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a b s t r a c t

Spatial and temporal environmental heterogeneity is known to play an important role in the dynam-
ics of populations and communities. However, the implications of this heterogeneity for developing
and testing regional- to global-scale forest dynamics models are largely unexplored. Predictions from
forest dynamics models are typically compared to chronosequences assembled from forest inventory
data using the space-for-time substitution approach, which assumes that different-aged stands across
space have followed (and will follow) the same dynamics. Often, this assumption is invalid in the pres-
ence of spatial and/or temporal heterogeneity. We used the perfect plasticity approximation (PPA) forest
dynamics model, parameterized with forest inventory data for > 10 forest types in the eastern U.S., to
diagnose spatial and temporal heterogeneity in forest dynamics, and to explore how this heterogeneity
can affect comparisons between predicted dynamics and chronosequence observations. Our results pro-
vided evidence that spatial and temporal heterogeneity are widespread in eastern U.S. forests. Temporal
heterogeneity was apparent because species whose observed abundances have increased over recent
decades tended to be the same species for which predicted abundance (derived from individual-level
growth and mortality rates estimated from the recent decades of inventory data) were greater than
observed abundance. Spatial heterogeneity was apparent because species had more competitive param-
eter estimates (higher growth and/or lower mortality) on inventory plots where they are most abundant,

relative to other plots in the same forest type. Spatial and temporal heterogeneity both contributed to
mismatches between predicted dynamics and chronosequence observations. Predictions of canopy struc-
ture (proportion of individuals in the upper canopy vs. the understory) were well-matched to inventory
data, suggesting that the PPA’s simple space-filling algorithm was not an important source of error in
predicting forest dynamics.

© 2014 Elsevier B.V. All rights reserved.
. Introduction

Spatial and temporal environmental heterogeneity plays an
mportant role in community and ecosystem dynamics (Kobe,
996; Chesson, 2000; Clark et al., 2010). However, the implications
f this heterogeneity for developing and testing regional- to global-
cale models of ecological dynamics are largely unexplored. There

s a growing interest in using geographically extensive forest inven-
ory data sets, such as the U.S. Forest Service Forest Inventory and
nalysis (FIA) database (http://www.fia.fs.fed.us/), to parameterize
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and test forest dynamics models (e.g., Purves et al., 2008; Caspersen
et al., 2011; Vanderwel et al., 2013). Due to the limited availabil-
ity of long-term data sets (i.e., continuous measurements of the
same sample plots over multiple decades), model predictions of
forest dynamics are typically compared to chronosequences assem-
bled from inventory data using the “space-for-time substitution”
approach (Pickett, 1989; Lichstein et al., 2009; Walker et al., 2010).
This approach assumes that dynamics that occur over time in a
given location can be inferred from different-aged stands sampled
across space over a short time period. Clearly, this assumption is
problematic if forest dynamics are heterogeneous over the tem-

poral/spatial dimensions of the chronosequence data, as would be
expected due to temporal changes in climate, forest management,
and natural disturbance regimes, as well as unmeasured edaphic
variation across the sampled stands.
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ig. 1. Map of ecoprovinces reported in the U.S. Forest Inventory and Analys
ap-ecoregions-united-states/). Ecoprovince codes beginning with an “M” denote m

IA plots within each ecoprovince shown in the figure into three broad soil types re

The perfect plasticity approximation (PPA) forest dynamics
odel (Adams et al., 2007; Purves et al., 2007, 2008; Strigul

t al., 2008; Dybzinski et al., 2011; Lichstein and Pacala, 2011;
ohlman and Pacala, 2012; Farrior et al., 2013) has been pro-
osed as a candidate forest module for “next-generation” dynamic
lobal vegetation models (DGVMs; Scheiter et al., 2013) that
nclude individual-tree-level processes (e.g., Friend et al., 1997;

oorcroft et al., 2001; Sato et al., 2007). The PPA model holds
romise for global-scale applications because it is mathemat-

cally and computationally tractable, captures the essence of
eight-structured competition among individual trees, and can be
arameterized from widely available forest inventory data. Purves
t al. (2008) parameterized the PPA model for four soil types
n the north-central U.S. using individual-level growth and mor-
ality rates and allometry observed over recent decades. Purves
t al. (2008) then compared dynamics of secondary succession
redicted by the PPA model to those inferred from forest chronose-
uences. Although predicted biomass dynamics were similar to
he chronosequences at the stand level (i.e., all species combined),
here were large discrepancies between predicted dynamics and
bserved chronosequences at the individual species level on some
oil types. Purves et al. (2008) suggested that these mismatches
ay reflect, in part, temporal and/or spatial heterogeneity in forest

ynamics that violate the “space-for-time substitution” assump-
ions (Pickett, 1989; Lichstein et al., 2009; Walker et al., 2010).
urves et al. (2008) provided some anecdotal evidence in support
f this argument, but reported no quantitative tests.

In this study, we used geographically extensive forest inventory
ata to parameterize the PPA model for different forest types in
he eastern U.S. (Fig. 1) and to test model predictions of canopy
tructure and forest dynamics. We were particularly interested
n evaluating the effects of spatial and temporal heterogene-
ty on mismatches between PPA-predicted forest dynamics and
hronosequences assembled from FIA data (hereafter referred to as
model-data mismatches”). Numerous previous studies have docu-

ented shifts in forest dynamics over time or across spatial edaphic

radients (e.g., Kobe, 1996; van Breemen et al., 1997; Allen and
reshears, 1998; Orwig et al., 2001; Kardol et al., 2010). However,
o our knowledge, the implications of these forms of heterogeneity
) database (McNab et al., 2007; http://www.fs.fed.us/rm/ecoregions/products/
ain provinces. The forest types considered in this paper are defined by partitioning
d by FIA: xeric, mesic, and hydric.

for developing and testing broad-scale forest dynamics models
from geographically extensive inventory data have not previously
been explored. Before describing our methods, we briefly introduce
the PPA model, and we explain in more detail how temporal and
spatial heterogeneity may affect model-data comparisons.

1.1. The PPA forest model

Strigul et al. (2008) provide a detailed description of the PPA
model. The key elements of the “flat-top” version of the model
used here (in which we assume that tree crowns have flat tops) are
summarized in Appendix A-1 and in Lichstein and Pacala (2011).
The defining characteristic of the PPA model is the assumption that
individual trees are infinitely plastic in arranging crown area in hor-
izontal space so as to minimize vertical overlap (shading among
individuals). According to this assumption, the upper canopy is
filled by the tallest set of trees whose collective crown area is equal
to the ground area (e.g., the size of a stand or plot in horizontal
space). The height of the shortest tree in this upper layer is labeled
Z*, and subsequent layers may be similarly defined (Bohlman and
Pacala, 2012). Light availability is assumed to be uniform within
each layer and to decrease from taller to shorter layers. Further-
more, in this paper (as in Purves et al., 2008), we assume that the
amount of shade cast by a given layer is independent of the size
or species identity of the trees in the layer. The PPA representation
of vertical forest structure leads to a simple demographic model of
forest dynamics (see Section 2).

1.2. Temporal heterogeneity

Changes in climate, disturbance regimes, and other factors may
cause shifts over time in the relative competitive abilities, and
therefore abundances, of different species. In a forest dynamics
model, a species’ competitive ability reflects its performance dur-
ing the time period that the data used to parameterize the model

were collected. Thus, if the model is parameterized from growth
and mortality rates of different species in inventory plots measured
over a single recent decade (e.g., 2000–2010), the most competi-
tive species during this decade (e.g., the species with the highest

http://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/
http://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/
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Fig. 2. Illustration of how temporal heterogeneity may cause mismatches between
predicted and observed abundance for two competing species. The figure assumes
that between the years 1900 and 2000, the mortality rates of species-A individuals
gradually doubled (decreasing competitive ability), whereas the mortality rates of
species-B individuals gradually deceased by 50% (increasing competitive ability).
These changes in competitive ability cause shifts in abundance over time, as seen
in the difference between chronosequences constructed using the space-for-time
substitution in 1970 and again in 2000. The dashed curve shows the dynamics pre-
dicted by the PPA model described in Section 2, using the average mortality rates
of the species from 1990 to 2000. Thus, the figure illustrates how trends in species
competitive ability can cause mismatches between predicted dynamics (which are
determined by species competitive abilities at the time the model is parameter-
ized) and observed chronosequences (which reflect species competitive abilities
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Fig. 3. Illustration of how spatial heterogeneity may cause mismatches between
predicted and observed abundance for two competing species within a single forest
type. The illustrated example assumes that there are two “hidden” (unrecognized)
edaphic conditions (I and II) that are aggregated when estimating species-level
model parameters within the forest type. Species 1 is the competitive dominant
in the common condition I, and species 2 is the competitive dominant in the rela-
tively rare condition II (which is also the more productive condition), as indicated
in the table of diameter growth rates. Although species 2 (being mostly restricted
to the rare condition II) is in reality rare, its parameter estimates in the aggregated
data set (see table) are more competitive than species 1’s, which results in high
model-predicted abundance of species 2. The aggregated diameter growth rates in
the table assume that 90% of species 1 individuals occur in condition I, and 90% of
species 2 individuals occur in condition II. For simplification, this illustration does
ntegrated over the entire age of the chronosequence). The mismatches between
redicted and chronosequence abundance are in the same direction as the temporal
rend in chronosequence abundance, as shown by the arrows.

rowth rates and/or lowest mortality rates) would be predicted
y the model to be the most abundant species. However, species
bundances in an inventory plot reflect the cumulative result of
ompetition over the entire age of the plot. The most competitive
pecies in a recent decade was not necessarily the most competi-
ive species over the history of stand development. Species whose
ompetitive ability relative to co-occurring species has increased
decreased) over recent decades should tend to have increasing
decreasing) relative abundance over this same period. There-
ore, temporal heterogeneity should result in a positive correlation
etween species’ model-data mismatches and species’ temporal
rends in abundance as measured from inventory data. A simple
llustration of the temporal heterogeneity effect on model-data

ismatches is presented in Fig. 2.

.3. Spatial heterogeneity

Within a given forest type, which we define as a unique com-
ination of the ecoprovinces (Fig. 1) and broad soil types (xeric,
esic, or hydric) reported by FIA for each inventory plot, different

pecies may hold a competitive advantage in different stands due
o specialization on edaphic, climatic, or other environmental vari-
bles that vary spatially within forest types. In this case, aggregating
orest inventory data over spatially variable conditions may intro-
uce parameter estimation errors that lead to mismatches between
redicted and observed forest dynamics. Fig. 3 provides a simple

llustration of how spatial heterogeneity may affect model-data
omparisons. In this hypothetical case, two species compete with
ach other, and each is more competitive in one of two edaphic
onditions within a soil type. As Fig. 3 illustrates, parameters esti-
ated from the aggregated data could lead to reversals in the rank

rder of species abundances between the model and reality.

. Methods

We first briefly describe the publicly available U.S. Forest

nventory and Analysis (FIA) database (http://www.fia.fs.fed.us/),
he primary data source for our analyses. The online FIA database
ncludes a systematic sample of all U.S. forests, on both public
nd private land, dating to as early as ∼1970 in some U.S. states.
not consider how growth and mortality rates vary across canopy layers. In the PPA
model, growth and mortality rates of a species are different across canopy layers, as
described in Section 2.

FIA subdivides the U.S. land area into 2400-ha hexagons, and one
randomly located inventory plot is sampled within each hexagon if
the location fulfills FIA criteria for being considered “forest” (Reams
et al., 2005). The sampling design was standardized across the
U.S. around 1999. In the standardized design, plots consist of four
subplots distributed over a 0.4 ha area. Subplots are 7.3 m radius
and all trees with a diameter at breast height (DBH) ≥ 12.7 cm in
the subplots are measured. Within each subplot, saplings (trees
with DBH > 2.5 and < 12.7 cm) are measured in one 2.1 m-radius
microplot (Bechtold and Scott, 2005). Similar data were collected
at a national scale prior to 1999, but the exact plot design varied
across U.S. states. Although the area actually measured in each
inventory plot is only 0.067 ha, the large number of locations
(∼100,000) includes data on millions of individual trees.

2.1. Evaluating PPA canopy layer predictions

To evaluate the capacity of the PPA model to reproduce observed
patterns in canopy structure, we compared the proportion of indi-
viduals in FIA plots predicted by the PPA model to be in the upper
canopy (PCANPPA; as opposed to the understory) to the corre-
sponding observed proportion calculated from FIA data (PCANFIA).
We calculated PCANPPA and PCANFIA for each species in each forest
type with at least 30 individuals in the FIA data set. To calculate
PCANFIA, we used crown classes reported by FIA for individual
trees: open-grown, dominant, co-dominant, intermediate, or
overtopped (Woudenberg et al., 2010). We excluded FIA plots with
any open-grown trees because such trees indicate non-forest con-

ditions. We calculated PCANFIA using two different assumptions:
(1) we considered only dominant and co-dominant trees to be in
the upper canopy, and (2) we considered dominant, co-dominant,
and intermediate trees to be in the upper canopy. These two

http://www.fia.fs.fed.us/
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ethods provide reasonable lower and upper bounds for PCANFIA.
o calculate PCANPPA, we used allometries to estimate the crown
rea and tree height for each individual tree in each FIA plot (see
ppendix A-2 for detail of allometric parameter estimation). We

hen used these estimated heights and crown areas to calculate the
PA model-predicted height of canopy closure (Z*) for each FIA plot
see Appendix A-4 for Z* calculation), which allowed us to generate
PPA model prediction for the canopy status of each individual:
pper canopy (tree height ≥ Z*) or understory (tree height < Z*).

The above PCAN predictions depend only on the DBH distribu-
ions reported in FIA plots (which are taken as given, rather than
redicted, for the PCAN model-data comparison), the PPA Z* cri-
erion for assigning canopy layers, and the estimated height and
rown-area allometries. Because the above PCAN predictions can
ffect, but are not affected by, the dynamical predictions of the PPA
odel (see Section 2.3), we can assess if PCAN errors are important

ources of error in the dynamical predictions. If this were the case,
hen we would expect forest types with relatively large PCAN errors
o also have relatively large errors in dynamical model predictions.

.2. Parameter estimation

The PPA model requires parameters that describe growth,
ortality, height allometry, crown-area allometry, and fecundity.

ollowing Purves et al. (2008), we assumed a single fecundity value
or all species (number of size-zero individuals produced per unit
anopy area per year). We used the fecundity value 0.01 m−2 yr−1

or all species and forest types, which is similar to the values that
urves et al. (2008) estimated by tuning the PPA model to reproduce
bserved sapling densities in the north-central U.S. Our simplistic
ecundity assumption likely introduces model errors, but is unlikely
o systematically bias our evaluations of the impacts of temporal
nd spatial heterogeneity because simulated dynamics are less sen-
itive to fecundity than to growth and mortality rates (Purves et al.,
008, Appendix 2).

Growth, mortality, and height allometry parameters were fit
o post-1999 FIA data (accessed from http://www.fia.fs.fed.us/ in
ovember 2011). Crown-area allometry parameters were fit to
ata collected during the 1990s by the U.S. Forest Service For-
st Health Monitoring (FHM) program (http://www.fia.fs.fed.us/
ools-data/other data/default.asp). Diameter growth rate (annual
BH increase; cm yr−1) and annual mortality rate (yr−1) are forest-

ype-, species-, and canopy-layer-specific parameters in our study.
rowth and mortality differences across canopy layers account

or some of the size-dependence typically observed in these rates
e.g., Pacala et al., 1994; Canham et al., 2004), but we ignored size-
ependence in diameter-growth and mortality within each canopy

ayer. To assess the impact of this simplifying assumption, we per-
ormed experiments in which diameter growth rates of large trees
eclined according to the “constant area increment law” (Pacala
t al., 1996) and mortality rates of large trees were assumed to dou-
le when the basal-area growth rate reaches its upper limit. These
odifications reduced model-predicted biomass in old stands, but

ad little effect on species relative abundances (and thus had lit-
le effect on our species-level evaluations). We only report results
ased on the simpler size-independent assumptions. We assumed a
orest-type- and species-specific height-DBH allometry of the form

= h1DBHh2 , where H is tree height (m), h1 and h2 are parameters.
llowing for canopy-layer-specific height-allometry parameters
id not significantly improve fits to data. Due to limited sample
izes in FHM data, we fit crown-area allometries at the species-level

nly, and we applied these to all forest types and all canopy layers.
e assumed an allometry for individual crown area (m2) of the

orm CA = c1DBHc2 , where c1 and c2 are parameters (see Appendix
-2 for details).
elling 279 (2014) 89–99

We estimated growth, mortality, and height allometry parame-
ters using maximum likelihood. Because selective logging can affect
stand biomass dynamics and the growth and mortality rates of
unharvested trees, we estimated model parameters and performed
simulations based on two different data sets: Unfiltered and No-
Harvest. For the Unfiltered case, parameter estimates for growth,
mortality, and height allometry were based on all non-plantation
(naturally regenerated) post-1999 FIA plots. For the No-Harvest
case, we excluded FIA plots where any trees were reported to
be affected by logging during the remeasurement interval (∼5
years). For crown-area allometries, we adopted a taxonomically-
structured hierarchical Bayesian modeling approach (Lichstein
et al., 2010) due to the limited sample sizes in the FHM dataset.
Methods for estimating parameters are described in detail in
Appendix A-2. Forest dynamics simulations in each forest type
included only those species whose maximum likelihood estimates
of growth and mortality rates for both the upper-canopy and under-
story layers were robust (i.e., numerical convergence of maximum
likelihood estimates and confidence intervals). Parameter esti-
mates for these species, which included the most common species
in each forest type, are reported in the tables in Appendix A (Tables
S1–S4).

2.3. PPA simulations

In this study, the maximum number of species included in a
simulation was 10. For each data set (Unfiltered and No-Harvest)
in each forest type, we performed 100 simulations, each initialized
with a nominal stand age of 15 years and continuing to an age of
120 years. The 100 replicate simulations propagated uncertainty
in initial conditions (size distribution and species composition of a
15 year-old forest) and parameter estimates for growth, mortality,
and allometry (see Appendix A-3 for details on simulation methods
and error propagation). The initial condition in each of the 100 sim-
ulations combined information from randomly selected young FIA
plots (see below), and each simulated community was assumed to
be horizontally homogeneous (i.e., the PPA Z* criterion was applied
uniformly to the entire simulated community at each time step
to assign individuals to different canopy layers; see Appendices
A-1 and A-4 for more details). Thus, each simulation represents
the dynamics of a single forest stand, starting from a young stand
whose species composition reflects the population of trees across
the entire forest type.

Following Purves et al. (2008), we used the PPA to simulate
the dynamics of cohorts, which are defined by three properties:
species identity, individual size (assumed equal for all individuals in
a cohort), and spatial density (number of individuals per unit area).
We initialized cohorts of a 15-year-old stand of a given forest type
by (1) randomly selecting 50 plots with replacement from 10–20
year-old post-1999 FIA plots in a given forest type, (2) defining one
initial cohort for each individual tree in these selected plots using
the individual’s species identity, DBH, and spatial density (ha−1 val-
ues reported by FIA divided by 50, the number of plots aggregated
in our initial condition), and (3) applying a correction factor to the
above spatial density to account for the fact that not all species
that occurred in FIA plots were included in model simulations (see
Appendix A-3 for details).

We simulated the dynamics from 15 to 120 years of age with an
annual time step, starting with the initial cohorts described above.
Within each time step, we (1) used the PPA Z* criterion to assign
each cohort to a canopy layer (we allowed for multiple understory
layers following Bohlman and Pacala, 2012), (2) updated the DBH

and density of each cohort according to its growth and mortality
rates, respectively, and (3) added new size-zero cohorts to reflect
reproduction. We considered several reproduction scenarios, all of
which included as the main form of reproduction the product of the

http://www.fia.fs.fed.us/
http://www.fia.fs.fed.us/tools-data/other_data/default.asp
http://www.fia.fs.fed.us/tools-data/other_data/default.asp
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ecundity rate (per-unit sun-exposed crown area) and the crown
rea of a given species in the top canopy layer (Purves et al., 2008).
he alternative scenarios included different treatments of local vs.
egional seed rain, but all yielded similar results (see Appendix A-
for more details). We also considered plot-scale simulations in
hich the initial condition reflected a single FIA plot, rather than

n aggregate of 50 randomly selected plots. We used the forest-
ype-level parameter estimates for these plot-scale simulations,
ecause insufficient data were available to estimate parameters at
he plot scale. Results of the plot-scale simulations are not reported,
s they were qualitatively similar to the aggregate forest-type-level
imulations.

We compared the PPA-predictions to FIA chronosequences of
boveground biomass (AGB; Mg C ha−1) dynamics at both com-
unity and species levels (where “community” means AGB of all

pecies combined). We estimated AGB of individuals from DBH in
oth the PPA predictions and FIA chronosequences using published
iomass allometries (Jenkins et al., 2003) and assuming that C
omprises 50% of biomass. We applied correction factors to species-
evel FIA chronosequences to account for species-level differences
etween the model and data caused by the exclusion of rare species
rom our simulations (see Appendix A-3 for details). We quantified
ommunity- and species-level model-data mismatches using the
ercent bias (PBIAS; Yapo et al., 1996):

BIAS =
∑

(PPAt − FIAt)∑
FIAt

× 100% (1)

here PPAt is the mean PPA-simulated AGB value in a forest of
ge t, and FIAt is the mean AGB value at age t in the FIA chronose-
uence. PBIAS values near zero indicate no systematic tendency for
redictions to over- or underestimate FIA chronosequence values,
hereas positive and negative values of PBIAS indicate over- and
nderestimation, respectively (Yapo et al., 1996).

.4. Evaluating the impacts of heterogeneity on model-data
ismatches

As described above, temporal heterogeneity should lead to a
ositive correlation between species-level model-data mismatches

n AGB (quantified by PBIAS) and temporal trends in species abun-
ance. For example, species with highly competitive PPA model
arameter values (estimated from post-1999 inventory data) but

ow abundance in FIA chronosequences (which reflect ∼100 years
f forest dynamics) should have positive PBIAS, as well as increasing
elative abundances over time. To test this hypothesis, for each for-
st type we calculated the relative abundance (proportion of total
ommunity biomass) of each species in the FIA data for the pre- and
ost-1999 time periods, and we quantified the temporal abundance
rend as the ratio of post-1999 abundance to pre-1999 abundance.

e restricted these calculations to 20–40 year-old plots in each
ime period, because 20 years should be long enough for differ-
nces in sapling growth and mortality rates (as opposed to earlier
hases of recruitment, such as seed rain) to strongly affect patterns

n sapling abundance, while 40 years should be young enough for
bundances to be largely determined by recent individual perfor-
ance (as opposed to historical factors operating over longer time

cales).
To evaluate the effects of spatial heterogeneity on model-data

omparisons, we hypothesized that if spatial environmental (e.g.,
daphic) heterogeneity had a strong impact on forest dynamics,
hen PPA parameters for a given species should be more competi-
ive if estimated only from FIA plots where the species is abundant,

ompared to parameter estimates obtained from all data aggre-
ated across a given forest type. To test this hypothesis, we focused
n PPA predictions for the most abundant species in each of two
tand-age classes in each forest type: 40–60 and 80–100 years old.
elling 279 (2014) 89–99 93

Age classes younger than 40 years do not allow for useful tests
because predicted abundances in young stands are primarily deter-
mined by model initial conditions drawn from 10–20 year-old FIA
plots. For each focal species in each forest type, we defined its high-
abundance data set (DATAHA) as the subset of FIA plots in its top
25th abundance percentile. We refer to the parameter estimates
derived from DATAHA as �HA. Similarly, we refer to the complete
set of FIA plots in each forest type and the associated parame-
ter estimates as DATAALL and �ALL, respectively. We tested two
predictions for both 40–60 and 80–100 year-old age classes: the
dominant (i.e., most abundant) FIA species should (1) be correctly
predicted by �HA more often than by �ALL; and (2) have higher
predicted abundance in simulations using �HA compared to �ALL.
Within each pair of simulations (�HA vs. �ALL), the initial cohorts
and the list of species included in the simulations were identical
(i.e., we only included species for which �HA parameter estimates
were available). We repeated these simulation experiments using
three different types of initial conditions: 15-year-old DATAALL
stands, 15-year-old DATAHA stands, and zero-biomass stands. Ini-
tial cohorts for the two 15-year-old stand conditions were created
the same way as described above (see Section 2.3). In the zero-
biomass case, there was no initial cohort and colonization was
solely from regional seed rain. For each type of initial condition,
we performed 100 replicate simulations to propagate uncertainty
in parameter values and (in the non-zero-biomass cases) initial
conditions.

3. Results

3.1. Canopy layer predictions

The PPA accurately predicted PCAN. For the No-Harvest data,
the overall PCANPPA (all species and forest types pooled) was
45.4%, which was near the midpoint of the lower (35.7%; dominant
and co-dominant crown classes) and upper (55.3%; dominant, co-
dominant, and intermediate crown classes) estimates for PCANFIA.
At the forest type level, 10 out of 12 forest types had a PCANPPA
that was within the bounds of PCANFIA. The errors, defined as the
difference between PCANPPA and the midpoint of the two PCANFIA
estimates, are only 4.7% on average and have no significant over-
or under-estimation tendency (P-value = 0.76 for the null hypoth-
esis that over- and under-estimations are equally likely). When
species within forest types were examined, PCANPPA was within
the bounds of PCANFIA in 63.2% out of 627 cases (Fig. 4). For the
abundant species (113 cases), PCANPPA was within the bounds of
PCANFIA 80.5% of the time (Fig. 4). The results for the Unfiltered data
(Fig. S1) were similar to the No-Harvest results described above.

Errors in PCANPPA were not correlated with the AGB mismatch
index PBIAS (Eq. (1)) at either community or species levels. For the
No-Harvest case, the community-level (across forest types; n = 12)
rank correlation was 0.19 (P-value = 0.56), and species-level (within
forest types; n = 8–10) rank correlations ranged from −0.52 to 0.52
(P-values ≥ 0.13). The species-level rank correlation across all forest
types combined was −0.05 (P-value = 0.56; n = 113). Similarly, for
the Unfiltered case, errors in PCANPPA were not correlated with
PBIAS at either community or species levels (detailed results not
reported).

3.2. PPA predicted dynamics vs. FIA chronosequences of
aboveground biomass

For the No-Harvest data, PPA predicted greater community AGB

than observed in FIA chronosequences (Fig. 5a). PBIAS was positive
in 12/12 cases and greater than 25% in 9/12 cases (Fig. 6). In con-
trast, for the Unfiltered data, PPA predictions of community AGB
were similar to FIA chronosequences (Fig. 5b), with 11/16 forest
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Fig. 4. Predicted vs. observed proportion of individuals in the upper canopy. Codes in the top left of each panel identify the forest type, defined by a combination of an FIA
ecoprovince (Fig. 1) and soil type (x = xeric; m = mesic; h = hydric). In each forest type, the predicted proportion (PCANPPA) was calculated by applying the PPA Z* criterion to
individual FIA plots to predict the canopy status (upper canopy vs. understory) of individual trees. Upper bounds of the observed proportion (PCANFIA) were calculated by
assigning the FIA crown classes dominant, co-dominant, and intermediate to the upper canopy. Lower bounds for PCANFIA were calculated by assigning only the dominant
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included in our simulations), and gray symbols refer to rare species (excluded from
ower-right corner of each panel (PCANPPA vs. PCANFIA range). Results are for the No

ypes having |PBIAS| less than 25% (Fig. 6). For the well-matched
orest types (|PBIAS| < 25%), PPA-predicted tree size distributions
or mature forest (95 years old) were consistent with FIA data,
hereas for most poorly-matched forest types, PPA size distribu-

ions showed elevated tree densities (relative to FIA data) in large
BH classes (Fig. 7 for No-Harvest data and Fig. S2 for Unfiltered
ata). “Humps” in large DBH classes in PPA size distributions reflect
he simulation initial conditions, and indicate that the simulated 95
ear-old forests in Fig. 7 and Fig. S2 are still far from the monoton-
cally decreasing equilibrium size distribution (Strigul et al., 2008).

For both the No-Harvest data and the Unfiltered data, large
ismatches in community AGB were often primarily due to one

r two species with much higher AGB in PPA simulations com-
ared to FIA chronosequences (e.g., Fig. 8c). In the nine No-Harvest
ases with PBIAS > 25%, Liriodendron tulipifera had much greater
redicted than observed AGB in seven cases; and Pinus strobus
ad higher predicted AGB in four cases. In the five Unfiltered cases
ith PBIAS > 25%, these two species were associated with large AGB
ismatches in four and three cases, respectively. Among the for-

st types with a good community-level match between PPA and
IA, some also had good species-level matches (e.g., Fig. 8a), while
thers had poor species-level matches (e.g., Fig. 8b).

.3. Impact of temporal heterogeneity on model-data mismatches
Species-level PBIAS and temporal trends in species rela-

ive abundance were positively correlated in most forest types,
hich supports the Temporal Heterogeneity Hypothesis. For the
o-Harvest data, 11 out of the 12 forest types had positive rank cor-

elations between PBIAS and the abundance trend (P-value = 0.003
or null hypothesis that positive and negative rank correlations are
qually likely) (Fig. 9). With all forest types combined, the rank

orrelation between PBIAS and the abundance trend was 0.37 (P-
alue = 5.1 × 10−5; n = 113). For the Unfiltered data, FIA records for
he pre-1999 period were available for only 14 out of 16 forest
ypes. Of these 14 forest types, 12 showed positive rank correlations
nts a single species in a given forest type. Black symbols refer to common species
lations). The forest-type-level proportions (all species pooled) are reported in the
est data set. Results for the Unfiltered data are in Fig. S1.

between PBIAS and the abundance trend (P-value = 0.006 for null
hypothesis that positive and negative rank correlations are equally
likely) (Fig. 9). With all forest types combined, the rank correlation
was 0.33 (P-value = 1.2 × 10−4; n = 130).

3.4. Impact of spatial heterogeneity on model-data mismatches
The results also show that spatial heterogeneity contributes

to the model-data mismatches: PPA model predictions for the
observed dominant species were more accurate when model
parameters in a given forest type were estimated from FIA plots
where the dominant species was most abundant (parameters �HA)
rather than from all plots (parameters �ALL). In terms of correctly
predicting the identity of the FIA-observed dominant species, out
of all the 12 cases examined (No-Harvest or Unfiltered × two age
classes × three simulation initial conditions), �HA outperformed
�ALL in 10 cases and performed equally well in the other two
cases (Table 1). Predicted abundance for the FIA-observed domi-
nant species was higher in simulations with �HA compared to �ALL
in all 12 cases (Table 1).

4. Discussion

Our analyses indicate a good match between PPA model pre-
dictions of canopy structure and observations, but often poor
matches between PPA model predictions of community (stand-
level) biomass and species composition. As explained below,
mismatches between predicted and observed stand-level biomass
are at least partially due to overly simplistic assumptions of
size-independent growth and mortality, which could easily be
addressed in future versions of the PPA model. In contrast, species-

level model-data mismatches are probably primarily due to spatial
and temporal heterogeneity in species demographic rates, which
are more difficult to address. Below, we discuss these results and
their implications in details, and conclude by discussing alternative



T. Zhang et al. / Ecological Modelling 279 (2014) 89–99 95

Fig. 5. Predicted (PPA; solid curves and shading) and observed (FIA data; points and error bars) community-level aboveground biomass dynamics for different forest types
(codes in the top left of each panel). Panel (a) is for the No-Harvest case and (b) is for the Unfiltered case. Individual tree growth and mortality rates for PPA simulations
were parameterized from post-1999 FIA plots (∼5 year remeasurement interval), and simulations were initialized with data from 10–20 year-old FIA plots. To propagate
u ted 10
g eans
o

s
m

4

o
t
(
w
d
c
A
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trategies to developing and testing broad-scale forest dynamics
odels.

.1. Canopy layer predictions

The simple, flat-topped crown shapes assumed here and in most
ther applications of the PPA model yielded accurate predictions of
he proportion of individuals in the upper canopy vs. the understory
PCAN; Fig. 4 and Fig. S1). The minor PCAN errors that did occur

ere not correlated with the degree of mismatch between pre-
icted aboveground biomass (AGB) dynamics and observed AGB
hronosequences. This suggests that model-data mismatches in
GB dynamics are due primarily to reasons other than the PPA
0 times for each forest type. Curves show the mean of these 100 simulations, and
and their 95% confidence intervals in 10-year age classes. See Fig. 4 for explanation

space-filling algorithm (the “Z* criterion”) used to assign trees to
different vertical canopy layers.

The PCAN calculations presented here were derived solely from
the PPA Z* criterion and allometries estimated from individual-
level observations of crown area and tree height. Thus, the canopy
structure tests presented here, like those presented in Bohlman
and Pacala (2012), are completely independent of the test data.
This is in contrast to the analysis of Purves et al. (2007), who used
inverse modeling to fit crown shapes to PCAN observations. In most

cases, our PCAN predictions were within the uncertainty range of
the observations, despite the fact that we ignored intraspecific vari-
ation in height and crown-area allometries due to, for example,
canopy-layer or soil-type effects. Preliminary analyses (not shown)
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Fig. 6. Box plots of the PBIAS mismatch index (Equation 1) for community-level
aboveground biomass (AGB). PBIAS was calculated for each forest type in each data
set (No-Harvest or Unfiltered). Within each forest type, PBIAS reflects the difference
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etween simulated and observed AGB across stand age classes (Fig. 5). Thick bars
how medians, boxes show interquartile ranges, and whiskers show the minimum
nd maximum values.

uggested that these effects were weak, and apparently they are not
eeded to accurately predict species-level canopy layer statistics.

n contrast, the better fit between predicted and observed PCAN
or common species than for rare species (Fig. 4 and Fig. S1) sug-
ests that sampling errors in FIA data contributed to PCAN errors.
ccounting for this source of uncertainty should further reduce the
iscrepancies between predicted and observed PCAN.

.2. Temporal and spatial heterogeneity in forest dynamics
Our results show how temporal non-stationarity in forest

ynamics can cause model-data mismatches, because species
hose abundances have increased over recent decades tended to
ave greater predicted than observed abundance. This is expected

rom non-stationarity if model parameters (e.g., growth and mor-
ality rates) are estimated from recent inventory data and thus

eflect recent competitive abilities, as in our study. Many factors
ay contribute to shifts in the competitive balance among species,

ncluding climate change and shifts in natural and/or human dis-
urbance regimes (Condit et al., 1996; Franklin et al., 2005; Purves

ig. 7. Tree size distributions in mature forest in PPA simulations (95 year-old forest) and
PA simulations in each forest type (codes in the top right of each panel), and gray shad
odes and Fig. 5 for simulation methods. Points and error bars show FIA means and their
esults for the Unfiltered case are in Fig. S2.
elling 279 (2014) 89–99

et al., 2008; Larocque et al., 2011). Identifying the factors lead-
ing to non-stationarity in different eastern U.S. forest types would
be very useful, but also very data demanding, as it would require
multi-decadal time series of both species demographic rates and
environmental variables.

Our results also show that habitat specialization combined with
edaphic variation within broad soil types has significant effects
on forest community composition, because species tend to have
more competitive parameter values in inventory plots where they
are most abundant. This is consistent with previous studies docu-
menting strong effects of edaphic heterogeneity on forest dynamics
(e.g., Kobe, 1996; van Breemen et al., 1997), but is inconsistent
with the alternative hypothesis that spatial variation in species
composition is due primarily to dispersal limitation and stand his-
tory (McCune and Allen, 1985; Hubbell et al., 1999; Hubbell, 2001).
The forest types defined in our study were based on ecoprovinces
and coarse soil types reported by FIA (Fig. 1). Within each of our
forest types, climate, soil, and other factors may be highly vari-
able. In some cases, the causes of this variation may be apparent
and relatively easy to account for (e.g., elevation and topographic
position in mountainous regions), but species competitive abili-
ties may also shift across a landscape due to less obvious forms
of edaphic variation (e.g., Kobe, 1996). A potential solution is to
use a finer soil type classification than the coarse one we adopted
(xeric, mesic, or hydric soil), but this may be difficult due to the
limited number of inventory plots in each soil type. Another option
would be to estimate how growth and mortality rates vary as
continuous functions of quantitative soil variables, such as those
available from the U.S. Department of Agriculture Soil Survey Geo-
graphic (SSURGO) Database (http://soildatamart.nrcs.usda.gov/),
although errors in soil data complicate this approach (Lichstein
et al., 2014).

4.3. Additional factors contributing to model-data mismatches
The above results suggest that temporal and spatial heterogene-
ity contributed to mismatches between predicted dynamics and
chronosequence observations, whereas canopy layer predictions
from the simple flat-top PPA model were not an important source
of error in our forest dynamics simulations. There are multiple

FIA data (90–100 year-old plots). Curves show the mean size distribution from 100
ing spans their 25th and 75th percentiles. See Fig. 4 for explanation of forest type
95% confidence intervals in 5-cm DBH classes. Results are for the No-Harvest case.

http://soildatamart.nrcs.usda.gov/
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Fig. 8. Species-level aboveground biomass (AGB) dynamics in PPA simulations and FIA chronosequences for three selected forest types for the No-Harvest case (see Fig. 5a
for community-level AGB). Within each forest type (row), the five most common species in the FIA data are arranged from left to right in order of decreasing abundance.
(a) Forest type 223:x has a good PPA-FIA match at both community and species levels. (b) Forest type 212:m has a good community-level match but a poor species-level
m ls. See
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dditional factors that could complicate comparisons between
redictions from forest dynamics models and chronosequences
erived from forest inventory data. We now discuss some of the
ost likely sources of error in our model predictions and in forest

hronosequences.
Firstly, errors in parameters describing demographic rates and

llometry may cause model predictions to deviate from reality. For
xample, interspecific differences in fecundity, which we ignored,
ay contribute to model-data mismatches. Sampling errors for rare
pecies may also result in large AGB mismatches if their growth
nd/or mortality rates contain large errors. These large errors may
esult in “super species” in models, with unrealistically high growth
nd/or survival rates. The probability that sampling errors will gen-

ig. 9. Box plots of rank correlations between the species-level aboveground
iomass mismatch index PBIAS (Eq. (1)) and the temporal trend in species abun-
ance (ratio of post-1999 to pre-1999 species relative abundance in 20–40 year-old
IA plots) within forest types. One correlation was calculated across species within
ach forest type (12 No-Harvest forest types; 16 Unfiltered forest types). See Fig. 6
or explanation of box-plot symbols. Asterisks show rank correlations for all forest
ypes combined (P-values = 5.1 × 10−5 and 1.2 × 10−4 for the No-Harvest and Unfil-
ered cases, respectively). The fraction of within-forest-type correlations that are
ositive is significantly different from the expected fraction under the null hypoth-
sis that positive and negative correlations are equally likely (P-values = 0.003 and
.006 for the No-Harvest and Unfiltered cases, respectively).
Fig. 4 for explanation of forest type code and Fig. 5 for explanation of symbols and

erate an apparent super species should increase with the number
of species included in model simulations. We tested for this effect
by sequentially eliminating the rarest species from our simula-
tions, and then re-running the models with a reduced species set
(results not reported). These experiments revealed no correlation
between species number and the degree of model-data AGB mis-
match, which suggests that super species (due to sampling errors)
are not an important source of error in our simulations. This does
not rule out the possibility that sampling errors, via some other
mechanism, may have contributed to model-data mismatches.

Secondly, incomplete information about stand disturbance
history may affect our predictions. For example, although no
harvesting was reported in the No-Harvest plots during their
remeasurement intervals, some of these plots have likely been
previously affected by selective logging, which is likely to influ-
ence long-term stand development. In contrast, for the Unfiltered
case where selectively logged plots were included in mortality rate
estimation, there was good agreement between community-level
AGB predictions and chronosequence observations. Also, depend-
ing on the number of trees that survive a disturbance, the stand
age reported by FIA (mean age of trees in dominant size class;
Woudenberg et al., 2010) could be either the mean age of the sur-
viving trees or an age much closer to zero. The uncertainty in the
reported stand ages and/or problems with the stand-age concept in
uneven-aged forests may introduce noise or systematic errors into
FIA chronosequences.

Thirdly, our assumption of size-independent diameter-growth
and mortality within each canopy layer may be overly simplistic.
For large trees, mortality rates often increase (Lines et al., 2010;
Dietze and Moorcroft, 2011) and diameter growth rates often
decrease (Phipps, 1967; Martínez-Ramos and Alvarez-Buylla,
1998; Martínez Pastur et al., 2007) as diameter increases (depend-
ing on allometry, decreasing diameter growth rates are not
necessarily inconsistent with increasing biomass growth rates;

e.g., Stephenson et al., 2014). As noted in Section 2.2, including
these effects in our model resulted in lower late-successional AGB
predictions than those reported in Fig. 5, but had little impact on
predicted species relative abundances. Thus while the assumption
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Table 1
Evaluating the effects of spatial heterogeneity on model-data comparisons. �ALL refers to parameters estimated from the complete set (ALL) of FIA plots in a given forest type.
�HA refers to parameters estimated from the dominant species’ high-abundance (HA) plots in a given forest type. Tests were performed for all forest types in which parameter
estimates were available for at least two species in both the ALL and HA cases.

Initial conditiona Age class Dominant match test (�HA vs. �ALL)b Dominant abundance test (HA > ALL)c

No-Harvest Age 15, ALL 40–60 No (3/5 vs. 3/5) 5/5
Age 15, HA 40–60 Yes (5/5 vs. 4/5) 5/5
Age 0, none 40–60 Yes (2/5 vs. 1/5) 5/5
Age 15, ALL 80–100 Yes (4/6 vs. 3/6) 6/6
Age 15, HA 80–100 Yes (5/5 vs. 4/5) 5/5
Age 0, none 80–100 No (5/6 vs. 5/6) 6/6

Unfiltered Age 15, ALL 40–60 Yes (6/8 vs. 5/8) 8/8
Age 15, HA 40–60 Yes (8/8 vs. 7/8) 8/8
Age 0, none 40–60 Yes (3/8 vs. 2/8) 8/8
Age 15, ALL 80–100 Yes (7/9 vs. 5/9) 9/9
Age 15, HA 80–100 Yes (8/8 vs. 7/8) 8/8
Age 0, none 80–100 Yes (8/9 vs. 6/9) 9/9

a Three initial conditions are: 15-year-old stands with initial cohorts from 10–20 year-old ALL plots (Age 15, ALL), 15-year-old stands with initial cohorts from 10–20
year-old HA plots (Age 15, HA), and 0-year-old stands with no initial cohorts (Age 0, none).

b “Yes” or “No” indicates whether or not the PPA model can better predict the most abundant species using �HA rather than �ALL. The numerator is the number of forest
t inato

ed abu
t

o
i
s
t
c
e
C
g
w
d

4
d

g
m
m
t
a
F
e
a
i
s
t
b
m
n
h
a
e
b
f
p
t
t
f
(
p
m
m
o
u

ypes in which simulations correctly predict the most abundant species. The denom
c The numerator is the number of forest types in which �HA yielded higher predict

ypes tested.

f size-independent diameter-growth and mortality may have
ntroduced model errors, any such errors appear unrelated to
pecies-level model-data mismatches. Alternatively, the assump-
ion of size-independent diameter growth may be approximately
orrect over recent decades in the eastern U.S. due to growth
nhancement associated with global change (e.g., nitrogen and/or
O2 fertilization; Johnson and Abrams, 2009). In this case, recent
rowth enhancement (which was not accounted for by our model)
ould have contributed to mismatches between PPA-predicted
ynamics and observed chronosequences.

.4. Implications for testing broad-scale models of forest
ynamics

Given the complications that spatial and temporal hetero-
eneity introduce into species-level model-data comparisons, a
ore practical approach to testing and developing forest dynamics
odels at broad geographic scales might be to adopt a functional-

ype-based approach (e.g., Vanderwel et al., 2013), as has been
dopted in most dynamic global vegetation models (DGVMs; e.g.,
oley et al., 1996; Sitch et al., 2003; Krinner et al., 2005). How-
ver, even in this case, we may expect complications due to spatial
nd temporal heterogeneity. For example, without the detailed
nformation needed to account for heterogeneity, it may be unrea-
onable to expect to accurately predict the dynamics of functional
ypes that co-occur within the same landscape (e.g., deciduous
road-leaved trees vs. conifers). In light of these complications, it
ay be useful to perform isolated tests of model structure that are

ot confounded with problems arising from spatial and temporal
eterogeneity. Model structure may be assessed by comparing, for
given set of parameter values, predictions from simplified mod-

ls such as the PPA to more complex models that are considered to
e structurally correct. For example, Strigul et al. (2008) showed,
or a two species-system, that the PPA model yields very similar
redictions to a spatially-explicit individual-based forest simula-
or with phototropic branch growth. A more thorough evaluation of
his nature may be useful for assessing the suitability of simplified
orest dynamics models for adoption in next-generation DGVMs
Scheiter et al., 2013) that seek to represent individual-level com-
etitive interactions. Along with model-data comparisons that span

ultiple temporal and spatial scales (e.g., Randerson et al., 2009),
odel-model comparisons designed to evaluate the consequences

f simplifying assumptions in forest dynamics models may be a
seful step in developing next-generation DGVMs.
r is the number of forest types tested.
ndance of the dominant species than �ALL. The denominator is the number of forest
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