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Accurate uncertainty assessments of plot-level live tree biomass stocks are an important precursor to
estimating uncertainty in annual national greenhouse gas inventories (NGHGIs) developed from forest
inventory data. However, current approaches employed within the United States’ NGHGI do not specifi-
cally incorporate methods to address error in tree-scale biomass models and as a result may misestimate
overall uncertainty surrounding plot-scale assessments. We present a data-driven, hierarchical modeling
approach to predict both total aboveground and foliage biomass for inventory plots within the US Forest
Service Forest Inventory and Analysis (FIA) program, informed by a large multispecies felled-tree dataset.
Our results reveal substantial plot-scale relative uncertainties for total aboveground biomass (11-155% of
predicted means) with even larger uncertainties for foliage biomass (27-472%). In addition, we found dif-
ferent distributions of total aboveground and foliage biomass when compared with other generalized
biomass models for North America. These results suggest a greater contribution of allometric models
to the overall uncertainty of biomass stock estimates than what has been previously reported by the
literature. While the relative performance of the hierarchical model is influenced by biases within the
fitting data, particularly for woodland and conifer species, our results suggest that poor representation
of individual tree model error may lead to unrealistically high confidence in plot-scale estimates of
biomass stocks derived from forest inventory data. However, improvements to model design and the
quality of felled-tree data for fitting and validation may offer substantial improvements in the accuracy
and precision of NGHGIs.
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1. Introduction branches, foliage; Domke et al., 2012; Neumann et al., 2016). In

addition, general allometric models have also been recommended

At the global scale, forest biomass possesses capacity for miti-
gating anthropogenic emissions of greenhouse gases through
growth and related carbon sequestration (Birdsey et al., 2013;
Pan et al.,, 2011). As a result, estimates of live tree forest biomass
stocks (hereafter referred to as forest biomass) and associated
uncertainty are a key component of national greenhouse gas inven-
tories (NGHGIs) that are used as baselines for assessing overall car-
bon stock changes among signatory nations of the United Nations’
Framework Convention on Climate Change (UNFCCC; Birdsey and
Heath, 1995; Woodall et al., 2011). In the United States’ (US)
NGHGI, as well as those of many European nations, national
biomass stocks are calculated from plot-scale estimates which
summarize the predictions of tree-scale static allometric models
for total aboveground biomass and biomass fractions (e.g., stem,
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for calculating forest carbon inventories in tropical regions
(Chave et al., 2014). However the overall error of these models as
well as the extent to which they contribute to uncertainty (i.e.,
accuracy and precision) at the plot-level is poorly understood, par-
ticularly for highly variable pools such as foliage (Weiskittel et al.,
2015). Improving the accuracy and precision of plot-scale total
aboveground and component stock assessments can contribute
further refinements to the US NGHGI by increasing the utility of
forest inventory data for improving national-scale models.
Plot-level estimates of forest biomass used within the US
NGHGI are based on the US Forest Service’s (USFS) Forest Inventory
and Analysis (FIA) data. Currently, these estimates are calculated
using the ‘component ratio’ method (CRM; Woodall et al., 2011;
Domke et al., 2012) with uncertainty estimates obtained using a
Monte Carlo simulation with constraints on variances around
parameters of allometric models for total biomass and compo-
nents. This approach is supported by recent work which has
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applied similar error propagation techniques to assess contribu-
tions of model uncertainty to large area estimates of forest attri-
butes, including live tree volume for the US FIA data (McRoberts
and Westfall, 2014), and biomass for the Norwegian National For-
est Inventory (Breidenbach et al., 2014). Both of these studies
found a small contribution of allometric model error to overall
uncertainty in stock estimates relative to sampling error in the
inventory data, but while this approach allows for probabilistic
estimation of biomass stock uncertainty, it requires that assump-
tions are made about the expected scale of uncertainty. These are
typically based on expert opinion and/or results within the litera-
ture but are difficult to verify, which contributes to a substantial
risk of either overestimating or underestimating variance within
predictive models. In contrast, quantifying uncertainty by fitting
statistical models allows for the variances of allometric model
parameters to be quantified by observed data if an appropriate
technique is used. Such an approach facilitates the identification
of the largest sources of uncertainty which in turn can enable cost
effective improvements to data collection and/or model develop-
ment with a goal of accurate uncertainty estimates surrounding
plot-scale biomass stocks.

Over the last decade, there has been increasing interest in the
use of predictive statistical models for estimating forest carbon
processes, as well as prediction uncertainty, across large areas
(Luo et al., 2011). Such approaches have been used to incorporate
data from intensive sampling efforts to inform parameters of car-
bon process models (Keenan et al., 2012; Weng et al., 2012;
Williams et al., 2005) and to predict carbon fluxes and stocks both
across space and through time (Scholze et al., 2007; Schwalm et al.,
2010; Ziehn et al., 2011). With the goal of data-driven uncertainty
estimation and mean prediction of forest biomass stocks, Bayesian
hierarchical models present a methodological framework that nat-
urally accounts for uncertainty in both model parameters and pre-
dictions of new observations, conditioned upon the observed data
the analyst has at hand as well as their prior expectations (Carlin
and Louis, 1996; Cressie et al., 2009; Gelman et al., 2003). This fea-
ture naturally incorporates model uncertainty into prediction
uncertainty and allows for seamless “up-scaling” across individual
tree, plot, and population scales. Hierarchical models have been
applied to model other forest attributes such as forest growth
and biomass at the tree-scale (Green et al., 2000; Zapatas-Cuartas
et al., 2012), as well as at larger spatial extents (van Oijen et al.,
2013). In addition, several studies have used hierarchical models
to predict forest biomass for large areas of the US, using plot-
level estimates obtained from FIA data (Datta et al., in press;
Finley et al., 2010; Schliep et al., 2015). To our knowledge, hierar-
chical models have not been applied to leverage felled-tree data to
perform robust uncertainty estimation for allometric models and
to up-scale these uncertainties to forest inventory plots within
the context of NGHGIs.

In this study we employ a data-driven, hierarchical modeling
approach that accounts for uncertainty in tree-scale allometric
models to estimate total aboveground biomass and foliage bio-
mass stocks for forest inventory plots in the coterminous US. We
use a large multispecies database of felled-tree data to inform
the model and then generate tree-scale predictions with uncer-
tainty estimation using FIA data. Specific objectives within the
US forest study region are to: (1) map the distribution of plot-
scale total aboveground and foliage biomass stocks and associated
uncertainty bounds; (2) assess the overall contribution of tree-
scale predictive models to uncertainty of plot-scale stock esti-
mates; and (3) compare total aboveground and foliage biomass
distributions obtained from this data-driven predictive model to
those of a widely used set of general biomass models for North
America.

2. Methods
2.1. Study region

Our study region consists of forest of the lower 48 contiguous
states within the US. This comprises the bulk of the area currently
included in the FIA program, spanning four distinct ecoregions and
approximately 36 eco-subregions (McNab et al., 2005), with 21
major forest types having been identified across the study area
(Ruefenacht et al., 2008). In the northeastern US predominant
forest types are oak/hickory and mixed maple/beech, while pine-
dominated forests are prevalent in the southeast. In the western
US, Douglas-fir forests are the most common, though large areas
dominated by pinyon pine, juniper, and other “woodland” species
are also present (Oswalt et al., 2014). Using such a large, heteroge-
neous region enables assessment of model performance across a
number of varying forest types, and a range of environmental
conditions.

2.2. Data

We employed two datasets for our study: (1) a set of felled-tree
biomass data for the major species in North America (hereafter
referred to as “legacy data”); and (2) the most recent full cycle
(i.e., complete annual inventory) of FIA data collected across our
study region from 2009 to 2013. The former is a comprehensive
but comparatively sparse sample of destructively sampled biomass
data which was used to fit biomass models as a basis for estimating
both mean trends and uncertainty bounds in tree and foliage bio-
mass distribution at the national scale. The FIA data, which possess
continuous spatial coverage, provides observations of model inde-
pendent variables (i.e., diameter at breast height [dbh] or species
group) to which the fitted model may be applied for predicting
total aboveground or foliage biomass at the national scale.

The legacy biomass data is part of an ongoing effort by the USFS
and partners to improve resources for calibrating allometric bio-
mass models (Weiskittel et al., 2015). It consists of destructively
sampled estimates of total aboveground biomass and biomass
components, as well as tree dimensions (e.g., dbh and total height),
that have been collated from both historic and contemporary stud-
ies throughout North America, converted into common units and
harmonized with the FIA data (Weiskittel et al., 2015). We used
the portion of the database containing observations of foliage bio-
mass (kg) from trees >1 cm dbh, species, total aboveground bio-
mass (kg), and dbh (cm). We focused on foliage biomass as it is a
dynamic, heterogeneous carbon pool that varies substantially
across space and time. Additionally, we were interested in assess-
ing a biomass stock we expect to be highly uncertain. Refining the
estimation of component NGHGI pools (e.g., foliage) is a current
methodological priority of the US NGHGI (Woodall et al., 2011).
This sample consists of 5701 observations spanning the 10 species
groups used by FIA (99 species in total) gathered from 63 studies
and 94 unique sites (Table 1).

We used recent annual FIA inventory data, collected from 2009
to 2013, available for our study region (Fig. 1; for detailed discus-
sion of the inventory program see Bechtold and Patterson, 2005).
Beginning around 1998, the FIA program transitioned from a peri-
odic to an annual inventory, in which all plots within each state are
sampled over a seven- (eastern US) or ten-year (western US) mea-
surement period, providing a complete inventory for the US across
the measurement interval. The sole exception was the state of
Nevada, which has not completed an annual inventory yet, but rep-
resents a small portion of forest land across the US. The FIA data we
used was filtered to remove dead trees and plots that were not
measured during our sampling period.



B.J. Clough et al./Forest Ecology and Management 372 (2016) 175-188 177

Table 1

Sample size and summary statistics for diameter at breast height (dbh), total aboveground biomass, and foliage biomass for the ten species groups of Jenkins et al. (2003) in the
legacy data. Height observations are only available for 3344 of the 5701 trees in the full legacy data.

Jenkins species group # Trees dbh (cm) Total height (m)

Mean s.d. Max Mean s.d. Max
1. Cedar/Larch 67 20.5 9.4 55.6 10.8 4.8 22.9
2. Douglas-fir 258 19.72 15.9 96.8 11.8 6.3 31.1
3. True fir/Hemlock 79 239 20 85.1 10.0 5.7 24.6
4. Pine 969 16.1 11.7 59.9 94 53 283
5. Spruce 260 15.6 12.1 71.6 10.1 53 25.1
6. Aspen/alder/cottonwood-willow 326 10.7 9.1 50.8 14.0 7.8 34.6
7. Soft maple/birch 517 13.2 104 524 10.8 6.9 33.6
8. Mixed hardwood 1797 14.5 115 59.7 9.8 5.2 39.7
9. Hard maple/oak/hickory/beech 1246 19.7 13.7 72.9 114 6.3 31.9
10. Juniper/oak/mesquite 111 233 16.3 115.6 6.1 23 14.0

Total aboveground biomass (kg) Foliage biomass (kg)
Mean s.d. Mean s.d.

1. Cedar/Larch 180.6 187.5 3 53
2. Douglas-fir 3143 677.2 121 14.5
3. True fir/Hemlock 467.5 962.2 17.2 20.3
4, Pine 172.8 295.1 6 8.3
5. Spruce 173.3 328.8 18.9 27.8
6. Aspen/alder/cottonwood-willow 78.6 166.1 2 34
7. Soft maple/birch 139.1 266.6 35 5.9
8. Mixed hardwood 147.7 265.4 2.8 49
9. Hard maple/oak/hickory/beech 367.2 556.4 9.3 13.5
10. Juniper/oak/mesquite 295.6 431.2 40.8 354

2.3. Model fitting and prediction using FIA data

Producing estimates of plot-level mean biomass stocks (total
aboveground and foliage biomass) and accompanying uncertainty
intervals occurred in 2 steps: (1) fitting of allometric models to
the legacy data within a Bayesian hierarchical framework, with
simultaneous generation of tree-scale posterior biomass predic-
tions; and (2) post-processing of tree-level posterior predicted dis-
tributions into plot-level posterior predicted distributions. Here,
we outline the allometric models and provide a brief overview of
the analytical procedure. Further detail on our model design and
methodology may be found in Appendix A.

We follow the general approach of Jenkins et al. (2003) by sep-
arately predicting total aboveground biomass (BMj; kg) and a foli-
age component ratio (FR;) as:

In(BMj) = o; + p; In(dbhy) + &, (1)

logit(FRy) = v; + + €,

0j
dbh; @)
and subsequently estimating foliage biomass (kg) as:

where dbh; is observed diameter at breast height (cm), and
&j~N(0,0) and €5 ~ N(0,7) are data-level variances for the two
sub-models. The remaining terms (o, fi;,7;, ;) are species group-
specific regression coefficients. We used a log-linear model for
BMj; and a logistic regression form for FR; to guarantee that pre-
dicted values will be between 0 and 1.0. In (1) and (2),
i=1,...,10, I=10 indexes the I species groups historically used
by the USFS within their general biomass models (Jenkins et al.,
2003), while j indexes individual trees in the legacy data. We follow
this convention and use these same groups within our models, but
we depart from Jenkins et al. (2003) in also fitting 10 models using
the legacy data for the foliage component ratio, rather than using
two (hardwoods and softwoods). In addition to US FIA, models of
this general structure are currently employed in many other
national forest inventories for estimating aboveground biomass
components (Domke et al., 2012; Neumann et al., 2016; Petersson

et al.,, 2012; Woodall et al., 2011; Zianis et al., 2005). In our models
dbh is the sole predictor, since it is the only tree dimension that is
measured for every tree in the FIA database.

Bayesian inference involves the updating of ‘posterior’ distribu-
tions of model parameters by integrating a likelihood distribution
from observed data (i.e., the legacy data) with a second distribution
representing prior belief (Gelman et al., 2003). We placed normal
prior distributions on the regression coefficients (o, §;,;,d) in
(1) and (2) and flat, non-informative priors on the data-level vari-
ances (o, 7). In addition, we adopted a hierarchical structure by fur-
ther placing hyper-prior distributions on the means and variances
of the regression coefficients. This hierarchical framework is
designed so that I =10 group-level parameters are estimated, but
that these arise from common, non-informative hyper-priors on
the mean and variance (Gelman et al., 2003). Posterior predictive
distributions of total aboveground biomass and foliage ratio were
separately derived for individual trees in the FIA data, arising
simultaneous to model fitting as a function of the joint posterior
of the legacy data and all parameters in either (1) or (2). Posterior
predicted foliage biomass was calculated at the tree scale by taking
the product of these posterior samples. These tree-scale predictive
distributions were aggregated into FIA plot-scale predictive
distributions, which were summarized by their mean and 95%
uncertainty interval. Model fitting and prediction were conducted
via Markov chain Monte Carlo (MCMC) procedures using Stan
called from R via the rstan package (Stan Development Team,
2015a, 2015b). In addition to these posterior predictions based
on models fitted to the legacy data, we generated mean plot stock
estimates with the models of Jenkins et al. (2003) to provide a
reference method with which to compare the results of our
data-fitted model.

3. Results
3.1. Predicted distributions of total aboveground and foliage biomass
Plot-scale predictions of total aboveground biomass ranged

from approximately 0.2 Mg ha~! to approximately 2300 Mg ha~’,
with a mean of approximately 125Mgha™! and a median of
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FIA plots (2009-2013) by dominant Jenkins et al. (2003) species group

* 1: Cedar/larch
*  2: Douglas-fir
*  3: True fir’lhemlock
4: Pine
5: Spruce
6: Aspen/alder/cottonwood-willow
7: Soft maple/birch
8: Mixed hardwood
*  9: Hard maple/oak/hickory/beech

* 10: Juniper/oak/mesquite

KM
2,280

0 285 570

1,140 1,710

Fig. 1. Distribution of FIA plots, coded by Jenkins et al. (2003) species group.

105 Mgha™! (Fig. 2). The highest concentrations were in
coniferous forests in the Pacific Northwest, extending south along
the Pacific coastal range and the Sierra Nevada range. Lowest con-
centrations were found in scattered forests throughout the Mid-
west, while moderate biomass stocks were observed in steppe
ecosystems of the interior mountain west as well as coniferous
dominated forests in the Laurentian mixed forest and
Adirondack-New England mixed forest provinces in the northeast-
ern United States. Predicted biomass stocks were notably homoge-
nous across much of the southeastern United States. Plot scale
posterior uncertainty intervals ranged from approximately 0.245
to 142,000 Mg ha~! (mean and median 43 Mg ha~! and 33 Mg ha™!
respectively), with the largest uncertainty intervals found in
regions with the highest mean predicted aboveground biomass.
Predicted foliage biomass from our hierarchical model ranged
from approximately 0.02 to 174 Mg ha~! (mean: 7 Mg ha™'; med-
ian: 5 Mg ha™!; Fig. 2). Both extremes of this range were identified
in forests of the western US. The lowest foliage biomass densities
were predicted for dry steppe provinces in California and the Great
Plains, as well as prairie parkland ecosystems throughout the Mid-
west. As with total aboveground biomass, the highest foliage bio-
mass densities were noted in the Pacific Northwest (Cascade
mixed forest province and Pacific lowland mixed forest province),
as well as in arid, conifer-dominated forests across the intermoun-
tain west and the Colorado plateau. In the eastern US, foliage
biomass densities were higher in the north, particularly within
the Laurentian mixed forest and the Adirondack-New England

mixed forest provinces, with somewhat lower densities through-
out the coastal plain forests of the southeast. The range of pre-
dicted uncertainties was slightly higher than the predicted
means, with intervals ranging from approximately 0.064 Mg ha™!
to approximately 190 Mgha ! (mean: 6Mgha!; median:
5Mgha!; Fig. 2). In general, high prediction uncertainty was
associated with higher densities of predicted foliage biomass.
However, as with total aboveground biomass, average prediction
uncertainty was large relative to average mean foliage biomass
across most of the study range.

3.2. Relative uncertainty of total aboveground and foliage biomass
predictions

Plots of these ratios for total aboveground biomass and foliage
biomass (Fig. 3) reveal somewhat divergent trends within these
pools. Overall total aboveground biomass predictions were much
more certain, with these ratios ranging from 11% to 146%. By con-
trast, ratios for foliage biomass range from 31% to 450%, suggesting
that at best the foliage biomass model was more than twice as
uncertain when compared to the total aboveground biomass
model. In the worst cases, the range of the uncertainty interval
was more than 4.5 times larger than the plot-scale predicted
means. Overall, the foliage ratio model had much higher uncer-
tainty than the log-linear model for total aboveground biomass.

The basic distributions of these ratios were similar for both
total aboveground and foliage biomass (Fig. 3). High relative
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Mean total aboveground biomass (Mg/ha)
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Fig. 2. Plot-scale posterior predicted mean total aboveground biomass (Mg ha™'), and foliage biomass from the hierarchical model.
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Relative uncertainty of plot-scale total AGB estimates (%)

A
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Fig. 3. Plot-scale relative uncertainty (the ratio between the posterior 95% uncertainty interval and the posterior mean) for total aboveground and foliage biomass. Note that
the scale for foliage biomass is three times larger than for total aboveground biomass.
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Relative difference of total AGB predictions between hierarchical and Jenkins et al. (2003) models (%)
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Relative difference of foliage biomass predictions between hierarchical and Jenkins et al. (2003) models (%)
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Fig. 4. Relative difference (Mg ha~') between posterior predictions and the models of Jenkins et al. (2003), for total aboveground and foliage biomass. Plots where predictions
of the two methods were within 5% of each other are shown in yellow, while blue indicates lower predicted stocks from the hierarchical model and red indicates higher
predicted stocks. Note that the range of differences in foliage biomass is much larger than total aboveground biomass.
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uncertainties were particularly notable in the steppe ecosystems of
the interior mountain west; particularly within the southern and
middle Rocky Mountain steppe provinces. High relative uncertain-
ties in both pools were also common in prairie parkland, desert/
semi-desert, and California chaparral ecosystems throughout the
western US. In the eastern US there were less consistent patterns,
though in general large relative uncertainties are more common in
southeastern/central mixed and broadleaf forest provinces when
compared to northern forests (i.e., Adirondack-New England,
northeastern mixed, and Laurentian mixed forest provinces). The
mean relative uncertainty ratio of all plots in the FIA sample was
41% for total aboveground biomass and 117% for foliage biomass.

3.3. Comparison of hierarchical model and Jenkins models

Throughout most forests in the US, the hierarchical model
resulted in higher predicted total aboveground (Fig. 4) and foliage
(Fig. 4) biomass than the Jenkins models (approximately 11%
greater on average for total aboveground biomass, and 9% greater
on average for foliage biomass). In both cases, the largest differ-
ences were in steppe ecosystems in the intermountain west
(~200% greater on average for total aboveground biomass,~800%
greater on average for foliage biomass). Beyond that general trend,
the differences between approaches were dissimilar for the two
pools. For example, the hierarchical model produced larger predic-
tions of foliage biomass in the Cascade mixed forest and through-
out the Pacific Northwest, but also generated lower estimates of
total aboveground biomass for this same region. A similar pattern
was also noted in forest provinces throughout the northern and
northeastern US. By contrast, instances where the hierarchical
model predicted lower foliage biomass than the Jenkins models
were much less common, though this trend is noted along the cen-
tral range of Oregon and California, in the Everglades province of
southern Florida, and in isolated pockets across the coastal plain
forests of the southeastern US. While the hierarchical model
tended towards larger predictions for both pools, foliage biomass
showed pronounced extremes with relative percent differences
from —75% to 2493%. By contrast, the range of differences for total
aboveground biomass were from —26% to 184%, with the largest
differences mainly restricted to the interior mountain west. It is
notable that the largest relative differences were found in ecore-
gions where the hierarchical model was the most uncertain, as
evaluated by the relative ratio of the uncertainty interval range
and posterior predicted means (Fig. 3).

Comparing means across the 10 species groups confirms that, in
general, total aboveground estimates provided by the hierarchical
model and the Jenkins models were more similar than those found
for foliage biomass (Fig. 5). In the case of total aboveground bio-
mass, the Juniper/oak/mesquite species group was the only group
where substantial differences between mean plot-scale estimates
from each method were found. These results also demonstrate a
trend towards substantially higher foliage biomass predictions
within this group. Plots dominated by the Juniper/oak/mesquite
group are widespread in steppe ecosystems of the southwestern
US and interior mountain west; the regions where we found the
largest plot-scale differences between the hierarchical model and
Jenkins models for both pools, as well as the largest relative
uncertainties. Note, however, that there is substantial variation
in estimates of both pools within all species groups.

4. Discussion

The largest plot-scale uncertainties from our analysis represent
a substantial increase compared to what is reporting in existing lit-
erature (Chave et al., 2004; Djomo et al., 2010; Keller et al., 2001),

though uncertainty for most FIA plots was found to be close to the
higher end of this range (approximately 1-30% of predicted
means). Our results suggest that allometric model error constitutes
a large portion of plot-scale uncertainty which varies among spe-
cies. We found larger relative uncertainties among certain species
groups and forest types; most notably the Juniper/oak/mesquite
species group within arid forests in the western US. Our analytical
approach signifies that differences among species groups arise in
large part from variation within the legacy data, which may indi-
cate a higher degree of geographic and/or interspecific variation
within this group when compared to others. The legacy data are
naturally sparse relative to the FIA sample, meaning that as with
most studies using allometric models developed from small
felled-tree samples, our predictions are conditioned upon allomet-
ric relationships observed at a small number of sites. There is
substantial evidence to indicate that stem diameter-biomass rela-
tionships vary among taxonomic and/or plant functional groups
(Pretzch and Dieler, 2012), and may also be influenced by environ-
mental variables such as temperature regimes (Duncanson et al.,
2015; Reich et al., 2014). This may be particularly true for foliage
biomass, a highly variable stock that is heavily influenced by stand
and landscape level processes (Temesgen et al., 2011). Interest-
ingly, the same forest types in which we observed the highest
plot-scale uncertainties were recently found to have the largest
discrepancies in predicted biomass stocks for FIA using two differ-
ent sets of models (Hoover and Smith, 2016), the reference method
we used in our work and a set of updated models provided by
Chojnacky et al. (2013). These models are based on “pseudodata”
generated from many published models and as such are suscepti-
ble to similar scaling issues as our legacy data-fitted model when
applied to FIA data.

These observations, coupled with the generally larger errors in
predicted foliage biomass than total aboveground biomass, argue
for several improvements to allometric modeling approaches for
quantifying national forest biomass stocks. A natural starting point
is the inclusion of additional covariates, such as tree height and
crown diameter, within allometric models. Height in particular is
strongly related to both total aboveground and foliage biomass
(Niklas, 1995; Wirth et al., 2004). Height and crown diameter are
only measured for a subset of trees within FIA so predicted esti-
mates of these variables are necessary for projecting total forest
carbon stocks, adding another level of uncertainty that must be
incorporated into plot-level biomass estimates. However, given
the general quality of tree height diameter models (Arabatzis and
Burkhart, 1992), as well as the strong relationships between height
and biomass, it seems reasonable to expect that even models based
on predicted heights may have lower uncertainty. The assumption
of constant specific gravity that is implicit in allometric models
also substantially contributes to their uncertainty, since both wood
and bark density vary across scales (Chave et al., 2004; MacFarlane,
2011). The legacy data contains specific gravity measurements for
many tree species, so there is opportunity to develop and compare
data-driven models that incorporate uncertainty into biomass
expansion factors. Beyond individual tree measurements, climate
data (Reich et al., 2014) or plant trait databases (Russell et al.,
2014) may also lend further refinements to prediction results, as
such variables may influence allometric relationships across a
species’ geographic range.

In addition to updating models, improving data resources such
as the legacy database may contribute further refinements to
national forest carbon estimates. Weiskittel et al. (2015) have
shown a substantial mismatch in the diameter distribution of the
legacy data versus that of a national sample of FIA plots, and when
coupled with taxonomic and geographic variation such as we note
above, these discrepancies may affect the accuracy and precision of
predictive models. For example, our data-fitted model predicted
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Fig. 5. Comparison of mean plot-scale total aboveground and foliage biomass produced by the hierarchical model and the models of Jenkins et al., for the 10 species groups
used in our study. The error bars here represent the standard deviation among the sample of FIA plots within each group.

generally smaller biomass stocks than the Jenkins et al. (2003) under way to improve both the spatial and taxonomic coverage of
models in forest types that are dominated by large trees (i.e., con- the legacy data (Weiskittel et al., 2015) and to add observations of
ifer dominated forests in the Pacific Northwest). Efforts are already large individuals for the most common tree species of North
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America. In addition, global efforts to collate available biomass
data such as the Biomass and Allometry Database (BAAD; Falster
et al., 2015) can facilitate the use of data-driven models in other
national or international forest carbon inventory efforts. Predictive
analyses such as ours can help to guide “gap filling” efforts of exist-
ing biomass data by demonstrating where the greatest gains in
precision can be made. For example, the large variation we
observed in juniper/oak/mesquite indicates additional data from
across the range of these species is necessary to accurately esti-
mate uncertainty.

In building our hierarchical model and generating predictions,
we make several assumptions that are important for interpreting
our results and establishing future improvements to a hierarchical
predictive framework. The legacy data consists of multiple data-
sets, but we chose to pool these data and not attempt to account
for random error related to study, in keeping with the reference
method used for our comparisons (Chojnacky et al., 2014;
Jenkins et al., 2003; Wayson et al., 2014). However, models that
incorporate random effects in the fitting and prediction data
(Wirth et al., 2004; Wutzler et al., 2008), or spatially varying coef-
ficients (Gelfand et al., 2004), facilitate the reduction of errors aris-
ing from these factors. We modeled independent errors for our
dependent variables and we assumed that tree-scale errors are
additive at the plot-level, though some studies have suggested that
models which account for similar growing conditions and/or den-
sity dependence can reduce uncertainty in stock projections
(Chave et al., 2014; Schliep et al., 2015). However, such sophisti-
cated statistical models are not routinely used by the US or other
nations’ forest carbon inventories therefore baseline uncertainty
assessments using practical methods remain important.

5. Conclusions

It is important that uncertainty estimates accompany the eval-
uation of forest carbon stock estimates to enable the objective
monitoring of terrestrial carbon and associated policies (e.g., Uni-
ted Nations Framework Convention on Climate Change). We eval-
uated a hierarchical approach to estimate total uncertainty
associated with forest biomass stocks. This approach used avail-
able data to inform allometric models by generating predictions
via simulations from a posterior predictive distribution that seam-
lessly aggregated errors associated with stock estimates at the tree,
plot, and regional scale. Using this framework we have provided
evidence that static allometric biomass models risk substantially
underestimating the contribution of allometric model error to
the overall uncertainty of plot-scale estimates. Our results argue
for greater investments to improve the precision of allometric
models for worldwide forest carbon inventories by incorporating
additional covariates into predictive models (e.g., tree height, cli-
mate variables), improving data resources for fitting and validating
models, and adopting statistical approaches capable of accounting
for the complex error structures needed to develop biomass stocks
from tree-scale predictions. The hierarchical framework we
employed possesses the flexibility to incorporate such improve-
ments to enhance the US’ NGHGI and forest carbon inventories
worldwide.
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Appendix A. Detailed statistical and computational
methodology

A.1. Statistical model

We used a set of models that separately estimate total above-
ground biomass and the fraction of aboveground biomass found
within foliage for both fitting to the legacy data and subsequent
prediction for FIA data. In order for our plot-scale predictions and
uncertainty estimates to be representative of what may be
expected when using widely used techniques for forest carbon
inventories, we adopt a similar approach. The models for total
aboveground biomass (BMj; kg) and foliage ratio (i.e., observed
foliage biomass/observed total aboveground biomass; FR;) are:

In(BMj) = o + f; In(dbhy) + &, (1)
logit(FR;) = 7 + ~0— + ¢ 2)
i) = 7T dbhy 0

In these models dbh; is observed diameter at breast height (cm),
and ¢; ~N(0,0) and €; ~ N(0,7) are data-level variances for the
two sub-models. The remaining terms (o, ;, ;, ;) are regression
coefficients. We used a log-linear model for BM; and a logistic
regression form for FR; to guarantee that predicted values will be
between 0 and 1.0. In (1) and (2),i=1,...,10, I =10 indexes the I
species groups historically used by the USFS within their general
biomass models (Jenkins et al., 2003), while j indexes individual
observations (tree scale measurements of total aboveground bio-
mass and foliage ratio) in the legacy data. We follow this convention
and use these same groups within our models, but we depart from
Jenkins et al. (2003) in also fitting 10 models using the legacy data
for the foliage component ratio, rather than using two (hardwoods
and softwoods). Foliage biomass is indirectly estimated as the pro-
duct of new predictions of BM;; and FRy;, and this is elaborated upon
when we describe our procedure for estimating biomass stocks at
the tree scale with the FIA data.

In both (1) and (2), dbh is the sole variable used to predict bio-
mass. While other tree measurements such as total height, wood
specific gravity, and crown ratio have been shown to offer substan-
tial improvement in both total aboveground and foliage biomass
models (Baldwin, 1989; Chave et al., 2014), these measurements
are only available for a subset of the full FIA data. In most large
national forest inventories, cost and time constraints prevent
detailed measurement of all trees within the sample (Weiskittel
et al.,, 2015). Since our biomass stocks will be estimated from
tree-scale predictions, and since we want to be able to conduct full
assessment of uncertainty, we chose to limit our models to vari-
ables available for every tree within the FIA database. This
approach aligns with ongoing USFS efforts to quantify biomass
pools using FIA data (Domke et al., 2012; Woodall et al., 2011),
which use empirical models that also use dbh as the only predictor
variable.

For the purposes of our current work we chose to pool the
legacy data for model fitting, despite the fact that observations
within these data arise from multiple studies that differ in regional
focus, sampling methodologies (particularly for foliage), and the
diameter distribution of measured trees. Ignoring random effects
related to these factors has an obvious impact on estimates of pre-
diction uncertainty, as errors related to sampling biases within the
felled-tree data cannot be separated cannot be separated from the
usual “white noise” variation in the dbh and biomass measure-
ments. However, fitting a model to the pooled felled-tree data is
analogous to widely used approaches based on biomass “pseudo-
data” (Chojnacky et al., 2014; Jenkins et al., 2003; Wayson et al.,
2014), where allometric models are fitted to simulated data
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generated from dozens of published biomass models. In fact, many
of the studies represented in the legacy database are also included
in the database of biomass models compiled by Jenkins et al.
(2004). Our goal is to provide baseline plot-level uncertainty
assessments that are related to the practical methods used in the
United States and many other nations, so we prefer to implement
our statistical model in a similar fashion.

A.2. Hierarchical specification

Briefly, our hierarchical model is designed to estimate separate
sets of the parameters in (1) and (2) for each of the I species groups,
but also assumes exchangeability among these groups. To accom-
plish this, we first place normal prior distributions on the regres-
sion coefficients of each of the I models:

o ~ Nt @) 3)
Bi ~ Ny, @p) (4)
7~ N, ;) (5)
o ~ N(t;, ¢;) (6)

In this specification, the coefficient means (u,) are completed with
normal hyper-prior distributions (~ N(0,25)) while the coefficient
variances (¢,) are given vague uniform prior distributions
(~ Unif (0, 00)). Note that while J sub-models are fit, each coefficient
arises from a common hyper-prior distribution across species
groups. This structure provides partial-pooling of the group level
variances, stabilizing highly variable groups and/or groups with
small sample sizes, while avoiding overly smoothed inference on
the relationship between the independent (dbh) and dependent
(biomass stocks) variables (Gelman et al., 2003). We utilize such
an approach in our study because, while we want to perform infer-
ence and prediction on the 10 species groups (Jenkins et al., 2003),
legacy samples for groups like cedar/larch, true fir/hemlock, and
juniper/oak/mesquite are relatively small (<200 observations). Of
course, using this structure implicitly assumes that, while we
expect variable allometric scaling among the groups (Chave et al.,
2009; Pretzch and Dieler, 2012; MacFarlane, 2015), an underlying
basic relationship between dbh and total aboveground biomass/fo-
liage ratio exists (i.e., Enquist and Niklas, 2001). In this way, our
model can be thought of as a compromise between fully static
(i.e., complete pooling among groups) and fully variable (i.e., no
pooling among groups) allometric relationships. Specification of
our model is completed by placing a flat uniform prior (i.e.,
o ~ Unif(0,00)) on the model variances.We specify all priors and
hyper-priors with noninformative prior distributions. In this way
we are using Bayes’ theorem to take advantage of the hierarchical
model structure to allow for partial pooling of variances among
allometric model parameters for the different species groups, but
not asserting any prior belief about parameter means or variances.
In practice this assumption can be relaxed both to improve compu-
tational efficiency and to incorporate prior knowledge about model
parameters. However, here we are interested in exploring the
results of a model that is fully data-driven. For that reason, we
default to prior distributions that do not make any assumptions
regarding posterior outcomes.

A.3. Prediction

In Bayesian statistics, predicting the response variable when
given new observations of the dependent variable(s) is accom-
plished by taking draws from the posterior predictive distribution
(Gelman et al., 2003; Ntzoufras, 2009). In our analysis, we predict

individual tree total aboveground biomass and foliage ratio for
observations within the FIA database as:

p(ypred |ylegacy) = / p(ypred ‘ 0’ ylegacy)p(0|ylegacy)d07 (7)

where y,., represents new predictions of total aboveground bio-
mass (BMr.q) and foliage ratio (FRy.q) given dbh and species group
of trees within the FIA database, V., represents the observed
(legacy) felled-tree data (i.e., total aboveground biomass and foliage
ratio), and 0 is all of the posterior estimates of all parameters, as
well as their priors and hyper-priors, in (1) and (2) based on fitting
to the legacy data. Note that, according to (7), the posterior distribu-
tions of the new predicted observations are conditioned upon the
posterior distributions of the models fitted to the legacy data. In this
way, prediction within the Bayes framework naturally incorporates
uncertainty related to the observed felled-tree data and fitting of
the allometric models into the new predictions for trees within
FIA. For each tree within FIA our approach is to simultaneously pre-
dict total biomass and the foliage component ratio, and then multi-
ply these quantities to draw posterior predicted samples of foliage
biomass as:

FOLpred = BMpred * FRpred (8)

A.4. Model implementation

Fitting of our hierarchical model to the legacy data and predic-
tion within FIA were accomplished using Stan, called from R with
the RStan package (Stan Development Team, 2015a, 2015b). Stan
is a recently developed, open source programming language for
conducting Bayesian inference. It has particular advantage over
alternative languages, such as BUGS or JAGS, in that it is possible
to conduct posterior inference on high dimensional, complex mod-
els with only moderate computational resources. Stan accom-
plishes this by obtaining posteriors with Hamiltonian Monte
Carlo, a more efficient algorithm than other commonly used MCMC
procedures such as the Gibbs sampler (Carpenter et al., in press).
This is particularly advantageous in fitting biomass models to for-
est inventory data such as we do here, where we are drawing pos-
terior distributions for hundreds of thousands of trees
simultaneously.

We drew a total of 500 posterior samples of both total above-
ground and foliage biomass from two different Markov chains by
thinning every 4th sample from a run of 1000 iterations. This sam-
pling phase followed a “warm up” run of 1000 iterations. During
initial tests, this procedure was sufficient to achieve convergence
in both model parameters and posterior predicted biomass for a
subset of FIA plots. Convergence was assessed both by visual
inspection of trace plots and with the Gelman-Rubin diagnostic.
This analysis results in an n x p matrix of posterior predicted total
aboveground and foliage biomass for the FIA sample, where n is the
number of live trees in the sample of FIA data and p is the 500 pos-
terior simulations.

A.5. Post-processing

Once the matrix of tree-level posterior predicted biomasses was
obtained, the next step was to summarize the results into plot-
level estimates (Mgha~!) that preserve the uncertainty repre-
sented by our procedure for prediction at the tree-scale. To accom-
plish this we followed standard procedures used by USFS to project
tree-level estimates into areal estimates, applied to columns
within the n x p matrix (i.e., n observations by p posterior predic-
tions). This results in a vector of 500 predicted estimates of total
aboveground and foliage biomass for each plot, which can be
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regarded as a posterior sample of plot-scale biomass when
conducting uncertainty estimation. We first applied a ‘trees per
hectare’ adjustment to each prediction, to express these as individ-
ual contributions to plot-scale areal estimates. After the predicted
results were adjusted, they were summed within plots to obtain
plot-level predicted biomass. From the resulting vector of plot esti-
mates, we calculated the mean and the 2.5% and 97.5% quantile
bounds. This procedure was performed for both posterior predicted
total aboveground biomass and foliage biomass.

A.6. Reference method

To compare the results of the hierarchical model to widely-used
general biomass models for North America, we also calculated plot-
level biomass via the approach outlined by Jenkins et al. (2003;
hereafter referred to as the “Jenkins models”). These estimates were
similarly obtained at the tree-scale and aggregated into plot-level
estimates through the same scaling procedure described above.
The difference is that they represent point estimates of biomass

since the Jenkins models are parameterized with fixed coefficients.
Unlike our model, the Jenkins models do not estimate a foliage ratio
for all 10 species groups, but instead simply divide tree species into
hardwoods and softwoods.

The Jenkins models were applied to predict total aboveground
and foliage biomass for the same set of FIA data used for our hier-
archical model. The procedure here was similar: biomass was first
estimated at the tree-scale, converted into areal estimates using
the same ‘trees per hectare’ adjustment, and then aggregated to
produce plot-level estimates of total aboveground and foliage
biomass in Mg ha~!. The difference is that the Jenkins models are
applied with fixed parameters so this operation is performed upon
a single vector of predictions rather than a posterior distribution.

Appendix B. Posterior summaries of the parameters and hyper-
parameters of the total aboveground biomass and foliage ratio
models (Eqs.(1) and (2)) fitted to the legacy data

Total aboveground biomass

Foliage ratio

Mean Lower CI Upper CI Mean Lower CI Upper CI
Regression parameters
Intercepts
1. Cedar/Larch —2.097 —2.542 -1.712 —4.525 —4.800 —4.250
2. Douglas-fir —2.206 -2.336 —-2.081 -2.873 —-3.006 -2.720
3. True fir/Hemlock -2.839 -3.057 -2.627 —-2.708 -2.934 -2.493
4. Pine -1.605 -1.658 —1.546 -3.515 —-3.580 —3.448
5. Spruce -1.816 -1.934 -1.703 -2.136 -2.282 -1.997
6. Aspen/alder/cottonwood-willow -2.284 -2.374 -2.200 -3.508 -3.651 -3.359
7. Soft maple/birch —2.041 -2.110 -1.976 -3.719 -3.816 -3.612
8. Mixed hardwood —2.208 -2.252 -2.167 -4.114 -4.175 —4.058
9. Hard maple/oak/hickory/beech -1.909 -1.962 -1.848 -3.765 -3.830 —3.706
10. Juniper/oak/mesquite —0.798 —1.040 —0.532 -1.681 -1.906 -1.492
Slopes
1. Cedar/Larch 2.322 2.188 2.470 3.556 0.093 6.826
2. Douglas-fir 2.402 2.357 2.447 3.963 2.951 4.953
3. True fir/Hemlock 2.515 2.441 2.593 4.791 3.593 5.968
4. Pine 2.160 2.138 2.181 7.517 7.148 7.926
5. Spruce 2.265 2.222 2.307 2.371 1.708 3.004
6. Aspen/alder/cottonwood-willow 2413 2.376 2.451 2.673 2.039 3.235
7. Soft maple/birch 2.383 2.355 2411 3.113 2.669 3.518
8. Mixed hardwood 2.388 2.372 2.405 4.006 3.675 4.354
9. Hard maple/oak/hickory/beech 2.399 2.377 2.418 3.744 3.279 4162
10. Juniper/oak/mesquite 1.939 1.859 2.016 3.998 2.378 5.795
Data-level variance 0.315 0.309 0.322
Hyper-parameters
Total aboveground biomass
Intercept mean —1.980 —-2.392 -1.594
Slope mean 2.321 2.178 2.451
Intercept variance 0.633 0.375 1.038
Slope variance 0.188 0.112 0.313
Foliage ratio
Intercept mean —3.243 —3.872 —2.567
Slope mean 4.009 2.784 5.508
Intercept variance 1.043 0.642 1.728
Slope variance 1.853 1.056 3.304
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