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Abstract

Context Tree species distribution and abundance are

affected by forces operating across a hierarchy of

ecological scales. Process and species distribution

models have been developed emphasizing forces at

different scales. Understanding model agreement

across hierarchical scales provides perspective on

prediction uncertainty and ultimately enables policy

makers and managers to make better decisions.

Objective Our objective was to test the hypothesis

that agreement between process and species distribu-

tion models varies by hierarchical level. Due to the

top-down approach of species distribution models and

the bottom-up approach of process models, the most

agreement will occur at the mid-level of the hierar-

chical analysis, the ecological subsection level, cap-

turing the effects of soil variables.

Methods We compared projections of a species

distribution model, Climate Change Tree Atlas, and

a process model, LINKAGES 2.2. We conducted a

correlation analysis between the models at regional,

ecological subsection, and species level hierarchical

scales.

Results Both models had significant positive correla-

tion (q = 0.53, P\0.001) on the regional scale. The

majority of the ecological subsections had greater model

correlation than on the regional level when all climate

scenarios were pooled. Correlation was poorest for the

analysis of individual species. Models had the greatest

correlation at the regional scale for the GFDL-A1fi

scenario (the scenario with the most climate change).

Species near their range edge generally had stronger

correlation (loblolly pine, northern red oak, black oak).

Conclusion Our general hypothesis was partly ac-

cepted. This suggests that uncertainties are relatively

low when interpreting model results at subsection

level.

Keywords Climate change � LINKAGES 2.2 �
Climate Change Tree Atlas � Hierarchical � Process
model � Species distribution model

Introduction

Tree species distribution and abundance are affected

by forces operating across a hierarchy of ecological

scales (Diez and Pulliam 2007). At the regional level,
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climate variables such as temperature and precipita-

tion may have the greatest control. At the intermediate

levels, such as the ecological subsection, landform and

soil may show a dominant effect. At the species level,

biotic interactions such as inter- and intra-species

competition may affect the local variations of species

extinction and colonization. Hierarchy theory pro-

vides a perspective for organizing the complexity of

ecological systems (O’Neill et al. 1989) from which

different types of models are developed. Models used

to study climate change have been created utilizing

hierarchy theory, emphasizing forces at different

scales. Process-based simulation models (hereafter

process models) and species distribution, niche, or

envelope models (hereafter species distribution mod-

els) are the most common approaches used to assess

climate change impacts on forests at large spatial

scales (Morin and Thuiller 2009).

Process models simulate the behavior of a system

based on interactions between physiological mechan-

isms and functional components and their interaction

with the environment, generally represented as

mathematical equations (Mäkelä et al. 2000; Lands-

berg and Sands 2011). They use a bottom up approach

beginning with simulating site-scale (e.g. individual

plots within ecological subsections) species and

environmental (soil and climate) interactions and

expanding to regional scales that account for broader

climatic patterns. Process models are able to take into

account species response to environmental conditions

by utilizing biological processes calibrated by obser-

vations on individuals in natural environments (Morin

and Thuiller 2009). They are better equipped for

predicting species responses to novel environment

conditions than niche models by simulating mechan-

isms affecting species (Gustafson 2013).They may

require parameter values that are difficult to obtain

(Landsberg and Gower 1997) as well as more com-

putational power and time than species distribution

models, which could result in consideration of fewer

species in assessments (Brandt et al. 2014).

Species distribution models use a species’ observed

distribution or biological characteristics to predict

future distribution (Iverson and McKenzie 2013).

They use a top-down approach beginning with using

climatic variables at the regional scale and adding

local (ecological subsection) soil information to

improve prediction realism. This approach empha-

sizes abiotic controls (climate and soil) so that the

predicted outcomes reflect statistical associations

between the occurrence and abundance of species

and predictor environmental variables that may influ-

ence suitability of habitat (Iverson and McKenzie

2013). A species niche can be described by climate

tolerance levels or thresholds, expressed in terms of

climate variables (Gallego-Sala et al. 2010). These

variables are considered key attributes of a species

habitat. The degree that climate affects these attributes

determines how the species will then react (Pearson

and Dawson 2003). Species distribution models can fit

complicated geographic ranges (Iverson and McKen-

zie 2013). Another benefit is they tend to require less

computer capability or processing time than process

models, so they are capable of projecting greater

numbers of species response to climate change over

very large areas (Brandt et al. 2014).

Comparing process and species distribution models

in terms of their assumptions, approaches, and results

provides perspective on prediction uncertainty and

ultimately enables policy makers and managers to

make better decisions (Beaumont et al. 2007; Marcot

et al. 2012). When different approaches result in

similar predictions, more confidence is attained. When

disagreement occurs between models, assumptions

can be challenged and new directions for analysis

studied (Iverson and McKenzie 2013). Research of

this type has shown that when process and species

distribution models are compared to observed data,

there is overlap in assumptions, validation and repro-

ducibility challenges (Dormann et al. 2012). Research

has highlighted problems related to estimating species

distributions as well as uncertainty in making future

projections (Keenan et al. 2011; Cheaib et al. 2012),

and has found agreement in the ability to show large

scale range contractions of some species (Cheaib et al.

2012). More studies are necessary to improve current

and future models. Understanding model dynamics on

multiple scales is one area that is beneficial.

We hypothesize that agreement between process

and species distribution models varies by hierarchical

level. Specifically, because of the top-down approach

of species distribution models and the bottom-up

approach of process models, the most agreement will

occur at the mid-level of the hierarchical analysis, the

ecological subsection level, capturing the effects of

soil variables. Our objective was to use Climate

Change Tree Atlas (Landscape Change Research

Group 2014), which utilizes the species distribution
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model DISTRIB, and the process model LINKAGES

2.2 (Wullschleger et al. 2003) to assess climate

change impacts on tree species in Missouri and to

compare results of these two approaches on a

hierarchical level. We hereafter refer to Climate

Change Tree Atlas as a species distribution model

because of the DISTRIB portion. We chose LIN-

KAGES 2.2 and Climate Change Tree Atlas for our

analysis because they have been widely used (Pastor

and Post 1985; He et al. 1999, 2005; Iverson et al.

2008; Dale et al. 2009; Matthews et al. 2011) to

predict effects of climate change. Specifically, we

compared the change in biomass predicted by

LINKAGES and Importance Values predicted by

Tree Atlas for current climate and future climate

projections. We were interested in understanding

how well the models agreed across the following

hierarchy of scales: regional, ecological subsection,

and species level. We conducted a correlation

analysis between the changes predicted by each

model across this hierarchy.

Methods

Study area

The study area encompassed the Southern 2/3 of

Missouri, USA, and was at the westernmost edge of

the Central Hardwood Region, historically a transition

zone between forest and prairie. Latitude ranged from

36.42 to 39.11 and longitude ranged from -89.80 to

-94.58 (Fig. 1). The area was 11695,575 ha, of which

5049,920 ha was forested. The elevation ranged from

70 to 540 m. It was composed of the Ozark Highlands

ecological section (Bailey 1995). The area was further

subdivided into seven ecological subsections (Fig. 1)

based on similar soil characteristics and landforms.

We chose this area because we were interested in

understanding how ecological pattern in the transition

zone was affected by climate change.

Missouri has a continental climate with strong

seasonality Temperature and precipitation follow a

general gradient along a diagonal line from northwest

to southeast (Nigh and Schroeder 2002). The mean

annual temperature range in the study area is

6.3–19.2 �C. The annual precipitation range in the

study area is 101.8–138 cm (Stoner et al. 2011).

Tree species analyzed

We selected nine tree species for analysis: white oak

(Quercus alba), northern red oak (Quercus rubra),

black oak (Quercus velutina), shortleaf pine (Pinus

echinata), loblolly pine (Pinus taeda), eastern red-

cedar (Juniperus virginiana), sugar maple (Acer

saccharum), American elm (Ulmus americana), and

flowering dogwood (Cornus florida). We selected

these species because they met at least one of three

criteria: they were abundant; they had high economic

value; or they were at the northern or southern extent

of their range (Fig. 2) and were poised to expand or

reduce their range with climate change.

LINKAGES 2.2

LINKAGES 2.2 is an ecosystem process model

derived from JABOWA (Botkin et al. 1972) and

simulates ecosystem processes based on vegetation

and resources present. The basic premise of LIN-

KAGES is that variation in amounts of ecosystem

nitrogen and carbon retention and cycling can be

explained by biogeochemical processes affecting

nitrogen present, biogeographical processes that de-

termine availability of water, and demographics of

plant species. Climate and edaphic conditions affect

feedback between vegetation and nitrogen present,

and vegetation and light available. The model

simulates individual tree establishment, growth, and

death within a stand. Competition, climate, and soil

variables are used to determine the life history factors

for species present (Pastor and Post 1985). Wood

decay of tree cohorts is also simulated. Population

dynamics are affected by temperature and soil water

content, also affecting soil nitrogen availability and

light presence through canopy. Temperature, pre-

cipitation, initial size of tree, death, and recruitment

are all variable stochastically around mean values

(Pastor and Post 1988).

LINKAGES 2.2 simulations

Ecological subsection and landform creation

We divided each subsection into eight landforms to

capture variation in soil characteristics used by
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LINKAGES: south and west slopes, north and east

slopes, ridges, upland drainages, bottomlands, grass-

lands, water, and non-forest. We classified landforms

from a 30 m resolution digital elevation model (DEM)

using a topographic position index (TPI), which we

calculated as a cell’s elevation minus the mean

elevation of cells within a moving window neighbor-

hood divided by the standard deviation of the

window’s mean cell elevation. Slope and aspect layers

were also created from the DEM, and used to further

subset landform classes. Thresholds for the

classification were based on those determined by

Dijak and Rittenhouse (2009). Our goal was to capture

differences in moisture gradients related to landforms.

The output from the TPI, when overlayed on a

topographic map, follows the basic breaklines for the

ecological land classifications described by (Miller

1981), created specifically for the Ozark Plateau

Region of Missouri. We only used south and west

slopes, north and east slopes, ridges, upland drainages,

and bottomlands (the potentially forested landforms)

for our simulations.

Fig. 1 Study area
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Climate scenarios

We used three general circulation models (GCM)

combined with emission scenarios for years

2080–2099 to create climate scenarios that captured

the full range of potential climate projections repre-

sented by Intergovernmental Panel on Climate Change

(IPCC) (2007) models. Different GCMs may not

produce the same projections. This makes it necessary

to consider several GCMs and emission scenarios that

will provide a full range of future climate projections

(Newman et al. 2011). The parallel climate model

(PCM), Geophysical Fluid Dynamics Laboratory

Coupled Model version 2.1 (GFDL), and Hadley

Centre Coupled Model version 3 (Hadley) represent

the extreme ranges of climate projections for our study

area, when combined with high (A1fi) and low (B1)

end emission scenarios (Stoner et al. 2011). We also

used a current climate scenario based on actual climate

during 1980–2003.

We required daily values for maximum and

minimum temperature (�C), precipitation (mm), wind

speed (m/s), and solar radiation (MJ/m2) for the

LINKAGES 2.2 model. We used values associated

with the center point of each subsection. We obtained

information for current climate for temperature,

precipitation, and solar radiation from Daily Surface

Weather and Climatological Summaries (Daymet)

(Thornton et al. 2012) and wind speed from the

National Oceanic and Atmospheric Administration-

National Climatic Data Center (2011). A modified

statistical asynchronous regression downscaling

method was used at a 12 km resolution to obtain daily

temperature and precipitation values for the PCM-B1,

Fig. 2 Distribution of

analysis species (Little

1971)

Landscape Ecol (2015) 30:1879–1892 1883

123



GFDL-A1fi, and Hadley-A1fi climate scenarios for the

end of the century (Stoner et al. 2011). All three future

climate scenarios projected higher temperatures than

current climate. Overall, minimum and maximum

annual temperature increased the most in the Hadley-

A1fi scenario (?6.6, ?7.2 �C respectively), followed

by GFDL-A1fi (?5.2, ?5.4 �C respectively) and

PCM-B1 (?1.8, ?1.8 �C respectively). PCM-B1

projected higher growing season precipitation

(?4.2 cm) than current climate. Hadley-A1fi and

GFDL-A1fi (-20 cm) were projected to have less

precipitation than current climate. Growing season

minimum and maximum temperatures were highest

for the GFDL-A1fi scenario (14, 27.3 �C respectively)

(Stoner et al. 2011).

Soil input variables

We obtained physical variables (wilting point, field

moisture capacity, nitrogen, organic matter, rock

fragment, clay, and sand content) for the uppermost

1 m layer of soil from the Natural Resources Conser-

vation Service soil survey (Soil Survey Staff, Natural

Resources Conservation Service 2013) for each land-

form within each subsection. We converted soil

polygons to raster data (90 m cell) and combined it

with landform and subsection raster data to determine

the most common soil type on each landform within

each subsection. From this we derived soil character-

istics for 12 vertical soil layers for input into

LINKAGES 2.2.

Model simulation

We simulated the nine species individually for each of

the five landforms, within each of the ten subsections,

under the four climate scenarios because we were

interested in the potential establishment and growth of

each species without interspecific competition. Spe-

cies were simulated individually to observe their

fundamental niche (physiological growth). We also

simulated LINKAGES using Tree Atlas’ 20 km pixel

grid to see if the scale of analysis caused differing

results. LINKAGES simulated the birth, death, and

growth of all trees larger than 1.43 cm diameter at

breast height within a 1/12 ha plot (Pastor and Post

1985); we created virtual plots representing each

combination of landform and subsection (as well as

Tree Atlas’ 20 km pixels). All plots were void of trees

at year zero of the simulation. We set the initial

number of trees planted within each plot to 200

saplings ha-1. We ran the model for 30 years, with

200 replications approximating 200 plots evenly

distributed across the simulated landform. We deter-

mined that year 30 was a good analysis point because

the output indicated that a species either disappeared

from the landscape or reached a stable trend by this

point. The simulation results were averaged for each

subsection by landform.

We used biomass as a measure of tree species

productivity and establishment under each climate

scenario. Understanding tree species establishment (a

synthesis of a tree species’ response to climate change)

is critical to the study of the effects of climate change

on forest ecosystems (He et al. 1999). The resulting

tree species biomass was based on potential to grow

(under current or future climate), not whether the

species currently existed in the area. For example,

subsections that do not currently have loblolly pine

present exhibited the potential to sustain this species,

producing biomass values.

The landform analysis was appropriate for simulat-

ing LINKAGES, to properly capture ecological pro-

cesses. To be sure differences between the two

models’ predictions were not due to differences in

analysis unit, we also performed this analysis at the

20 km scale, the scale used by Tree Atlas, and

compared the results. All climate data were similarly

downscaled and soil data similarly aggregated.

Climate change tree atlas

We obtained raster format results for the Climate

Change Tree Atlas (Louis R. Iverson and Matthew P.

Peters personal communication 2013) for the same

tree species and climate scenarios we simulated with

LINKAGES. Tree Atlas predictions were represented

as projections of future Importance Values (IV) for

tree species (Landscape Change Research Group

2014):

IVSpeciesA ¼ 50 � Basal AreaSpeciesA
� ���

=Basal AreaAllSpecies�
þ 50 � StemsSpeciesA

� �
=StemsAllSpecies

� �
g:

Tree Atlas has analyzed 134 tree species in the

eastern United States. Importance values were calcu-

lated for each species for 20 km 9 20 km cells from
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U. S. Forest Service Forest Inventory and Analyis data

(Woodall et al. 2010). 38 predictor variables were

developed to determine suitable condition for each

species. Predictor variables described climate, eleva-

tion, soil class, soil properties, land use and fragmen-

tation (Landscape Change Research Group 2014).

Regression tree analysis (RTA) was used to estimate

IV from the predictors, followed by Bagging Trees

(Breiman 1996) to determine stability of the RTA

simulations. Random Forest (Breiman 2001) was next

utilized to create current IV based on 1000 perturbed

trees, as well as IV for future climate scenarios

(Iverson and Prasad 1998; Iverson et al. 2008).

Distributions are further evaluated for factors not

analyzed in the statistical models. This allows Tree

Atlas to identify when an individual species may do

better or worse than model projections (Matthews

et al. 2011).

Data analysis

Quantification of difference between future climate

and current climate

We calculated the difference between future climate

(PCM-B1, GFDL-A1fi, and Hadley-A1fi scenarios)

and current climate biomass and IV for each eco-

logical subsection. We estimated biomass for each

subsection as the area weighted average of LIN-

KAGES biomass estimates for each landform within

each subsection. To ensure that the 20 km scale

LINKAGES results had uniformity with our landform

analysis, we also analyzed the 20 km scale results with

a stratification of subsections. Although the change in

LINKAGES biomass estimates and Tree Atlas IV are

different measures, they both represented measures of

species performance under the same climate scenarios.

We subtracted the IV and biomass output of future

climate scenarios by the output of the current climate

for each ecological subsection. Positive values indi-

cated an increase in habitat suitability. Negative

values indicated a decrease in suitability.

Comparison between Climate Change Tree Atlas

and LINKAGES 2.2

We calculated Spearman’s rank correlations between

the LINKAGES change in biomass and Tree Atlas

change in IV to determine the degree of similarity in

model predictions. We used a rank correlation because

the two models predicted different measures of tree

abundance, making a correlation of actual values

inappropriate. We expected significant positive corre-

lations (a = 0.05) if the models were performing

similarly (Sheskin 2000).

Relationships between pattern and process differ

based on the scale of analysis (Turner 1989, 2005).

Proper organization of scale relationships is im-

perative. Hierarchy theory provides a method for

organizing the complexity of ecological systems

(Turner et al. 2001). Essentially, at a given level of

resolution, a system is made of interacting lower level

entities, and is a component of a larger system

(Klopatek and Gardner 1999). We investigated the

correlation between models at three hierarchical

scales: regional (entire study area), ecological subsec-

tion, and species level. At the regional level we

examined the correlation in change for all climate

scenarios, ecological subsections, and species com-

bined as well as each climate scenario independently.

At the ecological subsection level we conducted two

analyses: all species and climate scenarios combined

for each individual subsection, and all species com-

bined for each individual subsection for each indi-

vidual climate scenario. At the individual species level

we conducted two analyses: all climate scenarios and

subsections combined, and each individual climate

scenario with subsections combined.

Results

Change in biomass and importance values

Our LINKAGES results showed differing levels of

future climate suitability for our analysis species.

Sugar maple biomass for all future scenarios was less

than current biomass. Biomass for all other species

was greater than current climate levels under the

PCM-B1 scenario. Red and black oak biomass was the

least for the GFDL-A1fi and Hadley-A1fi scenarios.

Shortleaf and loblolly pine biomass for GFDL-A1fi

and Hadley-A1fi was greater than current levels.

White oak, American elm, and Eastern redcedar had

less biomass under GFDL-A1fi, but improved for

Hadley-A1fi. Flowering dogwood biomass changed

little, but overall was greater for all future climate

scenarios versus current levels (Fig. 3).
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Tree Atlas data indicated pine species would have

an overall increase in IV for all future climate

scenarios. Conversely, sugar maple showed an overall

decline in IV under the future climate scenarios.

Results were mixed for Eastern redcedar: half of the

subsections increased and half decreased for GFDL-

A1fi, and the majority of subsections decreased for

PCM-B1 and Hadley-A1fi. Black, red and white oak

were projected to have a decrease in IV for GFDL-

A1fi and Hadley-A1fi scenarios. White oak was

projected to do poorly for the PCM-B1 projections.

Black and red oak were projected to improve for PCM-

B1 in most subsections, and decrease in a few.

American elm had an overall decrease in IV for

GFDL-A1fi and Hadley-A1fi, and stayed the same or

improved in IV for PCM-B1. Flowering dogwood had

an overall decrease in IV for all future climate

scenarios (Fig. 3).

Regional level

There was a strong positive correlation between

models for all climate scenarios, ecological subsec-

tions, and tree species combined (q = 0.53,

P\ 0.001). The correlation between models was

similarly strong and positive at the regional level for

each individual climate scenario (Table 1).

Ecological subsection level

Our hypothesis that the most model correlation would

occur at the ecological subsection level was accepted

for the pooled climate scenarios. Correlation was

higher for the individual climates, although the

significance mostly was greater than a = 0.05, reject-

ing the hypothesis.

Fig. 3 Relationships between change in importance values

from the Climate Change Tree Atlas and change in biomass

values predicted by LINKAGES 2.2 for nine tree species within

the seven ecological subsections of the Missouri Ozark

Highlands, for three climate scenarios
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There was a positive correlation between models at

the subsection level across all climate scenarios and

species; the Borders subsection had the greatest

correlation (q = 0.69) and the Springfield Plain the

lowest correlation value (q = 0.35) (Table 2). Statis-

tically significant correlations between models were

greatest under the GFDL-A1fi and PCM-B1 scenarios.

Under the PCM-B1 scenario, the greatest correlation

was for the Borders subsection (q = 0.85), and the

lowest value was for the Current River Hills

(q = 0.37). The greatest correlation for the GFDL-

A1fi scenario was in the Plain Plateau subsection

(q = 0.78), and the lowest correlation was in the

Springfield Plain (q = 0.18). The highest correlation

for the Hadley-A1fi scenario was in the Igneous

subsection (q = 0.75), and the lowest in White River

Hills (q = 0.33) (Table 2).

Species level

Model correlations were notably less for individual

species across subsections (species level, Table 3).

Three of nine species had significant positive corre-

lations between models across all climate scenarios

and subsections: Northern red oak (q = 0.82), black

oak (q = 0.60), and loblolly pine (q = 0.70). Sugar

maple had a high positive correlation (q = 0.41) but

was not statistically significant. The remaining species

had low correlations that were not significant

(a[ 0.05).

20 km Scale analysis

The 20 km scale results exhibited similar trends as the

landform analysis, with some exceptions. On the

regional scale, correlation was positively correlated

and slightly more for PCM-B1 (q = 0.51 versus

q = 0.50) and GFDL-A1fi (q = 0.53 versus

q = 0.51), but still close to those of the landform

analysis. Hadley-A1fi was positively correlated and

less than the landform analysis (q = 0.25 versus

q = 0.50) (Table 1 of supplementary material).

There was a positive correlation between models at

the subsection level across all climate scenarios and

Table 1 Spearman’s rank correlation (q) for regional level

analysis between predicted change in importance values from

the Climate Change Tree Atlas and change in biomass pre-

dicted by LINKAGES 2.2 across all species, subsections, and

climate scenarios, as well as individual climate scenario

Level analyzed q P

All species, subsections, climate scenariosa 0.53 \0.001

All species, subsections, PCM-B1b 0.50 \0.001

All species, subsections, GFDL-A1fib 0.51 \0.001

All species, subsections, Hadley-A1fib 0.50 \0.001

a (9 species) 9 (7 subsections) 9 (3 climate scenarios) = 189

analysis values
b (9 species) 9 (7 subsections) = 63 analysis values

Table 2 Spearman’s rank correlation (q) for ecological sub-

section level analysis between predicted change in importance

values from the Climate Change Tree Atlas and change in

biomass predicted by LINKAGES 2.2 across all ecological

subsections and climate scenarios, as well as individual climate

scenario

All species,

All climate scenariosa
All species,

PCM-B1b
All species,

GFDL-A1fib
All species,

Hadley-A1fib

q P q P q P q P

Borders 0.69 \0.001 0.85 0.004 0.45 0.224 0.63 0.067

Current river hills 0.38 0.052 0.37 0.332 0.28 0.46 0.32 0.406

Igneous 0.61 0.001 0.62 0.077 0.6 0.087 0.75 0.02

Ozark hills 0.56 0.002 0.52 0.154 0.48 0.188 0.48 0.188

Plain plateau 0.62 0.001 0.72 0.03 0.78 0.013 0.53 0.139

Springfield plain 0.35 0.078 0.42 0.265 0.18 0.637 0.5 0.171

White river hills 0.51 0.007 0.47 0.205 0.77 0.016 0.33 0.381

a (9 species) 9 (3 climate scenarios) = 27 analysis values
b (9 species) = 9 analysis values
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species. The correlations between models were great-

est, on average, under the GFDL-A1fi scenario, and

lowest for Hadley-A1fi (Table 2 of supplementary

material).

Four of nine species had significant positive

correlations between models across all climate sce-

narios and subsections: Northern red oak (q = 0.63),

black oak (q = 0.58), loblolly pine (q = 0.69), and

sugar maple (q = 0.62). The remaining species had

low or negative correlations that were not significant

(a[ 0.05) (Table 3 of supplementary material).

Discussion

We highlighted differences and similarities, across a

hierarchy of ecological scales, in predictions by a

process model and a species distribution model. Some

differences were likely due to inherent contrasts in

how process and species distribution models function,

whereas other differences were likely related to the

way LINKAGES and Tree Atlas were applied in this

study. We explained discrepancies between models

based on differences in each approach and potential

implications to ecological understanding and conser-

vation as it is not possible to determine which model

projections would represent future status.

Our hypothesis that agreement between process and

species distribution models varies by hierarchical

level, with the most agreement occurring at the

ecological subsection level (middle hierarchical level)

was partly accepted. The ecological subsection level

captured the effects of the soil variables used, allowing

for higher model correlation due to soil boundaries

being more likely to coincide with ecological subsec-

tion boundaries (Soil Survey Staff, Natural Resources

Conservation Service 2013). When all climate sce-

narios were pooled, correlation between the models

was higher for the majority of ecological subsections

than the regional level. When individual climate

scenarios were analyzed, correlation between the

models was higher for the majority of the subsections,

but was not statistically significant. Morin and Thuiller

(2009) concluded that although extinction and

colonization may be a region-wide phenomenon, it

occurred at local scale, coinciding with the ecological

subsection. In many cases species geographic range

shift only occurred at the boundaries or edge areas

(Iverson et al. 2004; Morin and Thuiller 2009; Meier

et al. 2012). Explanation as to why lower correlation

occurred for some subsections may relate to model

parameters utilized. Although similar soil variables

were used by both models (e.g. organic matter), There

were also variables not used for both. Tree Atlas

Table 3 Spearman’s rank correlation (q) for species level

analysis between predicted change in importance values from

the Climate Change Tree Atlas and change in biomass

predicted by LINKAGES 2.2 for nine tree species and all

climate scenarios combined, as well as individual climate

scenario

All climate scenarios,

Ecological subsectionsa
PCM-B1, all

Ecological subsectionsb
GFDL-A1fi, all

Ecological Subsectionsb
Hadley-A1fi, all

Ecological subsectionsb

q P q P q P q P

American Elm 0.14 0.224 0.51 0.248 -0.14 0.760 0.32 0.482

Black Oak 0.60 0.004 -0.70 0.078 0.32 0.482 -0.18 0.702

Flowering Dogwood 0.19 0.415 0.14 0.76 -0.04 0.939 0.61 0.148

Loblolly Pine 0.70 \0.001 0.54 0.215 0.54 0.215 0.00 1.000

Eastern Redcedar 0.05 0.823 0.18 0.702 0.43 0.337 0.39 0.383

Northern Red Oak 0.82 \0.001 0.75 0.052 0.54 0.215 0.54 0.215

Shortleaf Pine 0.01 0.978 -0.18 0.702 0.00 1.000 0.25 0.589

Sugar Maple 0.41 0.062 0.46 0.294 0.36 0.432 0.36 0.432

White Oak -0.18 0.444 -0.71 0.071 -0.43 0.294 -0.50 0.253

a (3 climate scenarios) 9 (7 ecological subsections) = 27analysis values
b (7 ecological subsections) = 7 analysis values
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required input of soil pH, soil erodibility factor, and

landuse change (Landscape Change Research Group

2014), while LINKAGES used variables such as soil

nitrogen and wilt point (Wullschleger et al. 2003).

Under the broad-scale regional analyses, all species

and scenarios were combined and ranked. The species

that were well correlated between the models com-

pensated for the poor correlation of other species. This

resulted in a higher level of monotonic distribution

(indicative of high correlation) (Fig. 4) as compared to

a single species analysis with poor correlation

(American elm, Fig. 3) (Sheskin 2000). Similar trends

were also reported in (Liang et al. 2013, 2014) that

responses at fine-scale landform can be averaged out at

the coarser landscape scales. High correlation was also

likely due to both models utilizing some similar large-

scale climate variables, such as precipitation and

temperature, which allowed for some common overlap

of observations between the twomodels at the regional

hierarchical level.

Correlation between the models on the species level

was noticeably less than that for the ecological

subsections, whether climate scenarios were pooled

or considered individually, consistent with our hy-

pothesis. This suggests that there was more variation

in species responses to the individual climate scenar-

ios than there was in responses by species across

ecological subsections. When analyzing smaller sys-

tems (e.g. plot-level), differences in the forces acting

upon them become more evident, resulting in more

variability. Also, at the species level, intra-species

competition was not simulated within Tree Atlas

(Landscape Change Research Group 2014), whereas it

was simulated in LINKAGES (Wullschleger et al.

2003), potentially resulting in poorer agreement.

Another source of variation may have come from the

method in which the two models utilized temperature

and precipitation. LINKAGES utilized daily measure-

ments (Wullschleger et al. 2003), while Tree Atlas

used monthly (Landscape Change Research Group

2014). Monthly or greater averages of these values

may not capture drought events in the predicted

climate scenario, producing discrepancies among

species (Gustafson et al. 2015).

Another potential reason for differences between

model results may lie in differences in how geo-

chemical processes are represented. Species response

to drought and soil characteristics such as low nitrogen

is accounted for in the models in different ways.

LINKAGES accounts for these factors through bio-

geochemical processes and Tree Atlas accounts for

them indirectly based on species abundance from

historical patterns of drought and low nitrogen soils.

These differences can be seen in Flowering dogwood.

Flowering dogwood is intolerant to low nitrogen soil

levels (Pastor and Post 1986), and Tree Atlas may not

have similarly captured the effects of changes to soils

characteristics since changes in nitrogen availability

Fig. 4 Regional scale

relationships between

change in importance values

from the Climate Change

Tree Atlas and change in

biomass values predicted by

LINKAGES 2.2 for nine tree

species within the seven

ecological subsections of the

Missouri Ozark Highlands,

for three climate scenarios
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due to climate change is not readily available to

incorporate in Tree Atlas. Eastern redcedar and

shortleaf pine, species with poor model correlation,

were classified as xeric (based on the fraction of

growing season drought days that a species can

tolerate before annual growth is prevented) (Pastor

and Post 1986). Model correlation may have been poor

because their extreme suitability to dry conditions was

not being fully captured by tree atlas due to the lack of

water dynamics being simulated.

Our research showed GFDL-A1fi, the most extreme

climate scenario, resulted in the greatest correlation

between themodels. GFDL-A1fiwas the driest scenario

during the growing season and had the highest correla-

tion and agreement between models. This has implica-

tions for future modeling, as Zimmermann et al. (2009)

similarly reported thatmodels utilizing climate extremes

in their construction tend to improve spatial pattern

accuracy for tree species. Models results were also

generally similar for species at or near the edge of their

range. The northern edge of range for loblolly pine was

immediately south of the study area (Fig. 2) and these

species were highly correlated. Model results were also

similar for northern red oak and black oak,whichwere at

the edge of their range (Fig. 2). Species response to

changing environments is often largely determined by

population response at the leading and rear edge of their

range (Hampe and Petit 2005; Thomas 2010).

Our results indicated that the differences between the

twomodels’ predictions were likely not due to different

analysis units (landforms vs. 20 km pixel), because

results for both methods indicated there were several

similar trends in model correlation (see supplement).

Therefore, the differences seen should be related to the

difference between how the models function. We feel

analysis of LINKAGES at the landform scale was more

appropriate because this better represented ecological

processes due to landforms being ecologically defined

and representing more homogeneous soil conditions.

The 20 km analysis for LINKAGES represented aver-

ages of arbitrarily defined cells overlapping subsections

which may have contained more or less landform and

soil diversity.

Conclusion

Our general hypothesis that agreement between pro-

cess and species distribution models varies by hierar-

chical level, with the most agreement occurring at the

ecological subsection was partly accepted. We only

saw this trend when all climate scenarios were

combined.

Our comparison of the application of a process-

based model and a statistical model for predicting

changes in tree species abundance under alternative

climate scenarios provided insight into the uncertainty

in predicted changes and potential reasons for model

disagreement. Stronger correlation was seen for most

species that were near the edge of their range, and for

extreme climate scenarios with greater level of

predicted change. We suggest further investigation

into where models disagreed such as simulations to

examine model sensitivities to key parameters. An

investigation into model agreement for additional

species, based on a priori hypotheses generated from

our study, would provide additional insight. Analysis

of additional species distribution and process models

would also be beneficial in diminishing uncertainty

with regard to climate projections.

Our research benefits the discipline of landscape

ecology through the understanding of climate

change’s effect on tree species pattern over forest

landscape at different scales. This will also help to

understand forest landscape sustainability under the

stress of climate change. Our research methods can be

applied to other landscapes and landscape models,

making it relatable to other geographic locations and

allowing for further understanding of climate changes’

effects on landscape processes.
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Ågren GI, Oliver CD, Puttonen P (2000) Process-based

models for forest ecosystem management: current state of

the art and challenges for practical implementation. Tree

Physiol 20:289–298

Marcot BG, Thompson MP, Runge MC, Thompson FR,

McNulty S, Cleaves D, Tomosy M, Fisher LA, Bliss A

(2012) Recent advances in applying decision science to

managing national forests. For Ecol Manag 285:123–132

Matthews SN, Iverson LR, Prasad AM, Peters MP (2011)

Modifying climate change habitat models using tree spe-

cies-specific assessments of model uncertainty and life

history-factors. For Ecol Manag 262:1460–1472

Landscape Ecol (2015) 30:1879–1892 1891

123

http://dx.doi.org/10.1007/s10980-013-9885-x
http://dx.doi.org/10.1111/j.1365-2486.2010.02254.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02254.x
http://www.nrs.fs.fed.us/atlas
http://dx.doi.org/10.1371/journal.pone.0067889
http://dx.doi.org/10.1371/journal.pone.0067889


Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012)

Climate, competition and connectivity affect future mi-

gration and ranges of European trees. Glob Ecol Biogeogr

21:164–178

Miller MR (1981) Ecological land classification terrestrial

subsystem, a basic inventory system for planning and

management on the Mark Twain National Forest. USDA

Forest Service, Eastern Region

Morin X, ThuillerW (2009) Comparing niche- and process-based

models to reduce prediction uncertainty in species range

shifts under climate change. Ecology 90(5):1301–1313

National Oceanic and Atmospheric Administration-National

Climatic Data Center (NOAA-NCDC) (2011) http://

www7.ncdc.noaa.gov/. Accessed 01 July 2011

Newman JA, Anand M, Henry HAL, Hunt S, Gedalof Z (2011)

Climate change biology. CAB International, Cambridge

Nigh T, Schroeder W (2002) Atlas of Missouri ecoregions.

Department of Conservation, Jefferson City

O’Neill RV, Johnson AR, King AW (1989) A hierarchical

framework for the analysis of scale. Landscape Ecol

3(3,4):193–205

Pastor J, Post WM (1985) Development of a linked forest pro-

ductivity-soil process model. ORNL/TM-9519. Oak Ridge

National Laboratory, Oak Ridge

Pastor J, PostWM (1986) Influence of climate soil moisture, and

succession on forest carbon and nitrogen cycles. Bio-

geochem 2(1):3–27

Pastor J, Post WM (1988) Response of Northern forests to CO2-

induced climate change. Nature 334:55–58

Pearson RG, Dawson TP (2003) Predicting the impacts of cli-

mate change on the distribution of species: are bioclimate

envelope models useful? Glob Ecol Biogeogr 12:361–371

Sheskin DJ (2000) Handbook of parametric and nonparametric

statistical procedures, 2nd edn. CRC Press, New York

Soil survey staff, Natural Resources Conservation Service,

United States Department of Agriculture. Database for

Missouri. (http://soils.usda.gov/) Accessed 01 June 2013

Stoner AMK, Hayhoe K, Yang X (2011) Downscaled Climate

Projections by Katharine Hayhoe. http://cida.usgs.gov/

climate/hayhoe_projections.jsp. Accessed 01 Nov 2011

Thomas CD (2010) Climate, climate change and range bound-

aries. Divers Distrib 16:488–495

Thornton PE, Thornton MM, Mayer BW, Wilhelmi N, Wei Y,

Cook RB (2012) Daymet: daily surface weather on a 1 km

grid for North America, 1980—2012. http://daymet.ornl.

gov/. Accessed 01 July 2012 from Oak Ridge National

Laboratory Distributed Active Archive Center, Oak Ridge

10.3334/ORNLDAAC/Daymet_V2

Turner MG (1989) Landscape ecology: the effect of pattern on

process. Ann Rev Ecol Syst 20:171–197

Turner MG (2005) Landscape ecology in North America: past,

present, and future. Ecology 86(8):1967–1974

Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecol-

ogy in theory and practice pattern and process. Springer,

New York

Woodall C, Conkling B, Amacher M, Coulston J, Jovan S, Perry

C, Schulz B, Smith G, Wolf SW (2010) The forest inven-

tory and analysis database. Version 4.0: Database de-

scription and user’s manual for phase 3. USDA Forest

Service, Northern Research Station, Newtown Square

Wullschleger SD, Gunderson CA, Tharp ML, West DC, Post

WM (2003) Simulated patterns of forest succession and

productivity as a consequence of altered precipitation. In:

Hanson PJ, Wullschleger SD (eds) North American Tem-

perate Deciduous Forest Responses to Changing Pre-

cipitation Regimes. Springer, New York, pp 433–446

Zimmermann NE, Yoccoz NG, Edwards TC Jr, Meier ES,

Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009)

Climatic extremes improve predictions of spatial patterns

of tree species. Proc Natl Acad Sci 106(Supplement

2):19723–19728

1892 Landscape Ecol (2015) 30:1879–1892

123

http://www7.ncdc.noaa.gov/
http://www7.ncdc.noaa.gov/
http://soils.usda.gov/
http://cida.usgs.gov/climate/hayhoe_projections.jsp
http://cida.usgs.gov/climate/hayhoe_projections.jsp
http://daymet.ornl.gov/
http://daymet.ornl.gov/
http://dx.doi.org/10.3334/ORNLDAAC/Daymet_V2

	Comparison of a species distribution model and a process model from a hierarchical perspective to quantify effects of projected climate change on tree species
	Abstract
	Context
	Objective
	Methods
	Results
	Conclusion

	Introduction
	Methods
	Study area
	Tree species analyzed
	LINKAGES 2.2
	LINKAGES 2.2 simulations
	Ecological subsection and landform creation
	Climate scenarios
	Soil input variables
	Model simulation

	Climate change tree atlas
	Data analysis
	Quantification of difference between future climate and current climate
	Comparison between Climate Change Tree Atlas and LINKAGES 2.2


	Results
	Change in biomass and importance values
	Regional level
	Ecological subsection level
	Species level
	20 km Scale analysis

	Discussion
	Conclusion

	Acknowledgments
	References




