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Numerous statistical models are employed when processing forest inventory data. These models primarily provide
predicted values for attributes that are difficult and/or time-consuming to measure. In some applications, models
are applied across a large geographic area, which assumes the relationship between the response variable and
predictors is constant within the area. The extent to which this assumption holds for a tree height prediction
model was evaluated at regional, ecoprovince and ecosection scales in the northeastern US. Two nonlinear regres-
sion models were tested, a spatially ambiguous model that utilized tree and stand-level predictors, and a spatially
explicit model that incorporated latitude, longitude and elevation as predictors. When the regional-scale models
were evaluated at the state level, both showed considerable bias for some states, which suggests that the statis-
tical significance of spatial predictor variables does not translate into effective accounting for spatial variability.
Similar results were obtained when fitting the model to an ecoprovince and evaluating bias within ecosections.
Finally, fitting the model to ecosections within the ecoprovince provided a moderate level of local robustness as
assessed by Moran’s I statistic; however, there are cases where local biases may still exist. This outcome suggests
that models should be developed and applied at small spatial scales to reduce local biases when model predictions
are aggregated to larger geographic domains. Alternatively, more advanced modelling techniques may be more
effective at addressing local variabilityusing a single model having large-area application. However, the practicality
of implementing these more complex techniques in the context of continuous large-area forest inventories is not
well understood and should be fully explored prior to operational employment.

Introduction
Many tree-level attributes of interest in forest inventories are not dir-
ectly observed but are derived from statistical models using more
easily measured variables as predictors. Examples of these attri-
butes include tree height (Westfall and Laustsen, 2006; Trincado
et al., 2007), crown characteristics (Bechtold, 2003; Temesgen
et al., 2005), volume (Scott, 1981; Hahn and Hansen, 1991) and
biomass (Jenkins et al., 2003; Woodall et al., 2011). These types of
models have been developed using data collected at various
spatial scales; however, there is a tendency for relatively large geo-
graphic areas to be employed to maximize model utilityand consist-
ency in results. Fitting models to large areas usually results in
concomitant large sample sizes that are desirable from a statistical
perspective and also reduces the need to implement and maintain
numerous models to support the inventory. Consistency in model
predictions can also be viewed as important in reducing apparent
anomalies, for example, differences in results solely due to the use
of different models. However, these practices can result in prediction
biases of unknown magnitude when performing analyses for
smaller spatial domains.

In some cases, these models are based on data that are lacking
spatial information, and it is not feasible to explicitly account for

any systematic spatial variation within the study area. Models of
relativelysimpleformulation, suchasthosethatpredict theattribute
of interest using only diameter at breast height (dbh), implicitly
assume constant relationships across the area (Huang et al.,
1992). More complex models utilize additional local information
regarding stand characteristics, tree social position, etc., to further
refine model predictions to local conditions (Calama and Montero,
2004). More recently, increased availability and decreased cost of
Global Positioning System (GPS) and Global Navigation Satellite
System (GNSS) devices has resulted in data that now often include
information such as latitude, longitude and elevation in addition
to the usual mensurational variables. These data facilitate the
explicit incorporation of geospatial effects into regression models
intended for applicability at large geographic scales by using lati-
tude, longitude and elevation information as predictor variables
(Bechtold, 2003; Westfall, 2006). Modern model fitting techniques
have also been used to address spatial heterogeneity in forestry
data, including geographically weighted, mixed effects and general-
ized additive models (Zhang and Gove, 2005; Lu and Zhang, 2010).

Regardless of whether or not spatially explicit information is
incorporated into regression models, it is often the case that
models are still employed across large geographic areas (Miles
and Hill, 2010; Oswalt and Conner, 2011). This commonly occurs
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in large-area forest inventory applications where numerous ana-
lyses are conducted at various spatial scales. However, the bias
and uncertainty in model predictions within a specified spatial
domain is usually unknown (or assumed to be negligible). From a
practical perspective, the primary consideration is that model pre-
dictions are unbiased at the scale of the analysis (e.g. regional,
state and substate); however, analyses are often undertaken at
spatial scales considerably smaller than the geographic range of
the model fitting data (Butler et al., 2012; Lister and Gladders,
2012). In general, models that perform well across the entire
range of applicability may predict poorly within a particular areal
subdivision (Zhang and Shi, 2004). Potentially, this situation may
be remedied by fitting models to smaller areas, although small
sample sizes can result in relatively large model uncertainty as
well as poor statistical power to detect important correlations
between the variable of interest and predictor variables (McRoberts
and Westfall, 2014). In this paper, a tree height regression model
was fit at various spatial domain sizes to (1) assess the perform-
ance of a large-area model at finer spatial scales, (2) evaluate
the utility of using latitude, longitude and elevation as predictor
variables and (3) examine the outcomes of fitting the model to in-
creasingly smaller geographic areas. Models that predict total
height were investigated because tree height–dbh relationships
are often of critical importance when determining other tree attri-
butes such as volume and biomass.

Methods

Data

The data used in this study were collected between 2006 and 2010 by the
Forest Inventory and Analysis (FIA) programme of the U.S. Forest Service.
The geographic range encompassed 13 states in the northeastern US, in-
cluding West Virginia, Maryland, Delaware, New Jersey, Pennsylvania,
Ohio, New York, Massachusetts, Rhode Island, Connecticut, Vermont, New
Hampshire and Maine. All data were collected using the annualized FIA
sample and plot design where the sampling intensity is approximately
one plot for every 2400 ha of area (Reams et al., 2005). Each sample plot
contains four 7.3-m (24 ft)-radius subplots (Bechtold and Scott, 2005),
and all trees within a forested condition with a diameter at breast height
(dbh) of 12.7 cm (5.0 inches) and larger are measured. Variables used in
this study included species, dbh, total tree height, crown ratio, tree class
and crown class. Additional variables included stand-level basal area per
hectare and spatial information (latitude, longitude and elevation) based

on the plot centre location (U.S. Forest Service, 2007). The analysis
focused on three species due to their relatively large sample sizes and
spatial extent: balsam fir (Abies balsamea), eastern white pine (Pinus
strobus) and red maple (Acer rubrum). Summary statistics for each
species are shown in Table 1.

Analysis

The underlying basis of the total height model is the Chapman–Richards
formulation (Richards, 1959); the specification follows that of Westfall
and Laustsen (2006) with some modifications to better align with the
current study. Two models were considered, a nonspatial model that
assumes that the relationships between tree height and the mensurational
variables are constant across the study area (model 1) and a spatial model
that incorporates latitude, longitude and elevation as additional predictor
variables (model 2):

Hijk = (b0 + b1CCijk + b2CRijk + b3TCijk)
× (1 − exp(−b4DBHijk))(b5+b6BA jk) + 1ijk (1)

Hijk = (b0 + b1CCijk + b2CRijk + b3TCijk) × (1 − exp(−b4DBHijk

+ u1LATk + u2LONk + u3ELVk))(b5+b6BA jk) + 1ijk

(2)

where Hijk is total height of tree i in stand j on plot k (m); DBHijk, diameter
at 1.37 m of tree i in stand j on plot k (cm); CCijk¼ 1 if crown class is domin-
ant/codominant, ¼ 0 otherwise, TCijk¼ 1 if tree class is rough/rotten,¼ 0
otherwise, CRijk¼ crown ratio of tree i in stand j on plot k (percent), BAjk¼

basal area of stand j on plot k (m2 ha21), LATk¼ latitude of centre point
on plot k (decimal degrees), LONk¼ longitude of centre point on plot
k (decimal degrees), ELVk¼ elevation above sea level of centre point
on plot k (m), b0–b6, u1–u3¼ parameters estimated from the data,
e ijk¼ random residual error of tree i in stand j on plot k (m).

To mimic techniques used when many of the current models in use were
developed, nonlinear least-squares methods were used to estimate the
parameters (PROC NLIN, SAS Institute Inc., 2008), and no attempt was
made to account for the lack of independence among trees on the same
plot. To assess differences in spatial domain sizes, regression analyses of
models [1] and [2] were performed for the entire northeastern US region
and for smaller spatial domains defined by areas having similar climate,
vegetation, geology and soils (Cleland et al., 1997). In this study, a
subarea of the region defined as ecoprovince 211 (Northeastern Mixed
Forest) (McNab et al., 2007)was used, which also includes the mountainous
areas denoted by an M prefix (Figure 1). For smaller individual ecosections

Table 1 Summary statistics for balsam fir, white pine and red maple from forest inventory plots across 13 northeastern states

Balsam fir White pine Red Maple

Min. Mean Max. Min. Mean Max. Min. Mean Max.

Dbh (cm) 12.7 17.5 51.8 12.7 28.0 112.8 12.7 22.7 97.8
Total height (m) 3 12 30 4 17 42 2 17 38
Crown ratio (%) 1 48 99 1 36 99 1 35 98
Stand basal area (m2 ha21) 0.4 30.7 91.8 0.8 34.4 271.3 0.7 29.3 271.3
Latitude (degrees) 39.0 45.2 47.4 37.3 42.9 47.4 37.3 42.2 47.4
Longitude (degrees) 281.0 270.4 267.0 284.5 273.1 267.1 284.8 275.1 267.0
Elevation (m) 0 394 1409 0 247 1001 0 357 1397

Balsam fir: 20 321 trees on 2655 plots; white pine: 16 797 trees on 2926 plots; red maple: 63 288 trees on 9949 plots.
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within ecoprovince 211, only model [2] was considered because it outper-
formed model [1] in the earlier analyses. However, fitting model [2] at these
smaller spatial scales often resulted in convergence issues, and thus,
the model was simplified to the so-called natural growth model (Sit and
Poulin-Costello, 1994) by removing the exponent term:

Hijk = (b0 + b1CCijk + b2CRijk + b3TCijk)

× (1 − exp(−b4DBHijk + u1LATk + u2LONk + u3ELVk)) + 1ijk

(3)

Models [1]–[3] above were considered full models. In some cases, one
or more predictor variables were nonsignificant (a¼ 0.05) and were
removed; the reduced model was then recalibrated.

Of considerable interest was whether the inclusion of latitude, longitude
and elevation information in models [2] and [3] accounted for spatial vari-
ation of tree heights that were lacking from model [1]. For this assessment,
the models that were fitted to both regional and ecoprovince 211 data for
each species were compared via pseudo-R2 (proportion of variation
explained) and root mean squared error (RMSE) statistics. To further
assess the models fitted to region-wide data, the mean and standard
deviations of residuals were computed for each of the 13 states by
species. The models fitted to data from ecoprovince 211 were evaluated
similarly, with means and standard deviations of residuals being assessed
by ecosection (McNab et al., 2007) within ecoprovince 211. Ecosections
were not further subdivided into smaller spatial units. The existence of

spatial autocorrelation of residuals within ecosections was assessed via
the Moran’s I statistic (Moran, 1950).

The degree to which the models fit the observed data was assessed
via R2 (proportion of variation explained) and RMSE, whereas model per-
formance at finer spatial resolution was evaluated using the mean (�1)
and standard deviation (s1) of residuals:

R2 = 1 −
∑

12
ijk∑

(Hijk − �H)2
(4)

RMSE =

�������∑
12

ijk

n − p

√
(5)

�1 =
∑

1ijk

n
(6)

s1 =

���������������∑
(1ijk − �1)2

n − 1

√
(7)

where n represents sample size, �H denotes mean tree height, P denotes
number of model predictors and others are as previously defined.

Figure 1 Map of 13-state region, ecoprovince 211 (Northeastern Mixed Forest) and ecosections within ecoprovince 211.
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Results
For each species, the regional-scale regression analysis of model
[1] resulted in statistically significant (a¼ 0.05) estimates for all
model parameters (Table 2). R2 and RMSE statistics by species
were (0.52, 2.09 m), (0.81, 2.75 m) and (0.59, 2.78 m) for balsam
fir, white pine and red maple, respectively. The results for model
[2] also indicated that all model parameter estimates were statis-
tically significant, including those associated with latitude, longi-
tude and elevation (Table 3). The inclusion of these spatial
variables considerably improved the fit statistics (R2, RMSE) for
balsam fir (0.61, 1.88 m); however, the fit statistics for white pine
(0.81, 2.75 m) and red maple (0.61, 2.71 m) did not change appre-
ciably. To assess the performance of both models, �1 and s1 were
calculated for each of the 13 states within the region as this is
the most common scale of FIA analytical reporting. Balsam fir in
Ohio had a relatively large mean error of 2.58 m when model [1]
was used (Table 4). Red maple in Maine was the only other
species with a mean error of .1 m (21.17 m) when using model
[1]; however, there were several mean errors only slightly less
than 1 m for other species/states, and many of the mean errors
were statistically different from zero. An assessment of the same
error statistics for model [2] showed that including the spatial vari-
ables (latitude, longitude and elevation) in the model substantially
reduced the prediction bias for balsam fir in Ohio to 21.25 m
(Table 4), although the bias was not statistically different from
zero due to the small sample size. An unintended negative conse-
quence of using model [2] to predict balsam fir heights was an in-
crease in the mean error in some states relative to the error when
using model [1]. The most egregious example was the increase in
mean error in Massachusetts from 0.17 to 1.02 m. Inclusion of
spatial variables in the model resulted in reductions in mean
error for some states and increases in other states. Furthermore,
the Moran’s I statistic based on residuals from model [2] was stat-
istically significant (a¼ 0.05) for all three species, indicating that
the spatial variables did not sufficiently account for the spatial vari-
ation in the population.

To evaluate model performance at a smaller spatial extent,
models [1] and [2] were fitted to data from plots occurring
within ecoprovince 211 (Figure 1). Results from the regression
analysis were quite similar to those from the region-wide data
in that all parameter estimates were of similar magnitude and

statistically significant for both models. When comparing
model [2] fit statistics to those from model [1], there was a con-
siderable improvement for balsam fir, white pine remained nearly
identical and there was a modest improvement for red maple.
Given the similar results from both the regional and
ecoprovince 211 analyses, it appears that model [2] is generally
preferable, and thus, model [1] was no longer considered. Again,
it was desirable to evaluate prediction error at smaller spatial
scales, and thus, �1 and s1 for model [2] were calculated
by ecosection within ecoprovince 211 (Figure 1; Table 5). The
results again suggest that considerable prediction bias may be
present for subsets of the area from which the model fitting
data were obtained. Mean errors exceeded 1.0 m in two ecosec-
tions (211E and 211I) for balsam fir and in one ecosection (211I)
for white pine. Several others had a magnitude of error between
0.5 and 1.0 m. The Moran’s I statistic based on model residuals
was statistically significant (a¼ 0.05) for all three species.

The results for ecoprovince 211 provided impetus for further
investigation on the effects of spatial scale by examining smaller
areas (ecosections; Figure 1). Due to difficulty in obtaining model
convergence at the reduced spatial scale and concomitant
sample sizes, regression model [3] was used for analysis of each
ecosection. In some cases, not all model parameter estimates
were statistically significant. These results suggest that some eco-
sections are small enough that the data cannot support complex
model formulations and that the reduced sample size is insuffi-
cient to overcome the inherent variability and identify relationships
in a statistical context. The fitted models had varying efficacy
for accounting for spatial trends at these smaller spatial scales.
Autocorrelation of residuals as assessed by Moran’s I statistic indi-
cated that 24 of the 37 species/ecosection combinations had no
spatial trends present in the residuals (Table 6). The reduction in
area from ecoprovince to ecosection was most effective for white
pine where only 8 per cent (1/13) of the ecosections still exhibited
spatial correlations, whereas approximately one-half of the eco-
sections contained spatial patterns for balsam fir (6/11) and red
maple (6/13). Of the four ecosections not having any spatial
predictors, three had nonsignificant Moran’s I statistics, suggesting
that the nonspatial predictors can be sufficient to account for
within-ecosection spatial variability.

Of particular interest was to evaluate at the ecosection scale of
analysis whether the statistical significance of spatial predictor(s)

Table 2 Results from regression analysis of model [1] by species from region-wide data

Parameter Balsam fir White pine Red maple

Estimate Standard error Pr . |t| Estimate Standard error Pr . |t| Estimate Standard error Pr . |t|

b0 27.9583 1.4481 ,0.0001 42.4707 0.6981 ,0.0001 31.5837 0.3080 ,0.0001
b1 2.6224 0.1535 ,0.0001 2.8925 0.1328 ,0.0001 1.6542 0.0473 ,0.0001
b2 20.0636 0.0039 ,0.0001 20.2411 0.0053 ,0.0001 20.0953 0.0020 ,0.0001
b3 26.0572 0.3901 ,0.0001 26.1985 0.1822 ,0.0001 24.2064 0.0683 ,0.0001
b4 0.0289 0.0038 ,0.0001 0.0205 0.0009 ,0.0001 0.0293 0.0011 ,0.0001
b5 0.8991 0.0424 ,0.0001 0.9264 0.0193 ,0.0001 0.7558 0.0137 ,0.0001
b6 20.0020 0.0003 ,0.0001 20.0032 0.0002 ,0.0001 20.0032 0.0001 ,0.0001

Pseudo-R2 0.52 0.81 0.59
RMSE 2.09 2.75 2.78
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was indicative of their effectiveness to eliminate spatial trends in
model residuals. Regression analyses using model [3] with no
spatial predictors showed that 16 of the 37 combinations exhibited
no spatial trends, which shows that the inclusion of spatial predic-
tors only positively influenced 8 of 24 combinations in terms of
affecting the statistical testing outcome. Thus, 16 combinations
did not require the spatial predictor(s) to account for any spatial
correlation that may have been present. In some situations, the
number of observations used to calculate Moran’s I was relatively
small (e.g. ecosections 211E–J) and consequently the power to
detect spatial trends may have been weak.

Discussion
The statistical significance of coefficients associated with spatial
predictor variables was not necessarily a good indicator of their im-
portance in accounting for spatial variation in tree heights at a re-
gional scale. A notable improvement in model fit statistics for
balsam fir was observed. However, because the study area con-
tains the southern edge of the natural range of balsam fir
(Harlowet al., 1991),this may result in more dramatic spatial differ-
ences than for other species whose natural ranges extends beyond
study area boundaries. If this is the case, it would also explain the
marginal improvements observed for both white pine and red
maple. The range of predictive biases at the state level from the re-
gional model (Table 4) indicates that some spatial variability is
present across the study area. However, the analytical results
suggest that this variation is not systematic in relation to latitude,
longitude and elevation.

There are several plausible explanations for why spatial vari-
ables had little effect on spatial trends: (1) there was little spatial
variation to be explained; (2) the influence of spatial location was
already reflected in other model predictor variables and, thus,
adding spatial variables provided little new information and/or
(3) the effects of spatial predictors over the area of interest were
not stationary and, thus, had only limited effectiveness in account-
ing for spatial variability. Reason 3 is the most likely explanation at
the regional and ecoprovince scales, although it is plausible that

other locational information or more complex treatment (e.g.
interactions or indices) of the GPS/GNSS spatial information may
produce different outcomes. At the ecosection scale, Reasons
1 and 2 are more probable; however, Reason 3 may have been
a factor in some instances. One potential explanation for this
outcome is model overspecification, as spatial predictors were
often statistically significant but were not needed to attain a non-
significant Moran’s I statistic. Of note, however is that one-third
(8/24) of the ecosection model fits only attained a nonsignificant
Moran’s I statistic through the inclusion of spatial explanatory
variables, suggesting that the importance of spatial predictors at
this scale should not be entirely discounted.

One potential strategy for determining an appropriate spatial
scale for modelling is to model at the scale of analytical resolution.
For example, FIA commonly reports forest resource statistics
by state. If model predictions are unbiased at this same scale,
the analytical results should be unbiased as well. This is risky
however, because unwary users of the model (or modelled data)
may conduct analyses at smaller spatial scales and incur some
predictive bias within the selected area. Alternatively, it may be
prudent to model at small spatial scales such that spatial effects
are minimized. Subsequent aggregation to larger spatial areas
should have little bias present because the results derive from
the underlying small-area models. An issue with this approach
can be small sample sizes that may lack statistical power to
capture the relationships between tree height and predictor vari-
ables. Also model uncertainty may substantially increase due to
imprecise parameter estimates. McRoberts and Westfall (2014)
reported that regression model contributions to total uncertainty
were negligible only when samples sizes were at least 100 observa-
tions and the proportion of variance explained by the model
(e.g. R2) was at least 0.95, although increased sample sizes can
offset the effects of lower R2 statistics.

Across various spatial scales, the results provided no clear
answer in regards to the effectiveness of latitude, longitude and
elevation in ameliorating subarea prediction biases. Consequently,
the use of spatial predictor variables cannot be relied upon to
provide accurate local predictions. The inclusion of additional
predictor variables other than dbh that describe local tree and

Table 3 Results from regression analysis of model [2] by species from region-wide data

Balsam fir White pine Red maple

Parameter Estimate Standard error Pr . |t| Estimate Standard error Pr . |t| Estimate Standard error Pr . |t|

b0 28.3864 0.7188 ,0.0001 43.1464 1.2188 ,0.0001 29.5004 0.1792 ,0.0001
b1 2.9012 0.0971 ,0.0001 2.8641 0.1553 ,0.0001 2.1508 0.0446 ,0.0001
b2 20.0794 0.0027 ,0.0001 20.2451 0.0077 ,0.0001 20.0861 0.0017 ,0.0001
b3 24.9280 0.2420 ,0.0001 26.3229 0.2375 ,0.0001 23.9625 0.0559 ,0.0001
b4 0.0463 0.0018 ,0.0001 0.0192 0.0022 ,0.0001 0.0455 0.0007 ,0.0001
b5 1726.5157 453.3000 0.0001 0.8620 0.0875 ,0.0001 17.5840 1.8709 ,0.0001
b6 25.9615 1.7299 0.0006 20.0029 0.0004 ,0.0001 20.0917 0.0104 ,0.0001
u1 20.0660 0.0028 ,0.0001 20.0014 0.0005 0.0137 20.0126 0.0012 ,0.0001
u2 0.0564 0.0022 ,0.0001 20.0012 0.0002 ,0.0001 0.0271 0.0008 ,0.0001
u3 0.0004 0.0000 ,0.0001 0.0000 0.0000 ,0.0001 0.0001 0.0000 ,0.0001

Pseudo-R2 0.61 0.81 0.61
RMSE 1.88 2.75 2.71
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Table 5 Sample sizes (n), means (�1, m) and standard deviations (s1, m) of residuals by section for model [2] fit to ecoprovince 211 data

Section Balsam fir White pine Red maple

n �1 s1 n �1 s1 n �1 s1

211A 1972 0.29 1.68 81 20.81 1.90 726 0.63 2.27
M211A 9011 0.04 1.84 698 20.24 2.55 4323 20.07 2.34
211B 1994 0.04* 1.66 688 20.10* 2.12 1525 20.35 2.22
M211B 928 0.53 2.06 1905 0.72 2.91 2886 0.75 2.56
211C 1098 20.55 1.76 404 20.57 2.12 882 20.87 2.32
M211C 815 20.11* 2.28 408 0.99 3.07 2502 0.29 2.65
211D 1619 20.14 1.83 1518 20.42 2.43 2695 20.07* 2.27
M211D 2197 20.12 2.04 826 0.74 2.98 3524 20.03* 2.55
211E 67 21.06 2.35 616 0.14* 2.54 1397 20.47 2.58
211F 26 20.69* 2.33 1036 20.58 2.68 5353 20.30 2.60
211G – – – 374 20.62 2.67 3856 0.43 2.94
211I 59 21.49 1.92 349 21.22 2.58 1217 0.01* 2.69
211J 243 20.57 1.65 305 20.19* 2.58 1245 20.69 2.67

Mean values denoted with an asterisk were not statistically different from zero (a¼ 0.05).

Table 4 Sample sizes (n), means (�1, m) and standard deviations (s1, m) of residuals by state for models [1] and [2] fit to region-wide data

Balsam fir White pine Red maple

Model State n �1 s1 n �1 s1 n �1 s1

[1] CT – – – 388 0.24 2.23 1956 0.06* 2.57
[1] DE – – – – – – 715 20.66 2.94
[1] ME 13 497 0.04 1.87 4353 20.55 2.44 10 707 21.17 2.46
[1] MD – – – 69 20.84 3.42 1511 0.05* 2.96
[1] MA 24 0.17* 2.07 2127 0.25 2.63 3505 20.36 2.60
[1] NH 2390 20.70 2.45 2235 0.77 2.69 4308 0.02* 2.68
[1] NJ – – – 54 20.39* 3.21 1066 20.43 3.05
[1] NY 2557 0.33 2.38 3400 0.06* 2.84 12 535 0.19 2.68
[1] OH 6 2.58 1.22 593 20.38 3.54 3812 0.71 2.73
[1] PA – – – 1440 20.43 2.69 13 387 0.53 2.88
[1] RI 3 20.24* 0.97 368 0.16* 2.18 863 20.91 2.31
[1] VT 1843 0.15 2.50 1161 0.62 3.19 3332 0.02* 2.61
[1] WV – – – 609 0.04* 2.68 5591 0.53 2.84
[2] CT – – – 388 0.29 2.23 1956 0.45 2.56
[2] DE – – – – – – 715 20.72 2.94
[2] ME 13 497 20.06 1.76 4353 20.61 2.44 10 707 20.45 2.44
[2] MD – – – 69 20.79* 3.44 1511 20.07* 2.96
[2] MA 24 1.02 2.09 2127 0.29 2.62 3505 0.14 2.59
[2] NH 2390 0.50 1.99 2235 0.74 2.70 4308 0.53 2.66
[2] NJ – – – 54 20.21* 3.24 1066 20.37 3.07
[2] NY 2557 20.24 2.03 3400 0.05* 2.84 12 535 0.04* 2.66
[2] OH 6 21.25* 1.19 593 20.04* 3.48 3812 20.48 2.76
[2] PA – – – 1440 20.38 2.70 13 387 0.19 2.87
[2] RI 3 0.10* 1.33 368 0.25 2.18 863 20.38 2.34
[2] VT 1843 0.13 2.17 1161 0.53 3.18 3332 0.32 2.57
[2] WV – – – 609 0.08* 2.70 5591 0.03* 2.84

Mean values denoted with an asterisk were not statistically different from zero (a¼ 0.05).
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stand conditions were also unable to fully account for spatial
variability in many cases. Perhaps, the most promising general
technique in regression modelling for local calibration is the use
of mixed-effects models, which can be calibrated to local condi-
tions via prediction of random effects for new observations
(Trincado et al., 2007; Finley et al., 2013). This method requires
that additional data be available that helps describe the local rela-
tionship between tree height and model predictor variables. In the
context of this paper, such data may come from height and diam-
eter measurements on a subsample of trees used to calibrate pre-
dictions for the remaining trees having unmeasured tree heights.
Other possibilities include retaining the random effects for trees
used to fit the model and only predicting random effects for new
trees (e.g. ingrowth). A concern with retaining random effects
predictions is their applicability over time. As forest inventory
plots are remeasured repeatedly over several decades, the
random effects for all trees may need to be continually updated
as stand dynamics and/or external processes such as disturbance
or climate change alter functional relationships (Zhang and Gove,
2005). These methods may provide a framework for adapting to
long-term shifts in relationships among the response and predictor
variables without having to engage in a new model development
process. However, the practical efficacy of employing such
models in large-area forest inventory and monitoring programmes
has yet to be evaluated.

Conclusion
The results of this study lead to several important conclusions. First,
the performance of large-area models at finer spatial scales is

erratic, with some smaller areas exhibiting considerable bias.
Second, the effectiveness of using latitude, longitude and elevation
to account for large-area spatial variation cannot be determined
solely by the statistical significance of associated model parameter
estimates. Third, it may be advantageous to fit a number of models
to relatively homogeneous subregions instead of using a single
model over the entire region. Thus, when using traditional fitting
techniques, these postulates should be taken into account when
developing a large-area modelling strategy.
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