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Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often
lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using
Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest.
Five vegetation indices, five mathematical fits to model a continuous temporal response, and a suite of threshold
estimates for “start of spring/season” (SOS) assessments were compared to field measurements of bud burst
stage and hemispherical photo derived canopy structural metrics (transparency, leaf area index, greenness). Re-
sults indicated that a four-parameter logistic model based on at least five spring coverages of the Enhanced Veg-
etation Index (EVI) and a SOS threshold of 0.3 was most closely related to field metrics and most accurate in
Vegetation indices predicting the date of full leaf out. Plot level SOS was predicted with a mean absolute error of 11 days for all spe-
Field to sensor scaling cies and elevation combinations, but improved to 9 days for hardwood dominated plots and 7 days for sugar
EVI maple dominated plots. Mean absolute error was improved to 8 days when forest type (mixed, conifer hard-
NDVI wood) was used to refine predictions. The consistency of prediction errors across forest types indicates that
while overall accuracy across pixels may be low, inter-annual comparisons of changes in phenology on a pixel
basis may provide accurate assessments of changes in phenology over time. This was confirmed by application
to seven years of independent phenology data predicted with 12 days of mean absolute error. However, image
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availability will be a limiting factor in areas of frequent cloud cover.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

With an increasing interest in how climate impacts forest ecosys-
tems, studies of plant phenology have become more common, spanning
from single site field studies (Badeck et al., 2004) to continental remote
sensing assessments (White, Thornton, & Running, 1997). In the north-
eastern United States and northern latitudes these studies indicate that
warming trends have extended the growing season, with both an earlier
spring and later autumn (Badeck et al., 2004; McNeil, Denny, &
Richardson, 2008; Menzel, 2002; Tucker et al., 2001; White, Running,
& Thornton, 1999; Zhang, Friedl, Schaaf, & Strahler, 2004), with implica-
tions for productivity (Badeck et al., 2004; White et al., 1999), carbon
cycling (Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007), nutrient
and water cycling (McNeil et al., 2008), species interactions (Badeck
et al., 2004), and disturbance regimes (Dukes et al., 2009; Kramer &
Hanninen, 2009).
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The majority of remote sensing efforts across the region have fit veg-
etation growth curves to temporal composites using coarse spatial res-
olution satellites, such as AVHRR and MODIS (deBeurs & Henebry, 2010;
Fisher, Mustard, & Vadeboncoeur, 2006; Liang, Schwartz, & Fei, 2011).
White et al. (1997) compared AVHRR derived Normalized Difference
Vegetation Index (NDVI) to lilac leaf out with a mean absolute error of
26 days. A MODIS derived Enhanced Vegetation Index (EVI) was used
by Zhang, Friedl, and Schaaf (2006) to predict full canopy cover at Hub-
bard Brook with a mean absolute error of 10 days. Liang et al. (2011)
improved accuracy to a mean absolute error of 2 days using MODIS de-
rived EVI and weighting field observations by dominant forest commu-
nity type. While these studies offer a regional perspective, there are
several scale-based limitations. Because of the large degree of heteroge-
neity in species composition, soil type, forest fragmentation, land use
(mixed pixels) and elevation found in northeastern forests, the use of
such coarse resolution assessments limits the evaluation of spatial vari-
ability in phenology (Fisher et al., 2006; Ibanez et al., 2010; Kramer &
Hanninen, 2009). The success and interpretation of such efforts are
also limited by the difficulty in linking plot level field measurements
to satellite derived pixel values; as well as uncertainty in
which phenological field metrics match sensor reflectance metrics
(Fisher et al., 2006).
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The use of higher resolution imagery, such as from the Landsat The-
matic Mapper (TM) and Enhanced Thematic Mapper (ETM + ), offers
both the spatial resolution necessary to address these limitations, with
the added advantage of a two decade archive that can provide a context
for changes in phenology (Reed, Schwartz, & Xiao, 2009). While Landsat
has been utilized for many vegetation applications, assessments of phe-
nology are limited. In southern New England, Fisher et al. (2006) used
an 18-year sequence of Landsat imagery to quantify spatial patterns in
phenology. While they found a strong relationship between field mea-
sured phenological stage and satellite derived vegetation greenness,
analyses were limited to hardwood dominated plots only. Most recent-
ly, Melaas, Friedl, and Zhu (2013) used a historical archive of Landsat
TM imagery to examine patterns and variability in phenology at the
Harvard Forest. While their results were promising (r* = 0.80), their as-
sessment was limited to highly variable inter-annual assessments on a
subset of trees contained within one Landsat pixel.

The goal of this study is to test previously published approaches to
quantify phenology in northeastern hardwood and mixed forests using
Landsat TM/ETM + imagery, including the ability to differentiate subtle
differences in phenology driven by species demographics and topograph-
ical variability. Because there is no standard method for phenology assess-
ment using satellite imagery, and even less exploration of methodological
options using Landsat, this paper focuses on the comparison of many re-
flectance products, curve fits, threshold values and field metrics in order
to identify the most accurate approach to quantify the start of spring
across a heterogeneous landscape. Our specific objectives include to:

* Identify the most accurate vegetation index, logistic model, and
threshold for detecting the start of spring (SOS).

* Assess the impact of temporal frequency of imagery on SOS predictions.

» Examine the relationships between vegetation indices and various phe-
nological field metrics to better understand what the sensor is charac-
terizing and which phenological stages are most accurately predicted.

* Characterize potential sources of error in remote sensing SOS estimates.

2. Methods
2.1. Study area

Sampling a variety of sites is important in the northeast because of
the heterogeneity of species composition and site characteristics across
the landscape. To this end, we established 32 0.1 ha plots that were
assessed every 2-4 days from March to July of 2011 across north/central
Vermont (Fig. 1). This region was selected based on the overlap of
Landsat paths 13 and 14 (row 29), effectively doubling the frequency
of image dates available for analysis. Plot selection was designed to cap-
ture a range of elevations (60 to 780 m), forest cover types, and land-
scape positions while still providing repeated sampling of dominant
canopy compositions. This included 19 northern hardwood stands
(dominated by Acer saccharum Marsh., Acer rubrum L., Betula
alleghaniensis Britton and Fagus grandifolia Ehrh.) and 12 mixed stands
(including the species listed above and Quercus rubra L., Pinus strobus
L., Tsuga canadensis L., and Abies balsamea L.). One pure conifer plot
(Pinus strobus) was included as a reference, to see how vegetation
index curves appear for species that retain foliage year-round. At each
site, stand composition and topography were consistent across a larger
100 m area to minimize noise from misregistration of plot locations to
image pixels.

2.2. Field phenology assessments

Field phenology methods were adapted to match as closely as possi-
ble guidelines from several active phenology monitoring programs con-
ducted by the Vermont Department of Forest Parks and Recreation,
Vermont Monitoring Cooperative, Proctor Maple Research Center, and
Hubbard Brook Experimental Forest. Our modified approach

categorized a tree into one of five phenology field rank (PFR) categories,
from dormancy to full leaf out (Table 1) based on the dominant pheno-
logical stage assessed across the entire canopy. We recorded observa-
tions for all dominant, codominant and understory trees within 20 m
of plot center. To scale PFR from individual trees to the plot level we cal-
culated a plot average based on a species average weighted by its plot
percent basal area. This ensured that variation within trees of the
same species and variation among species on a plot were captured.
While the initial tree level phenology rankings are ordinal in scale,
both plot average PFR and vegetation indices are continuous in scale
and therefore allow a potentially more precise comparison between
field and satellite metrics (Reed et al., 2009).

To include canopy structural metrics, we collected digital images at
each plot using a Nikon D90 digital camera with a Sigma 8 mm 180 de-
gree circular fisheye lens. In order to minimize common errors reported
in canopy closure estimates due to contrast confusion, slope or time of
day (Breda, 2003; Frazer, Fournier, Trofymow, & Hall, 2001;
Jonckheere et al., 2004; Sonnentag et al., 2012), each photo was taken
at a fixed height and location over plot center, under cloudy conditions
or early morning/late afternoon, with consistent auto focus, aperture,
and ISO settings.

We used Gap Light Analyzer (GLA) (v2.0) software (Simon Fraser
University (SFU), Burnaby, British Columbia, Canada and Institute of
Ecosystem Studies (IES), Millbrook, New York, USA) to calculate percent
canopy openness and Leaf Area Index (LAI 4 ring - effective leaf area
index integrated over zenith angles 0-60°, and LAI 5 ring - effective
leaf area integrated over the zenith angles 0-75°) (Frazer, Canham, &
Lertzman, 1999). Images were isolated to the blue color plane in order
to improve the contrast between foliage and sky (Frazer et al., 1999;
Leblanc, Chen, Fernandes, Deering, & Conlye, 2005), with canopy/sky
thresholds optimized using SideLook 1.1 (Jarcuska, Kucbel, & Jaloviar,
2010; Minkova & Logan, 2007; Nobis & Hunziker, 2005). Canopy “green-
ness” was approximated using software available from Digital Earth
Watch (http://www.globalsystemsscience.org/software/download).
This approach utilizes a normalized color channel brightness (percent
red, green and blue) to quantify “green-up” associated with spring phe-
nology (Richardson, Braswell, Hollinger, Jenkins, & Ollinger, 2009;
Richardson et al., 2007).

2.3. Image processing

We downloaded Level 1T Landsat TM and ETM + imagery from the
USGS Global Visualization Viewer (U.S. Department of the Interior,
2012) for all image dates between March 10 and July 25, 2011 with
less than 60% cloud cover. In order to maximize image availability, all
scenes from the overlap of paths 13 and 14 were reprojected to UTM
zone 18N for use in this study. This resulted in 15 images (out of 37 pos-
sible dates) for analyses. However, because of partial clouds across the
study area, the highest number of image dates at any of our established
field plots was 12. Level 1T processing includes an orthorectification, but
to ensure consistency across image dates in our region of high terrain
variability, each image was georegistered to a cloud-free, mid-summer
2002 control image using a 3rd order polynomial warping transform
and nearest neighbor resampling. Reported fit of registration was
below 0.2 pixels (RMSE 6m), based on a minimum of 50 ground control
points located across the full extent of each image.

Raw DN values for bands 1-5 and 7 were converted to reflectance
using ENVI's Landsat TM calibration tool (ITT Visual Information
Solutions, 2009). This transformation accounts for solar illumination
angle, minimum/maximum radiance and gain for each band, and
scene specific atmospheric path length (Chander, Markham, & Helder,
2009). In order to minimize differences in atmospheric conditions be-
tween image acquisition dates we applied a dark object subtraction in
ENVI that used the lowest DN that first represents a sharp increase in
the number of pixels (Chavez, 1988; Soudani, Francois, Le Marie, Le
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Fig. 1. The network of 32 plots assessed in this study. Plots were concentrated in the overlapping area of Landsat Path 13 and 14 (row 29) and selected to cover a range of elevations and

forest types common to the northern hardwood mixed forests.

Gantec, & Dufrene, 2006). This was determined from image histogram
statistics as the lowest data value that represents 0.1% of all pixels.

Clouds and haze were masked manually using thresholds deter-
mined individually for each image using the thermal band (TM band 6)
(Fisher et al., 2006). The thermal band was also used to mask pixels dom-
inated by snow, which can significantly affect vegetation index calcula-
tions (Huete et al., 2002; Zhang et al., 2003). Cloud and topographic
shadow was removed using the Enhanced Vegetation Index (EVI),
which clearly distinguished shadow from coniferous and other relatively
dark vegetation.

2.4. Phenology modeling

24.1. Vegetation indices

The effectiveness of vegetation indices varies with local climate, soil,
vegetation conditions, and purpose of the study (Broge & Leblanc, 2000;
Hufkens et al., 2012; Rondeaux, Steven, & Baret, 1996). The Normalized
Difference Vegetation Index (NDVI) and EVI are most commonly used to
monitor phenology (Fisher et al., 2006; Hmimina et al., 2013; Melaas
et al, 2013; Zhang et al., 2003). The normalized difference water
index (NDWI) and other mid-infrared based indices are less commonly
used, but have shown potential in monitoring phenology in regions of
high snowfall and across varying regeneration stages (Boyd, Foody,

Table 1

Phenology field rank (PFR).

Adapted from the Vermont Monitoring Corporative and Hubbard Brook Experimental
Forest phenology methods.

Phenology field Bud/leaf characteristics

Curran, Lucas, & Honzak, 1996; Broge & Leblanc, 2000). In this study
we compared five different multi-spectral vegetation indices (Table 2).

24.2. Logistic model fit

Because reflectance values are not available every day, curves are fit
to the available data in order to approximate daily values. Sigmoidal lo-
gistic models are commonly used to fit a time series for daily phenology
measurements (Elmore, Guinn, Minsley, & Richardson, 2012; Melaas
et al.,, 2013; Zhang et al., 2003). While logistic models begin with user-
specified starting parameters that are then adjusted iteratively until
the curve fit converges to best match the data, there are many ways to
parameterize and fit them. We tested five common sigmoidal models
(Table 3) on each of the field and satellite metrics at our 32 field plots.
The quality of model fit for each plot was assessed by identifying the
model with the lowest mean RMSE across all 45 plots. As a secondary
comparison that included all plots and all image dates in one fit metric,
we further compared the Spearman's rho correlation between actual
vegetation index values and the corresponding fitted vegetation index
values. This allowed us to identify the most robust model across forest
types, pixel illumination and geographic locations.

2.4.3. Start of spring (SOS) thresholds

Although phenology gradually changes over several weeks, most
phenological metrics are reported as a single date, or day of year
(DQY) for events such as “bud burst” or “leaf out” (Fisher et al., 2006).

Table 2
The five vegetation indices used in previous phenology studies that were compared to
assess which is most accurate for northern forest assessments.

ranks (PFR) Equation Reference

0 Dormancy, no change from winter condition EVI=2.5 x % Fisher et al. (2006), Zhang et al. (2003)

1 Bud is swollen/larger than winter condition. No visible green leaf NDVI — (b4=b3) Bradley, Jacob, Hermance and Mustard (2007),
emerging from scales b3 Jonsson, Eklundh, Hellstrom, Barring, and

2 Budbreak, green tip of leaf showing Jonsson (2010), Van Leeuwen, Davison,

3 Leaf emergence, recognizable form but often wrinkled and not fully Casady, and Marsh (2010), Nagai et al. (2010)
developed NDWI = (rlbg_:bl% Delbart et al. (2006)

4 Leaves no longer wrinkled, fully expanded, may still be developing Red—MIR ratio =3 Boyd et al. (1996), Broge and Leblanc (2000)

in size but large enough to be in final orientation position

Thermal—Red—MIR ratio = ("Zbﬂ Boyd et al. (1996), Broge and Leblanc (2000)
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Table 3

The five sigmoid fits to model daily index values that were compared. The strongest and
most consistent fit across forest types was achieved with the Zhang four-parameter logis-
tic fit.

Model #Parameters Citation EVIp NDVI p
Deciduous Fisher 2 Fisher et al. (2006) 0689 0.743
Logistic 3 JMP SAS Institute 0.692 0.743
Weibull 4 JMP SAS Institute 0764 0824
Zhang 4 Zhang et al. (2003)  0.745  0.829
Richard 5 JMP SAS Institute 0723  0.761
Mixed Fisher 2 Fisher et al. (2006) 0639 0.796
Logistic 3 JMP SAS Institute 0639  0.796
Weibull 4 JMP SAS Institute 0.7 0.796
Zhang 4 Zhang et al. (2003) 0.716  0.801
Richard 5 JMP SAS Institute 0717 0818

Reporting a single DOY provides the temporal resolution necessary to
assess small changes in the timing of phenology from place to place or
year to year. However, the obvious disconnect between the actual rate
and variability in physiological changes associated with phenology
and the desire to quantify a single date limits accuracy and interpreta-
tion of results, and has resulted in a myriad of ways to pinpoint DOY
values. One common approach is to identify the day that the interpolat-
ed vegetation index curve first passes some threshold value (deBeurs &
Henebry, 2010; Nagai, Nasahara, Muraoka, Akiyama, & Tsuchida, 2010;
Zhang et al., 2006). Other approaches utilize the two points of maxi-
mum rate of curvature change in the interpolated logistic curve
(Soudani et al., 2008; Zhang et al., 2003). In this way, each pixel's chang-
ing phenology is compared to itself instead of an arbitrary threshold
that may not be applicable to all forest types (Zhang et al., 2006).

For each of our vegetation indices and sigmoidal model fits, we com-
pared 3 different index thresholds, 3 different proportions of maximum
index value, and 3 different slope based thresholds (Table 4, Fig. 2) in
predicting SOS. Accuracy is quantified here as the mean absolute differ-
ence between the field measured and threshold predicted day a plot
first reaches a given phenology field rank, averaged across all plots.
This was repeated for phenology field ranks 2 (bud burst), 3 (leaf expan-
sion) and 4 (full leaf out) in order to determine which phenology field
rank was most accurately detected by each of the threshold options. Be-
cause some index/threshold combinations estimate SOS better for spe-
cific plot types and worse for others, we also included the standard
deviation of the absolute difference between predicted and field mea-
sured SOS to assess the consistency of prediction across a variety of
stand characteristics.

2.4.4. Accuracy and errors in the final phenology model

Once the most accurate combinations of vegetation index, sigmoidal
fit and SOS threshold had been identified we examined how accuracy
differed among plots of mixed hardwood/conifer, mixed hardwood,

Table 4
Previously published start of spring (SOS) vegetation index thresholds, with expected
phenology characteristics.

SOS metric Spring ecological Citation
interpretation
0.3,30% Leaf expansion Nagai et al. (2010)
0.5, 50% Most leaves likely Bradley et al. (2007), Fisher et al.
emerged (2006), Fisher and Mustard (2007), White
etal. (1997)
0.7,70% Initial leaf expansion ~ Nagai et al. (2010)
First max Bud burst or “greenup Zhang et al. (2003)
change in onset”
curvature
Second max Full leaf appearance, ~ Zhang et al. (2003)
change “maturity onset”
in curvature
Second plateau Canopy maturity Zhang et al. (2003)
curvature

and sugar maple dominated composition to assess the impact of
mixed species on prediction accuracy. To further explore sources of var-
iability and error in the model, we compared site characteristics (eleva-
tion, slope and aspect) and various metrics of species composition
(partitioning variation based on the percent hardwood, percent conifer,
percent diffuse and ring porous species, forest type (hardwood, conifer,
mixed), number of tree species, and Shannon Weiner diversity) to the
accuracy of prediction across all field sites. Spearman's Rho correlations
between each static variable and accuracy were used to identify poten-
tial sources of error. To test this method over many years, we compared
sugar maple phenology data collected at the Proctor Maple Research
Center in Underhill, VT (Wilmot, 2012) to SOS predictions following
the remote sensing method described here. The Proctor field assess-
ments used an 8-class scale, with daily assessments of sugar maple
only at two locations dominated by sugar maple, but with other hard-
wood species occurring in small proportions. A spearman's Rho based
on Proctor field measurements, and Landsat predicted phenology is
used to assess our ability to apply this method in other years.

2.4.5. Impact of image availability

To accurately observe rapid changes in phenology, sensors such as
Landsat (16 day revisit) may not provide the temporal resolution need-
ed (Busetto, Meroni, & Colombo, 2008). This is further complicated in
areas such as the northeast, where cloud cover in the spring is common.
To investigate the influence of image availability on SOS we compared
the accuracy of SOS predictions in two ways. First we simulated various
data availability scenarios using modeled daily phenology metrics based
on our best phenology model (EVI, Zhang four-parameter fit, 0.3 thresh-
old). This model was rerun on simulated return intervals of 1, 2, 4, 8, 16,
and 32 days. The accuracy of each temporal resolution simulation
was compared to field measurements using analysis of variance in
JMP (v. 9.0.0 SAS Institute).

As a more direct examination of image availability on SOS predictions,
phenology was modeled with various configurations of image availability
(Table 5) at all field plots with the full complement of available imagery
(from the full set of 12 images, to a minimum of 5 input image dates).
In addition to testing the impact of temporal resolution, this allowed us
to confirm that using a combination of Landsat TM and ETM + sensors,
from 2 different paths could be combined where available.

3. Results and discussion
3.1. Field phenology assessments

Mean bud burst across the 32 field sites was DOY = 127 (May 7),
ranging from DOY = 117 (April 27) to DOY = 144 (May 24). Mean
date of full leaf out was DOY = 158 (June 7), with a range between
DOY 146 (May 26) and 193 (July 12). While exact timing varied be-
tween sites, spring greenup, from bud burst to full leaf out, typically oc-
curred over two to three weeks. Rates of change between phenological
field rankings were faster from bud burst (PFR2) to initial leaf emer-
gence (FPR3) (mean 7.9 days), than from leaf emergence (PFR3) to
full leaf development (PFR4) (mean 15.6 days). Phenological stages
were observed first in lower elevation stands, with one day delay per
29 m gain in elevation to reach PFR 4, one day per 30 m gain to reach
PFR3, and one day per 32 m gain to reach PFR2 (1> = 0.45, 0.79, and
0.73 respectively). This is consistent with Hopkins' Law of a one day
delay in the onset of spring for every 30 m elevation increase
(Fitzjarrald, Acevedo, & Moore, 2001; Richardson, Bailey, Denny,
Martin, & O'Keefe, 2006) for the eastern United States.

Canopy photo metrics (LAl canopy closure, and greenness) were not
sensitive to early physiological changes such as bud swelling or bud
burst. These digital field metrics peaked near initial leaf emergence, sat-
urating before leaves were fully developed (Fig. 3). The resulting logistic
fit to photo metrics is a much steeper and narrower region of rapid
change centered near PFR 3 (Fig. 3). This indicates that hemispherical
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Fig. 2. The nine common start of spring (SOS) thresholds derived from interpolated vegetation index curves that were compared to field phenology rankings for accuracy assessment.

photo derived field metrics of canopy structure may not be representa-
tive of the changes witnessed in remote sensing vegetation indices.

In order to understand how much variability exists within plots we
examined field rankings for canopy dominant hardwoods at each of
the field sites. We found that the difference between the date that the
first and last trees reached full leaf out spanned 19 days on average.
For some plots, this was upwards of 30 days. Considering that so
much variation on the ground exists, it is understandable that remote
sensing prediction accuracies can border 10-15 days. Further, on the
date when most trees on a plot had reached full leaf out (average PFR
rounds to 4), the average standard deviation of field ranks was 0.54
for the 0-4 class scale. This indicates that even when a plot can be con-
sidered as having reached a PFR4 defined SOS, up to a third of individ-
uals on a plot still lagged considerably. This variability was even
higher earlier in the spring, with an average standard deviation of 0.81
when the first trees reached PFR4.

3.2. Phenology modeling

3.2.1. Comparison of indices and field metrics

Of the five indices tested, only the Normalized Difference Vegetation
Index (NDVI) and the Enhanced Vegetation Index (EVI) consistently
matched field phenology metrics over the spring season (Spearman's
Rho correlation of NDVI and EVI to PFR was p 0.95 and 0.96 respectively).
The Normalized Difference Water Index (NDWI) decreased in early
spring, likely as a result of snowmelt, before increasing in response to veg-
etation emergence. Coincident timing of bud burst and snow melt, partic-
ularly at higher elevations, may limit the use of NDWI in this region
(Delbart, Toan, Kergoat, & Fedotova, 2006). Similarly, the red-middle in-
frared ratio (RW) and thermal-red-middle infrared ratio (TMIR) (Broge
& Leblanc, 2000), decreased in early spring and spiked mid-spring, with
no clear response coinciding with greenup across our plot network. Be-
cause of these inconsistencies with field metrics, NDWI, RW and TMIR
were not considered in later steps of method development.

Table 5
Average fit (Spearman's p) and SOS prediction accuracy based on total number and timing
of imagery dates. A minimum of 5 images was required for logistic fit.

# image dates Images removed EVIfit p SOS error (days)
12 None 0.713 12

11 Post-SOS image 0.625 15.25

11 Pre-SOS image 0.634 15.25

10 Pre- and post-SOS images 0.634 12.5

8 All Landsat 7 0.681 19.5

6 Every other date 0.684 1825

6 Path 14 images 0.628 14

6 Path 13 images 0.76 21.25

5 Every other date and pre-SOS 0.625 14.5

Both NDVI and EVI were significantly correlated with all of the field
phenology metrics, but changes in NDVI over the spring deviated from
field metrics in several ways. At our plots, NDVI typically increased
from its winter baseline prior to plot-level leaf development (Fig. 3).
This could be beneficial by providing the ability to detect the earliest
onset of bud burst, but more likely results from sensitivity to the green-
ing up of understory vegetation, which typically precedes the forest can-
opy (Richardson & O'Keefe, 2009). NDVI is also known to saturate at
higher biomass (Huete et al., 2002; Reed et al., 2009), decreasing its abil-
ity to characterize the latter stages of canopy development and leaf
maturity.

The closest relationship between field and satellite metrics was be-
tween EVI and optical phenology field ranks (r? = 0.913). The strength
of this relationship is similar to results reported by Fisher et al. (2006)
relating optical phenology estimates to greenness modeled from
Landsat imagery in pure hardwood stands (1> = 0.91) and consistent
with the approach used by Melaas et al. (2013). The ability of EVI to
maintain the strength of this relationship across our mixed plots indi-
cates that this approach may be robust for application across larger,
more complex forested landscapes.

While it is somewhat surprising that the visual phenology metrics
more closely matched remote sensing indices than digital photo met-
rics, it is likely that the latter may be strongly influenced by vegetation
density and less sensitive to subtle spectral changes that accompany
leaf development and changing canopy chemistry. Digital metrics satu-
rated before full leaf expansion, limiting their sensitivity to the final
stages of canopy maturation. This indicates that while it may be desir-
able to switch from subjective ocular estimates to automated methods,
visual assessments of phenological stage are the closest match to re-
mote sensing indices and most sensitive to subtle changes in canopy
physiology.

Aside from comparisons of vegetation indices to field measurements,
there were several interesting patterns observed in vegetation index
curves over the spring. EVI values were lower than expected (zero for
hardwood plots (Fig. 4A), and close to 0.1 for most mixed forest plots
(Fig. 4B)) compared to other studies (Zhang et al., 2003 report EVI ~ 0.2
for deciduous broadleaf forests, and Liang et al.,, 2011 report EVI ~ 0.2 in
a mixed temperate forests). This likely results from the relatively low ev-
ergreen (canopy and understory) composition for our plots compared to
other studies, and a late winter snowfall across the region in 2011. This
significant late season storm delayed snowmelt and understory vegeta-
tion growth. The result was a relatively low winter EVI and NDVI baseline,
followed by a short snow-free period before trees broke bud.

Also interesting was the continued increase in EVI after field phenol-
ogy metrics reached peak levels (Fig. 3). This could be due to the lag be-
tween full anatomical development and functional maturity (e.g., stable
foliar chemistry and peaks in photosynthetic rates (Bassow & Bazzaz,
1998)). Anatomical leaf development precedes maximum photosyn-
thetic capacity because the latter is dependent on the accumulation of
chlorophyll, activation of Rubisco enzymes, and the completion of
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Fig. 3. Example plot field metrics and vegetation indices interpolated over the spring season using the Zhang logistic fit. Curves were normalized to compare the timing of metrics, where 0
was lowest data value and 100 was the highest. The vertical dotted lines represent the date that plot average phenology reached PFR 2, 3 and 4 chronologically.

electron transport systems of photosystem I (Eichelmann et al., 2008).
In addition, cell wall and leaf cuticular thickening can continue beyond
cellular expansion (Dengler, Mackay, & Gregory, 1975; Riederer &
Schénherr, 1988). Vegetation indices have been related to physiological
canopy changes after leaves have appeared fully developed (White
et al,, 1997). Unlike NDVI], this indicates that the EVI is not susceptible
to saturation at high canopy densities and should be able to characterize
changes in physiology through full leaf maturity (Huete et al., 2002;
Liang et al,, 2011).

3.2.2. Logistic fit models

While none of the 5 sigmoid logistic models tested was able to fit all
field and index phenology metrics across all plots, the four-parameter
logistic fit described in Zhang et al. (2003) had the most consistent
(significant at 25 of the 31 mixed and deciduous broadleaf stands)
and the most accurate overall fit (average p = 0.85, Table 3). While

A

0.8 4

other four- and five-parameter models were able to fit EVI on hardwood
dominated plots (Fig. 4A), the Zhang model was better able to fit mixed
plots and plots with limited image dates (Fig. 4B). This validates the as-
sumption that this four-parameter model is flexible enough to work
across complex spatial variations in forest composition (Liang et al.,
2011) without the loss of statistical power associated with higher
order models fit to sparse data (deBeurs & Henebry, 2010).

3.2.3. Start of spring (SOS) thresholds

Because both NDVI and EVI consistently approximated the changes
in field phenology metrics using the Zhang sigmoidal fit, we tested the
accuracy of both indices at each phenological field rank (PFR2 through
PFR4) using nine established thresholds (Table 4). Phenology field
rank 2, bud burst, could not be accurately predicted using either index
at any of the common thresholds tested. An examination of field rank
to index curves (Fig. 3) showed that none of the indices tested increased
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Fig. 4. Modeled logistic fits of EVI on sample hardwood (A) and mixed (B) plots. The four-parameter logistic model most consistently fit EVI.
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during early phenology (PFR 1). NDVI typically responds first (PRF 2)
with EVI initiating a sharp increase after leaves begin to emerge (PFR
3). This index insensitivity to early phenological changes is likely due
to several factors. Reflectance at every pixel is the conglomeration of a
variety of vegetation and background features, which may obscure ob-
servations of initial bud burst (Reed et al., 1994). While field observers
may be able to note bud swelling and emergence, our data and others
(e.g., Liang et al., 2011) suggest that the reflectance signal of bud burst
is not sufficient to alter the reflectance signal from the larger mixed
pixel because of the radiometric sensitivity of Landsat.

Accuracy for PFR 3 (leaf expansion) improved across all thresh-
olds (Table 4), but was highly variable across plots. NDVI was most
sensitive to canopy changes associated with PFR3, but still reported
a mean absolute error of 18.5 days, and was highly variable across
plots (stdev = 11.3 using a threshold 0.5) (Table 4). At PFR3, EVI
was typically just beginning to increase, explaining its reduced accu-
racy compared to NDVI (mean absolute error = 20 days, stdev =
11.3 days using 30% max threshold) (Table 4).

PFR 4, the first day that the plot average phenology field rank
reached full leaf out, was most consistently and accurately predicted
by both vegetation indices. An EVI threshold of 0.3 was able to predict
PFR 4 with a mean absolute error of 11.2 days (stdev = 8.4). Because
some plots were overpredicted, and others underpredicted, the average
error across the entire scene for the 2011 season was only one day later
than field observations.

To determine if there might be a better threshold for determining
the SOS, we identified the index value for EVI at the actual date of the
field-measured PFR 4, which was very close to the standard 0.3 thresh-
old (0.295 for deciduous broadleaf plots and 0.278 for mixed plots).
Using this custom threshold instead of the common 0.3 EVI value im-
proved mean absolute error from 11.2 to 9.74 days for deciduous broad-
leaf stands. Accuracy at mixed stands did not change using the custom
threshold.

3.3. Accuracy and errors in the final phenology model

Across a variable landscape, our “best” method to predict spring
phenology was based on the EVI inde, fit with the sigmoid model pro-
posed by Zhang et al. (2003), to predict PFR4 (full leaf out) using a 0.3
EVI threshold. In order to apply this on a pixel basis, across the land-
scape we developed a custom IDL script (Dick Jackson Software Consult-
ing; available upon request). The resulting image for 2011 SOS across
our study region is shown in Fig. 7.

The accuracy of this approach (field to index metric r* = 0.95, mean
absolute error for all plot types = 11.2 days) was similar to, or an im-
provement over other studies (26 days with AVHRR, (White et al.,
1997); 10 days with MODIS, (Zhang et al., 2006)) (Table 6). Accuracy

=
K'Y
1

was improved when considering only homogeneous stands. For exam-
ple, in pure deciduous stands it was possible to make predictions of full
leaf out with a mean absolute error of 9 days. The accuracy of SOS pre-
diction at our four “pure” sugar maple stands (over 60% of the basal
area) improved to 7 days mean absolute error.

In order to identify sources of variability and error in the model, we
compared site characteristics and species composition to the accuracy of
prediction across field sites. Spearman's Rho correlations indicated that
SOS accuracy was higher at higher elevations. This could result from a
more rapid greenup at upper elevations. We also found that accuracy in-
creased with increasing percentages of hardwoods in general, and diffuse
porous hardwoods specifically. This indicates that uniformity within
hardwood species also reduces error. Similarly, accuracy was higher on
plots with more balanced species composition (quantified as the standard
deviation of species' percent basal area; p = 0.04 and p = 0.03 respective-
ly). This indicates that when mature trees at low species density are pres-
ent on a plot there may be a mismatch between basal area weighted field
metrics and plot level spectral signatures. It is possible that a different
weighting method based on canopy size or canopy fraction may better
capture the contribution of anomalous species better than basal area
based weightings.

Fisher et al. (2006) also found that in coarse-resolution satellite phe-
nology studies, coniferous and mixed forests are difficult to segregate,
resulting in compositional uncertainty. Our results indicate that mixed
composition is still an issue at finer resolutions. Lower accuracy at
mixed stands is expected because of inherent differences in coniferous
and deciduous broadleaf phenology. Conifers maintain greenness
throughout the winter, dampening changes in reflectance in the spring.
The result is that the more subtle phenological changes are masked by
the larger reflectance signal of existing vegetation. Instead of foliage ap-
pearance and expansion, biochemical signals are stronger drivers of the
seasonal pattern in vegetation indices of coniferous forests (Richardson
etal, 2009). Reflectance patterns may therefore differ between decidu-
ous and conifer forest types and one global method of quantifying phe-
nological patterns may not be appropriate.

One possible solution is to include ancillary information of species
composition to help refine phenological assessments. While highly ac-
curate species distribution maps are hard to come by at this resolution,
there are sources of high quality hardwood, conifer and mixed forest
coverages. When forest type (conifer/hardwood/mixed) was included
to refine satellite predictions of SOS, mean absolute error decreased
from 11 days to 8 days across all plots. This is similar to the improved
accuracy found by Liang et al. (2011) when forest community type
was included in assessments.

However, our results also indicate that error in SOS prediction arises
when there is a mixture of species within hardwood-dominated stands.
Different deciduous broadleaf species are adapted to leaf out and break
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Fig. 5. While there was no significant difference in accuracy among various temporal resolution scenarios, predicted SOS based on the EVI1 0.3 threshold (dotted horizontal line) varied up to

9 days depending on image availability.
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Fig. 6. The striped pattern in this predicted SOS image matches the scan line correction
error in the June 4 Landsat 7 image. This highlights that even though resulting predictions
are not significantly different, image availability can alter the final SOS prediction, in this
case by two days between scan line error locations.

bud at different times (Lechowicz, 1984). If one species leafs out early
while another species on the same plot remains dormant, this will be
reflected in the mixed spectra observed by the sensor. Richardson
et al. (2009) found phenology metrics of sub-regions within a single
camera view at the Bartlett Research Forest varied by almost a week.
On our hardwood dominated plots, PFR dates for individual trees varied
by 19 days on average, but up to 33 days on mixed hardwood plots (see
Section 3.1 field phenology assessments).

Predicting an event that does not occur uniformly even at a single lo-
cation is further complicated by variability resulting from sensor, atmo-
sphere, misregistration, calibration or curve fits. Considering this, it
seems improbable to achieve accuracies better than the 10-30 days typ-
ically reported in the literature. While it may be unrealistic to predict
SOS with higher accuracy, precision should remain high when using a
consistent approach. This indicates that while independent assessments
of SOS should be interpreted conservatively, it is more likely that com-
parisons of SOS changes across landscapes or over time following a uni-
form methodology could still provide useful information about
interannual trends and spatial patterns in phenology in spite of poor ac-
curacy. More specifically, if interested in analyzing possible changes in
phenology at any one location over time, many sources of error in SOS
predictions (e.g., landscape position and subsequent sensor view
angle, and likely even species composition barring a catastrophic
event) would be expected to be controlled — partially accounted for be-
cause many of these factors do not change substantially over the period
of analysis. While the SOS in a mixed conifer/hardwood stand may be
underestimated using remote sensing approaches, it is at least consis-
tently underestimated. Therefore, comparisons of the same pixel over
several years may provide a precise assessment of changing phenology,
even if the accuracy of SOS predictions for any given year is poor.

To test the precision of SOS assessments at a given location over time,
we compared sugar maple phenology data collected at the Proctor Maple
Research Center in Underhill, VT (Wilmot, 2012) to Landsat predictions

following the methods proposed here. The Proctor field assessments
used an 8-class scale, with daily assessments of sugar maple trees at
two locations where sugar maple dominated, but with other hardwood
species occurring in small proportions. Because of frequent cloud cover
at this location, only 7 of the 20 years of field data had corresponding
SOS predictions from Landsat imagery. Predicted mean absolute error
was 12.6 days for Wilmot's field measured phenology class 7 (initial
leaf expansion) and 13.9 days of field measured phenology class 8 (full
leaf expansion), consistent with accuracies reported for our field plots
in 2011. Spearman's correlations showed a moderate correlation be-
tween the field measured and predicted phenology (p = 0.54) for the
seven years where data overlaps. However, due to low sample size, this
correlation was not significant (p = 0.2). A power analysis (o« = 0.05,
p =0.8,p = 0.5) indicated that 23 years of data would be required to es-
tablish a significant relationship. Considering that this independent field
phenology data was collected on plots where not all trees were assessed
and species composition was not uniform, the strength of this correla-
tion, in combination with the 12.6 day mean absolute error indicates
that interannual assessments of SOS can be successfully estimated
using this approach.

3.4. Impact of timing and availability of imagery

It has been suggested that sensors such as Landsat may lack the
temporal resolution required to accurately model vegetation phe-
nology (Busetto et al., 2008). This is compounded by the common
presence of cloud cover during the spring season. In order to test
the impact of image availability and timing on the fit and accuracy
of SOS predictions, we compared SOS accuracy across a variety of
modeled and collected temporal resolutions. A comparison of field
plots with different numbers of available calibration images (due to
cloud cover) showed no significant difference in accuracy using our
final phenology model (Fg, 23y = 0.976, p = 0.463). The number of
images within 16 days of the field measured SOS date (0, 1, 2 or 3
images) also did not significantly alter the SOS prediction accuracy
(F(3, 28y = 0.371, p = 0.775).

To control for inherent differences in SOS accuracy between plots,
we also simulated the impact of temporal resolution at the four plots
with the full 12 image dates by sequentially removing dates and re-
predicting SOS. Again, there was no significant difference in the accura-
cy of 9 different temporal resolutions for predicted SOS (Fg27) = 0.539,
p = 0.82) (Table 5).

However, even though there was no significant statistical difference
between temporal resolution scenarios overall, there was variability in
predicted SOS resulting from different configurations of image availabil-
ity. For example, predicted SOS could vary as much as 9 days at a single
plot (Fig. 5) based on different simulated temporal resolutions. While
this variability is not significant, it can result in patterns across the land-
scape that are due to image availability and not topographic, climatic or
species related differences in actual phenology. In our study area, this
included differences in SOS predictions by up to 13 days between neigh-
boring pixels (Fig. 6). This is especially evident when using Landsat
ETM + imagery with the scan line correction error. The striped pattern
in predicted SOS for 2011 in Fig. 6 results from missing June 4 data in
the ETM + calibration image. This is similar to results presented by
Melaas et al. (2013), indicating that cloud, cloud shadow and other
sources of noise could bias estimated spring onset by 7 days. To mini-
mize the potential impact of missing image dates in regions of frequent
cloud cover, it is essential to conduct a high quality atmospheric correc-
tion and cloud screening. These results indicate that additional masking
may be required to exclude any pixels biased by image availability.

4. Conclusions

The ability to monitor phenology at a landscape scale is an important
tool to better understand long-term trends and spatial patterns in forest
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Fig. 7. Predicted SOS in the path 13/14 (row 29) study area using the final best method (EVI, fit by Zhang to predict PFR4 with a 0.3 threshold) and masking images based on QAQC guide-

lines covered in Section 3.4.

response to changing climate. Remote sensing methods provide this
scale of analysis but need to represent meaningful phenology events
as seen in the field, with appropriate guidance for interpretation of the
accuracy of results. By comparing a suite of remote sensing-derived
indices and mathematical fits to extensive field measurements we pro-
pose a standardized model for Landsat-based assessments of phenolo-
gy. While other methods may prove more accurate in other regions,
the method summarized here represents a challenging test in a region
of persistent snow, high cloud frequency, broad range of elevations
and mixed forest type. While this method was stable across forest
types, mean absolute error decreased from 11 to 7 days when differ-
ences in species composition and elevation were controlled.

This represents improved (White et al., 1997) or comparable (Zhang
et al., 2006) accuracy over other studies matching in situ phenology re-
cords to satellite metrics, but our study also provided a link to specific
phenology characteristics measured on the ground across a range of for-
est composition. We found that vegetation indices are more closely re-
lated to visual assessments of phenology than to hemispherical photo
derived canopy metrics such as canopy density or LAI Indices were

most accurate in their predictions of full leaf out, as opposed to bud
burst or leaf emergence phenology stages.

Because plots of similar species composition and landscape posi-
tion were consistently predicted, the accuracy of changes in SOS
timing are likely higher than the accuracy within a given year across
a heterogeneous landscape. The combined effect of standardizing
multiple factors at once (i.e., species composition and landscape po-
sition) as would occur when assessing relative changes at the same
pixel over time, suggests that temporal assessments of changes in
spring phenology are valid in spite of limited accuracy across a het-
erogeneous landscape.

Although pixel-based measurements result in a loss of the individual
tree or species-specific phenology that is so aptly captured in field stud-
ies, it does allow for an analysis of spatial and temporal patterns across
the landscape (Reed et al., 2009). Our ongoing efforts involve applying
the methodology outlined here to a 25-year archive of Landsat imagery
in order to investigate long-term changes, inter-annual variability, and
spatial patterns in phenology. This information will help quantify the
impact of changing climate on the forested landscape.
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Table 6
Prediction accuracy of various thresholds using the Zhang et al. (2003) sigmoid model.
Threshold performance is reported as the average days' difference between actual and
estimated PFR stages across all 32 plots. The most accurate assessment was obtained
using EVI at a threshold value of 0.3 as an approximation of the first day of full leaf out
(PFR 4).

Index Threshold Average error (days)

PRF 2 PRF 3 PRF 4 PRF 2 PRF 3 PRF 4

Stdev of error (days)

EVI 03 323 241 11.2 10.7 100 84
0.5 474 26.5 182 175
0.7
30% max 58.2 20.2 146 129 113 11.7
50% max 236 12.8 8.7
70% max 299 13.7 139 121
Max slope 28.2 23 20.2 15.8 154 20.8
Min slope 33.1 14.8 128 111
Slope to 0 17.9 115
NDVI 03 19.2 141
0.5 22 185 195 14.6 113 14.0
0.7 16.1 10.8
30% max 20 15.5
50% max 223 19.1 19.8 15.0 112 141
70% max 182 141
Max slope 29.8 279 20.2 22.0
Min slope 30.6 243 18.2 17.9 15.2 93
Slope to 0 183 83
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