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Multiple remote sensing-based approaches to estimating gross afforestation, gross deforestation, and net defor-
estation are possible. However,many of these approaches have severe data requirements in the formof long time
series of remotely sensed data and/or large numbers of observations of land cover change to train classifiers and
assess the accuracy of classifications. In particular, when rates of change are small and equal probability sampling
is used, observations of changemay be scarce. For these situations, post-classification approachesmay be the only
viable alternative. The study focused on model-assisted and model-based approaches to inference for post-
classification estimation of gross afforestation, gross deforestation, and net deforestation using Landsat imagery
as auxiliary data. Emphasiswas placed on estimation of variances to support construction of statistical confidence
intervals for estimates. Both analytical and bootstrap approaches to variance estimation were used. For a study
area in Minnesota, USA, estimates of net deforestation were not statistically significantly different from zero.

Published by Elsevier Inc.
1. Introduction

The Land Use, Land Use Change Forestry (LULUCF) sector plays a
vital role in the global greenhouse gas (GHG) balance. Although the ap-
proximately 13 million hectares (ha) of forest that are converted to
other land uses annually worldwide account for as much as 25% of an-
thropogenic GHG emissions (Achard et al., 2002; FAO, 2005, p. 13;
Gullison et al., 2007), the LULUCF sector also has the greatest potential
to remove GHGs from the atmosphere.

Carbon accounting includes assessment of the scale of GHG emis-
sions from the forestry sector relative to other sectors. The gain–loss ap-
proach to carbon accounting is the most commonly used approach for
estimating GHG emissions for national measurement, reporting, and
verification (MRV) systems under the auspices of the Intergovernmen-
tal Panel on Climate Change (IPCC) (Giardin, 2010).With this approach,
the net balance of additions to and removals from a carbon pool is esti-
mated as the product of the rates of land use area changes and the re-
sponses of carbon stocks for those land use changes. Remote sensing-
based approaches to estimating rates of forest area change have been
emphasized as an important tool for monitoring changes in forest area
(GOFC-GOLD, 2010, chap. 2). Further, good practice requires that the
uncertainty in estimates of forest area change should be reported, re-
gardless of the method used to obtain the estimates (Köhl, Baldauf,
Plugge, & Krug, 2009; Watson, 2009).

Remote sensing-based change detection methods include two
primary categories, trajectory analyses and bi-temporal methods. Tra-
jectory analyses use time series of three or more images to assess not
only the type and extent of change but also the trends and temporal pat-
terns of change over time. Bi-temporal methods entail the analyses of
.

images for two different dates and can be further separated into two
subcategories. With post-classification, two forest/non-forest classifica-
tions constructed separately using two sets of forest/non-forest training
data and two images are compared to estimate change,whereaswith di-
rect classification, a single classification of change is constructed using a
single set of forest change training data with data for two images.
Although trajectory analyses produce more detailed information such
as type and timing of change and direct classification focuses explicitly
on the change categories of interest, both methods have rather severe
data requirements. With trajectory analyses, an extensive time series
of imagery is typically required (Kennedy, Cohen, & Schroeder, 2007;
Zhu,Woodcock, & Olofsson, 2012).With direct classification, large num-
bers of change observations may be necessary for training the classifier
and/or assessing accuracy, a difficult task when rates of change are
small and change observations are acquired using equal probability
sampling designs. The advantage of post-classification is that the data
requirements are much less severe. The disadvantage is that two sets
of classification errors must be accommodated, although forest/non-
forest classification errors are often less frequent than forest change
classification errors.

The overall objective was to estimate parameters related to forest
area change using multiple approaches to inference. Response variables
of interest included gross deforestation, defined as loss of forest area;
gross afforestation, defined as gain in forest area including reforestation;
and net deforestation defined as the net result of gross deforestation and
gross afforestation. For a study area in northeastern Minnesota in the
United States of America (USA), two datasets were used, observations
of forest/non-forest for national forest inventory (NFI) plots and corre-
sponding summer Landsat imagery for the years 2002 and 2007. Because
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the combined dataset included few observations of forest area change,
only post-classification approacheswere used. An intermediate technical
objective was to estimate areal population means, μ̂ , and variances, Vâr
μ̂ð Þ , for proportion forest for each year. The final technical objective
was to use the two sets of estimated means and variances, one set for
each of 2002 and 2007, to construct approximate 95% confidence inter-
vals for estimates of parameters related to forest area change between
the two years.

A nonlinear logistic regression model was used to estimate the rela-
tionship between forest/non-forest observations and Landsat spectral
information, and the analyses included investigations of the effects on
estimates of means and variances using different combinations of spec-
tral variables in themodel. Both a probability-based, model-assisted re-
gression estimator and a model-based estimator were used.
2. Data

The study area was defined by the portion of the row 27, path 27,
Landsat scene in northeastern Minnesota, USA, which was cloud-free
for the two image dates, 16 July 2002 and 30 July 2007 (Fig. 1). The
Landsat Thematic Mapper (TM) spectral data were transformed using
the normalized difference vegetation index (NDVI) transformation
(Rouse, Haas, Schell, & Deering, 1973) and the three tasseled cap trans-
formations (TCgreen, TCbright, TCwet) (Crist & Cicone, 1984; Kauth &
Thomas, 1976) for each image. These four transformations were used
as independent variables when constructing models of the relationship
between ground and remotely sensed data.

Ground datawere obtained for plots established by the Forest Inven-
tory and Analysis (FIA) program of the U.S. Forest Service which con-
ducts the NFI of the USA. The program has established field plot
centers in permanent locations using a sampling design that is regarded
Fig. 1. Study area in northeastern Minnesota, USA.
as producing an equal probability sample (McRoberts, Bechtold,
Patterson, Scott, & Reams, 2005). Each FIA plot consists of four 7.32-m
(24-ft) radius circular subplots that are configured as a central subplot
and three peripheral subplots with centers located at distances of
36.58 m (120 ft) and azimuths of 0°, 120°, and 240° from the center
of the central subplot. Centers of forested, partially forested, or previ-
ously forested plots are estimated using global positioning system
(GPS) receivers, whereas centers of non-forested plots are verified
using aerial imagery and digitization methods.

Data were available for 249 FIA plots measured in both 2002 and
2007. Field crews visually estimate the proportion of each subplot that
satisfies the FIA definition of forest land: minimum area of 0.4 ha
(1.0 ac), minimum crown cover of 10%, minimum crown cover width
of 36.6 m (120 ft), and forest land use. Field crews also observe species
and measure diameter at-breast-height (dbh) (1.37 m, 4.5 ft) and
height for all trees with dbh of at least 12.7 cm (5 in.). Growing stock
volumes are estimated for individual measured trees using statistical
models, aggregated at subplot-level, expressed as volume per unit
area, and considered to be observations without error. For this study,
data for only the central subplot of each plot were used to avoid dealing
with spatial correlation among observations for subplots of the same
plot. Doing so resulted in little loss of information, because the correla-
tion among observations for subplots of the same plot was greater than
0.85. Subplot-level proportion forest and volume data were combined
with the values of the spectral transformations for pixels containing
subplot centers. For future reference, the term plot refers to the central
subplot of each FIA plot cluster.

Two concerns must be addressed when constructing datasets using
the FIA plot data and Landsat imagery. First, because the smaller
168.3-m2 plots may not adequately characterize the larger 900-m2 TM
pixels, observations for the four plots that were not completely forested
or completely non-forestedwere deleted from the analyses. Second, be-
cause FIA field crews classify plots with respect to land use, not land
cover, plotswhose tree cover has been removed are still classified as for-
est if trees are expected to regenerate and forest land use is expected to
continue. Thus, observations of land cover for plots with forest land use
but no measurable volume were considered to be missing at random
and were also deleted from the analyses. These two data issues are
discussed in detail in Section 4.1. Following deletions, land cover obser-
vations for 199 plots remained.
3. Methods

3.1. Inferential assumptions

All analyses were based on three underlying assumptions: (1) a fi-
nite population consisting of N units in the form of square, 900-m2

Landsat pixels, (2) a sample of n population units in the form of pixels
that contain FIA plot centers, and (3) availability of auxiliary data in
the form of the Landsat spectral transformations for all pixels. In the
following sections, the terms population unit and pixel are used
interchangeably.

For areal assessments, the objective is typically to estimate the area
for a class of the response variable. Because the estimate of class area
is simply the product of total area which is usually known and the esti-
mate of the class area proportion, the focus of this studywas estimation
of the proportion, in this case proportion forest which was denoted μ.
Thus, the analytical objective was construction of an approximate 95%
confidence interval for μ̂ expressed as,

μ̂ � 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂ð Þ

q
; ð1Þ

where Vâr μ̂ð Þ is the estimate of the variance of μ̂ .
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3.2. Inference for post-classification estimates of change in forest area

For the post-classification approach to change assessment, the esti-
mator of net deforestation is,

Δμ̂ ¼ μ̂2007−μ̂2002
; ð2Þ

where Δ denotes change, μ denotes proportion forest, and the super-
scripts denote years. The estimator of Var Δμ̂ð Þ is,

Vâr Δμ̂ð Þ ¼ Vâr μ̂2007−μ̂2002
� �

¼ Vâr μ̂2007
� �

−2 � Côv μ̂2007
; μ̂2002

� �
þ Vâr μ̂2002

� �
:

ð3Þ

Methods for estimating the individual components of Eq. (2) vary
depending on the sampling design and the approach to inference. How-
ever, post-classification approaches all require two forest/non-forest
classifications. Thus, the first step in estimating change is to construct
a model of the relationship between forest/non-forest and the spectral
transformations, and the second step is to use the model to construct
forest/non-forest classifications.

3.3. Binomial logistic regression model

The relationship between a dichotomous response variable such as
forest/non-forest, here denoted Y (y = 0 denotes non-forest, y = 1 de-
notes forest), and continuous independent variables, X, is often
expressed in the form,

pi ¼ f Xi;βð Þ; ð4Þ

where i indexes population units, pi is the probability that yi = 1, and β
is a vector of parameters to be estimated (Agresti, 2007). The function,
f(Xi;β), expresses the statistical expectation of Y in terms of X and β
and is often formulated using the logistic function as,

pi ¼ f Xi;βð Þ ¼
exp

XJ

j¼1

β jxij

0
@

1
A

1þ exp
XJ

j¼1

β jxij

0
@

1
A

; ð5Þ

where j = 1, 2,…, J indexes the independent variables, and exp(.) is the
exponential function. Themodel parameters are estimated bymaximiz-
ing ‘, the natural logarithm of the likelihood, L,

‘ ¼ ln Lð Þ ¼
Xn
i¼1

pi
yi 1−pið Þ 1−yið Þ ¼

Xn
i¼1

f Xi;βð Þyi 1− f Xi;βð Þ½ � 1−yið Þ
; ð6Þ

and the covariance matrix for the parameter estimates is estimated as,

V̂β̂ ¼ −D−1 ð7Þ

where the elements of D are djk ¼ ∑
n

i¼1

∂2‘ Xi; β̂
� �

∂β j∂βk
¼ ∑

n

i¼1
p̂i 1−p̂ið Þxijxik

(Agresti, 2007).

3.4. Probability-based inference

Probability-based inference, also characterized as design-based
inference, is based on three assumptions: (1) population units are se-
lected for the sample using a randomization scheme; (2) the probability
of selection for each population unit into the sample is positive and
known; and (3) the value of the response variable for each population
unit is a fixed value as opposed to a random variable. Properties of
probability-based estimators are based on random variation resulting
from the probabilities of selection of population units into the sample,
thus the characterization of these estimators as probability-based
(Hansen, Madow, & Tepping, 1983).

Observations of the categorical forest/non-forest response variable,
Y, for the kth year are of the form,

ŷki ¼ 0
1

if the forest class is observed for the ith population unit
if the non‐forest class is observed for the ith population unit

�
ð8aÞ

and for probability-based inference, predictions are of the form,

ŷki ¼
0 if the non‐forest class is predicted p̂k

i b0:5
� �

for the ith population unit
1 if the forest class is predicted p̂k

i ≥0:5
� �

for the ith population unit
;

8>><
>>: ð8bÞ

where p̂k
i is the predicted probability of forest from Eq. (5). Multiple

probability-based estimators are commonly used including simple ran-
dom sampling, stratified, ratio, and model-assisted difference and re-
gression estimators.

Model-assisted estimators use a model to predict the attribute of
interest but rely on probability samples for validity. Multiple forms
of these estimators with satellite, LiDAR, and InSAR data have been re-
ported recently for forest inventory applications (Gregoire et al., 2011;
McRoberts, 2010, 2011; McRoberts & Walters, 2012; McRoberts,
Gobakken, & Næsset, 2013; McRoberts, Næsset, & Gobakken, 2013;
Næsset et al., 2011; Næsset, Bollandsås, Gobakken, Gregoire, & Ståhl,
2013; Næsset, Gobakken, et al., 2013; Vibrans, McRoberts, Moser, &
Nicoletti, 2013; Sannier, McRoberts, Fichet & Makaga, 2014–this
issue). With model-assisted approaches, an initial estimator of propor-
tion forest, μk, for the kth year is,

μ̂k
initial ¼

1
N

XN
i¼1

ŷki ð9Þ

whereN is the population size. However, systematic classification errors
induce bias into this estimator which, for equal probability samples, can
be estimated as,

^Bias μ̂k
initial

� �
¼ 1

n

Xn
i¼1

ŷki −yki
� �

; ð10Þ

where n is the sample size. One form of the model-assisted regression
estimator (Särndal, Swensson, & Wretman, 1992, Section 6.5) for μk is
defined as the difference between the initial estimator and the expecta-
tion of its bias estimate which, under the assumptions that N is both
large and much larger than n, can be expressed as,

μ̂k ¼ 1
N

XN
i¼1

ŷki −
1
n

Xn
i¼1

ŷki −yki
� �

: ð11Þ

Under the assumptions that N is both large andmuch larger than n, that
the classification errors are independent, and that simple random sam-
pling was used, the variance of μ̂k can be expressed as,

Vâr μ̂k
� �

¼ 1
n n−1ð Þ

Xn
i¼1

εki −εk
� �2

; ð12Þ

where εki ¼ ŷki −yki is the classification error, and εk is the mean of the
errors. When systematic sampling rather than simple random sampling
is used, variances may be overestimated (Särndal et al., 1992, p. 83).

Estimates μ̂2002 and μ̂2007 obtained using Eq. (11) are used
with Eq. (2) to estimate proportion forest area change, and esti-

mates Vâr μ̂2002
� �

and Vâr μ̂2007
� �

obtained using Eq. (12) are used

with Eq. (3) to estimate the variance of the forest change estimate.
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However, Eq. (3) also requires an estimate of Cov μ̂2007
; μ̂2002

� �
.

Under the assumption that classification errors for 2002 and 2007
are independent for different population units, Côv μ̂2007

; μ̂2002
� �

is
calculated using the sample data as,

Côv μ̂2007
; μ̂2002

� �
¼ 1

n n−1ð Þ
Xn
i¼1

ε2007i −ε2007
� �

ε2002i −ε2002
� �

ð13Þ

where ε2007i ¼ ŷ2007i −y2007i and ε2002i ¼ ŷ2002i −y2002i are classification
errors, and ε2002 and ε2007 are the respective means of the errors.

3.5. Model-based inference

The assumptions underlyingmodel-based inference differ consider-
ably from the assumptions underlying themore familiar probability- or
design-based inference. With model-based inference, the observation
for a population unit is a random variable whose value is considered
to be a realization from a distribution of possible values, rather than a
fixed value as is the case for probability-based inference. Further, the
basis for model-based inference is the validity of the model, not the
probabilistic nature of the sample as is the case for probability-based in-
ference. Finally, randomization for model-based inference enters
through the random realizations from the distributions for individual
population units, regardless of how they are selected for the sample,
whereas randomization for probability-based inference enters through
the random selection of population units into the sample.

The assumptions underlying model-based inference produce impor-
tant contrasts with probability-based, model-assisted inference. First,
model-based approaches have the potential to alleviate problems related
to small sample sizes; second, they can produce estimates of uncertainty
for individual population units; and third, lack of a probability sample
does not necessarily inhibit model-based inference. Current approaches
to model-based inference originated in the context of survey sampling
(Brewer, 1963; Mátern, 1986; Royall, 1970) and are used increasingly
for forest inventory applications (Gregoire, 1998; Mandallaz, 2008;
Rennolls, 1982), particularly with remotely sensed data (McRoberts,
2006, 2010, 2011; McRoberts, Gobakken, et al., 2013; McRoberts,
Næsset, et al., 2013; Ståhl et al., 2011).

For model-based inference, the mean and standard deviation of the
distribution of the categorical forest/non-forest response variable, Y,
for the ith population unit for the kth year are denoted μik andσi

k, respec-
tively. The mean for the ith population unit is estimated as,

μ̂k
i ¼ p̂k

i ¼ f Xk
; β̂k

� �
; ð14Þ

from Eq. (5), and σi
k, is estimated as the standard deviation of differ-

ences between observations, yik, and estimates of corresponding
means, μik. Thus, for the kth year, themodel-based estimator of the pop-
ulationmean is based on the set of estimates, μ̂k

i ; i ¼ 1;2;…;N
n o

, of the
probabilities of forest for individual population units and is expressed
as,

μ̂k ¼ 1
N

XN
i¼1

μ̂k
i : ð15Þ

An additional distinction between probability-based and model-
based approachesmerits comment.With probability-based approaches,
apart from adjustment for estimated bias, the population mean is esti-
mated as the proportion of population units predicted to be in the forest
class,whereaswith themodel-based approach, the estimate is calculated
as the mean estimated probability of forest. Although the two ap-
proaches are related and may produce similar estimates, they are not
equivalent.
The variance of the estimate of themodel-based mean for a particu-
lar year can be estimated as,

Vâr μ̂k
� �

¼ 1
N2

XN
i¼1

XN
j¼1

Côv μ̂k
i ; μ̂

k
j

� �
; ð16Þ

where,

Côv μ̂k
i ; μ̂

k
j

� �
¼ Z′k

i V̂β̂kZk
j ; ð17aÞ

V̂β̂k is the covariance matrix for the model parameter estimates, and zkij

¼ ∂ f Xk
i ;β̂

k
� �
∂βk

j
. The variance of the prediction for the ith population unit is

estimated as,

Vâr μ̂k
i

� �
¼ Côv μ̂k

i ; μ̂
k
i

� �
: ð17bÞ

However, Eq. (3) also requires an estimate of Cov μ̂2007
; μ̂2002

� �
which,

because the 2002 and 2007 samples were not independent, cannot be
assumed to be negligible. Analytical methods for estimation of this co-
variance are not readily available.

As an alternative to the analytical approach, a bootstrap approach
was used to estimate variance and covariances. For resampling pur-
poses, the FIA sampling design was considered to be a simple random
sample. Variances and covariances for estimates of μik and μk were esti-
mated using the following standard bootstrap approach (Efron &
Tibshirani, 1994):

(1) the original plotswith observations for both yearswere randomly
sampled with replacement to construct a bootstrap sample with
the same number of observations as the original sample;

(2) the binomial logistic regression model was fit separately to the
2002 and 2007 portions of each bootstrap sample;

(3) the model was used to calculate eμ2002
i; j and eμ2007

i; j where i indexes
population units and j indexes bootstrap samples;

(4) steps (1)–(3) were replicated nboot times.

Following replications, bootstrap means, variances and covariances for
individual population units were estimated as:

eμ2002
i ¼ 1

nboot

Xnboot

j¼1

eμ2002
i; j and eμ2007

i ¼ 1
nboot

Xnboot

j¼1

eμ2007
i; j ; ð18Þ

where the tilde (~) denotes a mean calculated from a bootstrap sample,
i indexes population units, and j indexes bootstrap samples;

Vâr μ̂2002
i

� �
¼ 1

nboot

Xnboot

j¼1

eμ2002
i; j −eμ2002

i

� �2
and

Vâr μ̂2007
i

� �
¼ 1

nboot

Xnboot

j¼1

eμ2007
i; j −eμ2007

i

� �2
:

ð19aÞ

and

Côv μ̂2002
i ; μ̂2007

i

� �
¼ 1

nboot

Xnboot

j¼1

eμ2002
i; j −eμ2002

i

� � eμ2007
i; j −eμ2007

i

� �
: ð19bÞ

Population means and variances were estimated as,

eμ2002
j ¼ 1

N

XN
i¼1

eμ2002
i; j and eμ2007

j ¼ 1
N

XN
i¼1

eμ2007
i; j ; ð20aÞ

eμ2002 ¼ 1
nboot

Xnboot

j¼1

eμ2002
j and eμ2007 ¼ 1

nboot

Xnboot

j¼1

eμ2007
j ; ð20bÞ
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Vâr μ̂2002
� �

¼ 1
nboot

Xnboot

j¼1

eμ2002
j −eμ2002

� �2
;

Vâr μ̂2007
� �

¼ 1
nboot

Xnboot

j¼1

eμ2007
j −eμ2007

� �2
;

ð21aÞ

and

Côv μ̂2002
; μ̂2007

� �
¼ 1

nboot

Xnboot

j¼1

eμ2002
j −eμ2002

� � eμ2007
j −eμ2007

� �
: ð21bÞ

Replications in step (4) continued until all bootstrap estimates
ofmeans, variances, and covariances stabilized. The analytical and boot-
strap estimates of variances for μ̂2002 and μ̂2007 can be compared as a
means of checking the validity of the bootstrap approach.

3.6. Analyses

3.6.1. Model assessment
Themodel was fit to the 2002 and 2007 data separately. All combina-

tions of the four independent variables were evaluated with respect to
accuracy defined as the proportion of plots correctly classified for
probability-based inference and with respect to ‘ ¼ ln Lð Þ from Eq. (6)
for model-based inference. The quality of fit of the binomial logistic re-
gressionmodel to each dataset was assessed using a four-step approach:
(1) all pairs of observations and predictions, (yi, p̂i), were ordered with
respect to p̂i; (2) the ordered pairs were grouped into categories of ap-
proximately equal numbers of pairs; (3) the groupmeans of the observa-
tions and the group means of the predictions were calculated; and (4) a
graph of the groupmeans of observations versus the groupmeans of pre-
dictions was constructed (Hosmer & Lemeshow, 1989). If the model is
correctly specified, the graph of group means of observations versus
group means of model predictions should coincide approximately with
the 1:1 line with intercept 0 and slope 1. McRoberts and Walters
(2012) demonstrate the relationship between accuracy and estimates
of both classification bias and precision. For model-based estimators, as-
sessment of the quality offit of themodel to the data is crucial because no
adjustment for estimated bias is used as for the model-assisted regres-
sion estimator and because lack of fit is indicative of a biased estimator.

3.6.2. Probability-based, model-assisted inference
For each combination of independent variables, the model-assisted

regression estimator was used as described in Section 3.4 to estimate
mean proportion forest for each of 2002 and 2007 and to estimate net
deforestation.Withmodel-assistedmethods, eachplot receives two for-
est/ non-forest categorical predictions, one for 2002 and one for 2007. If
the categorical predictions are different, the plot is assigned to a change
category. However, this categorical approach is not very discriminating.
For example, if p̂2002

i ¼ 0:99 and p̂2007
i ¼ 0:01, then the ith population

unit would be estimated to have changed from forest (yi = 1) to non-
forest (yi = 0); similarly, if p̂2002

i ¼ 0:51 and p̂2007
i ¼ 0:49, the ith pop-

ulation unit would also be estimated to have changed from forest to
non-forest. However, confidence in the change estimate for the first
case would be large, whereas confidence in real change for the second
case would be quite small. Model-based inference as described in
Section 3.5 provides a mechanism for dealing with this issue.

Initial estimates of gross afforestation and gross deforestation may
be calculated as proportions of population units estimated to have
changed from non-forest to forest or forest to non-forest, respectively.
However, reliable probability-based estimates of bias and variance
could not be calculated using probability-based methods because of in-
sufficient numbers of observations of change.

3.6.3. Model-based inference
For each combination of independent variables, estimates of the

2002 and 2007 means for the entire population were calculated using
Eq. (15), and estimates of variances were calculated using both the an-
alytical estimators of Eq. (16) and the bootstrap estimators of Eq. (21a).
The analytical and bootstrap estimates of variances for μ̂2002 and μ̂2007

were compared as a consistency check. Covariances between μ̂2002

and μ̂2007 were estimated using only the bootstrap estimator of
Eq. (21b). Finally, the analytical estimates of the means and the boot-
strap estimators of the variances and covariances were used to con-
struct an approximate 95% confidence interval for the estimate of
change in mean probability of forest and to test if the estimate was sta-
tistically significantly different from zero.

An advantage of themodel-based estimators is that the variance es-
timates calculated for individual population units support construction
of confidence intervals for estimates of gross afforestation and gross de-
forestation. These variance estimates further facilitate discrimination
between the cases that cannot be distinguished using model-assisted
methods as described in Section 3.6.2. A test of the statistical signifi-
cance of the change in estimated probabilities of forest between years
for the ith population unit was conducted using,

ti ¼
μ̂2007
i −μ̂2002

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂2007

i

� �
−2 � Côv μ̂2002

i ; μ̂2007
i

� �þ Vâr μ̂2002
i

� �q ; ð22Þ

where estimates of the means were calculated using the analytical esti-
mator of Eq. (15), and estimates of the variances and covariances were
calculated using the bootstrap estimators of Eqs. (19a, 19b). For values
of tcrit ranging from 0.1 to 3.0, the ith population unit was assigned to
one of three categories of forest change, C:

Ci ¼
deforestation
afforestation
no change

if μ̂2002
i ≥ 0:5; μ̂2007

i b 0:5; and tij j N tcrit
if μ̂2002

i b 0:5; μ̂2007
i ≥ 0:5; and tij j N tcrit

otherwise

:

8><
>:

ð23Þ

For each category of C, the proportions of population units assigned to
the category and themean changes in the estimates of the probabilities
of forest were calculated. In addition, net deforestation was estimated
based only on population units for which |ti| ≥ tcrit.

4. Results and discussion

4.1. Data issues

When observations for response and auxiliary variables are obtained
from different sources, multiple factors add complexity and uncertainty
to the analyses. For this study, observations of response variables
were acquired via measurement of 7.32-m (24-ft) radius ground plots
over 12-month time intervals in years 2002 and 2007,whereas observa-
tions of the auxiliary variables were acquired from satellite sensors for
30-m × 30-m pixels at single dates in each of 2002 and 2007. Thus,
spatial differences between the 168.3-m2 subplots and the 900-m2

pixels mean that in some instances the plot measurements may not ad-
equately characterize entire pixels. For this study, the concern was at
least partially alleviated by deleting the four plots that were not
completely forested or completely non-forested. Doing so also facilitat-
ed use of the binomial logistic regressionmodel which requires categor-
ical classes for observations of the response variable.

Temporal differences are also a factor contributing complexity and
uncertainty to the analyses. Because plot measurement dates could dif-
fer by six months or more from the satellite image dates, some plots
could have been cleared or otherwise greatly disturbed between the
image and measurement dates. If so, spectral signatures corresponding
to forest cover would be associated with plots whose forest cover had
been removed. For this study, data were also available for plots mea-
sured from years 2000 to 2009. To minimize the effects of temporal
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Fig. 2. Groupmeans of 2002 forest/non-forest observations versus groupmeans of logistic
model predictions.
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differences, plots not measured in the same years as the image dates
were deleted from the analyses.

Care must also be exercised to accommodate missing data. The
primary cause of missing data in the satellite imagery was cloud cover.
Because the areas of cloud cover for this study were contiguous and
large, they were simply deleted from the analyses (Fig. 1).

Missing plot observations constitute a more difficult problem. As
noted in the Data section, FIA field crews assess plots with respect to
land use, not land cover. Thus, land use for a plot whose forest cover
has been removed is still classified as forest if trees are expected to re-
generate and forest land use is expected to continue. However, these
plots could vary widely with respect to forest cover, ranging from re-
cently clear cut to large numbers of trees whose diameters barely fail
to satisfy theminimum requirement of 12.7 cm(5 in.). Thus, the prima-
ry concern is that a plot with no forest cover may be associated with
spectral values characteristic of forest land cover and vice versa. For
these plots, three options may be considered: (1) accept the forest use
observation as a proxy for forest land cover and classify theplots as having
forest cover; (2) accept the lack of measurable volume as a proxy for
non-forest land cover and classify the plots as having non-forest
cover; and (3) delete the plots from the analyses with the argument
that the land cover observations are missing. Although none of the op-
tions is particularly appealing, a decision is necessary.

For this study, models using all four independent variables were
constructed for all three options and corresponding classification accu-
racies were estimated. When forest cover was assigned to these plots
and the models based on the augmented datasets were used, classifica-
tion accuracies for 2002 and 2007 for these plots ranged from 0.780 to
0.840, whereas classification accuracies for plots known to have forest
cover ranged from 0.978 to 1.000. When non-forest cover was assigned
and the corresponding models were used, classification accuracies for
these plots were 0.580–0.660, whereas classification accuracies for
plots known to have non-forest cover were 0.817 for both 2002 and
2007. The large differences in the classification accuracies suggest that
some of these plots with missing land cover observations have non-
forest cover and some have forest cover. However, given the proxy in-
formation available, there is no way to separate them into the correct
classes subsequent to field measurement. Attempts to force them all
into the forest cover class or all into the non-forest cover class produced
substantially reduced accuracies. Therefore, the observations for these
plots were characterized asmissing observations and the plots were de-
leted from the analyses.

Considerable caution must be exercised when deleting plots; other-
wise, the validity of probability-based inferences may be compromised
as a result of the introduction of non-randomness into the sample. For
this study, additional analyses were conducted to discern meaningful
patterns for other attributes of the deleted plots such as their spatial dis-
tribution. Because no such patterns were found, the deleted plot obser-
vations were characterized as missing at random, thus preserving the
randomness of the sample (Allison, 2001; Rubin & Little, 2002).

4.2. Model assessment

Graphs of group means of observations versus group means of
model predictionswere similar for 2002 and 2007 and indicated no sys-
tematic lack of fit of the model to the data (Fig. 2). Values of ‘ ¼ ln Lð Þ
fromEq. (6)were uniformly smallerwhen theNDVI and TCgreen spectral
transformations were included in the set of independent variables.
Accuracies for forest/non-forest classifications were slightly less than
0.9 and uniformly greater when the NDVI and TCgreen spectral transfor-
mationswere included in the set of independent variables. Accuracies in
this range are comparable to those obtained for the study area using
similar datasets and other classification methods (Finley, Banerjee, &
McRoberts, 2008; Haapanen, Ek, Bauer, & Finley, 2004; McRoberts,
2006). However, because the same data were used for estimating the
model parameters as for assessing accuracy, these results may be
somewhat optimistic. Nevertheless, for another study (McRoberts &
Walters, 2012) these same data were augmented with data for other
years, accuracy was assessed using independent datasets, and similar
accuracies were obtained. Overall, for both years and for both ‘ ¼ ln
Lð Þ and accuracy, the combination of independent variables that includ-
ed all four spectral transformations produced as good or better results
than other combinations and is the only combination that is further
considered.

4.3. Model-assisted inference

For themodel-assisted regression estimator, estimates of proportion
forestwere μ̂2002 ¼ 0:6347withSE μ̂2002

� �
¼ 0:0248and μ̂2007 ¼ 0:6294

withSE μ̂2007
� �

¼ 0:0239, and the respective bias estimateswere 0.0615

and 0.0410. The estimate of net deforestation was Δμ̂ ¼ −0:0053 with
SE Δμ̂ð Þ ¼ 0:0229. An approximate 95% confidence interval for the esti-
mate of proportion change in forest area was (−0.0511, 0.0405)
which, because it included zero, indicated that the estimatewas not sta-
tistically significantly different from zero.

4.4. Model-based inference

4.4.1. Population analyses
For the model-based estimator, the analytical estimates of mean

probability of forest were μ̂2002 ¼ 0:6369 and μ̂2007 ¼ 0:6294with boot-

strap standard errors of SE μ̂2002
� �

¼ 0:0226 and SE μ̂2007
� �

¼ 0:0222.

The bootstrap and analytical standard errors for μ̂2002 and μ̂2007 devi-
ated by less than 0.0022 in absolute value. The analytical estimate
of change in mean probability of forest between 2002 and 2007
was Δμ̂ ¼ −0:0075 with bootstrap standard error of SE Δμ̂ð Þ ¼ 0:015
7. An approximate 95% confidence interval was (−0.0389, 0.0239)
which, because it included zero, indicated that the estimate was
not statistically significantly different from zero.

4.4.2. Population unit analyses
Population units for which the change in the 2002 and 2007 esti-

mates of the probabilities of forest was statistically significant different
from zero were assigned to one of two classes: (1) if the 2002 estimate
was less than 0.5 and the 2007 estimatewas greater than or equal to 0.5,
the unit was assigned to the gross afforestation class, and (2) if the 2002
estimatewas greater than or equal to 0.5 and the 2007 estimatewas less
than 0.5, the unit was assigned to the gross deforestation class. The

image of Fig.�2


Table 1
Model-based change estimates based on population unit-level analyses.

tcrit Afforestation Deforestation Net deforestation

Proportiona Mean change in estimates
of probabilities of forestb

Proportiona Mean change in estimates
of probabilities of forestb

Proportiona,c Mean absolute value of change in
estimates of probabilities of forestb

0.10 0.0447 0.4642 0.0705 −0.5503 0.0258 0.5169
0.50 0.0441 0.4691 0.0700 −0.5541 0.0258 0.5212
1.00 0.0425 0.4825 0.0683 −0.5644 0.0258 0.5330
1.50 0.0398 0.5012 0.0658 −0.5790 0.0259 0.5497
2.00 0.0361 0.5234 0.0623 −0.5968 0.0262 0.5699
2.50 0.0316 0.5477 0.0580 −0.6173 0.0264 0.5928
3.00 0.0266 0.5732 0.0528 −0.6402 0.0262 0.6177

a Proportion of population units for which change was statistically significant different from zero.
b Mean change in estimated probabilities of forest for units whose changes in estimates are statistically significant different from zero.
c These proportions represent net loss of forest area.
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analyses focused on estimating the proportion of population units in
each class. In addition, the mean change in the estimated probabilities
of forest was also calculated for each class.

Depending on the value of tcrit, the proportion of population units
assigned to gross afforestation ranged from 0.0266 to 0.0447, and the
proportion of population units assigned to gross deforestation ranged
from 0.0528 to 0.0705 (Table 1). Proportions of population units
assigned to both classes decreased as tcrit increasedwhich is as expected
because as tcrit increased, estimates of change for fewer population units
were declared statistically significantly different from zero. However,
mean change in estimated probabilities of forest increased in absolute
value for the afforestation and deforestation classes as tcrit increased.
This result is also as expected because as tcrit increased,more population
units with smaller absolute values of change in estimated probabilities
of forest were declared statistically non-significantly different from
zero, leaving fewer population units but with greater absolute values
of change in estimated probabilities of forest. Finally, the ranges of pro-
portions for gross afforestation and gross deforestation were all small,
regardless of the values of tcrit. This result can be attributed to the find-
ing that few population units had changes in estimates of probability
of forest that were only marginally statistically significantly from zero,
i.e., if a change in the estimated probabilities of forest for a population
unit was statistically significantly different from zero, the statistical sig-
nificance was generally large.

Estimates of net deforestation, calculated as differences between
proportions for the gross afforestation and proportions for gross defor-
estation and representing loss of forest cover ranged from 0.0258 to
0.0264. These estimateswere remarkably similar despite larger changes
in estimates of gross afforestation and gross deforestation. Further, the
estimates were within the confidence intervals for both the model-
assisted and model-based estimates of net deforestation.
4.5. Effects of measuring the same plots in both years

For the model-assisted regression estimator, the estimate of the
covariance between the 2002 and 2007 population estimates was Cô
v μ̂2002

; μ̂2007
� �

¼ 0:0009 , and for the model-based estimators, the
bootstrap estimate of the covariance was Côv μ̂2002

; μ̂2007
� �

¼ 0:0004.
Of importance, for both approaches to inference, covariance estimates
were positivewith the beneficial effect of reducingVâr Δμ̂ð Þ as calculated
using Eq. (3). These results can be attributed to measurement of the
same set of plots in both 2002 and 2007. If the covariances in Eq. (3)
were set to zero, as would be expected and justified for measurements
of different sets of plots in 2002 and 2007, the model-assisted standard
error estimates would have been increased by a factor of approximately
1.5 and the model-based standard error estimates would have been in-
creased by a factor of approximately 2.0.
5. Conclusions

Four conclusions may be drawn from the study. First, the binomial
logistic regression model produced sufficiently accurate predictions to
serve as the basis for both model-assisted andmodel-based approaches
to inference for estimating forest area and change in forest area.
Although other model forms can be used with both the model-
assisted regression and model-based estimators, the binomial logistic
regressionmodel is particularly useful for categorical response variables
with two classes. Second, post-classification approaches to estimating
change in forest area are appropriate, if not the only alternative, when
observations of change are rare. The analyses illustrated methods for
constructing confidence intervals for post-classification estimates of
change in forest area. Third, model-based inference is a useful alterna-
tive to probability-based inference when probability accuracy assess-
ment samples are not available and/or when estimates of uncertainty
for all population units are required. Fourth, with the model-based ap-
proach, and using the bootstrap approach for estimating variances, esti-
mates of gross afforestation, gross deforestation, and net deforestation
were obtained based only on population units for which change in esti-
mates of probabilities of forest was significantly different from zero. The
appeal of this approach is that it discriminates between population units
whose categorical predictions indicate forest/non-forest change but
whose change in estimates of the probabilities of forest is small, and
units whose categorical predictions indicate change and whose change
in estimates of the probabilities of forest is statistically significantly dif-
ferent from zero.
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