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For remote and inaccessible forest regions, lack of sufficient or possibly any sample data inhibits estimation and
construction of confidence intervals for population parameters using familiar probability- or design-based infer-
ential methods. Although maps based on remotely sensed data may provide information on the distribution of
resources, map-based estimates are subject to classification and prediction error, and map accuracy measures
do not directly inform the uncertainty of the estimates. Model-based inference does not require probability sam-
ples and when used with synthetic estimation can circumvent small or no-sample difficulties associated with
probability-based inference. The study focused on estimating proportion forest area using Landsat data for a
study area in Minnesota, USA, and aboveground biomass using airborne laser scanning data for a study area in
Hedmark County, Norway. For both study areas, model-based inference was used to estimate the components
necessary for constructing confidence intervals for population means for non-sampled areas. The estimates
were compared to simple random sampling, model-assisted, and model-based estimates that would have been
obtained if the areas had been sampled. All estimates were within two simple random sampling standard errors
of each other, thereby illustrating the utility of model-based inference for non-sampled areas.
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1. Introduction

1.1. Background and motivation

Technical objectives for sample surveys, of which a forest inventory
is an example, include construction of inferences in the form of
confidence intervals for population parameters. The Oxford English
Dictionary defines the term infer as “to accept from evidence or pre-
mises” (Simpson & Weiner, 1989). For most scientific problems, evi-
dence in the form of complete enumerations of populations of interest
would be prohibitively expensive, if not physically impossible. Thus, sta-
tistical procedures have been developed to infer values for population
parameters from estimates based on observations from a sample of
population units. In this context, inference requires expression of the
relationship between the population parameter, μ, and its estimate, μ̂ ,
in probabilistic terms (Dawid, 1983). For situations in which the intent
is estimation, as opposed to hypothesis testing, these probabilistic
expressions often take the form of 1–α confidence intervals,

μ̂ � t1−α �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂ð Þ

q
; ð1Þ

where 1–α denotes the probability that confidence intervals construct-
ed using data for all possible samples will include μ. Thus, the inference
problem focuses on μ̂ and SE μ̂ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂ð Þ

p
:

Two approaches to inference are relevant, the familiar probability-
or design-based inference and model-based inference. Probability-
based inference requires a probability sample and for sufficiently large
samples produces estimates with acceptable precision. However,
when only small samples can be acquired, particularly for highly
variable populations, probability-based inference may fail to produce
acceptably precise results. In addition,when no ground sampling is pos-
sible because the area of interest is remote or inaccessible and other in-
formation such as fine resolution remotely sensed data is lacking,
probability-based inference is not possible. Examples include some
tropical forests to be surveyed under the auspices of programs such as
the United Nations initiative on Reducing Emissions due to Deforesta-
tion and Forest Degradation in developing countries and large, remote
boreal regions such as interior Alaska in the United States of America
(USA).

A general consensus is that inference for remote and inaccessible re-
gions must rely on remotely sensed data, possibly in the form of maps.
Of importance, however,maps only rarely accurately depict populations
and provide no direct estimates of population parameters that are the
primary survey objectives. Further, even if map unit predictions are
aggregated to produce an estimate, map accuracy indices provide no
direct information regarding the bias of the estimator resulting from
classification and prediction errors or the precision of the estimate
(McRoberts, 2011) and, therefore, cannot directly contribute to con-
structing inferences.
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An alternative form of inference, characterized as model-based in-
ference, has the potential to circumvent at least some of the difficulties
associated with survey inference for remote and inaccessible regions.
The validity of model-based inference is based on correctmodel specifi-
cation rather than probability samples. Therefore, when combined with
synthetic estimation which uses information external to the area of
interest (Särndal et al., 1992), model-based inference can be used for
remote and inaccessible regions forwhich probability samples are logis-
tically difficult or financially prohibitive.

1.2. Objectives

The primary objective was to compare estimates obtained using
model-based inference for a study area lacking sample data to estimates
obtained using both model-based and model-assisted inference for the
same study area when sample data were available. For a study area in
Minnesota, USA, Landsat datawere used to construct inferences for pro-
portion forest area, and for a study area in Hedmark County, Norway,
airborne laser scanning (ALS) data were used to estimate mean above-
ground biomass per unit area (AGB).

2. Data

2.1. Minnesota, USA, study area

The study area was defined by the portion of the row 27, path 27,
Landsat scene in northern Minnesota, USA, that was cloud-free for
16 July 2002 (Fig. 1). The 30-m × 30-m image pixels served as pop-
ulation units. Four smaller, 700-km2 areas of interest (AOI) within
Fig. 1. Minnesota study area with four 700-km2 areas of interest and inventory plots.
the study area were also selected. Spectral data in the form of the
normalized difference vegetation index (NDVI) transformation
(Rouse, Haas, Schell, & Deering, 1973) and the three tasseled cap
(TC) transformations (brightness, greenness, and wetness) (Crist
& Cicone, 1984; Kauth & Thomas, 1976) were used as auxiliary
information.

Ground data were obtained for plots established by the Forest
Inventory and Analysis (FIA) program of the U.S. Forest Service which
conducts the national forest inventory (NFI) of the USA. The FIA pro-
gram has established field plot centers in permanent locations using a
sampling design that is regarded as producing an equal probability sam-
ple. Each FIA plot consists of four 7.32-m (24-ft) radius circular subplots
that are configured as a central subplot and three peripheral subplots
with centers located at distances of 36.58 m (120 ft) and azimuths of
0o, 120o, and 240o from the center of the central subplot (McRoberts,
Bechtold, Patterson, Scott, & Reams, 2005; McRoberts, Hansen, &
Smith, 2010). In general, centers of forested, partially forested, or previ-
ously forested plots are determined using global positioning system
(GPS) receivers with accuracies of 10 m or greater, and centers of
non-forested plots are verified using aerial imagery and digitization
methods. Field crews visually estimate the proportion of each subplot
that satisfies the FIA definition of forest land: minimum area of 0.4 ha
(1.0 ac), minimum crown cover of 10%, minimum crown cover width
of 36.6 m (120 ft), and forest land use. Subplot-level proportion forest
was combinedwith the values of the spectral transformations for pixels
containing subplot centers.

Because the smaller 168.3-m2 subplots may not adequately charac-
terize the larger 900-m2 TM pixels, subplots whose observations were
not completely forested or completely non-forested were deleted and
assumed to be missing at random. In addition, to avoid issues related
to spatial correlation among observations of subplots of the same plot,
data for only the central subplot of each plot were used for this study.
Subsequent to deletions, data for 168 plots measured in 2002 were
available for the study. For future reference, the term plot refers to the
central subplot of each FIA plot cluster.
2.2. Hedmark, Norway, study area

The study area was in the municipalities of Åmot and Stor-Elvdal in
Hedmark County, Norway (Fig. 2). Four smaller, 100-km2 AOIs within
the study area were selected. The entire study area was tessellated
into square 250-m2 cells that served as population units.

ALS data were acquired between 15 July 2006 and 12 September
2006 with average density of 0.7 pulses/m2. For each plot and popula-
tion unit, height distributions were estimated for first echoes with
heights greater than 2 m, and two sets of ALS metrics were calculated
(Gobakken & Næsset, 2008). The first set of metrics consisted of heights
corresponding to the 10th, 20th, …,100th percentiles of the distribu-
tions which were denoted h10, h20, …, h100, respectively. The second
set of metrics consisted of canopy densities calculated as the propor-
tions of the same echoes with heights greater than 0%, 10%, …, 90% of
the range between 2m above the ground and the 95th percentile height
and were denoted d0, d10, …,d90, respectively.

Fieldmeasurementswere obtained for 145 circular 250-m2Norwegian
NFI field plots measured between 2005 and 2007. On each plot, all trees
with diameters at-breast-height (dbh, 1.3 m) of at least 5 cm were
callipered. Heights were measured on an average of 10 sample trees
per plot selected with probability proportional to stem basal area, and
heights were predicted using height-dbh models for trees whose
heights were not measured. AGB was estimated at the plot-level using
models, and any model prediction errors were ignored. Differential
Global Navigation Satellite Systems (GPS and the Russian GLONASS)
were used to determine the positions of the centers of plots with accu-
racies on the order of a few cm. Gobakken et al. (2012) describe this
dataset in greater detail.

image of Fig.�1


Fig. 2. Hedmark study area with four 100-km2 areas of interest and inventory plots.
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3. Methods

3.1. Framework

All analyses were based on three underlying assumptions: (1) a fi-
nite population, U, consisting of N units in the form of square 900-m2

Landsat pixels for the Minnesota study area or square 250-m2 grid
cells for the Hedmark study area, (2) a sample, S, of size n of population
units in the form of pixels or grid cells that contain plot centers, and
(3) availability of auxiliary data in the form of Landsat spectral variables
for all pixels or ALS height and density metrics for all grid cells. In the
following sections, the term population unit is used synonymously
with the terms pixel and grid cell.

For both the Minnesota and Hedmark County study areas, the four
smaller AOIs, individually and in aggregate, were used to simulate inac-
cessible areas for which sampling was not possible. For each of these
AOIs and combinations of them, model-based inference based on a
model constructed using only data external to the aggregation of the
four AOIs was used to estimate means and variances which could then
be used to construct confidence intervals. For comparison purposes,
model-based estimates based on the model constructed using data for
the entire study areaswere calculated aswere probability-based simple
random sampling andmodel-assisted estimates that used the samedata
and model. Probability-based approaches are described first, because
they are more familiar and provide a basis for comparison with the
less familiar model-based approaches.
3.2. Probability-based inference

Hansen, Madow, and Tepping (1983) apparently coined the term
probability-based as an alternative to the more familiar term design-
based. Because the basis for inference is not just a design for sampling,
but rather a design that features a randomization scheme and positive
probabilities of selection for all population units, the term probability-
based is considered by some to better characterize the basis for
inference.

3.2.1. Assumptions
Probability-based inference is based on three assumptions: (1) pop-

ulation units are selected for the sample using a randomization scheme;
(2) the probability of selection of each population unit into the sample is
positive and known; and (3) the value of the response variable for each
population unit is a constant value as opposed to a random variable.
Properties of probability-based estimators are based on random varia-
tion resulting from the probabilities of selection of population units
into the sample.

3.2.2. Estimators
The simplest and most familiar probability-based estimators are the

simple random sampling (SRS) estimators. Estimators for the population
mean rely only on the sample data and are expressed as,

μ̂ ¼ 1
n

X
i∈S

yi ð2Þ

and

Vâr μ̂ð Þ ¼ 1
n n−1ð Þ

X
i∈S

yi−μ̂ð Þ2; ð3Þ

where the notation i∈ S indicates that the ith population unit is included
in the sample, S, and yi is the corresponding observation of the response
variable. Because of the small sampling intensity, finite population
correction factors were ignored.

With probability-based model-assisted approaches, a model of the
relationship between the response variable, Y, and auxiliary variables,
X, is formulated as,

y ¼ f X;βð Þ þ ε; ð4Þ

image of Fig.�2
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where f(X;β) is themodel expression of the relationship betweenY and
X, β is a set of parameters to be estimated, and ε is a random residual
term with mean zero. An initial estimate of the population mean, μ, is
calculated as,

μ̂ initial ¼
1
N

X
i∈U

ŷi; ð5Þ

where ŷi is a model prediction obtained using Eq. (4) with the parame-
ter estimates. However, systematic classification or prediction errors
may induce bias into this estimator which, for equal probability
samples, can be estimated as,

^Bias μ̂ initialð Þ ¼ 1
n

X
i∈S

ŷi−yið Þ: ð6Þ

Themodel-assisted regression estimator (Särndal et al., 1992, Section 6.5)
is defined as the difference between the initial estimator and the estima-
tor of its bias and is expressed as,

μ̂ ¼ 1
N

X
i∈U

ŷi−
1
n

X
i∈S

ŷi−yið Þ: ð7Þ

Under the assumptions that N is both large and much larger than n,
the variance estimator can be approximated as,

Vâr μ̂ð Þ ¼ 1
n n−1ð Þ

X
i∈S

εi−εð Þ2; ð8Þ

where εi ¼ ŷi−yi is the classification or prediction error, and ε is the
mean of the errors. Finite population correction factors were again ig-
nored based on the small sampling intensity. When systematic sam-
pling rather than simple random sampling is used, variances may be
overestimated (Särndal et al., 1992, p. 83). Model-assisted estimators
have become popular for use with remotely sensed data, particularly
ALS data (Andersen, Reutebuch, McGaughey, d'Oliveira, & Keller,
2014; d'Oliveira, Reutebuch, McGaughey, & Andersen, 2012; Gregoire
et al., 2011; McRoberts, Næsset, & Gobakken, 2013a, 2013b; Næsset,
Bollandsås, Gobakken, Gregoire, & Ståhl, 2013; Næsset, Gobakken,
Bollandsås, Gregoire, Nelson, & Ståhl, 2013; Næsset et al., 2011; Strunk,
Reutebuch, Andersen, Gould, & McGaughey, 2012).

3.3. Model-based inference

3.3.1. Assumptions
The assumptions underlyingmodel-based inference differ consider-

ably from the assumptions underlying probability-based inference.
First, the observation for a population unit is a random variable whose
value is considered a realization from a distribution of possible values,
rather than a constant as is the case for probability-based inference.
The conceptual framework with a distribution of possible values for
each unit in a finite population is characterized as a superpopulation,
and model-based inference is occasionally characterized as super-
population inference (Graubard & Korn, 2002). Second, the basis for
model-based inference is correct specification of the model, not the
probabilistic nature of the sample as is the case for probability-based
inference. In fact, purposive, non-probability samples may produce
entirely valid model-based inferences. For example, the sample may
be selected tomaximize the precision of themodel parameter estimates
or the precision of model predictions. However, a probability sample
provides modest assurance that the ranges of values of independent
variables in the sample data are similar to the ranges in the population
to which the model is applied (Särndal, 1978). Randomization for
model-based inference enters through the random realizations from
the distributions for population units, whereas for probability-based in-
ference randomization enters through the random selection of popula-
tion units into the sample.
Current approaches to model-based inference originated in the con-
text of survey sampling and can be attributed toMatérn (1986), Brewer
(1963), and Royall (1970). Given the origins of model-based inference
in survey sampling, it is not surprising that forestry applications have
often been in the context of forest inventory (Andersen et al., 2014;
Gregoire, 1998; Kangas &Maltamo, 2006; Mandallaz, 2008; McRoberts,
2006, 2010; McRoberts et al., 2013a, 2013b; Rennolls, 1982; Ståhl et al.,
2011).

3.3.2. Estimators
For model-based inference, the mean and standard deviation of the

distribution of Y for the ith population unit are denoted μi andσi, respec-
tively. Themean is estimated as μ̂ i ¼ f Xi; β̂

� �
where f(.) is from Eq. (4).

Of importance, although the same model is used to calculate the
estimate for the ith population unit for both model-assisted and
model-based approaches, for the latter approach the estimate is for
the mean of the distribution for that unit, not the observed value;
hence the notation μ̂ i rather thanŷi as is used formodel-based inference.
The standard deviation, σi, is estimated as the residual standard devia-
tion obtained from deviations between observations andmodel predic-
tions of the mean for all population units in the sample with the same
values of the auxiliary variables.

The model-based estimator of the population mean is based on the
set of estimates, μ̂ i; i ¼ 1;2;…;Nf g, of the means for individual popula-
tion units and is expressed as,

μ̂ ¼ 1
N

X
i∈U

μ̂ i; ð9Þ

with variance estimator,

Vâr μ̂ð Þ ¼ 1
N2

XN

i∈U

XN

j∈U

Côv μ̂ i; μ̂ j

� �
: ð10Þ

The covariance terms in Eq. (10) can be approximated using a first-
order Taylor series as,

Côv μ̂ i; μ̂ j

� �
¼ Z0iV̂β̂Zj; ð11Þ

wherezik ¼ ∂ f Xi ;β̂ð Þ
∂βk

andV̂β̂ is the covariancematrix for themodel param-
eter estimates.

The primary advantages of model-based inference are two-fold.
First, inference is based on correct model specification, not the nature
of the sample or sample size. Therefore, inference is possible for study
areaswith non-probability samples, small samples, and evenno sample.
For the latter two cases, the model is developed using data either par-
tially or completely external to the study area, a practice characterized
as synthetic estimation (Särndal et al., 1992, p. 399). Second, uncertainty
can be estimated for any population unit, whereas with probability-
based inference errors are known only for population units in the sam-
ple. However, as discussed in subsequent sections, bias must be
assessed in a differentmanner, and variance estimation can be complex
and computationally intensive.

3.3.3. Diagnostics
An important feature ofmodel-based inference is that if themodel is

correctly specified, the population estimators are unbiased (Lohr, 1999),
but if themodel is misspecified, the adverse effects on inferencemay be
substantial (Hansen et al., 1983; Royall & Herson, 1973; Särndal et al.,
1992, p 411). With model-based inference, differences between obser-
vations and model predictions are not prediction errors as is the case
for model-assisted inference, but rather differences are simply random
deviations between particular realizations and the means of the distri-
butions for population units. Thus, whereas bias is defined in terms of
prediction errors for model-assisted inference, it is defined in terms of
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model lack of fit or systematic mischaracterization of the means for
individual population units for model-based inference. An important
consequence is that lack of fit must be more carefully assessed for
model-based inference, because there is no bias correction term as is
the case for model-assisted inference.

An obvious visual diagnostic for assessingmodel lack of fit is a graph
of observations versus predictions. Lack of fit is indicated if the points on
the graph fail to lie along the 1:1 linewith intercept of 0 and slope of 1. If
large numbers of observations are available for each combination of
values of the independent variables, lack of fit can be readily assessed
in a statistically rigorous manner by comparing uncertainty due to
lack of fit and uncertainty due to residual variation (Draper & Smith,
1981, Section 1.5). For large sample sizes, these two uncertainties can
be distinguished, but for small samples with only a single observation
for each set of values of independent variables, this distinction cannot
be made.

For linear models, the covariance estimator of Eq. (11) is exact, but
for nonlinear models it is only a first-order Taylor series approximation
as is the model parameter covariance matrix, V̂β̂ . Depending on the
model and data, one or both of these approximations may be poor
(Bates & Watts, 1988, Fig. 6.18).

4. Analyses

4.1. Models

For the Minnesota study area, the relationship between the binary
forest/non-forest observations (y = 0 denotes non-forest; y = 1 de-
notes forest) and the Landsat transformations was represented using a
binomial logistic regression model of the form,

pi ¼
exp β0 þ

XJ

j¼1

β jxij

0
@

1
A

1þ exp β0 þ
XJ

j¼1

β jxij

0
@

1
A

þ εi; ð12Þ

where i indexes population units, pi denotes the probability that yi = 1,
xij is the value of the jth Landsat transformation, theβs are parameters to
be estimated, and εi is a residual term. Maximum likelihood methods
were used to estimate the model parameters (Agresti, 2007;
McRoberts & Walters, 2012).

For the Hedmark study area, a nonlinear logistic regression model
was used to describe the relationship between AGB and the associated
ALS metrics. The model has the mathematical form,

yi ¼ f Xi;βð Þ ¼ α

1þ exp β0 þ
XJ

j¼1

β jxij

0
@

1
A

þ εi; ; ð13Þ

where i indexes population units, xij is the jth ALS metric, α and the βs
are parameters to be estimated, and εi is a residual term. For future
reference, themodel expressed by Eq. (13) is designated the asymptotic
logistic regression model to distinguish it from the binomial logistic re-
gression model described by Eq. (12). Model parameters were estimat-
ed using nonlinear least squares techniques. Variables selected for the
model are the same as reported by McRoberts et al. (2013a).

For both study areas, the models were fit twice, once using data for
the entire study area and once using only data external to the aggrega-
tion of the four AOIs.

4.2. Model assessment

The models and their parameter estimates were assessed using four
techniques. First, the quality of fit of themodels to the datawas assessed
by graphing observations versus predictions. In addition, theprediction-
observations pairs were ordered by the value of the prediction and ag-
gregated into groups of size 10. The mean of the observations and the
mean of the predictions were calculated for each group, and the obser-
vationmeans were graphed against the predictionmeans. If themodels
are correctly specified, both graphs should feature points that lie along a
linewith intercept 0 and slope 1. Second, mean deviations between plot
observations andmodel predictionswere calculated over all plots in the
study areas and over all plots in the aggregations of the AOIs.

Third, the effects of curvature in themodel prediction surface on the
quality of the Taylor series variance approximations were assessed
using themeasures proposed by Bates andWatts (1988). A comprehen-
sive discussion of nonlinear model curvature is beyond the scope of this
study, but is available in both Bates and Watts (1988) and Ratkowsky
(1983). The salient issues are that Taylor series variance approximations
assume that the surface defined as the model predictions versus model
parameter values is a multi-dimensional plane in the vicinity of the
parameter estimates and that the predictions change linearly with
changes in the parameter values. Deviations from these linearity
assumptions cause variance estimates and confidence regions based
on Taylor series approximations to deviate from the true estimates
and regions. Bates andWatts (1988) proposed twomeasures of surface
curvature to assess the statistical significance of deviations from linear-
ity; if neither measure is statistically significant, then the Taylor series
approximations may be considered adequate. Although both
Ratkowsky (1983, Section 4.3) and Haines, Brien, and Clark (2004)
suggest that the effects of curvature are not severe for logistic models,
curvature measures were calculated nevertheless because the models
used for this study have more parameters than the models evaluated
previously. Specifically, curvature measures were calculated for the as-
ymptotic logistic regression model which was fit using nonlinear least
squares techniques, but not for the binomial logistic model which was
fit with more general maximum likelihood techniques and for which
curvature assessment techniques are not readily available.

Fourth, as a further diagnostic, standard errors obtained using the
Taylor series variance approximations were compared to standard er-
rors obtained using a Monte Carlo bootstrap analysis (Efron &
Tibshirani, 1994; McRoberts & Westfall, 2014). With this approach,
the data are resampled with replacement until the original sample
size is reached; the model parameters are estimated by fitting the
model to the resampled data; the model is applied to estimate the
population mean; and the procedure is replicated until the mean of
the estimated bootstrapmeans and the variance over replications stabi-
lize. Of importance, the bootstrap resampling must mimic the original
sampling scheme. For the aggregations of the four AOIs for each study
area, standard error estimates obtained using Taylor series approxima-
tions expressed by Eqs. (10) and (11) were compared to the bootstrap
variance estimates.

4.3. Variance estimation

A disadvantage of model-based estimators is that the parametric
variance estimators of Eqs. (10) and (11) require calculation of deriva-
tives and considerable computational intensity as a result of the double
summation, particularly for large study areas. For example, in aggregate,
the four Minnesota AOIs consist of more than 1.5 x 106 population
units, which means that the number of covariance calculations necessary
for Eq. (10) is on the order of 1012. However, Eq. (10) is just a two-
dimensional mean over all units in the population, and Vâr μ̂ð Þ can be
approximated by sampling from the population. McRoberts (2010),
McRoberts et al. (2013b) estimated Var μ̂ð Þ using only the population
units located at the intersections of an equally-spaced, two-dimensional,
perpendicular grid superimposed on the study area, and reported that
the detrimental effects were negligible for grid widths as great as 10
population units, although the maximum acceptable grid width will
depend on the population size. For this study, instead of using a grid
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superimposed on the AOIs, Var μ̂ð Þ was estimated using only every mth

population unit from the original ordering of the population units in the
datasets where m = 1, 2, 10, 25, 50, and 100. This approach decreases
computational intensity by a factor of m2.
Fig. 4.Model accuracy for Hedmark study area.
4.4. Comparisons

The models constructed using data for the entire study areas were
used to calculate predictions for all population units with centers in
the four smaller AOIs. The model-assisted means, biases, and variances
were then estimated as per Eqs. (6), (7), and (8) using only data for
plots whose centers were in the AOIs. The same model served as the
basis for estimating the model-based means and variances using
Eqs. (9) and (10). The resulting model-assisted and model-based esti-
mates are the estimates that would have been obtained if sample data
for the AOIs were available. In addition, the models constructed using
data for only the portions of the study area external to the aggregation
of the four AOIswere also used to calculate predictions for all population
units with centers in the AOIs, and the corresponding model-based
means and variances were estimated using Eqs. (9) and (10). The latter
estimates are the estimates that would have been obtained if sample
data for the entire study area were not available. Primary interest is in
comparisons of the model-based estimates obtained using only data
external to the AOIs and both the model-based and the model-
assisted estimates that used data for the entire study areas.
5. Results and discussion

5.1. Model assessment

Graphs of response variable observations versus corresponding
model predictions indicated no systematic lack of fit (Figs. 3, 4). For
the entire Minnesota study area, the mean deviation between plot pro-
portion forest observations and model predictions was −0.0003,
representing less than 0.1% of the plot-based mean. For the entire
Hedmark study area, the mean deviation was −2.7681 Mg/ha,
representing less than 4% of the plot-based mean. The combination of
the graphs and the relatively small meandeviations suggest littlemean-
ingful model lack of fit.
5.2. Estimates of the population mean

Comparisons of the model-based estimates, μ̂MB−Ext, based on the
model constructed using only data external to the AOIs to estimates
based on data for entire study area were of primary interest.
Fig. 3.Model accuracy for Minnesota study area.
For both study areas, the μ̂MB−Ext estimates tended to be smaller than
the μ̂MB−All estimates obtained using the model constructed using data
for the entire study area (Tables 1, 2). This result was attributed to slight
differences in the model parameter estimates which, in turn, were at-
tributed to slightly greater values of the response variable for the plots
in the aggregation of the AOIs relative to the plots throughout the rest
of the study area. In particular, proportion forest area for plots in the ag-
gregation of the Minnesota AOIs was larger than the mean for all the
plots by slightly more than 0.02, andmean AGB for plots in the aggrega-
tion of the Hedmark AOIs was larger than the mean for all plots by
32.70 Mg/ha. However, despite the systematic trends and the rather
large differences in the AGB plot means, the differences between the
μ̂MB−Ext estimates and the other estimates were seldom statistically sig-
nificant. For theMinnesota study area, the μ̂MB−Ext estimates for all AOIs
and their aggregations were within 0.7 model-based SEs of the μ̂MB−All
estimates and within 1.2 SRS SEs of the μ̂SRS estimates. With only one
exception the μ̂MB−Ext estimates were within 1.4 model-assisted SEs of
the μ̂MA estimates (Table 1). For the Hedmark study area, the μ̂MB−Ext
estimates for all AOIs and their aggregations were within 1.3 model-
based SEs of the μ̂MB−All estimates and within 1.2 SRS SEs of the μ̂SRS
estimates. With only one minor exception, the μ̂MB−Ext estimates were
within 2.0 model-assisted SEs of the μ̂MA model-assisted estimates
(Table 2). Finally, these comparisons do not consider the uncertainty
in the μ̂MB−Ext estimates which would reduce the statistical significance
of differences even more. The important result is that the model-based
AOI estimates of the means based on the model constructed using
only data external to the AOIs were comparable to estimates based on
the model constructed using data for the entire study area.
5.3. Estimates of the standard errors

For the Hedmark study area, the assessment of curvature in the
model prediction space indicated no statistical significance. This result
was confirmed by the Monte Carlo bootstrap simulations for which
the model-based SE for 20 resamples was 4.98 Mg/ha which compared
very favorably to the estimate of 5.06 Mg/ha calculated using Eq. (10).
For the Minnesota study area, the Monte Carlo bootstrap SE for 50
resamples was 0.026, the same as the SE calculated using Eq. (10).
These results indicate that the Taylor series variance approximations
can be used with confidence.

The Taylor series variance estimates calculated using only every mth

population unit differed very little from the estimates calculated using
all population units (m= 1) (Table 3). For theMinnesota AOIs, propor-
tional differences were less than 0.02 for m≤ 100, and for the Hedmark
AOIs, proportional differences were less than 0.01 for m≤ 50. These re-
sults indicate that computational intensitymay be substantially reduced
with no loss in the quality of the SE estimates.

image of Fig.�3
image of Fig.�4


Table 1
Estimates of mean probability of forest.

Area of interest (AOI) Area
size
(km2)

Sample size All plots External plots

SRS Model-assisted Model-based Model-based

μ̂SRS SE μ̂SRSð Þ μ̂MA SE μ̂MAð Þ μ̂MB−All SE μ̂MB−Allð Þ μ̂MB−Ext SE μ̂MB−Extð Þ
1 700 7 0.571 0.202 0.534 0.155 0.583 0.029 0.575 0.035
2 700 9 0.556 0.176 0.528 0.124 0.504 0.028 0.499 0.034
3 700 11 0.818 0.122 0.815 0.056 0.696 0.027 0.679 0.034
4 700 10 0.700 0.153 0.707 0.061 0.712 0.027 0.698 0.033
1-2 1400 16 0.563 0.128 0.535 0.094 0.543 0.026 0.537 0.035
2-3 1400 20 0.700 0.105 0.676 0.063 0.600 0.026 0.589 0.032
3-4 1400 21 0.762 0.095 0.764 0.043 0.704 0.027 0.704 0.027
1-2-3 2100 27 0.667 0.093 0.638 0.061 0.594 0.027 0.584 0.033
2-3-4 2100 30 0.700 0.085 0.686 0.046 0.637 0.026 0.625 0.032
1-2-3-4 2800 37 0.676 0.078 0.655 0.047 0.624 0.026 0.613 0.032

Table 2
Estimates of mean aboveground biomass per unit area (Mg/ha).

Area of interest (AOI) Area size
(km2)

Sample size All plots External plots

SRS Model-assisted Model-based Model-based

μ̂SRS SE μ̂SRSð Þ μ̂MA SE μ̂MAð Þ μ̂MB−All SE μ̂MB−Allð Þ μ̂MB−Ext SE μ̂MB−Extð Þ
1 100 9 109.05 48.49 125.35 14.21 99.11 4.38 95.82 5.34
2 100 9 66.20 26.33 98.96 3.94 104.94 4.89 101.07 5.89
3 100 11 114.38 35.07 123.93 9.94 128.08 6.21 121.06 7.44
4 100 8 140.26 40.77 126.10 13.90 102.78 4.91 98.34 5.96
1-2 200 18 87.62 27.26 112.10 8.15 101.97 4.62 98.44 5.61
2-3 200 20 92.70 22.75 111.54 5.62 116.51 5.53 111.06 6.64
3-4 200 19 125.28 26.01 122.93 8.58 115.52 5.53 109.69 6.67
1-2-3 300 29 97.77 21.28 115.42 6.33 110.62 5.13 105.98 6.21
2-3-4 300 28 106.29 20.01 115.04 6.02 111.93 5.31 106.82 6.40
1-2-3-4 400 37 109.96 18.82 117.46 5.85 108.72 5.06 104.07 6.12
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For both study areas, the model-assisted SEs were considerably
smaller than SEs for the SRS estimates, indicating the utility of the ALS
data for increasing precision (Table 2); similar results have already
been widely reported (e.g., d'Oliveira et al., 2012; McRoberts et al.,
2013b; Næsset et al., 2011). As expected, aggregations of AOIs and the
consequential increase in sample sizes, produced reductions in both
the SRS and model-assisted SEs. However, such was generally not the
case for the model-based SEs which were generally similar, regardless
of the sample sizes associated with the AOIs and their aggregations.
This phenomenon is explained by the fact that the model-based
SEs are primarily influenced by the parameter covariance estimates
which, in turn, are influenced by the mathematical form of the model,
the residual variation, the size of the sample used to construct the
model, the distribution of values of the independent variables in the
sample, and the parameter estimates. These features are unchanging
Table 3
Effects of sampling on model-based standard errors.

AOI m⁎

1 2 5 10 25 50 100

Minnesota study area
1 0.0294 0.0294 0.0293 0.0293 0.0292 0.0292 0.0289
2 0.0281 0.0281 0.0281 0.0281 0.0282 0.0281 0.0280
3 0.0273 0.0273 0.0273 0.0273 0.0274 0.0278 0.0274
4 0.0268 0.0268 0.0268 0.0267 0.0267 0.0269 0.0271

Hedmark study area
1 4.375 4.372 4.384 4.404 4.378 4.399 4.435
2 4.884 4.886 4.882 4.867 4.928 4.890 4.840
3 6.214 6.208 6.221 6.214 6.244 6.217 6.080
4 4.910 4.911 4.909 4.923 4.916 4.935 5.155

⁎ Estimates are calculated using samples consisting of every mth population unit.
for any region within the larger study area because of the synthetic ap-
proach to estimation. The only feature that changes is the distribution
of values of the independent variables in the dataset to which the
models are applied. However, because of general similarity of the re-
source throughout the study area, the distributions of values of the
independent variables for the entire study area may be expected to
be generally similar to the distribution for the AOIs. The larger
model-based SEs for the estimates based on the model constructed
using only data for the external plots relative to SEs for estimates
based on the model constructed using data for the entire study area
is attributed to the smaller sample size available for the former
model.

6. Conclusions

Theprimary conclusion drawn from the studywas thatmodel-based
inference, together with synthetic estimation, is a relevant and useful
approach for estimation and inference for non-sampled areas. Applica-
tions, as noted, include remote tropical and boreal forests for which
access is difficult and sampling is either limited or even impossible. Sev-
eral pre-cautions merit consideration: first, data for a region similar to
the non-sampled area must be available; second, model lack of fit
must be carefully evaluated; and third, if nonlinear models are used,
the validity of Taylor series variance approximation should be evaluat-
ed. Subject to these constraints, model-based inference merits greater
consideration for a variety of applications.
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