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Abstract Forest inventory data often consists of mea-
surements taken on field plots as well as values predicted
from statistical models, e.g., tree biomass. Many of these
models only include fixed-effects parameters either be-
cause at the time the models were established, mixed-
effects model theory had not yet been thoroughly devel-
oped or the use of mixed models was deemed unneces-
sary or too complex. Over the last two decades, consid-
erable research has been conducted on the use of mixed
models in forestry, such that mixed models and their
applications are generally well understood. However,
most of these assessments have focused on static valida-
tion data, and mixed model applications in the context of
continuous forest inventories have not been evaluated. In
comparison to fixed-effects models, the results of this
study showed that mixed models can provide consider-
able reductions in prediction bias and variance for the
population and also for subpopulations therein. However,
the random effects resulting from the initial model fit
deteriorated rapidly over time, such that some field data
is needed to effectively recalibrate the random effects for
each inventory cycle. Thus, implementation of mixed
models requires ongoing maintenance to reap the benefits
of improved predictive behavior. Forest inventory man-
agers must determine if this gain in predictive power
outweighs the additional effort needed to employ mixed
models in a temporal framework.
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Introduction

Statistical models are often used in forestry applications
for attributes that are difficult and/or costly to measure
directly, e.g., tree biomass. For large-area forest inven-
tories, models are often developed and employed at
regional or subregional scales for efficiency (Woodall
et al. 2011). Estimates of population parameters derived
from the predicted values of these models can be unbi-
ased if the model predictions are unbiased for the pop-
ulation of interest. However, these models are suscepti-
ble to prediction bias when applied to smaller areas
(Westfall 2015). Thus, there is a need to localize predic-
tion accuracy such that some assurance is obtained that
subpopulation estimates are unbiased. However, fitting
models for application at small spatial scales is often
problematic due to associated small sample sizes; for
large-area forest inventory applications, the number of
models needed to cover the landscape would likely be
substantial. Thus, methods for local calibration of
models developed for large areas are of particular rele-
vance to this issue.

Various techniques have been suggested to obtain
better local prediction accuracy including the following:
(1) using latitude, longitude, and/or elevation as predic-
tor variables (Bechtold 2003; Westfall 20006); (2) geo-
graphically weighted regression (Zhang and Shi 2004);
and (3) mixed-effects models (Trincado and Burkhart
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2006; de-Miguel et al. 2014). Due to the readily avail-
able spatial information provided by global positioning
system (GPS) and global navigation satellite system
(GNSS), the direct use of spatial predictors may be the
most appealing solution operationally. However, unless
the attribute of interest varies systematically with these
locational covariates, their effectiveness in localizing
predictions can be poor (Westfall 2015). Geographically
weighted models produce numerous vectors of parame-
ter estimates, each associated with a particular geo-
graphic point, e.g., individual trees. Further, the models
may need to be refitted over time to account for changes
specific to the local environment of an individual tree
(Zhang and Gove 2005). Mixed models can provide a
local calibration to individual observations via random-
effects (REs) model parameters that modify the fixed
parameter values (Jayaraman and Zakrzewski 2001).
Similar to the geographic weighting methods, the effi-
cacy of the REs over time is unknown. An advantage of
the mixed-model approach is that a mean response
model can be fitted over a relatively large spatial domain
to describe general relationships between the response
and predictor variables, which can then be used as the
basis for as long as those underlying relationships are
considered to hold. Localized predictions would then
arise via the influence of RE parameters. For trees in the
model fitting data that are present in subsequent inven-
tory cycles, it is possible to use the existing REs. How-
ever, prediction of random effects (REs) is necessary for
any new trees appearing in later cycles. Methods for
obtaining these new REs include subsampling to deter-
mine local allometric relationships (Temesgen et al.
2008) or utilizing existing REs from neighboring trees.

Numerous studies have reported the improved pre-
dictive ability of mixed models and the appeal of gen-
erating REs for new observations; however, these eval-
uations are often presented in the context of independent
validation data for a one-time assessment (Adame et al.
2008; Jiang and Li 2010). Practical implementation of
such models requires further evaluation in a continuous
forest inventory context where a time component must
also be considered. In this study, tree height prediction
models for red maple (Acer rubrum) trees in PA, USA,
were used to explore issues related to implementation of
a mixed-model framework to improve local prediction
accuracy for large-area forest inventories. Specifically,
the objectives of the analysis are to (1) determine the
magnitude and statistical significance of reduction in
model prediction bias and residual variance for
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subpopulations, (2) quantify the effects on model pre-
diction accuracy resulting from transferring existing
REs to subsequent inventory cycles, and (3) evaluate
the performance of two strategies for calculating REs
needed for new observations.

Methods
Data

This study focused on live red maple (4. rubrum) trees
measured between 2000 and 2013 in the state of PA,
USA, by the forest inventory and analysis (FIA) pro-
gram of the U.S. Forest Service. All data were collected
using the annualized FIA sample and plot design, where
the sampling intensity is approximately one plot for
every 2400 ha of area (Reams et al. 2005). Each sample
plot contains four 7.3-m (24 ft) radius subplots
(Bechtold and Scott 2005). All trees within forested
areas of the plot having a diameter at breast height
(dbh) of 12.7 ecm (5.0 in.) and larger were measured,
and variables used in this study included dbh, total tree
height, crown ratio and crown class (a measure of social
position) (U.S. Forest Service 2007). Each tree is also
associated with a plot condition; conditions delineate
different forest stands within the plot based on attributes
such as forest type, stand size, and tree density. In most
cases, a plot will be entirely within a single stand; thus
stand- and plot-level attributes are often the same. The
data were divided into three parts, each corresponding to
a 5-year inventory cycle in which all FIA plots in the
state were measured (approximately 20 % of the plots
are measured each year). The cycles were as follows: (1)
2000-2004, (2) 2005-2009, and (3) 2010-2013 (incom-
plete cycle, missing 2014 data). Data summary statistics
are provided in Table 1.

Analysis

Statistical models relating tree heights to tree-size attri-
butes (e.g., dbh) have been extensively reported in the
forestry research literature over the last several decades
(Gregoire 2012) due to the importance of these relation-
ships in many aspects of forestry (Feldpausch et al.
2011). More recently, a number of studies have exam-
ined these allometric relationships using mixed-model
techniques (Castedo-Dorado et al. 2006; Vargas-Larreta
et al. 2009; Coble and Lee 2011). The issues outlined
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Table 1 Summary statistics for red maple tree attributes (H = height (m); DIA=diameter at breast height, dbh (cm); CR = crown ratio (%);
CC=crown class indicator) measured across three inventory cycles in PA, USA

Cycle® Number Mean Std. dev. Min. Max. No. trees
H DIA CR H DIA CR H DIA. CR H DIA CR CC=0 CC=1
1 15,460 176 225 308 49 88 11.6 30 127 1 37.5 1082 95 9940 5501
2 14,298 180 232 326 49 93 119 30 127 1 37.8 937 95 8350 5933
8820 187 239 350 50 98 122 21 127 0 36.0 927 90 5237 3578

#1=2000-2004; 2=2005-2009; 3=2010-2013 (incomplete cycle; missing 2014)

above were investigated via analysis of a simplified
version of the tree height model from Westfall and
Laustsen (2006) fitted separately to data from each
inventory cycle /:

Hiw = (B + B1CCiju + BoiCRyw)

X (l—exp (—ﬁyDBHijk]))dM + Eijkl (1)

where:

Hijy total height of tree i in stand j on plot k in
cycle / (m)

DBHy;;  diameter at 1.37 m of tree 7 in stand j on plot &
in cycle / (cm)

CCi 1 if crown class of tree 7 in stand j on plot & in
cycle / is dominant/codominant,= 0 otherwise

CRyx crown ratio of tree 7 in stand j on plot £ in
cycle / (%)

BorBs  fixed-effects parameters estimated from the
data in cycle /

Eijit random residual error of tree 7 in stand j on

plot k in cycle / (m)

Two mixed-model specifications of [1] were evalu-
ated. The first was designed to maximize prediction
accuracy for each tree by incorporating tree-level REs:

Hiw = (Bo + B1uCCii + (Ba + Orja) CRijua)

x (1=exp((—Bs + 92g;k1)DBHyk1))/34/+€y‘kl (2)

where:

predicted random effect parameter for tree 7 in
stand j on plot k in cycle / (h=1, 2); 04~ N(O,
).

A second formulation was also developed to evaluate
the potential use of stand-level REs, i.e., a single value

Onija

for each RE would apply to all trees in the stand:
Hiy = (Bor + BuCCiu + (B + 01j11) CRyw)
3
x (1=exp (=B + O2ju1) DBH 1)) "' +eiia (3)

The placement of the REs was contingent upon o7,
being statistically different from zero. As with model
[1], models [2] and [3] were fitted independently to data
from each cycle /.

It should be noted here that the intent of specifying
the random-effects parameters in [2] and [3] is to im-
prove the predictive accuracy of the models. Often, the
use of mixed models is motivated by a need to account
for correlated observations; however, this situation is not
a requirement for the use of mixed models. In this
specific case, there are no correlated observations at
the tree level, i.e., model [2]. At the stand level, the
mixed-model parameterization [3] could be considered
as addressing correlations among trees within a stand,
but the general rationale was to simply allow for com-
parisons of random-effect efficacy at the tree and stand
levels.

Model fit was assessed via concordance correlation
and mean squared error (MSE) statistics. Vonesh et al.
(1996) describe the concordance correlation as:

L\2
Z (H iii—H zj/k/)

ikl
PS ~ ~\ 2
> (H i/k/*ﬁ) g > <H f/k/*ﬁ> <H f/k/*ﬁ> +n (H *H)
i P
(4)

re=1—

where A, ;i 1s the model prediction, A is the mean model
prediction, H is the mean observed height, and 7 is the
number of observations. The r.. statistic spans the inter-
val between —1 and +1, with .= 1 indicating a perfect fit
to the data and . <0 suggesting considerable lack of fit.
MSE is estimated during the iterative model fitting
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process, which is too protracted for presentation in this
paper; however, the interpretation is consistent with
other types of models in that it represents the variance
of the residuals when the model is correctly specified.

The ability of mixed models to ameliorate prediction
biases for subpopulations within the study area was
assessed by examination of means and standard devia-
tions of residuals by county." Specifically, comparisons
of mean residuals between fixed-effects model [1] and
mixed-effects models [2] and [3] were made to deter-
mine the extent to which mixed models may be advan-
tageous. The magnitude and statistical significance of
bias reduction was evaluated via ratio estimates of mean
absolute residuals:

=> ‘Hykl H,,kz’/nc (5)

ijklec

(FE) ) —2RyCov (E-(ME) e FE)) )

(7)

Where ¢ indexes counties, 7. is the number of obser-
vations in county ¢, [i. (*) is the county-level mean
absolute residual (from the mixed models [2] or [3]
(1. (ME)); from the fixed model [1] (i1, (FE)), Ry is
the ratio of county-level mean biases for mixed-eftects
and fixed effects models, m is the number of counties,
V() is the variance of the specified estimate, and Cov(*)
is the covariance between the specified estimates. The
result of primary interest is whether the estimated ratio is
statistically smaller than one, which would indicate
small area prediction bias is reduced via the mixed
model. Table 2 provides summary statistics for numbers
of trees at both the plot- and county-level aggregations.

Changes in variability of residuals between fixed-
effects and mixed-effects models were also analyzed.

! Counties are administrative subdivisions of states having the
primary purpose of providing local governance. The study area
(Pennsylvania) has 67 counties ranging in area from 337 to
3182 km? (mean = 1730 km?).
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Similar to the above, county-level standard deviations of
residuals were analyzed in a ratio context:

Ro=! = = ®)
> Gurry/m TelrE)
c=1

| . . ~ ~
V(Ry) = = (V(Ecmm) +R? V(m FE ) —2R;Cov (@(ME)ﬁn(FE)))

©)

Where &, (¢) is the county-level residual standard
deviation (from the mixed models [2] or [3] (6. (ME));
from the fixed model [1] (6. (FE))) and R, is the ratio of
county-level mean standard deviations of residuals for
mixed-effects and fixed effects models.

Impacts on predicted values by using both fixed- and
mixed-effects models in subsequent cycles were also
assessed, e.g., by applying the regression results from
cycle 1 to make predictions for cycles 2 and 3. For
example, predicted values of model [2] for cycle 2 using
model parameters estimated from cycle 1 would be
accomplished via:

Hipoy = (Bor + B11CCiika + (Bar + O11j61) CRij2)

X (lfexp((*ﬁﬂ + 92ijk1)DBHijk2))34]

(10)

The key analytical statistics were:
"(7)
) = 2 (o)) ) (1)
() 2

Var Z: ( ikl Hl/kl )) /n[([’) (12)
2

RMSEH[(/) = \/V‘”’(E)Hl(/) (1) (13)

where £y, (Q is the mean residual (difference between
observed and predicted heights) calculated from esti-
mated parameters from cycle (/) model fit applied to
the cycle / data, Var(e) m (ll> is the residual variance,
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Table 2 Summary statistics for number of red maple trees by plot and county across three inventory cycles in PA, USA

Plot County
Cycle Mean Std. dev. Min. Max. Mean Std. dev. Min. Max.
1 6.99 6.22 1 56 237.85 183.08 5 733
2 6.90 5.98 1 55 219.97 17238 3 747
3 6.79 5.82 1 50 135.69 111.06 5 453

ny (ll) is number of trees common to both cycles / and
(), and RMSEy; [') is the root mean squared error
(RMSE) for height predictions.

In practice, a mixed model would be developed using
a specific data set and then applied in subsequent inven-
tory cycles. Trees remaining in the inventory in subse-
quent cycles would already have predicted REs
resulting from the initial regression analysis. However,
new trees will also enter the inventory sample in subse-
quent cycles and values for REs will need to be gener-
ated. In this study, approximately 10 % of the trees in
subsequent cycles were not previously measured. Two
options to be evaluated are as follows: (1) adopting the
RE from a previously existing tree(s) in the stand, and
(2) direct empirical calculation using a subsample of
trees in the current inventory (Trincado et al. 2007). To
evaluate option 1 (using existing REs), assignment of
the mean REs from up to seven of the nearest trees on
the plot was investigated. In this case, nearest is defined
as the shortest “distance” between tree attributes. For
new trees appearing in cycle 2, this attribute distance
would be:

Dl.St,'jkz = (DBH-jkz_DBH[ij)z
+ (CR.jkz_CRiij)z

+ (CCj—CCijpa )’ (14)

Where Dist; is the attribute distance from tree i to
the subject tree (denoted with a subscript) and others as
previously defined. During the analyses, it was noted
that changes in RE were more correlated with changes
in CR than the other predictors, and thus, CR largely
drives the distance calculation. The REs from the select-
ed number of trees with the closest distance were aver-
aged to obtain the RE for the new tree. When the
previously existing red maple trees on the plot were
insufficient for the number of trees to be selected, the
distances were computed based on all red maples in the

county in order to assign REs to the subject tree. Gen-
erally, this process results in tree-level REs for all new
trees as the selection of nearest trees with existing REs
based on [14] changes for each new tree. All trees
surviving from the initial inventory (cycle 1) retain their
REs from the model fitting procedure.

For option 2, the new REs can be obtained via this
equation from Vonesh and Chinchilli (1997):
9 =D7 (ZDZ’ + R) L -xb) (15)
where 6=vector of predicted random-effects parame-
ters, Z=FB (B=regression design matrix for random-
effects parameters, F'=matrix of partial derivatives with
respect to each fixed parameter evaluated at DBH,;; and
CRj for each calibration tree), R=predicted variance/
covariance matrix of residual errors, D= variance/co-
variance matrix of random effects, y=vector of ob-
served tree heights, X=regression design matrix for
fixed-effects parameters, and b= vector of fixed-effects
parameters. This analysis examined the use of up to five
trees to estimate the REs for new trees. This methodol-
ogy produces a single estimate for each RE that would
be applied to all new trees appearing in the stand (es-
sentially stand-level REs for new trees). This approach
differs from option 1 in that the data arise from a
subsample of trees taken during the current inventory
cycle.

Results

The regression analyses across all tree inventory cycles
for model [1] produced statistically significant
(x=0.05) estimates for all parameters, with ranges for
mean squared error (0%) and concordance correlation
(7,) statistics being (8.52-9.66) and (0.75-0.79) respec-
tively. Regression analyses of models [2] and [3]
showed similar results across the three inventory cycles
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with all fixed-effects parameter estimates and random-
effects variance estimates being statistically significant
(Table 3). With the exception of cycle 1, o2 was smaller
for model [2], generally indicating that tree-level REs
provide better predictions for individual trees than
stand-level effects. Similarly, although the model fits
exhibited 7. above 0.90, the correlations were higher
for model [2]. Examination of residual plots did not
reveal any indication of systematic model prediction
misbehavior.

Due to the inclusion of random effects when making
model predictions for models [2] and [3], prediction bias
and residual variance in comparison to the mean re-
sponse model [1] for smaller areas (counties) showed
substantial reductions across all three inventory cycles
(Table 4). With the exception of cycle 1, model [2] mean
absolute residuals were reduced by approximately 60—
70 %. The reduction for cycle 1 was smaller; however,
reductions near 50 % were attained. Notable improve-
ments were also found for model [3], where reductions
were in the range of 35-45 %. In all cases, the ratios
were statistically different from 1 with 95 % confidence.
The statistics for model [2] were superior to those for
model [3], again indicating that REs at the tree level are
preferred in comparison to stand-level aggregation.

One of the primary motivations of this paper was
to consider the use of mixed models in a continuous
forest inventory context. One evaluation was to

examine the use of regression results for models
[2] and [3] in subsequent inventory cycles for trees
remaining in the sample. The results in Table 5
suggest that this approach generally performed poor-
ly, as mean residuals were commonly in the 0.5-
1.0 m range. For both models [2] and [3], the vari-
ance of the residuals was slightly higher for model
[3], particularly when applied to trees measured in
cycle 3. The resultant RMSE statistics were approx-
imately 2.6-2.9 m, with model [2] exhibiting slight-
ly smaller values. The RMSE from the original
regression based on cycle 1 data were 1.0-1.2 m
for model [2] and 1.8-1.9 m for model [3]. Due to
the superior performance of model [2] in all the
results examined thus far, model [3] will no longer
be considered for further analysis.

The effort to predict REs for new trees appearing
in subsequent cycles by selecting a specified number
of nearest trees (based on [14]) from cycle 1 and
averaging their REs was marginally successful when
compared to the alternative of using the mean re-
sponse model [1]. When applying this method to
new trees in cycle 2, the mean residual was reduced
from —0.25 to =0, regardless of the number of trees
selected from cycle 1 (Table 6). However, in the
case where only the nearest single tree was used,
the residual RMSE was larger (2.98 m) than found
with the mean response model (2.94 m). As the

Table 3 Results of regression analysis of models [2] and [3] for three inventory cycles in PA, USA

Parameter Tree-level random effects (model 2)

Stand-level random effects (model 3)

Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3
Estimate (Std. Estimate (Std. Estimate  (Std. Estimate (Std. Estimate (Std. Estimate (Std.
err.) err.) err.) err.) err.) err.)
Bo 36.8551 (0.9151) 38.1379 (0.8978) 40.9365 (1.1529) 28.1135 (0.4390) 30.9837 (0.6388) 33.3112 (0.8108)
By 2.6678  (0.1335) 2.5840 (0.1296) 2.2865 (0.1524) 3.7309  (0.1023) 3.8152  (0.1169) 3.8854  (0.1470)
B2 —0.1534 (0.0062) —0.1604 (0.0056) —0.2025 (0.0075) —0.0740 (0.0042) —0.0855 (0.0046) —0.0949 (0.0059)
B3 0.0267  (0.0020) 0.0232  (0.0017) 0.0235 (0.0021) 0.0310  (0.0020) 0.0210 (0.0018) 0.0183  (0.0018)
B4 0.7758  (0.0228) 0.6960 (0.0186) 0.6994 (0.0231) 0.6463  (0.0207) 0.5171  (0.0156) 0.4907  (0.0160)
o? 5.0075  (0.3463) 3.6222  (0.3094) 2.9662 (0.3924) 4.4643  (0.0575) 4.2998 (0.0577) 3.9202 (0.0672)
o1 3.10E-  (0.0000) 3.10E-  (0.0000) 2.60E-05 (0.0000) 7.60E-  (0.0000) 4.20E-  (0.0000) 3.60E-  (0.0000)
05 05 05 05 05
o3 735E-  (0.0012) 4.41E- (0.0006) 3.50E-03 (0.0008) 5.79E-  (0.0005) 6.79E-  (0.0008) 7.04E-  (0.0010)
03 03 03 03 03
o012 1.87E-  (0.0001) 9.30E- (0.0000) —4.30E- (0.0000) 1.95E-  (0.0000) 2.16E-  (0.0000) 2.11E-  (0.0000)
04 05 05 04 04 04
Ie 0.937 0.969 0.978 0.913 0916 0.929
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Table 4 Ratios (and standard errors) of means (R, from [6]) and standard deviations (R, from [8]) of county-level absolute residuals between
fixed-effects model [1] and mixed-effects models [2] and [3] for three inventory cycles in PA, USA

Statistic Tree-level random effects (model 2)

Stand-level random effects (model 3)

Cycle 1 Cycle 2 Cycle 3

Cycle 1 Cycle 2 Cycle 3

Estimate (Std. err.) Estimate (Std.err.) Estimate (Std.err) Estimate (Std.err.) Estimate (Std.err.) Estimate (Std.err.)

R, 0.524
R, 0.497

(0.005)  0.382
0.012)  0.353

(0.005)  0.352
(0.009)  0.332

(0.003)
(0.007)

0.575 (0.014) 0.573
0.633 (0.017)  0.631

0.016)  0.567
0.014)  0.622

(0.016)
(0.016)

number of selected trees increased to three, the
RMSE became smaller (2.89) than the mean re-
sponse model and continued to decrease with selec-
tions of five and seven trees, respectively. The re-
sults were not as good when extending the cycle 1
model fit results to cycle 3. In this case, the mean
residuals were larger than for cycle 2, were general-
ly invariant to the number of selected trees, and
were slightly larger than the mean residual from
the mean response model. The RMSE statistics for
the cycle 3 analysis followed the same pattern as for
cycle 2. In comparison to the mean response model,
RMSE was higher when using model [2] and only
one tree was selected; however RMSE was smaller
when three or more trees were selected.

Evaluation of the protocol where a selected number
of trees on the plot would be subsampled for height
measurements to predict REs for the unmeasured trees
produced better results than taking averages of existing
RE (Table 6). Regardless of the number of trees selected
and the inventory cycle used, mean residuals from mod-
el [2] were always closer to zero than mean residuals
from the mean response model [1]. Similarly, RMSE
values were smaller in all scenarios and the differences
in RMSE between models [1] and [2] were greater than
the differences obtained using mean RE values.

Discussion

The results of the model fitting exercise were consistent
with many of the studies referenced earlier in this paper
in that superior predictive ability of mixed-effects
models compared to fixed-effects models was demon-
strated. A particularly noteworthy outcome was that the
benefit was realized at various spatial scales, including
for the model fitting data (statewide) and also for sub-
populations (counties) (Table 4). This alleviates some of
the concern of model prediction bias for these smaller
areas, which is commonly found when applying fixed-
effects only models. Thus, these results substantiate the
speculation in Westfall (2015) that using mixed-effects
models may be a viable alternative to fitting fixed-
effects models to relatively small spatial domains to
avoid localized bias issues. However, further testing of
other species and geographic locations are needed to
substantiate the global applicability of this result. In
the context of this paper, this outcome only pertains to
the current inventory data to which the model was fitted
and does not address the issues of model application in
other inventory cycles.

Application of the mixed models to data collected
on the same trees in successive forest inventory
cycles indicated quick deterioration in model

Table 5 Mean residual, variance of residuals, and root mean squared error in predicted heights for trees in cycle / using model parameters
from cycle (I'). RMSE};; is the root mean squared error between observed and predicted heights using model parameters from cycle /

Il Tree-level random effects (model 2)

Stand-level random effects (model 3)

RMSE; , , \  RMSEy , / ,

Sl (z) Var(e) m (1) RMSEz (z) Sl (z) Var(e) m (1) RMSEz (1)
a1 117 0.30 6.50 2.57 1.90 0.51 6.71 2.64
31)  1.00 0.81 6.50 2.68 1.81 0.99 7.24 287
32) 1.00 0.74 5.24 241 1.81 0.85 5.95 2.58

@ Springer



245 Page 8 of 11

Environ Monit Assess (2016) 188: 245

Table 6 Mean residual, variance of residuals, and root mean
squared error in predicted heights. The analysis of mean REs uses
fixed-effects coefticients from cycle /” applied to trees in cycle / for
model [1] and fixed-effects coefficients from cycle I’ combined

with mean RE from CYCLE [/’ for model [2]. The analysis of
subsample trees uses fixed-effects coefficients from cycle /" and
the stand-level RE predicted from subsampled trees in cycle /

No. trees Cycle Fixed-effects only (model 1)

Tree-level random effects (model 2)

Zm (1) Var(e) m (1) RMSEy, (1) 1 (1) Var(e) m (1) RMSEy, <1)

Mean of cycle 1 RE 1 2 -0.25 8.61
3 0.92 9.15

3 2 -0.25 8.61

3 0.92 9.15

5 2 -0.25 8.61

3 0.92 9.15

7 2 -0.25 8.61

3 0.92 9.15

Predict RE from subsample 1 2 0.16 9.60
3 0.84 9.20

2 2 0.19 9.50

3 0.86 9.13

3 2 0.22 9.35

3 0.87 9.09

4 2 0.27 9.34

3 0.89 9.00

5 2 0.27 9.48

3 0.92 8.98

2.94 0.03 8.85 2.98
3.16 1.08 9.19 322
2.94 0.00 8.35 2.89
3.16 1.02 8.65 3.11
2.94 —0.03 8.30 2.88
3.16 1.00 8.51 3.08
294 —-0.05 8.26 2.87
3.16 0.98 8.38 3.06
3.10 0.11 7.73 2.78
3.15 0.41 7.10 2.70
3.09 0.16 6.82 2.62
3.14 0.29 6.30 2.53
3.07 0.19 6.34 2.53
3.14 0.26 5.96 2.46
3.07 0.24 6.06 247
3.13 0.23 5.55 2.37
3.09 0.15 5.94 2.44
3.13 0.23 5.39 2.33

performance. Predictive bias (as measured by the
mean residual) increased as the time interval length-
ened, suggesting a shift in the empirical relation-
ships described by the initial regression analysis. It
was somewhat unexpected to find that the residual
variance was rather invariant to the time interval for
model [2] (Table 5). The overall uncertainty quanti-
fied by RMSE suggests that only marginal differ-
ences are attributable to whether the REs are speci-
fied at the tree or stand level. The primary finding of
this analysis was that applying the fixed and random
parameters resulting from cycle 1 to the same trees
surviving to subsequent cycles may be unwise. This
conclusion is also supported by the regression anal-
ysis results shown in Table 3, where systematic
trends in fixed effects coefficients and random ef-
fects variances are often found across inventory
cycles. Due to the lack of independence among
some observations across inventory cycles, it is dif-
ficult to ascertain if any of these differences are
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statistically significant; however, the deterioration
of model predictive ability over time is clear evi-
dence of practical importance.

While the concept of fitting a mixed model and using
it in subsequent inventories to supplant costly field
measurements is appealing, employing such a practice
requires consideration of future implementation issues.
Clearly, REs could be assigned their expected value (0)
for subsequent inventories; however, the advantage of
improved predictive ability is lost and the implementa-
tion essentially reverts to current practices of using
fixed-effects models. Maintaining the use of RE in the
prediction model requires additional analytical work
and possibly additional field work. In this analysis, it
was shown that taking mean values of REs from the
initial model fit and applying them to new inventory
trees in subsequent cycles provided only marginal gains
(providing at least three trees were selected) over the
fixed-effects model [1] for subsequent cycles (Table 6).
The most promising method evaluated was to



Environ Monit Assess (2016) 188: 245

Page 9 of 11 245

subsample some trees on the plot in each inventory
cycle and use that information to predict REs for the
remaining unmeasured trees. The analysis revealed that
RMSE can be reduced by 10-25 % in comparison to
model [1], depending on the number of subsampled
trees. Sampling more trees corresponded to larger de-
creases in RMSE. These results are consistent with
outcomes reported previous studies (Castedo-Dorado
et al. 2006; Crecente-Campo et al. 2010). Thus, it is
recommended that long-term implementation of mixed
models in forest inventory applications be supported by
taking some field measurements to support the predic-
tion of REs for unmeasured trees needing model-
predicted attribute values, e.g., tree height. It should be
noted here that this method will result in stand-level RE
for these trees, in that the predicted RE arising from the
subsampled trees will be the same for all the remaining
unmeasured trees on the plot. In this sense, the actual
implementation is similar to model [3], but only for the
portion of trees not measured for height.

In regards to measuring a subsample of trees in each
cycle, there is a key point to consider. It was shown that
more subsampling decreased the RMSE for the remain-
ing trees to which the model was applied. However, the
number of trees subsampled should be in context to the
number of trees on the plot. For example, if the protocol
was to subsample five trees on the plot and the plot had
seven trees total, more than 70 % of the trees on the plot
were measured to support the prediction of REs for the
remaining 30 %. In these cases, it may be more sensible
to simply measure all trees and avoid the complexity of
predicting REs. Gomez-Garcia et al. (2014) suggest that
fixed-effects models can be fitted for individual plots if
the subsample contains at least 12 trees; however, their
data were from even-aged, birch-dominated stands. Ad-
ditional evaluation of this recommendation would be
needed for large-area forest inventories where a wide
range of species and stand conditions are likely to be
encountered.

An analogous concern is the level of species aggre-
gation established in the model fitting process. It is often
the case that models are fitted separately by tree species
or species groups, resulting in numerous sets of coeffi-
cients that are species (group) specific. Thus, in the
context of the five-tree subsample protocol, five trees
need to be subsampled for each species (group) occur-
ring on the plot. This could again result in most trees on
the plot being subsampled and the value of the REs
prediction for the few remaining trees becoming

questionable. An alternative protocol would be to sub-
sample only a few trees in each plot and then expand the
area from which the nearest tree(s) were selected, e.g.,
countywide instead of within plot. However, such an
approach would rely on there being a sufficient numbers
of trees measured on other plots, which may not be the
case for species of uncommon occurrence. In this con-
text, determination of an appropriate subsampling pro-
tocol should be carefully considered, and it may be
prudent to modify the resulting database such that dif-
ferentiation between observed and model-predicted tree
height values is possible.

The underlying premise of this study is that a model
is fitted to a cycle of inventory data, and that model must
then be used as for prediction in subsequent inventories
where model performance may be enhanced using either
prior information or newly collected data (Russell
2015). Thus, the analysis differs from other research
that uses longitudinal data from several repeated mea-
surements. The seminal paper by Lappi (1997) exam-
ined the influence of time (and stand variables as well)
on height-diameter model parameters. In application,
the model parameters vary with stand age; which could
be problematic in areas where uneven-aged stands are
often encountered or stand age is unknown. A conclu-
sion similar to that of this study was that model calibra-
tion over time was best accomplished by measuring
heights of some sample trees at each remeasurement.
Mehtitalo (2004) and Schmidt et al. (2011) took a
similar approach to incorporating time as a modifier of
model parameters, but used central measures of stand
diameter instead of age. The use of stand information
derived from tree diameters seems generally more viable
than age, assuming the stand attributes can be accurately
assessed for all species occurring on sample plots (in-
cluding those with very few trees). A comparison of
these methods with those evaluated is this paper is
warranted in cases where longitudinal data are available.

Lastly, some discourse regarding the use of model
predictions instead of observed field data is warranted.
Observed field data is often hailed as the gold standard,
providing a direct and current observation of the phe-
nomena at hand. However, field data are subject to bias
and variability in the same context as model predictions;
although the field data bias is routinely (but often incor-
rectly) considered to be zero and the variation negligi-
ble. In continuous forest inventories, consistency in
measurement over time is critical for assessing forest
resource trends. However, such consistency is difficult
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to ensure as personnel, training practices, and field
methods change over time. Substituting model predic-
tions for field data is also subject to bias and variation.
The residual error is often quantified when the model is
developed, but prediction bias and uncertainty for sub-
populations is unknown. The temporal concern is
whether the relationships described by the model are
still valid in subsequent inventory cycles. Given that
both field measures and models are subject to bias,
variability, and temporal inconsistency, models may be
preferred to reduce field work costs and to provide
consistent predictions, i.e., the same result is obtained
for a given set of input values. In this context, the
concepts presented can be extended to other models
used to provide predicted values in a temporal frame-
work. This includes models employed in continuous
forest inventory settings or in growth-and-yield model
systems.

Conclusions

Improvements in predictive ability associated with
mixed-effects models as compared to fixed-effects
models has been well documented for both the model
fitting data as well as new observations. However, the
practical implementation of mixed models into contin-
uous forest inventory efforts has largely been
overlooked, primarily due to familiarity with the use of
fixed-effects models and concern regarding the com-
plexity of maintaining/predicting REs parameters. The
primary advantage of mixed models is the considerable
reduction in bias and variance of model predictions,
particularly for subpopulations where fixed-effects
models may perform poorly. From an implementation
standpoint, the disadvantage is that mixed-effects
models must be continually maintained, whereas in
contrast, fixed-effects models require no ongoing main-
tenance effort as long as the underlying relationships
remain valid. The most promising long-term mainte-
nance strategy for mixed models requires that some field
data be collected in order to obtain reasonably accurate
REs. This, in turn, results in more accurate estimates of
the attribute of interest (e.g., tree height). In summary,
effective implementation of mixed models requires an
initial investment in developing the algorithms to pre-
dict REs and making associated database modifications,
with an ongoing commitment to implement a field pro-
tocol for subsampling. The efficacy of employing mixed
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models must be evaluated by forest inventory managers
in light of the costs/benefits to the overall inventory
program.
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