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Abstract Peatland measurements of CO2 and CH4

flux were obtained at scales appropriate to the in situ

biological community below the tree layer to demon-

strate representativeness of the spruce and peatland

responses under climatic and environmental change

(SPRUCE) experiment. Surface flux measurements

were made using dual open-path analyzers over an

area of 1.13 m2 in daylight and dark conditions along

with associated peat temperatures, water table height,

hummock moisture, atmospheric pressure and inci-

dent radiation data. Observations from August 2011

through December 2014 demonstrated seasonal trends

correlated with temperature as the dominant apparent

driving variable. The S1-Bog for the SPRUCE study

was found to be representative of temperate peatlands

in terms of CO2 and CH4 flux. Maximum net CO2 flux

in midsummer showed similar rates of C uptake and

loss: daytime surface uptake was -5 to

-6 lmol m-2 s-1 and dark period loss rates were

4–5 lmol m-2 s-1 (positive values are carbon lost to

the atmosphere). Maximum midsummer CH4-C flux

ranged from 0.4 to 0.5 lmol m-2 s-1 and was a factor

of 10 lower than dark CO2–C efflux rates. Midwinter

conditions produced near-zero flux for both CO2 and

CH4 with frozen surfaces. Integrating temperature-

dependent models across annual periods showed dark

CO2–C and CH4–C flux to be 894 ± 34 and

16 ± 2 gC m-2 y-1, respectively. Net ecosystem

exchange of carbon from the shrub-forb-Sphagnum-

microbial community (excluding tree contributions)

ranged from -3.1 gCO2–C m-2 y-1 in 2013, to C

Responsible Editor: Melanie A. Vile

Notice: This manuscript has been authored by UT-Battelle,

LLC under Contract No. DE-AC05-00OR22725 with the U.S.

Department of Energy. The United States Government retains

and the publisher, by accepting the article for publication,

acknowledges that the United States Government retains a non-

exclusive, paid-up, irrevocable, world-wide license to publish

or reproduce the published form of this manuscript, or allow

others to do so, for United States Government purposes. The

Department of Energy will provide public access to these

results of federally sponsored research in accordance with the

DOE Public Access Plan (http://www.energy.gov/downloads/

doe-public-access-plan).

Electronic supplementary material The online version of
this article (doi:10.1007/s10533-016-0230-8) contains supple-
mentary material, which is available to authorized users.

P. J. Hanson (&) � J. R. Phillips � D. J. Weston �
J. S. Riggs � L. A. Hook
Oak Ridge National Laboratory, Climate Change Science

Institute and Environmental Sciences Division,

Oak Ridge, TN 37831-6301, USA

e-mail: hansonpj@ornl.gov

A. L. Gill

Boston University, Boston, MA 02215, USA

X. Xu

San Diego State University, San Diego, CA 92182, USA

123

Biogeochemistry (2016) 129:255–272

DOI 10.1007/s10533-016-0230-8

http://orcid.org/0000-0001-7293-3561
http://www.energy.gov/downloads/doe-public-access-plan
http://www.energy.gov/downloads/doe-public-access-plan
http://www.energy.gov/downloads/doe-public-access-plan
http://www.energy.gov/downloads/doe-public-access-plan
http://dx.doi.org/10.1007/s10533-016-0230-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10533-016-0230-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10533-016-0230-8&amp;domain=pdf


losses from 21 to 65 gCO2–C m-2 y-1 for the other

years.

Keywords Carbon budget � Carbon dioxide �
Methane � Peat � Picea � Sphagnum

Abbreviations

C carbon

CO2 carbon dioxide

CH4 methane

MEF Marcell Experimental Forest

PAR photosynthetically active radiation

Introduction

Peatlands currently represent a major global carbon

sink sensitive to climate change, although the effect of

future warming on the fate of stored carbon (C) is

largely unknown (Gorham 1991; Bubier and Moore

1994; Tarnocai and Stolbovoy 2006; Heijmans et al.

2008). Characterizing peatland uptake of atmospheric

carbon dioxide (CO2) and loss of stored C (as CO2 and

methane [CH4]) is notoriously difficult due to the

spatial and temporal variability of gas fluxes, the

methodological challenges of measuring surface

fluxes, the multi-faceted interactions between many

environmental drivers that influence trace gas emis-

sion (e.g., temperature, water saturation, peat oxygen

content, substrate availability), and the remote nature

of many high latitude peatlands. Current projections of

future climate conditions suggest that temperate

peatlands may experience 4–6 �C warming by the

end of the 21st century (IPCC 2013). Therefore,

placing observed rates of CO2 and CH4 release in the

context of future warming represents an additional

challenge as predicted levels of sustained warming go

beyond the range of historical climate variation

experienced by extant peatlands.

Mechanistic models are powerful tools that can

be leveraged to project future carbon dynamics in

peatlands (Tian et al. 2010; Wania et al. 2010; Riley

et al. 2011), but provide a solution only if they can

be parameterized and benchmarked with appropriate

data. Large-scale, multi-factor global change exper-

iments are an ideal place to generate such empirical,

ecosystem-scale data, but typically require relatively

small experimental plots that must remain undis-

turbed throughout the duration of the experiment.

Accurately characterizing net ecosystem exchange

of carbon (NEE) within manipulation plots is

therefore a challenge. The small size precludes

ecosystem-scale measurements such as eddy covari-

ance, but adequately distributed small static cham-

bers can be used to capture spatial variation in

carbon uptake and loss, especially across heteroge-

neous peat topography. Peatlands are characterized

by an uneven or variable hummock-hollow surface

topography that has often, and appropriately,

required the measurement and interpretation of

surface flux observations at multiple locations

representative of this diversity (Belyea and Baird

2006; Lai et al. 2014a). Such measurements benefit

from modeling approaches that recognize surface

variation details (e.g., Baird et al. 2009; Shi et al.

2015).

Here we use a community-scale collar approach to

characterize pretreatment surface fluxes of CO2 and

CH4 at the spruce and peatland responses under

climate and environmental change experiment

(SPRUCE: http://www.mnspruce.ornl.gov). In this

study we addressed the question: how representative is

the SPRUCE peatland in terms of CO2 and CH4 flux

for known peatlands? We also characterized the spa-

tial heterogeneity of peat surface CO2 and CH4 fluxes

within the S1-Bog prior to SPRUCE treatment initia-

tion. The measurements provide pretreatment char-

acterizations of the peatland community below tree

canopies using an approach that preserves plot integ-

rity over the planned ten-year treatment period. The

project employs simultaneous measurements of CO2

and CH4 flux using open path instrumentation to

provide quantitative data on the gas fluxes from the

peatland, and characterizes the seasonal and spatial

dynamics and annual contribution to the peatland

carbon cycle. These community level observations are

complementary to traditional small collar observa-

tions of surface CO2 and CH4 flux (e.g., Dise et al.

1993; Song et al. 2009, 2012). These measurements

represent a viable option for multi-year, community-

level measurements within a manipulated ecosystem

enclosure when eddy covariance approaches (Olson

et al. 2013) cannot be applied.

R. K. Kolka

Forestry Sciences Laboratory, USDA Forest Service,

Northern Research Station, Grand Rapids, MN 55744,

USA
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Methodology

SPRUCE project

The SPRUCE project is an experiment to assess the

response of northern peatland ecosystems to increases

in temperature and exposures to elevated atmospheric

CO2 concentrations. The experimental work is being

conducted in a Picea mariana [black spruce]—

Sphagnum spp. bog in northern Minnesota, 40 km

north of Grand Rapids, in the USDA Forest Service

Marcell Experimental Forest (MEF). The site is

located at the southern margin of the boreal forest in

a temperate climate. Experimental work in the 8.1-ha

S1-Bog includes a climate change manipulation

focusing on the combined responses to multiple levels

of warming at ambient or elevated CO2 levels.

SPRUCE evaluates the response of the existing

biological communities to a range of warming levels

from ambient to ?9 �C within large, open-top enclo-

sures (Krassovski et al. 2015; Barbier et al. 2012). Half

of the warming treatments are also conducted at eCO2

(*900 ppm). Both direct and indirect effects of these

experimental perturbations will be analyzed to

develop and refine models needed for full Earth

system analyses.

Site description

All measurements were conducted at the SPRUCE site

located on the S1-Bog within the MEF (N47�30.4760;
W93�27.1620 and 418 m above mean sea level; Kolka

et al. 2011). The climate of the MEF is subhumid

continental, with wide and rapid diurnal and seasonal

temperature fluctuations (Verry et al. 1988). Over the

period from 1961 through 2005 the average annual air

temperature was 3.3 �C, with daily mean extremes of

-38 and 30 �C, and the average annual precipitation

was 768 mm. Mean annual air temperatures have

increased about 0.4 �C per decade over the last

40 years (Sebestyen et al. 2011).

The S1-Bog is a weakly ombrotrophic peatland

with a perched water table that has little regional

groundwater influence. The S1-Bog is dominated by

Picea mariana (Mill.) B.S.P. (black spruce) with

contributions to the forest canopy from Larix laricina

(Du Roi) K. Koch (larch). The S1-Bog was harvested

in strip cuts in 1969 and 1974 to test the effects of

seeding on the natural regeneration of P. mariana. In

its current state the canopy is 5–8 m tall. The peatland

soil is the Greenwood series, a Typic Haplohemist

(http://www.websoilsurvey.nrcs.usda.gov) with aver-

age peat depths to the Wisconsin glacial-age lake bed

of 2–3 m (Parsekian et al. 2012), but depths to 11 m

are present. Recent surveys of the peat depth, bulk

density, and carbon concentrations for the S1-Bog

suggest a total C storage pool commonly greater than

200 kgC m-2, with greater than 90 % more than

3000 years old (Karis McFarlane, personal

communication).

Below-canopy vegetation within the S1-Bog is

composed of a bryophyte layer including Pleurozium

spp. (feather mosses), Polytrichum spp (haircap

mosses) and dominated by Sphagnum spp. mosses,

especially Sphagnum angustifolium and fallax in

hollows and Sphagnum magellanicum on drier hum-

mocks. The understory includes a layer of ericaceous

shrubs including Rhododendron groenlandicum

(Oeder) Kron and Judd (Labrador tea), Chamae-

daphne calyculata (L.) Moench. (leatherleaf) with a

minor component of other woody shrubs. The bog also

supports a limited number of herbaceous species

including: the summer-prevalent Mianthemum tri-

folium (L.) Desf. (three-leaf false Solomon’s seal), a

variety of sedges (Carex spp.) and Eriophorum

spissum (cotton grass). The belowground peat profile

and geochemistry are described in Tfaily et al. (2014).

The flux measurement system

We designed a community-level flux measurement

system that uses open path sensors to simultaneously

measure CO2 and CH4 exchanges in 1.2 m internal

diameter chambers. Closed path spectrometers, most

often used for small-scale dual measurements of

methane and carbon dioxide flux, require a pump to

reduce laser cavity pressure, and thus have high power

requirements. In contrast, open path sensors do not

require such a pump and have a much smaller power

draw, which is ideal when infrastructure is limited.

While moisture collection and ice crystallization can

interfere with open path sensors and require that data

be filtered during precipitation events when applied in

eddy covariance applications, short term collar-level

flux avoid these problems, but reap the benefits of low

power draw, lighter instrumentation, and no tubing or

analysis delay.
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The large 1.2 m diameter chambers incorporate a

visually-determined, locally representative sample of

the aboveground plant community (excluding widely

spaced trees). Ecosystem features encompassed by

this method include a hummock-hollow topography

covered with Sphagnum spp. with *30 cm of eleva-

tion difference, the presence of ericaceous shrubs with

a mean height of 30–40 cm, and an ephemeral

Maianthemum trifolium community occupying the

hollow areas. The hummock-hollow spatial pattern

from hollow bottoms to hummocks tops repeats at a

0.5–1 m interval in the S1-Bog; our collars cover a

complete hummock and hollow topography.

Climate-hardy infrastructure and durable instru-

mentation were selected to ensure repeated and

comparable flux observations over the multi-year

study. We used paired open-path sensors to charac-

terize changing H2O, CO2 and CH4 concentrations

within a sealed and transparent enclosure space

following the concepts for desert plant communities

previously described by Arnone and Obrist (2003) to

measure flux rates from the intact bog community

(Fig. 1). The measurement system using embedded

open-path analyzers is considered a community-scale

approach to distinguish it from traditional small and

static chamber techniques that do not incorporate

vertically structured soil and vegetation. However, we

do recognize that other peatland static chamber

approaches have also used chambers large enough to

include the full complement of community vegetation

(e.g., Ballantyne et al. 2014).

We constructed flux collars from the top 67 cm of a

commercially available linear polyethylene tank

(Chem-Tainer Industries, Inc., West Babylon, New

York; Part No. TC4842AA-Black). We used a black

polyethylene collar to eliminate light penetration, and

subsequently painted it white to minimize local

temperature changes in the bog surface environment.

The collar was embedded 10–20 cm into the surface

peat (defined as the hollow height) to achieve an air-

tight seal at ground level. At the time of each flux

assessment, 10 observations from collar height to

Fig. 1 Diagrams and photographs of the complete CH4–CO2–

H2O measurement system installed for observations in the S1-

Bog. A permanent in situ collar and instrument stand remain in

the peatland. The instrument package and transparent dome are

assembled in and over the collar, respectively, for each short

term measurement. The photograph shows the transparent

chamber clamped to the permanent collar with internal

instrumentation in place during a typical measurement. The

inset photograph shows the system enshrouded with a temporary

black plastic cover for dark or pseudo-nighttime observations.

Platforms on either side of the collar and chamber are installed

above the shrubs for temporary access during measurements

258 Biogeochemistry (2016) 129:255–272
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Sphagnum surface were made across the collar area

and averaged to determine the collar volume. Individ-

ual collar volumes ranged from 0.45 to 0. 69 m3 due to

between-collar variation in the bog topography.

The transportable and transparent enclosure (re-

movable top in Fig. 1) was constructed of a cylindrical

aluminum frame (1.3 m diameter 9 1.02 m tall) to be

placed above a 1.35 m diameter circular ring formed

from 5 cm aluminum angle material. The frame was

covered with a transparent polyethylene fitted plastic

cover with light transmittance greater than 90 % in the

absence of structural shadows. The plastic cover was

sealed to the aluminum angle ring with a tension band.

Four 12-volt DC fans (Link Depot Model E244875

0.35 A)] were positioned within the transparent

enclosure to stir the upper 1.25 m3 volume, but no

fans were added to the collar area to minimize surface

boundary layer disturbance. The total enclosed vol-

ume during measurements was approximately 1.8 m3,

but varied by collar depending on the surface charac-

teristic of individual plots. Internal volumes were

determined from dimensional measurements and

geometric calculations. Porosity of the peat surface

itself was assumed to lie within a defined boundary

layer that did not contribute to the chamber volume

calculations.

During measurements, the upper and lower enclo-

sure frames were joined together with a � inch thick,

closed-cell neoprene foam gasket and tightened with

six welding clamps spaced around the circumference

of the chamber. All plots were accessed from an

interconnected boardwalk system suspended above

the surface of the bog to eliminate plot disturbance.

Open-path CO2 9 H2O (LI-7500A; LiCor Inc.,

Lincoln, NE) and CH4 (LI-7700; LiCor Inc. Lincoln,

NE) infrared sensors were mounted to a metal carrying

device that was placed on a permanent stainless steel

post (driven to a depth[2 m) located in the center of

each collar (Fig. 1).

The analyzers, together with LiCor’s analysis

interface unit, were used to collect and store observa-

tions of changing [H2O], [CO2] and [CH4], air

temperature, air pressure, PAR (LiCor Inc., LI-190)

and both hummock and hollow Sphagnum/peat tem-

peratures (*5 cm below their respective surface) in

one-second intervals for 400 s (Fig. 2). The 400 s

duration allows for clear CO2 and CH4 concentration

trends. Longer sampling intervals were not desirable

in this system because they: (1) were unnecessary to

obtain linear changes in gas concentration and

repeatable flux values, (2) lead to increased internal

concentrations which could exacerbate leaks if pre-

sent, (3) result in large changes in chamber water

vapor concentration which may impair the function of

the CH4 analyzer, and (4) result in large changes in air

temperature under daylight conditions (further dis-

cussed below). A fitted opaque plastic cover (Fig. 1)

was manufactured to cover the transparent enclosure

and allow measurements of community respiration.

Measurements

Flux measurements and calculations

Individual flux measurements began when the trans-

parent enclosure was clamped to the permanent collar

and data logging was initiated in the LI-7500A (LiCor

Inc., Lincoln, NE) interface unit. A typical measure-

ment series (Fig. 2) included observations in full

Fig. 2 A typical time

sequence of CO2 and CH4

concentrations within the

enclosure during a

measurement including the

transition from daylight to

dark conditions around

250 s. Straight lines over the

measured data represent the

linear regression slopes

calculated to estimate gas

flux
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ambient light (*200 s) and darkened conditions

(*200 s).

Following field data collection, the rate of change in

the concentration of each gas within the chamber

headspace was calculated using the following

equation:

CXx Flux ¼ d CXx½ �=dt � Vol=Area ð1Þ

where CXx Flux is in lmol m-2 s-1, [CXx] is in

lmol mol-1, t is in seconds, d[CXx]/dt is the slope of

the change in concentration, Vol is the volume of the

enclosure above the bog surface (converted and

calculated in moles of dry air), as calculated with

base area and the distance from chamber top to peat

surface, and Area is the planar area (a constant

1.13 m2) of the bog surface encircled by the perma-

nent collar. The height of the chamber is 1.6 m.

Individual measurement periods were rejected if linear

relationship for CO2 or CH4 had an r2\ 0.9, as

suggested for traditional non-steady state non-flow

through chamber approach (Song et al. 2009). All

values of measured [CXx] were corrected for the

dilution effect caused by increasing water vapor

concentrations within the enclosure during the mea-

surement interval (LiCor 2010). To keep reported gas

flux at the land–atmosphere interface consistent in this

study, we used positive flux to represent gas loss to the

atmosphere and negative values for gas uptake by the

terrestrial ecosystem.

A typical measurement sequence for [CXx] pro-

duced concentration changes of no more

than ±10 lmol mol-1 for CO2, and no more than

?2 lmol mol-1 for CH4 from the initially enclosed

ambient air concentrations. These levels of change are

much lower than gradients produced in small diameter

collars with low equilibration volumes. Enclosure air

temperature changes under zero- or low-light condi-

tions were negligible, and limited to changes within

?2 �C of ambient for direct sunlight exposures.

Periodic leak tests of the transparent enclosure

clamped to a blank reference plate were conducted

by elevating the internal [CO2] of the enclosure

(*800 lmol mol-1). Such tests showed no change in

[CO2] over several minutes for these extreme differ-

ential conditions. Internal and external pressures were

measured independently inside (LiCor LI-7700 pres-

sure sensor) and outside (LI-7550 pressure sensor) of

the chamber and found to be stable during the

measurement periods defined in Fig. 2.

Throughout 2011, 2012 and early portions of 2013,

flux observations were collected at periodic intervals

on two replicate collars near but outside the SPRUCE

treatment plots in the S1-Bog. In 2013, 16 new collars

were added to each SPRUCE experimental plot

established on the S1-Bog. Following the installation

of the 16 we discontinued use of the original two. We

used the 16 collars to evaluate spatial heterogeneity in

peat CO2 and CH4 fluxes across the SPRUCE treat-

ment plots. This paper includes all measurements

conducted before the onset of sustained SPRUCE

heating treatments in 2014. Measurements were

collected in August, September and October 2011;

monthly from May through November 2012; July,

September and October 2013; and June and July 2014.

Plots continued to be assessed from September–

December 2014 to include the early winter period

with frozen Sphagnum surfaces (December 2014). The

combined data set covers a wide range of peat

temperatures (-6 to 24 �C at the Sphagnum surface)

and seasonally dynamic patterns. S1-Bog CO2 and

CH4 flux data from 2011 through 2014 are archived in

a long-term repository (Hanson et al. 2014a).

Bog environmental measurements

Multipoint thermistor probes were custom designed to

measure temperature throughout the peat profile

(W.H. Cooke and Co. Inc, Hanover, PA). Peat

temperatures were recorded every 30 min at 7 depths

near the two initial test collars located outside

SPRUCE treatment plots (0, -5, -20, -40, -80,

-160 and-200 cm beneath the hollow surface) and at

9 depths within the designated SPRUCE experimental

plots (0, -5, -10, -20, -30, -40, -50, -100 and

-200 cm). Hummock temperature measurements

were also obtained at various elevations above the

hollow surface (0 and ?10–15 and ?20–25 cm).

These continuous measurements supplement the hum-

mock and hollow peat temperature measurements

(each approx. -5 cm below their respective surface)

made within each collar throughout each flux mea-

surement period. The custom integrated probes were

manufactured from a 1.3 cm diameter 9 0.9 mm wall

stainless steel tube. A 7.62 cm stainless steel disk was

welded at the zero height position along the tube, and

an electrical termination enclosure was supported

above the bog surface by a 46 cm extension of the

measurement tube to keep it above any standing water
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and to avoid shading the bog surface at the point of

measurements.

Air temperature and relative humidity measure-

ments were made with a combination sensor (Viasala,

Finland; Model HMP155A) and monitored at 0.5, 1,

and 2 m above the bog surface in the center of each

plot location.

Water table height measurements were automati-

cally recorded every 30 min with water level probes

having 1 mm resolution (Trutrack Ltd. Christchurch,

New Zealand; Part No. WT-VO2000) installed in a

5.25 cm diameter well casing. Wells were located

within 2 m of the flux collar.

Photosynthetically active radiation (PAR) was

measured with quantum sensors (LiCor Inc., LI-190)

in three distinct locations beside those in the cham-

bers: (a) 2 m above the surface away from shading

trees, (b) at shrub heights (*?30 cm)], and (c) near

the Sphagnum surface with underwater PAR sensors

(LiCor Inc., LI-192) to allow data collections and

instrument performance during flooded conditions.

All data collections were controlled and recorded

on an automated data logger (Campbell Scientific, Inc.

Logan, UT; CR1000). S1-Bog environmental mea-

surement data from 2010 through 2014 are archived in

a long-term repository (Hanson et al. 2014b).

Ground-level C flux assessments

Annual carbon cycle flux

Seasonal flux data for both gases and all years of

observation were combined and fitted to regression

equations for use in the interpolation of annual NEE

for the S1-Bog. The community respiration was fit to

the following temperature response equation:

CO2ER ¼ BASECO2
� Q10CO2

^ððTx � Tref Þ=10Þ ð2Þ

where CO2ER is the exchange rate of CO2 in

lmol m-2 s-1, BASECO2
the exchange rate at the

reference temperature, Q10CO2
is the apparent temper-

ature response for a 10 K change in temperature, Tx is

the peat temperature in K at a known depth (x), and Tref
is the temperature associated with measured base

CO2ER value (288.15 K).

The CH4 flux was fit to an expanded temperature

response equation that includes a modifier for the

influence of changing water table depth (Dise et al.

1993):

CH4ER ¼ BASECH4
� Q10CH4

^ððTx � Tref Þ=10Þ
� ðWTfracÞ ð3Þ

WTfrac ¼ WT � aþ b

where CH4ER is the exchange rate of CH4 in

lmol m-2 s-1, BASECH4
, Q10CH4

, Tx and Tref are

analogous to the CO2 flux parameters defined previ-

ously. WTfrac is a 0–1 multiplier that captures the

influence of declining water table depths on CH4

efflux from the bog. WT is the water table depth below

the hollow height in mm, and a and b are constants

(obtained from nonlinear regression). More mecha-

nistic expressions for CH4 efflux are available that

characterize both production and oxidation and a

variety of transport pathways (Walter and Heimann

2000; Zhuang et al. 2004; Tian et al. 2010;Wania et al.

2010; Riley et al. 2011), but here we use a simple

empirical relationship to estimate annual flux rates

from the data set. Such mechanistic expressions will

be employed for the future interpretation of CH4 flux

from the planned SPRUCE experiment when addi-

tional ancillary driver data sets become available (e.g.,

substrate availability from current dissolved organic

carbon (DOC) production, oxidation processes in

aerated peat and additional observations of water

table depth and thus aeration of the peat profile).

Of all peat temperature depths assessed, peat

temperatures 10 cm below the bog surface explained

the most variation in CO2 and CH4 flux rates described

in Eqs. 2 and 3. Combining half-hour temperature data

with the fitted flux relationships projected annual

patterns of flux were estimated for the S1-Bog in 2011,

2012, 2013 and 2014.

Daylight measurements (uncovered) were used to

estimate whole-ecosystem net exchange of CO2

during ambient daylight conditions. The following

empirical equation for a light response curve (Hanson

et al. 1987) was fitted to such data to quantify light

saturated rates of CO2 uptake by the bog vegetation

complex and the light levels required for photosyn-

thesis to exceed whole-system C losses.

CER¼ Psat � 1�ð1�Rcom=PsatÞ^ð1�PAR=LCPÞ
� �

ð4Þ

where CER in lmol CO2 m-2 s-1 is the net CO2

exchange rate over the bog community. CER differs

from the commonly characterized NEE because tree

stem and foliage CO2 exchange present in this

Biogeochemistry (2016) 129:255–272 261

123



ecosystem are excluded. Psat in lmol CO2 m
-2 s-1 is

the light saturated rate of net CO2 uptake, Rcom in lmol

CO2 m-2 s-1 is the community CO2 loss rate to the

atmosphere under dark conditions (i.e., apparent

community respiration), and LCP in lmol quanta

m-2 s-1 is the light compensation point where Reco is

balanced by net ecosystem photosynthesis. Parameter

values and R2 information for the fitted empirical

regression equations for Eqs. 2, 3 and 4 are provided

in Table 1.

Statistical analyses

Means for CO2 and CH4 flux were calculated and

nonlinear regression statistics (IBM SPSS Statistics

Version 21) were used to fit the available data to

Eqs. 2, 3 and 4. Box-and-whisker plots characterizing

spatial variation within a sampling date were gener-

ated with DeltaGraph Version 6.0.18.

Results

Measured CO2 and CH4 flux

Community level flux of CO2 and CH4 under dark

conditions showed the anticipated annual cycle with

maximum efflux in July and August when peat

temperatures reached their annual peak, and near zero

efflux to the atmosphere during frozen winter periods

(Fig. 3). CO2 efflux from the community ranged from

a mean of 0.4 lmol m-2 s-1 when soils were frozen,

to peak midsummer values between 6–8 lmol m-2

s-1. Higher efflux rates were occasionally observed

for individual collars, but they exceeded the mean

fitted response to Eq. 2 and were not representative of

the majority of S1-Bog CO2 efflux rates. These

seasonal patterns were consistent over the 4 years of

observations.

Net CO2 exchange rates were dependent on ambi-

ent light conditions (Fig. 4). The autotrophic shrub,

forb, sedge and Sphagnum moss community took up

CO2 when PAR reached 194 lmol quanta m-2 s-1

and became light saturated above 1000–1200 lmol

quanta m-2 s-1. The light-saturated maximum

declined by approximately 60 % at temperatures

below 10 �C (Fig. 4, grey symbols). Light saturated

net photosynthesis reached maximums approaching

-6 and -4 lmol CO2 m
-2 s-1 in the warm and coolT
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periods of the growing season (Fig. 4). These levels of

community NEE were a bit higher than the bog data

reported by Frolking et al. (1998), but in the middle of

the range for rich fens. The data for Frolking et al.

(1998) include peatlands at a higher latitude with

cooler temperature regimes, which may explain in part

why the S1-Bog rates are higher (i.e., higher overall

activity combined with potentially greater nutrient

availability).

Instantaneous CH4 efflux rates did not vary during

imposed light to dark transitions (Fig. 2) and we report

flux data throughout the entire 400 s measurement

period. The mean CH4 efflux ranged from

0.01 lmol m-2 s-1 when the bog surfaces were

frozen or covered with snow to maximum rates

between 0.15 and 0.25 lmol m-2 s-1 (Fig. 3). Peak

rates in summer months ranged between 0.3 and

0.5 lmol m-2 s-1, roughly an order of magnitude less

than mid-summer CO2 exchange rates. As for CO2,

higher CH4 efflux rates were occasionally observed for

individual collars, but they exceeded the mean fitted

response to Eq. 2 and were not representative of the

majority of S1-Bog CH4 efflux rates.

Spatial variation in ‘dark’ CO2 and CH4 efflux

Across the S1-Bog

During near-freezing cold periods (0–2 �C at-10 cm;

October 2013), we saw limited spatial variation in CO2

and CH4 flux across all 16 SPRUCE plot collars in the

Fig. 3 Periodic observations of dark-daytime CO2 (left graph)

and CH4 (right graph) efflux measured throughout the active

seasonal cycle for the S1-Bog. Data represent the combined

observations from measurements collected from variable plot

locations on the S1-Bog in 2011, 2012, 2013 and 2014. Fitted

values from Eqs. 2 and 3 are also plotted in each graph. A subset

of the CH4 flux data that exceeded one standard deviation of the

mean for a given temperature range (CH4 Eb?—possible

ebullition) are highlighted from the rest of the data

Fig. 4 Net community CO2 exchange for the collared area

under ambient light conditions. Negative values represent CO2

uptake from the atmosphere to the bog.Gray solid diamonds and

open circles represent data collected at surface peat tempera-

tures below or above 10 �C. The open diamonds and black

circles are the fitted data for the data obtained below and above

the 10 �C surface soil temperatures
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S1-Bog (Fig. 5). Under warmer conditions, CO2 efflux

under dark conditions showed considerable variation

that was strongly associated with temperature. In July

2013 and 2014, with peat temperatures ranging

between 14 and 17 �C, CO2 efflux rates were typically

4–7 lmol CO2 m
-2 s-1 with divergent collars show-

ing flux above 8 lmol CO2 m-2 s-1. In September

2013, with peat temperatures between 12–13 �C,
collar flux were between 3 and 7 lmol CO2 m

-2 s-1

and divergent high flux values still exceeded

6–8 lmol CO2 m-2 s-1. A single collar exhibited a

flux rate of greater than 13 lmol CO2 m
-2 s-1.

CH4 flux for warmer conditions (June 2014 and July

2013 and 2014) showed typical rates between 0.05 and

0.1 lmol CH4 m-2 s-1 with divergent flux up to

0.5 lmol CH4 m-2 s-1. During June 2014 (surface

temperatures from 10 to 11 �C) at a time when bog

photosynthetic activity was just recovering from a

long winter, the spatial variation of CH4 flux across the

bog was still muted (Fig. 5). Mid-season maximum

flux rates and increased spatial variationmay be driven

in part by spatial variation in current photosynthate

supplies reaching belowground microbial systems

through root turnover or exudation processes.

There was not a direct correlation among collar

locations exhibiting high CO2 and CH4 flux, which

suggests that in situ bog processes were driving these

efflux rates. If a biased technical approach had been

responsible for the divergent flux rates one might

expect both the CO2 and the CH4 flux rates to parallel

one another.

Interpolation of point-in-time data to annual CO2

or CH4 efflux

CO2 and CH4 flux by temperature relationships were

used to approximate annual C fluxes (Fig. 6; Eqs. 2,

3). Although these simple empirical relationships

averaged across multiyear data sets captured only a

portion of the observed variation in the data (see

Table 1 R2 values), they can be used to generate

integrated annual net exchange for the bog for each

gas. For environmental conditions from 2011 to 2014,

mean net CO2 efflux for dark conditions was estimated

to range from 865 to 937 g CO2–C m-2 y-1 and

estimated CH4 flux ranged from 15 to 18 g CH4–

C m-2 y-1. The calculated annual C flux for each

showed CO2-C flux to be 52–62 times greater than

CH4-C efflux from the bog ecosystem. This is in the

same range as the ratio of flux estimated from the

instantaneous data (see Figs. 3, 6). It should be

acknowledged that fitted values from Eq. 2 overesti-

mate mean CO2 efflux when peat temperatures fall

below 1 �C, and therefore the annual interpolations of
bog CO2 efflux from Eq. 2 may be a bit high during

mid-winter periods.

Fig. 5 Spatial variation statistics in ‘‘dark condition’’ CO2 flux

(left graph) and CH4 flux (right graph) for multiple locations

across a 2.6 ha experimental area at the south end of the S1-Bog.

The box-and-whisker plots capture 10, 25, 75 and 90th

percentiles of the spatial data along with the overall median

(50th percentile) and the symbol is the mean of the spatial data

set. Individual plots were deployed 20–30 m apart along three

transects within this area. Data are plotted for June 2014, July

2014, July 2013, September 2013 and October 2013 sampling

periods which cover a full seasonal range of peat temperatures

(-10 cm reference temperature depth)
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We estimated that annual gross CO2 uptake by

shrubs, forbs, and Sphagnum to range from -857 to

-956 gCO2–C m-2 y-1 (interpolated from Fig. 4

data). Such rates of carbon uptake by the vegetation

community were masked by the collar community

respiration losses also ranging from 865 to 937 gCO2–

C m-2 y-1. Respiration from the collars may include

contributions from tree roots within the plot, although

the collars themselves did not include any trees. Total

NEE of carbon showed a very small uptake of -3.1

gCO2–C m-2 y-1 estimated for 2013, but C losses to

the atmosphere ranging from 21 to 65 gCO2–

C m-2 y-1 for the other years. Tree contributions to

gross photosynthetic uptake, which were not evaluated

in this paper, may be responsible for tipping the carbon

balance for the bog to a carbon sink (Jensen et al.

2015).

Discussion

Application of the large-collar method

to a peatland and comparisons to other studies

The community-level approach to the quantification of

CO2 and CH4 exchange was capable of capturing both

seasonal (Fig. 3) and temperature-driven (Fig. 6)

patterns of dark efflux and the net daytime exchange

of CO2 as it varies with ambient light conditions

(Fig. 4). The absolute range of the observed flux from

near zero to maximum midseason values correlated

with high midseason peat temperatures (Figure S2),

and is consistent with prior published work for similar

peatlands (Table 2).

Methane flux from northern bogs in Minnesota

(Crill et al. 1988; Dise et al. 1993) and Michigan

(Shannon and White 1994) are higher than other more

northerly and cooler Canadian bog ecosystems (Lai

et al. 2014a, b; Roulet et al. 2007; Blodau et al. 2007;

Moore and Knowles 1990). The large collar method is

capable of characterizing spatially variable CH4 flux

rates within the S1-Bog in Minnesota (Fig. 5). The

spatial variability in flux rates suggests strong hetero-

geneity of belowground microbial activity, which will

be an important process to consider as we evaluate

ecosystem responses to the experimental treatments.

The measured data on simultaneous CO2 and CH4

flux confirm the predominance of CO2 over CH4 efflux

as a form of heterotrophic C emissions from the S1-

Bog. Such observations have been observed previ-

ously on the Marcell Experimental Forest (Olson et al.

2013), in a Michigan Fen (Ballantyne et al. 2014),

Ontario bogs (Blodau et al. 2007; Roulet et al. 2007)

and similar bogs outside of North America (see

Fig. 6 The relationship between CO2 community respiration

(left graph) and CH4 efflux (right graph) to peat temperatures at

0 cm for CO2 and -20 cm for CH4 for the combined data set

collected in 2011, 2012, 2013 and 2014. The small black points

in each plot represent the fitted apparent temperature response

functions described in the text. CH4 efflux values exceeding one

standard deviation of a temperature range within the combined

data set (CH4 Eb?—possible ebullition) were not used to

establish the fitted relationship and are further discussed in the

text
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additional references in Table 2). Notwithstanding the

dominance of CO2 efflux from the S1-Bog, the greater

greenhouse warming potential of CH4 in the atmo-

sphere justifies its inclusion in peatland measurement

protocols (Myhre et al. 2013). Nisbet et al. (2014) have

recently highlighted substantial natural and anthro-

pogenic uncertainties in the global methane budget

and called for more data to resolve patterns of

atmospheric methane concentration increases through

time. Indeed, the balance between CO2 and CH4

exchange for a wetland determines its greenhouse gas

budget (Whiting and Chanton 2001). While northern

peatlands have maintained a net cooling influence

throughout the Holocene (Frolking and Roulet 2007),

changes in the balance of CO2 and CH4 emissions

associated with SPRUCE experimental treatments will

lead to important information about the future role of

peatlands in the global climate system.

Dise et al. (1993) provided independent models for

CH4 efflux from hollow and hummock bog locations

for a nearby MEF bog that overlap the fitted data

(Eq. 3) from the community-level measurement

approach reported in this paper (Figure S1). Such

agreement confirms that this new approach reproduces

expected ground area flux estimates for regional

peatlands, and suggests that it is a viable method for

comparing and contrasting both CO2 and CH4 flux

from manipulated warming treatment plots.

Characteristics of the measurement method

With ideal conditions, the transparent enclosure and

analyzer column can be transported among and used

on eight collars in a 4–6 h measurement day (midday

period) in our current protocol that allows for repeated

observations on each collar. High humidity following

rain events coupled with cold instrument surfaces

during early morning observations have combined to

cause individual measurement failures due to the

formation of condensation on the surface of the CH4

and CO2 sensor mirrors. Because of the open path

nature of CO2 and CH4 sensors, stray leaves or insects

may also interfere with the measurement pathway and

invalidate results, but this is not a common issue.

Pressure differences within and out of the enclosed

space were recorded and found to be inconsequential.

Lai et al. (2012) recently reported on the influence

of atmospheric turbulence and measurement periods

pertinent to the use of auto-chambers for surface flux

measurements from peatlands. They concluded that

surface boundary layer disturbance can produce flux

divergences and should be minimized. This phe-

nomenon is well known for closed chamber observa-

tions of CO2 efflux from mineral soils (Hanson et al.

1993; Christiansen et al. 2011; Koskinen et al. 2014),

and is the reason air is mixed in the upper portion of

the chamber only. Stirring of the large volume is

helpful in providing a stable concentration change

with time, but too much stirring too close to the bog

surface would disturb the boundary layer and over

predict short term flux. Pihlatie et al. (2013) recently

conducted a comparison of a range of static chamber

measurements for CH4 emissions from soils and

controlled conditions. They concluded that larger

chamber volumes avoided some of the biases of

smaller chamber volumes. Our system with a large

volume provides these advantages.

Levy et al. (2011) contrasted various methods for

interpreting the rate of change of gases within static

chambers and found different results using a variety of

methods including linear and nonlinear approaches.

The change in chamber CO2 and CH4 concentrations is

small and linear during our short term flux measure-

ments, and a linear regression approach was used to

characterize the rate of gas emission. Moreover,

Venterea and Parkin (2012) recommended a few

ultimate solutions to eliminate the bias: (1) very short

deployment period of chamber, (2) large chamber

height, (3) advances in measurement instrumentation

with high precision and high sensitivity, and (4) real-

time in situ analysis. These suggested solutions, along

with the large chamber base area to cover the

hummock and hollow microtopography, are widely

accepted advantages of our method.

On balance, the characteristics of the current

method as compared with common static chamber

methods that might be considered advantageous

include: (1) its application to the full community

complexity of an in situ system, (2) short term

(6–7 min), real-time dual gas concentration measure-

ments which reduce biases caused by gas leakage and

changes of in-chamber temperature and moisture

during measurement, and (3) the use of accurate and

durable analyzers in the field. With appropriate

consideration of the need for a large-footprint flux

observation, this approach could easily be applied in

other vegetation types.
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A couple of possible disadvantages of the approach

should also be mentioned: (1) the short measurement

period could cause biases because the gas inside the

chambers may not be in equilibrium, and (2) temporal

variation in emissions may not be captured by the

point-in-time approach. Performance of the large-

collar chamber will be compared to other automatic

static chambers as well as ambient eddy covariance

approaches in the future.

Annual C efflux

Extrapolation of our chamber data for meteorological

conditions for the years between 2011–2014 showed

mean ± SD annual ‘‘dark’’ CO2 and CH4 efflux from

the S1-Bog to be 894 ± 34 and 16 ± 2 gC m-2 y-1,

respectively. The methane loss rates are comparable in

magnitude to dissolved organic carbon losses esti-

mated for the S1-watershed (Steve Sebestyen, per-

sonal communication). Roulet et al. (2007) estimated

cumulative annual CH4-C losses from the Mer Bleue

bog in Ontario of only 3.7 gC m-2 y-1, although Mer

Bleue is a drier bog with a growing season water

table 30–40 cm below the surface. Bubier et al. (1993)

reported a wider range from 0.06 to 10.1 gC m-2 y-1

for a range of northern Ontario peatlands. In an

extensive synthesis of data for a broad range of

European peatlands Carter et al. (2012) also recorded

annual CH4 flux to be between 0.5 to 6.8 gCH4–

C m-2 y-1.

Estimated night CO2-C losses from the S1-Bog are

over 40 times higher than the CH4-C losses, suggest-

ing a minimal role for CH4-C efflux in the overall NEE

from the bog. However, unlike the absolute loss of

CH4-C, substantial CO2 is also taken into the bog via

photosynthesis during warm (i.e., above freezing)

daylight growing season periods (see ‘‘Interpolation of

point-in-time data to annual CO2 or CH4 efflux’’

section). When the night CO2 losses are offset by

annual uptake of CO2–C by bog vegetation, the

disparity between CO2–C and CH4–C losses is

reduced to only a fivefold to sixfold difference. If we

were to factor in the contribution of the S1-Bog’s tree

photosynthesis (not addressed in this paper), annual

CH4 emissions might dominate net C losses from the

peatland.

The S1-Bog and other peatlands on the MEF yield

CH4 at a higher rate than many other studied bogs.

Warmer peat temperatures, a deep peat column with

shallow water table, and substantial supplies of

dissolved organic carbon substrates for methanogens

from the established tree, shrub and peat communities

on the MEF bogs may all help explain this enhanced

rate of efflux observed here and in prior work (Crill

et al. 1988; Dise 1993; Dise et al. 1993; Tfaily et al.

2014). Song et al. (2009) reported annual interpola-

tions of CO2 and CH4 flux for a permanently inundated

marsh in China of 513 and 39 gC m-2 y-1, respec-

tively, which is comparable to the rates observed for

the S1-Bog. Methane flux at the S1-Bog is at the high

end of the range of flux reported for organic soil sites

in the United Kingdom (Levy et al. 2012).

A limitation of current empirical models for

estimating seasonal flux is that they do not allow for

variations in the contributions of differing substrates

to the microbial communities responsible for much of

the CO2 and CH4 flux. The empirical models applied

in this study are missing logical mechanistic contri-

butions that might be driven by measured substrate

supply and variable microbial community response.

Such details will be resolved in future applications of

the method.

Conclusions

Based on 4 years of observational flux measurements,

the S1-Bog site for the SPRUCE project is found to be

representative of temperate peatlands in terms of CO2

and CH4 flux. As such, these observations, provide a

practice foundation for the planned experimental

manipulations including whole ecosystem warming

and elevated CO2 treatment. The measured CO2 and

CH4 flux in S1-bog is specifically appropriate to the

interpretation of C flux dynamics from non-permafrost

peatlands at the southern end of the boreal forest

region.

Integrating the observational data from the

SPRUCE project with process-based models will be

valuable for mechanistic understanding of the biogeo-

chemical processes in peatlands and their responses to

the climate warming and elevated atmospheric CO2

and thereby allow for future predictive understanding

of important greenhouse gas flux from peatlands. Our

method for community-level CO2 and CH4 flux

observations from large-diameter collars produced

repeatable flux data in agreement with traditional

methods. The data were in agreement to prior flux data
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for warm-location raised-bog peatlands in southern

portions of the boreal forest. The method is field

portable and deployable to multiple locations, and is a

viable method for long-term repeated evaluations of

CO2 and CH4 flux under naturally variable conditions.

Pairing this method with more traditional small-collar

data collections for selected hummock or hollow

zones, with high temporal resolution data capable of

capturing ebullitive processes (Bridgham et al. 2013),

or nesting in within a larger eddy covariance foot print

would enable further mechanistic details to be

resolved.
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