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Abstract 

Background:  Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts 
to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C man-
agement. Specifically, belowground C stocks are currently estimated in the United States’ national greenhouse gas 
inventory (US NGHGI) using nationally consistent species- and diameter-specific equations applied to individual trees. 
Recent scientific evidence has pointed to the importance of climate as a driver of belowground C stocks. This study 
estimates belowground C using current methods applied in the US NGHGI and describes a new approach for merg-
ing both allometric models with climate-derived predictions of belowground C stocks.

Results:  Climate-adjusted predictions were variable depending on the region and forest type of interest, but rep-
resented an increase of 368.87 Tg of belowground C across the US, or a 6.4 % increase when compared to currently-
implemented NGHGI estimates. Random forests regressions indicated that aboveground biomass, stand age, and 
stand origin (i.e., planted versus artificial regeneration) were useful predictors of belowground C stocks. Decreases in 
belowground C stocks were modeled after projecting mean annual temperatures at various locations throughout the 
US up to year 2090.

Conclusions:  By combining allometric equations with trends in temperature, we conclude that climate variables can 
be used to adjust the US NGHGI estimates of belowground C stocks. Such strategies can be used to determine the 
effects of future global change scenarios within a C accounting framework.

Keywords:  Belowground biomass, Carbon accounting, Carbon-climate, Root:shoot ratio, Forest Inventory and 
Analysis

© 2015 Russell et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Background
The management of forest ecosystems and their associ-
ated carbon (C) stocks has become an important global 
strategy for reducing greenhouse gas (GHG) emissions 
and possibly mitigating future effects of climate change 
[1–3]. Societal demands and trends in land use, in com-
bination with future global change scenarios, may reduce 
the amount of C stored in forests and associated wood 
products [4]. As a result, there are substantial knowl-
edge gaps regarding the C implications of various forest 

management activities, which may arise from the com-
plex pathways of C emissions and sequestration in forest 
ecosystems [2, 3]. In addition, the logistical and meth-
odological constraints associated with estimating C in 
certain forest ecosystem components across large areas, 
namely belowground pools, has hampered the develop-
ment of accurate estimates, creating a need for refined 
modeling approaches to quantify belowground C stocks.

From an ecological perspective, the use of plant charac-
teristics such as root to shoot ratio and root mass fraction 
have aided investigators in understanding belowground 
C stocks associated with coarse roots. For example, 
Poorter et al. [5] presented a mean root mass fraction of 
0.21 for temperate and boreal forests and Smyth et al. [6] 
calculated a root to shoot ratio of 0.256 across Canada. 
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These proportions lend insight into partitioning effects 
and belowground C stores. Various studies have exam-
ined the degree to which these ratios are altered under 
various stand and environmental conditions. Litton et al. 
[7] found that partitioning to belowground components 
increased with stand density in lodgepole pine forests 
(Pinus contorta Dougl. ex Loud. var. latifolia Engelm.), 
which may in turn be related to tree size. Root mass frac-
tions have been found to decrease with total plant bio-
mass consistently among angiosperm and gymnosperm 
forests [5, 8]. In tropical systems, 15–20 year-old planta-
tions allocated more C belowground when compared to 
mature broad-leaved forests [9], highlighting the impor-
tance of accounting for management scenarios in assess-
ments of belowground C stores. However, application of 
these findings to forest C accounting activities has been 
limited as few studies measure all components of the C 
budget (e.g., biomass, flux, and partitioning; [7]).

The monitoring of belowground C has incorporated 
a number of these ecological insights using a variety of 
approaches at different scales. Allometric equations 
designed at the individual-tree level are common for 
determining belowground C [e.g., 10, 11]. Throughout 
the United States (US), belowground biomass of coarse 
roots is commonly estimated using the equations of Jen-
kins et  al. [12] as a ratio of total aboveground biomass 
and tree diameter at breast height (DBH; [13]). Although 
allometric equations tend to account for a large portion 
of the apparent variability associated with belowground 
biomass (e.g., R2 values range from 0.77 to 0.96; Litton 
et  al. [11]), there are a few drawbacks to this approach. 
First, these equations tend to rely on DBH and are not 
explicitly constructed to estimate belowground C [14]. 
Secondly, allometric equations have not historically 
incorporated climate information that integrates differ-
ences in ecosystem productivity and allows for evalu-
ations of future climate change scenarios on global C 
cycles. Highlighting this concern, Reich et al. [8] recently 
compiled a global dataset and concluded that forest bio-
mass found in roots was inversely related to mean annual 
temperature, suggesting that climate may act as a driver 
of belowground C allocation.

Globally, there has been an increased interest in recent 
years for refining forest carbon estimation to under-
stand greenhouse gas emissions in support of the United 
Nations Framework Convention on Climate Change [15, 
16]. Forest C stocks in the US are estimated using data 
collected by the US Forest Service, Forest Inventory and 
Analysis (FIA) program. In the current national green-
house gas inventory (NGHGI; [17]), belowground stocks 
are estimated in two stages by first quantifying total 
aboveground biomass using allometric equations then 
estimating a ratio of coarse root to total aboveground 

biomass [12, 13]. As observations of belowground tree 
biomass and C are often limited [14], relying on allo-
metric equations has been necessary to obtain estimates 
from strategic-scale forest inventories such as FIA’s. At 
the same time, the lack of empirical information across 
a diverse array of tree species in temperate forests such 
as those found throughout North America encourages 
researchers to test alternative approaches for quantifying 
belowground biomass and C. Exploring belowground C 
modeling approaches that incorporate climatic attributes 
may both adjust our estimates of coarse root C stocks at 
national scales (i.e., application in the US NGHGI) while 
enhancing evaluations of future climate change scenarios 
on forest C cycles.

The overall objective of this research is to adjust below-
ground C estimation procedures for reporting in the US 
NGHGI. Specific objectives are to (1) estimate below-
ground C stocks by employing individual tree- and stand-
level methodologies, (2) adjust estimates of belowground 
C stocks by combining allometric and climate-derived 
approaches using current and projected climate attrib-
utes, and (3) compare alternative estimation approaches 
for belowground C stocks for future application in the US 
NGHGI.

Results
Estimates of belowground carbon (BGC) from 
approaches currently employed in the US NGHGI 
suggest that C stocks are dependent on geographic 
region and forest type. Mean values of belowground 
carbon in the US greenhouse gas inventory (BGCNG-

HGI) were small in short-statured, open forests such as 
pinyon-juniper and woodland hardwood types (typi-
cally less than 2 Mg ha−1). Mean BGCNGHGI was largest 
in hemlock-Sitka spruce forests in the Pacific Northwest 
[40.76 ±  0.96  Mg  ha−1 (mean ±  SE)] and redwood for-
ests in the Pacific Southwest (59.27  ±  7.06  Mg  ha−1). 
For climate-derived estimates of belowground C, below-
ground carbon from climate-derived models (BGC-
Clim) stock estimates were slightly smaller in magnitude 
compared to BGCNGHGI estimates [e.g., hemlock-Sitka 
spruce (33.82  ±  0.80  Mg  ha−1) and redwood forests 
(45.64 ±  5.44 Mg ha−1)] and generally showed decreas-
ing C at lower latitudes (Fig. 1). On average, BGCClim esti-
mates were 0.60 Mg ha−1 greater than current BGCNGHGI 
models when considering all forest types (Additional 
file 1: Table S1).

The adjustment factors used to align climate-derived 
predictions of belowground C with the US NGHGI 
approach ranged from 0.77 to 1.60 with little variabil-
ity within a region of interest (Fig.  2; Additional file  1: 
Table S1). Equivalence tests used to contrast the two 
approaches for estimating belowground C with a null 
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hypothesis of dissimilarity and a threshold of ±25  % 
were rejected for 20 out of the 78 forest types examined. 
Equivalence tests were generally rejected for forest types 
that displayed relatively low and high BGC stocks, e.g., 
pinyon-juniper and woodland hardwoods (low C stocks) 
and redwood forest types (high C stocks). Mean differ-
ences were generally largest across the Pacific North-
west (Westside), indicating climate-adjusted predictions 
estimated less belowground C compared to allometric-
derived estimates in this region. Generally, negative 
mean differences were observed across most forest types, 
indicating that climate-adjusted models predict greater 
belowground C stocks (e.g., mean percent difference was 
−5.2 % greater across all forest types; Table 1). Compared 
to current NGHGI models, model differences showed 
greater belowground C stocks occurring in the Appala-
chian Mountain region and areas where northern hard-
wood forests are common, e.g., in the upper Midwest 
and northeastern US states. Conversely, areas of smaller 
belowground C stocks were identified across the Pacific 
Northwest and Southeast US (Fig.  3). This was further 
reflected when population estimates were scaled to the 
state level. The states of Oregon and Washington were 
predicted to display the largest negative mean difference 
in belowground C stocks (−10.6 and −10.7  %, respec-
tively). Conversely, the largest mean positive difference 
in belowground C stocks was in the states of Kentucky, 

Tennessee, and Oklahoma (28.0, 26.7, and 22.6 %, respec-
tively). This represents a total estimated increase of 
368.87 Tg of belowground C across the US, or a 6.4  % 
increase when compared to currently implemented 
NGHGI models (Table 2).

Results from the random forests (RF) regressions indi-
cated that aboveground biomass, stand age, and stand 
origin (i.e., planted versus natural regeneration) were 
useful predictors of climate-adjusted models of below-
ground carbon (BGCClimAdj), as measured by their impor-
tance scores (Table 3). These variables accounted for 87 % 
of the total variation in belowground C stocks. Without 
employing aboveground biomass, 47 % of the total vari-
ability was accounted for, indicating that surrogates of 
climate (e.g., latitude and longitude) and knowledge of 
stand structure and management history (e.g., stand age 
and origin) may aid in understanding belowground C 
stocks.

The largest differences in projected live-tree below-
ground C stocks under future mean annual temperature 
(MAT) changes were positive, indicating decreases in 
belowground C stocks up to year 2090 (Fig.  4). Differ-
ences in projected belowground C stocks were simi-
lar across regions, with belowground stocks displaying 
approximately 0.1 Mg ha−1 less C in 2030 than assuming 
current normal climates. In 2090, differences compar-
ing current versus future climates were highest in the 

Fig. 1  Distribution of live-tree belowground C estimates from the model of Reich et al. [8] (BGCClim; Mg ha−1)
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US Northeast, representing 0.50 ±  0.13  Mg  ha−1 less C 
(assuming an RCP8.5 scenario), or a reduction of approx-
imately 3.4 % in belowground C stocks in the region.

Discussion
Live tree belowground C estimated using allometric 
equations developed for individual trees and climate-
specific predictions made at the forest stand level show 
markedly different patterns across various geographic 

regions and forest types in the US. Adjustments to the 
US’ approach to estimating live tree belowground C 
resulted in a C density estimate of 12  Mg  ha−1 across 
the US and a 6.4  % increase in this forest C national 
stock when compared to current estimation strategies 
employed in the US NGHGI.

The largest differences between current and adjusted 
estimates of live tree belowground C were observed in the 
states of Oregon, Washington, and California, indicating 

Fig. 2  Adjustment factors used to amend live-tree belowground C estimates from the current US national greenhouse gas inventory (BGCNGHGI; 
Smith et al. [13]) with climate-derived predictions (BGCClim; Reich et al. [8]) by US region and forest type. Adjustment factors less than and greater 
than one indicate less and more belowground C when climate-derived predictions are used. See Additional file 1: Table S1 for mean belowground C 
values and adjustment factors
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Table 1  Equivalence test results (critical threshold of ±25 %) comparing live-tree belowground C estimates from the cur-
rent US national greenhouse gas inventory (BGCNGHGI) [13] to adjusted estimates (BGCClimAdj)

Region Forest type n BGCNGHGI − BGCClimAdj

Mean difference Mean % difference SE difference Resulta

All regions All forest types 70,126 −0.58 −5.2 0.01 E

Coastal Alaska Aspen-Birch 78 −1.71 −34.5 0.16 NE

Coastal Alaska Fir-Spruce-Mt. Hemlock 342 0.41 3.4 0.02 E

Coastal Alaska Hemlock-Sitka Spruce 571 2.75 10.6 0.07 E

Coastal Alaska Minor types and nonstocked 85 −0.77 −13.8 0.13 NE

Coastal Alaska Spruce-Fir 105 −0.60 −23.0 0.05 NE

Northeast Aspen-Birch 367 −1.58 −18.2 0.05 E

Northeast Elm-Ash-Cottonwood 205 −1.76 −16.9 0.08 NE

Northeast Maple-Beech-Birch 3845 −1.78 −12.8 0.01 E

Northeast Minor types and nonstocked 346 −0.97 −8.5 0.03 E

Northeast Oak-Hickory 2509 −1.67 −11.1 0.01 E

Northeast Oak-Pine 247 −0.68 −5.0 0.02 E

Northeast Spruce-Fir 900 −0.59 −6.6 0.01 E

Northeast White-Red-Jack Pine 380 0.00 −0.1 0.00 E

Northern Lake States Aspen-Birch 2477 −1.82 −28.8 0.02 NE

Northern Lake States Elm-Ash-Cottonwood 971 −1.91 −22.7 0.04 NE

Northern Lake States Maple-Beech-Birch 2956 −2.08 −18.1 0.02 E

Northern Lake States Minor types and nonstocked 460 −0.94 −15.2 0.04 E

Northern Lake States Oak-Hickory 1845 −2.05 −20.0 0.03 E

Northern Lake States Spruce-Fir 1854 −0.51 −8.4 0.01 E

Northern Lake States White-Red-Jack Pine 935 −0.52 −5.5 0.01 E

Northern Prairie States Elm-Ash-Cottonwood 342 −1.88 −19.0 0.06 NE

Northern Prairie States Minor types and nonstocked 465 −1.26 −13.0 0.04 E

Northern Prairie States Oak-Hickory 3265 −1.80 −17.2 0.01 E

Northern Prairie States Oak-Pine 207 −0.76 −9.0 0.03 E

Northern Prairie States Ponderosa Pine 164 −0.54 −7.6 0.03 E

Pacific Northwest, Eastside Douglas-fir 992 0.27 2.3 0.01 E

Pacific Northwest, Eastside Fir-Spruce-Mt. Hemlock 948 0.82 4.5 0.02 E

Pacific Northwest, Eastside Lodgepole Pine 571 −0.37 −4.6 0.01 E

Pacific Northwest, Eastside Minor types and nonstocked 213 −0.91 −33.1 0.09 NE

Pacific Northwest, Eastside Other Western Softwoods 505 −0.06 −0.5 0.00 E

Pacific Northwest, Eastside Ponderosa Pine 1446 −0.36 −4.2 0.01 E

Pacific Northwest, Eastside Western Larch 136 0.65 4.3 0.03 E

Pacific Northwest, Westside Alder-Maple 226 0.18 0.5 0.01 E

Pacific Northwest, Westside Douglas-fir 2130 5.79 16.3 0.09 E

Pacific Northwest, Westside Fir-Spruce-Mt. Hemlock 553 4.27 13.6 0.13 E

Pacific Northwest, Westside Hemlock-Sitka Spruce 552 6.93 16.7 0.16 E

Pacific Northwest, Westside Minor types and nonstocked 355 0.28 1.8 0.01 E

Pacific Southwest California Mixed Conifer 946 2.30 9.9 0.05 E

Pacific Southwest Douglas-fir 139 4.45 14.1 0.27 E

Pacific Southwest Fir-Spruce-Mt. Hemlock 243 2.81 10.7 0.12 E

Pacific Southwest Minor types and nonstocked 116 −0.25 −2.8 0.04 NE

Pacific Southwest Other Western Softwoods 382 −0.16 −2.3 0.01 E

Pacific Southwest Pinyon-Juniper 31 −0.57 −26.7 0.12 NE

Pacific Southwest Ponderosa Pine 242 0.00 0.0 0.00 E

Pacific Southwest Redwood 64 13.63 22.6 1.62 NE

Pacific Southwest Tanoak-Laurel 207 1.51 5.6 0.07 E
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climate-adjusted predictions estimated less belowground 
C compared to allometric-derived estimates in this 
region. Comparatively, this region contains the largest 
belowground C stocks in the US, quantified using model 
imputation strategies [18]. Similar differences but of a 
lesser magnitude were observed across the Coastal Plain 
region in the southeastern US. Such differences in these 
regions (i.e., the Pacific Northwest and Southeast) could 
point to the reliance on the allometric equations driven 
by aboveground metrics (i.e., tree diameter at breast 
height) in these carbon-dense stands. This may especially 
be the case for common tree species in the Pacific North-
west where the development of such allometric relation-
ships is complicated by their relatively large above and 

belowground dimensions. In addition, intensive forest 
management regimes relying on artificial regeneration 
are common throughout these regions such that stand 
origin emerged as a useful predictor of live tree below-
ground C. Such a finding is analogous to recent work 
indicating greater partitioning to belowground compo-
nents in managed plantations compared to natural-origin 
mature forests [9]. These patterns of partitioning may be 
reflective of the increased nutrient demands required to 
sustain the elevated levels of aboveground net primary 
production found in plantation systems [19], particularly 
on sites with lower nutrient capital such as in those found 
across the southeastern US. The importance of variables 
describing forest management regime and other forest 

a  Equivalent (E) or not equivalent (NE)

Table 1  continued

Region Forest type n BGCNGHGI − BGCClimAdj

Mean difference Mean % difference SE difference Resulta

Pacific Southwest Western Oak 778 −0.98 −9.9 0.03 E

Rocky Mountain, North Aspen-Birch 98 −1.46 −32.7 0.15 NE

Rocky Mountain, North Douglas-fir 1659 −0.11 −1.4 0.00 E

Rocky Mountain, North Fir-Spruce-Mt. Hemlock 1467 0.00 0.3 0.00 E

Rocky Mountain, North Lodgepole Pine 828 −0.30 −2.6 0.01 E

Rocky Mountain, North Minor types and nonstocked 331 −0.70 −45.8 0.06 NE

Rocky Mountain, North Other Western Softwoods 329 0.23 2.1 0.01 E

Rocky Mountain, North Ponderosa Pine 499 −0.47 −6.6 0.02 E

Rocky Mountain, North Western Larch 128 0.26 1.7 0.02 E

Rocky Mountain, South Aspen-Birch 647 −1.77 −22.4 0.05 NE

Rocky Mountain, South Douglas-fir 420 −0.41 −3.5 0.01 E

Rocky Mountain, South Fir-Spruce-Mt. Hemlock 1061 −0.34 −3.4 0.01 E

Rocky Mountain, South Lodgepole Pine 359 −0.41 −4.0 0.01 E

Rocky Mountain, South Minor types and nonstocked 166 −0.76 −16.7 0.07 NE

Rocky Mountain, South Pinyon-Juniper 647 −0.41 −28.9 0.02 NE

Rocky Mountain, South Ponderosa Pine 924 −0.45 −6.1 0.01 E

Rocky Mountain, South Woodland Hardwoods 345 −0.78 −40.0 0.05 NE

South Central Elm-Ash-Cottonwood 737 −1.68 −22.7 0.05 NE

South Central Loblolly-Shortleaf Pine 3291 0.30 3.3 0.00 E

South Central Minor types and nonstocked 842 −0.94 −11.6 0.03 E

South Central Oak-Gum-Cypress 1264 −1.02 −8.1 0.02 E

South Central Oak-Hickory 5806 −2.61 −32.3 0.03 NE

South Central Oak-Pine 1093 −0.81 −10.2 0.02 E

South Central Pinyon-Juniper 298 −0.30 −41.7 0.02 NE

South Central Woodland Hardwoods 268 −0.28 −59.6 0.02 NE

Southeast Elm-Ash-Cottonwood 173 −1.22 −12.7 0.07 E

Southeast Loblolly-Shortleaf Pine 2667 0.39 4.1 0.01 E

Southeast Longleaf-Slash Pine 1314 0.42 5.2 0.01 E

Southeast Minor types and nonstocked 286 −0.68 −8.4 0.04 E

Southeast Oak-Gum-Cypress 1311 −0.68 −5.0 0.01 E

Southeast Oak-Hickory 3077 −1.34 −10.9 0.01 E

Southeast Oak-Pine 982 −0.27 −2.5 0.01 E
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conditions such as stand age in our random forests model 
output suggests that accounting for these aspects of for-
est origin and development is useful for understanding 
broad scale patterns in live tree belowground C.

The utilization of nationally consistent allometric 
equations [e.g., 12, 20] provides a general assessment 
of current C stocks. However, the appeal of employing 
BGCClimAdj estimates in the US NGHGI centers on utiliz-
ing standard forest inventory data collected in national 
forest inventories along with climate information. It 
is important to note that the model of Reich et  al. [8] 
used here may be considered an empirical model. Such 
an empirical model may work well for data-rich coun-
tries with established national forest inventories. Other 
strategies, including process models, could potentially 
be employed to examine the carbon–climate relation-
ship in forests. Incorporation of climate data enables 
evaluation of future climate change scenarios [e.g., 21] 
and their impacts on C monitoring efforts (e.g., United 
Nations Framework Convention on Climate Change sub-
missions). As there are few studies that allow empirical 
observation of “true” coarse root C given the time and 
effort involved in destructively sampling belowground 
components, model validation procedures are limited for 
assessments at national scales. As an alternative, model-
based approaches can be specified to be dynamic by 

incorporating future forest conditions and global change 
scenarios to determine their implications on C stocks and 
sequestration patterns. Such an approach using current 
climate conditions could provide general estimates of C 
stocks with associated uncertainty bounds for the tem-
perate forests which occupy the US.

The majority of forest types displayed negative mean 
differences between current NGHGI and climate-
adjusted models, indicating greater live tree below-
ground C stocks when using the adjusted models. The 
larger stocks in climate-adjusted models is partially a 
reflection of the ability of this framework to account for 
temperature-related shifts in patterns of belowground 
allocation within a species; a relationship held constant 
in current NGHGI models. In particular, a key compo-
nent of the climate-adjusted model is an increased level 
of belowground allocation with decreasing temperatures 
given increasing nutrient limitation with colder tempera-
tures [8]. These adjustments are reflected in the greater 
climate-adjusted estimates for northern latitude and high 
elevation forests (Fig. 2). Given the importance of climate 
variables in driving other belowground processes such as 
coarse root decomposition [22], the integration of these 
variables in models for describing other belowground 
stocks (e.g., dead roots) may not only aid in understand-
ing C stock differences across large geographic scales 

Fig. 3  Distribution of differences between live-tree belowground C estimates and adjusted estimates (BGCNGHGI − BGCClimAdj; Mg ha−1), with red 
colors indicating higher estimated C and purple colors less C
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but may also inform our understanding of other below-
ground processes.

The forecast of decreases in belowground C stocks up 
to year 2090 across all US regions and forest types is a 
function of projected increases in MAT and its role in 
the distribution of coarse root C stocks. National pat-
terns in C stocks observed with US data indicated similar 
trends to the models presented in Reich et al. [8] showing 
that the proportion of total biomass to roots is greater in 
increasingly cold climates. Such assessments conducted 
in this analysis include a dynamic climate but assume 
constant aboveground biomass stocks, and a stand ori-
gin and phylogeny (e.g., conifer- or hardwood-dominated 
forest type). For example, the economic incentives of 
increasing C stocks to meet increased demand for wood 
for bioenergy [e.g., 23] has the potential to alter the pro-
portion of planted compared to natural-origin stands 
at a national level. Although aridity was not found to 
influence the global distribution of coarse root biomass 
[8], what role might precipitation and/or its interaction 
with temperature and other climate variables play in 
determining future C sequestration patterns and stocks? 
Through designing national-scale models that incorpo-
rate climate parameters, the ability to quantify C stocks 
using relationships observed between climate and C 
dynamics is possible but is otherwise impracticable using 
allometric equations alone.

Table 2  Estimates of  belowground carbon stocks (Tg) 
and  associated sampling errors (SE; %) for  current US 
national greenhouse gas inventory (BGCNGHGI) [13] 
and adjusted estimates (BGCClimAdj) by state

State BGCNGHGI (SE) BGCClimAdj (SE) Mean % 
difference

Alabama 176.23 (1.38) 198.13 (1.4) 12.4

Alaskaa 234.3 (2.63) 252.84 (2.69) 7.9

Arizona 31.93 (4.27) 34.94 (4.2) 9.4

Arkansas 142.92 (1.61) 164.02 (1.59) 14.8

California 456.22 (1.37) 428.69 (1.27) −6.0

Colorado 128.66 (1.92) 139.28 (1.9) 8.3

Connecticut 25.9 (3.51) 28.67 (3.5) 10.7

Delaware 4.66 (6.09) 5.13 (6.11) 10.1

Florida 105.88 (2.14) 111.18 (2.15) 5.0

Georgia 191.36 (1.48) 198.67 (1.48) 3.8

Idaho 209.16 (1.77) 212.81 (1.75) 1.7

Illinois 38.95 (2.86) 45.65 (2.86) 17.2

Indiana 45.67 (1.88) 53.27 (1.88) 16.6

Iowa 18.21 (4.21) 21.34 (4.22) 17.2

Kansas 14.7 (4.2) 17.26 (4.23) 17.4

Kentucky 109.67 (1.83) 140.42 (1.84) 28.0

Louisiana 133.93 (1.65) 145.01 (1.64) 8.3

Maine 127.35 (1.42) 140.69 (1.41) 10.5

Maryland 35.24 (3.31) 38.9 (3.31) 10.4

Massachusetts 43.72 (2.55) 47.78 (2.55) 9.3

Michigan 150.1 (1.38) 176.7 (1.39) 17.7

Minnesota 82.15 (1.35) 98.24 (1.34) 19.6

Mississippi 179.82 (1.3) 199.05 (1.32) 10.7

Missouri 103.99 (1.46) 121.17 (1.46) 16.5

Montana 197.84 (1.43) 202.28 (1.42) 2.2

Nebraska 6.64 (7.21) 7.65 (7.27) 15.2

Nevada 4.21 (13.01) 4.71 (12.85) 11.9

New Hampshire 62.93 (1.82) 69.28 (1.82) 10.1

New Jersey 23.15 (3.71) 25.57 (3.73) 10.5

New Mexico 45.86 (3.43) 50.12 (3.35) 9.3

New York 235.57 (1.05) 262.74 (1.05) 11.5

North Carolina 203.82 (1.23) 214.85 (1.24) 5.4

North Dakota 2.55 (11.19) 2.98 (11.26) 16.9

Ohio 93.07 (1.75) 108 (1.75) 16.0

Oklahoma 47.62 (2.54) 58.36 (2.54) 22.6

Oregon 478.52 (1.03) 427.63 (0.99) −10.6

Pennsylvania 214 (1.1) 238.49 (1.1) 11.4

Rhode Island 4.96 (5.77) 5.44 (5.76) 9.7

South Carolina 109.52 (1.92) 112.13 (1.93) 2.4

South Dakota 7.86 (6.02) 8.68 (6.02) 10.4

Tennessee 160.47 (1.27) 203.39 (1.29) 26.7

Texas 129.47 (1.68) 149.23 (1.62) 15.3

Utah 34.85 (3.9) 38.62 (3.84) 10.8

Virginia 191.11 (1.18) 205.22 (1.19) 7.4

Washington 410.46 (1.29) 366.61 (1.26) −10.7

West Virginia 169.05 (1.18) 188.03 (1.18) 11.2

a  Coastal Alaska, only

Table 2  continued

State BGCNGHGI (SE) BGCClimAdj (SE) Mean % 
difference

Wisconsin 108.69 (1.14) 128.72 (1.13) 18.4

Wyoming 65.9 (5.54) 69.14 (5.49) 4.9

Total 5798.84 6167.71 6.4

Table 3  Summary of  random forests model output 
and  their importance scores (% IncMSE) for  predicting 
refined estimates belowground C using basic stand struc-
ture, management, and physiographic variables

Variable % IncMSE Variable % IncMSE

With aboveground biomass Without aboveground biomass

Aboveground biomass 34.5 Stand age 33.8

Stand age 20.7 Stand origin 29.1

Stand origin 19.0 Longitude 27.5

Latitude 16.8 Elevation 19.8

Longitude 15.9 Latitude 16.4

Elevation 13.6 Hopkins index 14.8

Hopkins index 12.8

R2 0.87 R2 0.47

RMSE (Mg C ha-1) 3.72 RMSE (Mg C ha-1) 7.47
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A particular concern from a physiological perspective 
relies in assessing carbon allocation tradeoffs in concert 
with changing climates. Changing allocation to below-
ground components can alter biomass accumulation and 
nutrient uptake [9], but without an assessment of addi-
tional carbon stocks from other pools (e.g., foliage and 
soil components), the role that future climate may play 
in determining overall stocks may be somewhat limited. 
Our approach in using current belowground C stocks 
from temperate forests across the US, with a range of 
current and projected climates, management histories, 
and stand structures, serves as a preliminary investi-
gation of the role that climate may play on coarse root 
systems (e.g., Fig. 4). Carbon allocation to soil microbial 
biomass may be limited at northern sites with cooler 
climates [24] which would seemingly influence nutrient 
uptake and allocation within tree components. Process 
models [e.g., 25] may be well suited to examine such car-
bon allocation-climate tradeoffs, presenting a different 

approach compared to the empirical models examined 
here. In the interim, additional biomass data collected on 
all components from a range of species across sites with 
different climate regimes and management histories will 
aid in improving our understanding of carbon allocation 
patterns related to climate [26].

The finding that surrogates of climate (e.g., latitude and 
longitude) and knowledge of forest structure and man-
agement history (e.g., stand age and origin) were use-
ful in predicting belowground C is encouraging when 
considering approaches to constructing a NGHGI. For 
example, any new strategy for estimating forest C pools 
in the US NGHGI requires “back casting” estimates to 
the 1990 reporting year [17]. Obtaining climate data from 
past years at large geographic scales may present less of a 
barrier to refinement of NGHGIs than other efforts (e.g., 
in situ field inventories in the 1990’s) to reduce the uncer-
tainty associated with estimates of forest C and harvested 
wood products. Other nations could similarly adjust their 

Fig. 4  Regional differences in projected live-tree belowground C stocks compared to climate-sensitive estimates of belowground C derived from 
30-year normal conditions (1960–1990). Error bars denote one standard deviation
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C accounting practices using insight from this analysis to 
determine belowground stocks. Regardless of whether 
or not tree-level information from a national forest 
inventory is available, incorporating indicators of forest 
management history (e.g., proportion of planted versus 
natural origin stands) and variability in climate within a 
country (e.g., general trends in temperature), estimates 
of belowground C stocks could be developed that theo-
retically represent site and regional differences. In an era 
where destructive samples of belowground tree compo-
nents is incomplete across the world’s forests, estimation 
strategies that merge the attributes of both allometric 
equations and C–climate relationships may refine forest 
C stocks estimations especially given emerging science 
that supports the relationships between climate, forest 
biomass, and C pools [1, 3, 8, 27].

Conclusions
Numerous findings emerged from our investigation by 
incorporating climate variables into the estimation of 
belowground C stocks. First, climate variables can be 
used to adjust the US NGHGI estimates of belowground 
C stocks. Specifically, adjustment factors were specified 
to amend current coarse root C stocks estimated from 
allometric equations by incorporating mean annual tem-
perature at various locations across the US. Second, for 
the US NGHGI, incorporating mean annual temperature 
increased national belowground C stocks by 6.4  %. In 
contrast, coarse root C stocks were projected to decrease 
through 2090, primarily due to lower partitioning to 
belowground components under warmer conditions. 
Third, whether or not a forest was planted or from natural 
origin, and its stand age were influential variables in deter-
mining belowground C stocks. Future work that integrates 
both climate and stand origin will increase our ability to 
predict belowground C stocks across regions containing 
a mixture of management and climate regimes. Finally, 
as a means of refining NGHGIs, climate-adjusted mod-
els depicting belowground C stocks should be adopted to 
incorporate the impacts of future global change and man-
agement scenarios on C sequestration patterns and stocks.

Methods
Study area
Forests across the US range are characterized by four 
major ecoclimatic zones, including polar, temper-
ate humid, arid, and tropical humid types [28, 29]. The 
study area investigated here included forestlands across 
the contiguous US, spanning approximately 24° latitude 
(LAT) and 58° longitude (LONG) in addition to coastal 
Alaska (mean coordinates 57.87°N, 138.60°W). Mean 
annual temperature (MAT) ranged from −3.0 to 24.9 °C 
and precipitation (MAP) from 18 to 420  cm [30, 31]. 

Nine broad geographic regions were identified across the 
study area, ultimately containing 78 unique forest types 
[13] (Additional file 1: Table S1).

Forest Inventory and Analysis data
The FIA program within the US Forest Service monitors 
forests by establishing permanent sample plots across 
the US in three phases [32]. During the inventory’s first 
phase, sample plot locations are established at an inten-
sity of approximately 1 plot per 2400 ha. If the plot lies 
partially or wholly within a forested area, field person-
nel visit the site and establish a phase two (P2) inventory 
plot. Standard P2 inventory plots consist of four 7.32-m 
fixed radius subplots for a total plot area of approxi-
mately 0.07  ha where standing tree and site attributes 
are measured. Live trees with a DBH of at least 12.7 cm 
are measured on these subplots. Within each subplot 
a 2.07-m microplot is established where saplings with a 
DBH between 2.5 and 12.7 cm are measured.

All data were obtained from the publically-available 
FIA database (FIADB; [33]; http://apps.fs.fed.us/fiadb-
downloads/datamart.html; download date 14 May 2014). 
If an FIA plot was remeasured at any point, only the most 
recent measurement was used in the analysis. Using the 
individual tree measurements, aboveground live-tree 
biomass (BIOAG; Mg  ha−1) was estimated by summing 
the bole, stump, top (excluding foliage), saplings, and 
woodland tree species (primarily those from dryland for-
ests) components of each plot. Additional condition-level 
information including stand age (STDAGE; years) and a 
binary variable depicting stand origin (NAT; 1 = natural, 
0 =  artificial regeneration) were subsequently analyzed 
for each plot. As a bioclimatic measure, The Hopkins 
index ([34]; HI) standardizes the onset of spring for a 
given region and was computed for each FIA plot sam-
pled relative to the mean LAT (40.35), LONG (−95.84), 
and elevation (ELEV; 2283 feet):

The HI variable assumes that spring is delayed by one 
day for each 100-foot rise in ELEV, four days for each 
1° increase in LAT, and 1.25 days for each 1° increase in 
LONG (e.g., more westward; [34]). In total, 70,126 FIA 
plots were analyzed for their belowground C.

Belowground C in the US greenhouse gas inventory 
(BGCNGHGI)
The Intergovernmental Panel on Climate Change’s 
(IPCC) Good Practice Guidance considers forest C stocks 
associated with live aboveground, live belowground, dead 

(1)

HI =

(

ELEV − 2283

100

)

+ 4 (LAT− 40.35)

+ 1.25 (−95.84 − LONG)

http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://apps.fs.fed.us/fiadb-downloads/datamart.html
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wood, litter, and soil organic pools [35]. Hence, the focus 
of this analysis is on adjusting estimates of live below-
ground C, defined as all coarse living roots greater than 
2  mm diameter [13]. Estimates of aboveground live C 
in the NGHGI are calculated using the component ratio 
method [36], but do not ultimately influence the analysis 
for belowground C here.

Belowground C for live trees is estimated in two stages 
using allometric equations. First, total aboveground bio-
mass is estimated as a function of tree DBH [12]:

where α1,i and α2,i are parameters for one of ten spe-
cies groups [four hardwood groups (aspen/alder/cot-
tonwood/willow, soft maple/birch, mixed hardwood, 
and hard maple/oak/hickory/beech), five conifer groups 
(cedar/larch, Douglas-fir, true fir/hemlock, pine, and 
spruce), and one woodland species group (juniper, oak, 
mesquite)]. Second, belowground root biomass is esti-
mated as a ratio (BGRATIO) of root to total aboveground 
biomass [12]:

Hence, parameters indicate BGRATIO will decrease 
for larger DBH trees and that for a fixed DBH, BGRATIO 
will be larger for conifer compared to hardwood species. 
Belowground biomass was estimated by multiplying the 
values obtained from Eqs. 2 and 3, then converted to C 
by multiplying by 0.5, assuming 50 % of biomass is C [35]. 
Estimates of belowground C were scaled to the plot level 
and are hereby abbreviated as BGCNGHGI.

Belowground C from climate‑derived models (BGCClim)
Recent investigations of the global distribution of bio-
mass within forests have provided insight for compar-
ing size- and species-specific predictions (i.e., allometric 
equations and proportional ratios) with climate-sensitive 
estimations of belowground C [e.g., 8]. Using the rela-
tionship observed between mean annual temperature 
and root mass fraction, the model used to determine a 
climate-derived estimate of belowground C was param-
eterized with global data compiled from various sources 
including Usoltsev [37], Luo et  al. [38], Cannell [39], and 
from over 1000 additional forest stands including the US 
[8]. A total of 3043 of these stands contained measure-
ments of belowground biomass. The motivation for the 
development of this model was to assess the distribution 
of biomass in roots along a temperature and precipitation 

(2)Biomass = exp
(

α1,i + α2,i lnDBH
)

(3)

BGRATIO =















exp

�

−1.6911+
0.8160

DBH

�

, for hardwood species

exp

�

−1.5619+
0.6614

DBH

�

, for conifer species

spectrum [8]. We estimated a climate-sensitive predic-
tion of belowground biomass (BGBClim) using the model 
of Reich et al. [8] (Table 4). In addition to MAT and NAT, 
a dummy variable indicating whether or not the FIA 
plot was primarily dominated by hardwoods or conifers 
(HDWD) and stem biomass (BIOSTEM; Mg  ha−1) of live 
trees were used to estimate BGBClim. Thirty-year (1961–
1990) climate data (i.e., MAT) were obtained by specify-
ing LAT, LONG, and ELEV of each FIA plot location to a 
spline surface model developed from climate station data 
across forests of North America [30, 31]. We assigned 
the HDWD variable using the FIA forest type code [40] 
by separating conifer-dominated forest type codes (i.e., 
FORTYPCD  ≤  409) with hardwood-dominated codes 
(FORTYPCD ≥ 500). By incorporating measures of above-
ground biomass, these allometric relationships allow one 
to capture the variability observed across a range of stand 
structures and ages. Continuous independent variables 
were centered prior to applying the Reich et al. [8] model 
to the FIA plots. When standardized for a given MAT 
and aboveground stem biomass, the model of Reich et al. 
[8] indicates conifer forests tended to have a smaller root 
mass fraction than hardwood forests. Values for BGBClim  
were converted to BGCClim by multiplying by 0.5 [35].

Climate‑adjusted models of belowground C (BGCClimAdj)
Current models of belowground C in the NGHGI (i.e., 
BGCNGHGI) could likely be adjusted by incorporating cli-
mate-derived estimates of belowground C (i.e., BGCClim). 
From a NGHGI reporting perspective, estimates of BGC 
would need to be made on individual plots, then “back 
cast” to contemporary estimates using the 1990 baseline 
reporting year [17]. Adjustment factors were estimated to 
align allometric- and climate-derived estimates:

where AdjFactor is the ratio of climate- to allometric-
derived belowground C for a specific forest type found 
in a given geographic region. New climate-adjusted esti-
mates of belowground C (BGCClimAdj) are then:

where BGCClimAdj was computed for each FIA plot 
record.

Analyzing belowground C model differences
We conducted equivalence tests comparing BGCNGHGI 
and BGCClimAdj model predictions using two one-sided 
tests [41]. Equivalence tests are commonly applied in 
the forest science literature and are advantageous in 
that they can be used in model validation by assuming 
a null hypothesis of dissimilarity [42]. Equivalence tests 

(4)AdjFactor =
BGCClim

BGCNGHGI

(5)BGCClimAdj = BGCNGHGI × AdjFactor
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are unlike statistical goodness-of-fit approaches and 
instead examine dissimilarity. Dissimilarity in the equiva-
lence test was specified using a threshold of ±25 %. This 
threshold allows for a moderate amount of disagreement 
between the various model predictions, with non-equiv-
alence suggesting biological disparities in C stocks. Dif-
ferences between BGCNGHGI and BGCClimAdj models were 
mapped across the US to examine geographic trends in 
estimates of belowground C when using each approach. 
We computed US state-level population estimates of 
belowground C (Tg) using BGCNGHGI and BGCClimAdj 
models and compared mean percent differences for the 
two estimation strategies.

Nonparametric random forests (RF; [43]) were imple-
mented in R [44] to identify variables that were effec-
tive in describing BGCClimAdj. Recognizing that not all 
users may implement climate data in determining forest 
C stocks, seven variables from the FIADB (BIOAG, STD-
AGE, NAT, LAT, LONG, ELEV, and HI) were chosen for 
incorporation into the RF. This method involved building 
a set of regression trees based on bootstrapped samples 

of the belowground C data. We similarly fit a RF model 
without BIOAG to examine how belowground C can be 
predicted without knowledge of aboveground biomass 
stocks.

Belowground C in future scenarios
Current CMIP5 models [45] as described in the fifth 
assessment report (AR5) of the IPCC [46] were obtained 
using three scenarios (RCP 4.5, RCP 6.0, RCP 8.5; [30]). 
An ensemble of 17 AR5 model predictions was used for 
each RCP scenario. Provided that differences in below-
ground C could exist in future global change scenarios 
(i.e., changes in MAT at various locations in the US), cli-
mate data were obtained for the 30-year normal (1961–
1990) and years 2030, 2060, and 2090. To gain insight 
into temperature-related patterns and their influence on 
belowground C, climate-sensitive estimates were made 
using these new MAT values in future years (while hold-
ing fixed the variables HDWD, NAT, and BIOSTEM) to 
assess the variation in belowground C assuming future 
scenarios. While BIOSTEM will fluctuate in response to 

Table 4  Model parameters and model form Reich et al. [8] used in this analysis for estimating climate-adjusted below-
ground biomass (BGBClim)

Parameters are: a binary variable depicting general forest type (HDWD; 1 = hardwood-dominated, 0 = conifer-dominated), stem biomass of live trees (BIOSTEM; 
Mg ha−1), a binary variable depicting stand origin (NAT; 1 = natural, 0 = artificial regeneration), mean annual temperature (MAT; °C), and log is to the base 10

In 

log(BGBClim) = b0+ b1(HDWD)+ b2(NAT)+ b3(MAT)+ b4(log (BIOSTEM))+ b5((HDWD× NAT))+

b6((HDWD× (MAT − 9.1374)))+ b7((HDWD× (log (BIOSTEM)− 1.88807)))+

b8((NAT × (MAT − 9.1374)))+ b9((NAT × (log (BIOSTEM)− 1.88807)))+

b10(((MAT − 9.1374)× (log (BIOSTEM)− 1.88807)))+

b11((HDWD)× (NAT)× (MAT − 8.8508))+

b12((HDWD)× (NAT)× (log (BIOSTEM)− 1.88807))+

b13((HDWD)× (MAT − 8.8508)× (log (BIOSTEM)− 1.88807))+

b14((NAT)× (MAT − 8.8508)× (log (BIOSTEM)− 1.88807))

Term Parameter Value SE

b0 Intercept −0.18088 0.021062

b1 HDWD 0.0172682 0.005315

b2 NAT 0.0018117 0.005256

b3 MAT −0.003032 0.000564

b4 log(BIOSTEM) 0.7940911 0.011187

b5 HDWD × NAT −0.000591 0.005291

b6 HDWD × (MAT − 9.1374) −0.001423 0.000566

b7 HDWD × (log(BIOSTEM − 1.88807)) −0.031736 0.008798

b8 NAT × (MAT − 9.1374) −0.000555 0.000574

b9 NAT × (log(BIOSTEM − 1.88807)) 0.021458 0.010028

b10 (MAT − 9.1374) × (log(BIOSTEM − 1.88807)) 0.0020443 0.001155

b11 HDWD × NAT × (MAT − 9.1374) 0.0020594 0.000566

b12 HDWD × NAT × (log(BIOSTEM − 1.88807)) 0.0269889 0.010957

b13 HDWD × (MAT − 9.1374) × (log(BIOSTEM − 1.88807)) 0.0050601 0.001197

b14 NAT × (MAT − 9.1374) × (log(BIOSTEM − 1.88807)) 0.0016555 0.001206
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trends in forest growth and mortality, this simulation was 
specifically designed to understand the influence of MAT 
in future belowground C stocks.
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