 �
Pn

i2Sðyi � ŷiÞ2P
i2sðyi � �yÞ2

: ð10Þ

For the logistic model of Eq. (8), R2⁄ = 0.54 (Fig. 2). Although this is
value is rather small, several factors must be considered. First, as
noted in Section 2.1, the FIA plot observations reflect forest land
use, not necessarily forest land cover. In particular, land with tree
canopy cover that fails to satisfy the FIA definition of forest land,
is characterized by FIA as having non-forest land use, whereas forest
land that has recently been harvested and has no tree canopy cover
is still characterized by FIA as having forest land use. Second, the
relationship between VOL and PCT exhibits considerable variability.
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For example, for PCT = 0.00, the VOL range was 0.0–289.3 m3/ha; for
PCT = 0.75, the VOL range was 0.0–236.6 m3/ha; and for PCT = 1.00,
the VOL range was 49.0–330.9 m3/ha. The best a model can achieve
is to predict exactly the VOL mean for each value of PCT. Thus, the
minimum sum of squared deviations between observations and
predictions, SSres, that can be achieved is the sum of squared devi-
ations between VOL observations around their means over all PCT
values. In this context, the SSres achieved by the model was only
2.2% greater than the minimum possible.

Multiple factors contribute to the large variability among VOL
observations for particular PCT values: (1) changes on the ground
between the dates of the map training and image data and the
FIA plot measurements, (2) map classification and prediction
errors, (3) FIA plot location errors, (4) geo-referencing errors, (5)
deviations between the plot area of 672 m2 distributed over nine
or more map units and single map units of size 900 m2, (6) differ-
ences between land cover as depicted by the map and land use as
recorded for FIA plots, and (7) volume in trees with dbh < 12.7 cm
(5 in) which is not included in VOL as reported by FIA. Other than
minimizing errors resulting from these factors, the only other solu-
tion for increasing the quality of fit of the model to the data is to
find additional predictor variables that are available for all map
units and that are correlated with VOL.
4.2. Estimation

4.2.1. Stratified estimators
The strong relationship between PCT and FOR is the explanation

for the success of the stratifications in reducing SEs of estimates of
mean FOR (Table 1). REs for FOR ranged from 21.26 to 43.61 but, as
expected, were greater when the stratifications maximized
REFOR + REVOL than when they minimized Vârðl̂VOLÞ.

REVOL for the stratified estimators ranged from 1.09 to 1.38
These values were considerably smaller than REFOR which was as
expected because PCT is more strongly related to the canopy level
forest/non-forest attribute than to the below canopy volume attri-
bute. Of interest, minimization of Vârðl̂VOL

STR Þ did not produce sub-
stantially greater REs for VOL than did maximization of
REFOR + REVOL. Although values of REVOL were small and sometimes
close to 1.0, the cost efficiency of even small values should not be
ignored. For example, RE = 1.12 means that to achieve the same
precision levels without use of the auxiliary information, sample
sizes would have to be increased by a factor of 0.12, i.e., for this
study, the sample size of 2861 would have to be increased by
Table 1
Estimates of mean proportion forest area and mean volume per unit area (m3/ha).

County Sample size (n) Simple random sampling (SRS) Stratified (STR)

Optimal Vârðl̂VO
STR

Mean SEa Mean SEa

Proportion forest area
17 179 0.618 0.036 0.624 0.007
31 284 0.856 0.021 0.755 0.004
71 624 0.837 0.015 0.718 0.003
75 416 0.867 0.017 0.730 0.003
37 1358 0.730 0.012 0.656 0.002

Growing stock volume (m3/ha)
17 179 59.95 5.28 61.75 4.50
31 284 87.19 4.56 88.10 4.24
71 624 53.05 2.52 53.48 2.40
75 416 75.84 3.13 76.87 2.96
37 1358 52.35 1.70 53.47 1.55

a Standard error.
b Relative efficiency.
0.12 � 2861 = 343 plots. For a 2014 measurement cost of approxi-
mately $500/plot, the cost savings from using the auxiliary infor-
mation and post-stratified estimation is $171,500, a non-
negligible amount, particularly for only one of the four Minnesota
FIA inventory units.
4.2.2. Model-assisted regression estimators
The MAR estimators produced increases in precision for both

FOR and VOL; REFOR ranged from 1.51 to 3.12, and REVOL ranged
from 1.10 to 1.42. The bias adjustment component of the MAR esti-
mator has two important features. First, it compensates for devia-
tions between predictions and observations for sample units
resulting from any of the causes described in Section 4.1. Second,
it compensates for differences in relationships between the
response variable and PCT for different geographical regions within
the study area. In particular, the model of Eq. (9) was constructed
using plot data without regard to individual counties within Unit 1.
Therefore, because of different distributions of forest resources and
the PCT variable, the quality of model predictions may vary by
county. The bias adjustment feature preserves the unbiasedness
or nearly unbiasedness feature of the MAR estimator, although a
greater degree of adjustment contributes to larger variances and
less precision.
4.2.3. Comparisons
The smaller SEs for mean FOR and mean VOL when using the

STR and MAR estimators than when using the SRS estimators attest
to the utility of the PCT auxiliary information. This result is
reflected in RE > 1 for all counties using the STR and MAR estima-
tors. As previously noted, REFOR was always greater than REVOL,
regardless of the estimator or optimization criterion, as a result
of the stronger relationship between FOR and PCT than between
VOL and PCT.

For mean FOR, the STR estimators produced considerably smal-
ler SEs than did the MAR estimators. For mean VOL, REs obtained
using the MAR estimators were slightly smaller or comparable to
REs obtained using the STR estimators. Despite the apparent supe-
riority of the STR estimators for mean FOR, additional factors must
be considered. First, operational implementation of the STR esti-
mators is more complex because stratum boundaries must be
selected, minimum within-stratum sample sizes are more difficult
to achieve, and optimality criterion may have to be considered.
Further, for counties with few forest resources, use of a common
pan-county stratification may be problematic because subdivision
Model-assisted regression (MAR)

LÞ Optimal REFOR + REVOL

REb Mean SEa REb Mean SEa REb

21.26 0.636 0.007 22.99 0.661 0.023 2.10
21.37 0.752 0.004 22.71 0.870 0.010 3.12
30.65 0.718 0.002 43.61 0.853 0.011 1.51
22.01 0.726 0.003 35.94 0.887 0.009 3.12
30.94 0.659 0.002 40.76 0.756 0.007 2.27

1.38 63.75 4.73 1.24 62.62 4.43 1.42
1.16 87.46 4.22 1.17 88.96 4.25 1.15
1.10 53.48 2.40 1.10 55.32 2.38 1.12
1.12 76.26 3.00 1.09 78.32 2.99 1.10
1.20 53.73 1.56 1.18 55.18 1.53 1.23



Table 2
County and Minnesota FIA Unit 1 estimates for mean growing stock volume per unit area (m3/ha) using the model-assisted regression estimators.

County Sums Estimates

N (� 107) PN
i¼1P̂yi (� 109) n

Pn
i¼1ei (� 103)

Pn
i¼1e2

i (� 106) l̂init
a

B̂iasðl̂initÞb l̂MAR
c SEðl̂MARÞd

17 0.2519 0.1426 179 �1.0773 0.6322 56.60 �6.02 62.62 4.43
31 0.4620 0.3245 284 �5.3168 1.5490 70.24 �18.72 88.96 4.25
71 0.9077 0.5870 624 5.8334 2.2516 64.67 9.35 55.32 2.38
75 0.6584 0.4299 416 �5.4179 1.6137 65.30 �13.02 78.32 2.99
137 1.9380 1.1391 1358 4.8823 4.3441 58.78 3.60 55.18 1.53
Unit 1 4.2180 2.6231 2861 �1.0962 10.3910 62.19 �0.38 62.57 1.13

a l̂init ¼ 1
N

PN
i¼1ŷi .

b B̂iasðinitÞ ¼ 1
n

P
i2Sei .

c l̂MAR ¼ l̂init � B̂iasðl̂initÞ.

d SEðl̂MAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nðn�1Þ

P
i2Sðei � �eÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nðn�1Þ
P

i2Se2
i �

1
n ð
P

i2SeiÞ2
h ir

.
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of small forest areas into multiple strata invariably fails to satisfy
minimum sample size constraints for some strata. The result is that
either fewer strata must be used or some existing strata must be
combined, a laborious county-by-county task when many counties
are involved. The MAR estimators avoid these problems; the only
constraint is the total sample size for a county.

Second, aggregation of stratified estimates for individual coun-
ties with different stratifications to multi-county estimates is
extremely complex, if not operationally infeasible. For example, if
the strata for County A are [0–40] and [41–100] and the strata
for County B are [0–60] and [61–100], then a method for producing
an estimate for the combination of the counties that is consistent
with the individual estimates for the two counties and, of neces-
sity, preserves the county stratifications is not apparent. For most
counties, the regional NRS FIA program uses five strata with PCT
boundaries of [0–5], [6–50], [51–65], [66–81], and [82–100]. How-
ever, for some counties, the first three strata were combined; for
other counties, the last four were combined; and in some cases
all five strata were combined. As is apparent, when different strat-
ifications are used for different counties, county estimates cannot
easily be aggregated to produce multi-county estimates. This task
is circumvented with the MAR estimators, because county-level
sums of population sizes, sample sizes, model predictions, residu-
als, and residuals squared can be readily carried forward to pro-
duce estimates for aggregations of counties (Table 2).

Third, the primary disadvantage of the MAR estimators, at least
for this study area, is that the precision of estimates of FOR suffers.
However, in a practical sense, the larger SEs obtained with the MAR
estimators may still be acceptable. The FIA program reports preci-
sion estimates as coefficients of variation scaled to compensate for
varying sample sizes using the sample size corresponding to
404,694 ha (1 million ac) as a reference standard (USDA-FS,
1970). Thus, precision is expressed as,
p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârðl̂Þ

p
l̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A � l̂

404;694

s
; ð11Þ
where l̂ is the estimate of mean FOR, Vârðl̂Þ is its variance esti-
mate, and A is the total area inventoried. The threshold for satisfy-
ing the FIA precision criterion is p 6 0:03. For the estimates
obtained using the MAR estimators, p 6 0:022 for all counties,
meaning that even though precision was not as great as obtained
using the STR estimators, it still satisfied the FIA criterion. Thus,
the smaller but still acceptable precision for estimates of FOR with
the MAR estimators may be a reasonable price to pay for greater
ease of implementation, less severe sample size constraints, and
the ability to easily aggregate individual county estimates to
multi-county estimates. Finally, the MAR estimators have potential
for greater precision if additional predictor variables correlated
with VOL can be incorporated into the model.

5. Conclusions

Three conclusions may be drawn from the study. First, as a
source of auxiliary information, the NLCD percent tree canopy
cover layer contributed to reducing variances and increasing the
precision of parameter estimates associated with forest area and
growing stock volume, the two most important and commonly
reported NFI variables. Second, the model-assisted estimators pro-
duced precision for estimates of mean growing stock volume com-
parable to precision produced using the stratified estimators.
Although precision for mean proportion forest area obtained using
the model-assisted estimates was less than that obtained using the
stratified estimators, the model-assisted estimates still satisfied
the FIA precision criterion. Thus, no serious disadvantages with
respect to required precision accrue through use of the model-
assisted estimators. Third, and most importantly, multiple advan-
tages accrue with use of the model-assisted regression estimators.
In particular, they are easier to implement because selection of
strata boundaries is not necessary, sample size requirements are
more easily satisfied, and county-level sums may be aggregated
to produce multi-county estimates which is often not possible with
stratified estimators.
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